WorldWideScience

Sample records for abundant liquid water

  1. Liquidity Hoarding and Inefficient Abundant Funding

    OpenAIRE

    Enisse Kharroubi

    2015-01-01

    This paper studies banks’ choice between building liquidity buffers and raising funding ex post to deal with reinvestment shocks. We uncover the possibility of an inefficient liquidity squeeze equilibrium when ex post funding is abundant. In the model, banks typically build larger liquidity buffers when they expect funding to be expensive. However, when banks hold larger liquidity buffers, pledgeable income is larger and they hence can raise more funding, which in the aggregate raises the fun...

  2. Water: The Strangest Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders

    2009-02-24

    Water, H2O, is familiar to everyone - it shapes our bodies and our planet. But despite its abundance, water has remained a mystery, exhibiting many strange properties that are still not understood. Why does the liquid have an unusually large capacity to store heat? And why is it denser than ice? Now, using the intense X-ray beams from particle accelerators, investigations into water are leading to fundamental discoveries about the structure and arrangement of water molecules. This lecture will elucidate the many mysteries of water and discuss current studies that are revolutionizing the way we see and understand one of the most fundamental substances of life.

  3. Effect of water irrigation volume on Capsicum frutescens growth and plankton abundance in aquaponics system

    Science.gov (United States)

    Andriani, Y.; Dhahiyat, Y.; Zahidah; Subhan, U.; Iskandar; Zidni, I.; Mawardiani, T.

    2018-03-01

    This study aimed to understand Capsicum frutescens growth and plankton abundance in aquaponics culture. A Completely Randomized Design (CRD) with six treatments in triplicates comprising of treatment A (positive control using organic liquid fertilizer), B (negative control without fertilizer), C (drip irrigation aquaponics with a water debit of 100 ml/day/plant), D (drip irrigation aquaponics with a water debit of 150 ml/day/plant), E (drip irrigation with a water debit of 200 ml/day/plant), and F (drip irrigation aquaponics with a water debit of 250 ml/day/plant) was applied. The water used in treatments C, D, E, and F contained comet fish feces as fertilizer. C. frutescens growth and plankton abundance were observed. Analysis was conducted using analysis of variance for plant productivity and descriptive analysis for plankton abundance and water quality. The results of this study showed that the highest plant growth was seen in plants receiving F treatment with 50 ml/day drip irrigation. However, no significant difference was found when compared to the positive control with organic artificial fertilizer. Eleven types of phytoplankton and six types of zooplankton were found, with Stanieria sp. as the most abundant phytoplankton and Brachionus sp. and Epistylis sp. as the most abundant zooplanktons.

  4. The Paradox of Water Abundance in Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Christopher Schulz

    2017-10-01

    Full Text Available While much effort has gone into studying the causes and consequences of water scarcity, the concept of water abundance has received considerably less attention in academic literature. Here, we aim to address this gap by providing a case study on the perceptions and political implications of water abundance in the Brazilian state of Mato Grosso. Combining a political ecology perspective on contemporary water governance (empirically based on stakeholder interviews with members of the state’s water sector with an overview of the environmental history of this hydrosocial territory, we argue, first, that water abundance has become a foundational element of Mato Grosso’s identity, situated in the wider context of natural resource abundance more generally and second, that water abundance today is a contested concept witnessing discursive struggles around its political implications and meaning. More specifically, there is a clash between the dominant conceptualisation of water abundance as a foundation for rich economic, ecological, social, and cultural values and benefits, often espoused by members of the political and economic elite, e.g., for marketing purposes, and a more critical but less widespread conceptualisation of water abundance as a source of carelessness, lack of awareness, and poor water governance, typically put forth by more informed technical staff of the public sector and civil society activists. By providing a distinct treatment and discussion of the concept of water abundance, our research has relevance for other water-rich regions beyond the immediate regional context.

  5. Metastable liquid-liquid transition in a molecular model of water

    Science.gov (United States)

    Palmer, Jeremy C.; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2014-06-01

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  6. Experimental evidence of a liquid-liquid transition in interfacial water

    Science.gov (United States)

    Zanotti, J.-M.; Bellissent-Funel, M.-C.; Chen, S.-H.

    2005-07-01

    At ambient pressure, bulk liquid water shows an anomalous increase of thermodynamic quantities and apparent divergences of dynamic properties on approaching a temperature Ts of 228 K. At normal pressure, supercooled water spontaneously freezes below the homogeneous nucleation temperature, TH = 235 K. Upon heating, the two forms of Amorphous Solid Water (ASW), LDA (Low Density Amorphous Ice) and HDA (High Density Amorphous Ice), crystallise above TX = 150 K. As a consequence, up to now no experiment has been able to explore the properties of liquid water in this very interesting temperature range between 150 and 235 K. We present nanosecond-time-scale measurements of local rotational and translational dynamics of interfacial, non-crystalline, water from 77 to 280 K. These experimental dynamic results are combined with calorimetric and diffraction data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first-order liquid-liquid transition at 240 K from a low-density to a high-density liquid. This is the first direct evidence of the existence of a liquid-liquid transition involving water.

  7. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  8. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  9. The end of abundance. Economic solutions to water scarcity

    NARCIS (Netherlands)

    Zetland, D.J.

    2011-01-01

    In a past of abundance, we had clean water to meet our demands for showers, pools, farms and rivers. Our laws and customs did not need to regulate or ration demand. Over time, our demand has grown, and scarcity has replaced abundance. We don't have as much clean water as we want. We can respond to

  10. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  11. Ternary (liquid + liquid) equilibria of {bis(trifluoromethylsulfonyl)-amide based ionic liquids + butan-1-ol + water}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał; Gawkowska, Joanna

    2016-01-01

    Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + butanol + water systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for butanol/water separation is discussed. - Abstract: Ternary (liquid + liquid) phase equilibria for 3 systems containing bis(trifluoromethylsulfonyl)-amide ionic liquids (1-buthyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, {1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluorylsulfonyl)-amide) + butan-1-ol + water} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature data for other systems containing ionic liquids. In each system total solubility of butan-1-ol and low solubility of water in the ionic liquid is observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is shortly discussed.

  12. High-efficiency solar cell with earth-abundant liquid-processed absorber

    Energy Technology Data Exchange (ETDEWEB)

    Todorov, Teodor K; Reuter, Kathleen B; Mitzi, David B [IBM T. J. Watson Research Center, Yorktown Heights, NY (United States)

    2010-05-25

    A composite liquid deposition approach merging the concepts of solution and particle-based coating for multinary chalcogenide materials is demonstrated. Photovoltaic absorbers based on earth-abundant Cu-Zn-Sn-S-Se kesterites show exceptional phase purity and are incorporated into solar cells with power conversion efficiency above 9.6%, bringing the state of the art of kesterite photovoltaic materials to a level suitable for possible commercialization. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  13. Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell

    2015-01-01

    The objective of this research was to investigate the effects of the conditions of hot water extraction (HWE) on abundance, properties, and structure of lignin depolymerization products. HWE of extracted softwood (ponderosa pine) was conducted using temperatures from 140 to 320°C for 90 min. HWE materials were then subjected to a soxhlet...

  14. Water at silica/liquid water interfaces investigated by DFT-MD simulations

    Science.gov (United States)

    Gaigeot, Marie-Pierre

    This talk is dedicated to probing the microscopic structural organization of water at silica/liquid water interfaces including electrolytes by first principles DFT-based molecular dynamics simulations (DFT-MD). We will present our very recent DFT-MD simulations of electrolytic (KCl, NaCl, NaI) silica/liquid water interfaces in order to unravel the intertwined structural properties of water and electrolytes at the crystalline quartz/liquid water and amorphous silica/liquid water interfaces. DFT-MD simulations provide direct knowledge of the structural organization of water and the H-Bond network formed between the water molecules within the different water layers above the silica surface. One can furthermore extract vibrational signatures of the water molecules within the interfacial layers from the DFT-MD simulations, especially non-linear SFG (Sum Frequency generation) signatures that are active at solid/liquid interfaces. The strength of the simulated spectra is that a detailed analysis of the signatures in terms of the water/water H-Bond networks formed within the interfacial water layers and in terms of the water/silica or water/electrolytes H-Bond networks can be given. Comparisons of SFG spectra between quartz/water/electrolytes and amorphous silica/water/electrolytes interfaces allow us to definitely conclude on how the structural arrangements of liquid water at these electrolytic interfaces modulate the final spectroscopic signatures. Invited speaker.

  15. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  16. Modeling the relationship between water level, wild rice abundance, and waterfowl abundance at a central North American wetland

    Science.gov (United States)

    Aagaard, Kevin; Eash, Josh D.; Ford, Walt; Heglund, Patricia J.; McDowell, Michelle; Thogmartin, Wayne E.

    2018-01-01

    Recent evidence suggests wild rice (Zizania palustris), an important resource for migrating waterfowl, is declining in parts of central North America, providing motivation to rigorously quantify the relationship between waterfowl and wild rice. A hierarchical mixed-effects model was applied to data on waterfowl abundance for 16 species, wild rice stem density, and two measures of water depth (true water depth at vegetation sampling locations and water surface elevation). Results provide evidence for an effect of true water depth (TWD) on wild rice abundance (posterior mean estimate for TWD coefficient, β TWD = 0.92, 95% confidence interval = 0.11—1.74), but not for an effect of wild rice stem density or water surface elevation on local waterfowl abundance (posterior mean values for relevant parameters overlapped 0). Refined protocols for sampling design and more consistent sampling frequency to increase data quality should be pursued to overcome issues that may have obfuscated relationships evaluated here.

  17. Evaluating the Liquid Liquid Phase Transition Hypothesis of Supercoooled Water

    Science.gov (United States)

    Limmer, David; Chandler, David

    2011-03-01

    To explain the anomalous behavior of supercooled water it has been conjectured that buried within an experimentally inaccessible region of liquid water's phase diagram there exists a second critical point, which is the terminus of a first order transition line between two distinct liquid phases. The so-called liquid-liquid phase transition (LLPT) has since generated much study, though to date there is no consensus on its existence. In this talk, we will discuss our efforts to systematically study the metastable phase diagram of supercooled water through computer simulation. By employing importance-sampling techniques, we have calculated free energies as a function of the density and long-range order to determine unambiguously if two distinct liquid phases exist. We will argue that, contrary to the LLPT hypothesis, the observed phenomenology can be understood as a consequence of the limit of stability of the liquid far away from coexistence. Our results suggest that homogeneous nucleation is the cause of the increased fluctuations present upon supercooling. Further we will show how this understanding can be extended to explain experimental observations of hysteresis in confined supercooled water systems.

  18. Heat transfer on liquid-liquid interface of molten-metal and water

    International Nuclear Information System (INIS)

    Tanaka, T.; Saito, Yasushi; Mishima, Kaichiro

    2001-01-01

    Molten-core pool had been formed in the lower-head of TMI-2 pressure vessel at the severe accident. The lower head, however, didn't receive any damage by reactor core cooling. Heat transfer at outside of the lower head and boiling heat transfer at liquid-liquid interface of molten-metal and water, however, are important for initial cooling process of the molten-core pool. The heat transfer experiments for the liquid-liquid interface of molten-metal and water are carried out over the range of natural convection to film boiling region. Phenomenon on the heat transfer experiments are visualized by using of high speed video camera. Wood's metal and U-alloy 78 are used as molten-metal. The test section of the experiments consists of a copper block with heater, wood's metal, and water. Three thermocouple probes are used for temperature measurement of water side and the molten-metal side. Stability of the liquid-liquid interface is depended on the wetness of container wall for molten metal and the temperature distribution of the interface. Entrainment phenomena of molten-metal occurs by a fluctuation of the interface after boiling on the container wall surface. The boiling curves obtained from the liquid-liquid interface experiments are agree with the nucleate boiling and the film boiling correlations of solid-liquid system. (Suetake, M.)

  19. The scaling of urban surface water abundance and impairment with city size

    Science.gov (United States)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  20. Dynamical explanation for the high water abundance detected in Orion

    International Nuclear Information System (INIS)

    Elitzur, M.

    1979-01-01

    Shock wave chemistry is suggested as the likely explanation for the high water abundance which has been recently detected in Orion by Phyllips et al. The existence of such a shock and its inferred properties are in agreement with other observations of Orion such as the broad velocity feature and H 2 vibration emission. Shock waves are proposed as the likely explanation for high water abundances observed in other sources such as the strong H 2 O masers

  1. Decompression-induced melting of ice IV and the liquid-liquid transition in water

    Science.gov (United States)

    Mishima, Osamu; Stanley, H. Eugene

    1998-03-01

    Although liquid water has been the focus of intensive research for over 100 years, a coherent physical picture that unifies all of the known anomalies of this liquid, is still lacking. Some of these anomalies occur in the supercooled region, and have been rationalized on the grounds of a possible retracing of the liquid-gas spinodal (metastability limit) line into the supercooled liquid region, or alternatively the presence of a line of first-order liquid-liquid phase transitions in this region which ends in a critical point,. But these ideas remain untested experimentally, in part because supercooled water can be probed only above the homogeneous nucleation temperature TH at which water spontaneously crystallizes. Here we report an experimental approach that is not restricted by the barrier imposed by TH, involving measurement of the decompression-induced melting curves of several high-pressure phases of ice in small emulsified droplets. We find that the melting curve for ice IV seems to undergo a discontinuity at precisely the location proposed for the line of liquid-liquid phase transitions. This is consistent with, but does not prove, the coexistence of two different phases of (supercooled) liquid water. From the experimental data we calculate a possible Gibbs potential surface and a corresponding equation of state for water, from the forms of which we estimate the coordinates of the liquid-liquid critical point to be at pressure Pc ~ 0.1GPa and temperature Tc ~ 220K.

  2. The Putative Liquid-Liquid Transition is a Liquid-Solid Transition in Atomistic Models of Water

    Science.gov (United States)

    Chandler, David; Limmer, David

    2013-03-01

    Our detailed and controlled studies of free energy surfaces for models of water find no evidence for reversible polyamorphism, and a general theoretical analysis of the phase behavior of cold water in nano pores shows that measured behaviors of these systems reflect surface modulation and dynamics of ice, not a liquid-liquid critical point. A few workers reach different conclusions, reporting evidence of a liquid-liquid critical point in computer simulations of supercooled water. In some cases, it appears that these contrary results are based upon simulation algorithms that are inconsistent with principles of statistical mechanics, such as using barostats that do not reproduce the correct distribution of volume fluctuations. In other cases, the results appear to be associated with difficulty equilibrating the supercooled material and mistaking metastability for coarsening of the ordered ice phase. In this case, sufficient information is available for us to reproduce the contrary results and to establish that they are artifacts of finite time sampling. This finding leads us to the conclusion that two distinct, reversible liquid phases do not exist in models of supercooled water.

  3. Preliminary experimental study of liquid lithium water interaction

    International Nuclear Information System (INIS)

    You, X.M.; Tong, L.L.; Cao, X.W.

    2015-01-01

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  4. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  5. Macrophyte abundance and water quality status of three impacted ...

    African Journals Online (AJOL)

    Assessment of macrophyte abundance and water quality of three impacted inlet streams along Ikpa River Basin were investigated. A 5m x 5m quadrat through systematic sampling was used to sample the vegetation for density and frequency of species. Sediment and water samples were collected and analyzed using ...

  6. Effects of effluent water on the abundance of cowpea insect pests.

    Science.gov (United States)

    Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad

    2017-10-03

    Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.

  7. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2013-06-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011), 10.1063/1.3643333 and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  8. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    International Nuclear Information System (INIS)

    Limmer, David T.; Chandler, David

    2013-01-01

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light

  9. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, David T.; Chandler, David, E-mail: chandler@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States)

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys.135, 134503 (2011) and preprint http://arxiv.org/abs/arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  10. The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II.

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2013-06-07

    This paper extends our earlier studies of free energy functions of density and crystalline order parameters for models of supercooled water, which allows us to examine the possibility of two distinct metastable liquid phases [D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011) and preprint arXiv:1107.0337 (2011)]. Low-temperature reversible free energy surfaces of several different atomistic models are computed: mW water, TIP4P/2005 water, Stillinger-Weber silicon, and ST2 water, the last of these comparing three different treatments of long-ranged forces. In each case, we show that there is one stable or metastable liquid phase, and there is an ice-like crystal phase. The time scales for crystallization in these systems far exceed those of structural relaxation in the supercooled metastable liquid. We show how this wide separation in time scales produces an illusion of a low-temperature liquid-liquid transition. The phenomenon suggesting metastability of two distinct liquid phases is actually coarsening of the ordered ice-like phase, which we elucidate using both analytical theory and computer simulation. For the latter, we describe robust methods for computing reversible free energy surfaces, and we consider effects of electrostatic boundary conditions. We show that sensible alterations of models and boundary conditions produce no qualitative changes in low-temperature phase behaviors of these systems, only marginal changes in equations of state. On the other hand, we show that altering sampling time scales can produce large and qualitative non-equilibrium effects. Recent reports of evidence of a liquid-liquid critical point in computer simulations of supercooled water are considered in this light.

  11. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  12. Further evidence of a liquid-liquid transition in interfacial water

    International Nuclear Information System (INIS)

    Zanotti, J-M; Bellissent-Funel, M C; Chen, S-H; Kolesnikov, A I

    2006-01-01

    In a previous paper we combined calorimetric, diffraction and high-resolution quasi-elastic neutron scattering data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first order liquid-liquid transition at 240 K from a low-density to a high-density liquid. Here we present further evidence of these transitions obtained by high-energy inelastic neutron scattering

  13. Bond-Valence Constraints on Liquid Water Structure

    International Nuclear Information System (INIS)

    Bickmore, Barry R.; Rosso, Kevin M.; Brown, I. David; Kerisit, Sebastien N.

    2009-01-01

    The recent controversy about the structure of liquid water pits a new model involving water molecules in relatively stable rings-and-chains structures against the standard model that posits water molecules in distorted tetrahedral coordination. Molecular dynamics (MD) simulations 'both classical and ab initio' almost uniformly support the standard model, but since none of them can yet reproduce all the anomalous properties of water, they leave room for doubt. We argue that it is possible to evaluate these simulations by testing them against their adherence to the bond-valence model, a well known, and quantitatively accurate, empirical summary of the behavior of atoms in the bonded networks of inorganic solids. Here we use the results of ab initio molecular dynamics simulations of ice, water, and several solvated aqueous species to show that the valence sum rule (the first axiom of the bond-valence model,) is followed in both solid and liquid bond networks. We then test MD simulations of water, employing several popular potential models, against this criterion and the experimental O-O radial distribution function. It appears that most of those tested cannot satisfy both criteria well, except TIP4P and TIP5P. If the valence sum rule really can be applied to simulated liquid structures, then it follows that the bonding behaviors of atoms in liquids are in some ways identical to those in solids. We support this interpretation by showing that the simulations produce O-H-O geometries completely consistent with the range of geometries available in solids, and the distributions of instantaneous valence sums reaching the atoms in both the ice and liquid water simulations are essentially identical. Taken together, this is powerful evidence in favor of the standard distorted tetrahedral model of liquid water structure

  14. (Liquid + liquid), (solid + liquid), and (solid + liquid + liquid) equilibria of systems containing cyclic ether (tetrahydrofuran or 1,3-dioxolane), water, and a biological buffer MOPS

    International Nuclear Information System (INIS)

    Altway, Saidah; Taha, Mohamed; Lee, Ming-Jer

    2015-01-01

    Graphical abstract: - Highlights: • MOPS buffer induced liquid phase splitting for mixtures of water with THF or 1,3-dioxolane. • Phase boundaries of LLE, SLE, and SLLE were determined experimentally. • Tie-lines at LLE and at SLLE were also measured. • Phase diagrams of MOPS + water + THF or 1,3-dioxolane are prepared. • LLE tie-line data are correlated satisfactorily with the NRTL model. - Abstract: Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane

  15. (Ternary liquid + liquid) equilibria for (water + acetone + α-pinene, or β-pinene, or limonene) mixtures

    International Nuclear Information System (INIS)

    Li Xiaoli; Tamura, Kazuhiro

    2010-01-01

    (Ternary liquid + liquid) equilibria (tie-lines) of (water + acetone + α-pinene) at T = (288.15, 298.15, and 308.15) K and (water + acetone + β-pinene, or limonene) at T = 298.15 K have been measured. The experimental (ternary liquid + liquid) equilibrium data have been correlated successfully by the original UNIQUAC and modified UNIQUAC models. The modified UNIQUAC model reproduced accurately the experimental results for the (water + acetone + α-pinene) system at all the temperatures but fairly agreed with the experimental data for the (water + acetone + β-pinene, or limonene) systems.

  16. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Anisimov, Mikhail A

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  17. Liquid Water Restricts Habitability in Extreme Deserts

    Science.gov (United States)

    Cockell, Charles S.; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water.

  18. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  19. Electrokinetic Power Generation from Liquid Water Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  20. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    Science.gov (United States)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  1. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio......The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community....... The TLDs studied in this thesis essentially consist of a rectangular container partially filled with liquid in the form of plain tap water. The frequency of the liquid sloshing motion, which is adjusted by varying the length of the tank and the depth of the wa- ter, is tuned to the structural frequency...

  2. Comment on "Spontaneous liquid-liquid phase separation of water".

    Science.gov (United States)

    Limmer, David T; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014)] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  3. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    Science.gov (United States)

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine.

  4. Neutronic studies of a liquid hydrogen-water composite moderator

    International Nuclear Information System (INIS)

    Tahara, T.; Ooi, M.; Iwasa, H.; Kiyanagi, Y.; Iverson, E.B.; Crabtree, J.A.; Lucas, A.T.

    2001-01-01

    A liquid hydrogen-liquid water composite moderator may provide performance like liquid methane at high-power spallation sources where liquid methane is impractical. We have measured the neutronic properties of such a composite moderator, where a hydrogen layer 1.25 cm thick was closely backed by water layers of 1.75 cm and 3.75 cm thickness. We also studied a moderator in which a 1.75 cm water layer was closely backed by a 1.25 cm hydrogen layer. We further performed simulations for each of these systems for comparison to the experimental results. We observed enhancement of the spectral intensity in the 'thermal' energy range as compared to the spectrum from a conventional liquid hydrogen moderator. This enhancement grew more significant as the water thickness increased, although the pulse shapes became wider as well. (author)

  5. Core-softened fluids, water-like anomalies, and the liquid-liquid critical points.

    Science.gov (United States)

    Salcedo, Evy; de Oliveira, Alan Barros; Barraz, Ney M; Chakravarty, Charusita; Barbosa, Marcia C

    2011-07-28

    Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water

  6. Ionic liquids as entrainers for water + ethanol, water + 2-propanol, and water + THF systems: A quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vijay Kumar [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India); Banerjee, Tamal, E-mail: tamalb@iitg.ernet.i [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India)

    2010-07-15

    Ionic liquids (ILs) are used as entrainers in azeotropic systems such as water + ethanol, water + 2-propanol, and water + tetrahydrofuran (THF). Ionic liquids consisting of a cation and an anion has limitless combinations, thereby making experimentation expensive and time taking. For the prediction of the liquid phase nonidealities resulting from molecular interactions, 'COnductor-like Screening MOdel for Real Solvents' (COSMO-RS) approach is used in this work for the screening of potential ionic liquids. Initially benchmarking has been done on 12 reported isobaric IL based ternary systems with an absolute average deviation of 4.63% in vapor phase mole fraction and 1.07% in temperature. After successful benchmarking, ternary vapor + liquid equilibria for the azeotropic mixture of (a) ethanol + water, (b) 2-propanol + water, and (c) THF + water with combinations involving 10 cations (imidazolium, pyridinium, quinolium) and 24 anions were predicted. The VLE prediction, which gave the relative volatility, showed that the imidazolium based ionic liquid were the best entrainer for the separation of the three systems at their azeotropic point. ILs with [MMIM] cation in combination with acetate [OAc], chloride [Cl], and bromide [Br] anion gave the highest relative volatility.

  7. Origin and abundance of water in carbonaceous asteroids

    Science.gov (United States)

    Marrocchi, Yves; Bekaert, David V.; Piani, Laurette

    2018-01-01

    The origin and abundance of water accreted by carbonaceous asteroids remains underconstrained, but would provide important information on the dynamic of the protoplanetary disk. Here we report the in situ oxygen isotopic compositions of aqueously formed fayalite grains in the Kaba and Mokoia CV chondrites. CV chondrite bulk, matrix and fayalite O-isotopic compositions define the mass-independent continuous trend (δ17O = 0.84 ± 0.03 × δ18O - 4.25 ± 0.1), which shows that the main process controlling the O-isotopic composition of the CV chondrite parent body is related to isotopic exchange between 16O-rich anhydrous silicates and 17O- and 18O-rich fluid. Similar isotopic behaviors observed in CM, CR and CO chondrites demonstrate the ubiquitous nature of O-isotopic exchange as the main physical process in establishing the O-isotopic features of carbonaceous chondrites, regardless of their alteration degree. Based on these results, we developed a new approach to estimate the abundance of water accreted by carbonaceous chondrites (quantified by the water/rock ratio) with CM (0.3-0.4) ≥ CR (0.1-0.4) ≥ CV (0.1-0.2) > CO (0.01-0.10). The low water/rock ratios and the O-isotopic characteristics of secondary minerals in carbonaceous chondrites indicate they (i) formed in the main asteroid belt and (ii) accreted a locally derived (inner Solar System) water formed near the snowline by condensation from the gas phase. Such results imply low influx of D- and 17O- and 18O-rich water ice grains from the outer part of the Solar System. The latter is likely due to the presence of a Jupiter-induced gap in the protoplanetary disk that limited the inward drift of outer Solar System material at the exception of particles with size lower than 150 μm such as presolar grains. Among carbonaceous chondrites, CV chondrites show O-isotopic features suggesting potential contribution of 17-18O-rich water that may be related to their older accretion relative to other hydrated

  8. Liquid-liquid critical point in a simple analytical model of water

    Science.gov (United States)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  9. Distribution and abundance of diatom species from coastal waters of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Khokhar, F. N.; Burhan, Z.; Iqbal, P.; Abbasi, J.; Siddiqui, P.

    2016-01-01

    This is the first comprehensive study on the distribution and abundance of diatom species from the coastal and nearshore waters of Karachi, Pakistan, bordering northern Arabian Sea. A total of 20 genera are recorded in high abundance (Cerataulina, Chaetoceros, Coscinodiscus, Cylindrotheca, Eucampia, Guinardia, Haslea, Hemiaulus, Lauderia, Lennoxia, Leptocylindrus, Navicula, Nitzschia, Trieres, Planktoniella, Pleurosigma, Pseudo-nitzschia, Rhizosolenia, Thalassionema and Thalassiosira). The most abundant genera were observed Guinardia, Chaetoceros, Leptocylindrus, Nitzschia and Lennoxia at all stations. Manora coastal station (MI-1) had high abundance corresponding with high Chlorophyll a (130 meu gL- l) values. Minimum abundance and low chlorophyll a value (0.05μgL-l) were observed at Mubarak Village coastal station (MV-1). Diatom abundance showed significant correlation with Chlorophyll a. In present study 12 centric and 8 pennate forms were recorded and similarly high diversity of centric taxa was observed compared to pennate forms. A total of 134 species are recorded of which 40 species were observed at four stations, 31species at three stations, 23 at two stations and 40 species only at one station. The total phytoplankton and diatom peak abundance was observed during NE monsoon (winter season) associated with nutrient loading through up-sloping of nutrient rich water upwelled off of Oman during South West monsoon. Overall higher diversity was observed at Manora coastal and nearshore stations (MI-1, MI-2) indicating the influence of organic pollution loading from Layari and Malir rivers. (author)

  10. Comment on "Spontaneous liquid-liquid phase separation of water"

    Science.gov (United States)

    Limmer, David T.; Chandler, David

    2015-01-01

    Yagasaki et al. [Phys. Rev. E 89, 020301 (2014), 10.1103/PhysRevE.89.020301] present results from a molecular dynamics trajectory illustrating coarsening of ice, which they interpret as evidence of transient coexistence between two distinct supercooled phases of liquid water. We point out that neither two distinct liquids nor criticality are demonstrated in this simulation study. Instead, the illustrated trajectory is consistent with coarsening behaviors analyzed and predicted in earlier work by others.

  11. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Perspective on the structure of liquid water

    International Nuclear Information System (INIS)

    Nilsson, A.; Pettersson, L.G.M.

    2011-01-01

    Graphical abstract: Liquid water can be described in a fluctuating inhomogeneous picture with two local structural motifs that are spatially separated. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds giving higher density (yellow), which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations (blue), i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. Highlights: ► Two components maximizing either enthalpy (tetrahedral, low-density) or entropy (non-specific H-bonding, higher density). ► Interconvert discontinuously and ratio depends on temperature. ► Density fluctuations on 1 nm length scale. ► Increasing size in supercooled region. ► Connection to Widom line and 2nd critical point. - Abstract: We present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water in the ambient regime. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid–liquid critical point hypothesis in supercooled water corresponding to high density liquid and low density liquid. We will discuss the interpretation of X-ray absorption spectroscopy, X-ray emission

  13. Water guns affect abundance and behavior of bigheaded carp and native fish differently

    Science.gov (United States)

    Rivera, Jose; Glover, David C.; Kocovsky, Patrick; Garvey, James E.; Gaikowski, Mark; Jensen, Nathan R.; Adams, Ryan F.

    2017-01-01

    Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.

  14. Water guns affect abundance and behavior of bigheaded carp and native fish differently

    Science.gov (United States)

    Rivera, Jose; Glover, David C.; Kocovsky, Patrick; Garvey, James E.; Gaikowski, Mark; Jensen, Nathan R.; Adams, Ryan F.

    2018-01-01

    Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.

  15. Laser spectrometry applied to the simultaneous determination of the δ2H, δ17O, and δ18O isotope abundances in water

    International Nuclear Information System (INIS)

    Kerstel, E.R.T.; Trigt, R. van; Dam, N.; Reuss, J.; Meijer, H.A.J.

    2001-01-01

    We demonstrate the first successful application of infrared laser spectrometry to the accurate, simultaneous determination of the relative 2 H/ 1 H, 17 O/ 16 O, and 18 O/ 16 O isotope abundance ratios in natural water. The method uses a narrow line width color center laser to record the direct absorption spectrum of low-pressure gas-phase water samples (presently 10 μl liquid) in the 3μm spectral region. The precision of the spectroscopic technique is shown to be 0.7 per mille for δ 2 H and 0.5 per mille for δ 17 O and δ 18 O, while the calibrated accuracy for natural waters amounts to about 3 per mille and 1 per mille, respectively. (author)

  16. Direct current dielectrophoretic manipulation of the ionic liquid droplets in water.

    Science.gov (United States)

    Zhao, Kai; Li, Dongqing

    2018-07-13

    The ionic liquids (ILs) as the environmentally benign solvents show great potentials in microemulsion carrier systems and have been widely used in the biochemical and pharmaceutical fields. In the work, the ionic liquid-in-water microemulsions were fabricated by using two kinds of hydrophobic ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate [Bmim][PF 6 ] and 1-Hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF 6 ] with Tween 20. The ionic liquid droplets in water experience the dielectrophoretic (DEP) forces induced by applying electrical field via a nano-orifice and a micron orifice on the opposite channel walls of a microchannel. The dielectrophoretic behaviors of the ionic liquid-in-water emulsion droplets were investigated under direct current (DC) electric field. The positive and negative DEP behaviors of the ionic liquid-in-water droplets varying with the electrical conductivity of the suspending medium were investigated and two kinds of the ionic liquid droplets of similar sizes were separated by their different DEP behaviors. In addition, the separation of the ionic liquid-in-water droplets by size was conducted. This paper, for the first time to our knowledge, presents the DC-DEP manipulation of the ionic liquid-in-water emulsion droplets by size and by type. This method provides a platform to manipulate the ionic liquid droplets individually. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Meridional Martian water abundance profiles during the 1988-1989 season

    International Nuclear Information System (INIS)

    Rizk, B.; Wells, W.K.; Hunten, D.M.; Stoker, C.R.; Freedman, R.S.; Roush, T.; Pollack, J.B.; Haberle, R.M.

    1991-01-01

    The Martian southern hemisphere atmospheric water vapor column abundance measurements reported agree with Viking Orbiter atmospheric water detectors during early southern spring and southern autumnal equinox; profiles obtained in southern mid- and late summer, however, indicate the presence of twice as much water both in the southern hemisphere and planetwide. This discrepancy is accounted for by the high optical depths created by two global dust storms during the Viking year, while the present observations were obtained in the case of the relatively dust-free atmosphere of the 1988-1989 opposition. 29 refs

  18. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  19. The puzzling unsolved mysteries of liquid water: Some recent progress

    Science.gov (United States)

    Stanley, H. E.; Kumar, P.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Indeed, it defies the imagination of even the most creative science fiction writer to picture what life would be like without water. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We introduce some of these unsolved mysteries, and demonstrate recent progress in solving them. We present evidence from experiments and computer simulations supporting the hypothesis that water displays a special transition point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell). The general idea is that when the liquid is near this “tipping point,” it suddenly separates into two distinct liquid phases. This concept of a new critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a protein.

  20. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  1. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  2. Experimental Evidence of Low Density Liquid Water under Decompression

    Science.gov (United States)

    Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.

    2017-12-01

    Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for

  3. Liquid water transport mechanism in the gas diffusion layer

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Wu, C.W. [State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian 116024 (China)

    2010-03-01

    We developed an equivalent capillary model of a microscale fiber-fence structure to study the microscale evolution and transport of liquid in a porous media and to reveal the basic principles of water transport in gas diffusion layer (GDL). Analytical solutions using the model show that a positive hydraulic pressure is needed to drive the liquid water to penetrate through the porous GDL even consisting of the hydrophilic fibers. Several possible contributions for the water configuration, such as capillary pressure, gravity, vapor condensation, wettability and microstructures of the GDL, are discussed using the lattice Boltzmann method (LBM). It is found that the distribution manners of the fibers and the spatial mixed-wettability in the GDL also play an important role in the transport of liquid water. (author)

  4. In-syringe dispersive liquid-liquid microextraction with liquid chromatographic determination of synthetic pyrethroids in surface water

    Directory of Open Access Journals (Sweden)

    Saeed S. Albaseer

    2012-03-01

    Full Text Available An indigenously fabricated in laboratory glass syringe was used for in-syringe dispersive liquid-liquid microextraction (is-DLLME and preconcentration of synthetic pyrethroids (SPs from surface waters suitable for their determination by high performance liquid chromatography. In contrast to classical DLLME, is-DLLME allows the use of lighter-than-water organic solvents and the analysis of environmental contaminants’ samples without prior filtration, which is of great importance due to the high affinity of pyrethroids to adsorb to solid particulates present in environmental samples. The effects of various parameters on the extraction efficiency were evaluated and optimized systemically using one-factor-at-a-time method (OFAT and statistically using full factorial design (24. Three SPs (viz.; cypermethrin, resmethrin and permethrin were analyzed. The method showed good accuracy with RSD% in the range of of 4.8–6.9%. The method detection limits of the three pesticides ranged from 0.14 to 0.16 ng mL-1. The proposed method was applied for the determination of synthetic pyrethroids in lake water

  5. (Liquid + liquid) equilibria for (water + 1-propanol or acetone + β-citronellol) at different temperatures

    International Nuclear Information System (INIS)

    Li, Hengde; Han, Yongtao; Huang, Cheng; Yang, Chufen

    2015-01-01

    Graphical abstract: (Liquid + liquid) equilibrium data for systems composed of β-citronellol and aqueous 1-propanol or acetone are presented. Distribution ratios of 1-propanol and acetone in the mixtures are examined. The effect of the temperature on the ternary (liquid + liquid) equilibria is evaluated and discussed. - Highlights: • Ternary (liquid + liquid) equilibria containing β-citronellol are presented. • Distribution ratios of 1-propanol and acetone in the mixtures are examined. • The effect on the temperature of the systems is evaluated and discussed. - Abstract: On this paper, experimental (liquid + liquid) equilibrium (LLE) results are presented for systems composed of β-citronellol and aqueous 1-propanol or acetone. To evaluate the phase separation properties of β-citronellol in aqueous mixtures, LLE values for the ternary systems (water + 1-propanol + β-citronellol) and (water + acetone + β-citronellol) were determined with a tie-line method at T = (283.15, 298.15, and 313.15 ± 0.02) K and atmospheric pressure. The reliability of the experimental tie-lines was verified by the Hand and Bachman equations. Ternary phase diagrams, distribution ratios of 1-propanol and acetone in the mixtures are shown. The effect of the temperature on the ternary (liquid + liquid) equilibria was examined and discussed. The experimental LLE values were satisfactorily correlated by extended UNIQUAC and modified UNIQUAC models

  6. Study on irradiation conditions of producing 153Sm with natural abundance samarium target

    International Nuclear Information System (INIS)

    Du Jin; Jin Xiaohai; Bai Hongsheng; Liu Yuemin; Chen Daming; Wang Fan

    1998-01-01

    Irradiation conditions of natural abundance 152 Sm targets in different forms are studied in the heavy water reactor and the light water swimming pool reactor at the China Institute of Atomic Energy. The result shows that the specific activity of 153 Sm in liquid form target irradiated in the light water swimming pool reactor is two times greater than that in solid form target. The radionuclide purity of 153 Sm is more than 99%, which can meet the needs of clinical application

  7. Ternary and quaternary (liquid + liquid) equilibria for (water + ethanol + α-pinene, +β-pinene, or +limonene) and (water + ethanol + α-pinene + limonene) at the temperature 298.15 K

    International Nuclear Information System (INIS)

    Li Hengde; Tamura, Kazuhiro

    2006-01-01

    (Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters

  8. Finding water scarcity amid abundance using human-natural system models.

    Science.gov (United States)

    Jaeger, William K; Amos, Adell; Bigelow, Daniel P; Chang, Heejun; Conklin, David R; Haggerty, Roy; Langpap, Christian; Moore, Kathleen; Mote, Philip W; Nolin, Anne W; Plantinga, Andrew J; Schwartz, Cynthia L; Tullos, Desiree; Turner, David P

    2017-11-07

    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water's indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water's spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human-natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society's institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete. Published under the PNAS license.

  9. Autodissociation of a water molecule in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, Phillip L.; Dellago, Christoph; Chandler, David; Hutter, Jurg; Parrinello, Michele

    2000-04-01

    The dissociation of a water molecule in liquid water is the fundamental event in acid-base chemistry, determining the pH of water.Because the microscopic dynamics of this autodissociation are difficult to probe, both by experiment and by computer simulation, its mechanism has been unknown. Here we report several autodissociation trajectories generated by ab initio molecular dynamics [1]. These trajectories, which were harvested using transition path sampling [2-4], reveal the mechanism for the first time. Rare fluctuations in solvation energies destabilize an oxygen-hydrogen bond. Through the transfer of one or more protons along a hydrogen bond.

  10. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    Science.gov (United States)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  11. What is Neptune's D/H ratio really telling us about its water abundance?

    Science.gov (United States)

    Ali-Dib, Mohamad; Lakhlani, Gunjan

    2018-05-01

    We investigate the deep-water abundance of Neptune using a simple two-component (core + envelope) toy model. The free parameters of the model are the total mass of heavy elements in the planet (Z), the mass fraction of Z in the envelope (fenv), and the D/H ratio of the accreted building blocks (D/Hbuild).We systematically search the allowed parameter space on a grid and constrain it using Neptune's bulk carbon abundance, D/H ratio, and interior structure models. Assuming solar C/O ratio and cometary D/H for the accreted building blocks are forming the planet, we can fit all of the constraints if less than ˜15 per cent of Z is in the envelope (f_{env}^{median} ˜ 7 per cent), and the rest is locked in a solid core. This model predicts a maximum bulk oxygen abundance in Neptune of 65× solar value. If we assume a C/O of 0.17, corresponding to clathrate-hydrates building blocks, we predict a maximum oxygen abundance of 200× solar value with a median value of ˜140. Thus, both cases lead to oxygen abundance significantly lower than the preferred value of Cavalié et al. (˜540× solar), inferred from model-dependent deep CO observations. Such high-water abundances are excluded by our simple but robust model. We attribute this discrepancy to our imperfect understanding of either the interior structure of Neptune or the chemistry of the primordial protosolar nebula.

