WorldWideScience

Sample records for abundant liquid water

  1. Abundance and characteristics of lignin liquid intermediates in wood (Pinus ponderosa Dougl. ex Laws.) during hot water extraction

    Science.gov (United States)

    Manuel Raul Pelaez-Samaniego; Vikram Yadama; Manuel Garcia-Perez; Eini Lowell

    2015-01-01

    The objective of this research was to investigate the effects of the conditions of hot water extraction (HWE) on abundance, properties, and structure of lignin depolymerization products. HWE of extracted softwood (ponderosa pine) was conducted using temperatures from 140 to 320°C for 90 min. HWE materials were then subjected to a soxhlet...

  2. Water: The Strangest Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders

    2009-02-24

    Water, H2O, is familiar to everyone - it shapes our bodies and our planet. But despite its abundance, water has remained a mystery, exhibiting many strange properties that are still not understood. Why does the liquid have an unusually large capacity to store heat? And why is it denser than ice? Now, using the intense X-ray beams from particle accelerators, investigations into water are leading to fundamental discoveries about the structure and arrangement of water molecules. This lecture will elucidate the many mysteries of water and discuss current studies that are revolutionizing the way we see and understand one of the most fundamental substances of life.

  3. Water quality for liquid wastes

    International Nuclear Information System (INIS)

    Mizuniwa, Fumio; Maekoya, Chiaki; Iwasaki, Hitoshi; Yano, Hiroaki; Watahiki, Kazuo.

    1985-01-01

    Purpose: To facilitate the automation of the operation for a liquid wastes processing system by enabling continuous analysis for the main ingredients in the liquid wastes accurately and rapidly. Constitution: The water quality monitor comprises a sampling pipeway system for taking out sample water for the analysis of liquid wastes from a pipeway introducing liquid wastes to the liquid wastes concentrator, a filter for removing suspended matters in the sample water and absorption photometer as a water quality analyzer. A portion of the liquid wastes is passed through the suspended matter filter by a feedpump. In this case, sulfate ions and chloride ions in the sample are retained in the upper portion of a separation color and, subsequently, the respective ingredients are separated and leached out by eluting solution. Since the leached out ingredients form ferric ions and yellow complexes respectively, their concentrations can be detected by the spectrum photometer. Accordingly, concentration for the sodium sulfate and sodium chloride in the liquid wastes can be analyzed rapidly, accurately and repeatedly by which the water quality can be determined rapidly and accurately. (Yoshino, Y.)

  4. Electrically excited liquid water

    NARCIS (Netherlands)

    Wexler, A.D.

    2016-01-01

    Water is essential to a healthy and secure world. Developing new technologies which can take full advantage of the unique attributes of water is important for meeting the ever increasing global demand while reducing the production footprint. Water exhibits unexpected departures in more than 70

  5. Electrically excited liquid water

    NARCIS (Netherlands)

    Wexler, A.D.

    2016-01-01

    Water is essential to a healthy and secure world. Developing new technologies which can take full advantage of the unique attributes of water is important for meeting the ever increasing global demand while reducing the production footprint. Water exhibits unexpected departures in more than 70

  6. The end of abundance. Economic solutions to water scarcity

    NARCIS (Netherlands)

    Zetland, D.J.

    2011-01-01

    In a past of abundance, we had clean water to meet our demands for showers, pools, farms and rivers. Our laws and customs did not need to regulate or ration demand. Over time, our demand has grown, and scarcity has replaced abundance. We don't have as much clean water as we want. We can respond to

  7. Water: A Tale of Two Liquids

    Science.gov (United States)

    2016-01-01

    Water is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of ices, amorphous phases, and anomalies disclose a path that points to unique thermodynamics of its supercooled liquid state that still hides many unraveled secrets. In this review we describe the behavior of water in the regime from ambient conditions to the deeply supercooled region. The review describes simulations and experiments on this anomalous liquid. Several scenarios have been proposed to explain the anomalous properties that become strongly enhanced in the supercooled region. Among those, the second critical-point scenario has been investigated extensively, and at present most experimental evidence point to this scenario. Starting from very low temperatures, a coexistence line between a high-density amorphous phase and a low-density amorphous phase would continue in a coexistence line between a high-density and a low-density liquid phase terminating in a liquid–liquid critical point, LLCP. On approaching this LLCP from the one-phase region, a crossover in thermodynamics and dynamics can be found. This is discussed based on a picture of a temperature-dependent balance between a high-density liquid and a low-density liquid favored by, respectively, entropy and enthalpy, leading to a consistent picture of the thermodynamics of bulk water. Ice nucleation is also discussed, since this is what severely impedes experimental investigation of the vicinity of the proposed LLCP. Experimental investigation of stretched water, i.e., water at negative pressure, gives access to a different regime of the complex water diagram. Different ways to inhibit crystallization through confinement and aqueous solutions are

  8. Dynamical explanation for the high water abundance detected in Orion

    International Nuclear Information System (INIS)

    Elitzur, M.

    1979-01-01

    Shock wave chemistry is suggested as the likely explanation for the high water abundance which has been recently detected in Orion by Phyllips et al. The existence of such a shock and its inferred properties are in agreement with other observations of Orion such as the broad velocity feature and H 2 vibration emission. Shock waves are proposed as the likely explanation for high water abundances observed in other sources such as the strong H 2 O masers

  9. Macrophyte abundance and water quality status of three impacted ...

    African Journals Online (AJOL)

    Assessment of macrophyte abundance and water quality of three impacted inlet streams along Ikpa River Basin were investigated. A 5m x 5m quadrat through systematic sampling was used to sample the vegetation for density and frequency of species. Sediment and water samples were collected and analyzed using ...

  10. Electron affinity of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; Paesani, Francesco; Galli, Giulia

    2018-01-16

    Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1–0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.

  11. Influence of water and soil characteristics on abundance of ...

    African Journals Online (AJOL)

    Influence of water and soil characteristics on abundance of chlorophyll 'A\\' in Elechi creek, Niger Delta, Nigeria. UU Gabriel, MB Inko-Tariah, NO Olu, OA Akinrotimi. Abstract. No Abstract. International Journal of Natural and Applied Sciences Vol. 4 (3) 2008: pp. 174-180. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  12. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    Indian Institute of Technology Kharagpur, India. Liquid Water may Stick on Hydrophobic. Surfaces. Suman Chakraborty. Professor. Department of Mechanical Engineering, IIT Kharagpur, India. July, 2016 ...

  13. Understanding the liquid-liquid (water-hexane) interface

    Science.gov (United States)

    Murad, Sohail; Puri, Ishwar K.

    2017-10-01

    Nonequilibrium molecular dynamics simulations are employed to investigate the interfacial thermal resistance of nanoscale hexane-water interfaces subject to an applied heat flux. Our studies show that these liquid-liquid interfaces exhibit behavior significantly dissimilar to that of solid-liquid and solid-vapor interfaces. Notably, the thermal resistance of a hexane-water interface is contingent on the interfacial temperature gradient alone with negligible dependence on the mean interfacial temperature, while the solid-liquid dependent strongly on the interfacial temperature. Application of a heat flux also increases the interface thickness significantly as compared to an equilibrium isothermal interface. Since liquid-liquid interfaces have been proposed for diverse applications, e.g., sensors for wastewater treatment and for extraction of toxic ions from water, they can be designed to be wider by applying a heat flux. This may allow the interface to be used for other applications not possible currently because of the very limited thickness of the interface in isothermal systems.

  14. Water in Massive protostellar objects: first detection of THz water maser and water inner abundance.

    Science.gov (United States)

    Herpin, Fabrice

    2014-10-01

    The formation massive stars is still not well understood. Despite numerous water line observations with Herschel telescope, over a broad range of energies, in most of the observed sources the WISH-KP (Water In Star-forming regions with Herschel, Co-PI: F. Herpin) observations were not able to trace the emission from the hot core. Moreover, water maser model predict that several THz water maser should be detectable in these objects. We aim to detect for the first time the THz maser lines o-H2O 8(2,7)- 7(3,4) at 1296.41106 GHz and p-H2O 7(2,6)- 6(3,3) at 1440.78167 GHz as predicted by the model. We propose two sources for a northern flight as first priority and two other sources for a possible southern flight. This will 1) constrain the maser theory, 2) constrain the physical conditions and water abundance in the inner layers of the prostellar environnement. In addition, we will use the p-H2O 3(3,1)- 4(0,4) thermal line at 1893.68651 GHz (L2 channel) in order to probe the physical conditions and water abundance in the inner layers of the prostellar objects where HIFI-Herschel has partially failed.

  15. (Liquid + liquid) equilibria of (water + lactic acid + alcohol) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Selin [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Ismail Kirbaslar, S. [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: krbaslar@istanbul.edu.tr; Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2009-01-15

    (Liquid + liquid) equilibrium (LLE) measurements of the solubility (binodal) curves and tie-line end compositions were carried out for {l_brace}water (1) + lactic acid (2) + octanol, or nonanol, or decanol (3){r_brace} at T = 298.15 K and 101.3 {+-} 0.7 kPa. The relative mutual solubility of lactic acid is higher in the water layers than in the organic layers. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE results for the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  16. Radioactive liquid water processing method

    International Nuclear Information System (INIS)

    Yasumura, Keijiro; Noda, Tetsuya; Kobayashi, Fumio.

    1993-01-01

    Alkaline earth metals and heavy metals are added to radioactive liquid wastes containing a surface active agent comprising alkali metal salts of higher fatty acids. These metals form metal soaps with the surface active agent dissolved in the liquid wastes and crystallized. The crystallized metal soaps are introduced to a filtering column filled with a burnable polymeric fibrous filtering material. The filtering material is burnt. This can remove the surface active agent to remove COD without using an active carbon. (T.M.)

  17. Lanthanoid abundance of some neutral hot spring waters in Japan

    International Nuclear Information System (INIS)

    Kikawada, Yoshikazu; Oi, Takao; Honda, Teruyuki

    1999-01-01

    Contents of lanthanoids (Ln's) in some neutral hot spring waters as well as in acidic hot spring waters were determined by neutron activation analysis. It was found that a higher pH resulted in lower concentrations of Ln's; the value of correlation coefficient (r) between the logarithm of the concentration of Sm ([Sm]), chosen as the representative of Ln's, and the logarithm of pH was -0.90. The sum of [Al] and [Fe] was strongly correlated with [Ln]'s in the pH range of 1.3 and 8.8; the correlation was expressed as log[Sm] = 0.893 log([Al] + [Fe]) - 5.45 with the r value of 0.98. The sum of [Al] and [Fe] was thus a good measure of the Ln contents in acidic and neutral hot spring waters. The Ln abundance patterns of neutral hot spring waters with normal CO 2 concentrations had concave shapes with relative depletion in the middle-heavy Ln's and seemed to reflect the solubility of Ln carbonates. The neutral hot spring water with a high CO 2 content of 1,800 ppm showed a Ln pattern with a relative enrichment in the heavy Ln's and seemed to reflect the solubility of Ln's observed for CO 2 -rich solutions. (author)

  18. Origin and abundance of water in carbonaceous asteroids

    Science.gov (United States)

    Marrocchi, Yves; Bekaert, David V.; Piani, Laurette

    2018-01-01

    The origin and abundance of water accreted by carbonaceous asteroids remains underconstrained, but would provide important information on the dynamic of the protoplanetary disk. Here we report the in situ oxygen isotopic compositions of aqueously formed fayalite grains in the Kaba and Mokoia CV chondrites. CV chondrite bulk, matrix and fayalite O-isotopic compositions define the mass-independent continuous trend (δ17O = 0.84 ± 0.03 × δ18O - 4.25 ± 0.1), which shows that the main process controlling the O-isotopic composition of the CV chondrite parent body is related to isotopic exchange between 16O-rich anhydrous silicates and 17O- and 18O-rich fluid. Similar isotopic behaviors observed in CM, CR and CO chondrites demonstrate the ubiquitous nature of O-isotopic exchange as the main physical process in establishing the O-isotopic features of carbonaceous chondrites, regardless of their alteration degree. Based on these results, we developed a new approach to estimate the abundance of water accreted by carbonaceous chondrites (quantified by the water/rock ratio) with CM (0.3-0.4) ≥ CR (0.1-0.4) ≥ CV (0.1-0.2) > CO (0.01-0.10). The low water/rock ratios and the O-isotopic characteristics of secondary minerals in carbonaceous chondrites indicate they (i) formed in the main asteroid belt and (ii) accreted a locally derived (inner Solar System) water formed near the snowline by condensation from the gas phase. Such results imply low influx of D- and 17O- and 18O-rich water ice grains from the outer part of the Solar System. The latter is likely due to the presence of a Jupiter-induced gap in the protoplanetary disk that limited the inward drift of outer Solar System material at the exception of particles with size lower than 150 μm such as presolar grains. Among carbonaceous chondrites, CV chondrites show O-isotopic features suggesting potential contribution of 17-18O-rich water that may be related to their older accretion relative to other hydrated

  19. (Liquid + liquid) equilibria of (water + butyric acid + esters) ternary systems

    International Nuclear Information System (INIS)

    Kirbaslar, S. Ismail; Sahin, Selin; Bilgin, Mehmet

    2007-01-01

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3)} at T = 298.15 K and (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region

  20. (Liquid + liquid) equilibria of (water + propionic acid + alcohol) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: krbaslar@istanbul.edu.tr; Sahin, Selin [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2006-12-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end composition were examined for mixtures of {l_brace}water (1) + propionic acid (2) + octanol or nonanol or decanol or dodecanol (3){r_brace} at T = 298.15 K and 101.3 {+-} 0.7 kPa. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  1. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    The behavior of fluid on a solid surface under static and dynamic conditions are usually clubbed together. • On a wetting surface (hydrophilic), liquid water is believed to adhere to the surface causing multilayer sticking. • On a non-wetting surface (hydrophobic), water is believed to glide across the surface leading to slip ...

  2. Liquid chromatographic determination of water

    Science.gov (United States)

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  3. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  4. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    researchers on TLDs termed wave breaking. A large part of the energy dissipation in the fluid is anticipated to stem from the turbulence in the vicinity of the moving hydraulic jump, and in order to verify this supposition the effect of bottom friction is included in the mathematical model. Studies reveal...... that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio...... of the base amplitude and tank length, A/L, on the frequency ratio of the forcing frequency and sloshing frequency, Ω/ωw, and finally on a friction parameter γ. These dimensionless parameters have been postulated by several researches in the field of TLDs but has not been derived rigorously as in the present...

  5. Monitoring waterbird abundance in wetlands: The importance of controlling results for variation in water depth

    Science.gov (United States)

    Bolduc, F.; Afton, A.D.

    2008-01-01

    Wetland use by waterbirds is highly dependent on water depth, and depth requirements generally vary among species. Furthermore, water depth within wetlands often varies greatly over time due to unpredictable hydrological events, making comparisons of waterbird abundance among wetlands difficult as effects of habitat variables and water depth are confounded. Species-specific relationships between bird abundance and water depth necessarily are non-linear; thus, we developed a methodology to correct waterbird abundance for variation in water depth, based on the non-parametric regression of these two variables. Accordingly, we used the difference between observed and predicted abundances from non-parametric regression (analogous to parametric residuals) as an estimate of bird abundance at equivalent water depths. We scaled this difference to levels of observed and predicted abundances using the formula: ((observed - predicted abundance)/(observed + predicted abundance)) ?? 100. This estimate also corresponds to the observed:predicted abundance ratio, which allows easy interpretation of results. We illustrated this methodology using two hypothetical species that differed in water depth and wetland preferences. Comparisons of wetlands, using both observed and relative corrected abundances, indicated that relative corrected abundance adequately separates the effect of water depth from the effect of wetlands. ?? 2008 Elsevier B.V.

  6. (Liquid + liquid) equilibria of (water + butyric acid + esters) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: krbaslar@istanbul.edu.tr; Sahin, Selin; Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2007-09-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {l_brace}water (1) + butyric acid (2) + ethyl propionate or dimethyl phthalate or dibutyl phthalate (3){r_brace} at T = 298.15 K and (101.3 {+-} 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the layers of esters than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  7. Perspective on the structure of liquid water

    International Nuclear Information System (INIS)

    Nilsson, A.; Pettersson, L.G.M.

    2011-01-01

    Graphical abstract: Liquid water can be described in a fluctuating inhomogeneous picture with two local structural motifs that are spatially separated. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds giving higher density (yellow), which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations (blue), i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. Highlights: ► Two components maximizing either enthalpy (tetrahedral, low-density) or entropy (non-specific H-bonding, higher density). ► Interconvert discontinuously and ratio depends on temperature. ► Density fluctuations on 1 nm length scale. ► Increasing size in supercooled region. ► Connection to Widom line and 2nd critical point. - Abstract: We present a picture that combines discussions regarding the thermodynamic anomalies in ambient and supercooled water with recent interpretations of X-ray spectroscopy and scattering data of water in the ambient regime. At ambient temperatures most molecules favor a closer packing than tetrahedral, with strongly distorted hydrogen bonds, which allows the quantized librational modes to be excited and contribute to the entropy, but with enthalpically favored tetrahedrally bonded water patches appearing as fluctuations, i.e. a competition between entropy and enthalpy. Upon cooling water the amount of molecules participating in tetrahedral structures and the size of the tetrahedral patches increase. The two local structures are connected to the liquid–liquid critical point hypothesis in supercooled water corresponding to high density liquid and low density liquid. We will discuss the interpretation of X-ray absorption spectroscopy, X-ray emission

  8. Optical properties and structure of liquid water

    International Nuclear Information System (INIS)

    Magat, M.; Reinisch, L.