  12. Pressure Dependence of the Liquid-Liquid Phase Transition of Nanopore Water Doped Slightly with Hydroxylamine, and a Phase Behavior Predicted for Pure Water

    Science.gov (United States)

    Nagoe, Atsushi; Iwaki, Shinji; Oguni, Masaharu; Tôzaki, Ken-ichi

    2014-09-01

    Phase transition behaviors of confined pure water and confined water doped with a small amount of hydroxylamine (HA) with a mole fraction of xHA = 0.03 were examined by high-pressure differential thermal analyses at 0.1, 50, 100, and 150 MPa; the average diameters of silica pores used were 2.0 and 2.5 nm. A liquid-liquid phase transition (LLPT) of the confined HA-doped water was clearly observed and its pressurization effect could be evaluated, unlike in the experiments on undoped water. It was found that pressurization causes the transition temperature (Ttrs) to linearly decrease, indicating that the low-temperature phase has a lower density than the high-temperature one. Transition enthalpy (ΔtrsH) decreased steeply with increasing pressure. Considering the linear decrease in Ttrs with increasing pressure, the steep decrease in ΔtrsH indicates that the LLPT effect of the HA-doped water attenuates with pressure. We present a new scenario of the phase behavior concerning the LLPT of pure water based on the analogy from the behavior of slightly HA-doped water, where a liquid-liquid critical point (LLCP) and a coexistence line are located in a negative-pressure regime but not in a positive-pressure one. It is reasonably understood that doping a small amount of HA into water results in negative chemical pressurization and causes the LLPT to occur even at ambient pressure.

  13. The structure of liquid water

    International Nuclear Information System (INIS)

    Marin, B.

    1969-01-01

    We have tried to expose a bibliography so complete as possible on structure of liquid water. One synthesis of the different models of water structure is presently impossible, so, we have exposed the main properties of water. We have pointed out the new hypotheses on the electronic structure of water molecule and on the theory of hydrogen bond. After that, we have put together the studies of structure by spectroscopy and given the main deductions of some workers on this subject. We have also exposed the characteristics of processes: relaxation and dielectric constant, influence of temperature on structure. At last, we have considered briefly the partition and thermodynamic functions established from the various models proposed. (author) [fr

  14. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  15. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  16. Pre-concentration of uranium from water samples by dispersive liquid-liquid micro-extraction

    Energy Technology Data Exchange (ETDEWEB)

    Khajeh, Mostafa; Nemch, Tabandeh Karimi [Zabol Univ. (Iran, Islamic Republic of). Dept. of Chemistry

    2014-07-01

    In this study, a simple and rapid dispersive liquid-liquid microextraction (DLLME) was developed for the determination of uranium in water samples prior to high performance liquid chromatography with diode array detection. 1-(2-pyridylazo)-2-naphthol (PAN) was used as complexing agent. The effect of various parameters on the extraction step including type and volume of extraction and dispersive solvents, pH of solution, concentration of PAN, extraction time, sample volume and ionic strength were studied and optimized. Under the optimum conditions, the limit of detection (LOD) and preconcentration factor were 0.3 μg L{sup -1} and 194, respectively. Furthermore, the relative standard deviation of the ten replicate was <2.6%. The developed procedure was then applied to the extraction and determination of uranium in the water samples.

  17. Pre-concentration of uranium from water samples by dispersive liquid-liquid micro-extraction

    International Nuclear Information System (INIS)

    Khajeh, Mostafa; Nemch, Tabandeh Karimi

    2014-01-01

    In this study, a simple and rapid dispersive liquid-liquid microextraction (DLLME) was developed for the determination of uranium in water samples prior to high performance liquid chromatography with diode array detection. 1-(2-pyridylazo)-2-naphthol (PAN) was used as complexing agent. The effect of various parameters on the extraction step including type and volume of extraction and dispersive solvents, pH of solution, concentration of PAN, extraction time, sample volume and ionic strength were studied and optimized. Under the optimum conditions, the limit of detection (LOD) and preconcentration factor were 0.3 μg L -1 and 194, respectively. Furthermore, the relative standard deviation of the ten replicate was <2.6%. The developed procedure was then applied to the extraction and determination of uranium in the water samples.

  18. Rapid determination of 226Ra in drinking water samples using dispersive liquid-liquid microextraction coupled with liquid scintillation counting

    International Nuclear Information System (INIS)

    Sadi, B.K.; Chunsheng Li; Kramer, G.H.; Johnson, C.L.; Queenie Ko; Lai, E.P.C.

    2011-01-01

    A new radioanalytical method was developed for rapid determination of 226 Ra in drinking water samples. The method is based on extraction and preconcentration of 226 Ra from a water sample to an organic solvent using a dispersive liquid-liquid microextraction (DLLME) technique followed by radiometric measurement using liquid scintillation counting. In DLLME for 226 Ra, a mixture of an organic extractant (toluene doped with dibenzo-21-crown-7 and 2-theonyltrifluoroacetone) and a disperser solvent (acetonitrile) is rapidly injected into the water sample resulting in the formation of an emulsion. Within the emulsion, 226 Ra reacts with dibenzo-21-crown-7 and 2-theonyltrifluoroacetone and partitions into the fine droplets of toluene. The water/toluene phases were separated by addition of acetonitrile as a de-emulsifier solvent. The toluene phase containing 226 Ra was then measured by liquid scintillation counting. Several parameters were studied to optimize the extraction efficiency of 226 Ra, including water immiscible organic solvent, disperser and de-emulsifier solvent type and their volume, chelating ligands for 226 Ra and their concentrations, inorganic salt additive and its concentration, and equilibrium pH. With the optimized DLLME conditions, the accuracy (expressed as relative bias, B r ) and method repeatability (expressed as relative precision, S B ) were determined by spiking 226 Ra at the maximum acceptable concentration level (0.5 Bq L -1 ) according to the Guidelines for Canadian Drinking Water Quality. Accuracy and repeatability were found to be less than -5% (B r ) and less than 6% (S B ), respectively, for both tap water and bottled natural spring water samples. The minimum detectable activity and sample turnaround time for determination of 226 Ra was 33 mBq L -1 and less than 3 h, respectively. The DLLME technique is selective for extraction of 226 Ra from its decay progenies. (author)

  19. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    International Nuclear Information System (INIS)

    Lladosa, Estela; Monton, Juan B.; Burguet, MaCruz; Torre, Javier de la

    2008-01-01

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model

  20. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    International Nuclear Information System (INIS)

    Mousis, Olivier; Lunine, Jonathan I.; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-01-01

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) ≥ 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O ∼ 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of ∼2 × solar (instead of ∼7 × solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O ∼ 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  1. Experimental measurement and prediction of (liquid + liquid + liquid) equilibrium for the system (n-hexadecane + water + triacetin)

    International Nuclear Information System (INIS)

    Revellame, Emmanuel D.; Holmes, William E.; Hernandez, Rafael; French, W. Todd; Forks, Allison; Ashe, Taylor; Estévez, L. Antonio

    2016-01-01

    Highlights: • Phase diagram for the system n-hexadecane + water + triacetin was established at T = 296.15 K and atmospheric pressure (0.1 MPa). • Both NRTL and UNIQUAC activity coefficient model adequately predicts the LLLE of the ternary system. • The phase equilibrium of the system is predominantly dictated by enthalpic contributions to the activity coefficient. - Abstract: The phase diagram for the ternary system containing (n-hexadecane + water + triacetin) was obtained experimentally at T = 296.15 K and ambient pressure. Results show that this system is of Type 3 according to the Treybal classification of ternary system. NRTL and UNIQUAC interaction parameters were calculated from binary phase equilibrium values and were used to predict the (liquid + liquid + liquid) equilibrium (LLLE) region. Results indicated that both NRTL and UNIQUAC could predict the LLLE region of the system with similar precision as indicated by the comparable standard deviations. This indicates that the enthalpic contribution to the activity coefficient is predominant and entropic contributions can be neglected.

  2. Ab initio calculation of the electronic absorption spectrum of liquid water

    International Nuclear Information System (INIS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-01-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  3. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  4. (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures

    International Nuclear Information System (INIS)

    Arce, Alberto; Rodriguez, Hector; Rodriguez, Oscar; Soto, Ana

    2005-01-01

    (Liquid + liquid) equilibrium data for the ternary system (dibutyl ether + methanol + water) were experimentally determined at T = (298.15, 308.15, and 318.15) K. The experimental results were correlated by means of the NRTL and UNIQUAC equations, the best results being achieved with the UNIQUAC equation, both for the individual correlations at each temperature and for the overall correlation considering all the three experimental data sets. The experimental tie-lines were also compared to the values predicted by the UNIFAC method

  5. Quaternary isobaric (vapor + liquid + liquid) equilibrium and (vapor + liquid) equilibrium for the system (water + ethanol + cyclohexane + heptane) at 101.3 kPa

    International Nuclear Information System (INIS)

    Pequenin, Ana; Asensi, Juan Carlos; Gomis, Vicente

    2011-01-01

    Highlights: → Water-ethanol-cyclohexane-heptane and water-cyclohexane-heptane isobaric VLLE. → Isobaric experimental data were determined at 101.3 kPa. → A dynamic recirculating still with an ultrasonic homogenizer was used. → The quaternary system does not present quaternary azeotropes. - Abstract: Experimental isobaric (vapor + liquid + liquid) and (vapor + liquid) equilibrium data for the ternary system {water (1) + cyclohexane (2) + heptane (3)} and the quaternary system {water (1) + ethanol (2) + cyclohexane (3) + heptane (4)} were measured at 101.3 kPa. An all-glass, dynamic recirculating still equipped with an ultrasonic homogenizer was used to determine the VLLE. The results obtained show that the system does not present quaternary azeotropes. The point-by-point method by Wisniak for testing the thermodynamic consistency of isobaric measurements was used to test the equilibrium data.

  6. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rakesh S.; Debenedetti, Pablo G. [Department of Chemical & Biological Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Biddle, John W.; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute of Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2016-04-14

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  7. Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water

    International Nuclear Information System (INIS)

    Singh, Rakesh S.; Debenedetti, Pablo G.; Biddle, John W.; Anisimov, Mikhail A.

    2016-01-01

    Water shows intriguing thermodynamic and dynamic anomalies in the supercooled liquid state. One possible explanation of the origin of these anomalies lies in the existence of a metastable liquid-liquid phase transition (LLPT) between two (high and low density) forms of water. While the anomalies are observed in experiments on bulk and confined water and by computer simulation studies of different water-like models, the existence of a LLPT in water is still debated. Unambiguous experimental proof of the existence of a LLPT in bulk supercooled water is hampered by fast ice nucleation which is a precursor of the hypothesized LLPT. Moreover, the hypothesized LLPT, being metastable, in principle cannot exist in the thermodynamic limit (infinite size, infinite time). Therefore, computer simulations of water models are crucial for exploring the possibility of the metastable LLPT and the nature of the anomalies. In this work, we present new simulation results in the NVT ensemble for one of the most accurate classical molecular models of water, TIP4P/2005. To describe the computed properties and explore the possibility of a LLPT, we have applied two-structure thermodynamics, viewing water as a non-ideal mixture of two interconvertible local structures (“states”). The results suggest the presence of a liquid-liquid critical point and are consistent with the existence of a LLPT in this model for the simulated length and time scales. We have compared the behavior of TIP4P/2005 with other popular water-like models, namely, mW and ST2, and with real water, all of which are well described by two-state thermodynamics. In view of the current debate involving different studies of TIP4P/2005, we discuss consequences of metastability and finite size in observing the liquid-liquid separation. We also address the relationship between the phenomenological order parameter of two-structure thermodynamics and the microscopic nature of the low-density structure.

  8. Small-scale experimental study of vaporization flux of liquid nitrogen released on water.

    Science.gov (United States)

    Gopalaswami, Nirupama; Olewski, Tomasz; Véchot, Luc N; Mannan, M Sam

    2015-10-30

    A small-scale experimental study was conducted using liquid nitrogen to investigate the convective heat transfer behavior of cryogenic liquids released on water. The experiment was performed by spilling five different amounts of liquid nitrogen at different release rates and initial water temperatures. The vaporization mass fluxes of liquid nitrogen were determined directly from the mass loss measured during the experiment. A variation of initial vaporization fluxes and a subsequent shift in heat transfer mechanism were observed with changes in initial water temperature. The initial vaporization fluxes were directly dependent on the liquid nitrogen spill rate. The heat flux from water to liquid nitrogen determined from experimental data was validated with two theoretical correlations for convective boiling. It was also observed from validation with correlations that liquid nitrogen was found to be predominantly in the film boiling regime. The substantial results provide a suitable procedure for predicting the heat flux from water to cryogenic liquids that is required for source term modeling. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. On the Fluctuations that Order and Frustrate Liquid Water

    Science.gov (United States)

    Limmer, David Tyler

    At ambient conditions, water sits close to phase coexistence with its crystal. More so than in many other materials, this fact is manifested in the fluctuations that maintain a large degree of local order in the liquid. These fluctuations and how they result in long-ranged order, or its absence, are emergent features of many interacting molecules. Their study therefore requires using the tools of statistical mechanics for their their systematic understanding. In this dissertation we develop such an understanding. In particular, we focus on collective behavior that emerges in liquid and solid water. At room temperatures, the thermophysical properties of water are quantified and rationalized with simple molecular models. A key feature of these models is the correct characterization of the competition between entropic forces of packing and the energetic preference for tetrahedral order. At cold temperatures, the properties of ice surfaces are studied with statistical field theory. The theory we develop for the long wavelength features of ice interfaces allows us to explain the existence of a premelting layer on the surface of ice and the stability of ice in confinement. In between these extremes, the dynamics of supercooled water are considered. A detailed theory for the early stages of coarsening is developed and used to explain the peculiar observation of a transient second liquid state of water. When coarsening dynamics are arrested, the result is the formation of a glassy states of water. We show that out-of-equilibrium the phase diagram for supercooled water exhibits a rich amount of structure, including a triple point between two glass phases of water and the liquid. At the end, we explore possible technological implications for the interplay between ordering and frustration in studies of water at metal interfaces.

  10. Deuterium exchange between liquid water and gaseous hydrogen

    International Nuclear Information System (INIS)

    Dave, S.M.; Ghosh, S.K.; Sadhukhan, H.K.

    1982-01-01

    The overall separation factors for the deuterium exchange between liquid water and gaseous hydrogen have been calculated over a wide range of temperature, pressure and deuterium concentrations. These data would be useful in the design and other considerations for heavy water production, based on hydrogen-water exchange. (author)

  11. (Liquid + liquid) equilibrium of {water + phenol + (1-butanol, or 2-butanol, or tert-butanol)} systems

    International Nuclear Information System (INIS)

    Hadlich de Oliveira, Leonardo; Aznar, Martin

    2010-01-01

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  12. Experimental equivalent cluster-size distributions in nano-metric volumes of liquid water

    International Nuclear Information System (INIS)

    Grosswendt, B.; De Nardo, L.; Colautti, P.; Pszona, S.; Conte, V.; Tornielli, G.

    2004-01-01

    Ionisation cluster-size distributions in nano-metric volumes of liquid water were determined for alpha particles at 4.6 and 5.4 MeV by measuring cluster-size frequencies in small gaseous volumes of nitrogen or propane at low gas pressure as well as by applying a suitable scaling procedure. This scaling procedure was based on the mean free ionisation lengths of alpha particles in water and in the gases measured. For validation, the measurements of cluster sizes in gaseous volumes and the cluster-size formation in volumes of liquid water of equivalent size were simulated by Monte Carlo methods. The experimental water-equivalent cluster-size distributions in nitrogen and propane are compared with those in liquid water and show that cluster-size formation by alpha particles in nitrogen or propane can directly be related to those in liquid water. (authors)

  13. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  14. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    Science.gov (United States)

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  15. Ionic Liquid Dispersive Liquid-Liquid Microextraction Method for the Determination of Irinotecan, an Anticancer Drug, in Water and Urine Samples Using UV-Vis Spectrophotometry.

    Science.gov (United States)

    Uysal, Deniz; Karadaş, Cennet; Kara, Derya

    2017-05-01

    A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.

  16. Layering of confined water between two graphene sheets and its liquid–liquid transition

    International Nuclear Information System (INIS)

    Zhou Xuyan; Duan Yunrui; Wang Long; Liu Sida; Li Tao; Li Yifan; Li Hui

    2017-01-01

    Molecular dynamics (MD) simulations are performed to explore the layering structure and liquid–liquid transition of liquid water confined between two graphene sheets with a varied distance at different pressures. Both the size of nanoslit and pressure could cause the layering and liquid–liquid transition of the confined water. With increase of pressure and the nanoslit’s size, the confined water could have a more obvious layering. In addition, the neighboring water molecules firstly form chain structure, then will transform into square structure, and finally become triangle with increase of pressure. These results throw light on layering and liquid–liquid transition of water confined between two graphene sheets. (paper)

  17. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

    International Nuclear Information System (INIS)

    Orchillés, A. Vicent; Miguel, Pablo J.; González-Alfaro, Vicenta; Llopis, Francisco J.; Vercher, Ernesto; Martínez-Andreu, Antoni

    2017-01-01

    Highlights: • VLE of binary and ternary systems of 2-propanol, water and [emim][DCA] at 100 kPa. • The e-NRTL model fits the VLE data of 2-propanol + water + [emim][DCA] system. • [emim][DCA] breaks the 2-propanol + water azeotrope at an IL mole fraction >0.085. - Abstract: Isobaric vapor–liquid equilibria for the binary systems 2-propanol + water, 2-propanol + 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), and water + [emim][DCA] as well as the vapor–liquid equilibria for the 2-propanol + water + [emim][DCA] ternary system have been obtained at 100 kPa using a recirculating still. The electrolyte nonrandom two-liquid (e-NRTL) model was used for fitting successfully the experimental data. The effect of [emim][DCA] on the 2-propanol + water system has been compared with that produced by other ionic liquids reported in the literature. From the results, [emim][DCA] appears as a good entrainer for the extractive distillation of this solvent mixture, causing the azeotrope to disappear at 100 kPa when the ionic liquid mole fraction is greater than 0.085.

  18. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas

    2013-03-01

    Most liquids can form a single glass or amorphous state when cooled sufficiently fast (in order to prevent crystallization). However, there are a few substances that are relevant to scientific and technological applications which can exist in at least two different amorphous states, a property known as polyamorphism. Examples include silicon, silica, and in particular, water. In the case of water, experiments show the existence of a low-density (LDA) and high-density (HDA) amorphous ice that are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation evolves into a first-order liquid-liquid phase transition (LLPT) at temperatures above the glass transition temperature Tg. However, obtaining direct experimental evidence of the LLPT has been challenging since the LLPT occurs at conditions where water rapidly crystallizes. In this talk, I will (i) discuss the general phenomenology of polyamorphism in water and its implications, and (ii) explore the effects of a LLPT on the pressure dependence of Tg(P) for LDA and HDA. Our study is based on computer simulations of two water models - one with a LLPT (ST2 model), and one without (SPC/E model). In the absence of a LLPT, Tg(P) for all glasses nearly coincide. Instead, when there is a LLPT, different glasses exhibit dramatically different Tg(P) loci which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario that includes a LLPT (ST2 model) and hence, our results support the view that a LLPT may exist for the case of water.

  19. Water detritiation: better catalysts for liquid phase catalytic exchange

    International Nuclear Information System (INIS)

    Braet, J.

    2005-01-01

    Fusion reactors are our hope for a clean nuclear energy. But as they shall handle huge amounts of tritium, 1.5 10 19 Bq GWth -1 a -1 or about 50 000 times more tritium than light water fission reactors, they need detritiation. Most tritium losses can be trapped as or can easily be transformed into tritiated water. Water detritiation is preferably based on the multiplication of the large equilibrium isotope effect during the exchange reaction of tritium between hydrogen gas and liquid water in a counter current trickle bed reactor. Such LPCE (Liquid Phase Catalytic Exchange) requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past. In combination with an appropriate packing, different batches of this catalyst performed very well during years of extensive testing, allowing to develop the ELEX process for water detritiation at inland reprocessing plants. The main objectives of this study were to reproduce and possibly improve the SCK-CEN catalyst for tritium exchange between hydrogen and liquid water; and to demonstrate the high overall exchange rate and thus high detritiation factors that can be realized with it in a small and simple LPCE column under typical but conservative operating conditions

  20. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  1. Relationships between water transparency and abundance of Cynodontidae species in the Bananal floodplain, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Cesar Enrique de Melo

    Full Text Available The Cerrado in the Central Brazil is currently one of the most threatened ecosystems in the world. As a result, the aquatic habitats in this biome also undergo great impacts. Alterations related to land-use change increase sediment loadings in rivers, streams and lakes, resulting in sedimentation and decrease in water transparency. Water transparency determines underwater visibility conditions, and as a consequence fish assemblages respond to spatial and temporal changes in this variable. This work aimed to examine the influence of transparency on the abundance and distribution of Cynodontidae species, a visually oriented predatory fish group. Fish sampling was conducted in 15 sites located between Mortes and Araguaia rivers in the Bananal floodplain, Mato Grosso State. Regression analysis between relative abundance of Cynodontidae (in number of individuals and biomass and water transparency showed a positive and highly significant correlation, indicating that this group shows species-specific habitat affinities for clearer waters. These results suggest that the increase in water turbidity in this region can affect the patterns of abundance and distribution of the Cynodontidae species, as well as other visually oriented fishes.

  2. Liquid chromatography with isotope-dilution mass spectrometry for determination of water-soluble vitamins in foods.

    Science.gov (United States)

    Phillips, Melissa M

    2015-04-01

    Vitamins are essential for improving and maintaining human health, and the main source of vitamins is the diet. Measurement of the quantities of water-soluble vitamins in common food materials is important to understand the impact of vitamin intake on human health, and also to provide necessary information for regulators to determine adequate intakes. Liquid chromatography (LC) and mass spectrometry (MS) based methods for water-soluble vitamin analysis are abundant in the literature, but most focus on only fortified foods or dietary supplements or allow determination of only a single vitamin. In this work, a method based on LC/MS and LC/MS/MS has been developed to allow simultaneous quantitation of eight water-soluble vitamins, including multiple forms of vitamins B3 and B6, in a variety of fortified and unfortified food-matrix Standard Reference Materials (SRMs). Optimization of extraction of unbound vitamin forms and confirmation using data from external laboratories ensured accuracy in the assigned values, and addition of stable isotope labeled internal standards for each of the vitamins allowed for increased precision.

  3. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    Science.gov (United States)

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  4. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples.

    Science.gov (United States)

    Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming

    2014-12-01

    An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A broadband helical saline water liquid antenna for wearable systems

    Science.gov (United States)

    Li, Gaosheng; Huang, Yi; Gao, Gui; Yang, Cheng; Lu, Zhonghao; Liu, Wei

    2018-04-01

    A broadband helical liquid antenna made of saline water is proposed. A transparent hollow support is employed to fabricate the antenna. The rotation structure is fabricated with a thin flexible tube. The saline water with a concentration of 3.5% can be injected into or be extracted out from the tube to change the quantity of the solution. Thus, the tunability of the radiation pattern could be realised by applying the fluidity of the liquid. The radiation feature of the liquid antenna is compared with that of a metal one, and fairly good agreement has been achieved. Furthermore, three statements of the radiation performance corresponding to the ratio of the diameter to the wavelength of the helical saline water antenna have been proposed. It has been found that the resonance frequency increases when the length of the feeding probe or the radius of the vertical part of the liquid decreases. The fractional bandwidth can reach over 20% with a total height of 185 mm at 1.80 GHz. The measured results indicate reasonable approximation to the simulated. The characteristics of the liquid antenna make it a good candidate for various wireless applications, especially the wearable systems.

  6. Seasonal variation in composition and abundance of harmful dinoflagellates in Yemeni waters, southern Red Sea.

    Science.gov (United States)

    Alkawri, Abdulsalam

    2016-11-15

    General abundance and species composition of a dinoflagellate community in Yemeni coastal waters of Al Salif (southern Red Sea) were studied with a view to understand the annual variations in particular the toxic species. Dinoflagellates were more abundant among phytoplankton. Thirty five dinoflagellate taxa were identified, among which 12 were reported as potentially toxic species. A significant change in seasonal abundance was recorded with the maximum (2.27∗10 6 cellsl -1 ) in May, and the minimum (2.50∗10 2 cellsl -1 ) recorded in January. Kryptoperidinium foliaceum, which was reported for the first time from the Red Sea, was the most abundant species with a maximum in May 2013 (2.26∗10 6 cellsl -1 ). Spearman's rank correlation analysis indicates that, total harmful dinoflagellate cells, K. foliaceum, Prorocentrum gracile and Prorocentrum micans were significantly correlated with temperature. This study suggests that Yemeni waters should be monitored to investigate harmful species and to identify areas and seasons at higher risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Investigation of a separation process involving liquid-water-coal systems

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jr, D V; Burry, W

    1987-01-01

    A liquid-liquid-solid separation procedure wherein a water-oil-coal-mineral matter slurry is allowed to come to equilibrium through mechanical agitation has for many years been applied to the separation of coal from mineral matter. The product is a black cottage cheese-like mass of agglomerated coal particles and oil suspended in the excess water which supports the dispersed mineral matter particles. A liquid bridge model which was proposed by earlier investigators is reviewed critically and used to estimate the free energy per unit area of the separation of coals of different ranks. Observations of the kinetics of the process suggest that the simple liquid bridge model is insufficient, probably due to the heterogeneous surfaces of the coal. An alternative model is proposed. 14 references.

  8. Angle-resolved photoemission spectroscopy of liquid water at 29.5 eV.

    Science.gov (United States)

    Nishitani, Junichi; West, Christopher W; Suzuki, Toshinori

    2017-07-01

    Angle-resolved photoemission spectroscopy of liquid water was performed using extreme ultraviolet radiation at 29.5 eV and a time-of-flight photoelectron spectrometer. SiC/Mg coated mirrors were employed to select the single-order 19th harmonic from laser high harmonics, which provided a constant photon flux for different laser polarizations. The instrument was tested by measuring photoemission anisotropy for rare gases and water molecules and applied to a microjet of an aqueous NaI solution. The solute concentration was adjusted to eliminate an electric field gradient around the microjet. The observed photoelectron spectra were analyzed considering contributions from liquid water, water vapor, and an isotropic background. The anisotropy parameters of the valence bands (1 b 1 , 3 a 1 , and 1 b 2 ) of liquid water are considerably smaller than those of gaseous water, which is primarily attributed to electron scattering in liquid water.

  9. Raman Thermometry Measurements of Free Evaporation from Liquid Water Droplets

    International Nuclear Information System (INIS)

    Smith, Jared D.; Cappa, Christopher D.; Drisdell, Walter S.; Cohen, Ronald C.; Saykally, Richard J.

    2006-01-01

    Recent theoretical and experimental studies of evaporation have suggested that on average, molecules in the higher-energy tail of the Boltzmann distribution are more readily transferred into the vapor during evaporation. To test these conclusions, the evaporative cooling rates of a droplet train of liquid water injected into vacuum have been studied via Raman thermometry. The resulting cooling rates are fit to an evaporative cooling model based on Knudsen's maximum rate of evaporation, in which we explicitly account for surface cooling. We have determined that the value of the evaporation coefficient (γ e ) of liquid water is 0.62 ± 0.09, confirming that a rate-limiting barrier impedes the evaporation rate. Such insight will facilitate the formulation of a microscopic mechanism for the evaporation of liquid water

  10. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  11. Thermodynamic modeling of ternary and quaternary (liquid + liquid) systems containing water, FeCl3, HCl and diisopropyl ether

    International Nuclear Information System (INIS)

    Milosevic, Miran; Hendriks, Ilse; Smits, Ralph E.R.; Schuur, Boelo; Haan, André B. de

    2013-01-01

    Highlights: • Literature data from various sources was validated experimentally. • Ternary and quaternary (liquid + liquid) systems were successfully described with the NRTL model. • Some deflection at higher HCl concentrations between model and data. • Additional data verification proved correctness of the literature data. -- Abstract: Liquid–liquid extraction using ethers as solvents is a potentially energy saving alternative for the concentration of aqueous ferric chloride solutions. Adequate thermodynamic models that describe the behavior of the resulting quaternary systems (FeCl 3 , ether, acid and water) are not available in the literature. In this paper, the development of an equilibrium description applying the NRTL-model is presented, including experimental validation and fitting of the NRTL-parameters on the validated data. Equilibrium experiments were performed for the ternary systems (water + HCl + DiPE) and (water + FeCl 3 + DiPE) and the obtained data is in good agreement with the results from Maljkovic et al.[37] and Cambell et al.[39]. Experimental data of the quaternary system is taken from Maljkovic et al.[37]. The obtained binary interaction parameters to describe the (liquid + liquid) quaternary system (water + FeCl 3 + HCl + DiPE) and the constituting ternaries by the NRTL model are presented. Model predictions are in good agreement with the experimental data

  12. Vortex-assisted liquid-liquid microextraction for the rapid screening of short-chain chlorinated paraffins in water.

    Science.gov (United States)

    Chang, Chia-Yu; Chung, Wu-Hsun; Ding, Wang-Hsien

    2016-01-01

    The rapid screening of trace levels of short-chain chlorinated paraffins in various aqueous samples was performed by a simple and reliable procedure based on vortex-assisted liquid-liquid microextraction combined with gas chromatography and electron capture negative ionization mass spectrometry. The optimal vortex-assisted liquid-liquid microextraction conditions for 20 mL water sample were as follows: extractant 400 μL of dichloromethane; vortex extraction time of 1 min at 2500 × g; centrifugation of 3 min at 5000 × g; and no ionic strength adjustment. Under the optimum conditions, the limit of quantitation was 0.05 μg/L. Precision, as indicated by relative standard deviations, was less than 9% for both intra- and inter-day analysis. Accuracy, expressed as the mean extraction recovery, was above 91%. The vortex-assisted liquid-liquid microextraction with gas chromatography and electron capture negative ionization mass spectrometry method was successfully applied to quantitatively extract short-chain chlorinated paraffins from samples of river water and the effluent of a wastewater treatment plant, and the concentrations ranged from 0.8 to 1.6 μg/L. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  14. (Liquid + liquid) equilibria of four alcohol–water systems containing 1,8-cineole at T = 298.15 K

    International Nuclear Information System (INIS)

    Li, Hengde; Feng, Zhangni; Wan, Li; Huang, Cheng; Zhang, Tianfei; Fang, Yanxiong

    2016-01-01

    Graphical abstract: (Liquid + liquid) equilibria of C_1–C_4 alcohol–water systems containing 1,8-cineole are presented. Distribution ratios of alcohol in the mixtures are examined. The immiscible region of the LLE systems is evaluated and discussed. - Highlights: • Ternary (liquid + liquid) equilibria containing 1,8-cineole are presented. • Distribution ratios of C_1–C_4 alcohol in the mixtures are examined. • The LLE values were correlated using the NRTL and UNIQUAC models. - Abstract: As an eco-friendly compound from essential oils, 1,8-cineole (cineole, eucalyptol) has the potential to replace the ozone depleting industrial solvents. This paper presents experimental (liquid + liquid) equilibrium (LLE) data for four alcohol–water systems containing 1,8-cineole. To evaluate the phase equilibrium properties of 1,8-cineole in aqueous alcohol mixtures, LLE values for the ternary systems (water + methanol or ethanol or 1-propanol or 1-butanol + 1,8-cineole) were determined with a tie-line method at T = 298.15 K under atmospheric pressure. The well-known Hand, Bachman and Othmer–Tobias equations were used to test the reliability of the experimental results. The binodal curves and distribution ratios of alcohol in the mixtures are shown and discussed. The experimental LLE values were satisfactorily correlated by the NRTL and UNIQUAC models.

  15. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids.

    Science.gov (United States)

    Yao, Cong; Li, Tianhao; Twu, Pamela; Pitner, William R; Anderson, Jared L

    2011-03-25

    Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf(2)). Compounds containing tertiary amine functionality were extracted with high selectivity and sensitivity by the 1-(6-amino-hexyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (HNH(2)MPL-FAP) IL compared to other FAP-based ILs and the BMIM-NTf(2) IL. On the other hand, polar or acidic compounds without amine groups exhibited higher enrichment factors using the BMIM-NTf(2) IL. The detection limits for the studied analytes varied from 0.1 to 55.1 μg/L using the traditional IL DLLME method with the HNH(2)MPL-FAP IL as extraction solvent, and from 0.1 to 55.8 μg/L using in situ IL DLLME method with BMIM-Cl+LiNTf(2) as extraction solvent. A 93-fold decrease in the detection limit of caffeine was observed when using the HNH(2)MPL-FAP IL compared to that obtained using in situ IL DLLME method. Real water samples including tap water and creek water were analyzed with both IL DLLME methods and yielded recoveries ranging from 91% to 110%. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.; Starr, Francis W.

    2012-01-01

    Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature Tg. Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of Tg(P) for LDA and HDA by performing computer simulations of two water models – one with a LLPT, and one without. In the absence of a LLPT, Tg(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different Tg(P) which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario including a LLPT. PMID:22550566

  17. Angle-resolved photoemission spectroscopy of liquid water at 29.5 eV

    Directory of Open Access Journals (Sweden)

    Junichi Nishitani

    2017-07-01

    Full Text Available Angle-resolved photoemission spectroscopy of liquid water was performed using extreme ultraviolet radiation at 29.5 eV and a time-of-flight photoelectron spectrometer. SiC/Mg coated mirrors were employed to select the single-order 19th harmonic from laser high harmonics, which provided a constant photon flux for different laser polarizations. The instrument was tested by measuring photoemission anisotropy for rare gases and water molecules and applied to a microjet of an aqueous NaI solution. The solute concentration was adjusted to eliminate an electric field gradient around the microjet. The observed photoelectron spectra were analyzed considering contributions from liquid water, water vapor, and an isotropic background. The anisotropy parameters of the valence bands (1b1, 3a1, and 1b2 of liquid water are considerably smaller than those of gaseous water, which is primarily attributed to electron scattering in liquid water.

  18. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    Science.gov (United States)

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  19. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  20. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  1. Seagrass distribution and abundance in Eastern Gulf of Mexico coastal waters

    Science.gov (United States)

    Iverson, Richard L.; Bittaker, Henry F.

    1986-05-01

    The marine angiosperms Thalassia testudinum, Syringodium filiforme, and Halodule wrightii form two of the largest reported seagrass beds along the northwest and southern coasts of Florida where they cover about 3000 square km in the Big Bend area and about 5500 square km in Florida Bay, respectively. Most of the leaf biomass in the Big Bend area and outer Florida Bay was composed of Thalassia testudinum and Syringodium filiforme which were distributed throughout the beds but which were more abundant in shallow depths. A short-leaved form of Halodule wrightii grew in monotypic stands in shallow water near the inner edges of the beds, while Halophila decipiens and a longer-leaved variety of H. wrightii grew scattered throughout the beds, in monotypic stands near the outer edges of the beds, and in deeper water outside the beds. Halophila engelmanni was observed scattered at various depths throughout the seagrass beds and in monospecific patches in deep water outside the northern bed. Ruppia maritima grew primarily in brackish water around river mouths. The cross-shelf limits of the two major seagrass beds are controlled nearshore by increased water turbidity and lower salinity around river mouths and off-shore by light penetration to depths which receive 10% or more of sea surface photosynthetically active radiation. Seagrasses form large beds only along low energy reaches of the coast. The Florida Bay seagrass bed contained about twice the short-shoot density of both Thalassia testudinum and Syringodium filiforme, for data averaged over all depths, and about four times the average short-shoot density of both species in shallow water compared with the Big Bend seagrass bed. The differences in average seagrass abundance between Florida Bay and the Big Bend area may be a consequence of the effects of greater seasonal solar radiation and water temperature fluctuations experienced by plants in the northern bed, which lies at the northern distribution limit for American

  2. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  3. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2017-10-15

    A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multiscale network model for simulating liquid water and water vapour transfer properties of porous materials

    NARCIS (Netherlands)

    Carmeliet, J.; Descamps, F.; Houvenaghel, G.

    1999-01-01

    A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is

  5. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  6. Fundamental understanding of liquid water effects on the performance of a PEMFC with serpentine-parallel channels

    International Nuclear Information System (INIS)

    Le, Anh Dinh; Zhou Biao

    2009-01-01

    A three-dimensional and unsteady proton exchange membrane fuel cell (PEMFC) model with serpentine-parallel channels has been incorporated to simulate not only the fluid flow, heat transfer, species transport, electrochemical reaction, and current density distribution but also the behaviors of liquid water in the gas-liquid flow of the channels and porous media. Using this general model, the behaviors of liquid water were investigated by performing the motion, deformation, coalescence and detachment of water droplets inside the channels and the penetration of liquid through the porous media at different time instants. The results showed that: tracking the interface of liquid water in a reacting gas-liquid flow in PEMFC can be fulfilled by using volume-of-fluid (VOF) algorithm combined with solving the conservation equations of continuity, momentum, energy, species transport and electrochemistry; the presence of liquid water in the channels has a significant impact on the flow fields, e.g., the gas flow became unevenly distributed due to the blockage of liquid water where the high pressure would be suddenly built up and the reactant gas transport in the channels and porous media would be hindered by liquid water occupation

  7. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  8. Spectrophotometric determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Lemos, Valfredo Azevedo; dos Santos, Liz Oliveira; Silva, Eldevan dos Santos; Vieira, Emanuel Vitor dos Santos

    2012-01-01

    A simple method for the determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction is described. The procedure is based on the extraction of mercury in the form of a complex and its subsequent determination by spectrophotometry. The complex is formed between Hg(II) and 2-(2-benzothiazolylazo)-p-cresol. The detection at 650 nm is performed directly in the metal-rich phase, which is spread on a triacetylcellulose membrane. The method eliminates the need to use a cuvet or large quantities of samples and reagents. The parameters that influence the preconcentration were studied, and the analytical characteristics were determined. The enrichment factor and the consumptive index for this method were 64 and 0.16 mL, respectively. The LOD (3.3 microg/L) and LOQ (11.1 microg/L) were also determined. The accuracy of the method was tested by the determination of mercury in certified reference materials BCR 397 (Human Hair) and SRM 2781 (Domestic Sludge). The method was applied to the determination of mercury in samples of drinking water, sea water, and river water.

  9. On the abundance and general nature of the liquid-liquid phase transition in molecular systems

    International Nuclear Information System (INIS)

    Kurita, Rei; Tanaka, Hajime

    2005-01-01

    Even a single-component liquid may have more than two kinds of isotropic liquid states. The transition between these different states is called a liquid-liquid transition (LLT). An LLT has been considered to be a rather rare phenomenon, in particular for molecular liquids. Very recently, however, we found an LLT in triphenyl phosphite, which may be the first experimental observation of an LLT for molecular liquids. Here we report convincing evidence of the second example of LLT for another molecular liquid, n-butanol. Despite large differences in the chemical structure and the molecular shape between triphenyl phosphite and n-butanol, the basic features of the transformation kinetics are strikingly similar. This suggests that an LLT may not be a rare phenomenon restricted to specific liquids, but may exist in various molecular liquids, which have a tendency to form long-lived locally favoured structures due to anisotropic interactions (e.g., hydrogen bonding). (letter to the editor)

  10. Strong Control of Salts on Near Surface Liquid Water Content in a High Polar Desert Indicated by Near Surface Resistivity Mapping with a Helicopter-Borne TEM Sensor, Lower Taylor Valley, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.; Myers, K. F.; Dugan, H.; Doran, P. T.; Virginia, R. A.

    2016-12-01

    Closed depressions in the Lower Taylor Valley (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by about an order of magnitude than the resistivity of nearby slopes and ridges (100s of ohm-m vs. 1000s). We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and/or deliquescent vapor fronts. High concentration of salts in the top decimeters to meters beneath the surface may prolong the existence and abundance of liquid water in this otherwise very cold and dry high polar desert. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Transient EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation. In areas where we measured low resistivity, the integrated liquid water fraction in the top 5m may be a few to several percent by volume, equivalent to a few or several dozens of cm of water layer thickness. This estimate assumes that the interstitial waters have very low resistivity, comparable to seawater or hypersaline brines at freezing (0.2-0.35 ohm-m). If soil water was considerably fresher than this, liquid water content would have to reach dozens of percent throughout the top 5m for bulk resistivities to drop to 100s of ohm-m. We consider the latter case to be unlikely as

  11. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  12. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  13. Resonant inelastic X-ray scattering of liquid water

    International Nuclear Information System (INIS)

    Nilsson, Anders; Tokushima, Takashi; Horikawa, Yuka; Harada, Yoshihisa; Ljungberg, Mathias P.; Shin, Shik; Pettersson, Lars G.M.

    2013-01-01

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b 1 origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H 2 O and D 2 O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and higher pressures

  14. Resonant inelastic X-ray scattering of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders, E-mail: nilsson@slac.stanford.edu [SUNCAT Ctr Interface Sci and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Tokushima, Takashi [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Horikawa, Yuka [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Harada, Yoshihisa [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Ljungberg, Mathias P. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden); Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, E-08193 Bellaterra (Spain); Shin, Shik [RIKEN/Spring-8, Sayo-cho, Sayo, Hyogo 679-5148 (Japan); Institute for Solid State Physics (ISSP), The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Synchrotron Radiation Research Organization, The University of Tokyo, Sayo-cho, Sayo, Hyogo 679-5165 (Japan); Pettersson, Lars G.M. [Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 (Sweden)

    2013-06-15

    Highlights: ► Two peaks are observed in the lone pair region of the XES spectrum of water assigned to tetrahedral and distorted hydrogen bonding configurations. ► The isotope effect observed as different relative peak heights is due to spectral line shape differences. ► The two different hydrogen bonding environments can be related to local structures mimicking either low density water or high density water. -- Abstract: We review recent studies using resonant inelastic X-ray scattering (RIXS) or also here denoted X-ray emission spectroscopy (XES) on liquid water and the assignment of the two sharp peaks in the lone-pair region. Using the excitation energy dependence we connect the two peaks to specific features in the X-ray absorption (XAS) spectrum which have independently been assigned to molecules in tetrahedral or distorted configurations. The polarization dependence shows that both peaks are of 1b{sub 1} origin supporting an interpretation in terms of two structural species, tetrahedral or disordered, which is furthermore consistent with the temperature-dependence of the two peaks. We discuss effects of life-time vibrational interference and how this affects the two components differently and also leads to differences in the relative peak heights for H{sub 2}O and D{sub 2}O. We show furthermore that the inherent structure in molecular dynamics simulations contain the structural bimodality suggested by XES, but this is smeared out in the real structure when temperature is included. We present a discussion around alternative interpretations suggesting that the origin of the two peaks is related to ultrafast dissociation and show evidence that such a model is inconsistent with several experimental observations and theoretical concepts. We conclude that the peaks reflect a temperature-dependent balance in fluctuations between tetrahedral and disordered structures in the liquid. This is well-aligned with theories of water under supercooled conditions and

  15. Self Assembly of Ionic Liquids at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Minofar, Babak

    2015-01-01

    Roč. 3, aug (2015), s. 27-40 ISSN 2245-4551 Institutional support: RVO:67179843 Keywords : Ionic liquids * air/water interface * self assembly * ion-water interaction * ion-ion interaction Subject RIV: CE - Biochemistry

  16. Droplet-Sizing Liquid Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  17. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  18. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the "2H abundance

    International Nuclear Information System (INIS)

    Faghihi, V.; Aerts-Bijma, A.T.; Jansen, H.G.; Spriensma, J.J.; Meijer, H.A.J.; Peruzzi, A.; Geel, J. van

    2015-01-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the "2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of "2H isotopic abundances encompassing widely the natural abundance range, while the "1"8O and "1"7O isotopic abundance were kept approximately constant and the "1"8O - "1"7O ratio was close to the Meijer-Li relationship for natural waters. The selected range of "2H isotopic abundances led to cells that realised TPW temperatures between approximately -140 μK to + 2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ"2H correction parameter of A_2_H = 673 μK/(per thousand deviation of δ"2H from VSMOW) with a combined uncertainty of 4 μK (k = 1, or 1 s). (authors)

  19. Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids

    International Nuclear Information System (INIS)

    Andanson, J.-M.; Meng, X.; Traïkia, M.; Husson, P.

    2016-01-01

    Highlights: • Residual water has a negligible impact on density of hydrophobic ionic liquids. • The density of a dry sample can be calculated from the density of a wet ionic liquid. • The viscosity of a dry sample can be calculated from the one of a wet ionic liquid. • Water can be quantified by NMR spectroscopy even in dried hydrophobic ionic liquids. - Abstract: The objective of this work was to quantify the effect of the presence of water as impurity in ionic liquids. First, density and viscosity of five ionic liquids as well as their aqueous solutions were measured. For hydrophobic dried ionic liquids, traces of water (50 ppm) have measurable impact neither on the density nor on the viscosity values. In the concentration range studied (up to 5000 ppm), a linear evolution of the molar volume of the mixture with the mole fraction composition is observed. Practically, this allows to estimate the density of an neat ionic liquid provided (i) the water quantity and (ii) the density of the undried sample are known. This is particularly useful for hydrophilic ionic liquids that are difficult to dry. In the studied concentration range, a linear evolution of the relative viscosity was also depicted as a function of the mass fraction composition. It is thus possible to evaluate the viscosity of the pure ionic liquid knowing the water quantity and the viscosity of the undried sample. The comparison of the results obtained using two viscosimeters confirms that a Stabinger viscosimeter is appropriate to precisely measure ionic liquids viscosities. Second, NMR and IR spectroscopies were used to characterize the pure ionic liquids and their solutions with water. The sensitivity of IR spectroscopy does allow neither the quantification nor the detection of water below 1 mol%. With NMR spectroscopy, water can be quantified using either the intensity or the chemical shift of the water proton peak for mole fractions as low as 200 ppm. It is even possible to detect water in

  20. Distribution, abundance and feeding ecology of baleen whales in Icelandic waters: have recent environmental changes had an effect?

    Directory of Open Access Journals (Sweden)

    Gísli Arnór Víkingsson

    2015-02-01

    Full Text Available The location of Iceland at the junction of submarine ridges in the North-East Atlantic where warm and cold water masses meet south of the Arctic Circle contributes to high productivity of the waters around the island. During the last two decades, substantial increases in sea temperature and salinity have been reported. Concurrently, pronounced changes have occurred in the distribution of several fish species and euphausiids. The distribution and abundance of cetaceans in the Central and Eastern North Atlantic have been monitored regularly since 1987. Significant changes in the distribution and abundance of several cetacean species have occurred in this time period. The abundance of Central North Atlantic humpback and fin whales has increased from 1,800 to 11,600 and 15,200 to 20,600, respectively, in the period 1987-2007. In contrast, the abundance of minke whales on the Icelandic continental shelf decreased from around 44,000 in 2001 to 20,000 in 2007 and 10,000 in 2009. The increase in fin whale abundance was accompanied by expansion of distribution into the deep waters of the Irminger Sea. The distribution of the endangered blue whale has shifted northwards in this period. The habitat selection of fin whales was analyzed with respect to physical variables (temperature, depth, salinity using a generalized additive model, and the results suggest that abundance was influenced by an interaction between the physical variables depth and distance to the 2000m isobaths, but also by sea surface temperature and sea surface height, However, environmental data generally act as proxies of other variables, to which the whales respond directly. Overall, these changes in cetacean distribution and abundance may be a functional feeding response of the cetacean species to physical and biological changes in the marine environment, including decreased abundance of euphausiids, a northward shift in summer distribution of capelin and a crash in the abundance of

  1. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lugowska, Katarzyna; Pernak, Juliusz

    2007-01-01

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO 3 ], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO 3 ] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO 3 ] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO 3 ] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G Ex models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular

  2. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  3. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, Olivier [Universite de Franche-Comte, Institut UTINAM, CNRS/INSU, UMR 6213, Observatoire des Sciences de l' Univers de Besancon (France); Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Madhusudhan, Nikku [Yale Center for Astronomy and Astrophysics, Department of Physics, Yale University, New Haven, CT 06511 (United States); Johnson, Torrence V., E-mail: olivier.mousis@obs-besancon.fr [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  4. Lanthanoid abundance of some neutral hot spring waters in Japan

    International Nuclear Information System (INIS)

    Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    1999-01-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO 2 concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO 2 content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO 2 -rich solutions. (author)

  5. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  6. Structure of liquid water at high pressures and temperatures

    CERN Document Server

    Eggert, J H; Loubeyre, P

    2002-01-01

    We report quantitatively accurate structure-factor and radial-distribution-function measurements of liquid water in a diamond-anvil cell (DAC) using x-ray diffraction. During the analysis of our diffraction data, we found it possible (and necessary) to also determine the density. Thus, we believe we present the first-ever diffraction-based determination of a liquid structure factor and equation of state in a DAC experiment.

  7. Process and apparatus for removing layers of liquids floating on the surface of water

    Energy Technology Data Exchange (ETDEWEB)

    1968-11-12

    This apparatus is towed or pushed by suitable means and collects a suitable thickness of the floating liquid and of water. The 2 liquids are then separated, the purified water is rejected outboard, and the polluting liquid is collected in a reservoir of the apparatus, from which it can easily be pumped and recovered in tanks.

  8. Substrate and surfactant effects on the glass-liquid transition of thin water films.

    Science.gov (United States)

    Souda, Ryutaro

    2006-09-07

    Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.

  9. Freely accessible water does not decrease consumption of ethanol liquid diets.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-02-01

    In experimental studies, liquid ethanol diets are usually given as the sole source of nutrition and fluid. Two series of experiments were conducted to examine the effect of freely accessible water on the consumption of ethanol liquid diets in male Long-Evans rats. The consumption of diets and subsequent learning ability of rats were first examined in animals given twice-daily saline injections. One group received diet with no access to water for 12 weeks and was subsequently given free access to water with diets for an additional 12 weeks. A second group was given diet and water ad libitum for 24 weeks. Control animals received an isocaloric sucrose-containing diet (with or without ad libitum access to water). Subsequently, rats were tested for active avoidance learning. In the first 12 weeks, animals with ad libitum access to water drank more diet than did water-restricted animals, and previously water-restricted animals increased their diet consumption when access to water was freely available. All water-restricted animals, in both ethanol- and sucrose-treated groups, showed deficits in active avoidance learning, whereas only ethanol-treated animals in groups with ad libitum access to water showed learning deficits. In the second series of experiments, the effect of saline injections on diet consumption, both in the presence and absence of water, was examined. Although saline injections were associated with decreased diet consumption, there was no effect of free access to water. No differences in blood ethanol concentration were seen among groups. Findings obtained from both series of studies demonstrate that consumption of a Sustacal-based liquid ethanol diet does not decrease if access to water is freely available.

  10. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    International Nuclear Information System (INIS)

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-01-01

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical

  11. The role of carrion supply in the abundance of deep-water fish off California.

    Science.gov (United States)

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  12. The structure of liquid water; La structure de l'eau liquide

    Energy Technology Data Exchange (ETDEWEB)

    Marin, B [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    We have tried to expose a bibliography so complete as possible on structure of liquid water. One synthesis of the different models of water structure is presently impossible, so, we have exposed the main properties of water. We have pointed out the new hypotheses on the electronic structure of water molecule and on the theory of hydrogen bond. After that, we have put together the studies of structure by spectroscopy and given the main deductions of some workers on this subject. We have also exposed the characteristics of processes: relaxation and dielectric constant, influence of temperature on structure. At last, we have considered briefly the partition and thermodynamic functions established from the various models proposed. (author) [French] Nous nous sommes proposes d'ecrire une bibliographie aussi complete que possible sur la structure de l'eau liquide. Apres avoir rappele les differentes tentatives d'etablissement de modele de structure, et s'etre rendu compte qu'une synthese s'averait impossible, il nous est apparu souhaitable d'exposer les principales proprietes de l'eau. C'est ainsi que nous avons donne les hypotheses les plus recentes sur la structure electronique de la molecule d'eau ainsi que celles concernant la theorie de la liaison hydrogene. Puis nous avons rassemble les etudes de structure par spectroscopie et fourni les deductions auxquelles les divers auteurs sont arrives. Nous avons egalement expose les caracteristiques des processus tels que: relaxation et constante dielectrique, l'influence de la temperature sur la structure et enfin nous avons donne brievement les fonctions de partition et les grandeurs thermodynamiques etablies a partir des divers modeles proposes. (auteur)

  13. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  14. Accurate experimental determination of the isotope effects on the triple point temperature of water. I. Dependence on the 2H abundance

    Science.gov (United States)

    Faghihi, V.; Peruzzi, A.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; van Geel, J.; Meijer, H. A. J.

    2015-12-01

    Variation in the isotopic composition of water is one of the major contributors to uncertainty in the realization of the triple point of water (TPW). Although the dependence of the TPW on the isotopic composition of the water has been known for years, there is still a lack of a detailed and accurate experimental determination of the values for the correction constants. This paper is the first of two articles (Part I and Part II) that address quantification of isotope abundance effects on the triple point temperature of water. In this paper, we describe our experimental assessment of the 2H isotope effect. We manufactured five triple point cells with prepared water mixtures with a range of 2H isotopic abundances encompassing widely the natural abundance range, while the 18O and 17O isotopic abundance were kept approximately constant and the 18O  -  17O ratio was close to the Meijer-Li relationship for natural waters. The selected range of 2H isotopic abundances led to cells that realised TPW temperatures between approximately  -140 μK to  +2500 μK with respect to the TPW temperature as realized by VSMOW (Vienna Standard Mean Ocean Water). Our experiment led to determination of the value for the δ2H correction parameter of A2H  =  673 μK / (‰ deviation of δ2H from VSMOW) with a combined uncertainty of 4 μK (k  =  1, or 1σ).

  15. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2015-07-07

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm{sup −1} and a positive band centered at 1670 cm{sup −1}. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  16. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively

    Science.gov (United States)

    Ni, Yicun; Skinner, J. L.

    2015-07-01

    Vibrational spectroscopy of the water bending mode has been investigated experimentally to study the structure of water in condensed phases. In the present work, we calculate the theoretical infrared (IR) and sum-frequency generation (SFG) spectra of the HOH bend in liquid water and at the water liquid/vapor interface using a mixed quantum/classical approach. Classical molecular dynamics simulation is performed by using a recently developed water model that explicitly includes three-body interactions and yields a better description of the water surface. Ab-initio-based transition frequency, dipole, polarizability, and intermolecular coupling maps are developed for the spectral calculations. The calculated IR and SFG spectra show good agreement with the experimental measurements. In the theoretical imaginary part of the SFG susceptibility for the water liquid/vapor interface, we find two features: a negative band centered at 1615 cm-1 and a positive band centered at 1670 cm-1. We analyze this spectrum in terms of the contributions from molecules in different hydrogen-bond classes to the SFG spectral density and also compare to SFG results for the OH stretch. SFG of the water bending mode provides a complementary picture of the heterogeneous hydrogen-bond configurations at the water surface.

  17. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  18. Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean

    Directory of Open Access Journals (Sweden)

    Jérôme P. Payet

    2014-09-01

    Full Text Available Despite nutrient-depleted conditions, coral reef waters harbor abundant and diverse microbes; as major agents of microbial mortality, viruses are likely to influence microbial processes in these ecosystems. However, little is known about marine viruses in these rapidly changing ecosystems. Here we examined spatial and short-term temporal variability in marine viral abundance and viral lytic activity across various reef habitats surrounding Moorea Island (French Polynesia in the South Pacific. Water samples were collected along 4 regional cross-reef transects and during a time-series in Opunohu Bay. Results revealed high viral abundance (range: 5.6 x 106 – 3.6 x 107 viruses ml-1 and lytic viral production (range: 1.5 x 109 – 9.2 x 1010 viruses l-1 d-1. Flow cytometry revealed that viral assemblages were composed of three subsets that each displayed distinct spatiotemporal relationships with nutrient concentrations and autotrophic and heterotrophic microbial abundances. The results highlight dynamic shifts in viral community structure and imply that each of these three subsets is ecologically important and likely to infect distinct microbial hosts in reef waters. Based on viral-reduction approach, we estimate that lytic viruses were responsible for the removal of ca. 24% to 367% of bacterial standing stock d-1 and the release of ca. 1.1 to 62 µg of organic carbon l-1 d-1 in reef waters. Overall, this work demonstrates the highly dynamic distribution of viruses and their critical roles in controlling microbial mortality and nutrient cycling in coral reef water ecosystems.

  19. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    This special section has been inspired by the workshop on Dynamic Crossover Phenomena in Water and Other Glass-Forming Liquids, held during November 11-13, 2010 at Pensione Bencistà, Fiesole, Italy, a well-preserved 14th century Italian villa tucked high in the hills overlooking Florence. The meeting, an assembly of world renowned scientists, was organized as a special occasion to celebrate the 75th birthday of Professor Sow-Hsin Chen of MIT, a pioneer in several aspects of complex fluids and soft matter physics. The workshop covered a large variety of experimental and theoretical research topics of current interest related to dynamic crossover phenomena in water and, more generally, in other glass-forming liquids. The 30 invited speakers/lecturers and approximately 60 participants were a select group of prominent physicists and chemists from the USA, Europe, Asia and Mexico, who are actively working in the field. Some highlights of this special issue include the following works. Professor Yamaguchi's group and their collaborators present a neutron spin echo study of the coherent intermediate scattering function of heavy water confined in cylindrical pores of MCM-41-C10 silica material in the temperature range 190-298 K. They clearly show that a fragile-to-strong (FTS) dynamic crossover occurs at about 225 K. They attribute the FTS dynamic crossover to the formation of a tetrahedral-like structure, which is preserved in the bulk-like water confined to the central part of the cylindrical pores. Mamontov and Kolesnikov et al study the collective excitations in an aqueous solution of lithium chloride over a temperature range of 205-270 K using neutron and x-ray Rayleigh-Brillouin (coherent) scattering. They detect both the low-frequency and the high-frequency sounds known to exist in pure bulk water above the melting temperature. They also perform neutron (incoherent) and x-ray (coherent) elastic intensity scan measurements. Clear evidence of the crossover in the

  20. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  1. Model potentials in liquid water ionization by fast electron impact

    International Nuclear Information System (INIS)

    De Sanctis, M L; Stia, C R; Fojón, O A; Politis, M-F; Vuilleumier, R

    2015-01-01

    We study the ionization of water molecules in liquid phase by fast electron impact. We use our previous first-order model within an independent electron approximation that allows the reduction of the multielectronic problem into a monoelectronic one. The initial molecular states of the liquid water are represented in a realistic way through a Wannier orbital formalism. We complete our previous study by taking into account approximately the influence of the passive electrons of the target by means of different model potentials. We compute multiple differential cross sections for the most external orbital 1B 1 and compare them with other results

  2. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    We report unusually large changes in the boiling temperature, saturated vapor pressure, and structure of the liquid-vapor interface for a range of 1-butyl-3-methyl tetrafluoroborate, [C4C1IM][BF4]-water mixtures. Even modest molar fractions of [C4C1IM][BF4] significantly affect the phase behavior...... of water, as represented, for instance, by strong negative deviations from Raoult's law, extending far beyond the standard descriptions. The investigation was carried out using classical molecular dynamics employing a specifically refined force field. The changes in the liquid-vapor interface and saturated...

  3. Diversity and abundance of ammonia-oxidizing

    NARCIS (Netherlands)

    Cardoso, J.F.M.F.; van Bleijswijk, J.D.L.; Witte, H.; van Duyl, F.C.

    2013-01-01

    We analysed the diversity and abundance of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in the shallow warm-water sponge Halisarca caerulea and the deep cold-water sponges Higginsia thielei and Nodastrella nodastrella. The abundance of AOA and AOB was analysed using catalyzed reporter

  4. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  5. Pulse radiolysis study on solvated electrons in ionic liquid with controlling water content

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, T.; Yoshida, Y.; Nagaishi, R.

    2006-01-01

    Room-temperature ionic liquids, which are nonvolatile and nonflammable, have been proposed as 'green solvents' for new applications in chemical synthesis, separation chemistry, electrochemistry and other areas. In the separation chemistry, the hydrophobic ionic liquids have been practically expected to be alternative to traditional organic solvents for solvent extraction of 4f and 5f elements from the viewpoints of the immiscibility in water, especially in the spent nuclear fuel reprocessing. However, the chemical reaction or kinetics studies are important to apply the ionic liquids for various processes. To understand the effects of ionic liquids on chemical reactions, pulse radiolysis studies of ionic liquid have been carried out on nanosecond scale by using a 27 MeV electron beam and an analyzing light source of xenon lamp. In the experiment, a hydrophobic ionic liquid of diethylmethyl(2-methoxy)ammonium-bis(trifluoromethanesulfonyl)imide (DEMMA-TFSI) salt was used. The ionic liquid of DEMMA-TFSI was prepared by reacting equimolar amounts of diethylmethyl(2-methoxy)ammonium chloride (C 10 H 20 F 6 N 2 O 5 S 2 Cl, >98%, Nisshinbo) with lithium bis(trifluoromethanesulfonyl)imide (LiN(SO 2 CF 3 ) 2 , SynQuest Labs., Inc.) in aqueous solutions at room temperature. The ionic liquid was separated from the aqueous phase, purified by repeated extractions with water to LiCl and excess reagent, and finally dried at 110 degree C under vacuum. The transient absorptions of the ionic liquid were measured at wavelengths from 350 to 1400 nm, in which two photodiodes of silicon ( 1000 nm) were used. The spectrum of solvated electrons in the ionic liquid of DEMMA-TFSI was obtained with an absorption peak of 1060 nm and a wide bandwidth of about 600 nm (FWHM). The decay constant of the solvated electrons in the ionic liquid was 1.54 x 10 7 s -1 , which is independent on the wavelength. The absorption peak of the spectrum was blue-shifted from 1060 to 780 nm with increasing water

  6. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  7. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    International Nuclear Information System (INIS)

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-01-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  8. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  9. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  10. Liquid interfacial water and brines in the upper surface of Mars

    Science.gov (United States)

    Moehlmann, Diedrich

    2013-04-01

    Liquid interfacial water and brines in the upper surface of Mars Diedrich T.F. Möhlmann DLR Institut für Planetenforschung, Rutherfordstr. 2, D - 12489 Berlin, Germany dirk.moehlmann@dlr.de Interfacial water films and numerous brines are known to remain liquid at temperatures far below 0° C. The physical processes behind are described in some detail. Deliquescence, i.e. the liquefaction of hygroscopic salts at the threshold of a specific "Deliquescence Relative Humidity", is shown to be that process, which on present Mars supports the formation of stable interfacial water and bulk liquids in form of temporary brines on and in a salty upper surface of present Mars in a diurnally temporary and repetitive process. Temperature and relative humidity are the governing conditions for deliquescence (and the counterpart "efflorescence") to evolve. The current thermo-dynamical conditions on Mars support these processes to evolve on present Mars. The deliquescence-driven presence of liquid brines in the soil of the upper surface of Mars can expected to be followed by physical and chemical processes like "surface cementation", down-slope flows, and physical and chemical weathering processes. A remarkable and possibly also biologically relevant evolution towards internally interfacial water bearing structures of dendritic capillaries is related to their freezing - thawing driven formation. The internal walls of these network-pores or -tubes can be covered by films of interfacial water, providing that way possibly habitable crack-systems in soil and rock. These evolutionary processes of networks, driven by their tip-growth, can expected to be ongoing also at present.

  11. Differences and similarity in the dynamic and acoustic properties of gas microbubbles in liquid mercury and water

    International Nuclear Information System (INIS)

    Ida, Masato; Haga, Katsuhiro; Kogawa, Hiroyuki; Naoe, Takashi; Futakawa, Masatoshi

    2010-01-01

    Differences and similarities in the dynamics of microbubbles in liquid mercury and water are clarified and summarized in order to evaluate the validity and usefulness of experiments with water as an alternative to experiments with mercury. Pressure-wave induced cavitation in liquid mercury is of particular concern in the high-power pulsed neutron sources working in Japan and the U.S. Toward suppressing the pressure waves and cavitation, injection of gas microbubbles into liquid mercury has been attempted. However, many difficulties arise in mercury experiments mainly because liquid mercury is an opaque liquid. Hence we and collaborators have performed water experiments as an alternative, in conjunction with mercury experiments. In this paper, we discussed how we should use the result with water and how we can make the water experiments meaningful. The non-dimensional numbers of bubbly liquids and bubbles' rise velocity, coalescence frequency, and response to heat input were investigated theoretically for both mercury and water. A suggestion was made to 'see through' bubble distribution in flowing mercury from the result of water study, and a notable similarity was found in the effect of bubbles to absorb thermal expansion of the liquids. (author)

  12. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  13. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  14. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    Science.gov (United States)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  15. Shallow transient liquid water environments on present-day mars, and their implications for life

    Science.gov (United States)

    Jones, Eriita G.

    2018-05-01

    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  16. Predicting glass-to-glass and liquid-to-liquid phase transitions in supercooled water using classical nucleation theory

    Science.gov (United States)

    Tournier, Robert F.

    2018-01-01

    Glass-to-glass and liquid-to-liquid phase transitions are observed in bulk and confined water, with or without applied pressure. They result from the competition of two liquid phases separated by an enthalpy difference depending on temperature. The classical nucleation equation of these phases is completed by this quantity existing at all temperatures, a pressure contribution, and an enthalpy excess. This equation leads to two homogeneous nucleation temperatures in each liquid phase; the first one (Tn- below Tm) being the formation temperature of an "ordered" liquid phase and the second one corresponding to the overheating temperature (Tn+ above Tm). Thermodynamic properties, double glass transition temperatures, sharp enthalpy and volume changes are predicted in agreement with experimental results. The first-order transition line at TLL = 0.833 × Tm between fragile and strong liquids joins two critical points. Glass phase above Tg becomes "ordered" liquid phase disappearing at TLL at low pressure and at Tn+ = 1.302 × Tm at high pressure.

  17. (Liquid + liquid) equilibria of (water + linalool + limonene) ternary system at T = (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Gramajo de Doz, Monica B.; Cases, Alicia M.; Solimo, Horacio N.

    2008-01-01

    (Liquid + liquid) equilibrium (LLE) data for {water (1) + linalool (2) + limonene (3)} ternary system at T = (298.15, 308.15, and 318.15 ± 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed

  18. Influence of the temperature on the (liquid + liquid) phase equilibria of (water + 1-propanl + linalool or geraniol)

    International Nuclear Information System (INIS)

    Wan, Li; Li, Hengde; Huang, Cheng; Feng, Yuqing; Chu, Guoqiang; Zheng, Yuying; Tan, Wei; Qin, Yanlin; Sun, Dalei; Fang, Yanxiong

    2017-01-01

    Highlights: • Ternary LLEs containing linalool and geraniol are presented. • Distribution ratios of 1-propanol in the mixtures are examined. • Influence of the temperature on the LLE is studied. • The LLE data were correlated using the NRTL and UNIQUAC models. - Abstract: Linalool and geraniol are the primary components of rose oil, palmarosa oil, and citronella oil and many other essential oils, and two important compounds used in the flavour and fragrance, cosmetic or pharmaceutical industries. Phase equilibria (LLE, VLE, solubility, etc.) and related thermodynamic properties of a mixture are essential in the processes design and control of mass transfer process. In this work, experimental (liquid + liquid) equilibria data of the systems (water + 1-propanl + linalool) and (water + 1-propanl + geraniol) are presented. The (liquid + liquid) equilibria of both systems were determined with a tie-line method at T = (283.15, 298.15 and 313.15) K under atmospheric pressure. The well-known Hand, Bachman and Othmer–Tobias equations were used to test the reliability of the experimental values. The influence of the temperature on the (liquid + liquid) phase equilibria of the mixtures, the binodal curves and distribution ratios of 1-propanl are shown and discussed. Moreover, the NRTL and UNIQUAC models were applied to fit the data for both ternary systems. The interaction parameters obtained from both models successfully correlated the equilibrium compositions. Furthermore, the ternary systems could be represented using the binary parameters of the thermodynamic model with a function of temperature.

  19. Experimental Observation of Bulk Liquid Water Structure in ``No Man's Land''

    Science.gov (United States)

    Sellberg, Jonas; McQueen, Trevor; Huang, Congcong; Loh, Duane; Laksmono, Hartawan; Sierra, Raymond; Hampton, Christina; Starodub, Dmitri; Deponte, Daniel; Martin, Andrew; Barty, Anton; Wikfeldt, Thor; Schlesinger, Daniel; Pettersson, Lars; Beye, Martin; Nordlund, Dennis; Weiss, Thomas; Feldkamp, Jan; Caronna, Chiara; Seibert, Marvin; Messerschmidt, Marc; Williams, Garth; Boutet, Sebastien; Bogan, Michael; Nilsson, Anders

    2013-03-01

    Experiments on pure bulk water below about 235 K have so far been difficult: water crystallization occurs very rapidly below the homogeneous nucleation temperature of 232 K and above 160 K, leading to a ``no man's land'' devoid of experimental results regarding the structure. Here, we demonstrate a new, general experimental approach to study the structure of liquid states at supercooled conditions below their limit of homogeneous nucleation. We use femtosecond x-ray pulses generated by the LCLS x-ray laser to probe evaporatively cooled droplets of supercooled bulk water and find experimental evidence for the existence of metastable bulk liquid water down to temperatures of 223 K in the previously largely unexplored ``no man's land''. We acknoweledge NSF (CHE-0809324), Office of Basic Energy Sciences, and the Swedish Research Council for financial support.

  20. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    Science.gov (United States)

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  1. Alternative solvent-based methyl benzoate vortex-assisted dispersive liquid-liquid microextraction for the high-performance liquid chromatographic determination of benzimidazole fungicides in environmental water samples.

    Science.gov (United States)

    Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2014-11-01

    Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation water samples. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Study on novel ionic liquids as extracting agent for priority metals from waste waters

    International Nuclear Information System (INIS)

    Fischer, L.; Falta, T.; Stingeder, G.; Koellensperger, G.; Hann, S.; Kogelnig, D.; Stojanovic, A.; Krachler, R.; Keppler, B.K.

    2009-01-01

    Full text: As the new EU Water Framework Directive (2000/60/EC) sets high environmental quality standards for priority substances in surface water, effective procedures for wastewater treatment are required. The characteristics of ionic liquids (IL) can be adjusted by modifying their ionic composition for liquid-liquid extraction of metals and metal containing compounds (Cd, Hg, Ni, Pb, tributyltin, cancerostatic platinum compounds) from the water phase. The potential of novel IL for selective removal of the above mentioned substances regarding extraction time, pH and matrix were determined by ICPSFMS, HPLC-ICPMS and GC-ICPMS measurements. (author)

  3. Pressure evolution of the high-frequency sound velocity in liquid water

    International Nuclear Information System (INIS)

    Krisch, M.; Sette, F.; D'Astuto, M.; Lorenzen, M.; Mermet, A.; Monaco, G.; Verbeni, R.; Loubeyre, P.; Le Toullec, R.; Ruocco, G.; Cunsolo, A.

    2002-01-01

    The high-frequency sound velocity v ∞ of liquid water has been determined to densities of 1.37 g/cm 3 by inelastic x-ray scattering. In comparison to the hydrodynamic sound velocity v 0 , the increase of v ∞ with density is substantially less pronounced, indicating that, at high density, the hydrogen-bond network is decreasingly relevant to the physical properties of liquid water. Furthermore, we observe an anomaly in v ∞ at densities around 1.12 g/cm 3 , contrasting the smooth density evolution of v 0

  4. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches.

    Science.gov (United States)

    Oster, Ryan J; Wijesinghe, Rasanthi U; Haack, Sheridan K; Fogarty, Lisa R; Tucker, Taaja R; Riley, Stephen C

    2014-12-16

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10 E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  5. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment

    Directory of Open Access Journals (Sweden)

    Francis Hassard

    2017-10-01

    Full Text Available To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA. Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC. Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA in winter. Here, we show the link between physicochemical

  6. Rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Yang, Xiao; Diao, Chun-Peng; Sun, Ai-Ling; Liu, Ren-Min

    2014-10-01

    A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut-glass dropper was designed and applied to collect the floating extraction drop in liquid-liquid microextraction when low-density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low-density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex-assisted liquid-liquid microextraction was employed to investigate the usefulness of the apparatus. High-performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r(2) = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Deuterium isotope separation factor between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Rolston, J.H.; den Hartog, J.; Butler, J.P.

    1976-01-01

    The overall deuterium isotope separation factor between hydrogen and liquid water, α, has been measured directly for the first time between 280 and 370 0 K. The data are in good agreement with values of α calculated from literature data on the equilibrium constant for isotopic exchange between hydrogen and water vapor, K 1 , and the liquid-vapor separation factor, α/sub V/. The temperature dependence of α over the range 273-473 0 K based upon these new experimental results and existing literature data is given by the equation ln α = -0.2143 + (368.9/T) + (27,870/T 2 ). Measurements on α/sub V/ given in the literature have been surveyed and the results are summarized over the same temperature range by the equation ln α/sub V/ = 0.0592 - (80.3/T) +

  8. Sub- and super-Maxwellian evaporation of simple gases from liquid water

    International Nuclear Information System (INIS)

    Kann, Z. R.; Skinner, J. L.

    2016-01-01

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H 2 from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and it is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.

  9. Sub- and super-Maxwellian evaporation of simple gases from liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Kann, Z. R.; Skinner, J. L., E-mail: skinner@chem.wisc.edu [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-04-21

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H{sub 2} from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and it is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.

  10. Water hammer phenomena occurring in nuclear power installations while filling horizontal pipe containing saturated steam with liquid

    Energy Technology Data Exchange (ETDEWEB)

    Selivanov, Y.F.; Kirillov, P.L.; Yefanov, A.D. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1995-09-01

    The potentiality of the water hammer occurrence in nuclear reactor loop components has been considered under the conditions of filling a steam-containing pipeline leg involving horizontal and vertical sections with liquid subcooled to the saturation temperature. As a result of free discharging from the tank, the liquid enters the horizontal pipeline. When the liquid slug formation in the pipeline is fulfilled. The pressure drop being occurred in steam flowing along the pipelines causes the liquid slug to move to the pipeline inlet. When the liquid slug decelerates, a water hammer occurs. This mechanism of water hammer occurrence is tested by experiments. The regimes of the occurrence of multiple considerable water hammers were identified.

  11. Water hammer phenomena occurring in nuclear power installations while filling horizontal pipe containing saturated steam with liquid

    International Nuclear Information System (INIS)

    Selivanov, Y.F.; Kirillov, P.L.; Yefanov, A.D.

    1995-01-01

    The potentiality of the water hammer occurrence in nuclear reactor loop components has been considered under the conditions of filling a steam-containing pipeline leg involving horizontal and vertical sections with liquid subcooled to the saturation temperature. As a result of free discharging from the tank, the liquid enters the horizontal pipeline. When the liquid slug formation in the pipeline is fulfilled. The pressure drop being occurred in steam flowing along the pipelines causes the liquid slug to move to the pipeline inlet. When the liquid slug decelerates, a water hammer occurs. This mechanism of water hammer occurrence is tested by experiments. The regimes of the occurrence of multiple considerable water hammers were identified

  12. Preparation of 'dead water' for low background liquid scintillation counting

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Niwa, Takeo; Kawai, Hiroshi

    1987-01-01

    'Dead water', low level tritiated water is indispensable to measure tritium concentration in environmental waters using a low background liquid scintillation counter. Water produced by combustion of natural gas, or deep sea water etc. are usually used for the above purpose. A new method of reducing tritium concentration in natural water has been introduced for preparation of 'dead water'. This method is to combine hydrogen-oxygen mixture produced by water electrolysis with hopcalite catalyzer at 700 deg C. Deep well water was electrolized up to 2/3 volume, and tritium concentration of recombined water was reduced to be about one third of that of the original one. (author)

  13. Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples

    Directory of Open Access Journals (Sweden)

    J. Pérez-Outeiral

    2014-01-01

    Full Text Available A simple and inexpensive method for cadmium determination in water using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry was developed. In order to obtain the best experimental conditions, experimental design was applied. Calibration was made in the range of 10–100 μg/L, obtaining good linearity (R2 = 0.9947. The obtained limit of detection based on calibration curve was 8.5 μg/L. Intra- and interday repeatability were checked at two levels, obtaining relative standard deviation values from 9.0 to 13.3%. The enrichment factor had a value of 73. Metal interferences were also checked and tolerable limits were evaluated. Finally, the method was applied to cadmium determination in real spiked water samples. Therefore, the method showed potential applicability for cadmium determination in highly contaminated liquid samples.

  14. Rapid determination of octanol-water partition coefficient using vortex-assisted liquid-liquid microextraction.

    Science.gov (United States)

    Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria

    2014-02-21

    Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. LIQUID-LIQUID EQUILIBRIA OF THE TERNARY SYSTEMS PROPIONIC ACID - WATER - SOLVENT (n-AMYL ALCOHOL AND n-AMYL ACETATE

    Directory of Open Access Journals (Sweden)

    Dilek ÖZMEN

    2005-02-01

    Full Text Available The experimental liquid-liquid equilibrium (LLE data have been obtained at 25 oC for ternary systems propionic acid-water-n-amyl alcohol and propionic acid-water-n-amyl acetate. The reliability of the experimental tie line data are checked using the methods of Othmer-Tobias and Hand. The distribution coefficients and separation factors were obtained from experimental results and are also reported. The predicted tie line data obtained by UNIFAC method are compared with experimental data. It is concluded that n-amyl alcohol and n-amyl acetate are suitable separating agents for dilute aqueous propionic acid solutions.

  16. A new water-based liquid scintillator and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  17. Evidence for the abundance of water on Mars now and in the past

    International Nuclear Information System (INIS)

    Clifford, S.M.; Greeley, R.; Haberle, R.M.

    1989-01-01

    This paper discusses evidence for the abundance of water on Mars early in its history, based on the analysis of the Viking 1 and 2 images and the Martian-atmosphere water measurements. It is argued that integrated networks of small valleys in the ancient cratered terrain of Mars may indicate that the planet once possessed a warmer climate. It is pointed out that most Martian outflow channels originate from the regions of collapsed and disrupted terrain, suggesting that they were formed by a catastrophic release of groundwater. The question of the fate of Martian water is discussed, and arguments are presented suggesting that the Martian crust may retain significant porosity to a depth of 10 km and may possess a total pore volume sufficient to store a global layer of water 0.5-1.5 km deep

  18. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    International Nuclear Information System (INIS)

    Li Shengqing; Cai Shun; Hu Wei; Chen Hao; Liu Hanlan

    2009-01-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6 ), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6 . After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 μL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass (m 0 , 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  19. Liquid scintillator mixable with water

    International Nuclear Information System (INIS)

    Benson, R.H.

    1976-01-01

    A liquid scintillator mixable with water is described consisting of an aromatic solvent (xylene), a scintillation material and an ethoxylated alkyl phenol (as surface-active substance). So far such kinds of system have not given good measurements on counting samples with high water content. Due to the invention's composition one gets good results even with counting samples having a water content of over 30% if the alkyl substituent of the alkyl phenol contains 7, 10, 11, 13, 14, 15 or 16 C atoms and the ratio n/x of the number n of C atoms of the alkyl substituents to the average number x of the ethoxy groups of the ethoxylated alkyl phenols lie between 0.83 and 1.67. The following alkyl phenols are mentioned: heptyl phenol (n/x between 0.83 and 1.08), decyl phenol (n/x between 0.90 and 1.17), hendecyl phenol (n/x between 0.93 and 1.22), tridecyl phenol (n/x between 0.97 and 1.34), tetradecyl phenol (n/x between 1.08 and 1.55), pentadecyl phenol (n/x between 1.15 and 1.67), hexadecyl phenol (n/x between 1.33 and 1.51). (UWI) [de

  20. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  1. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    OpenAIRE

    Y. Hu; M. Vaughan; C. McClain; M. Behrenfeld; H. Maring; D. Anderson; S. Sun-Mack; D. Flittner; J. Huang; B. Wielicki; P. Minnis; C. Weimer; C. Trepte; R. Kuehn

    2007-01-01

    International audience; This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water...