    1975-01-01

    Information about the structure of liquid water arises from various experimental methods (X-ray and neutron diffraction, neutron scattering, dielectric dispersion, molecular dynamics and so on...). However, optical measurements (and especially spectroscopic ones) are particularly important in this connection. Recent results concerning the refraction index, the electronic absorption spectrum, the vibrational infrared and Raman spectra, the intermolecular modes in the far infrared and Raman spectra, the dielectric relaxation spectrum and its junction with the far infrared spectrum, are given. Conclusions are drawn concerning the structure of water and its modifications with temperature. They are compared to the theoretical previsions of the different models proposed for water [fr

  9. Estimates of cetacean abundance in European Atlantic waters in summer

    OpenAIRE

    Hammond, P.S. (Phil) et al. (incl. Santos, M.B. (Maria Begoña)

    2017-01-01

    This report summarises design-based estimates of abundance for those cetacean species for which sufficient data were obtained during SCANS-III: harbour porpoise, bottlenose dolphin, Risso’s dolphin, white-beaked dolphin, white-sided dolphin, common dolphin, striped dolphin, pilot whale, all beaked whale species combined, sperm whale, minke whale and fin whale.

  10. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  11. Gas hydrate inhibition by perturbation of liquid water structure.

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-17

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  12. Autodissociation of a water molecule in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, Phillip L.; Dellago, Christoph; Chandler, David; Hutter, Jurg; Parrinello, Michele

    2000-04-01

    The dissociation of a water molecule in liquid water is the fundamental event in acid-base chemistry, determining the pH of water.Because the microscopic dynamics of this autodissociation are difficult to probe, both by experiment and by computer simulation, its mechanism has been unknown. Here we report several autodissociation trajectories generated by ab initio molecular dynamics [1]. These trajectories, which were harvested using transition path sampling [2-4], reveal the mechanism for the first time. Rare fluctuations in solvation energies destabilize an oxygen-hydrogen bond. Through the transfer of one or more protons along a hydrogen bond.

  13. Metastable liquid-liquid transition in a molecular model of water.

    Science.gov (United States)

    Palmer, Jeremy C; Martelli, Fausto; Liu, Yang; Car, Roberto; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2014-06-19

    Liquid water's isothermal compressibility and isobaric heat capacity, and the magnitude of its thermal expansion coefficient, increase sharply on cooling below the equilibrium freezing point. Many experimental, theoretical and computational studies have sought to understand the molecular origin and implications of this anomalous behaviour. Of the different theoretical scenarios put forward, one posits the existence of a first-order phase transition that involves two forms of liquid water and terminates at a critical point located at deeply supercooled conditions. Some experimental evidence is consistent with this hypothesis, but no definitive proof of a liquid-liquid transition in water has been obtained to date: rapid ice crystallization has so far prevented decisive measurements on deeply supercooled water, although this challenge has been overcome recently. Computer simulations are therefore crucial for exploring water's structure and behaviour in this regime, and have shown that some water models exhibit liquid-liquid transitions and others do not. However, recent work has argued that the liquid-liquid transition has been mistakenly interpreted, and is in fact a liquid-crystal transition in all atomistic models of water. Here we show, by studying the liquid-liquid transition in the ST2 model of water with the use of six advanced sampling methods to compute the free-energy surface, that two metastable liquid phases and a stable crystal phase exist at the same deeply supercooled thermodynamic condition, and that the transition between the two liquids satisfies the thermodynamic criteria of a first-order transition. We follow the rearrangement of water's coordination shell and topological ring structure along a thermodynamically reversible path from the low-density liquid to cubic ice. We also show that the system fluctuates freely between the two liquid phases rather than crystallizing. These findings provide unambiguous evidence for a liquid-liquid transition in

  14. (Liquid + liquid) equilibria of (water + ethanol + dimethyl glutarate) at several temperatures[(Liquid+liquid) equilibria; Ethanol; Dimethyl glutarate; UNIFAC method

    Energy Technology Data Exchange (ETDEWEB)

    Ince, Erol. E-mail: erolince@istanbul.edu.tr; Kirbaslar, S. Ismail. E-mail: krbaslar@istanbul.edu.tr

    2003-10-01

    (Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  15. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  16. Phytoplankton diversity and abundance as a function of water ...

    African Journals Online (AJOL)

    Water quality and phytoplankton composition of two Reservoirs (Bomo and Kubanni) in Zaria, Nigeria, were investigated for their fish production potentials from April to June 2011. April represented the dry period, while May and June were months with rains. Physicochemical parameters of the two Reservoirs showed ...

  17. Effects of effluent water on the abundance of cowpea insect pests.

    Science.gov (United States)

    Tiroesele, Bamphitlhi; Sitwane, Monametsi; Obopile, M; Ullah, Muhammad Irfan; Ali, Sajjad

    2017-10-03

    Botswana experiences low and unreliable rainfall. Thus, the use of effluent water in agriculture is increasingly important. Insect damage is the major constraint for cowpea grain production in the most cowpea-producing lands. We investigated the effects of effluent water on insect pest abundance on cowpea (Vigna unguiculata) under field conditions. The experiment was laid out in a randomized complete block design with 100, 75, 50, and 25% of effluent water and 0% (control-clean tap water) treatments. Treatments with 100% effluent water resulted in a significant increase in insect pest populations as compared with the control. These results show that the use of effluent water to irrigate crops may increase incidence, abundance, and damage caused by insect pests possibly by decreasing plant vigor. The use of effluent water in agriculture should be addressed in a wise way.

  18. Distribution and abundance of diatom species from coastal waters of Karachi, Pakistan

    International Nuclear Information System (INIS)

    Khokhar, F. N.; Burhan, Z.; Iqbal, P.; Abbasi, J.; Siddiqui, P.

    2016-01-01

    This is the first comprehensive study on the distribution and abundance of diatom species from the coastal and nearshore waters of Karachi, Pakistan, bordering northern Arabian Sea. A total of 20 genera are recorded in high abundance (Cerataulina, Chaetoceros, Coscinodiscus, Cylindrotheca, Eucampia, Guinardia, Haslea, Hemiaulus, Lauderia, Lennoxia, Leptocylindrus, Navicula, Nitzschia, Trieres, Planktoniella, Pleurosigma, Pseudo-nitzschia, Rhizosolenia, Thalassionema and Thalassiosira). The most abundant genera were observed Guinardia, Chaetoceros, Leptocylindrus, Nitzschia and Lennoxia at all stations. Manora coastal station (MI-1) had high abundance corresponding with high Chlorophyll a (130 meu gL- l) values. Minimum abundance and low chlorophyll a value (0.05μgL-l) were observed at Mubarak Village coastal station (MV-1). Diatom abundance showed significant correlation with Chlorophyll a. In present study 12 centric and 8 pennate forms were recorded and similarly high diversity of centric taxa was observed compared to pennate forms. A total of 134 species are recorded of which 40 species were observed at four stations, 31species at three stations, 23 at two stations and 40 species only at one station. The total phytoplankton and diatom peak abundance was observed during NE monsoon (winter season) associated with nutrient loading through up-sloping of nutrient rich water upwelled off of Oman during South West monsoon. Overall higher diversity was observed at Manora coastal and nearshore stations (MI-1, MI-2) indicating the influence of organic pollution loading from Layari and Malir rivers. (author)

  19. Water guns affect abundance and behavior of bigheaded carp and native fish differently

    Science.gov (United States)

    Rivera, Jose; Glover, David C.; Kocovsky, Patrick; Garvey, James E.; Gaikowski, Mark; Jensen, Nathan R.; Adams, Ryan F.