  2. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xu; Su Rui; Zhao Xin; Liu Zhuang; Zhang Yupu; Li Dan; Li Xueyuan; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Ziming, E-mail: analchem@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-11-30

    Graphical abstract: The extraction and derivatization efficiency of SAs is dependent on type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of derivatization reagent, pH of sample solution as well as ionic strength. Highlights: Black-Right-Pointing-Pointer A new, rapid and sensitive method for determining sulfonamides (SAs) was proposed. Black-Right-Pointing-Pointer Derivatization, extraction and preconcentration of SAs were performed in one step. Black-Right-Pointing-Pointer IL-based MADLLME and derivatization were first applied for the determination of SAs. Black-Right-Pointing-Pointer Trace SAs in river water, honey, milk, and pig plasma were determined. - Abstract: The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n = 5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination

  3. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  4. Interactions between soil texture, water, and nutrients control patterns of biocrusts abundance and structure

    Science.gov (United States)

    Young, Kristina; Bowker, Matthew; Reed, Sasha; Howell, Armin

    2017-04-01

    Heterogeneity in the abiotic environment structures biotic communities by controlling niche space and parameters. This has been widely observed and demonstrated in vascular plant and other aboveground communities. While soil organisms are presumably also strongly influenced by the physical and chemical dimensions of the edaphic environment, there are fewer studies linking the development, structure, productivity or function of surface soil communities to specific edaphic gradients. Here, we use biological soil crusts (biocrusts) as a model system to determine mechanisms regulating community structure of soil organisms. We chose soil texture to serve as an edaphic gradient because of soil texture's influence over biocrust distribution on a landscape level. We experimentally manipulated texture in constructed soil, and simultaneously manipulated two main outcomes of texture, water and nutrient availability, to determine the mechanism underlying texture's influence on biocrust abundance and structure. We grew biocrust communities from a field-sourced inoculum on four different soil textures, sieved from the same parent soil material, manipulating watering levels and nutrient additions across soil textures in a full-factorial design over a 5-month period of time. We measured abundance and structure of biocrusts over time, and measured two metrics of function, N2 fixation rates and soil stabilization, at the conclusion of the experiment. Our results showed finer soil textures resulted in faster biocrust community development and dominance by mosses, whereas coarser textures grew more slowly and had biocrust communities dominated by cyanobacteria and lichen. Additionally, coarser textured soils contained cyanobacterial filaments significantly deeper into the soil profile than fine textured soils. N2-fixation values increased with increasing moss cover and decreased with increasing cyanobacterial cover, however, the rate of change depended on soil texture and water amount

  5. Anomalous behavior of tellurium abundances

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1984-01-01

    The cosmic abundance of Te is larger than for any element with atomic number greater than 40, but it is one of the least abundant elements in the earth's lithosphere and it is one of the five elements never reported in sea water. On the other hand, it is the fourth most abundant element in the human body (after Fe, Zn and Rb), and is unusually abundant in human food. It is shown that the high abundance in human food combined with the low abundance in soil requires that it be picked up by plant roots very much more efficiently than any other trace element.

  6. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.

    Science.gov (United States)

    Faubel, M; Siefermann, K R; Liu, Y; Abel, B

    2012-01-17

    Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or close to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water-vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike

  7. Phase transitions on (liquid + liquid) equilibria for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems at T = (563, 573, and 583) K

    International Nuclear Information System (INIS)

    Togo, Masaki; Inamori, Yoshiki; Shimoyama, Yusuke

    2012-01-01

    Highlights: ► Mixtures of (water + 1-methylnaphthalene + light aromatic hydrocarbon) are focused. ► Phase transition pressures on (liquid + liquid) equilibria were measured. ► Effects of aromatic hydrocarbons on phase transition pressure are investigated. ► Phase transition pressures are discussed using dielectric constants of hydrocarbons. - Abstract: Phase transitions for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems are observed at their (liquid + liquid) equilibria at T = (563, 573, and 583) K and (8.6 to 25.0) MPa. The phase transition pressures at T = (563, 573, and 583) K were measured for the five species of light aromatic hydrocarbons, o-, m-, p-xylenes, ethylbenzene, and mesitylene. The measurements of the phase transition pressures were carried out by changing the feed mole fraction of water and 1-methylnaphthalene in water free, respectively. Effects of the feed mole fraction of water on the phase transition pressures are very small. Increasing the feed mole fraction of 1-methylnaphthalene results in decreasing the phase transition pressures at constant temperature. The slopes depending on the feed mole fraction for 1-methylnaphthalene at the phase transition pressures are decreased with increasing temperature for (water + 1-methylnaphthalene + p-xylene), (water + 1-methylnaphthalene + o-xylene), and (water + 1-methylnaphthalene + mesitylene) systems. For xylene isomers, the highest and lowest of the phase transition pressures are obtained in the case of p- and o-xylenes, respectively. The phase transition pressures for ethylbenzene are lower than those in the case of p-xylene. The similar phase transition pressures are given for p-xylene and mesitylene.

  8. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Marzinelli

    Full Text Available Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV facility of Australia's Integrated Marine Observing System (IMOS to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km and depths (15-60 m across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  9. Abundance of sea kraits correlates with precipitation.

    Directory of Open Access Journals (Sweden)

    Harvey B Lillywhite

    Full Text Available Recent studies have shown that sea kraits (Laticauda spp.--amphibious sea snakes--dehydrate without a source of fresh water, drink only fresh water or very dilute brackish water, and have a spatial distribution of abundance that correlates with freshwater sites in Taiwan. The spatial distribution correlates with sites where there is a source of fresh water in addition to local precipitation. Here we report six years of longitudinal data on the abundance of sea kraits related to precipitation at sites where these snakes are normally abundant in the coastal waters of Lanyu (Orchid Island, Taiwan. The number of observed sea kraits varies from year-to-year and correlates positively with previous 6-mo cumulative rainfall, which serves as an inverse index of drought. Grouped data for snake counts indicate that mean abundance in wet years is nearly 3-fold greater than in dry years, and this difference is significant. These data corroborate previous findings and suggest that freshwater dependence influences the abundance or activity of sea kraits on both spatial and temporal scales. The increasing evidence for freshwater dependence in these and other marine species have important implications for the possible impact of climate change on sea snake distributions.

  10. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Science.gov (United States)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-03-01

    This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.

  11. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.

    Science.gov (United States)

    Rykaczewski, Konrad; Chinn, Jeff; Walker, Marlon L; Scott, John Henry J; Chinn, Amy; Jones, Wanda

    2011-12-27

    Nanoparticles adsorbed onto the surface of a drop can fully encapsulate the liquid, creating a robust and durable soft solid with superhydrophobic characteristics referred to as a liquid marble. Artificially created liquid marbles have been studied for about a decade but are already utilized in some hair and skin care products and have numerous other potential applications. These soft solids are usually formed in small quantity by depositing and rolling a drop of liquid on a layer of hydrophobic particles but can also be made in larger quantities in an industrial mixer. In this work, we demonstrate that microscale liquid marbles can also form through self-assembly during water condensation on a superhydrophobic surface covered with a loose layer of hydrophobic nanoparticles. Using in situ environmental scanning electron microscopy and optical microscopy, we study the dynamics of liquid marble formation and evaporation as well as their interaction with condensing water droplets. We demonstrate that the self-assembly of nanoparticle films into three-dimensional liquid marbles is driven by multiple coalescence events between partially covered droplets and is aided by surface flows causing rapid nanoparticle film redistribution. We also show that droplet and liquid marble coalescence can occur due to liquid-to-liquid contact or squeezing of the two objects into each other as a result of compressive forces from surrounding droplets and marbles. Irrelevant of the mechanism, coalescence of marbles and drops can cause their rapid movement across and rolling off the edge of the surface. We also demonstrate that the liquid marbles randomly moving across the surface can be captured and immobilized by hydrophilic surface patterns.

  12. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation.

    Science.gov (United States)

    Foroutan, Masumeh; Fatemi, S Mahmood; Esmaeilian, Farshad

    2017-02-01

    During the past decade, the research on fluids in nanoconfined geometries has received considerable attention as a consequence of their wide applications in different fields. Several nanoconfined systems such as water and ionic liquids, together with an equally impressive array of nanoconfining media such as carbon nanotube, graphene and graphene oxide have received increasingly growing interest in the past years. Water is the first system that has been reviewed in this article, due to its important role in transport phenomena in environmental sciences. Water is often considered as a highly nanoconfined system, due to its reduction to a few layers of water molecules between the extended surface of large macromolecules. The second system discussed here is ionic liquids, which have been widely studied in the modern green chemistry movement. Considering the great importance of ionic liquids in industry, and also their oil/water counterpart, nanoconfined ionic liquid system has become an important area of research with many fascinating applications. Furthermore, the method of molecular dynamics simulation is one of the major tools in the theoretical study of water and ionic liquids in nanoconfinement, which increasingly has been joined with experimental procedures. In this way, the choice of water and ionic liquids in nanoconfinement is justified by applying molecular dynamics simulation approaches in this review article.

  13. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Jia Xiaoyu; Han Yi; Liu Xinli; Duan Taicheng; Chen Hangting

    2011-01-01

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg + ) and mercury (Hg 2+ ) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg + and Hg 2+ were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL -1 for MeHg + and 0.0014 ng mL -1 for Hg 2+ , respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL -1 MeHg + and Hg 2+ were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  14. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    Science.gov (United States)

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  15. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dynamic lifetimes of cagelike water clusters immersed in liquid water and their implications for hydrate nucleation studies

    Energy Technology Data Exchange (ETDEWEB)

    Guo, G.J.; Zhang, Y.G.; Li, M.; Wu, C.H. [Chinese Academy of Sciences, Inst. of Geology and Geophysics, Beijing (China). Key Laboratory of the Study of Earth' s Deep Interior

    2008-07-01

    In hydrate research fields, the hydrate nucleation mechanism still remains as an unsolved question. The static lifetimes of cagelike water clusters (CLWC) immersed in bulk liquid water have recently been measured by performing molecular dynamics simulations in the methane-water system, during which the member-water molecules of CLWCs are not allowed to exchange with their surrounding water molecules. This paper presented a study that measured the dynamic lifetimes of CLWCs permitting such water exchanges. The study involved re-analysis of previous simulation data that were used to study the effect of methane adsorption on the static lifetimes of a dodecahedral water cluster (DWC). The dynamic lifetimes of the DWC were calculated. The results of lifetime measurements of DWC in different systems were provided. The implications of this study for hydrate nucleation were also discussed. It was found that the dynamic lifetimes of CLWCs were not less than the static lifetimes previously obtained, and their ratio increased with the lifetime values. The results strengthened that CLWCs are metastable structures in liquid water and the occurrence probability of long-lived CLWCs will increase if one uses the dynamic lifetimes instead of the static lifetimes. 13 refs., 1 tab., 3 figs.

  17. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.

    Science.gov (United States)

    Arain, Salma Aslam; Kazi, Tasneem Gul; Afridi, Hassan Imran; Arain, Mariam Shahzadi; Panhwar, Abdul Haleem; Khan, Naeemullah; Baig, Jameel Ahmed; Shah, Faheem

    2016-04-01

    A simple and rapid dispersive liquid-liquid microextraction procedure based on ionic liquid assisted microemulsion (IL-µE-DLLME) combined with cloud point extraction has been developed for preconcentration copper (Cu(2+)) in drinking water and serum samples of adolescent female hepatitits C (HCV) patients. In this method a ternary system was developed to form microemulsion (µE) by phase inversion method (PIM), using ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([C4mim][PF6]) and nonionic surfactant, TX-100 (as a stabilizer in aqueous media). The Ionic liquid microemulsion (IL-µE) was evaluated through visual assessment, optical light microscope and spectrophotometrically. The Cu(2+) in real water and aqueous acid digested serum samples were complexed with 8-hydroxyquinoline (oxine) and extracted into IL-µE medium. The phase separation of stable IL-µE was carried out by the micellar cloud point extraction approach. The influence of of different parameters such as pH, oxine concentration, centrifugation time and rate were investigated. At optimized experimental conditions, the limit of detection and enhancement factor were found to be 0.132 µg/L and 70 respectively, with relative standard deviation <5%. In order to validate the developed method, certified reference materials (SLRS-4 Riverine water) and human serum (Sero-M10181) were analyzed. The resulting data indicated a non-significant difference in obtained and certified values of Cu(2+). The developed procedure was successfully applied for the preconcentration and determination of trace levels of Cu(2+) in environmental and biological samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Kinetics of proton migration in liquid water.

    Science.gov (United States)

    Chen, Hanning; Voth, Gregory A; Agmon, Noam

    2010-01-14

    We have utilized multistate empirical valence bond (MS-EVB3) simulations of protonated liquid water to calculate the relative mean-square displacement (MSD) and the history-independent time correlation function, c(t), of the hydrated proton center of excess charge (CEC) with respect to the water molecule on which it has initially resided. The MSD is nonlinear for the first 15 ps, suggesting that the relative diffusion coefficient increases from a small value, D(0), at short separations to its larger bulk value, D(infinity), at large separations. With the ensuing distance-dependent diffusion coefficient, D(r), the time dependence of both the MSD and c(t) agrees quantitatively with the solution of a diffusion equation for reversible geminate recombination. This suggests that the relative motion of the CEC is not independent from the nearby water molecules, in agreement with theoretical and experimental observations that large water clusters participate in the mechanism of proton mobility.

  19. Emergence of the Coherent Structure of Liquid Water

    Directory of Open Access Journals (Sweden)

    Ivan Bono

    2012-07-01

    Full Text Available We examine in some detail the interaction of water molecules with the radiative electromagnetic field and find the existence of phase transitions from the vapor phase to a condensed phase where all molecules oscillate in unison, in tune with a self-trapped electromagnetic field within extended mesoscopic space regions (Coherence Domains. The properties of such a condensed phase are examined and found to be compatible with the phenomenological properties of liquid water. In particular, the observed value of critical density is calculated with good accuracy.

  20. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    Science.gov (United States)

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  1. [Determination of four phenolic endocrine disruptors in environmental water samples by high performance liquid chromatography-fluorescence detection using dispersive liquid-liquid microextraction coupled with derivatization].

    Science.gov (United States)

    Wang, Xiaoyan; Qi, Weimei; Zhao, Xian'en; Lü, Tao; Wang, Xiya; Zheng, Longfang; Yan, Yehao; You, Jinmao

    2014-06-01

    To achieve accurate, fast and sensitive detection of phenolic endocrine disruptors in small volume of environmental water samples, a method of dispersive liquid-liquid microextraction (DLLME) coupled with fluorescent derivatization was developed for the determination of bisphenol A, nonylphenol, octylphenol and 4-tert-octylphenol in environmental water samples by high performance liquid chromatography-fluorescence detection (HPLC-FLD). The DLLME and derivatization conditions were investigated, and the optimized DLLME conditions for small volume of environmental water samples (pH 4.0) at room temperature were as follows: 70 microL chloroform as extraction solvent, 400 microL acetonitrile as dispersing solvent, vortex mixing for 3 min, and then high-speed centrifugation for 2 min. Using 2-[2-(7H-dibenzo [a, g] carbazol-7-yl)-ethoxy] ethyl chloroformate (DBCEC-Cl) as precolumn derivatization reagent, the stable derivatives of the four phenolic endocrine disruptors were obtained in pH 10.5 Na2CO3-NaHCO3 buffer/acetonitrile at 50 degrees C for 3 min, and then separated within 10 min by HPLC-FLD. The limits of detection (LODs) were in the range of 0.9-1.6 ng/L, and the limits of quantification (LOQs) were in the range of 3.8-7.1 ng/L. This method had perfect linearity, precision and recovery results, and showed obvious advantages and practicality comparing to the previously reported methods. It is a convenient and validated method for the routine analysis of phenolic endocrine disruptors in waste water of paper mill, lake water, domestic wastewater, tap water, etc.

  2. A dual-reservoir remote loading water target system for 18F and 13N production with direct in-target liquid level sensing

    International Nuclear Information System (INIS)

    Ferrieri, R.A.; Alexoff, D.L.; Schlyer, D.J.; Wolf, A.P.

    1991-01-01

    This report describes our universal water target loading system that serves both [ 18 F] and [ 13 N] production targets, and a radionuclide delivery system that is specific for [ 18 F] fluoride. The system was designed and fabricated around the operation of a single pneumatic syringe dispenser that accesses one of two reservoirs filled with [ 18 O] enriched water for [ 18 F] fluoride production from the 18 O(p,n) 18 F reaction and natural abundance water for [ 13 N] nitrate/nitrite production from the 16 O(p,α) 13 N reaction and loads one of two targets depending on the radionuclide desired. The system offers several novel features for reliable radionuclide production. First, there exists an in-target probe for direct liquid level sensing using the conductivity response of water. In addition, transfer of [ 18 F] fluoride to the Hot Lab is completely decoupled from the irradiated water through the actions of a resin/recovery system which is located in the cyclotron vault, thus maintaining transfer line integrity. This feature also provides a mechanism for vault-containment of long-lived contaminants generated through target activation and leaching into the water

  3. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  4. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    International Nuclear Information System (INIS)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A.; Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N.; Tabuchi, Y.; Kotaka, T.

    2016-01-01

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  5. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  6. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Science.gov (United States)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  7. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, Bruce R; Shih, Kai-Yuan [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2011-06-15

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 x 10{sup -2} to 80 g kWh{sup -1}. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  8. Method for determination of radon-222 in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Suomela, J.

    1993-06-01

    The procedure for the determination of radon-222 by liquid scintillation counting is quite specific for this radionuclide. Radon-222 is extracted readily from the water sample by an organic scintillant. The decay products of radon-222 will remain in the water phase whilst radon-222 will be extracted into the organic phase. Before measurement the sample is stored for three hours until equilibrium is reached between radon-222 and its alpha emitting decay products. The alpha activity from radon-222 and its decay products is measured in a liquid scintillation counter

  9. Stability limit of liquid water in metastable equilibrium with subsaturated vapors.

    Science.gov (United States)

    Wheeler, Tobias D; Stroock, Abraham D

    2009-07-07

    A pure liquid can reach metastable equilibrium with its subsaturated vapor across an appropriate membrane. This situation is analogous to osmotic equilibrium: the reduced chemical potential of the dilute phase (the subsaturated vapor) is compensated by a difference in pressure between the phases. To equilibrate with subsaturated vapor, the liquid phase assumes a pressure that is lower than its standard vapor pressure, such that the liquid phase is metastable with respect to the vapor phase. For sufficiently subsaturated vapors, the liquid phase can even assume negative pressures. The appropriate membrane for this metastable equilibrium must provide the necessary mechanical support to sustain the difference in pressure between the two phases, limit nonhomogeneous mechanisms of cavitation, and resist the entry of the dilutant (gases) into the pure phase (liquid). In this article, we present a study of the limit of stability of liquid water--the degree of subsaturation at which the liquid cavitates--in this metastable state within microscale voids embedded in hydrogel membranes. We refer to these structures as vapor-coupled voids (VCVs). In these VCVs, we observed that liquid water cavitated when placed in equilibrium with vapors of activity aw,vapairhumiditynucleation theory or molecular simulations (Pcav=-140 to -180 MPa). To determine the cause of the disparity between the observed and predicted stability limit, we examine experimentally the likelihood of several nonhomogeneous mechanisms of nucleation: (i) heterogeneous nucleation caused by hydrophobic patches on void walls, (ii) nucleation caused by the presence of dissolved solute, (iii) nucleation caused by the presence of pre-existing vapor nuclei, and (iv) invasion of air through the hydrogel membrane into the voids. We conclude that, of these possibilities, (i) and (ii) cannot be discounted, whereas (iii) and (iv) are unlikely to play a role in determining the stability limit.

  10. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  11. Process and apparatus for determining the proportion of water in a liquid containing petroleum

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.

    1980-01-01

    This invention concerns nuclear techniques for determining the proportion or percentage of water contained in a petroleum stream and the salinity level of such water in oil refining and production operations. This technique consists in bombarding the liquid with fast neutrons from an appropriate source, these neutrons being slowed down to the point of becoming slow neutrons that can be captured by the substances present in the liquid thus giving rise to capture gamma rays. The energy spectrum of the gamma rays resulting from the capture of these slow or 'thermal' neutrons obtained in this manner, makes it possible to determine the presence of chlorine in the liquid and to measure its concentration so that if the degree of salinity of the liquid is known, the amount of salt water in it may be determined. Furthermore, the sulphur level can also be determined at the same time as the concentration of chlorine in certain conditions [fr

  12. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2012-01-01

    Aims. Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in

  13. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma.

    Science.gov (United States)

    Xu, Xu; Su, Rui; Zhao, Xin; Liu, Zhuang; Zhang, Yupu; Li, Dan; Li, Xueyuan; Zhang, Hanqi; Wang, Ziming

    2011-11-30

    The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n=5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of simple solutes on the long range dipolar correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)

    2016-03-14

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

  15. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    Science.gov (United States)

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  16. Range-energy relations and stopping power of water, water vapour and tissue equivalent liquid for α particles over the energy range 0.5 to 8 MeV

    International Nuclear Information System (INIS)

    Palmer, R.B.J.; Akhavan-Rezayat, Ahmad

    1978-01-01

    Experimental range-energy relations are presented for alpha particles in water, water vapour and tissue equivalent liquid at energies up to 8 MeV. From these relations differential stopping powers are derived at 0.25 MeV energy intervals. Consideration is given to sources of error in the range-energy measurements and to the uncertainties that these will introduce into the stopping power values. The ratio of the differential stopping power of muscle equivalent liquid to that of water over the energy range 0.5 to 7.5 MeV is discussed in relation to the specific gravity and chemical composition of the muscle equivalent liquid. Theoretical molecular stopping power calculations based upon the Bethe formula are also presented for water. The effect of phase upon the stopping power of water is discussed. The molecular stopping power of water vapour is shown to be significantly higher than that of water for energies below 1.25 MeV and above 2.5 MeV, the ratio of the two stopping powers rising to 1.39 at 0.5 MeV and to 1.13 at 7.0 MeV. Stopping power measurements for other liquids and vapours are compared with the results for water and water vapour and some are observed to have stopping power ratios in the vapour and liquid phases which vary with energy in a similar way to water. It is suggested that there may be several factors contributing to the increased stopping power of liquids. The need for further experimental results on a wider range of liquids is stressed

  17. Synergistic effect of dicarbollide anions in liquid-liquid extraction: a molecular dynamics study at the octanol-water interface.

    Science.gov (United States)

    Chevrot, G; Schurhammer, R; Wipff, G

    2007-04-28

    We report a molecular dynamics study of chlorinated cobalt bis(dicarbollide) anions [(B(9)C(2)H(8)Cl(3))(2)Co](-)"CCD(-)" in octanol and at the octanol-water interface, with the main aim to understand why these hydrophobic species act as strong synergists in assisted liquid-liquid cation extraction. Neat octanol is quite heterogeneous and is found to display dual solvation properties, allowing to well solubilize CCD(-), Cs(+) salts in the form of diluted pairs or oligomers, without displaying aggregation. At the aqueous interface, octanol behaves as an amphiphile, forming either monolayers or bilayers, depending on the initial state and confinement conditions. In biphasic octanol-water systems, CCD(-) anions are found to mainly partition to the organic phase, thus attracting Cs(+) or even more hydrophilic counterions like Eu(3+) into that phase. The remaining CCD(-) anions adsorb at the interface, but are less surface active than at the chloroform interface. Finally, we compare the interfacial behavior of the Eu(BTP)(3)(3+) complex in the absence and in the presence of CCD(-) anions and extractant molecules. It is found that when the CCD(-)'s are concentrated enough, the complex is extracted to the octanol phase. Otherwise, it is trapped at the interface, attracted by water. These results are compared to those obtained with chloroform as organic phase and discussed in the context of synergistic effect of CCD(-) in liquid-liquid extraction, pointing to the importance of dual solvation properties of octanol and of the hydrophobic character of CCD(-) for synergistic extraction of cations.

  18. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  19. Speciation of mercury in water samples by dispersive liquid-liquid microextraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xiaoyu; Han Yi; Liu Xinli [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Duan Taicheng, E-mail: tcduan@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China); Chen Hangting, E-mail: htchen@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022 (China)

    2011-01-15

    The dispersive liquid-liquid microextraction (DLLME) combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry for the speciation of mercury in water samples was described. Firstly methylmercury (MeHg{sup +}) and mercury (Hg{sup 2+}) were complexed with sodium diethyldithiocarbamate, and then the complexes were extracted into carbon tetrachloride by using DLLME. Under the optimized conditions, the enrichment factors of 138 and 350 for MeHg{sup +} and Hg{sup 2+} were obtained from only 5.00 mL sample solution. The detection limits of the analytes (as Hg) were 0.0076 ng mL{sup -1} for MeHg{sup +} and 0.0014 ng mL{sup -1} for Hg{sup 2+}, respectively. The relative standard deviations for ten replicate measurements of 0.5 ng mL{sup -1} MeHg{sup +} and Hg{sup 2+} were 6.9% and 4.4%, respectively. Standard reference material of seawater (GBW(E)080042) was analyzed to verify the accuracy of the method and the results were in good agreement with the certified values. Finally, the developed method was successfully applied for the speciation of mercury in three environmental water samples.

  20. Liquid densities and excess molar volumes for (ionic liquids + methanol + water) ternary system at atmospheric pressure and at various temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Deenadayalu, Nirmala [Department of Chemistry, Durban University of Technology, Steve Biko Campus, P.O. Box 1334, Durban, KwaZulu-Natal 4001 (South Africa)], E-mail: NirmalaD@dut.ac.za; Kumar, Satish; Bhujrajh, Pravena [Department of Chemistry, Durban University of Technology, Steve Biko Campus, P.O. Box 1334, Durban, KwaZulu-Natal 4001 (South Africa)

    2007-09-15

    Excess molar volumes, V{sub m}{sup E} have been evaluated from density measurements over the entire composition range for ternary liquid system of ionic liquid (1-ethyl-3-methyl-imidazolium diethylenglycol monomethylether sulphate {l_brace}[EMIM][CH{sub 3}(OCH{sub 2}CH{sub 2}){sub 2}OSO{sub 3}]) (1) + methanol (2) + water (3){r_brace} at T = (298.15, 303.15, and 313.15) K. A vibrating tube densimeter was used for these measurements at atmospheric pressure. The V{sub m}{sup E} values were found to be negative at T = (298.15 and 303.15) K. For {l_brace}[EMIM][CH{sub 3}(OCH{sub 2}CH{sub 2}){sub 2}OSO{sub 3}] (1) + methanol (2) + water (3){r_brace} at T = 313.15 K the V{sub m}{sup E} values become positive at higher mole fraction of ionic liquid and at a corresponding decrease in mole fraction of water. All the experimental data were fitted with the Redlich-Kister equation. The results have also been analysed in term of graph theoretical approach.

  1. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  2. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects

    DEFF Research Database (Denmark)

    Alexeev, Dmitry; Chen, Jie; Walther, Jens Honore

    2015-01-01

    difference in the phonon mean free path between the FLG and water. Remarkably, RK is strongly dependent on the layering of water adjacent to the FLG, exhibiting an inverse proportionality relationship to the peak density of the first water layer, which is consistent with better acoustic phonon matching...... between FLG and water. These findings suggest novel ways to engineer the thermal transport properties of solid−liquidinterfaces by controlling and regulating the liquid layering at the interface....

  3. Measuring Low Concentrations of Liquid Water in Soil

    Science.gov (United States)

    Buehler, Martin

    2009-01-01

    An apparatus has been developed for measuring the low concentrations of liquid water and ice in relatively dry soil samples. Designed as a prototype of instruments for measuring the liquidwater and ice contents of Lunar and Martian soils, the apparatus could also be applied similarly to terrestrial desert soils and sands. The apparatus is a special-purpose impedance spectrometer: Its design is based on the fact that the electrical behavior of a typical soil sample is well approximated by a network of resistors and capacitors in which resistances decrease and capacitances increase (and, hence, the magnitude of impedance decreases) with increasing water content.

  4. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H{sub 2}O-NaCl and H{sub 2}O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  5. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    International Nuclear Information System (INIS)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H 2 O-NaCl and H 2 O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases

  6. Determination of the Deuterium Abundances in Water from 156 to 10,000 ppm by SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Shestivska, Violetta; Chippendale, T. W. E.; Smith, D.

    2011-01-01

    Roč. 22, č. 1 (2011), s. 179-186 ISSN 1044-0305 Institutional research plan: CEZ:AV0Z40400503 Keywords : deuterium abundance * total body water * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.002, year: 2011

  7. Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples

    International Nuclear Information System (INIS)

    Zeeb, M.; Sadeghi, M.

    2011-01-01

    We report on a new method for the microextraction and determination of zinc (II). The ion is accumulated via ionic-liquid cold-induced aggregation dispersive liquid-liquid microextraction (IL-CIA-DLLME) followed by flame atomic absorption spectrometry (FAAS). The ionic liquid (IL) 1-hexyl-3-methylimidazolium hexafluorophosphate is dispersed into a heated sample solution containing sodium hexafluorophosphate as a common ion source. The solution is then placed in an ice-water bath upon which a cloudy solution forms due to the decrease of the solubility of the IL. Zinc is complexed with 8-hydroxyquinoline and extracted into the IL. The enriched phase is dissolved in a diluting agent and introduced to the FAAS. The method is not influenced by variations in the ionic strength of the sample solution. Factors affecting the performance were evaluated and optimized. At optimum conditions, the limit of detection is 0.18 μg L -1 , and the relative standard deviation is 3.0% (at n=5). The method was validated by recovery experiments and by analyzing a certified reference material and successfully applied to the determination of Zn (II) in water and food samples. (author)

  8. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  9. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    Science.gov (United States)

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  10. The HKS model for electron production in liquid water by light ions

    International Nuclear Information System (INIS)

    Bernal, M.A.; Liendo, J.A.

    2006-01-01

    The HKS model developed to determine ionization cross sections (ICS) for the interaction of non-relativistic ions with matter, is used for 0.5 MeV protons impinging on liquid water and some inconsistencies between the single (SDCS) and double (DDCS) differential cross section values predicted by the formalism are found. To overcome this problem, new SDCS and DDCS formulas are determined analytically by use of the transition probabilities published by Hansen and Kocbach [J.P. Hansen, L. Kocbach, J. Phys. B 22 (1989) L71]. The new cross section expressions applied to the 0.5 MeV proton on liquid water case, give perfectly consistent SDCS and DDCS values. Furthermore, SDCS and DDCS values predicted from the new formulas for ionization of liquid water by protons (0.5-4.2 MeV/u) and alpha particles (0.3-0.5 MeV/u) are compared with corresponding experimental cross section values reported in the literature for water vapor ionization. Despite of the simplicity of the HKS model, accurate secondary electron energy distributions can be obtained, even for electron energies as low as 10 eV. Although the same accuracy cannot be achieved for electron angular distributions, the HKS formalism can still be used when these distributions are not critical

  11. Development of a fast liquid chromatography-tandem mass spectrometry method for the determination of endocrine-disrupting compounds in waters.

    Science.gov (United States)

    Di Carro, Marina; Scapolla, Carlo; Liscio, Camilla; Magi, Emanuele

    2010-09-01

    A fast liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) method was developed to study five endocrine-disrupting compounds (4-n-nonylphenol, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol) in water. Different columns were tested; the chromatographic separation of the analytes was optimized on a Pinnacle DB biphenylic column with a water-acetonitrile gradient elution, which allowed the separation of the selected endocrine-disrupting compounds (EDCs) in less than 6 min. Quantitative analysis was performed in selected reaction monitoring (SRM) mode; two transitions were chosen for each compound, using the most abundant for quantitation. Calibration curves using bisphenol A-d (16) as internal standard were drawn, showing good correlation coefficients (0.9993-0.9998). All figures of merit of the method were satisfactory; limits of detection were in the low pg range for all analytes. The method was then applied to the determination of the analytes in real water samples: to this aim, polar organic chemical integrative samplers (POCIS) were deployed in the influent and in the effluent of a drinking water treatment plant in Liguria (Italy). The EDC level was rather low in the influent and negligible in the outlet, reflecting the expected function of the treatment plant.

  12. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S Y; Lee, H

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  13. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... the excited H2O to its water neighbors, which occurs on a sub-100 fs time scale, to be followed in molecular detail, i.e., to determine which water molecules receive the energy and in which degrees of freedom. It is found that the dominant energy flow is to the four hydrogen-bonded water partners in the first...

  14. Determination of Gemfibrozil (Lipitor and Lopid in Water, Biological Fluids and Drug Matrix by Dispersive Liquid-Liquid micro Extraction (DLLME and Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ghorbani A.

    2014-07-01

    Full Text Available In this study Dispersive liquid-liquid micro extraction (DLLME coupled with High performance liquid chromatography was applied for the determination of Gemfibrozil in water, drug`s matrix and biological liquids (human plasma and urine. In this method, the appropriate mixture of extraction solvent (200 μl chlorophorm and disperser solvent (1 ml methanol are injected rapidly into the aqueous sample (10.0 ml by syringe, cloudy solution is formed that consisted of fine particles of extraction solvent which is dispersed entirely into aqueous phase. The mixture was centrifuged and the extraction solvent is sedimented on the bottom of the conical test tube. 50 μl of the sedimented phase is puted in a vial and it`s solvent is evaporated. Then 1ml methanol injected to vial and 20 μL of it injected into the HPLC for separation and determination of Gemfibrozil. Some important parameters, such as kind of extraction and disperser solvent, volume of them, extraction time, pH and ionic strength of the aqueous feed solution were optimized. Under the optimum conditions, the enrichment factors and extraction recoveries were 10 and 93.64%. The linear range was (0.1-100.0 mgl-1, limit of detection was 12.3 mgl-1. The relative standard deviations (RSD for 2 mgl-1 of Gemfibrozil in water were 1.3%, (n=10.

  15. Reactive liquid/liquid extraction of heavy metals from landfill seepage waters. Its characterisation and application

    International Nuclear Information System (INIS)

    Woller, N.

    1994-06-01

    This study demonstrates the applicability of liquid-liquid extraction by means of the commercial complexers LIX26 R and LIX84 R to heavy metal removal from waste waters. The composition of this oil-soluble complex is MeR 2 , where Me denotes Hg 2+ , Cd 2+ , Zn 2+ , Cu 2+ , and Ni 2+ , and R denotes LIX84 R . This composition makes the complex electrically neutral, and all polar groups are located inside the molecule. The extraction efficiency of the complexer LIX84 R for the various metal ions is evident in the succession Cu 2+ , Ni 2+ >> Zn 2+ > Hg 2+ > Cd 2+ . These heavy metal ions are even readily extractable at chloride concentrations of up to 1 mol/l. As the structure of the complexer is that of an oil-soluble surfactant with complexing properties, it accumulates at the phase boundary between oil and water. Measurement of interfacial tension in various solvent systems showed that the polar solvent chloroform permits only a weak accumulation of the complexer (400 nmol/m 2 ), whereas the unpolar solvent kerosine permits greater accumulation specifically on the water side of the phase boundary (1958 nmol/m 2 ). Organic solvents solvate the complexer so well, that it is even removed from the air side of the phase boundary. The differing accumulation of the complexer at the water/oil phase boundary explains the differing increase of phase separation time for polar and unpolar solvents. (orig.) [de

  16. Thermodynamic mechanism of density anomaly of liquid water

    Directory of Open Access Journals (Sweden)

    Makoto eYasutomi

    2015-03-01

    Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.

  17. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and discharges information and cooling water intake... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges...

  19. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    International Nuclear Information System (INIS)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-01-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl

  20. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  1. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  2. (Liquid + liquid) phase equilibrium and critical behavior of binary solution {heavy water + 2,6-dimethylpyridine}

    International Nuclear Information System (INIS)

    Xu, Chen; Chai, Shouning; Yin, Tianxiang; Chen, Zhiyun; Shen, Weiguo

    2015-01-01

    Highlights: • Coexistence curves, heat capacities and turbidities were measured. • Deuterium effect on coexistence curves was discussed. • Universal critical amplitude ratios were tested. • Asymmetry of coexistence curves was analyzed by the complete scaling theory. - Abstract: The (liquid + liquid) coexistence curves, the isobaric heat capacities per unit volume and the turbidities for the binary solution of {heavy water + 2,6-dimethylpyridine} have been precisely measured. The values of the critical exponents were obtained, which confirmed the 3D-Ising universality. It was found that the critical temperature dropped by 5.9 K and the critical amplitude of the coexistence curve significantly increased as compared to the binary solution of {water + 2,6-dimethylpyridine}. The complete scaling theory was applied to well describe the asymmetric behavior of the diameter of the coexistence curve as the heat capacity contribution was considered. Moreover, the values of the critical amplitudes of the correlation length and the osmotic compressibility were deduced, which together with the critical amplitudes of the coexistence curve and the heat capacity to test universal amplitude ratios

  3. Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-08-01

    Full Text Available A model for simulating vertical water level fluctuations with coupled liquid and gas phases is presented. The Preissmann implicit scheme is used to linearize the governing equations for one-dimensional transient flow for both liquid and gas phases, and the linear system is solved using the chasing method. Some classical cases for single liquid and gas phase transients in pipelines and networks are studied to verify that the proposed methods are accurate and reliable. The implicit scheme is extended using a dynamic mesh to simulate the water level fluctuations in a U-tube and an open surge tank without consideration of the gas phase. Methods of coupling liquid and gas phases are presented and used for studying the transient process and interaction between the phases, for gas phase limited in a chamber and gas phase transported in a pipeline. In particular, two other simplified models, one neglecting the effect of the gas phase on the liquid phase and the other one coupling the liquid and gas phases asynchronously, are proposed. The numerical results indicate that the asynchronous model performs better, and are finally applied to a hydropower station with surge tanks and air shafts to simulate the water level fluctuations and air speed.

  4. Search for the first-order liquid-to-liquid phase transition in low-temperature confined water by neutron scattering

    Science.gov (United States)

    Chen, Sow-Hsin; Wang, Zhe; Kolesnikov, Alexander I.; Zhang, Yang; Liu, Kao-Hsiang

    2013-02-01

    It has been conjectured that a 1st order liquid-to-liquid (L-L) phase transition (LLPT) between high density liquid (HDL) and low density liquid (LDL) in supercooled water may exist, as a thermodynamic extension to the liquid phase of the 1st order transition established between the two bulk solid phases of amorphous ice, the high density amorphous ice (HDA) and the low density amorphous ice (LDA). In this paper, we first recall our previous attempts to establish the existence of the 1st order L-L phase transition through the use of two neutron scattering techniques: a constant Q elastic diffraction study of isobaric temperature scan of the D2O density, namely, the equation of state (EOS) measurements. A pronounced density hysteresis phenomenon in the temperature scan of the density above P = 1500 bar is observed which gives a plausible evidence of crossing the 1st order L-L phase transition line above this pressure; an incoherent quasi-elastic scattering measurements of temperature-dependence of the α-relaxation time of H2O at a series of pressures, namely, the study of the Fragile-to-Strong dynamic crossover (FSC) phenomenon as a function of pressure which we interpreted as the results of crossing the Widom line in the one-phase region. In this new experiment, we used incoherent inelastic neutron scattering (INS) to measure the density of states (DOS) of H atoms in H2O molecules in confined water as function of temperature and pressure, through which we may be able to follow the emergence of the LDL and HDL phases at supercooled temperature and high pressures. We here report for the first time the differences of librational and translational DOSs between the hypothetical HDL and LDL phases, which are similar to the corresponding differences between the well-established HDA and LDA ices. This is plausible evidence that the HDL and LDL phases are the thermodynamic extensions of the corresponding amorphous solid water HDA and LDA ices.

  5. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Directory of Open Access Journals (Sweden)

    Y. Hu

    2007-06-01

    Full Text Available This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  6. Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    Science.gov (United States)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-06-01

    This study presents an empirical relation that links the volume extinction coefficients of water clouds, the layer integrated depolarization ratios measured by lidar, and the effective radii of water clouds derived from collocated passive sensor observations. Based on Monte Carlo simulations of CALIPSO lidar observations, this method combines the cloud effective radius reported by MODIS with the lidar depolarization ratios measured by CALIPSO to estimate both the liquid water content and the effective number concentration of water clouds. The method is applied to collocated CALIPSO and MODIS measurements obtained during July and October of 2006, and January 2007. Global statistics of the cloud liquid water content and effective number concentration are presented.

  7. Laser Spectroscopic Analysis of Liquid Water Samples for Stable Hydrogen and Oxygen Isotopes

    International Nuclear Information System (INIS)

    2009-01-01

    Stable isotope ratios of hydrogen and oxygen are tracers of choice for water cycle processes in hydrological, atmospheric and ecological studies. The use of isotopes has been limited to some extent because of the relatively high cost of isotope ratio mass spectrometers and the need for specialized operational skills. Here, the results of performance testing of a recently developed laser spectroscopic instrument for measuring stable hydrogen and oxygen isotope ratios of water samples are described, along with a procedure for instrument installation and operation. Over the last four years, the IAEA Water Resources Programme conducted prototype and production model testing of these instruments and this publication is the outcome of those efforts. One of the main missions of the IAEA is to promote the use of peaceful applications of isotope and nuclear methods in Member States and this publication is intended to facilitate the use of laser absorption based instruments for hydrogen and oxygen stable isotope analyses of liquid water samples for hydrological and other studies. The instrument uses off-axis integrated cavity output spectroscopy to measure absolute abundances of 2 HHO, HH 18 O, and HHO via laser absorption. Test results using a number of natural and synthetic water standards and samples with a large range of isotope values demonstrate adequate precision and accuracy (e.g. precisions of 1 per mille for δ 2 H and 0.2 per mille for δ 18 O). The laser instrument has much lower initial and maintenance costs than mass spectrometers and is substantially easier to operate. Thus, these instruments have the potential to bring about a paradigm shift in isotope applications by enabling researchers in all fields to measure isotope ratios by themselves. The appendix contains a detailed procedure for the installation and operation of the instrument. Using the procedure, new users should be able to install the instrument in less than two hours. It also provides step

  8. Measurements and correlation of liquid-liquid equilibrium data for the ternary (3-heptanone + phenol + water) system

    International Nuclear Information System (INIS)

    Xu, Gaojie; Yang, Deling; Ning, Pengge; Wang, Qingjie; Gong, Fuchun; Cao, Hongbin

    2017-01-01

    Highlights: • The liquid-liquid equilibrium data for 3-heptanone + phenol + water were measured. • The distribution coefficient of phenol and selectivity for solvent extraction efficiency were calculated. • The NRTL model (two regression methods) and UNIQUAC model were used to correlate the experimental data with good results. • The physical meaning of the regressed binary parameters was explained by intermolecular attractive energy. • The activity coefficient of phenol and enthalpy change in extraction process were investigated. - Abstract: Liquid-liquid equilibrium (LLE) for the ternary (3-heptanone + phenol + water) system has been determined under atmospheric pressure at 298.15 K, 303.15 K, 318.15 K and 323.15 K. The NRTL and UNIQUAC models were used to correlate the experimental results. The corresponding binary parameters were obtained and their physical meaning is explained by intermolecular attractive energy. The results from the two models agree well with experimental values. The NRTL model was more accurate than that of the UNIQUAC model. Meanwhile, the NRTL model was used to regress all the experimental values at different temperatures simultaneously, which is defined as total-regression. Compared with the individual regression by the NRTL model, the total regression by the NRTL model has fewer parameters and covers a wider interpolated range from 298.15 K to 323.15 K. The distribution coefficient for phenol changes with temperature. The phenol concentration can be expressed as a function of activity coefficient of phenol in both phases. The effect of temperature on the extraction performance of 3-heptanone was also investigated. The phenol extraction process by 3-heptanone is exothermic. The increase of temperature is not a benefit to phenol extraction.

  9. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W...... to an extremely narrow polarized potential window (ppw) caused by these moderately hydrophobic ionic components. In this article, we show that TPI technique has virtually eliminated the ppw limitation based on a controlling step of concentration polarization at the electrode|water interface. With the aid...

  10. Some new fatigue tests in high temperature water and liquid sodium environment

    International Nuclear Information System (INIS)

    Hattori, Takahiro; Yamauchi, Takayoshi; Kanasaki, Hiroshi; Kondo, Yoshiyuki; Endo, Tadayoshi.

    1987-01-01

    To evaluate the fatigue strength of structural materials for PWR or FBR plants, fatigue test data must be obtained in an environment of simulated primary and secondary water for PWR or of high temperature liquid sodium for FBR. Generally, such tests make it necessary to prepare expensive facilities, so when large amount of fatigue data are required, it is necessary to rationalize and simplify the fatigue tests while maintaining high accuracy. At the Takasago Research Development Center, efforts to rationalize facilities and maintain accuracy in fatigue tests have been made by developing new test methods and improving conventional techniques. This paper introduces a new method of low cycle fatigue test in high temperature water, techniques for automatic measurement of crack initiation and propagation in high temperature water environment and a multiple type fatigue testing machine for high temperature liquid sodium. (author)

  11. Simultaneous Design of Ionic Liquids and Azeotropic Separation for Systems Containing Water

    DEFF Research Database (Denmark)

    Roughton, Brock; Camarda, Kyle V.; Gani, Rafiqul

    Separation of azeotropic mixtures is a very common but challenging task, covering a wide range of industrial sectors and issues. For example, most down-stream separation problems following a synthesis step of pharmaceutical and/or biochemical processes, involve the separation of azeotropes. Also......, many separation tasks in the petrochemical and chemical industries involve separation of azeotropic mixtures. A common issue with the design and operation of these separation tasks is whether or not to use solvents? And, if solvents are to be used, what kind of solvent should be used and what would....... Since a large number of azeotropes encountered include water as one of the compounds, the use of ionic liquids in solvent-based separation of water in azeotropic systems has been investigated. Along with the design of the ionic liquid being used to entrain water, the extractive distillation process has...

  12. Preconcentration procedure using vortex-assisted liquid-liquid microextraction for the fast determination of trace levels of thorium in water samples

    International Nuclear Information System (INIS)

    Ehsan Zolfonoun; Maryam Salahinejad

    2013-01-01

    A new simple and rapid vortex-assisted liquid-liquid microextraction method was applied for the determination of thorium in water samples. In this method, chloroform used as extraction solvent was directly injected into the water sample solution. The extraction solvent was dispersed into the aqueous phase under vigorously shaking with the vortex. After centrifuging, the fine droplets of extractant phase were settled to the bottom of the conical-bottom centrifuge tube. The effect of different experimental parameters on the performance of the method were studied and discussed. Under the optimum conditions, the detection limit for Th(IV) was 7.5 ng mL -1 . The precision of the method, evaluated as the relative standard deviation obtained by analyzing of 10 replicates, was 2.8 %. The practical applicability of the developed method was examined using natural water and monazite sand samples. (author)

  13. Evaporation Rates for Liquid Water and Ice Under Current Martian Conditions

    Science.gov (United States)

    Sears, D. W. G.; Moore, S. R.; Meier, A.; Chittenden, J.; Kareev, M.; Farmer, C. B.

    2004-01-01

    A number of studies have been concerned with the evaporation rates under martian conditions in order to place limits on the possible survival time of both liquid water and ice exposed on the surface of Mars. Such studies also aid in assessing the efficacy of an overlying layer of dust or loose regolith material in providing a barrier to free evaporation and thus prolong the lifetime of water in locations where its availability to putative living organisms would be significant. A better quantitative understanding of the effects of phase changes of water in the near surface environment would also aid the evaluation of the possible role of water in the formation of currently observed features, such as gullies in cliff walls and relatively short-term changes in the albedo of small surface areas ('dark stains'). Laboratory measurements aimed at refinement of our knowledge of these values are described here. The establishment of accurate values for evaporation rates and their dependence on the physical conditions of temperature, pressure and energy input, is an important benchmark for the further investigation of the efficacy of barriers to free evaporation in providing a prolonged period of survival of the water, particularly as a liquid.

  14. Probing the electronic structure of liquid water with many-body perturbation theory

    Science.gov (United States)

    Pham, Tuan Anh; Zhang, Cui; Schwegler, Eric; Galli, Giulia

    2014-03-01

    We present a first-principles investigation of the electronic structure of liquid water based on many-body perturbation theory (MBPT), within the G0W0 approximation. The liquid quasiparticle band gap and the position of its valence band maximum and conduction band minimum with respect to vacuum were computed and it is shown that the use of MBPT is crucial to obtain results that are in good agreement with experiment. We found that the level of theory chosen to generate molecular dynamics trajectories may substantially affect the electronic structure of the liquid, in particular, the relative position of its band edges and redox potentials. Our results represent an essential step in establishing a predictive framework for computing the relative position of water redox potentials and the band edges of semiconductors and insulators. Work supported by DOE/BES (Grant No. DE-SC0008938). Work at LLNL was performed under Contract DE-AC52-07NA27344.

  15. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  16. Ice versus liquid water saturation in simulations of the indian summer monsoon

    Science.gov (United States)

    Glazer, Russell H.; Misra, Vasubandhu

    2018-02-01

    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between w

  17. Analysis of aromatic amines in water samples by liquid-liquid-liquid microextraction with hollow fibers and high-performance liquid chromatography.

    Science.gov (United States)

    Zhao, Limian; Zhu, Lingyan; Lee, Hian Kee

    2002-07-19

    Liquid-liquid-liquid microextraction (LLLME) with hollow fibers in high-performance liquid chromatography (HPLC) has been applied as a rapid and sensitive quantitative method for the detection of four aromatic amines (3-nitroaniline, 4-chloroaniline, 4-bromoaniline and 3,4-dichloroaniline) in environmental water samples. The preconcentration procedure was induced by the pH difference inside and outside the hollow fiber. The target compounds were extracted from 4-ml aqueous sample (donor solution, pH approximately 13) through a microfilm of organic solvent (di-n-hexyl ether), immobilized in the pores of a hollow fiber (1.5 cm length x 0.6 mm I.D.), and finally into 4 microl of acid acceptor solution inside the fiber. After a prescribed period of time, the acceptor solution inside the fiber was withdrawn into the microsyringe and directly injected into the HPLC system for analysis. Factors relevant to the extraction procedure were studied. Up to 500-fold enrichment of analytes could be obtained under the optimized conditions (donor solution: 0.1 M sodium hydroxide solution with 20% sodium chloride and 2% acetone; organic phase: di-n-hexyl ether; acceptor solution: 0.5 M hydrochloric acid and 500 mM 18-crown-6 ether; extraction time of 30 min; stirring at 1,000 rev./min). The procedure also served as a sample clean-up step. The influence of humic acid on the extraction efficiency was also investigated, and more than 85% relative recoveries of the analytes at two different concentrations (20 and 100 microg/l) were achieved at various concentration of humic acid. This technique is a low cost, simple and fast approach to the analysis of polar compounds in aqueous samples.

  18. Thermal bonding of light water reactor fuel using nonalkaline liquid-metal alloy

    International Nuclear Information System (INIS)

    Wright, R.F.; Tulenko, J.S.; Schoessow, G.J.; Connell, R.G. Jr.; Dubecky, M.A.; Adams, T.

    1996-01-01

    Light water reactor (LWR) fuel performance is limited by thermal and mechanical constraints associated with the design, fabrication, and operation of fuel in a nuclear reactor. A technique is explored that extends fuel performance by thermally bonding LWR fuel with a nonalkaline liquid-metal alloy. Current LWR fuel rod designs consist of enriched uranium oxide fuel pellets enclosed in a zirconium alloy cylindrical clad. The space between the pellets and the clad is filled by an inert gas. Because of the low thermal conductivity of the gas, the gas space thermally insulates the fuel pellets from the reactor coolant outside the fuel rod, elevating the fuel temperatures. Filling the gap between the fuel and clad with a high-conductivity liquid metal thermally bonds the fuel to the cladding and eliminates the large temperature change across the gap while preserving the expansion and pellet-loading capabilities. The application of liquid-bonding techniques to LWR fuel is explored to increase LWR fuel performance and safety. A modified version of the ESCORE fuel performance code (ESBOND) is developed to analyze the in-reactor performance of the liquid-metal-bonded fuel. An assessment of the technical feasibility of this concept for LWR fuel is presented, including the results of research into materials compatibility testing and the predicted lifetime performance of liquid-bonded LWR fuel. The results show that liquid-bonded boiling water reactor peak fuel temperatures are 400 F lower at beginning of life and 200 F lower at end of life compared with conventional fuel

  19. Limitations to postfire seedling establishment: The role of seeding technology, water availability, and invasive plant abundance

    Science.gov (United States)

    Jeremy J. James; Tony Svejcar

    2010-01-01

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abundance, and seeding technology influence postfire seedling establishment...

  20. Extraction of butan-1-ol from water with ionic liquids at T = 308.15 K

    International Nuclear Information System (INIS)

    Domańska, Urszula; Królikowski, Marek

    2012-01-01

    Highlights: ► The LLE ternary phase diagrams with ionic liquids were measured. ► Separation of butan-1-ol/water system with tetracyanoborate-based ILs. ► Low solubility of water in [P 14,6,6,6 ][TCB] was observed. ► [P 14,6,6,6 ][TCB] is proposed for possible use in separation of butan-1-ol from aqueous phase. - Abstract: Ionic liquids (ILs) are novel green solvents that can be proposed for removing butan-1-ol from the aqueous fermentation media. Ternary (liquid + liquid) equilibrium data are presented for {ionic liquid (1) + butan-1-ol (2) + water (3)} at T = 308.15 K and ambient pressure to analyze the performance of the ionic liquid (IL) in the extraction of butan-1-ol from aqueous phase. The tetracyanoborate-based ILs have been studied: 1-hexyl-3-methylimidazolium tetracyanoborate, ([HMIM][TCB]), 1-decyl-3-methylimidazolium tetracyanoborate, ([DMIM][TCB]) and trihexyltetradecylphosphonium tetracyanoborate, ([P 14,6,6,6 ][TCB]). The results are discussed in terms of the selectivity and distribution ratio of separation of related systems. The complete miscibility in the binary liquid systems of butan-1-ol with all used ILs was observed. The imidazolium cation in comparison with phosphonium cation shows lower selectivity and distribution ratio. The IL with the longer alkyl chain at the cation shows higher selectivity and distribution ratio in this process. The non-random two liquid NRTL model was used successfully to correlate the experimental tie-lines and to calculate the phase composition error in mole fraction in the ternary systems. The average root mean square deviation (RMSD) of the phase composition was 0.0027. The data presented here indicates the usefulness of [P 14,6,6,6 ][TCB] as a solvent for the separation of butan-1-ol from water using solvent extraction. The density of [P 14,6,6,6 ][TCB] was measured as a function of temperature.

  1. Non-porous membrane-assisted liquid-liquid extraction of UV filter compounds from water samples.

    Science.gov (United States)

    Rodil, Rosario; Schrader, Steffi; Moeder, Monika

    2009-06-12

    A method for the determination of nine UV filter compounds [benzophenone-3 (BP-3), isoamyl methoxycinnamate, 4-methylbenzylidene camphor, octocrylene (OC), butyl methoxydibenzoylmethane, ethylhexyl dimethyl p-aminobenzoate (OD-PABA), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate and homosalate] in water samples was developed and evaluated. The procedure includes non-porous membrane-assisted liquid-liquid extraction (MALLE) and LC-atmospheric pressure photoionization (APPI)-MS/MS. Membrane bags made of different polymeric materials were examined to enable a fast and simple extraction of the target analytes. Among the polymeric materials tested, low- and high-density polyethylene membranes proved to be well suited to adsorb the analytes from water samples. Finally, 2 cm length tailor-made membrane bags were prepared from low-density polyethylene in order to accommodate 100 microL of propanol. The fully optimised protocol provides recoveries from 76% to 101% and limits of detection (LOD) between 0.4 ng L(-1) (OD-PABA) and 16 ng L(-1) (EHMC). The interday repeatability of the whole protocol was below 18%. The effective separation of matrix molecules was proved by only marginal matrix influence during the APPI-MS analysis since no ion suppression effects were observed. During the extraction step, the influence of the matrix was only significant when non-treated wastewater was analysed. The analysis of lake water indicated the presence of seven UV filter compounds included in this study at concentrations between 40 ng L(-1) (BP-3) and 4381 ng L(-1) (OC). In non-treated wastewater several UV filters were also detected at concentration levels as high as 5322 ng L(-1) (OC).

  2. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    Science.gov (United States)

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  3. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  4. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  5. Streamers in water and other dielectric liquids

    International Nuclear Information System (INIS)

    Kolb, J F; Joshi, R P; Xiao, S; Schoenbach, K H

    2008-01-01

    Experimental results on the inception and propagation of streamers in water generated under the application of high electric fields are reviewed. Characteristic parameters, such as breakdown voltage, polarity of the applied voltage, propagation velocities and other phenomenological features, are compared with similar phenomena in other dielectric liquids and in gases. Consequently, parameters that are expected to influence the development of streamers in water are discussed with respect to the analogous well-established models and theories for the related mechanisms in gases. Most of the data support the notion that an initial low-density nucleation site or gas-filled bubble assists the initiation of a streamer. Details of this theory are laid out explaining the observed differences in the breakdown originating from the anode versus the cathode locations. The mechanisms can also be applied to streamer propagation, although some observations cannot be satisfactorily explained.

  6. The Calculated and Measured Performance Characteristics of a Heated-Wire Liquid-Water-Content Meter for Measuring Icing Severity

    Science.gov (United States)

    Neel, Carr B.; Steinmetz, Charles P.

    1952-01-01

    Ground tests have been made of an instrument which, when assembled in a more compact form for flight installation, could be used to obtain statistical flight data on the liquid-water content of icing clouds and to provide an indication of icing severity. The sensing element of the instrument consists of an electrically heated wire which is mounted in the air stream. The degree of cooling of the wire resulting from evaporation of the impinging water droplets is a measure. of the liquid-water content of the cloud. Determination of the value of the liquid-water content from the wire temperature at any instant requires a knowledge of the airspeed, altitude, and air temperature. An analysis was made of the temperature response of a heated wire exposed to an air stream containing water drops. Comparisons were made of the liquid-water content as measured with several heated wires and absorbent cylinders in an artificially produced cloud. For one of the wires, comparative tests were made with a rotating-disk icing-rate meter in an icing wind tunnel. From the test results, it was shown that an instrument for measuring the concentration of liquid water in an air stream can be built using an electrically heated wire of known temperatureresistance characteristics, and that the performance of such a device can be predicted using appropriate theory. Although an instrument in a form suitable for gathering statistical data in flight was not built, the practicability of constructing such an instrument was illustrated. The ground-test results indicated that a flight heated-wire instrument would be simple and durable, would respond rapidly to variations in liquid-water content, and could be used for the measurement of water content in clouds which are above freezing temperature, as well as in icing clouds.

  7. Seasonal distribution and abundance of cetaceans within French waters- Part II: The Bay of Biscay and the English Channel

    Science.gov (United States)

    Laran, Sophie; Authier, Matthieu; Blanck, Aurélie; Doremus, Ghislain; Falchetto, Hélène; Monestiez, Pascal; Pettex, Emeline; Stephan, Eric; Van Canneyt, Olivier; Ridoux, Vincent

    2017-07-01

    From the Habitat Directive to the recent Marine Strategy Framework Directive, the conservation status of cetaceans in European water has been of concern for over two decades. In this study, a seasonal comparison of the abundance and distribution of cetaceans was carried out in two contrasted regions of the Eastern North Atlantic, the Bay of Biscay and the English Channel. Estimates were obtained in the two sub-regions (375,000 km²) from large aerial surveys conducted in the winter (November 2011 to February 2012) and in the summer (May to August 2012). The most abundant species encountered in the Channel, the harbour porpoise, displayed strong seasonal variations in its distribution but a stable abundance (18,000 individuals, CV=30%). In the Bay of Biscay, abundance and distribution patterns of common / striped dolphins varied from 285,000 individuals (95% CI: 174,000-481,000) in the winter, preferentially distributed close to the shelf break, to 494,000 individuals (95% CI: 342,000-719,000) distributed beyond the shelf break in summer. Baleen whales also exhibited an increase of their density in summer. Seasonal abundances of bottlenose dolphins were quite stable, with a large number of 'pelagic' encounters offshore in winter. No significant seasonal difference was estimated for pilot whales and sperm whale. These surveys provided baseline estimates to inform policies to be developed, or for existing conservation instruments such as the Habitats Directive. In addition, our results supported the hypothesis of a shift in the summer distributions of some species such as harbour porpoise and minke whale in European waters.

  8. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  9. Abundance and prevalence of Aedes aegypti immatures and relationships with household water storage in rural areas in southern Viet Nam.

    Science.gov (United States)

    Nguyen, Le Anh P; Clements, Archie C A; Jeffery, Jason A L; Yen, Nguyen Thi; Nam, Vu Sinh; Vaughan, Gregory; Shinkfield, Ramon; Kutcher, Simon C; Gatton, Michelle L; Kay, Brian H; Ryan, Peter A

    2011-06-01

    Since 2000, the Government of Viet Nam has committed to provide rural communities with increased access to safe water through a variety of household water supply schemes (wells, ferrocement tanks and jars) and piped water schemes. One possible, unintended consequence of these schemes is the concomitant increase in water containers that may serve as habitats for dengue mosquito immatures, principally Aedes aegypti. To assess these possible impacts we undertook detailed household surveys of Ae. aegypti immatures, water storage containers and various socioeconomic factors in three rural communes in southern Viet Nam. Positive relationships between the numbers of household water storage containers and the prevalence and abundance of Ae. aegypti immatures were found. Overall, water storage containers accounted for 92-97% and 93-96% of the standing crops of III/IV instars and pupae, respectively. Interestingly, households with higher socioeconomic levels had significantly higher numbers of water storage containers and therefore greater risk of Ae. aegypti infestation. Even after provision of piped water to houses, householders continued to store water in containers and there was no observed decrease in water storage container abundance in these houses, compared to those that relied entirely on stored water. These findings highlight the householders' concerns about the limited availability of water and their strong behavoural patterns associated with storage of water. We conclude that household water storage container availability is a major risk factor for infestation with Ae. aegypti immatures, and that recent investment in rural water supply infrastructure are unlikely to mitigate this risk, at least in the short term.

  10. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  11. Study of the liquid water luminescence induced by charged particles

    International Nuclear Information System (INIS)

    Rusu, Mircea; Stere, Oana; Haiduc, Maria; Caramete, Laurentiu

    2004-01-01

    Many observations suggested that liquid water (with impurities) could give a luminescence output when irradiated with charged particles. We investigate theoretical and practical possibility of detecting such luminescence. Preliminary results on this possibility are presented, and a layout of the device proposed for measuring luminescence is given. (authors)

  12. Diversity, composition and abundance of macroinvertebrates ...

    African Journals Online (AJOL)

    user

    these genera were found at all sampling stations as shown in Table 2. Out of the orders sampled, Hemiptera, Pulmonata and. Coleoptera had the highest number of genera with 5, 4 and 4, respectively. In terms of relative abundance, dipterans and Pulmonata were the most abundant while. Hydracarina (water mites) were ...

  13. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  14. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  15. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    Science.gov (United States)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  16. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Directory of Open Access Journals (Sweden)

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  17. Liquid microjet - a new tool for environmental water quality monitoring?

    International Nuclear Information System (INIS)

    Holstein, W.; Buntine, M.

    2001-01-01

    Our ability to provide real-time, cost-effective and efficient technologies for water quality monitoring remains a critical global environmental research issue. Each year, ground and surface waterways around the world, the global marine environment and the especially-fragile interzonal estuarine ecosystems are being placed under severe stress due to ever-increasing levels of pollutants entering the earth's aquasphere. An almost revolutionary breakthrough in water quality monitoring would be achieved with the development of a real-time, broad-spectrum chemical analysis technology. In this article, a real-time mass spectrometric based water quality monitoring centre around in vacuo liquid microjet injection methodologies is presented

  18. Water tube liquid metal control

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    An improved heat exchanger for use in liquid metal cooled nuclear power reactors is described in which the heat is transferred between the flow of liquid metal which is to be cooled and a forced flow of liquid which is wholly or partly evaporated. (U.K.)

  19. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  20. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  1. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Xueguan Song

    2014-01-01

    Full Text Available Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ozone as the secondary fluid. In this study, high-pressure water and air, instead of ballast water and ozone, are considered through extensive numerical and experimental research. The ejector is particularly studied by a steady three-dimensional multiphase computational fluid dynamics (CFD analysis with commercial software ANSYS-CFX 14.5. Different turbulence models (including standard k-ε, RNG k-ε, SST, and k-ω with different grid size and bubble size are compared extensively and the experiments are carried out to validate the numerical design and optimization. This study concludes that the RNG k-ε turbulence model is the most efficient and effective for the ballast water treatment system under consideration and simple change of nozzle shape can greatly improve the ejector performance under high back pressure conditions.

  2. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Effect of sediment-water interface 'boundary layer' on exposure of nodules and their abundance: a study from seabed photos

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    affects nodule abundance estimates based on photos. A model showing variable burial (or exposure) depending upon the thickness of the Sediment-Water Interface Boundary (SWIB) layer is presented. Standard relationships can be established between nodule...

  4. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    Science.gov (United States)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  5. Transient Liquid Water as a Mechanism for Induration of Soil Crusts on Mars

    Science.gov (United States)

    Landis, G. A.; Blaney, D.; Cabrol, N.; Clark, B. C.; Farmer, J.; Grotzinger, J.; Greeley, R.; McLennan, S. M.; Richter, L.; Yen, A.

    2004-01-01

    The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer tagged as "duricrust". A hypothesis to explain the formation of duricrust on Mars should address not only the potential mechanisms by which these materials become cemented, but also the textural and compositional components of cemented Martian soils. Elemental analyzes at five sites on Mars show that these soils have sulfur content of up to 4%, and chlorine content of up to 1%. This is consistent with the presence of sulfates and halides as mineral cements. . For comparison, the rock "Adirondack" at the MER site, after the exterior layer was removed, had nearly five times lower sulfur and chlorine content , and the Martian meteorites have ten times lower sulfur and chlorine content, showing that the soil is highly enriched in the saltforming elements compared with rock.Here we propose two alternative models to account for the origin of these crusts, each requiring the action of transient liquid water films to mediate adhesion and cementation of grains. Two alternative versions of the transient water hypothesis are offered, a top down hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a bottom up alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water.

  6. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.

    Science.gov (United States)

    Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2015-02-13

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Thermodynamic modeling of ternary and quaternary (liquid + liquid) systems containing water, FeCl3, HCl and diisopropyl ether

    NARCIS (Netherlands)

    Milosevic, M.; Hendriks, I.; Smits, R.E.R.; Schuur, B.; Haan, de A.B.

    2013-01-01

    Liquid–liquid extraction using ethers as solvents is a potentially energy saving alternative for the concentration of aqueous ferric chloride solutions. Adequate thermodynamic models that describe the behavior of the resulting quaternary systems (FeCl3, ether, acid and water) are not available in

  8. Effect of water and ionic liquids on biomolecules.

    Science.gov (United States)

    Saha, Debasis; Mukherjee, Arnab

    2018-02-08

    The remarkable progress in the field of ionic liquids (ILs) in the last two decades has involved investigations on different aspects of ILs in various conditions. The nontoxic and biocompatible nature of ILs makes them a suitable substance for the storage and application of biomolecules. In this regard, the aqueous IL solutions have attracted a large number of studies to comprehend the role of water in modulating various properties of biomolecules. Here, we review some of the recent studies on aqueous ILs that concern the role of water in altering the behavior of ILs in general and in case of biomolecules solvated in ILs. The different structural and dynamic effects caused by water have been highlighted. We discuss the different modes of IL interaction that are responsible for stabilization and destabilization of proteins and enzymes followed by examples of water effect on this. The role of water in the case of nucleic acid storage in ILs, an area which has mostly been underrated, also has been emphasized. Our discussions highlight the fact that the effects of water on IL behavior are not general and are highly dependent on the nature of the IL under consideration. Overall, we aim to draw attention to the significance of water dynamics in the aqueous IL solutions, a better understanding of which can help in developing superior storage materials for application purposes.

  9. The Inferred Distribution of Liquid Water in Europa's Ice Shell: Implications for the Europa Lander Mission

    Science.gov (United States)

    Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.

    2017-12-01

    A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a

  10. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  11. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples.

    Science.gov (United States)

    Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan

    2016-02-01

    A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.

  12. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water

    Science.gov (United States)

    Zelong, ZHANG; Jie, SHEN; Cheng, CHENG; Zimu, XU; Weidong, XIA

    2018-04-01

    Atmospheric pressure helium/water dielectric barrier discharge (DBD) plasma is used to investigate the generation of reactive species in a gas-liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy (OES) with different discharge powers at the gas-liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary long-lived reactive species such as H2O2, {{{{NO}}}3}- and O3 are measured based on plasma treatment time. After 5 min of discharge treatment, the concentration of H2O2, {{{{NO}}}3}-, and O3 increased from 0 mg · L-1 to 96 mg · L-1, 19.5 mg · L-1, and 3.5 mg · L-1, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.

  13. Recent trends in the abundance of plaice Pleuronectes platessa and cod Gadus morhua in shallow coastal waters of the Northeastern Atlantic continental shelf – a review

    DEFF Research Database (Denmark)

    Dutz, Jörg; Støttrup, Josianne Gatt; Stenberg, Claus

    2016-01-01

    of the southern distribution boundary in the Bay of Biscay and deepening of stocks in the North Sea. In contrast, no trend in shallow water abundance of plaice similar to a decline in deep-water stocks during the 1970s and their slow recovery during the 2000s is apparent in the Skagerrak/Kattegat. Although......Shallow, near-shore water habitats on the continental shelf of the Northeast Atlantic have been productive fishing areas in the past. Here, we review the present knowledge about (i) recent trends in the abundance of plaice and cod in these habitats and (ii) hypotheses regarding the factors...... responsible for any trends. At present, only a few studies exist on the trends of abundance of plaice or cod, namely from the Bay of Biscay, the North Sea and the Skagerrak/Kattegat. They suggest a declining abundance in coastal, shallow areas and – at least for plaice – a latitudinal gradient with an erosion...

  14. Kinetics of radiolysis of irradiated ligno celluloses into soluble products in water and rumen liquid

    International Nuclear Information System (INIS)

    Tukenmez, I.; Bakioglu, A.T.; Ersen, M.S.

    1997-01-01

    In order to increase the low bio hydrolysis of ligno celluloses in biotechnological and biological processes where these materials are used as raw materials and ruminant feed, the substrates were pretreated with irradiation to induce radiolytic depolymerisation and then kinetics of their radiolysis into soluble products in water and rumen liquid were analyzed. Wheat straw used as a representative lignocellulose substrate was irradiated at 0-2.5 MGy doses at 20''o''C with an optimum equilibrium humidity of 6.6% in Cs-137 gamma irradiator with a dose rate of 1.8 kGy/h, and soluablefractions in water and in situ rumen liquid were determined gravimetrically. Based on these data, a reaction mechanism was proposed for the radiolysis of ligno celluloses into soluble fractions. From the corresponding reaction rate equations with this mechanism a dose dependent kinetics was derived for the radiolysis of ligno celluloses into water/rumen liquid-soluble products. Defined by this kinetics, the threshold doses for the radiolysis of the substrate into water/rumen liquid-soluble products were respectively found 80.6 kGy and 186.0 kGy, and fractional radiolytic decomposition yields 0.193 MGy''-1''.It was emphasized that developed kinetic models may be used for the process design of irradiation pretreatments to improve the bio hydrolysis of ligno celluloses.(2figs. and 17 refs.)

  15. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    International Nuclear Information System (INIS)

    Shirkhanloo, H.; Sedighi, K.; Mousavi, H. Z.

    2014-01-01

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C 8 MIM) (PF 6 )] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L -1 of lead and the detection limit was 0.8 μg L -1 with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  16. Determination of chloroacetanilide herbicide metabolites in water using high-performance liquid chromatography-diode array detection and high-performance liquid chromatography/mass spectrometry

    Science.gov (United States)

    Hostetler, K.A.; Thurman, E.M.

    2000-01-01

    Analytical methods using high-performance liquid chromatography-diode array detection (HPLC-DAD) and high-performance liquid chromatography/mass spectrometry (HPLC/MS) were developed for the analysis of the following chloroacetanilide herbicide metabolites in water: alachlor ethanesulfonic acid (ESA); alachlor oxanilic acid; acetochlor ESA; acetochlor oxanilic acid; metolachlor ESA; and metolachlor oxanilic acid. Good precision and accuracy were demonstrated for both the HPLC-DAD and HPLC/MS methods in reagent water, surface water, and ground water. The average HPLC-DAD recoveries of the chloroacetanilide herbicide metabolites from water samples spiked at 0.25, 0.5 and 2.0 ??g/l ranged from 84 to 112%, with relative standard deviations of 18% or less. The average HPLC/MS recoveries of the metabolites from water samples spiked at 0.05, 0.2 and 2.0 ??g/l ranged from 81 to 118%, with relative standard deviations of 20% or less. The limit of quantitation (LOQ) for all metabolites using the HPLC-DAD method was 0.20 ??g/l, whereas the LOQ using the HPLC/MS method was at 0.05 ??g/l. These metabolite-determination methods are valuable for acquiring information about water quality and the fate and transport of the parent chloroacetanilide herbicides in water. Copyright (C) 2000 Elsevier Science B.V.

  17. Investigating Deliquescence of Mars-like Soils from the Atacama Desert and Implications for Liquid Water Near the Martian Surface

    Science.gov (United States)

    Van Alstyne, A. M.; Tolbert, M. A.; Gough, R. V.; Primm, K.

    2017-12-01

    Recent images obtained from orbiters have shown that the Martian surface is more dynamic than previously thought. These images, showing dark features that resemble flowing water near the surface, have called into question the habitability of the Mars today. Recurring slope lineae (RSL), or the dark features seen in these images, are characterized as narrow, dark streaks that form and grow in the warm season, fade in the cold season, and recur seasonally. It is widely hypothesized that the movement of liquid water near the surface is what causes the appearance of RSL. However, the origin of the water and the potential for water to be stable near the surface is a question of great debate. Here, we investigate the potential for stable or metastable liquid water via deliquescence and efflorescence. The deliquescent properties of salts from the Atacama Desert, a popular terrestrial analog for Martian environments, were investigated using a Raman microscope outfitted with an environmental cell. The salts were put under Mars-relevant conditions and spectra were obtained to determine the presence or absence of liquid phases. The appearance of liquid phases under Mars-relevant conditions would demonstrate that liquid water could be available to cause or play a role in the formations of RSL.

  18. Vapor-liquid equilibria for the acetone-ethanol-n-propanol-tert-butanol-water system

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Uchida, K.; Kojima, K.

    1981-12-01

    This study deals with the measurement of vapor-liquid equilibria for the five-component system acetone-ethanol-n-propanol-tert-butanol-water at 760 mmHg and prediction of vapor-liquid equilibria by the ASOG group contribution method. The five-component system in this work is composed of a part of the components obtained during ethanol production by vapor-phase hydration of ethylene. 6 refs.

  19. Use of water in aiding olefin/paraffin (liquid + liquid) extraction via complexation with a silver bis(trifluoromethylsulfonyl)imide salt

    International Nuclear Information System (INIS)

    Wang, Yu; Thompson, Jillian; Zhou, Jingjing; Goodrich, Peter; Atilhan, Mert; Pensado, Alfonso S.; Kirchner, Barbara; Rooney, David; Jacquemin, Johan; Khraisheh, Majeda

    2014-01-01

    Highlights: • Silver-based ILs used as olefin extracting agents for olefin/paraffin mixtures. • Each extraction process is based on the olefin complexation and solvation. • The presence of water influences positively each extraction process. • Each extraction process was evaluated by DFT calculations, NMR, IR and Raman. • LLE data were then correlated by using the UNIQUAC model. - Abstract: This paper describes the extraction of C 5 –C 8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf 2 N]) to form room temperature ionic liquids [Ag(olefin) x ][Tf 2 N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf 2 N], 1-pentene showed the best separation performance while C 7 and C 8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C 5 and C 6 , for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf 2 N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin) x ][Tf 2 N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins

  20. Ionic liquid-based dispersive microextraction of nitro toluenes in water samples

    International Nuclear Information System (INIS)

    Berton, Paula; Regmi, Bishnu P.; Spivak, David A.; Warner, Isiah M.

    2014-01-01

    We describe a method for dispersive liquid-liquid microextraction of nitrotoluene-based compounds. This method is based on use of the room temperature ionic liquid (RTIL) 1-hexyl-4-methylpyridinium bis(trifluoromethylsulfonyl)imide as the accepting phase, and is shown to work well for extraction of 4-nitrotoluene, 2,4-dinitrotoluene, and 2,4,6-trinitrotoluene. Separation and subsequent detection of analytes were accomplished via HPLC with UV detection. Several parameters that influence the efficiency of the extraction were optimized using experimental design. In this regard, a Plackett–Burman design was used for initial screening, followed by a central composite design to further optimize the influencing variables. For a 5-mL water sample, the optimized IL-DLLME procedure requires 26 mg of the RTIL as extraction solvent and 680 μL of methanol as the dispersant. Under optimum conditions, limits of detection (LODs) are lower than 1.05 μg L −1 . Relative standard deviations for 6 replicate determinations at a 4 μg L −1 analyte level are <4.3 % (calculated using peak areas). Correlation coefficients of >0.998 were achieved. This method was successfully applied to extraction and determination of nitrotoluene-based compounds in spiked tap and lake water samples. (author)

  1. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry

    International Nuclear Information System (INIS)

    Zhou, Qingxiang; Zhao, Na; Xie, Guohong

    2011-01-01

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL -1 (r 2 = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L -1 . Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%.

  2. Automated high performance liquid chromatography and liquid scintillation counting determination of pesticide mixture octanol/water partition rates

    International Nuclear Information System (INIS)

    Moody, R.P.; Carroll, J.M.; Kresta, A.M.

    1987-01-01

    Two novel methods are reported for measuring octanol/water partition rates of pesticides. A liquid scintillation counting (LSC) method was developed for automated monitoring of 14 C-labeled pesticides partitioning in biphasic water/octanol cocktail systems with limited success. A high performance liquid chromatography (HPLC) method was developed for automated partition rate monitoring of several constituents in a pesticide mixture, simultaneously. The mean log Kow +/- SD determined from triplicate experimental runs were for: 2,4-D-DMA (2,4-dichlorophenoxyacetic acid dimethylamine), 0.65 +/- .17; Deet (N,N-diethyl-m-toluamide), 2.02 +/- .01; Guthion (O,O-dimethyl-S-(4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl) phosphorodithioate), 2.43 +/- .03; Methyl-Parathion (O,O-dimethyl-O-(p-nitrophenyl) phosphorothioate), 2.68 +/- .05; and Fenitrothion (O,O-dimethyl O-(4-nitro-m-tolyl) phosphorothioate), 3.16 +/- .03. A strong positive linear correlation (r = .9979) was obtained between log Kow and log k' (log Kow = 2.35 (log k') + 0.63). The advantages that this automated procedure has in comparison with the standard manual shake-flask procedure are discussed

  3. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Science.gov (United States)

    2010-07-01

    ... following solid and liquid wastes and discharges information and cooling water intake information must... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? 250.248 Section 250.248...

  4. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  5. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  6. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    International Nuclear Information System (INIS)

    Zen, Andrea; Luo, Ye; Mazzola, Guglielmo; Sorella, Sandro; Guidoni, Leonardo

    2015-01-01

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems

  7. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  8. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO{sub 4} photoanodes for efficient water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Beibei [State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Wang, Lei; Zhang, Yajun; Bi, Yingpu [State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou (China); Ding, Yong [State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China)

    2018-02-19

    Photoelectrochemical (PEC) water splitting is a promising method for storing solar energy in the form of hydrogen fuel, but it is greatly hindered by the sluggish kinetics of the oxygen evolution reaction (OER). Herein, a facile solution impregnation method is developed for growing ultrathin (2 nm) highly crystalline β-FeOOH nanolayers with abundant oxygen vacancies on BiVO{sub 4} photoanodes. These exhibited a remarkable photocurrent density of 4.3 mA cm{sup -2} at 1.23 V (vs. reversible hydrogen electrode (RHE), AM 1.5 G), which is approximately two times higher than that of amorphous FeOOH fabricated by electrodeposition. Systematic studies reveal that the excellent PEC activity should be attributed to their ultrathin crystalline structure and abundant oxygen vacancies, which could effectively facilitate the hole transport/trapping and provide more active sites for water oxidation. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Laser ablated copper plasmas in liquid and gas ambient

    Science.gov (United States)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  10. Electrically tunable spatially variable switching in ferroelectric liquid crystal/water system

    Science.gov (United States)

    Choudhary, A.; Coondoo, I.; Prakash, J.; Sreenivas, K.; Biradar, A. M.

    2009-04-01

    An unusual switching phenomenon in the region outside conducting patterned area in ferroelectric liquid crystal (FLC) containing about 1-2 wt % of water has been observed. The presence of water in the studied heterogeneous system was confirmed by Fourier transform infrared spectroscopy. The observed optical studies have been emphasized on the "spatially variable switching" phenomenon of the molecules in the nonconducting region of the cell. The observed phenomenon is due to diffusion of water between the smectic layers of the FLC and the interaction of the curved electric field lines with the FLC molecules in the nonconducting region.

  11. Nature of the anomalies in the supercooled liquid state of the mW model of water

    Science.gov (United States)

    Holten, Vincent; Limmer, David T.; Molinero, Valeria; Anisimov, Mikhail A.

    2013-05-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  12. Nature of the anomalies in the supercooled liquid state of the mW model of water.