    2017-01-01

    Water guns have shown the potential to repel nuisance aquatic organisms. This study examines the effects of exposure to a 1966.4 cm3 seismic water gun array (two guns) on the abundance and behavior of Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix (collectively referred to as bigheaded carp) and native fishes (e.g., Smallmouth Buffalo Ictiobus bubalus). Water guns were deployed in a channel that connects the Illinois River to backwater quarry pits that contained a large transient population of bigheaded carp. To evaluate the effect of water guns, mobile side-looking split-beam hydroacoustic surveys were conducted before, during and between replicated water gun firing periods. Water guns did not affect abundance of bigheaded carp, but abundance of native fish detected during the firing treatment was 43 and 34% lower than the control and water guns off treatments, respectively. The proximity of bigheaded carp to the water gun array was similar between the water guns on and water guns off treatments. In contrast, the closest detected native fish were detected farther from the water guns during the water guns on treatment (mean ± SE, 32.38 ± 3.32 m) than during the water guns off treatment (15.04 ± 1.59 m). The water gun array had a greater impact on native fish species than on bigheaded carp. Caution should be taken to the extrapolation of these results to other fish species and to fish exposed to water guns in different environments (e.g., reduced shoreline interaction) or exposure to a larger array of water guns, or for use of water guns for purposes other than a barrier.

  20. The scaling of urban surface water abundance and impairment with city size

    Science.gov (United States)

    Steele, M. K.

    2018-03-01

    Urbanization alters surface water compared to nonurban landscapes, yet little is known regarding how basic aquatic ecosystem characteristics, such as the abundance and impairment of surface water, differ with population size or regional context. This study examined the abundance, scaling, and impairment of surface water by quantifying the stream length, water body area, and impaired stream length for 3520 cities in the United States with populations from 2500 to 18 million. Stream length, water body area, and impaired stream length were quantified using the National Hydrography Dataset and the EPA's 303(d) list. These metrics were scaled with population and city area using single and piecewise power-law models and related to biophysical factors (precipitation, topography) and land cover. Results show that abundance of stream length and water body area in cities actually increases with city area; however, the per person abundance decreases with population size. Relative to population, impaired stream length did not increase until city populations were > 25,000 people, then scaled linearly with population. Some variation in abundance and impairment was explained by biophysical context and land cover. Development intensity correlated with stream density and impairment; however, those relationships depended on the orientation of the land covers. When high intensity development occupied the local elevation highs (+ 15 m) and undeveloped land the elevation lows, the percentage of impaired streams was less than the opposite land cover orientation (- 15 m) or very flat land. These results show that surface water abundance and impairment across contiguous US cities are influenced by city size and by biophysical setting interacting with land cover intensity.

  1. Modeling water transport in liquid feed direct methanol fuel cells

    Science.gov (United States)

    Liu, Wenpeng; Wang, Chao-Yang

    Proper water management in direct methanol fuel cells (DMFCs) is very critical and complicated because of many interacting physicochemical phenomena. Among these, the liquid saturation in the cathode side is believed to have a very strong effect on water crossover through the membrane, a key parameter to determine water balance between the anode and cathode. In this paper, based on an interfacial liquid coverage model implemented in a three-dimensional (3D) two-phase DMFC model, the liquid saturation variations in the cathode are examined in detail and their effects on the net water transport coefficient through the membrane discussed.

  2. The role of carrion supply in the abundance of deep-water fish off California.

    Science.gov (United States)

    Drazen, Jeffrey C; Bailey, David M; Ruhl, Henry A; Smith, Kenneth L

    2012-01-01

    Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9-20 months. Subsequent diet studies suggested that carrion is the grenadier's most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.

  3. A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b

    Energy Technology Data Exchange (ETDEWEB)

    Kreidberg, Laura; Bean, Jacob L.; Stevenson, Kevin B. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Désert, Jean-Michel [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Line, Michael R.; Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Institute for Astronomy, University of Cambridge, Cambridge CB3 OHA (United Kingdom); Showman, Adam P.; Kataria, Tiffany [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, Tuscon, AZ 85721 (United States); Charbonneau, David [Department of Astronomy, Harvard University, Cambridge, MA 02138 (United States); McCullough, Peter R. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Seager, Sara [Department of Physics, Massachussetts Institute of Technology, Cambridge, MA 02139 (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Henry, Gregory W.; Williamson, Michael [Center of Excellence in Information Systems, Tennessee State University, Nashville, TN 37209 (United States); Homeier, Derek, E-mail: laura.kreidberg@uchicago.edu [Centre de Recherche Astrophysique de Lyon, UMR 5574, CNRS, Université de Lyon, École Normale Supérieure de Lyon, 46 Allée d' Italie, F-69364 Lyon Cedex 07 (France)

    2014-10-01

    The water abundance in a planetary atmosphere provides a key constraint on the planet's primordial origins because water ice is expected to play an important role in the core accretion model of planet formation. However, the water content of the solar system giant planets is not well known because water is sequestered in clouds deep in their atmospheres. By contrast, short-period exoplanets have such high temperatures that their atmospheres have water in the gas phase, making it possible to measure the water abundance for these objects. We present a precise determination of the water abundance in the atmosphere of the 2 M {sub Jup} short-period exoplanet WASP-43b based on thermal emission and transmission spectroscopy measurements obtained with the Hubble Space Telescope. We find the water content is consistent with the value expected in a solar composition gas at planetary temperatures (0.4-3.5 × solar at 1σ confidence). The metallicity of WASP-43b's atmosphere suggested by this result extends the trend observed in the solar system of lower metal enrichment for higher planet masses.

  4. Distribution of Abundant and Active Planktonic Ciliates in Coastal and Slope Waters Off New England

    Directory of Open Access Journals (Sweden)

    Sarah J. Tucker

    2017-11-01

    Full Text Available Despite their important role of linking microbial and classic marine food webs, data on biogeographical patterns of microbial eukaryotic grazers are limited, and even fewer studies have used molecular tools to assess active (i.e., those expressing genes community members. Marine ciliate diversity is believed to be greatest at the chlorophyll maximum, where there is an abundance of autotrophic prey, and is often assumed to decline with depth. Here, we assess the abundant (DNA and active (RNA marine ciliate communities throughout the water column at two stations off the New England coast (Northwest Atlantic—a coastal station 43 km from shore (40 m depth and a slope station 135 km off shore (1,000 m. We analyze ciliate communities using a DNA fingerprinting technique, Denaturing Gradient Gel Electrophoresis (DGGE, which captures patterns of abundant community members. We compare estimates of ciliate communities from SSU-rDNA (abundant and SSU-rRNA (active and find complex patterns throughout the water column, including many active lineages below the photic zone. Our analyses reveal (1 a number of widely-distributed taxa that are both abundant and active; (2 considerable heterogeneity in patterns of presence/absence of taxa in offshore samples taken 50 m apart throughout the water column; and (3 three distinct ciliate assemblages based on position from shore and depth. Analysis of active (RNA taxa uncovers biodiversity hidden to traditional DNA-based approaches (e.g., clone library, rDNA amplicon studies.

  5. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  6. Observed reflectivities and liquid water content for marine stratocumulus

    Science.gov (United States)

    Coakley, J. A., Jr.; Snider, J. B.

    1989-01-01

    Simultaneous observations of cloud liquid water content and cloud reflectivity are used to verify their parametric relationship in a manner consistent with simple parameterizations often used in general-circulation climate models. The column amount of cloud liquid water was measured with a microwave radiometer on San Nicolas Island as described by Hogg et al., (1983). Cloud reflectivity was obtained through spatial coherence analysis of AVHRR imagery data as per Coakley and Baldwin (1984) and Coakley and Beckner (1988). The dependence of the observed reflectivity on the observed liquid water is discussed, and this empirical relationship is compared with the parameterization proposed by Stephens (1978).

  7. High frequency, realtime measurements of stable isotopes in liquid water

    Science.gov (United States)

    Weiler, M.; Herbstritt, B.; Gralher, B.

    2012-04-01

    We developed a method to measure in-situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a off-the-shelf microporous hydrophobic membrane contactor for under 200€ was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with nitrogen as carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the isotope laser spectrometer. To prove the membrane's applicability we determined the specific isotope fractionation factor for the phase change through the contactor's membrane for a common temperature range and with different waters of known isotopic compositions. This fractionation factor is then used to derive the liquid water isotope ratio from the measured water vapor isotope ratios and the measured temperature at the phase change. The system was compared for breakthrough curves of isotopically enriched water and the isotope values corresponded very well with those of liquid water samples taken simultaneously and analyzed with a conventional method (CRDS). The introduced method supersedes taking liquid samples and employs only relative cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution with the same accuracy as collecting individual water samples.

  8. Limitations to postfire seedling establishment: The role of seeding technology, water availability, and invasive plant abundance

    Science.gov (United States)

    Jeremy J. James; Tony. Svejcar

    2010-01-01

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abundance, and seeding technology influence postfire seedling establishment...