    Science.gov (United States)

    Holten, Vincent; Limmer, David T; Molinero, Valeria; Anisimov, Mikhail A

    2013-05-07

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for the power laws implied by weak crystallization theory is too large relative to the regular backgrounds, contradicting assumptions of weak crystallization theory. Fluctuation corrections outside the scope of this work would be necessary to fit the forms predicted by weak crystallization theory. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological equation of state. The non-ideality of the "mixture" of the two states never becomes strong enough to cause liquid-liquid phase separation, also in agreement with simulation results.

  13. CALCULATED AND MEASURED VALUES OF LIQUID WATER CONTENT IN CLEAN AND POLLUTED ENVIRONMENTS

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Řezáčová, Daniela; Mattanen, J.

    2006-01-01

    Roč. 50, č. 1 (2006), s. 121-130 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) IAA3042301 Institutional research plan: CEZ:AV0Z30420517 Keywords : liquid water content * visibility * air pollutant * fog /cloud water Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.603, year: 2006

  14. Development of a dispersive liquid-liquid microextraction method for the determination of polychlorinated biphenyls in water

    International Nuclear Information System (INIS)

    Rezaei, Fatemeh; Bidari, Araz; Birjandi, Afsoon Pajand; Milani Hosseini, Mohammad Reza; Assadi, Yaghoub

    2008-01-01

    A very simple and powerful microextraction procedure, the dispersive liquid-liquid microextraction (DLLME), was used for the determination of the content of 10 polychlorinated biphenyls (PCBs) in water samples, using gas chromatography coupled with electron-capture detection (GC-ECD). The appropriate amount of acetone (disperser solvent) and chlorobenzene (extraction solvent) at the microlevel volume was used for this procedure. The conditions for the microextraction performance were investigated and optimized. The optimized method exhibited a good linearity (R 2 > 0.996) over the studied range (0.005-2 μg L -1 ), illustrating a satisfactory precision level with R.S.D. values between 4.1% and 11.0%. The values of the detection limit (S/N = 3) were found to be lower than 0.002 μg L -1 . Furthermore, a large enrichment factor for the analytes (up to a 540-fold) was achieved in a very short time for only a 5.00-mL water sample. The effectiveness of the method towards real samples was tested by analyzing well, river and seawater samples. The relative recoveries of the well, river and seawater samples, which had been spiked with different levels of PCBs were equal to 92.0-114.0%, 97.0-102.0% and 96.0-103.0%, respectively. The attained results demonstrated that DLLME combined with GC-ECD was a fast and inexpensive technique for the PCBs determination in water samples

  15. Liquid-Liquid Equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  16. Liquid-liquid equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, B.; Haan, de A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  17. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2011-01-01

    Highlights: → Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. → Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. → Correlation with UNIQUAC, Wilson and NRTL models. → Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {([HM 3 Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane)} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  18. Capture-recapture abundance and survival estimates of three cetacean species in Icelandic coastal waters using trained scientist-volunteers

    Science.gov (United States)

    Bertulli, Chiara G.; Guéry, Loreleï; McGinty, Niall; Suzuki, Ailie; Brannan, Naomi; Marques, Tania; Rasmussen, Marianne H.; Gimenez, Olivier

    2018-01-01

    Knowledge of abundance and survival of humpback whales, white-beaked dolphins and minke whales are essential to manage and conserve these species in Icelandic coastal shelf waters. Our main goal was to test the feasibility of employing inexpensive research methods (data collected by trained-scientist volunteers onboard opportunistic vessels) to assess abundance and apparent survival. No previous studies in Iceland have investigated these two demographic parameters in these three cetacean species using open capture-recapture models accounting for imperfect and possibly heterogeneous detection. A transient effect was accounted for whenever required to estimate the population of resident individuals. Identification photographs were collected by scientist-trained volunteers for 7 years (2006-2013) from onboard commercial whale-watching vessels in the coastal waters of Faxaflói (southwest coast, 4400 km2) and Skjálfandi (northeast coast, 1100 km2), Iceland. We estimated an average abundance of 83 humpback whales (Mn; 95% confidence interval: 54-130) in Skjálfandi; 238 white-beaked dolphins (La; [163-321]) in Faxaflói; and 67 minke whales (Ba; [53-82]) in Faxaflói and 24 (14-31) in Skjálfandi. We also found that apparent survival was constant for all three species (Mn: 0.52 [0.41-0.63], La: 0.79 [0.64-0.88], Ba-Faxaflói: 0.80 [0.67-0.88], Ba-Skjálfandi: 0.96 [0.60-0.99]). Our results showed inter-annual variation in abundance estimates which were small for all species, and the presence of transience for minke whales. A significant increase in abundance during the study period was solely found in minke whale data from Skjálfandi. Humpback whales and white-beaked dolphins showed lower apparent survival rates compared to similar baleen whale and dolphin populations. Our results show data collected by trained-scientist volunteers can produce viable estimates of abundance and survival although bias in the methods we employed exist and need to be addressed. With the

  19. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  20. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  1. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shirkhanloo, H. [Iranian Petroleum Industry Health Research Institute, Occupational and Environmental Health Research Center, Tehran (Iran, Islamic Republic of); Sedighi, K.; Mousavi, H. Z., E-mail: hzmousavi@semnan.ac.ir [Semnan University, College of Science, Department of Chemistry, Semnan (Iran, Islamic Republic of)

    2014-10-01

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C{sub 8}MIM) (PF{sub 6})] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L{sup -1} of lead and the detection limit was 0.8 μg L{sup -1} with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  2. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  3. Toxicological evaluation of liquids proposed for use in direct contact liquid--liquid heat exchangers for solar heated and cooled buildings

    Energy Technology Data Exchange (ETDEWEB)

    Buchan, R.M.; Majestic, J.R.; Billau, R.

    1976-09-01

    This report contains the results of the toxicological evaluation part of the project entitled, ''Direct Contact Liquid-Liquid Heat Exchangers for Solar Heated and Cooled Buildings.'' Obviously any liquid otherwise suitable for use in such a device should be subjected to a toxicological evaluation. 34 liquids (24 denser than water, 10 less dense) have physical and chemical properties that would make them suitable for use in such a device. In addition to the complexity involved in selecting the most promising liquids from the standpoint of their chemical and physical properties is added the additional difficulty of also considering their toxicological properties. Some of the physical and chemical properties of these liquids are listed. The liquids are listed in alphabetical order within groups, the denser than water liquids are listed first followed by those liquids less dense than water.

  4. Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C

    Directory of Open Access Journals (Sweden)

    D. L. Mitchell

    2012-07-01

    Full Text Available This study describes a satellite remote sensing method for directly retrieving the liquid water fraction in mixed phase clouds, and appears unique in this respect. The method uses MODIS split-window channels for retrieving the liquid fraction from cold clouds where the liquid water fraction is less than 50% of the total condensate. This makes use of the observation that clouds only containing ice exhibit effective 12-to-11 μm absorption optical thickness ratios (βeff that are quasi-constant with retrieved cloud temperature T. This observation was made possible by using two CO2 channels to retrieve T and then using the 12 and 11 μm channels to retrieve emissivities and βeff. Thus for T < −40 °C, βeff is constant, but for T > −40 °C, βeff slowly increases due to the presence of liquid water, revealing mean liquid fractions of ~ 10% around −22 °C from tropical clouds identified as cirrus by the cloud mask. However, the uncertainties for these retrievals are large, and extensive in situ measurements are needed to refine and validate these retrievals. Such liquid levels are shown to reduce the cloud effective diameter De such that cloud optical thickness will increase by more than 50% for a given water path, relative to De corresponding to pure ice clouds. Such retrieval information is needed for validation of the cloud microphysics in climate models. Since low levels of liquid water can dominate cloud optical properties, tropical clouds between −25 and −20 °C may be susceptible to the first aerosol indirect effect.

  5. Determination of thiobencarb in water samples by gas chromatography using a homogeneous liquid-liquid microextraction via flotation assistance procedure

    Directory of Open Access Journals (Sweden)

    H.A. Mashayekhi

    2013-09-01

    Full Text Available Homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA coupled with gas chromatography-flame ionization detection (GC-FID was applied for the extraction and determination of thiobencarb in water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added into the extraction cell which contained an appropriate mixture of toluene (as an extraction solvent and acetone (as a homogeneous solvent. By using air flotation, the organic solvent was collected at the conical part of the designed cell. The effect of the different parameters on the efficiency of extraction such as type and volume of extraction and homogeneous solvents, ionic strength and extraction time were studied and optimized. Under the optimal conditions, linearity of the method was in the range of 1.0-200 µg L-1. The relative standard deviations in the real samples varied from 7.8-11.7 % (n = 3. The proposed method was successfully applied to analysis of thiobencarb in the water samples and satisfactory results were obtained.DOI: http://dx.doi.org/10.4314/bcse.v27i3.4

  6. Multi-residue method for determination of 58 pesticides, pharmaceuticals and personal care products in water using solvent demulsification dispersive liquid-liquid microextraction combined with liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Caldas, Sergiane Souza; Rombaldi, Caroline; Arias, Jean Lucas de Oliveira; Marube, Liziane Cardoso; Primel, Ednei Gilberto

    2016-01-01

    A rapid and efficient sample pretreatment using solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was studied for the extraction of 58 pharmaceuticals and personal care products (PPCPs) and pesticides from water samples. Type and volume of extraction and disperser solvents, pH, salt addition, amount of salt and type of demulsification solvent were evaluated. Limits of quantification (LOQ) in the range from 0.0125 to 1.25 µg L(-1) were reached, and linearity was in the range from the LOQ of each compound to 25 μg L(-1). Recoveries ranged from 60% to 120% for 84% of the compounds, with relative standard deviations lower than 29%. The proposed method demonstrated, for the first time, that sample preparation by SD-DLLME with determination by LC-MS/MS can be successfully used for the simultaneous extraction of 32 pesticides and 26 PPCPs from water samples. The entire procedure, including the extraction of 58 organic compounds from the aqueous sample solution and the breaking up of the emulsion after extraction with water, rather than with an organic solvent, was environmentally friendly. In addition, this technique was less expensive and faster than traditional techniques. Finally, the analytical method under study was successfully applied to the analysis of all 58 pesticides and PPCPs in surface water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simulating liquid water for determining its structural and transport properties

    International Nuclear Information System (INIS)

    Arismendi-Arrieta, Daniel; Medina, Juan S.; Fanourgakis, George S.; Prosmiti, Rita; Delgado-Barrio, Gerardo

    2014-01-01

    Molecular dynamics simulations are carried out for calculating structural and transport properties of pure liquid water, such as radial distribution functions and self-diffusion and viscosity coefficients, respectively. We employed reparameterized versions of the ab initio water potential by Niesar, Clementi and Corongiu (NCC). In order to investigate the role of the electrostatic contribution, the partial charges of the NCC model are adjusted so that to reproduce the dipole moment values of the SPC/E, SPC/Fw and TIP4P/2005 water models. The single and collective transport coefficients are obtained by employing the Green–Kubo relations at various temperatures. Additionally, in order to overcome convergence difficulties arising from the long correlation times of the stress-tensor autocorrelation functions, a previously reported fitting scheme was employed. The present results indicate that there is a significant relationship between the dipole moment value of the model, and the calculated transport coefficients. We found that by adjusting the molecular dipole moment of the NCC to the value of the TIP4P/2005, the obtained values for the self-diffusion and viscosity coefficients are in better agreement with experiment, compared to the values obtained with the original NCC model. Even though the predictions of the present model exhibits an overall correct behavior, we conclude that further improvements are still required. In order to achieve that, a careful reparameterization of the repulsion–dispersion terms of the potential model is proposed. Also, the effect of the inclusion of many-body effects such as polarizability, should also be investigated. - Highlights: ► Transport properties of liquid water are important in bio-simulations. ► Self-diffusion coefficient, shear and bulk viscosities calculations from NVE molecular dynamics simulations. ► Their comparison with experimental data provides information on intermolecular forces, and serve to develop water

  8. Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water.

    Science.gov (United States)

    Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen

    2017-09-15

    Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC

    Directory of Open Access Journals (Sweden)

    Osei Harrison

    2014-07-01

    Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.

  11. A tentative detection of the 183-GHz water vapor line in the martian atmosphere: Constraints upon the H2O abundance and vertical distribution

    Science.gov (United States)

    Encrenaz, TH.; Lellouch, E.; Cernicharo, J.; Paubert, G.; Gulkis, S.

    1995-01-01

    The 183-GHz water vapor line was tentatively detected on Mars in January 1991, with the IRAM 30-m millimeter antenna, under extremely dry atmospheric conditions. The measurement refers to the whole disk. The spectral line, although marginally detected, can be fit with a constant H2O mixing ratio of 1.0 x 10(exp -5), which corresponds to a water abundance of 1 pr-microns; in any case, an upper limit of 3 pr-microns is inferred. This value is comparable to the very small abundances measured by Clancy (1992) 5 weeks before our observation and seems to imply both seasonal and long-term variations in the martian water cycle.

  12. Parallel gastric emptying of nonhydrolyzable fat and water after a solid-liquid meal in humans

    International Nuclear Information System (INIS)

    Cortot, A.; Phillips, S.F.; Malagelada, J.R.

    1982-01-01

    Our aim was to examine the control of gastric emptying of the oil phase of a mixed solid and liquid meal. Previous studies had shown that liquid dietary fats normally leave the stomach at a slower rate than does water. We wished to determine whether the slower emptying of fats was due to the physical characteristics of food (lower density and greater viscosity than water), to retardation by duodenal feedback mechanisms, or whether both factors contributed. Thus, we quantified the emptying rates of water and sucrose polyester (a nonabsorbable analog of dietary fat) ingested by healthy volunteers as a mixed solid and liquid meal. Gastric emptying was quantified by an intubation-perfusion method incorporating an occlusive jejunal balloon to facilitate recovery. Four phase-specific, nonabsorbable markers were used. [14C[Sucrose octaoleate and polyethylene glycol were incorporated in the meal and traced the lipid and water phases, respectively; [3H]glycerol triether and phenolsulfonphthalein were used as duodenal recovery markers. Sucrose polyester (substituting for dietary fat) was emptied very rapidly, and at about the same rate as was water, in contrast to natural fat, which empties very slowly. Emptying of water was rapid and comparable to that observed after mixed meals containing natural fat. These results imply that gastric emptying of the oil phase is controlled by receptors sensitive to the hydrolytic products of fat digestion and that the slow emptying of dietary fat is not simply due to its lower density

  13. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  14. Magnetic matrix solid phase dispersion assisted dispersive liquid liquid microextraction of ultra trace polychlorinated biphenyls in water prior to GC-ECD determination

    International Nuclear Information System (INIS)

    Diao, Chunpeng; Li, Cong; Yang, Xiao; Sun, Ailing; Liu, Renmin

    2016-01-01

    Magnetic matrix solid phase dispersion (MMSPD) assisted dispersive liquid liquid microextraction (DLLME) was applied to extract ultra traces of polychlorinated biphenyls (PCBs) from water samples prior to gas chromatography with electron capture detection. PCBs in water were adsorbed by micro particles of magnetic bamboo charcoal and then transferred into the elution solvent. PCBs in the elution solvent of the MMSPD were further concentrated into trace volume extraction solvent of the DLLME procedure. Under optimized conditions, good linearity in the range of 0.2–100 ng L"−"1 was obtained with regression coefficients (r) higher than 0.9987. Based on a signal-noise ratio of 3, the limits of detection (LODs) range from 0.05–0.1 ng L"−"1. These LODs are much lower than those of MMSPD or DLLME alone. Relative standard deviations are between 4.9–8.2 %. The method was successfully applied to the determination of PCBs in lake and river water. Relative recoveries were 85.5–117.4 % for the spiked environmental water samples. (author)

  15. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  16. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Guan, Jin; Zhang, Chi; Wang, Yang; Guo, Yiguang; Huang, Peiting; Zhao, Longshan

    2016-11-01

    A new analytical method was developed for simultaneous determination of 12 pharmaceuticals using ultrasound-assisted dispersive liquid-liquid microextraction (DLLME) followed by ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS). Six nonsteroidal anti-inflammatory drugs (NSAIDs, ketoprofen, mefenamic acid, tolfenamic acid, naproxen, sulindac, and piroxicam) and six antibiotics (tinidazole, cefuroxime axetil, ciprofloxacin, sulfamethoxazole, sulfadiazine, and chloramphenicol) were extracted by ultrasound-assisted DLLME using dichloromethane (800 μL) and methanol/acetonitrile (1:1, v/v, 1200 μL) as the extraction and dispersive solvents, respectively. The factors affecting the extraction efficiency, such as the type and volume of extraction and dispersive solvent, vortex and ultrasonic time, sample pH, and ionic strength, were optimized. The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution by using a small volume of dispersive solvent, which increased the extraction efficiency and reduced the equilibrium time. Under the optimal conditions, the calibration curves showed good linearity in the range of 0.04-20 ng mL -1 (ciprofloxacin and sulfadiazine), 0.2-100 ng mL -1 (ketoprofen, tinidazole, cefuroxime axetil, naproxen, sulfamethoxazole, and sulindac), and 1-200 ng mL -1 (mefenamic acid, tolfenamic acid, piroxicam, and chloramphenicol). The LODs and LOQs of the method were in the range of 0.006-0.091 and 0.018-0.281 ng mL -1 , respectively. The relative recoveries of the target analytes were in the range from 76.77 to 99.97 % with RSDs between 1.6 and 8.8 %. The developed method was successfully applied to the extraction and analysis of 12 pharmaceuticals in five kinds of water samples (drinking water, running water, river water, influent and effluent wastewater) with satisfactory results. Graphical Abstract Twelve pharmaceuticals in water samples analyted by UHPLC

  17. Process for hydrogen isotope exchange and concentration between liquid water and hydrogen gas and catalyst assembly therefor

    International Nuclear Information System (INIS)

    Stevens, W.H.

    1975-01-01

    A bithermal, catalytic, hydrogen isotope exchange process between liquid water and hydrogen gas to effect concentration of the deuterium isotope of hydrogen is described. Liquid water and hydrogen gas are contacted with one another and with at least one catalytically active metal selected from Group VIII of the Periodic Table; the catalyst body has a water repellent, gas and water vapor permeable, organic polymer or resin coating, preferably a fluorinated olefin polymer or silicone resin coating, so that the isotope exchange takes place by two simultaneously occurring, and closely coupled in space, steps and concentration is effected by operating two interconnected sections containing catalyst at different temperatures. (U.S.)

  18. Effect of liquid nitrogen flow rate on solidification of stagnant water in a horizontal tube

    International Nuclear Information System (INIS)

    Ibrahim, S.M.

    1995-01-01

    Five experiments are conducted to study the effect of liquid nitrogen flow rate on the solidification of stagnant water inside a horizontal stainless steel tube of inner diameter 19.6 cm and 12 mm thick. This tube simulates the down-comer of the nuclear reactor ET-R R-1. The apparatus design is mentioned more detail description. The results show that for the first experiment where the liquid nitrogen flow rate is 30 1/hr, the progress of solidification of water has stopped at a diameter of 12 cm. By increasing the flow rate from 30 1/hr to 40,50 and 60 1/hr, the time of freezing the water inside the tube is decreased from 86 to 67 and 60 minutes respectively. By increasing the liquid nitrogen flow rate to 70 1/hr, there is no much effect on the time of frozen. In all experiments, where the solidification is happened, the ice block formed inside the tube is subjected to a pressure of 3 at mg least, and is succeed to withstand this pressure without any leak. 7 figs

  19. Gross alpha/beta analyses in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Wong, C.T.; Lawrence Livermore National Laboratory, CA; Soliman, V.M.; Perera, S.K.

    2005-01-01

    The standard procedure for analyzing gross alpha and gross beta in water is evaporation of the sample and radioactivity determination of the resultant solids by proportional counting. This technique lacks precision, and lacks sensitivity for samples with high total dissolved solids. Additionally, the analytical results are dependent on the choice of radionuclide calibration standard and the sample matrix. Direct analysis by liquid scintillation counting has the advantages of high counting efficiencies and minimal sample preparation time. However, due to the small sample aliquants used for analysis, long count times are necessary to reach required detection limits. The procedure proposed consists of evaporating a sample aliquant to dryness, dissolving the resultant solids in a small volume of dilute acid, followed by liquid scintillation counting to determine radioactivity. This procedure can handle sample aliquants containing up to 500 mg of dissolved solids. Various acids, scintillation cocktail mixtures, instrument discriminator settings, and regions of interest (ROI) were evaluated to determine optimum counting conditions. Precision is improved and matrix effects are reduced as compared to proportional counting. Tests indicate that this is a viable alternative to proportional counting for gross alpha and gross beta analyses of water samples. (author)

  20. Analysis of phenolic acids by ionic liquid-in-water microemulsion liquid chromatography coupled with ultraviolet and electrochemical detector.

    Science.gov (United States)

    Peng, Li-Qing; Cao, Jun; Du, Li-Jing; Zhang, Qi-Dong; Shi, Yu-Tin; Xu, Jing-Jing

    2017-05-26

    An environmentally friendly ionic liquid-in-water (IL/W) microemulsion was established and applied as mobile phase in microemulsion liquid chromatography (MELC) with ultraviolet (UV) detection or electrochemical detector (ECD) for analysis of phenolic compounds in real samples. The optimal condition of the method was using the best composition of microemulsion (0.2% w/v [HMIM]PF 6 , 1.0% w/v SDS, 3.0% w/v n-butanol, 95.8% v/v water, pH 2.5) with UV detection. The validation results indicated that the method provided high degree of sensitivity, precision and accuracy with the low limit of detections ranged from 17.9-238ng/mL, satisfactory mean recovery values in the range of 80.1-105% and good linearity (r 2 >0.9994). Additionally, this method exhibited high selectivity and resolution for the analytes and was more eco-friendly compared with traditional MELC method. Consequently, the established IL/W MELC method was successfully applied to simultaneously separate and determine target compounds in Danshen sample and its preparation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. On the Fluctuations that Order and Frustrate Liquid Water

    OpenAIRE

    Limmer, David

    2013-01-01

    At ambient conditions, water sits close to phase coexistence with its crystal. More so than in many other materials, this fact is manifested in the fluctuations that maintain a large degree of local order in the liquid. These fluctuations and how they result in long-ranged order, or its absence, are emergent features of many interacting molecules. Their study therefore requires using the tools of statistical mechanics for their their systematic understanding. In this dissertation we develop s...

  2. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME).

    Science.gov (United States)

    Luo, Mai; Liu, Donghui; Zhou, Zhiqiang; Wang, Peng

    2013-09-01

    A rapid, simple, reliable, and environment-friendly method for the residue analysis of the enantiomers of four chiral fungicides including hexaconazole, triadimefon, tebuconazole, and penconazole in water samples was developed by dispersive liquid-liquid microextraction (DLLME) pretreatment followed by chiral high-performance liquid chromatography (HPLC)-DAD detection. The enantiomers were separated on a Chiralpak IC column by HPLC applying n-hexane or petroleum ether as mobile phase and ethanol or isopropanol as modifier. The influences of mobile phase composition and temperature on the resolution were investigated and most of the enantiomers could be completely separated in 20 min under optimized conditions. The thermodynamic parameters indicated that the separation was enthalpy-driven. The elution orders were detected by both circular dichroism detector (CD) and optical rotatory dispersion detector (ORD). Parameters affecting the DLLME performance for pretreatment of the chiral fungicides residue in water samples, such as the extraction and dispersive solvents and their volume, were studied and optimized. Under the optimum microextraction condition the enrichment factors were over 121 and the linearities were 30-1500 µg L(-1) with the correlation coefficients (R(2)) over 0.9988 and the recoveries were between 88.7% and 103.7% at the spiking levels of 0.5, 0.25, and 0.05 mg L(-1) (for each enantiomer) with relative standard deviations varying from 1.38% to 6.70% (n = 6) The limits of detection (LODs) ranged from 8.5 to 29.0 µg L(-1) (S/N = 3). © 2013 Wiley Periodicals, Inc.

  3. Accurate experimental determination of the isotope effects on the triple point temperature of water. II. Combined dependence on the 18O and 17O abundances

    Science.gov (United States)

    Faghihi, V.; Kozicki, M.; Aerts-Bijma, A. T.; Jansen, H. G.; Spriensma, J. J.; Peruzzi, A.; Meijer, H. A. J.

    2015-12-01

    This paper is the second of two articles on the quantification of isotope effects on the triple point temperature of water. In this second article, we address the combined effects of 18O and 17O isotopes. We manufactured five triple point cells with waters with 18O and 17O abundances exceeding widely the natural abundance range while maintaining their natural 18O/17O relationship. The 2H isotopic abundance was kept close to that of VSMOW (Vienna Standard Mean Ocean Water). These cells realized triple point temperatures ranging between  -220 μK to 1420 μK with respect to the temperature realized by a triple point cell filled with VSMOW. Our experiment allowed us to determine an accurate and reliable value for the newly defined combined 18, 17O correction parameter of AO  =  630 μK with a combined uncertainty of 10 μK. To apply this correction, only the 18O abundance of the TPW needs to be known (and the water needs to be of natural origin). Using the results of our two articles, we recommend a correction equation along with the coefficient values for isotopic compositions differing from that of VSMOW and compare the effect of this new equation on a number of triple point cells from the literature and from our own institute. Using our correction equation, the uncertainty in the isotope correction for triple point cell waters used around the world will be  <1 μK.

  4. Abundance and diversity of Odonata in temporary water bodies of Coimbatore and Salem districts in Tamil Nadu

    Directory of Open Access Journals (Sweden)

    R. Arulprakash

    2010-07-01

    Full Text Available Odonata diversity was assessed in 13 temporary water bodies of Coimbatore and Salem districts in Tamil Nadu. Assessment revealed the presence of 21 species of Odonata (14 species of Anisoptera and seven species of Zygoptera belonging to 17 genera under four families. Libellulidae (Anisoptera was represented by the maximum number of species and individuals. Pantala flavescens (Libellulidae was the most abundant among 21 species. Among the temporary water bodies, the maximum number of individuals as well as species was recorded from Utkulam tank (Coimbatore district. Odonata diversity was higher in Kamalapuram tanks 1 and 2 (Salem district and lower in Ukkadam tank (Coimbatore District. Diplacodes trivialis (Rambur, Orthetrum sabina (Drury and Pantala flavescens (Fabricius were identified as temporary water body specialists because of their presence in all the 13 temporary water bodies sampled.

  5. Development of Nanostructured Water Treatment Membranes Based on Thermotropic Liquid Crystals: Molecular Design of Sub-Nanoporous Materials.

    Science.gov (United States)

    Sakamoto, Takeshi; Ogawa, Takafumi; Nada, Hiroki; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro; Henmi, Masahiro; Kato, Takashi

    2018-01-01

    Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

  6. Measurement of radon 222 in drinking water and air by liquid scintillation

    International Nuclear Information System (INIS)

    Schoenhofer, F.

    1991-01-01

    This is a brief description of the liquid scintillation measuring method for determining radon 222 in drinking water and air. Discussed are the advantages of this method and its reliability or accuracy, as well as some conclusions from the results. (orig.) [de

  7. Preliminary test of an ultrasonic liquid film sensor for high-temperature steam-water two-phase flow experiments

    International Nuclear Information System (INIS)

    Aoyama, Goro; Nagayoshi, Takuji; Baba, Atsushi

    2014-01-01

    A prototype liquid film sensor for high-temperature steam-water experiments has been developed. The sensor shape simulates a boiling water reactor (BWR) fuel rod. The pulse-echo method can be utilized to measure the thickness of the liquid film covering the sensor surface. A piezoelectric element is soldered onto the inside of the sensor casing which consists of two curved casing pieces. After the piezoelectric element is attached, the two casing pieces are laser welded together. It is confirmed that the temperature rise at the time of the laser welding does not influence soldering of the piezoelectric element. The pressure proof test shows that the sensor can be used at a high-pressure condition of 7 MPa. Simple air-water experiments are done at atmospheric pressure to confirm the liquid film thickness can be measured with the sensor. The fluctuation of the liquid film thickness is satisfactorily captured with the sensor. The minimum and maximum thicknesses are 0.084 and 0.180 mm, respectively. The amplitude of the waveform at 286°C is predicted by the calculation based on the acoustic impedance. It is expected that the sensor is able to measure the liquid film thickness even at BWR operating conditions. (author)

  8. Investigations of Water-Bearing Environments on the Moon and Mars

    Science.gov (United States)

    Mitchell, Julie

    Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water. Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater--Rozhdestvenskiy N--showed indirect indications of water ice in its interior. Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ microm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained. In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However

  9. Spatial and temporal patterns of phytoplankton abundance and ...

    African Journals Online (AJOL)

    Bacillariophyta was the most abundant group (48.17% of total phytoplankton) and was uniformly distributed in all waters, followed by Cyanobacteria (33.33%), which decreased with distance offshore. Chlorophyta, the third highest in abundance (15.5%), increased with distance offshore. A total of 92 phytoplankton species ...

  10. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Science.gov (United States)

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-01-01

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007

  11. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2014-11-01

    Full Text Available The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS. For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0 and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  12. Separation of water from organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, I.G.; Villiers Naylor, T. de.

    1990-04-10

    This invention relates to the separation of water from fluids by the pervaporation process using a membrane. The invention is characterized in that the membrane has an active layer which consists essentially only of polymers of an unsaturated organic acid, the acid having not more than 6 carbon atoms for every acid group (not counting any carbon atoms in the acid groups), and the polymer having at least a substantial proportion of the acid groups in the form of a salt. The preferred fluids for use in the process of the invention are organic fluids, such as a hydrocarbon gas (in particular, methane) or a liquid. The process is especially suitable for separating water from mixtures with alkanols, in particular alkanols having 1 to 5 carbon atoms in the molecule, such as ethanol and isopropanol. The unsaturated organic acid may be a sulfur acid, such as a sulfonate or a sulfate or a phosphorus acid, but is preferably a carboxylic acid. Thus, the active layer may be poly(acrylic acid) or poly(maleic acid). The cation of the salt form of the acid groups is preferably an alkali metal, especially cesium. Experiments are described to illustrate the invention. 13 tabs.

  13. Gas-liquid chromatography measurements of activity coefficients at infinite dilution of various organic solutes and water in tri-iso-butylmethylphosphonium tosylate ionic liquid

    International Nuclear Information System (INIS)

    Domanska, Urszula; Paduszynski, Kamil

    2010-01-01

    Activity coefficients at infinite dilution (γ 13 ∞ ) of 33 different solutes (including alkanes, cycloalkanes, alkenes, alkynes, benzene, alkylbenzenes, water, alcohols, MTBE, thiophene and THF) in the ionic liquid tri-iso-butylmethylphosphonium tosylate have been determined by using the GLC method and have been reported over the temperature range (298.15 to 368.15) K. The partial molar excess enthalpies of mixing at infinite dilution have been determined based on temperature dependence of γ 13 ∞ . Selectivity and capacity at infinite dilution has been also calculated for exemplary separation processes in systems n-hexane/benzene and n-hexane/thiophene, to evaluate if the studied ionic liquid is capable to be a good entrainer for these processes, e.g. in the liquid-liquid extraction. The obtained results are promising however the ionic liquid studied shows a lower selectivity than some of imidazolium-based ionic liquids. To our best knowledge, the results indicate that tri-iso-butylmethylphosphonium tosylate is the best for the separation problem of aliphatic hydrocarbons from aromatic hydrocarbons among all of the studied quaternary phosphonium-based ionic liquids.

  14. Dielectric constant and low-frequency infrared spectra for liquid water and ice Ih within the E3B model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Ni, Y.; Drews, S. E. P.; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2014-08-28

    Two intrinsic difficulties in modeling condensed-phase water with conventional rigid non-polarizable water models are: reproducing the static dielectric constants for liquid water and ice Ih, and generating the peak at about 200 cm{sup −1} in the low-frequency infrared spectrum for liquid water. The primary physical reason for these failures is believed to be the missing polarization effect in these models, and consequently various sophisticated polarizable water models have been developed. However, in this work we pursue a different strategy and propose a simple empirical scheme to include the polarization effect only on the dipole surface (without modifying a model's intermolecular interaction potential). We implement this strategy for our explicit three-body (E3B) model. Our calculated static dielectric constants and low-frequency infrared spectra are in good agreement with experiment for both liquid water and ice Ih over wide temperature ranges, albeit with one fitting parameter for each phase. The success of our modeling also suggests that thermal fluctuations about local minima and the energy differences between different proton-disordered configurations play minor roles in the static dielectric constant of ice Ih. Our analysis shows that the polarization effect is important in resolving the two difficulties mentioned above and sheds some light on the origin of several features in the low-frequency infrared spectra for liquid water and ice Ih.

  15. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    Science.gov (United States)

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Evaluation of nuclear magnetic resonance spectroscopy for determination of deuterium abundance in body fluids: application to measurement of total-body water in human infants

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Pearson, G.A.; Serfass, R.E.; Roth, C.W.; Finley, J.W.

    1987-01-01

    Nuclear magnetic resonance (NMR) spectroscopy was used to quantitate abundance of 2H in body water of human infants. This method provides precise measurement of total-body water without the extensive sample preparation requirements of previously described methods for determination of 2H content in body fluids. 2H2O (1 g/kg body weight) was administered to infants and saliva and urine were collected for up to 5 h. An internal standard was added directly to the fluid specimen and 2H enrichment in water was measured by NMR spectroscopy. Working range of deuterium abundance was 0.04-0.32 atom %. Coefficients of variation for saliva samples at 0.20 atom % 2H was 1.97%. 2H content in urine and saliva water reached a plateau by 4 h after administration, and amounts in the two fluids were virtually identical. Mean total-body water determination for six infants was 58.3 +/- 5.8% of body weight (range 53-66%)

  17. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents

    Science.gov (United States)

    Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien

    2018-01-01

    Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).

  18. Advanced control of liquid water region in diffusion media of polymer electrolyte fuel cells through a dimensionless number

    Science.gov (United States)

    Wang, Yun; Chen, Ken S.

    2016-05-01

    In the present work, a three-dimension (3-D) model of polymer electrolyte fuel cells (PEFCs) is employed to investigate the complex, non-isothermal, two-phase flow in the gas diffusion layer (GDL). Phase change in gas flow channels is explained, and a simplified approach accounting for phase change is incorporated into the fuel cell model. It is found that the liquid water contours in the GDL are similar along flow channels when the channels are subject to two-phase flow. Analysis is performed on a dimensionless parameter Da0 introduced in our previous paper [Y. Wang and K. S. Chen, Chemical Engineering Science 66 (2011) 3557-3567] and the parameter is further evaluated in a realistic fuel cell. We found that the GDL's liquid water (or liquid-free) region is determined by the Da0 number which lumps several parameters, including the thermal conductivity and operating temperature. By adjusting these factors, a liquid-free GDL zone can be created even though the channel stream is two-phase flow. Such a liquid-free zone is adjacent to the two-phase region, benefiting local water management, namely avoiding both severe flooding and dryness.

  19. Liquid--liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This well-known phenomenon is called a ''vapor explosion.'' One method of producing intimate, liquid--liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. In this experiment cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture). The main conclusion from the experimental study is that hydrodynamic effects may be very significant in any shock tube analyses, especially when multiple interactions are observed. A theoretical study was performed to check the possibility of vapor film squeezing (between a drop in film boiling and a surface) as a controlling mechanism for making liquid--liquid contact. Using experimental data, the film thickness was calculated and it was found to be too thick for any conceivable film rupture mechanism. It was suggested that the coalescence is a two-stage process, in which the controlling stage depends mainly on temperature and surface properties and can be described as the ability of cold liquid to spread on a hot surface

  20. Studies on the liquid-liquid phase distribution equilibria of selenium and its measurement in water using extraction plant with a pulsation column

    International Nuclear Information System (INIS)

    Iskanderani, F.; Sobhi, K.M.; Ejaz, M.

    1989-01-01

    Normal heptane, xylene and a 0.01 molar solution of 4-(5-nonyl)pyridine in toluene were investigated as extractants for selenium(IV) from nitric acid media in potassium iodide. Various parameters affecting the distribution of the element are investigated. Extraction at high aqueous to organic phase volume ratio was studied, using a liquid-liquid extraction plant with a pulsation column. The results were employed to measure selenium in spiked water samples. (author) 24 refs.; 8 figs

  1. 222Rn determination in water and brine samples using liquid scintillation spectrometry

    International Nuclear Information System (INIS)

    Oliveira, Thiago C.; Oliveira, Arno H.

    2017-01-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for 222 Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. 241 Am, 90 Sr and 226 Ra standard solutions were used for LSC calibration. 214 Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for 222 Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l -1 were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l -1 were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  2. Mass-controlled capillary viscometer for a Newtonian liquid: Viscosity of water at different temperatures

    Science.gov (United States)

    Digilov, Rafael M.; Reiner, M.

    2007-03-01

    The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.

  3. Determination of pentachlorophenol in water and aquifer sediments by high-performance liquid chromatography

    Science.gov (United States)

    Goerlitz, D.F.

    1981-01-01

    Methods for the determination of pentachlorophenol (PCP) in water and aquifer sediments are presented. Reverse-phase high-performance liquid chromotography employing ion suppression and gradient elution is used. PCP can be determined directly in water at a lower limit of detection Of 0.2 micrograms per liter. For extracts of sediment, PCP can be determined to a lower limit of 1.0 micrograms per kilogram.

  4. Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices

    International Nuclear Information System (INIS)

    Montanino, Maria; Alessandrini, Fabrizio; Passerini, Stefano; Appetecchi, Giovanni Battista

    2013-01-01

    Highlights: ► Water-based synthesis of ionic liquids with high yield. ► Full recycling of reagents. ► High purity pyrrolidinium-based ionic liquids with exceptional electrochemical stability window. ► Lithium plating from pyrrolidinium-based ionic liquids. -- Abstract: In this work is described an innovative synthesis route for hydrophobic ionic liquids (ILs) composed of N-methyl-N-alkylpyrrolidinium (or piperidinium) or imidazolium or tetralkylammonium cations and (perfluoroalkylsulfonyl)imide, ((C n F 2n+1 SO 2 )(C m F 2m+1 SO 2 )N − ), anions. This synthesis does not require the use of any environmental unfriendly solvent such as acetone, acetonitrile or halogen-containing compounds, which is not welcome in industrial applications. Only water is used as the process solvent throughout the entire process. In addition, the commonly used iodine-containing reagents were replaced by the cheaper, more chemically stable and less toxic bromine-containing compounds. A particular care was devoted to the development of the purification route, which is especially important for ILs to be used in high-energy electrochemical devices such as high voltage supercapacitors and lithium batteries. The effect of the reaction temperature, the time and the stoichiometry in the various steps of the synthesis have been investigated in detail. This novel procedure allowed obtaining ultrapure (>99.9 wt.%), clear, colourless, inodorous ILs with an overall yield above 92 wt.% and moisture content below 1 ppm. NMR measurements were run to confirm the chemical structure whereas elemental analysis and electrochemical tests were performed to check the purity of the synthesized ILs

  5. Selection of ionic liquids as entrainers for separation of (water + ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Ge Yun [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China); Zhang Lianzhong [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)], E-mail: zhanglz@zjut.edu.cn; Yuan Xingcai; Geng Wei; Ji Jianbing [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)

    2008-08-15

    For selection of ionic liquids (ILs) which can be potentially used as entrainers for separation of the azeotropic mixture of (water + ethanol) by extractive distillation, (vapor + liquid) equilibrium was measured for the ternary systems of (water + ethanol + an IL) using a previously proposed ebulliometer. The experimental measurement was performed at p = 100 kPa and in a way of continuous synthesis, in which analysis of liquid phase composition was avoided. While the mole fraction of ethanol calculated on IL-free basis, x{sub 2}{sup '}, was kept almost unchanged at 0.95, isobaric T, x, y data were measured at different IL mass fractions. Activity coefficients, as well as relative volatilities, of the volatile components were obtained from the experimental data without the need of a thermodynamic model of the liquid phase. There were eight ILs in our investigation: 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF{sub 4}]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF{sub 4}]), 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN){sub 2}]), 1-ethyl-3-methylimidazolium dicyanamide ([emim][N(CN){sub 2}]), 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), 1-ethyl-3-methylimidazolium chloride ([emim][Cl]), 1-butyl-3-methylimidazolium acetate ([bmim][OAc]), and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). The effect of the ILs on the relative volatility of the volatile components was depicted separately by their effect on the activity coefficients. The results indicated that, among the eight ILs studied, [emim][Cl] has the largest effect on enhancement of the relative volatility. Another IL, [emim][OAc], has also significant effect. Considering the relatively low viscosity and melting point of [emim][OAc], this IL might be favorable candidate as entrainer for potential industrial application.