  9. Further evidence of a liquid-liquid transition in interfacial water

    International Nuclear Information System (INIS)

    Zanotti, J-M; Bellissent-Funel, M C; Chen, S-H; Kolesnikov, A I

    2006-01-01

    In a previous paper we combined calorimetric, diffraction and high-resolution quasi-elastic neutron scattering data to show that after exhibiting a glass transition at 165 K, interfacial water experiences a first order liquid-liquid transition at 240 K from a low-density to a high-density liquid. Here we present further evidence of these transitions obtained by high-energy inelastic neutron scattering

  10. (Liquid + liquid) equilibria of (water + propionic acid + cyclohexanone) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cehreli, Sueheyla [Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Istanbul (Turkey)]. E-mail: cehreli@istanbul.edu.tr; Tatli, Besir [Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Istanbul (Turkey); Bagman, Pelin [Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Istanbul (Turkey)

    2005-12-15

    (Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + cyclohexanone) were measured under atmospheric pressure and at T = (293.2, 298.2 and 303.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.

  11. Liquid water in the domain of cubic crystalline ice Ic.

    Science.gov (United States)

    Jenniskens, P; Banham, S F; Blake, D F; McCoustra, M R

    1997-07-22

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  12. Abundance and physiology of dominant soft corals linked to water quality in Jakarta Bay, Indonesia

    Directory of Open Access Journals (Sweden)

    Gunilla Baum

    2016-11-01

    Full Text Available Declining water quality is one of the main reasons of coral reef degradation in the Thousand Islands off the megacity Jakarta, Indonesia. Shifts in benthic community composition to higher soft coral abundances have been reported for many degraded reefs throughout the Indo-Pacific. However, it is not clear to what extent soft coral abundance and physiology are influenced by water quality. In this study, live benthic cover and water quality (i.e. dissolved inorganic nutrients (DIN, turbidity (NTU, and sedimentation were assessed at three sites (< 20 km north of Jakarta in Jakarta Bay (JB and five sites along the outer Thousand Islands (20–60 km north of Jakarta. This was supplemented by measurements of photosynthetic yield and, for the first time, respiratory electron transport system (ETS activity of two dominant soft coral genera, Sarcophyton spp. and Nephthea spp. Findings revealed highly eutrophic water conditions in JB compared to the outer Thousand Islands, with 44% higher DIN load (7.65 μM/L, 67% higher NTU (1.49 NTU and 47% higher sedimentation rate (30.4 g m−2 d−1. Soft corals were the dominant type of coral cover within the bay (2.4% hard and 12.8% soft coral cover compared to the outer Thousand Islands (28.3% hard and 6.9% soft coral cover. Soft coral abundances, photosynthetic yield, and ETS activity were highly correlated with key water quality parameters, particularly DIN and sedimentation rates. The findings suggest water quality controls the relative abundance and physiology of dominant soft corals in JB and may thus contribute to phase shifts from hard to soft coral dominance, highlighting the need to better manage water quality in order to prevent or reverse phase shifts.

  13. Droplet-Sizing Liquid Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  14. Droplet-Sizing Liquid Water Content Sensor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  15. Continuous in situ measurements of stable isotopes in liquid water

    Science.gov (United States)

    Herbstritt, Barbara; Gralher, Benjamin; Weiler, Markus

    2012-03-01

    We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C-21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.

  16. Relation between rainfall intensity and savanna tree abundance explained by water use strategies.

    Science.gov (United States)

    Xu, Xiangtao; Medvigy, David; Rodriguez-Iturbe, Ignacio

    2015-10-20

    Tree abundance in tropical savannas exhibits large and unexplained spatial variability. Here, we propose that differentiated tree and grass water use strategies can explain the observed negative relation between maximum tree abundance and rainfall intensity (defined as the characteristic rainfall depth on rainy days), and we present a biophysical tree-grass competition model to test this idea. The model is founded on a premise that has been well established in empirical studies, namely, that the relative growth rate of grasses is much higher compared with trees in wet conditions but that grasses are more susceptible to water stress and lose biomass more quickly in dry conditions. The model is coupled with a stochastic rainfall generator and then calibrated and tested using field observations from several African savanna sites. We show that the observed negative relation between maximum tree abundance and rainfall intensity can be explained only when differentiated water use strategies are accounted for. Numerical experiments reveal that this effect is more significant than the effect of root niche separation. Our results emphasize the importance of vegetation physiology in determining the responses of tree abundance to climate variations in tropical savannas and suggest that projected increases in rainfall intensity may lead to an increase in grass in this biome.

  17. Mesozooplankton biomass and abundance in Cyprus coastal waters and comparison with the Aegean Sea (eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    C. C.S. HANNIDES

    2015-05-01

    Full Text Available Here we conduct the first comprehensive assessment of mesozooplankton abundance, biomass, and taxa composition in Cyprus coastal waters (Levantine Sea.  Mesozooplankton abundance and biomass sampled at several locations around the island ranged from 153 – 498 individuals m-3 and 0.7 – 5.2 mg dry weight m-3, respectively, with significantly larger biomass observed in winter-early spring (March than in summer (September.  The community was dominated by calanoid and cyclopoid copepods throughout the year (80% of total numbers, with higher abundances of predatory taxa (chaetognaths and medusae in winter and cladocerans in summer.  Overall, we find that coastal mesozooplankton communities around Cyprus appear to be more similar to communities in offshore waters or those around the island of Rhodes than to communities along the mainland Levantine coast.  We further highlight regional differences in the eastern Mediterranean by comparing our data with mesozooplankton in the western Aegean (Saronikos Gulf and northeastern Aegean Sea (NEA.  Distinct spatial differences were observed, for example anthropogenic influences in the Saronikos Gulf and the outflow of Modified Black Sea Water in the NEA drove generally greater biomass and abundance in these regions.  Overall, our comparison supports the concept of a latitudinal gradient in oligotrophy in the eastern Mediterranean, with ultra-oligotrophic conditions found in the Levantine Sea.

  18. Relationships between water transparency and abundance of Cynodontidae species in the Bananal floodplain, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Cesar Enrique de Melo

    Full Text Available The Cerrado in the Central Brazil is currently one of the most threatened ecosystems in the world. As a result, the aquatic habitats in this biome also undergo great impacts. Alterations related to land-use change increase sediment loadings in rivers, streams and lakes, resulting in sedimentation and decrease in water transparency. Water transparency determines underwater visibility conditions, and as a consequence fish assemblages respond to spatial and temporal changes in this variable. This work aimed to examine the influence of transparency on the abundance and distribution of Cynodontidae species, a visually oriented predatory fish group. Fish sampling was conducted in 15 sites located between Mortes and Araguaia rivers in the Bananal floodplain, Mato Grosso State. Regression analysis between relative abundance of Cynodontidae (in number of individuals and biomass and water transparency showed a positive and highly significant correlation, indicating that this group shows species-specific habitat affinities for clearer waters. These results suggest that the increase in water turbidity in this region can affect the patterns of abundance and distribution of the Cynodontidae species, as well as other visually oriented fishes.

  19. Liquid nitrogen - water interaction experiments for fusion reactor accident scenarios

    International Nuclear Information System (INIS)

    Duckworth, R.; Murphy, J.; Pfotenhauer, J.; Corradini, M.

    2001-01-01

    With the implementation of superconducting magnets in fusion reactors, the possibility exists for the interaction between water and cryogenic systems. The interaction between liquid nitrogen and water was investigated experimentally and numerically. The rate of pressurization and peak pressure were found to be driven thermodynamically by the expansion of the water and the boil-off of the liquid nitrogen and did not have a vapor explosion nature. Since the peak pressure was small in comparison to previous work with stratified geometries, the role of the geometry of the interacting fluids has been shown to be significant. Comparisons of the peak pressure and the rate of pressurization with respect to the ratio of the liquid nitrogen mass to water mass reveal no functional dependence as was observed in the liquid helium-water experiments. A simple thermodynamic model provides a fairly good description of the pressure rise data. From the data, the model will allow one to extract the interaction area of the water. As with previous liquid helium-water interaction experiments, more extensive investigation of the mass ratio and interaction geometry is needed to define boundaries between explosive and non-explosive conditions. (authors)

  20. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  1. Associations between water physicochemistry and Prymnesium parvum presence, abundance, and toxicity in west Texas reservoirs

    Science.gov (United States)

    VanLandeghem, Matthew M.; Farooqi, Mukhtar; Southard, Greg M.; Patino, Reynaldo

    2015-01-01

    Toxic blooms of golden alga (Prymnesium parvum) have caused substantial ecological and economic harm in freshwater and marine systems throughout the world. In North America, toxic blooms have impacted freshwater systems including large reservoirs. Management of water chemistry is one proposed option for golden alga control in these systems. The main objective of this study was to assess physicochemical characteristics of water that influence golden alga presence, abundance, and toxicity in the Upper Colorado River basin (UCR) in Texas. The UCR contains reservoirs that have experienced repeated blooms and other reservoirs where golden alga is present but has not been toxic. We quantified golden alga abundance (hemocytometer counts), ichthyotoxicity (bioassay), and water chemistry (surface grab samples) at three impacted reservoirs on the Colorado River; two reference reservoirs on the Concho River; and three sites at the confluence of these rivers. Sampling occurred monthly from January 2010 to July 2011. Impacted sites were characterized by higher specific conductance, calcium and magnesium hardness, and fluoride than reference and confluence sites. At impacted sites, golden alga abundance and toxicity were positively associated with salinity-related variables and blooms peaked at ~10°C and generally did not occur above 20°C. Overall, these findings suggest management of land and water use to reduce hardness or salinity could produce unfavorable conditions for golden alga.

  2. Review: Drinking water for liquid-fed pigs.

    Science.gov (United States)

    Meunier-Salaün, M-C; Chiron, J; Etore, F; Fabre, A; Laval, A; Pol, F; Prunier, A; Ramonet, Y; Nielsen, B L

    2017-05-01

    Liquid feeding has the potential to provide pigs with sufficient water to remain hydrated and prevent prolonged thirst. However, lack of permanent access to fresh water prevents animals from drinking when they are thirsty. Moreover, individual differences between pigs in a pen may result in uneven distribution of the water provided by the liquid feed, leading to some pigs being unable to meet their water requirements. In this review, we look at the need for and provision of water for liquid-fed pigs in terms of their production performance, behaviour, health and welfare. We highlight factors which may lead to water ingestion above or below requirements. Increases in the need for water may be caused by numerous factors such as morbidity, ambient temperature or competition within the social group, emphasising the necessity of permanent access to water as also prescribed in EU legislation. The drinkers can be the target of redirected behaviour in response to feed restriction or in the absence of rooting materials, thereby generating water losses. The method of water provision and drinker design is critical to ensure easy access to water regardless of the pig's physiological state, and to limit the amount of water used, which does not benefit the pig.

  3. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  4. (Liquid + liquid) equilibrium of {water + phenol + (1-butanol, or 2-butanol, or tert-butanol)} systems

    International Nuclear Information System (INIS)

    Hadlich de Oliveira, Leonardo; Aznar, Martin

    2010-01-01

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  5. Assessing the relationship between the abundance and properties of microplastics in water and in mussels.

    Science.gov (United States)

    Qu, Xiaoyun; Su, Lei; Li, Hengxiang; Liang, Mingzhong; Shi, Huahong

    2018-04-15

    Microplastic pollution is increasingly becoming a great environmental concern worldwide. Microplastics have been found in many marine organisms as a result of increasing plastic pollution within marine environments. However, the relationship between micoplastics in organisms and their living environment is still relatively poorly understood. In the present study, we investigated microplastic pollution in the water and the mussels (Mytilus edulis, Perna viridis) at 25 sites along the coastal waters of China. We also, for the first time, conducted an exposure experiment in parallel on the same site using M. edulis in the laboratory. A strong positive linear relationship was found between microplastic levels in the water and in the mussels. Fibers were the dominant microplastics. The sizes of microplastics in the mussels were smaller than those in the water. During exposure experiments, the abundance of microbeads was significantly higher than that of fibers, even though the nominal abundance of fibers was eight times that of microbeads. In general, our results supported positive and quantitative correlations of microplastics in mussels and in their surrounding waters and that mussels were more likely to ingest smaller microplastics. Laboratory exposure experiment is a good way to understand the relative impacts of microplastics ingested by marine organisms. However, significant differences in the results between exposure experiments and field investigations indicated that further efforts are needed to simulate the diverse environmentally relevant properties of microplastics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The puzzling unsolved mysteries of liquid water: Some recent progress

    Science.gov (United States)

    Stanley, H. E.; Kumar, P.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S.-H.; Mallamace, F.

    2007-12-01

    Water is perhaps the most ubiquitous, and the most essential, of any molecule on earth. Indeed, it defies the imagination of even the most creative science fiction writer to picture what life would be like without water. Despite decades of research, however, water's puzzling properties are not understood and 63 anomalies that distinguish water from other liquids remain unsolved. We introduce some of these unsolved mysteries, and demonstrate recent progress in solving them. We present evidence from experiments and computer simulations supporting the hypothesis that water displays a special transition point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell). The general idea is that when the liquid is near this “tipping point,” it suddenly separates into two distinct liquid phases. This concept of a new critical point is finding application to other liquids as well as water, such as silicon and silica. We also discuss related puzzles, such as the mysterious behavior of water near a protein.

  7. Surface potential of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  8. Structure of liquid water at high pressures and temperatures

    International Nuclear Information System (INIS)

    Eggert, Jon H; Weck, Gunnar; Loubeyre, Paul

    2002-01-01

    We report quantitatively accurate structure-factor and radial-distribution-function measurements of liquid water in a diamond-anvil cell (DAC) using x-ray diffraction. During the analysis of our diffraction data, we found it possible (and necessary) to also determine the density. Thus, we believe we present the first-ever diffraction-based determination of a liquid structure factor and equation of state in a DAC experiment

  9. Temporal Variations in the Abundance and Composition of Biofilm Communities Colonizing Drinking Water Distribution Pipes

    Science.gov (United States)

    Kelly, John J.; Minalt, Nicole; Culotti, Alessandro; Pryor, Marsha; Packman, Aaron

    2014-01-01

    Pipes that transport drinking water through municipal drinking water distribution systems (DWDS) are challenging habitats for microorganisms. Distribution networks are dark, oligotrophic and contain disinfectants; yet microbes frequently form biofilms attached to interior surfaces of DWDS pipes. Relatively little is known about the species composition and ecology of these biofilms due to challenges associated with sample acquisition from actual DWDS. We report the analysis of biofilms from five pipe samples collected from the same region of a DWDS in Florida, USA, over an 18 month period between February 2011 and August 2012. The bacterial abundance and composition of biofilm communities within the pipes were analyzed by heterotrophic plate counts and tag pyrosequencing of 16S rRNA genes, respectively. Bacterial numbers varied significantly based on sampling date and were positively correlated with water temperature and the concentration of nitrate. However, there was no significant relationship between the concentration of disinfectant in the drinking water (monochloramine) and the abundance of bacteria within the biofilms. Pyrosequencing analysis identified a total of 677 operational taxonomic units (OTUs) (3% distance) within the biofilms but indicated that community diversity was low and varied between sampling dates. Biofilms were dominated by a few taxa, specifically Methylomonas, Acinetobacter, Mycobacterium, and Xanthomonadaceae, and the dominant taxa within the biofilms varied dramatically between sampling times. The drinking water characteristics most strongly correlated with bacterial community composition were concentrations of nitrate, ammonium, total chlorine and monochloramine, as well as alkalinity and hardness. Biofilms from the sampling date with the highest nitrate concentration were the most abundant and diverse and were dominated by Acinetobacter. PMID:24858562

  10. (Liquid + liquid) equilibria of (water + propionic acid + dimethyl phthalate) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Oezmen, Dilek [Engineering Faculty, Department of Chemical Engineering, Istanbul University, 34320 Istanbul (Turkey); Cehreli, Sueheyla [Engineering Faculty, Department of Chemical Engineering, Istanbul University, 34320 Istanbul (Turkey)]. E-mail: cehreli@istanbul.edu.tr; Dramur, Umur [Engineering Faculty, Department of Chemical Engineering, Istanbul University, 34320 Istanbul (Turkey)

    2005-08-15

    (Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + dimethyl phthalate) were measured under atmospheric pressure and at T (298.2, 303.2, 308.2 and 313.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated over the immiscibility regions.