  6. Optimization of two different dispersive liquid-liquid microextraction methods followed by gas chromatography-mass spectrometry determination for polycyclic aromatic hydrocarbons (PAHs) analysis in water.

    Science.gov (United States)

    Tseng, Wan-Chi; Chen, Pai-Shan; Huang, Shang-Da

    2014-03-01

    Novel sample preparation methods termed "up-and-down shaker-assisted dispersive liquid-liquid microextraction (UDSA-DLLME)" and "water with low concentration of surfactant in dispersed solvent-assisted emulsion dispersive liquid-liquid microextraction (WLSEME)" coupled with gas chromatography-mass spectrometry (GC-MS) have been developed for the analysis of 11 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. For UDSA-DLLME, an up-and-down shaker-assisted emulsification was employed. Extraction was complete in 3min. Only 14 μL of 1-heptanol was required, without a dispersive solvent. Under the optimum conditions, the linear range was 0.08-100 µg L(-1), and the LODs were in the range 0.022-0.060 µg L(-1). The enrichment factors (EFs) ranged from 392 to 766. Relative recoveries were between 84% and 113% for river, lake, and field water. In WLSEME, 9 μL of 1-nonanol as extraction solvent and 240 μL of 1 mg L(-1) Triton X-100 as surfactant were mixed in a microsyringe to form a cloudy emulsified solution, which was then injected into the samples. Compared with other surfactant-assisted emulsion methods, WLSEME uses much less surfactant. The linear range was 0.08-100 µg L(-1), and the LODs were 0.022-0.13 µg L(-1). The EFs ranged from 388 to 649. The relative recoveries were 86-114% for all three water specimens. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  8. A study on the development of advanced models to predict the critical heat flux for water and liquid metals

    International Nuclear Information System (INIS)

    Lee, Yong Bum

    1994-02-01

    The critical heat flux (CHF) phenomenon in the two-phase convective flows has been an important issue in the fields of design and safety analysis of light water reactor (LWR) as well as sodium cooled liquid metal fast breeder reactor (LMFBR). Especially in the LWR application many physical aspects of the CHF phenomenon are understood and reliable correlations and mechanistic models to predict the CHF condition have been proposed. However, there are few correlations and models which are applicable to liquid metals. Compared with water, liquid metals show a divergent picture for boiling pattern. Therefore, the CHF conditions obtained from investigations with water cannot be applied to liquid metals. In this work a mechanistic model to predict the CHF of water and a correlation for liquid metals are developed. First, a mechanistic model to predict the CHF in flow boiling at low quality was developed based on the liquid sublayer dryout mechanism. In this approach the CHF is assumed to occur when a vapor blanket isolates the liquid sublayer from bulk liquid and then the liquid entering the sublayer falls short of balancing the rate of sublayer dryout by vaporization. Therefore, the vapor blanket velocity is the key parameter. In this work the vapor blanket velocity is theoretically determined based on mass, energy, and momentum balance and finally the mechanistic model to predict the CHF in flow boiling at low quality is developed. The accuracy of the present model is evaluated by comparing model predictions with the experimental data and tabular data of look-up tables. The predictions of the present model agree well with extensive CHF data. In the latter part a correlation to predict the CHF for liquid metals is developed based on the flow excursion mechanism. By using Baroczy two-phase frictional pressure drop correlation and Ledinegg instability criterion, the relationship between the CHF of liquid metals and the principal parameters is derived and finally the

  9. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-06-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.

  10. Water-saving liquid-gas conditioning system

    Science.gov (United States)

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  11. Potential Energy Landscape of the Liquid-Liquid Phase Transition in Water and the transformation between Low-Density and High-Density Amorphous Ice

    Science.gov (United States)

    Giovambattista, N.; Sciortino, F.; Starr, F. W.; Poole, P. H.

    The potential energy landscape (PEL) formalism is a valuable approach within statistical mechanics for describing supercooled liquids and glasses. We use the PEL formalism and computer simulations to study the transformation between low-density (LDL) and high-density liquid (HDL) water, and between low-density (LDA) and high-density amorphous ice (HDA). We employ the ST2 water model that exhibits a LDL-HDL first-order phase transition and a sharp LDA-HDA transformation, as observed in experiments. Our results are consistent with the view that LDA and HDA configurations are associated with two distinct regions (megabasins) of the PEL that are separated by a potential energy barrier. At higher temperature, we find that LDL configurations are located in the same megabasin as LDA, and that HDL configurations are located in the same megabasin as HDA. We show that the pressure-induced LDL-HDL and LDA-HDA transformations occur along paths that interconnect these two megabasins, but that the path followed by the liquid and the amorphous ice differ. We also study the liquid-to-ice-VII first-order phase transition. The PEL properties across this transition are qualitatively similar to the changes found during the LDA-HDA transformation, supporting the interpretation that the LDA-HDA transformation is a first-order-like phase transition between out-of-equilibrium states.

  12. Experimental, Numerical, and Analytical Slosh Dynamics of Water and Liquid Nitrogen in a Spherical Tank

    Science.gov (United States)

    Storey, Jedediah Morse

    2016-01-01

    Understanding, predicting, and controlling fluid slosh dynamics is critical to safety and improving performance of space missions when a significant percentage of the spacecraft's mass is a liquid. Computational fluid dynamics simulations can be used to predict the dynamics of slosh, but these programs require extensive validation. Many experimental and numerical studies of water slosh have been conducted. However, slosh data for cryogenic liquids is lacking. Water and cryogenic liquid nitrogen are used in various ground-based tests with a spherical tank to characterize damping, slosh mode frequencies, and slosh forces. A single ring baffle is installed in the tank for some of the tests. Analytical models for slosh modes, slosh forces, and baffle damping are constructed based on prior work. Select experiments are simulated using a commercial CFD software, and the numerical results are compared to the analytical and experimental results for the purposes of validation and methodology-improvement.

  13. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  14. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry.

    Science.gov (United States)

    Li, Zhenhan; Xia, Shanhong; Wang, Jinfen; Bian, Chao; Tong, Jianhua

    2016-01-15

    A novel method for determination of trace mercury in water is developed. The method is performed by extracting mercury firstly with ionic liquids (ILs) and then detecting the concentration of mercury in organic media with anodic stripping voltammetry. Liquid-liquid extraction of mercury(II) ions by four ionic liquids with N-octylpyridinium cations ([OPy](+)) was studied. N-octylpyridinium tetrafluoroborate and N-octylpyridinium trifluoromethylsulfonate were found to be efficient and selective extractant for mercury. Temperature controlled dispersive liquid phase microextraction (TC-DLPME) technique was utilized to improve the performance of preconcentration. After extraction, precipitated IL was diluted by acetonitrile buffer and mercury was detected by differential pulse stripping voltammetry (DPSV) with gold disc electrode. Mercury was enriched by 17 times while interfering ions were reduced by two orders of magnitude in the organic media under optimum condition. Sensitivity and selectivity for electrochemical determination of mercury were improved by using the proposed method. Tap, pond and waste water samples were analyzed with recoveries ranging from 81% to 107% and detection limit of 0.05 μg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Water level response measurement in a steel cylindrical liquid storage tank using image filter processing under seismic excitation

    Science.gov (United States)

    Kim, Sung-Wan; Choi, Hyoung-Suk; Park, Dong-Uk; Baek, Eun-Rim; Kim, Jae-Min

    2018-02-01

    Sloshing refers to the movement of fluid that occurs when the kinetic energy of various storage tanks containing fluid (e.g., excitation and vibration) is continuously applied to the fluid inside the tanks. As the movement induced by an external force gets closer to the resonance frequency of the fluid, the effect of sloshing increases, and this can lead to a serious problem with the structural stability of the system. Thus, it is important to accurately understand the physics of sloshing, and to effectively suppress and reduce the sloshing. Also, a method for the economical measurement of the water level response of a liquid storage tank is needed for the exact analysis of sloshing. In this study, a method using images was employed among the methods for measuring the water level response of a liquid storage tank, and the water level response was measured using an image filter processing algorithm for the reduction of the noise of the fluid induced by light, and for the sharpening of the structure installed at the liquid storage tank. A shaking table test was performed to verify the validity of the method of measuring the water level response of a liquid storage tank using images, and the result was analyzed and compared with the response measured using a water level gauge.

  16. Laser ablated copper plasmas in liquid and gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  17. Interfacial thermodynamics of water and six other liquid solvents.

    Science.gov (United States)

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  18. Radiobiological application of simulation of low-energy electron transport in liquid water

    International Nuclear Information System (INIS)

    Eudaldo Puell, Teresa.

    1979-01-01

    A Monte-Carlo transport simulation method, so-called event-after-event method provide results about trajectories of low-energy electrons, slowing-down in liquid water. A radiosensitive target model constituted by water cylindrical volumes, like the ones which surround the DNA molecule, is taken into consideration. The results characterizing the primary physical stage of radiation action, such as, space ionization distributions, interionization distance distributions ..., are obtained in some configurations constituted by single or several targets, in order to approach the biological reality [fr

  19. Test of prototype liquid-water-content meter for aircraft use

    Science.gov (United States)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  20. Caractérisation de quelques stabilisants naturels de l'émulsion d'eau dans le pétrole brut, grace à l'extension de la technique de "moussage" au système liquide-liquide eau-huile Characterising Several Natural Stabilizants of Water Emulsion in Crude Oil by Extending the "Foaming" Technique to Oil/Water Liquid-Liquid Systems

    Directory of Open Access Journals (Sweden)

    Coste J. -F.

    2006-11-01

    Full Text Available L'extension de la technique, de " moussage "au système liquide-liquide eau-pétrole brut a permis d'augmenter la concentration d'une fraction du pétrole en acides naphténiques, amines, asphaltènes et porphyrines, grâce à l'accroissement de l'aire de l'interface entre les deux phases non miscibles. Ces espèces chimiques présentes à l'interface favorisent la formation des films entre les gouttelettes de phase aqueuse dispersée. Elles sont à l'origine de la stabilité de I'émulsion d'eau dans le pétrole. The " foaming " technique was extended to a water/crude-oil liquid-liquid system so as to increase the concentration of naphthenic acids, amines, asphaltenes and porphyrins in an oil fraction by enlarging the interface orea between the two immiscible phases. The presence of these chemical species at the interface promotes the formation of films between the dispersed aqueuss-phase droplets. They are at the origin of the stability of a water in oil emulsion.

  1. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    Science.gov (United States)

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  2. Radioactive liquid containing vessel

    International Nuclear Information System (INIS)

    Sakurada, Tetsuo; Kawamura, Hironobu.

    1993-01-01

    Cooling jackets are coiled around the outer circumference of a container vessel, and the outer circumference thereof is covered with a surrounding plate. A liquid of good conductivity (for example, water) is filled between the cooling jackets and the surrounding plate. A radioactive liquid is supplied to the container vessel passing through a supply pipe and discharged passing through a discharge pipe. Cooling water at high pressure is passed through the cooling water jackets in order to remove the heat generated from the radioactive liquid. Since cooling water at high pressure is thus passed through the coiled pipes, the wall thickness of the container vessel and the cooling water jackets can be reduced, thereby enabling to reduce the cost. Further, even if the radioactive liquid is leaked, there is no worry of contaminating cooling water, to prevent contamination. (I.N.)

  3. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  4. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    Wanessa Nepomuceno Ferreira

    2015-09-01

    Full Text Available ABSTRACTIn seasonally dry tropical forests, species carrying attributes of Stress Resistance Syndrome (SRS may have ecological advantages over species demanding high quantities of resources. In such forests, Poincianella bracteosa is abundant, while Libidibia ferrea has low abundance; therefore, we hypothesized that P. bracteosa has characteristics of low-resource species, while L. ferrea has characteristics of high-resource species. To test this hypothesis, we assessed morphological and physiological traits of seedlings of these species under different water regimes (100%, 70%, 40%, and 10% field capacity over 85 days. For most of the studied variables we observed significant decreases with increasing water stress, and these reductions were greater in L. ferrea. As expected, L. ferreamaximized their growth with increased water supply, while P. bracteosa maintained slower growth and had minor adjustments in biomass allocation, characteristics representative of low-resource species that are less sensitive to stress. We observed that specific leaf area, biomass allocation to roots, and root/shoot ratio were higher in L. ferrea, while biomass allocation to leaves and photosynthesis were higher in P. bracteosa. Results suggest that the attributes of SRS can facilitate high abundance of P. bracteosa in dry forest.

  5. (Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids

    International Nuclear Information System (INIS)

    Martinho, S.; Araújo, J.M.M.; Rebelo, L.P.N.; Pereiro, A.B.; Marrucho, I.M.

    2013-01-01

    Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data

  6. Ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma

    International Nuclear Information System (INIS)

    Xu Xu; Su Rui; Zhao Xin; Liu Zhuang; Zhang Yupu; Li Dan; Li Xueyuan; Zhang Hanqi; Wang Ziming

    2011-01-01

    Graphical abstract: The extraction and derivatization efficiency of SAs is dependent on type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of derivatization reagent, pH of sample solution as well as ionic strength. Highlights: ► A new, rapid and sensitive method for determining sulfonamides (SAs) was proposed. ► Derivatization, extraction and preconcentration of SAs were performed in one step. ► IL-based MADLLME and derivatization were first applied for the determination of SAs. ► Trace SAs in river water, honey, milk, and pig plasma were determined. - Abstract: The ionic liquid-based microwave-assisted dispersive liquid–liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0–110.8, 95.4–106.3, 95.0–108.3, and 95.7–107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n = 5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination of SAs in liquid samples.

  7. The management plan of liquid effluent in Korean advanced light water reactor

    International Nuclear Information System (INIS)

    Kim, S. H.; Lim, H. S.; Jeong, D. W.; Jeong, D. Y.

    2001-01-01

    Non-radioactive liquid effluent in Korean Advanced Light Water Reactor is transferred and treated in centralized waste treatment facility after the radioactivity in effluent is checked within power block. The liquid effluent from centralized waste treatment facility will be discharged by way of discharge canal in order to be in the sufficient condition. As a result of investigating the radiation monitoring design in accordance with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring design satisfies the regulatory guideline. In relation to sampling and analyses, most systems satisfy the regulatory guideline except for some effluents from turbine building. And, though sampling and analyses are performed after radioactivity is monitored at each system in turbine building, these exceptions in turbine building effluents are expected to cause no significant problems because radioactivity is monitored by direct or indirect methods prior to release from turbine building. Integrated monitoring on liquid effluent from the centralized waste water treatment facility is not necessary because radiation monitoring, sampling and analyses on each system within power block are performed, and operational effectiveness compared with cost according to adding the radiation monitoring equipment is too low. So, whether the radiation monitoring in this effluent is reflected on design or not is planned to be determined through discussion with regulatory authority

  8. Larval abundance and its relation to macrofouling settlement pattern in the coastal waters of Kalpakkam, southeastern part of India.

    Science.gov (United States)

    Sahu, Gouri; Satpathy, K K; Mohanty, A K; Biswas, Sudeepta; Achary, M Smita; Sarkar, S K

    2013-02-01

    The present work revealed that salinity, water temperature, and food availability were the most crucial factors affecting the abundance of larvae and their settlement as macrofouling community in the coastal waters of Kalpakkam. Quantitative as well as qualitative results showed that late post-monsoon (April-May) and pre-monsoon (June-September) periods were found to be suitable periods for larval growth, development, and survival to adult stages for most of the organisms. Clustering of physico-chemical and biological (including larval and adult availability) data yielded two major clusters; one formed by northeast (NE) monsoon months (October-January) and the other by post-monsoon/summer (February-May) months, whereas; pre-monsoon months (June-September) were distributed between these two clusters. Among all the major macrofouler groups, only bivalves established a successful relationship between its larval abundance and adult settlement. Principal component analysis indicated good associations of bivalve larvae with polychaete larvae and adult bivalves with adult barnacles. However, biotic relation between ascidians and bryozoans was observed both in the larval as well as adult community.

  9. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    Vaknin, David; Bu Wei; Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok

    2009-01-01

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  10. New aerial survey and hierarchical model to estimate manatee abundance

    Science.gov (United States)

    Langimm, Cahterine A.; Dorazio, Robert M.; Stith, Bradley M.; Doyle, Terry J.

    2011-01-01

    Monitoring the response of endangered and protected species to hydrological restoration is a major component of the adaptive management framework of the Comprehensive Everglades Restoration Plan. The endangered Florida manatee (Trichechus manatus latirostris) lives at the marine-freshwater interface in southwest Florida and is likely to be affected by hydrologic restoration. To provide managers with prerestoration information on distribution and abundance for postrestoration comparison, we developed and implemented a new aerial survey design and hierarchical statistical model to estimate and map abundance of manatees as a function of patch-specific habitat characteristics, indicative of manatee requirements for offshore forage (seagrass), inland fresh drinking water, and warm-water winter refuge. We estimated the number of groups of manatees from dual-observer counts and estimated the number of individuals within groups by removal sampling. Our model is unique in that we jointly analyzed group and individual counts using assumptions that allow probabilities of group detection to depend on group size. Ours is the first analysis of manatee aerial surveys to model spatial and temporal abundance of manatees in association with habitat type while accounting for imperfect detection. We conducted the study in the Ten Thousand Islands area of southwestern Florida, USA, which was expected to be affected by the Picayune Strand Restoration Project to restore hydrology altered for a failed real-estate development. We conducted 11 surveys in 2006, spanning the cold, dry season and warm, wet season. To examine short-term and seasonal changes in distribution we flew paired surveys 1–2 days apart within a given month during the year. Manatees were sparsely distributed across the landscape in small groups. Probability of detection of a group increased with group size; the magnitude of the relationship between group size and detection probability varied among surveys. Probability

  11. Disintegration of liquid metals by low pressure water blasting

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    The feasibility of disintegrating metals by a low cost system and subsequently incorporating them into grout mixtures has been demonstrated. A low pressure water blasting technique consisting of multiple nozzles and a converging-line jet stream was developed to disintegrate liquid metals and produce coarse metal powder and shot. Molten iron resulted in spherical shot, while copper, aluminum, and tin produced irregular shaped particles. The particle size was between 0.05 and 3 mm (0.002 and 0.1 in.), and about half the particles were smaller than 1 mm (0.04 in.) in all cases. The water consumption was rather low, while the production rate was relatively high. The method proved to be simple and reliable. The coarse metal powders were suspendable in grout fluids, indicating that they are probably disposable by the shale hydrofracture technique

  12. Macromolecular sensing at the liquid-liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Gregoire; Flynn, Shane [Tyndall National Institute, Lee Maltings, University College, Cork (Ireland); Arrigan, Damien W M, E-mail: gregoire.herzog@tyndall.ie [Nanochemistry Research Institute, Department of Chemistry, Curtin University, Perth (Australia)

    2011-08-17

    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  13. Macromolecular sensing at the liquid-liquid interface

    International Nuclear Information System (INIS)

    Herzog, Gregoire; Flynn, Shane; Arrigan, Damien W M

    2011-01-01

    We report here the electrochemical sensing of macromolecules, such as polyLysine dendrimers, at the polarised liquid | liquid interface. Electrochemistry at the liquid | liquid interface is a powerful analytical technique which allows the detection of non-redox active molecules via ion transfer reactions at a polarised water - oil interface. We demonstrate here that different parameters of the polyLysine dendrimers (charge number, molecular weight) have a strong influence on the sensitivity and limit of detection of these macromolecules. This work will help to the development of sensors based on charge transfer at the liquid | liquid interface.

  14. Determination of some organophosphorus pesticides in water and watermelon samples by microextraction prior to high-performance liquid chromatography.

    Science.gov (United States)

    Wang, Chun; Wu, Qiuhua; Wu, Chunxia; Wang, Zhi

    2011-11-01

    A novel method based on simultaneous liquid-liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-liquid phase microextraction has been developed for the determination of six organophosphorus pesticides, i.e. isocarbophos, phosmet, parathion-methyl, triazophos, fonofos and phoxim, in water and watermelon samples prior to high-performance liquid chromatography (HPLC). Under the optimum conditions, the method shows a good linearity within a range of 1-200 ng/mL for water samples and 5-200 ng/g for watermelon samples, with the correlation coefficients (r) varying from 0.9990 to 0.9997 and 0.9986 to 0.9995, respectively. The limits of detection (LODs) were in the range between 0.1 and 0.3 ng/mL for water samples and between 1.0 and 1.5 ng/g for watermelon samples. The recoveries of the method at spiking levels of 5.0 and 50.0 ng/mL for water samples were between 85.4 and 100.8%, and at spiking levels of 5.0 and 50.0 ng/g for watermelon samples, they were between 82.6 and 92.4%, with the relative standard deviations (RSDs) varying from 4.5-6.9% and 5.2-7.4%, respectively. The results suggested that the developed method represents a simple, low-cost, high analytes preconcentration and excellent sample cleanup procedure for the determination of organophosphorus pesticides in water and watermelon samples. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Seasonally-Active Water on Mars: Vapour, Ice, Adsorbate, and the Possibility of Liquid

    Science.gov (United States)

    Richardson, M. I.

    2002-12-01

    southern caps. Similar climate-models of the water cycle also do not need much exchangeable adsorbed water in order to explain the observed vapour distributions. The possibility of liquid water is tantalizing, but difficult to definitively judge. On scales greater than a meter or so, Mars is most definitely well away from the water triple point--although the surface pressure can exceed 6.1 mbars, the partial pressure of water vapor (to which the triple point refers) is at best orders of magnitude lower. Several careful studies have shown, however, that locally transient (meta-stable) liquid is possible, if the net heating of ice deposits is high enough. This process is aided if the total surface pressure exceeds 6.1mbar (this prevents boiling, or the explosive loss of vapour into the atmosphere) or if the liquid is covered by a thin ice shell, and is only possible if surface temperatures exceed 273K (for pure water, or the appropriate eutectic for brines) and if ice is present. The former challenge is much easier to meet than the latter. The melt scenario requires that ice deposited in winter must be protected from sublimation as surface temperatures increase in spring, but then exposed to the peak of solar heating in summer. Available spacecraft observations of seasonal water will be discussed with the aid of GCM model simulations, and examined in the context of water distributions and phases.

  17. Spatial Models of Abundance and Habitat Preferences of Commerson's and Peale's Dolphin in Southern Patagonian Waters.

    Science.gov (United States)

    Dellabianca, Natalia A; Pierce, Graham J; Raya Rey, Andrea; Scioscia, Gabriela; Miller, David L; Torres, Mónica A; Paso Viola, M Natalia; Goodall, R Natalie P; Schiavini, Adrián C M

    2016-01-01

    Commerson's dolphins (Cephalorhynchus c. commersonii) and Peale's dolphins (Lagenorhynchus australis) are two of the most common species of cetaceans in the coastal waters of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN, mainly due to the lack of information about population sizes and trends. The goal of this study was to build spatially explicit models for the abundance of both species in relation to environmental variables using data collected during eight scientific cruises along the Patagonian shelf. Spatial models were constructed using generalized additive models. In total, 88 schools (212 individuals) of Commerson's dolphin and 134 schools (465 individuals) of Peale's dolphin were recorded in 8,535 km surveyed. Commerson's dolphin was found less than 60 km from shore; whereas Peale's dolphins occurred over a wider range of distances from the coast, the number of animals sighted usually being larger near or far from the coast. Fitted models indicate overall abundances of approximately 22,000 Commerson's dolphins and 20,000 Peale's dolphins in the total area studied. This work provides the first large-scale abundance estimate for Peale's dolphin in the Atlantic Ocean and an update of population size for Commerson's dolphin. Additionally, our results contribute to baseline data on suitable habitat conditions for both species in southern Patagonia, which is essential for the implementation of adequate conservation measures.

  18. Spatial Models of Abundance and Habitat Preferences of Commerson's and Peale's Dolphin in Southern Patagonian Waters.

    Directory of Open Access Journals (Sweden)

    Natalia A Dellabianca

    Full Text Available Commerson's dolphins (Cephalorhynchus c. commersonii and Peale's dolphins (Lagenorhynchus australis are two of the most common species of cetaceans in the coastal waters of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN, mainly due to the lack of information about population sizes and trends. The goal of this study was to build spatially explicit models for the abundance of both species in relation to environmental variables using data collected during eight scientific cruises along the Patagonian shelf. Spatial models were constructed using generalized additive models. In total, 88 schools (212 individuals of Commerson's dolphin and 134 schools (465 individuals of Peale's dolphin were recorded in 8,535 km surveyed. Commerson's dolphin was found less than 60 km from shore; whereas Peale's dolphins occurred over a wider range of distances from the coast, the number of animals sighted usually being larger near or far from the coast. Fitted models indicate overall abundances of approximately 22,000 Commerson's dolphins and 20,000 Peale's dolphins in the total area studied. This work provides the first large-scale abundance estimate for Peale's dolphin in the Atlantic Ocean and an update of population size for Commerson's dolphin. Additionally, our results contribute to baseline data on suitable habitat conditions for both species in southern Patagonia, which is essential for the implementation of adequate conservation measures.

  19. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  20. Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M

    2004-12-02

    A series of first principles Monte Carlo simulations in the isobaric-isothermal ensemble were carried out for liquid water at ambient conditions (T = 298 K and p = 1 atm). The Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials were employed with the CP2K simulation package to examine systems consisting of 64 water molecules. The fluctuations in the system volume encountered in simulations in the isobaric-isothermal ensemble requires a reconsideration of the suitability of the typical charge density cutoff and the regular grid generation method previously used for the computation of the electrostatic energy in first principles simulations in the microcanonical or canonical ensembles. In particular, it is noted that a much higher cutoff is needed and that the most computationally efficient method of creating grids can result in poor simulations. Analysis of the simulation trajectories using a very large charge density cutoff at 1200 Ry and four different grid generation methods point to a substantially underestimated liquid density of about 0.85 g/cm{sup 3} resulting in a somewhat understructured liquid (with a value of about 2.7 for the height of the first peak in the oxygen/oxygen radial distribution function) for BLYP-GTH water at ambient conditions.

  1. Observation of interactions between hydrophilic ionic liquid and water on wet agar gels by FE-SEM and its mechanism

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Highlights: ► The mechanism of SEM observation of agar gel using ionic liquid was investigated. ► Weak hydrogen bond between ionic liquid and water exist even under vacuum condition. ► Ionic liquid binding ability with water is useful for observing wet material using FE-SEM. ► We could optimize the water concentrations of sample of IL and wet material mixtures. ► SEM observation of fine morphology of agar gel in optimum water content. - Abstract: In the present study, an attempt is made to understand the mechanism of field emission electron microscopy (FE-SEM) observation of wet agar gel using a typical hydrophilic ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF 4 ]. The IL interaction with water molecules within agar gel during sample preparation condition for FE-SEM observation was investigated using Raman spectroscopy. Results showed that water molecules within agar gel form weak hydrogen bond such as BF 4 − ⋯HOH⋯BF 4 − by interaction with BF 4 − of IL, and, it remained stable even under vacuum condition at 60 °C, 24 h. This interaction was found to be helpful for IL displacement of the water molecules within agar gel. From this study, it was found that the exact morphology of gel materials in FE-SEM condition can be observed by optimization of water concentrations of IL and gel mixtures. Thus, using IL, agar gel or any other material under wet condition can be observed without drying in FE-SEM chamber, and, present result gives an insight to the mechanism of FE-SEM observation of agar gel using IL without any conducting coating.

  2. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.

    Science.gov (United States)

    Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew

    2011-01-01

    The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.

  3. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  4. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  5. On the application of accelerated molecular dynamics to liquid water simulations.

    Science.gov (United States)

    de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew

    2006-11-16

    Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.

  6. Decontamination liquid waste processing method

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi.

    1992-01-01

    Liquid wastes after electrolytic reduction are caused to flow through an anionic exchange membrane in a diffusion dialysis step, and liquid wastes and dialyzed water are passed in a countercurrent manner. Since acids in the liquid wastes transfer on the side of the dialyzed water due to the difference of concentration between the liquid wastes and the dialyzed water, acids can be easily recovered from the liquid wastes. If the acid-removed liquid wastes are put to electrodeposition in an electrodepositing step, the electrodepositing reactions between radioactive materials such as Co ion, Mn ion and leached metals such as Fe ions and Cr ions are caused preferentially to hydrogen generation reaction on a metal deposition cathode. Accordingly, metal ions can be easily separated from the liquid wastes. Since the separated liquid wastes are an aqueous solution in which cerium ions as a decontaminant and an acid at low concentration are dissolved, the concentration thereof is controlled by mixing them to acid recovering water after the diffusion dialysis and they can be reused as the decontaminant. (T.M.)

  7. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  8. Tar removal from biosyngas in the biomass gasification process. (Liquid + liquid) equilibrium {water + solvent (paraxylene and methyl hexadecanoate) + model molecules of tar (benzene, toluene, phenol)}

    International Nuclear Information System (INIS)

    Bassil, Georgio; Mokbel, Ilham; Abou Naccoul, Ramy; Stephan, Juliette; Jose, Jacques; Goutaudier, Christelle

    2012-01-01

    Highlights: ► (Liquid + liquid) equilibria at atmospheric pressure. ► Solubility of benzene (or toluene or phenol) in paraxylene at (303 to 343) K. ► Solubility of benzene (or toluene or phenol) in methyl palmitate or methyl hexadecanoate at (303 to 343) K. ► Correlation of LLE using NRTL model. - Abstract: Tar is generated in the process by the condensation of the gas resulting from biomass gasification. The objective of this work is a contribution to the database on thermodynamic quantity which will be useful at the operation of tar removal from aqueous medium. With this aim, (liquid + liquid) equilibrium of {water + solvent (paraxylene and methyl hexadecanoate) + model molecules of tar (benzene, toluene, phenol)} was studied at temperatures (303.2, 323.2, and 343.2) K. The data obtained were correlated with the non-random two-liquid (NRTL) model.

  9. Deep eutectic solvent-based ultrasound-assisted dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of ultraviolet filters in water samples.

    Science.gov (United States)

    Wang, Huazi; Hu, Lu; Liu, Xinya; Yin, Shujun; Lu, Runhua; Zhang, Sanbing; Zhou, Wenfeng; Gao, Haixiang

    2017-09-22

    In the present study, a simple and rapid sample preparation method designated ultrasound-assisted dispersive liquid-liquid microextraction based on a deep eutectic solvent (DES) followed by high-performance liquid chromatography with ultraviolet (UV) detection (HPLC-UVD) was developed for the extraction and determination of UV filters from water samples. The model analytes were 2,4-dihydroxybenzophenone (BP-1), benzophenone (BP) and 2-hydroxy-4-methoxybenzophenone (BP-3). The hydrophobic DES was prepared by mixing trioctylmethylammonium chloride (TAC) and decanoic acid (DecA). Various influencing factors (selection of the extractant, amount of DES, ultrasound duration, salt addition, sample volume, sample pH, centrifuge rate and duration) on UV filter recovery were systematically investigated. Under optimal conditions, the proposed method provided good recoveries in the range of 90.2-103.5% and relative standard deviations (inter-day and intra-day precision, n=5) below 5.9%. The enrichment factors for the analytes ranged from 67 to 76. The limits of detection varied from 0.15 to 0.30ngmL -1 , depending on the analytes. The linearities were between 0.5 and 500ngmL -1 for BP-1 and BP and between 1 and 500ngmL -1 for BP-3, with coefficients of determination greater than 0.99. Finally, the proposed method was applied to the determination of UV filters in swimming pool and river water samples, and acceptable relative recoveries ranging from 82.1 to 106.5% were obtained. Copyright © 2017. Published by Elsevier B.V.

  10. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  11. Dispersive liquid-liquid microextraction coupled with digital image colorimetric analysis for detection of total iron in water and food samples.

    Science.gov (United States)

    Peng, Bo; Chen, Guorong; Li, Kai; Zhou, Min; Zhang, Ji; Zhao, Shengguo

    2017-09-01

    A simple and low cost assay for total iron in various samples based on dispersive liquid-liquid microextraction (DLLME) coupled with digital scanning image analysis was proposed. Orthogonal experiment design was utilized to optimize the amount of extraction solvent and disperser solvent, O-phenanthroline concentration and buffer pH. Under the optimum conditions, the calibration curve was linear over the range of 0.047-1.0μgmL -1 (R 2 >0.99) of iron. The limit of detection (LOD) for iron was 14.1μgL -1 and limit of quantification (LOQ) was 46.5μgL -1 . The relative standard deviations for seven replicate determinations of 0.5μgmL -1 of iron was 3.75%. The method was successfully applied for analysis of total iron in water and food samples without using any spectral instrument and it could have a potential industrial impact in developing fast and portable devices to analyze the iron content in water and certain foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  13. Process for the exchange of hydrogen isotopes between streams of liquid water and gaseous halohydrocarbon and an apparatus therefor

    International Nuclear Information System (INIS)

    Symons, E. A.; Clermont, M. J.; Paterson, L. M.; Rolston, J. H.

    1985-01-01

    Hydrogen isotope (e.g. deuterium) exchange from liquid water to a gaseous halohydrocarbon (e.g. fluoroform, CF 3 H-CF 3 D) is obtained at an operating temperature in the range 0 0 to 100 0 C. using a catalytically active mass comprising a porous anion exchange resin in the hydroxide ion form and enriched gaseous halohydrocarbon stream is decomposed by isotope selective photo-decomposition into a first, gaseous stream enriched in the hydrogen isotope, which is removed as a product, and a depleted gaseous halohydrocarbon stream, which is recirculated for enrichment again. The catalytically active mass may, for example, be in the form of resin particles suspended in a fluidized bed or packed as resin particles between sheets wound into a roll. One of the sheets may be corrugated and have open interstices to form a packing in a column which permits countercurrent gas and liquid flow past the resin. Preferably the wound sheets are hydrophilic to retard flooding by the liquid water. The liquid water stream may contain dimethyl sulfoxide (DMSO) added as co-solvent

  14. EPR Evidence of Liquid Water in Ice: An Intrinsic Property of Water or a Self-Confinement Effect?

    Science.gov (United States)

    Thangswamy, Muthulakshmi; Maheshwari, Priya; Dutta, Dhanadeep; Rane, Vinayak; Pujari, Pradeep K

    2018-06-01

    Liquid water (LW) existence in pure ice below 273 K has been a controversial aspect primarily because of the lack of experimental evidence. Recently, electron paramagnetic resonance (EPR) has been used to study deeply supercooled water in a rapidly frozen polycrystalline ice. The same technique can also be used to probe the presence of LW in polycrystalline ice that has formed through a more conventional, slow cooling one. In this context, the present study aims to emphasize that in case of an external probe involving techniques such as EPR, the results are influenced by the binary phase (BP) diagram of the probe-water system, which also predicts the existence of LW domains in ice, up to the eutectic point. Here we report the results of our such EPR spin-probe studies on water, which demonstrate that smaller the concentration of the probe stronger is the EPR evidence of liquid domains in polycrystalline ice. We used computer simulations based on stochastic Liouville theory to analyze the lineshapes of the EPR spectra. We show that the presence of the spin probe modifies the BP diagram of water, at very low concentrations of the spin probe. The spin probe thus acts, not like a passive reporter of the behavior of the solvent and its environment, but as an active impurity to influence the solvent. We show that there exists a lower critical concentration, below which BP diagram needs to be modified, by incorporating the effect of confinement of the spin probe. With this approach, we demonstrate that the observed EPR evidence of LW domains in ice can be accounted for by the modified BP diagram of the probe-water system. The present work highlights the importance of taking cognizance of the possibility of spin probes affecting the host systems, when interpreting the EPR (or any other probe based spectroscopic) results of phase transitions of host, as its ignorance may lead to serious misinterpretations.

  15. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    Science.gov (United States)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  16. Novel determination of polychlorinated naphthalenes in water by liquid chromatography-mass spectrometry with atmospheric pressure photoionization.

    Science.gov (United States)

    Moukas, Athanasios I; Thomaidis, Nikolaos S; Calokerinos, Antony C

    2016-01-01

    This study presents the development, optimization, and validation of a novel method for the determination of polychlorinated naphthalenes (PCNs) by liquid chromatography-atmospheric pressure photoionization (APPI), using toluene as dopant. The mass spectra of PCN 52, 54, 66, 67, 73, and 75 were recorded in negative ionization. The base ions corresponded to [M-Cl+O](-), where M is the analyte molecule. A strategy, which includes designs of experiments, for the development, the evaluation, and the optimization of the LC-APPI-MS/MS methods is also described. Finally, a highly sensitive method with low instrumental limits of detection (LoDs), ranging from 0.8 pg for PCN 75 to 16 pg for PCN 54 on column, was validated. A Thermo Hypersil Green PAH (100 mm × 2.1 mm, 3 μm) column was used with acetonitrile/water/methanol as mobile phase. The method was applied for the determination of the selected PCNs in surface and tap water samples. A simple liquid-liquid extraction method for the extraction of PCNs from water samples was used. Method LoQs ranged from 29 ng L(-1), for PCN 73, to 63 ng L(-1), for PCN 54, and the recoveries ranged from 97 to 99%, for all congeners. This is the first LC-APPI-MS/MS method for the determination of PCNs in water samples.

  17. Ionic liquid marbles.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2007-10-09

    Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.

  18. WATER-TRAPPED WORLDS

    International Nuclear Information System (INIS)

    Menou, Kristen

    2013-01-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO 2 as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe

  19. WATER-TRAPPED WORLDS

    Energy Technology Data Exchange (ETDEWEB)

    Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States)

    2013-09-01

    Although tidally locked habitable planets orbiting nearby M-dwarf stars are among the best astronomical targets to search for extrasolar life, they may also be deficient in volatiles and water. Climate models for this class of planets show atmospheric transport of water from the dayside to the nightside, where it is precipitated as snow and trapped as ice. Since ice only slowly flows back to the dayside upon accumulation, the resulting hydrological cycle can trap a large amount of water in the form of nightside ice. Using ice sheet dynamical and thermodynamical constraints, I illustrate how planets with less than about a quarter the Earth's oceans could trap most of their surface water on the nightside. This would leave their dayside, where habitable conditions are met, potentially dry. The amount and distribution of residual liquid water on the dayside depend on a variety of geophysical factors, including the efficiency of rock weathering at regulating atmospheric CO{sub 2} as dayside ocean basins dry up. Water-trapped worlds with dry daysides may offer similar advantages as land planets for habitability, by contrast with worlds where more abundant water freely flows around the globe.

  20. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  1. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    OpenAIRE

    Korolchenko Dmitriy; Voevoda Sergey

    2016-01-01

    Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL) surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam...

  2. Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico.

    Science.gov (United States)

    Di Mauro, Rosana; Kupchik, Matthew J; Benfield, Mark C

    2017-11-01

    Accumulation of marine debris is a global problem that affects the oceans on multiple scales. The majority of floating marine debris is composed of microplastics: plastic particles up to 5 mm in diameter. With similar sizes and appearances to natural food items, these small fragments pose potential risks to many marine organisms including zooplankton and zooplanktivores. Semi-enclosed seas are reported to have high concentrations of microplastics, however, the distribution and concentration of microplastics in one such system, the Gulf of Mexico, remains unknown. Our study documented and characterized microplastics in continental shelf waters off the Louisiana coast in the northern Gulf of Mexico, using bongo nets, neuston nets, and Niskin bottles. Additionally, we compared the size distributions of microplastics and zooplankton collected using the nets. Plastics were manually sorted from the samples, documented, and measured using digital microscopy. Confirmation of putative plastics was carried out by hydrofluoric acid digestion and a subsample was analyzed using FTIR microscopy. Estimated concentrations of microplastics collected on the inner continental shelf during this study are among the highest reported globally. Total microplastic concentrations ranged from 4.8 to 8.2 particles m -3 and 5.0-18.4 particles m -3 for the bongo and neuston samples, respectively. Niskin bottles collected smaller plastic particles than the nets and indicated total microplastic concentrations (primarily fibers) from 6.0E4 - 15.7E4 particles m -3 . Microplastic concentrations were greater than the abundances of all but four of the five most abundant taxa from bongo nets and were not statistically different from the abundances of any of the most numerous taxa from neuston nets. Sizes of microplastics and zooplankton partially or completely overlapped, suggesting the potential for confusion with natural prey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent.

    Science.gov (United States)

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia

    2017-11-17

    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    Science.gov (United States)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  5. Normal coordinate treatment of liquid water and calculation of vapor pressure isotope effects

    International Nuclear Information System (INIS)

    Gellai, B.; Van Hook, W.A.