  11. Core-softened fluids, water-like anomalies, and the liquid-liquid critical points.

    Science.gov (United States)

    Salcedo, Evy; de Oliveira, Alan Barros; Barraz, Ney M; Chakravarty, Charusita; Barbosa, Marcia C

    2011-07-28

    Molecular dynamics simulations are used to examine the relationship between water-like anomalies and the liquid-liquid critical point in a family of model fluids with multi-Gaussian, core-softened pair interactions. The core-softened pair interactions have two length scales, such that the longer length scale associated with a shallow, attractive well is kept constant while the shorter length scale associated with the repulsive shoulder is varied from an inflection point to a minimum of progressively increasing depth. The maximum depth of the shoulder well is chosen so that the resulting potential reproduces the oxygen-oxygen radial distribution function of the ST4 model of water. As the shoulder well depth increases, the pressure required to form the high density liquid decreases and the temperature up to which the high-density liquid is stable increases, resulting in the shift of the liquid-liquid critical point to much lower pressures and higher temperatures. To understand the entropic effects associated with the changes in the interaction potential, the pair correlation entropy is computed to show that the excess entropy anomaly diminishes when the shoulder well depth increases. Excess entropy scaling of diffusivity in this class of fluids is demonstrated, showing that decreasing strength of the excess entropy anomaly with increasing shoulder depth results in the progressive loss of water-like thermodynamic, structural and transport anomalies. Instantaneous normal mode analysis was used to index the overall curvature distribution of the fluid and the fraction of imaginary frequency modes was shown to correlate well with the anomalous behavior of the diffusivity and the pair correlation entropy. The results suggest in the case of core-softened potentials, in addition to the presence of two length scales, energetic, and entropic effects associated with local minima and curvatures of the pair interaction play an important role in determining the presence of water

  12. Cyanobacteria abundance and its relationship to water quality in the Mid-Cross River floodplain, Nigeria

    Directory of Open Access Journals (Sweden)

    Okogwu Okechukwu I

    2009-06-01

    Full Text Available The physicochemical variables and cyanobacteria of Mid-Cross River, Nigeria, were studied in six stations between March 2005 and August 2006 to determine the relationship between water quality and cyanobacteria abundance. Canonical Correspondence Analysis (CCA showed that biological oxygen demand (BOD, dissolved oxygen, pH, water velocity, width and depth were important environmental factors that influenced cyanobacteria abundance. Trace metals, phosphate and nitrate increased significantly from values of previous studies indicating increased eutrophication of the river but were weakly correlated with cyanobacteria abundance and could be scarcely regarded as regulating factors. A higher cyanobacteria abundance was recorded during the wet season in most of the sampled stations. The dominant cyanobacteria included Microcystis aeruginosa, Aphanizomenon flos-aquae, Oscillatoria limnetica and Anabaena spiroides. The toxins produced by these species could degrade water quality. The factors favouring cyanobacteria abundance were identified as increased pH, width and depth. Increase in cyanobacteria abundance was associated with reduction in dissolved oxygen and increase in BOD values. Rev. Biol. Trop. 57 (1-2: 33-43. Epub 2009 June 30.Las variables físico-químicas y la abundancia de cianobacterias del río nigeriano Mid-Cross fueron estudiadas en seis estaciones entre marzo del 2005 y agosto del 2006. El Análisis de Correspondencia Canónica (CCA demostró que la demanda biológica de oxígeno (DBO, oxígeno disuelto, pH, velocidad de agua, anchura y profundidad son factores ambientales importantes que influyen en la abundancia de cianobacterias. Los mayores valores de trazas de metales, fosfatos y nitratos, en comparación con estudios previos, indican mayor eutrofización, pero tienen poca correlación con la abundancia de las cianobacterias. La mayor abundancia de cianobacterias se registró durante el periodo más húmedo de la estación seca en

  13. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges.

    Science.gov (United States)

    Kärkäs, Markus D; Åkermark, Björn

    2016-10-07

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  14. Structural Origin of Shear Viscosity of Liquid Water.

    Science.gov (United States)

    Yamaguchi, Tsuyoshi

    2018-01-25

    The relation between the microscopic structure and shear viscosity of liquid water was analyzed by calculating the cross-correlation between the shear stress and the two-body density using the molecular dynamics simulation. The slow viscoelastic relaxation that dominates the steady-state shear viscosity was ascribed to the destruction of the hydrogen-bonding network structure along the compression axis of the shear distortion, which resembles the structural change under isotropic hydrostatic compression. It means that the shear viscosity of liquid water reflects the anisotropic destruction-formation dynamics of the hydrogen-bonding network.

  15. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    Science.gov (United States)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  16. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    Directory of Open Access Journals (Sweden)

    Ezequiel M Marzinelli

    Full Text Available Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV facility of Australia's Integrated Marine Observing System (IMOS to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km and depths (15-60 m across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  17. Large-scale geographic variation in distribution and abundance of Australian deep-water kelp forests.

    Science.gov (United States)

    Marzinelli, Ezequiel M; Williams, Stefan B; Babcock, Russell C; Barrett, Neville S; Johnson, Craig R; Jordan, Alan; Kendrick, Gary A; Pizarro, Oscar R; Smale, Dan A; Steinberg, Peter D

    2015-01-01

    Despite the significance of marine habitat-forming organisms, little is known about their large-scale distribution and abundance in deeper waters, where they are difficult to access. Such information is necessary to develop sound conservation and management strategies. Kelps are main habitat-formers in temperate reefs worldwide; however, these habitats are highly sensitive to environmental change. The kelp Ecklonia radiate is the major habitat-forming organism on subtidal reefs in temperate Australia. Here, we provide large-scale ecological data encompassing the latitudinal distribution along the continent of these kelp forests, which is a necessary first step towards quantitative inferences about the effects of climatic change and other stressors on these valuable habitats. We used the Autonomous Underwater Vehicle (AUV) facility of Australia's Integrated Marine Observing System (IMOS) to survey 157,000 m2 of seabed, of which ca 13,000 m2 were used to quantify kelp covers at multiple spatial scales (10-100 m to 100-1,000 km) and depths (15-60 m) across several regions ca 2-6° latitude apart along the East and West coast of Australia. We investigated the large-scale geographic variation in distribution and abundance of deep-water kelp (>15 m depth) and their relationships with physical variables. Kelp cover generally increased with latitude despite great variability at smaller spatial scales. Maximum depth of kelp occurrence was 40-50 m. Kelp latitudinal distribution along the continent was most strongly related to water temperature and substratum availability. This extensive survey data, coupled with ongoing AUV missions, will allow for the detection of long-term shifts in the distribution and abundance of habitat-forming kelp and the organisms they support on a continental scale, and provide information necessary for successful implementation and management of conservation reserves.

  18. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  19. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    Directory of Open Access Journals (Sweden)

    Ince E.

    2002-01-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  20. Spatial Models of Abundance and Habitat Preferences of Commerson's and Peale's Dolphin in Southern Patagonian Waters.

    Science.gov (United States)

    Dellabianca, Natalia A; Pierce, Graham J; Raya Rey, Andrea; Scioscia, Gabriela; Miller, David L; Torres, Mónica A; Paso Viola, M Natalia; Goodall, R Natalie P; Schiavini, Adrián C M

    2016-01-01

    Commerson's dolphins (Cephalorhynchus c. commersonii) and Peale's dolphins (Lagenorhynchus australis) are two of the most common species of cetaceans in the coastal waters of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN, mainly due to the lack of information about population sizes and trends. The goal of this study was to build spatially explicit models for the abundance of both species in relation to environmental variables using data collected during eight scientific cruises along the Patagonian shelf. Spatial models were constructed using generalized additive models. In total, 88 schools (212 individuals) of Commerson's dolphin and 134 schools (465 individuals) of Peale's dolphin were recorded in 8,535 km surveyed. Commerson's dolphin was found less than 60 km from shore; whereas Peale's dolphins occurred over a wider range of distances from the coast, the number of animals sighted usually being larger near or far from the coast. Fitted models indicate overall abundances of approximately 22,000 Commerson's dolphins and 20,000 Peale's dolphins in the total area studied. This work provides the first large-scale abundance estimate for Peale's dolphin in the Atlantic Ocean and an update of population size for Commerson's dolphin. Additionally, our results contribute to baseline data on suitable habitat conditions for both species in southern Patagonia, which is essential for the implementation of adequate conservation measures.

  1. Spatial Models of Abundance and Habitat Preferences of Commerson's and Peale's Dolphin in Southern Patagonian Waters.

    Directory of Open Access Journals (Sweden)

    Natalia A Dellabianca

    Full Text Available Commerson's dolphins (Cephalorhynchus c. commersonii and Peale's dolphins (Lagenorhynchus australis are two of the most common species of cetaceans in the coastal waters of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN, mainly due to the lack of information about population sizes and trends. The goal of this study was to build spatially explicit models for the abundance of both species in relation to environmental variables using data collected during eight scientific cruises along the Patagonian shelf. Spatial models were constructed using generalized additive models. In total, 88 schools (212 individuals of Commerson's dolphin and 134 schools (465 individuals of Peale's dolphin were recorded in 8,535 km surveyed. Commerson's dolphin was found less than 60 km from shore; whereas Peale's dolphins occurred over a wider range of distances from the coast, the number of animals sighted usually being larger near or far from the coast. Fitted models indicate overall abundances of approximately 22,000 Commerson's dolphins and 20,000 Peale's dolphins in the total area studied. This work provides the first large-scale abundance estimate for Peale's dolphin in the Atlantic Ocean and an update of population size for Commerson's dolphin. Additionally, our results contribute to baseline data on suitable habitat conditions for both species in southern Patagonia, which is essential for the implementation of adequate conservation measures.