    1983-01-01

    A vibrational analysis of liquid water is reported, assuming a completely hydrogen-bonded network with continuously varying strengths of the hydrogen bonds. Frequency distribution calculations are made for intramolecular stretching and bending modes and for the intramolecular frequency region. The calculated distributions are compared with the experimental spectroscopic ones. As another test, vapor pressure isotope effects are calculated from the theoretical distributions for some isotopic water molecules. Results are compared with those of other authors obtained from a mixture model. (author)

  6. CGR MeV program for water and liquid sludges treatment with high-energy electron beams. Pt. 1

    International Nuclear Information System (INIS)

    Gallien, C.L.; Icre, P.; Levaillant, C.; Montiel, A.

    1976-01-01

    Research on the application of high-energy electron beams treatment to water and liquid sludges is described. Topics discussed include limitations of conventional methods of water treatment, dosimetry, biological assays with Pleurodeles waltlii, radioactivity measurement, chemical and bacteriological analysis. (author)

  7. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    Energy Technology Data Exchange (ETDEWEB)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  8. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  9. Determination of selected azaarenes in water by bonded-phase extraction and liquid chromatography

    Science.gov (United States)

    Steinheimer, T.R.; Ondrus, M.G.

    1986-01-01

    A method for the rapid and simple quantitative determination of quinoline, isoquinoline, and five selected three-ring azaarenes in water has been developed. The azaarene fraction is separated from its carbon analogues on n-octadecyl packing material by edition with acidified water/acetonitrile. Concentration as great as 1000-fold is achieved readily. Instrumental analysis involves high-speed liquid chromatography on flexible-walled, wide-bore columns with fluorescence and ultraviolet detection at several wavelengths employing filter photometers in series. Method-validation data is provided as azaarene recovery efficiency from fortified samples. Distilled water, river water, contaminated ground water, and secondary-treatment effluent have been tested. Recoveries at part-per-billion levels are nearly quantitative for the three-ring compounds, but they decrease for quinoline and isoquinoline. ?? 1986 American Chemical Society.

  10. Abundance of thraustochytridsand bacteria in the equatorial Indian Ocean, in relation totransparent exopolymeric particles (TEPs)

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, V.; Raghukumar, S.

    Thraustochytrid protists are often abundant in coastal waters. However, their population dynamics and substrate preferences in the oceanic water column are poorly understood.We studied the abundance and distribution of thraustochytrids, bacteria...

  11. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  12. Liquid-microjet synchrotron-radiation spectroscopy for biomolecules in water solution 1

    International Nuclear Information System (INIS)

    Ukai, Masatoshi; Shimada, Hiroyuki

    2012-01-01

    A new spectroscopic research of radiation induced damage on DNA and its constituent molecules is proposed, which is made possible using a liquid micro-jet technique for bio-solution under vacuum in combination with synchrotron-radiation aided site-selective excitation. We emphasize a view point of time-evolutional production and destruction of irregular chemical species characteristic of time domains after irradiation, which finally result in the alternative processes to give rise to a irreparable damage or to avoid it by a thermodynamical restoration. Up to now a method of spectroscopy to identify the initial molecular site of radiation interaction is almost completed. The former part of the proposal article is presented in this volume. We describe the objectives of the new spectroscopy for observing the early processes of direct radiation effect on DNA leading to damage induction using a site-selective synchrotron-radiation excitation to identify the initial site of radiation interaction. The present status of development is described by presenting the new results of the spectra of X-ray absorption near edge structure and ejected electron energy spectra for liquid water as examples. The forthcoming latter part of this article will discuss the conformational and electronic structure of nucleotides in water solution prior to time evolution. (author)

  13. Radioactive liquid water processing method

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Noda, Tetsuya; Kobayashi, Fumio.

    1993-01-01

    Alkaline earth metals and heavy metals are added to radioactive liquid wastes containing a surface active agent comprising alkali metal salts of higher fatty acids. These metals form metal soaps with the surface active agent dissolved in the liquid wastes and crystallized. The crystallized metal soaps are introduced to a filtering column filled with a burnable polymeric fibrous filtering material. The filtering material is burnt. This can remove the surface active agent to remove COD without using an active carbon. (T.M.)

  14. High-pressure (vapour + liquid) equilibria for ternary systems composed by {(E)-2-hexenal or hexanal + carbon dioxide + water}: Partition coefficient measurement

    International Nuclear Information System (INIS)

    Bejarano, Arturo; López, Pablo I.; Valle, José M. del; Fuente, Juan C. de la

    2015-01-01

    Highlights: • A new apparatus based on a static–analytic method was assembled in this work. • This work reports high-pressure VLE data of (E)-2-hexenal or hexanal + CO 2 + water. • Data includes (CO 2 + water) partition coefficients of (E)-2-hexenal and hexanal. • High separation factors from water (∼10 4 ) were found especially for (E)-2-hexenal. • The data were obtained at T = (313, 323, and 333) K and pressures from (8 to 19) MPa. - Abstract: A new apparatus based on a static–analytic method assembled in this work was utilised to perform high-pressure (vapour + liquid) equilibria measurements of aqueous ternary systems. This work includes values of isothermal partition coefficients between CO 2 and water of two apple aroma constituents, (E)-2-hexenal and hexanal. Additionally, this work reports new experimental (vapour + liquid) equilibria measurements for the ternary systems (CO 2 + (E)-2-hexenal + water) and (CO 2 + hexanal + water), at fixed liquid phase composition (600 mg · kg −1 ), at temperatures of (313, 323 and 333) K and at pressures from (8 to 19) MPa. Vapour liquid interphase was checked and monitored visually for all the systems studied in this work. No liquid immiscibility was observed at the composition, temperatures and pressures studied. In order to suggest reasonable operation conditions for fractionation of aromas with dense carbon dioxide, partition coefficients of the aroma compounds between CO 2 and water along with their separation factors from water were calculated. Partition coefficients of (E)-2-hexenal between CO 2 and water were in the range of (6 to 91) and where found to be near six times higher than those of hexanal (9 to 17). Very high separation factors from water were observed (∼10 4 ) especially for (E)-2-hexenal. The highest separation factor, for both compounds, was found at a temperature of 313 K and pressures from (12 to 14) MPa

  15. Spatial Autocorrelation, Source Water and the Distribution of Total and Viable Microbial Abundances within a Crystalline Formation to a Depth of 800 m

    Directory of Open Access Journals (Sweden)

    E. D. Beaton

    2017-09-01

    Full Text Available Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3 modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada. We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present. The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate – used as a proxy for modern recharge – and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran’s eigenvector map (MEM coefficients were correlated with

  16. The water content of recurring slope lineae on Mars

    Science.gov (United States)

    Edwards, Christopher S.; Piqueux, Sylvain

    2016-01-01

    Observations of recurring slope lineae (RSL) from the High-Resolution Imaging Science Experiment have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5–3 wt %. In addition, distinct high thermal inertia regolith signatures expected with crust-forming evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any) and/or low enough volumes to prevent their formation. Alternatively, observed salts may be preexisting in soils at low abundances (i.e., near or below detection limits) and largely immobile. These RSL-rich surfaces experience ~100 K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on time scales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis or at least significantly limit the water content of Martian RSL.

  17. Determination of Picloram in Soil and Water by Reversed-Phase Liquid Chromatography

    Science.gov (United States)

    M.J.M. Wells; J.L. Michael; D.G. Neary

    1984-01-01

    A reversed-phase liquid chromatographic method is presneted for the determination of picloram in the parts per billion (ppb) range in soil, soil solution, and stream samples. Quanitification is effected by UV absorpation at 254 nm. Derivatization is not necessary. The method permits 92% ± 7.1 recovery from water samples and 61.8% ± 11.1 recovery from soil samples....

  18. Diversity, abundance, and possible sources of fecal bacteria in the Yangtze River.

    Science.gov (United States)

    Sun, Haohao; He, Xiwei; Ye, Lin; Zhang, Xu-Xiang; Wu, Bing; Ren, Hongqiang

    2017-03-01

    The fecal bacteria in natural waters may pose serious risks on human health. Although many source tracking methods have been developed and used to determine the possible sources of the fecal pollution, little is known about the overall diversity and abundance of fecal bacterial community in natural waters. In this study, a method based on fecal bacterial sequence library was introduced to evaluate the fecal bacterial profile in the Yangtze River (Nanjing section). Our results suggested that the Yangtze River water harbors diverse fecal bacteria. Fifty-eight fecal operational taxonomic units (97% identity level) were detected in the Yangtze River water samples and the relative abundance of fecal bacteria in these samples ranged from 0.1 to 8%. It was also found that the relative abundances of the fecal bacteria in locations near to the downstream of wastewater treatment plants were obviously higher than those in other locations. However, the high abundance of fecal bacteria could decrease to the normal level in 2~4 km in the river due to degradation or dilution, and the overall fecal bacteria level changed little when the Yangtze River flew through the Nanjing City. Moreover, the fecal bacteria in the Yangtze River water were found to be highly associated (Spearman rho = 0.804, P Yangtze River and advance our understandings of the fecal bacteria community in the natural waters.

  19. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water

    Science.gov (United States)

    Ivanov, Sergei D.; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik

    2010-01-01

    Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."

  20. PREFACE: Functionalized Liquid Liquid Interfaces

    Science.gov (United States)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  1. Comparison of two novel in-syringe dispersive liquid-liquid microextraction techniques for the determination of iodide in water samples using spectrophotometry.

    Science.gov (United States)

    Kaykhaii, Massoud; Sargazi, Mona

    2014-01-01

    Two new, rapid methodologies have been developed and applied successfully for the determination of trace levels of iodide in real water samples. Both techniques are based on a combination of in-syringe dispersive liquid-liquid microextraction (IS-DLLME) and micro-volume UV-Vis spectrophotometry. In the first technique, iodide is oxidized with nitrous acid to the colorless anion of ICl2(-) at high concentration of hydrochloric acid. Rhodamine B is added and by means of one step IS-DLLME, the ion-pair formed was extracted into toluene and measured spectrophotometrically. Acetone is used as dispersive solvent. The second method is based on the IS-DLLME microextraction of iodide as iodide/1, 10-phenanthroline-iron((II)) chelate cation ion-pair (colored) into nitrobenzene. Methanol was selected as dispersive solvent. Optimal conditions for iodide extraction were determined for both approaches. Methods are compared in terms of analytical parameters such as precision, accuracy, speed and limit of detection. Both methods were successfully applied to determining iodide in tap and river water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. {sup 222}Rn determination in water and brine samples using liquid scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: oliveiratco2010@gmail.com [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Monteiro, Roberto P.G.; Moreira, Rubens M., E-mail: rpgm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for {sup 222}Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. {sup 241}Am, {sup 90}Sr and {sup 226}Ra standard solutions were used for LSC calibration. {sup 214}Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for {sup 222}Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l{sup -1} were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l{sup -1} were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  3. Theoretical investigation of the ultrafast dissociation of core-ionized water and uracil molecules immersed in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Stia, C.R.; Fojon, O.A. [Instituto de Fisica Rosario - CONICET-Universidad Nacional de Rosario, Rosario (Argentina); Gaigeot, M.P. [Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, LAMBE, UMR-CNRS 8587, Universite d' Evry-Val-d' Essonne, 91 - Evry (France); Institut Universitaire de France, 75 - Paris (France); Vuilleumier, R. [Departement de chimie, Ecole Normale Superieure, 75 - Paris (France); Herve du Penhoat, M.A.; Politis, M.F. [Institut de Mineralogie et de Physique des Milieux Condenses, IMPMC, UMR-CNRS 7590, Universite Pierre et Marie Curie, 75 - Paris (France)

    2010-10-15

    We present a series of ab initio density functional based calculations of the fragmentation dynamics of core-ionized biomolecules. The computations are performed for pure liquid water, aqueous and isolated Uracil. Core ionization is described by replacing the 1s{sup 2} pseudopotential of one atom of the target molecule (C, N or O) with a pseudopotential for a 1s{sup 1} core-hole state. Our results predict that the dissociation of core-ionized water molecules may be reached during the lifetime of inner-shell vacancy (less than 10 fs), leading to OH bond breakage as a primary outcome. We also observe a second fragmentation channel in which total Coulomb explosion of the ionized water molecule occurs. Fragmentation pathways are found similar for pure water or when the water molecule is in the primary hydration shell of the uracil molecule. In the latter case, the proton may be transferred towards the uracil oxygen atoms. When the core hole is located on the uracil molecule, ultrafast dissociation is only observed in the aqueous environment and for nitrogen-K vacancies, resulting in proton transfers towards the hydrogen-bonded water molecule. (authors)

  4. Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Niklas [Department of Physics, Uppsala University, SE-75121 Uppsala (Sweden); Faubel, Manfred [Max-Planck-Institut fuer Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Goettingen (Germany); Bradforth, Stephen E. [Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (United States); Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic); Winter, Bernd, E-mail: winter@bessy.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Max-Born-Institut, Max-Born-Strasse 2A, D-12489 Berlin (Germany)

    2010-03-15

    Photoelectron (PE) spectroscopy measurements from liquid water and from a 4 m NaI aqueous solution are performed using a liquid microjet in combination with soft X-ray synchrotron radiation. From the oxygen 1s PE signal intensity from liquid water, measured as a function of photon energy (up to 1500 eV), we quantitatively determine relative electron inelastic effective attenuation lengths (EAL) for (photo)electron kinetic energies in the 70-900 eV range. In order to determine the absolute electron escape depths a calibration point is needed, which is not directly accessible by experiment. This information can instead be indirectly derived by comparing PE experiments and molecular dynamics (MD) simulations of an aqueous solution interface where density profiles of water, anions, and cations are distinctively different. We have chosen sodium iodide in water because iodide has a considerable propensity for the solution surface, whereas the sodium cation is repelled from the surface. By measuring the intensities of photoelectrons emitted from different orbitals of different symmetries from each aqueous ion we also evaluate whether gas-phase ionization cross sections and asymmetry parameters can describe the photoemission from ions at and near the aqueous solution/vapor interface. We show that gas-phase data reproduce surprisingly well the experimental observations for hydrated ions as long as the photon energy is sufficiently far above the ionization threshold. Electrons detected at the higher photon energies originate predominantly from deeper layers, suggesting that bulk-solution electron elastic scattering is relatively weak.

  5. The influence of protruding filamentous bacteria on floc stability and solid-liquid separation in the activated sludge process.

    Science.gov (United States)

    Burger, Wilhelm; Krysiak-Baltyn, Konrad; Scales, Peter J; Martin, Gregory J O; Stickland, Anthony D; Gras, Sally L

    2017-10-15

    Filamentous bacteria can impact on the physical properties of flocs in the activated sludge process assisting solid-liquid separation or inducing problems when bacteria are overabundant. While filamentous bacteria within the flocs are understood to increase floc tensile strength, the relationship between protruding external filaments, dewatering characteristics and floc stability is unclear. Here, a quantitative methodology was applied to determine the abundance of filamentous bacteria in activated sludge samples from four wastewater treatment plants. An automated image analysis procedure was applied to identify filaments and flocs and calculate the length of the protruding filamentous bacteria (PFB) relative to the floc size. The correlation between PFB and floc behavior was then assessed. Increased filament abundance was found to increase interphase drag on the settling flocs, as quantified by the hindered settling function. Additionally, increased filament abundance was correlated with a lower gel point concentration leading to poorer sludge compactability. The floc strength factor, defined as the relative change in floc size upon shearing, correlated positively with filament abundance. This influence of external protruding filamentous bacteria on floc stability is consistent with the filamentous backbone theory, where filamentous bacteria within flocs increase floc resistance to shear-induced breakup. A qualitative correlation was also observed between protruding and internal filamentous structure. This study confirms that filamentous bacteria are necessary to enhance floc stability but if excessively abundant will adversely affect solid-liquid separation. The tools developed here will allow quantitative analysis of filament abundance, which is an improvement on current qualitative methods and the improved method could be used to assist and optimize the operation of waste water treatment plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Solidification of liquid concentrate and solid waste generated as by-products of the liquid radwaste treatment systems in light-water reactors

    International Nuclear Information System (INIS)

    Neilson, R.M. Jr.; Colombo, P.

    1977-01-01

    The treatment of liquid concentrate and solid waste produced in light-water reactors as by-products of liquid radwaste treatment systems consists of five basic operations: waste collection, waste pretreatment, solidification agent handling, mixing/packaging (solidification) and waste package handling. This paper will concern itself primarily with the solidification operation, however, the other operations enumerated as well as the types of wastes treated and their origins will be briefly described, especially with regards to their effects on solidification. During solidification, liquid concentrate and solid wastes are incorporated with a solidification agent to form a monolithic, free-standing solid. The basic solidification agent types either currently used in the United States or proposed for use include absorbants, hydraulic cement, urea-formaldehyde, other polymer systems, and bitumen. The operation, formulations and limitations of these agents as used for radwaste solidification will be discussed. Properties relevant to the evaluation of solidified waste forms will be identified and relative comparisons made for wastes solidified by various processes

  7. Observed and simulated temperature dependence of the liquid water path of low clouds

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, A.D.; Wolf, A.B. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  8. Hauled liquid waste as a pollutant of soils and waters in Poland

    Directory of Open Access Journals (Sweden)

    Karczmarczyk Agnieszka

    2016-06-01

    Full Text Available Hauled liquid waste as a pollutant of soils and waters in Poland. Improperly maintained holding tanks are often underestimated source of contamination of soil, groundwater and surface water. As a rule, wastewater stored in holding tanks, should be transported and treated in municipal wastewater treatment plants (WWTPs. There are 2,257,000 holding tanks in Poland, located mainly in rural areas. The article presents the results of analysis of wastewater management in 20 rural and urban-rural communes, which were chosen at random from the total number of 2,174 communes in Poland. The only criterion of commune selection was total or partial lack of sewerage system. Analysis of the collected data showed that on average only 27% of liquid waste from holding tanks ended at the WWTPs. The median is even lower and amounts to 17.5%. More than 4,000 Mg of P and 26,000 Mg of N is dispersed in the environment in uncontrolled manner. Those diffuse point sources of pollution may be one of the reasons in the difficulty of achieving of good ecological status of rivers and affect the quality of the Baltic Sea.

  9. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  10. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  11. Mass density fluctuations in quantum and classical descriptions of liquid water

    Science.gov (United States)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  12. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance

    International Nuclear Information System (INIS)

    Hou Linrui; Yuan Changzhou; Li Diankai; Yang Long; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Highlights: → Interfacial synthesis strategies are proposed to synthesize PPy samples. → Water/ionic liquid /organic three-phase interface for preparing coral-like PPy. → Coral-like PPy with more ordered structure and better electronic conductivity. → Coral-like PPy owns higher rate performance and better electrochemical stability. - Abstract: Two interfacial synthesis strategies are proposed to synthesize polypyrrole samples for electrochemical capacitors (ECs). In contrast to water/organic two-phase route, unique water/ionic liquid (IL)/organic three-phase interface strategy is first performed to prepare coral-like polypyrrole with even better electrochemical capacitance, where 1-Ethyl-3-methylimidazolium tetrafluoroborate IL, as a 'buffering zone', is set between the water and organic phases to control the morphology and micro-structure of the polypyrrole phase during polymerization. The polypyrrole synthesized by three-phase interfacial route owns more ordered structure, less charge transfer resistance and better electronic conductivity, compared with two-phase method, and delivers larger specific capacitance, higher rate performance and better electrochemical stability at large current densities in 3 M KCl aqueous electrolyte.

  13. Comparison of solidification of floating drop and homogenous liquid-liquid microextractions for the extraction of two plasticizers from the water kept in PET-bottles.

    Science.gov (United States)

    Yamini, Yadollah; Ghambarian, Mahnaz; Khalili-Zanjani, Mohammad Reza; Faraji, Mohammad; Shariati, Shahab

    2009-09-01

    Two approaches based on solidification of floating drop microextraction (SFDME) and homogenous liquid-liquid microextraction (HLLE) were compared for the extraction and preconcentration of di-(2-ethylhexyl) phthalate (DEHP) and di-(2-ethylhexyl) adipate (DEHA) from the mineral water samples. In SFDME, a floated drop of the mixture of acetophenone/1-undecanol (1:8) was exposed on the surface of the aqueous solution and extraction was permitted to occur. In HLLE, a homogenous ternary solvent system was used by water/methanol/chloroform and the phase separation phenomenon occurred by salt addition. Under the optimal conditions, the LODs for the two target plasticizers (DEHA and DEHP), obtained by SFDME-GC-FID and HLLE-GC-FID, were ranged from 0.03 to 0.01 microg/L and 0.02 to 0.01 microg/L, respectively. HLLE provided higher preconcentration factors (472.5- and 551.2-fold) within the shorter extraction time as well as better RSDs (4.5-6.9%). While, in SFDME, high preconcentration factors in the range of 162-198 and good RSDs in the range of 5.2-9.6% were obtained. Both methods were applied for the analysis of two plasticizers in different water samples and two target plasticizers were found in the bottled mineral water after the expiring time and the boiling water was exposed to a polyethylene vial.

  14. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  15. USING SCHUMANN RESONANCE MEASUREMENTS FOR CONSTRAINING THE WATER ABUNDANCE ON THE GIANT PLANETS—IMPLICATIONS FOR THE SOLAR SYSTEM'S FORMATION

    International Nuclear Information System (INIS)

    Simões, Fernando; Pfaff, Robert; Klenzing, Jeffrey; Freudenreich, Henry; Bromund, Kenneth; Martin, Steven; Rowland, Douglas; Hamelin, Michel; Berthelier, Jean-Jacques; Béghin, Christian; Lebreton, Jean-Pierre; Grard, Rejean; Sentman, Davis; Takahashi, Yukihiro; Yair, Yoav

    2012-01-01

    The formation and evolution of the solar system is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the solar system is therefore important for understanding not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new remote sensing technique to infer the outer planets' water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  16. Effects of ionic liquid to water ratio as a composite medium for the synthesis of LiFePO4 for battery

    Science.gov (United States)

    Tith, Rany; Dutta, Jaydeep; Jung, Kichang; Martinez-Morales, Alfredo A.

    2017-05-01

    LiFePO4 is a highly researched cathode material that serves as an alternative material for traditional commercial lithiumion batteries such as LiCoO2. Currently, there are a number of different methods to synthesize LiFePO4 including: hydrothermal, solid state, spray pyrolysis, and coprecipitation. Our proposed method has the potential to provide an ecologically friendly and economically competitive way to synthesize LiFePO4 by utilizing ionic liquid and water, as a composite synthesis medium. The addition of water to ionic liquid can be beneficial as it can act as a mineralizer to bring insoluble precursors to form LiFePO4 seed crystals. Furthermore, this method provides the possibility of recycling the ionic liquid for repeated synthesis processes. In this work, we study the effects of ionic liquid to water ratio on the crystallinity and morphology of the synthesized material. Our group was able to conclude a reaction medium utilizing a ratio of equal parts of 1-ethyl-3-methyl imidazolium trifluoromethane sulfonate (EMIM Otf) and water, or a slightly favored ionic liquid ratio, increases the efficacy of the synthesis route. Crystallinity and purity was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM) was used to determine morphology and crystal sizes, and energy dispersion spectroscopy (EDX) was used for elemental analysis.

  17. Erasing no-man's land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles.

    Science.gov (United States)

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2014-09-01

    One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point [1] located in the "no-man's land" [2]. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, since spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water [3, 4]. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon [5], carbon [6] and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.

  18. Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.

    Science.gov (United States)

    Zhao, Pengfei; Deng, Miaoduo; Huang, Peiting; Yu, Jia; Guo, Xingjie; Zhao, Longshan

    2016-09-01

    This report describes, for the first time, the simultaneous enantioselective determination of proton-pump inhibitors (PPIs-omeprazole, lansoprazole, pantoprazole, and rabeprazole) in environmental water matrices based on solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and chiral liquid chromatography-tandem mass spectrometry. The optimized results of SPE-DLLME were obtained with PEP-2 column using methanol-acetonitrile (1/1, v/v) as elution solvent, dichloroethane, and acetonitrile as extractant and disperser solvent, respectively. The separation and determination were performed using reversed-phase chromatography on a cellulose chiral stationary phase, a Chiralpak IC (250 mm × 4.6 mm, 5 μm) column, under isocratic conditions at 0.6 mL min(-1) flow rate. The analytes were detected in multiple reaction monitoring (MRM) mode by triple quadrupole mass spectrometry. Isotopically labeled internal standards were used to compensate matrix interferences. The method provided enrichment factors of around 500. Under optimal conditions, the mean recoveries for all eight enantiomers from the water samples were 89.3-107.3 % with 0.9-10.3 % intra-day RSD and 2.3-8.1 % inter-day RSD at 20 and 100 ng L(-1) levels. Correlation coefficients (r (2)) ≥ 0.999 were achieved for all enantiomers within the range of 2-500 μg L(-1). The method detection and quantification limits were at very low levels, within the range of 0.67-2.29 ng L(-1) and 2.54-8.68 ng L(-1), respectively. This method was successfully applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in wastewater and river water, making it applicable to the assessment of the enantiomeric fate of PPIs in the environment. Graphical Abstract Simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.

  19. Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste

    OpenAIRE

    Stockmann, T. Jane; Zhang, Jing; Montgomery, Anne-Marie; Ding, Zhifeng

    2014-01-01

    A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P66614(+)) and tetrakis(pentafluorophenyl) borate anion (TB) was employed within a water| P66614TB (w|P66614TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. Cs-137 is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is th...

  20. Tritium Activity Measurement of Water Samples Using Liquid Scintillation Counter and Electrolytical Enrichment

    International Nuclear Information System (INIS)

    Baresic, J.; Krajcar Bronic, I.; Horvatincic, N.; Obelic, B.; Sironic, A.; Kozar-Logar J.

    2011-01-01

    Tritium (3H) activity of natural waters (precipitation, groundwater, surface waters) has recently become too low to be directly measured by low-level liquid scintillation (LSC) techniques. It is therefore necessary to perform electrolytical enrichment of tritium in such waters prior to LSC measurements. Electrolytical enrichment procedure has been implemented at the Rudjer Boskovic Institute (RBI) Tritium Laboratory in 2008, and since then 19 electrolyses have been completed. The mean enrichment factor E (a ratio between the final and initial 3H activities) after stabilisation of the system is E R BI = 22.5 @ 0.5, and the mean enrichment parameter (which describes the process of water mass reduction during electrolysis) is P R BI 0.949 @ 0.003. These values are comparable with those obtained at the Jo@ef Stefan Institute (JSI) Laboratory for liquid scintillation counting, at the electrolysis equipment of the same producer (AGH University of Science and Technology, Krakow, Poland) after 66 electrolyses carried out under identical conditions since 2007: E J SI = 18.9 @ 1.5, and P J SI = 0.896 @ 0.021. Both RBI and JSI laboratories have Ultra-low-level LSC Quantulus 1220 (Wallac, PerkinElmer) for measurement of 3H activity. A set of water samples having 3H activities in the range from 0 TU (''dead-water'' samples) to 18 000 TU (1 TU 0.118 Bq/L) were measured at both laboratories. Samples having 3H activity <200 TU were electrolytically enriched, while the others were measured directly in LSC. A very good agreement was obtained (correlation coefficient 0.991). Both laboratories participated in the IAEA TRIC2008 international intercomparison exercise. The analyses of reported 3H activity results in terms of z and u parameters showed that all results in both laboratories were acceptable. (author)

  1. Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles

    Science.gov (United States)

    Smallenburg, Frank; Filion, Laura; Sciortino, Francesco

    2014-09-01

    One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point located in the `no-man’s land’. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, as spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon, carbon and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.

  2. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Directory of Open Access Journals (Sweden)

    L. Bernet

    2017-11-01

    Full Text Available Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW, all performed at the aerological station (MeteoSwiss in Payerne (Switzerland. Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  3. Studying the response of CR-39 to radon in non-polar liquids above water by Monte Carlo simulation and measurement

    International Nuclear Information System (INIS)

    Rezaie, Mohammad Reza; Sohrabi, Mehdi; Negarestani, Ali

    2013-01-01

    The application of CR-39 has been extensive for measurement of radon and progeny in air of dwellings, but limited as regards to measurements of radon in water. In this paper, a new method is introduced for efficient measurement of radon in water by registering alpha particle tracks in a CR-39 detector placed in a non-polar medium such as cyclohexane, hexane and olive oil when each mixed with water, then separated and fixed above water, as a two-phase media. The method introduced here is however different from the widely used liquid - liquid extraction technique by liquid scintillation spectrometry since it is a passive detection method (CR-39) in a non-polar liquid with enhanced absorption of radon in the liquid, it has a capability for long sample counting to decrease the minimum detection limit (MDL), it does not require sophisticated low light counting systems, and it has the potential for simultaneous measurements of large number of samples for large-scale applications. It also has a low cost and is readily available. A new Monte Carlo calculation of energy-distance travelled by alphas from radon and progeny in a medium was also investigated. The sensitivity of CR-39 detector to radon and progeny in water was determined under two conditions; in a single-phase and two-phase media. In a single-phase medium, CR-39 is directly placed either in air, water, cyclohexane, hexane or olive oil. When CR-39 is placed directly in water, its sensitivity is (2.4 ± 0.1) × 10 −4 (track/cm 2 )/(Bq.d/m 3 ). In the two-phase media, CR-39 is placed either in cyclohexane, hexane or olive oil when each is fixed above water. The sensitivities in the two-phase media are significantly enhanced and are respectively (1.98 ± 0.10) × 10 −2 , (2.8 ± 0.15) × 10 −2 and (2.86 ± 0.15) × 10 −2 (track/cm 2 )/(Bq.d/m 3 ). The sensitivies are about 76, 82 and 110 times more than that of when CR-39 is directly placed in water. The new method is a novel alternative for radon

  4. Simultaneous determination of three surfactants and water in shampoo and liquid soap by ATR-FTIR.

    Science.gov (United States)

    Carolei, Luciano; Gutz, Ivano G R

    2005-03-31

    It is demonstrated for the first time that the principal constituents of a shampoo as well as of a liquid soap -three surfactants and water- can be determined directly, simultaneously and quickly in undiluted samples by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy in the middle infrared region, despite the broad absorption bands of the solvent. Two of the surfactants, sodium lauryl ether sulfate (SLES) and cocoamidopropyl betaine (CAPB), are common to both formulations; alkylpolyglucoside (APG) is the third surfactant of the liquid soap and cocodiethanolamide (CDEA), the corresponding ingredient of the shampoo. Absorbance data of the undiluted samples and of the calibration standards was collected in the middle infrared region of the spectrum (800-1600 and 1900-3000cm(-1)). Two methods of multivariate quantification were compared: classical least squares (CLS), where absorbance data measured at 200 wavenumbers was processed, and inverse least squares (ILS), where data at 10 selected wavenumbers was analyzed. A spectra normalization procedure, based on a dominating water band, was examined. Twenty-seven standard mixtures were used for each application, consisting of all combinations at three concentration levels of each surfactant, respectively the lower limit, the expected value and the upper limit accepted in quality control. By favoring wavenumbers where absorption bands of the minor components (APG in the liquid soap and CDEA in the shampoo) are more intense, good results were obtained for 18 simulated samples of shampoo and 18 samples of liquid soap, no matter if calculations were made by CLS or ILS. The relative errors for water (major component, 84-88%) and SLES (7-10%) were always below 2%; for CAPB (2-4%), APG (<2%) and CDEA (<2%), they occasionally reached 5% of the component, an uncertainty of less than 0.07% in terms of the sample weight.

  5. Radiation in fog: quantification of the impact on fog liquid water based on ground-based remote sensing

    Science.gov (United States)

    Wærsted, Eivind G.; Haeffelin, Martial; Dupont, Jean-Charles; Delanoë, Julien; Dubuisson, Philippe

    2017-09-01

    Radiative cooling and heating impact the liquid water balance of fog and therefore play an important role in determining their persistence or dissipation. We demonstrate that a quantitative analysis of the radiation-driven condensation and evaporation is possible in real time using ground-based remote sensing observations (cloud radar, ceilometer, microwave radiometer). Seven continental fog events in midlatitude winter are studied, and the radiative processes are further explored through sensitivity studies. The longwave (LW) radiative cooling of the fog is able to produce 40-70 g m-2 h-1 of liquid water by condensation when the fog liquid water path exceeds 30 g m-2 and there are no clouds above the fog, which corresponds to renewing the fog water in 0.5-2 h. The variability is related to fog temperature and atmospheric humidity, with warmer fog below a drier atmosphere producing more liquid water. The appearance of a cloud layer above the fog strongly reduces the LW cooling relative to a situation with no cloud above; the effect is strongest for a low cloud, when the reduction can reach 100 %. Consequently, the appearance of clouds above will perturb the liquid water balance in the fog and may therefore induce fog dissipation. Shortwave (SW) radiative heating by absorption by fog droplets is smaller than the LW cooling, but it can contribute significantly, inducing 10-15 g m-2 h-1 of evaporation in thick fog at (winter) midday. The absorption of SW radiation by unactivated aerosols inside the fog is likely less than 30 % of the SW absorption by the water droplets, in most cases. However, the aerosols may contribute more significantly if the air mass contains a high concentration of absorbing aerosols. The absorbed radiation at the surface can reach 40-120 W m-2 during the daytime depending on the fog thickness. As in situ measurements indicate that 20-40 % of this energy is transferred to the fog as sensible heat, this surface absorption can contribute

  6. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Yicun; Skinner, J. L. [Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2016-06-07

    Supercooled water exhibits many thermodynamic anomalies, and several scenarios have been proposed to interpret them, among which the liquid-liquid critical point (LLCP) hypothesis is the most commonly discussed. We investigated Widom lines and the LLCP of deeply supercooled water, by using molecular dynamics simulation with a newly reparameterized water model that explicitly includes three-body interactions. Seven isobars are studied from ambient pressure to 2.5 kbar, and Widom lines are identified by calculating maxima in the coefficient of thermal expansion and the isothermal compressibility (both with respect to temperature). From these data we estimate that the LLCP of the new water model is at 180 K and 2.1 kbar. The oxygen radial distribution function is calculated along the 2 kbar isobar. It shows a steep change in the height of its second peak between 180 and 185 K, which indicates a transition between the high-density liquid and low-density liquid phases and which is consistent with the ascribed location of the critical point. The good agreement of the height of the second peak of the radial distribution function between simulation and experiment at 1 bar, as a function of temperature, supports the validity of the model. The location of the LLCP within the model is close to the kink in the experimental homogeneous nucleation line. We use existing experimental data to argue that the experimental LLCP is at 168 K and 1.95 kbar and speculate how this LLCP and its Widom line might be responsible for the kink in the homogeneous nucleation line.

  7. Remotely controllable liquid marbles

    KAUST Repository

    Zhang, Lianbin; Cha, Dong Kyu; Wang, Peng

    2012-01-01

    Liquid droplets encapsulated by self-organized hydrophobic particles at the liquid/air interface - liquid marbles - are prepared by encapsulating water droplets with novel core/shell-structured responsive magnetic particles, consisting of a

  8. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  9. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  10. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.

    Science.gov (United States)

    Citak, Demirhan; Tuzen, Mustafa

    2013-01-01

    A new and simple method for the determination of trace amounts of Cu(II) was developed by combination of dispersive liquid-liquid microextraction (DLLME) preconcentration and microsample introduction flame atomic absorption spectrometry. In this method, ethanol and chloroform were chosen as disperser and extraction solvents, respectively, and 1-nitroso-2-naphthol was used as the complexing agent. The factors affecting the extraction efficiency and determination of Cu(II), including extraction and disperser solvent nature and volume, concentration of the complexing agent, pH of the solution, extraction time, and matrix ions, were investigated. Under optimal conditions, the LOD for Cu(II) was 0.95 microg/L with a preconcentration factor of 70. The RSD was 1.9%. The accuracy of the developed DLLME method was verified by determination of Cu(II) in a certified reference material (NRCC-SLRS-4 river water). The relative error was -3.31%. The developed preconcentration procedure was successfully applied to the analysis of bottled drinking water samples.

  11. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  12. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam-air mixture becomes nonflammable. As a result of solve of a heat balance equation it was made the following conclusion: water drops which size is equal to 100 μm will completely evaporate in a zone of combustion with extent of 1 m if the flying speed of drops is even 16 mps (acc. to Stokes v = 3 mps; whereas drops of larger size will evaporate only partially.

  13. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    KAUST Repository

    Hamdan, Ahmad

    2018-05-14

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-Transform, Infra-Red, Scanning and Transmission electron microscopes, etc.), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  14. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    Science.gov (United States)

    Hamdan, Ahmad; Cha, Min Suk

    2018-06-01

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including, but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-transform, infra-red, scanning and transmission electron microscopes, etc), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  15. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  16. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology

    OpenAIRE

    Brown, Leslie; Earle, Martyn J; Gilea, Manuela; Plechkova, Natalia V; Seddon, Kenneth R

    2017-01-01

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous char...

  17. Determination of 226Ra and 224Ra in drinking waters by liquid scintillation counting

    International Nuclear Information System (INIS)

    Manjon, G.; Vioque, I.; Moreno, H.; Garcia-Tenorio, R.; Garcia-Leon, M.

    1997-01-01

    A method for the determination of Ra-isotopes in water samples has been developed. Ra is coprecipitated with Ba as sulphate. The precipitate is then dissolved with EDTA and counted with a liquid scintillation system after mixing with a scintillation cocktail. The study of the temporal evolution of the separated activity gives the isotopic composition of the sample, i.e. the 224 Ra and 226 Ra contribution to the total activity. The method has been applied to some Spanish drinking waters. (author)

  18. Scattering data for modelling positron tracks in gaseous and liquid water

    International Nuclear Information System (INIS)

    Blanco, F; Roldán, A M; Krupa, K; García, G; McEachran, R P; Machacek, J R; Buckman, S J; Sullivan, J P; White, R D; Marjanović, S; Petrović, Z Lj; Brunger, M J; Chiari, L; Limão-Vieira, P

    2016-01-01

    We present in this study a self-consistent set of scattering cross sections for positron collisions with water molecules, in the energy range 0.1–10 000 eV, with the prime motivation being to provide data for modelling purposes. The structure of the database is based on a new model potential calculation, including interference terms, which provides differential and integral elastic as well as integral inelastic positron scattering cross sections for water molecules over the whole energy range considered here. Experimental and theoretical data available in the literature have been integrated into the database after a careful analysis of their uncertainties and their self-consistency. These data have been used as input parameters for a step-by-step Monte Carlo simulation procedure, providing valuable information on energy deposition, positron range, and the relative percentages of specific interactions (e.g. positronium formation, direct ionisation, electronic, vibrational and rotational excitations) in gaseous and liquid water. (paper)

  19. Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis.

    Science.gov (United States)

    Amde, Meseret; Tan, Zhi-Qiang; Liu, Rui; Liu, Jing-Fu

    2015-05-22

    Using a nanofluid obtained by dispersing ZnO nanoparticles (ZnO NPs) in 1-hexyl-3-methylimidazolium hexafluorophosphate, new single drop microextraction method was developed for simultaneous extraction of three fungicides (chlorothalonil, kresoxim-methyl and famoxadone) in water samples prior to their analysis by high performance liquid chromatography (HPLC-VWD). The parameters affecting the extraction efficiency such as amount of ZnO NPs in the nanofluid, solvent volume, extraction time, stirring rate, pH and ionic strength of the sample solution were optimized. Under the optimized conditions, the limits of detection were in the range of 0.13-0.19ng/mL, the precision of the method assessed with intra-day and inter-day relative standard deviations were water samples including lake water, river water, as well as effluent and influent of wastewater treatment plant, with recoveries in the range of 74.94-96.11% at 5ng/mL spiking level. Besides to being environmental friendly, the high enrichment factor and the data quality obtained with the proposed method demonstrated its potential for application in multi residue analysis of fungicides in actual water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Communication: energy benchmarking with quantum Monte Carlo for water nano-droplets and bulk liquid water.

    Science.gov (United States)

    Alfè, D; Bartók, A P; Csányi, G; Gillan, M J

    2013-06-14

    We show the feasibility of using quantum Monte Carlo (QMC) to compute benchmark energies for configuration samples of thermal-equilibrium water clusters and the bulk liquid containing up to 64 molecules. Evidence that the accuracy of these benchmarks approaches that of basis-set converged coupled-cluster calculations is noted. We illustrate the usefulness of the benchmarks by using them to analyze the errors of the popular BLYP approximation of density functional theory (DFT). The results indicate the possibility of using QMC as a routine tool for analyzing DFT errors for non-covalent bonding in many types of condensed-phase molecular system.