  2. Bacterial pathogen gene abundance and relation to recreational water quality at seven Great Lakes beaches

    Science.gov (United States)

    Oster, Ryan J.; Wijesinghe, Rasanthi U.; Fogarty, Lisa Reynolds; Haack, Sheridan K.; Fogarty, Lisa R.; Tucker, Taaja R.; Riley, Stephen

    2014-01-01

    Quantitative assessment of bacterial pathogens, their geographic variability, and distribution in various matrices at Great Lakes beaches are limited. Quantitative PCR (qPCR) was used to test for genes from E. coli O157:H7 (eaeO157), shiga-toxin producing E. coli (stx2), Campylobacter jejuni (mapA), Shigella spp. (ipaH), and a Salmonella enterica-specific (SE) DNA sequence at seven Great Lakes beaches, in algae, water, and sediment. Overall, detection frequencies were mapA>stx2>ipaH>SE>eaeO157. Results were highly variable among beaches and matrices; some correlations with environmental conditions were observed for mapA, stx2, and ipaH detections. Beach seasonal mean mapA abundance in water was correlated with beach seasonal mean log10E. coli concentration. At one beach, stx2 gene abundance was positively correlated with concurrent daily E. coli concentrations. Concentration distributions for stx2, ipaH, and mapA within algae, sediment, and water were statistically different (Non-Detect and Data Analysis in R). Assuming 10, 50, or 100% of gene copies represented viable and presumably infective cells, a quantitative microbial risk assessment tool developed by Michigan State University indicated a moderate probability of illness for Campylobacter jejuni at the study beaches, especially where recreational water quality criteria were exceeded. Pathogen gene quantification may be useful for beach water quality management.

  3. Limiting shear stress and monotonic properties of liquid water

    Science.gov (United States)

    Gorshkov, A. I.

    2016-12-01

    Publications in scientific journals in which the authors attempt to experimentally prove that water, the most widespread substance on the Earth, is not a completely classical liquid, have become more frequent recently. This means, first, that water behaves as a solid at very low shear stress, i.e., does not flow, and, second, that the temperature dependences of its different properties are non-monotonic, i.e., possess singularities. We are aware of several such publications [1-5].

  4. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    of water, as represented, for instance, by strong negative deviations from Raoult's law, extending far beyond the standard descriptions. The investigation was carried out using classical molecular dynamics employing a specifically refined force field. The changes in the liquid-vapor interface and saturated...

  5. APPLICATION OF THE UNIFAC MODEL TO LIQUID-LIQUID EQUILIBRIA OF WATER-PROPIONIC ACID-SOLVENT TERNARIES*

    Directory of Open Access Journals (Sweden)

    Süheyla ÇEHRELİ

    2003-01-01

    Full Text Available The liquid-liquid equilibria of Water-Propionic Acid-Benzyl Alcohol, Water-Propionic Acid-Benzyl Acetate and Water-Propionic Acid-Dibenzyl Ether ternary systems were predicted by means of UNIFAC Model. For this purpose, multivariable Newton-Raphson convergence procedure was used. Experimental and model results were compared.

  6. The End of Abundance: How Water Bureaucrats Created and Destroyed the Southern California Oasis

    Directory of Open Access Journals (Sweden)

    David Zetland

    2009-10-01

    Full Text Available This paper describes how water bureaucrats shaped Southern California’s urban development and put the region on a path of unsustainable growth. This path was popular and successful until the supply shocks of the 1960s, 1970s and 1980s made shortage increasingly likely. The drought of 1987-1991 revealed that the norms and institutions of abundance were ineffective in scarcity. Ever since then, Southern California has teetered on the edge of shortage and economic and social disruption. Despite the risks of business as usual, water bureaucrats, politicians and developers continue to defend a status quo management strategy that serves their interests but not those of citizens. Professional norms, control of the discourse, and insulation from outside pressure slow or inhibit the adoption of management techniques suitable to scarcity. Pressure from increasing population and politically and environmentally destabilised supplies promise to make rupture more likely and more costly.

  7. Effect of sediment-water interface 'boundary layer' on exposure of nodules and their abundance: a study from seabed photos

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    affects nodule abundance estimates based on photos. A model showing variable burial (or exposure) depending upon the thickness of the Sediment-Water Interface Boundary (SWIB) layer is presented. Standard relationships can be established between nodule...

  8. Neutron diffraction study of the structure of liquid water

    International Nuclear Information System (INIS)

    Ohtomo, Norio; Arakawa, Kiyoshi.

    1978-01-01

    The structure factor for heavy water at 17 0 C up to the Q value of 18 A -1 has been determined by means of the time-of-flight (TOF) diffraction method using pulsed neutrons produced by LINAC. The result has been compared with structure factors calculated on the basis of the various structure models of liquid water; the ''uncorrelated orientation model'' and the ''watery model'' (Page and Powles), the ''near-neighbor model'' (Narten) and the ''revised watery model'' (authors). None of these models has been found to fit the neutron diffraction data satisfactorily over the entire range of Q, though our curve is somewhat improved in comparison with the curves for earlier models. Some discussions about the various structure models of liquid water have been made. (auth.)

  9. Recommended Liquid-Liquid Equilibrium Data. Part 5. Ether-Water Systems

    Science.gov (United States)

    Góral, Marian; Måczyński, Andrzej; Oracz, Paweł

    2007-12-01

    Recommended liquid-liquid equilibrium (LLE) data for 12 binary ether-water systems have been obtained after the critical evaluation of all data (168 data sets) reported for 17 systems in the open literature up to the end of 2006. An equation for the prediction of the ether solubilities in water was developed. The predicted ether solubilities were used for the calculation of water solubility in the ether-rich phase. The LLE calculations were done with the equation of state appended with a chemical term (EoSC) proposed by Góral [Fluid Phase Equilib. 118, 27 (1996)]. The recommended data are presented in the form of individual tables with references. Using these recommended data, predictive ability has been tested for several UNIFAC and ASOG group-contribution methods.

  10. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    . The ultimate objective of this work is to develop a predictive thermodynamic model for the mutual solubility of oil, water, and polar chemicals. But for the development and validation of the model, experimental data are required. This work presents new experimental liquid-liquid equilibrium (LLE) data for 1...... into boiling range groups from hexane to nonane. Paraffinic (P), naphthenic (N), and aromatic (A) distributions were obtained for the boiling point fractions up to nonane. The average molar mass and the overall density of the condensate were measured experimentally. For the mutual solubility of MEG...

  11. (Liquid + liquid) equilibria of the (water + acetic acid + dibutyl phthalate) system

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: krbaslar@istanbul.edu.tr; Ince, Erol [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: erolince@istanbul.edu.tr; Yueksel, Sema [Mak-Plast, Mahmutbey Tasocagi Yolu, No. 7, 34560 Bagcilar, Istanbul (Turkey)

    2005-11-15

    (Liquid + liquid) equilibrium (LLE) data of the (water + acetic acid + dibutyl phthalate) system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. The reliability of the experimental tie lines data was ascertained by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters between AC, ACH, CH{sub 2}, CH{sub 3}, CH{sub 2}COO, COOH, and H{sub 2}O functional groups. The experimental data were compared with predicted by UNIFAC model. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  12. (Liquid + liquid) equilibria of the (water + butyric acid + dodecanol) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: krbaslar@istanbul.edu.tr

    2006-06-15

    (Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH{sub 3}, CH{sub 2}, COOH, OH and H{sub 2}O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  13. (Liquid + liquid) equilibria of (water + propionic acid + diethyl phthalate) at several temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Cehreli, Sueheyla [Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Istanbul (Turkey)]. E-mail: cehreli@istanbul.edu.tr; Oezmen, Dilek [Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Istanbul (Turkey)]. E-mail: dilekus@istanbul.edu.tr; Tatli, Besir [Istanbul University, Engineering Faculty, Department of Chemical Engineering, 34320 Istanbul (Turkey)

    2005-10-15

    (Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + diethyl phthalate) were measured under atmospheric pressure and at T (298.2, 303.2, 308.2, and 313.2) K. Phase diagrams were obtained by determining solubility and tie-line data. The UNIFAC model was used to correlate the experimental tie-line data. The average root-mean-square deviation between the observed and calculated mass fraction was 0.03. Distribution coefficients and separation factors were evaluated over the immiscibility regions.

  14. (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Arce, Alberto [Department of Chemical Engineering, University of Santiago de Compostela, E-15782, Santiago de Compostela (Spain)]. E-mail: eqaaarce@usc.es; Rodriguez, Hector [Department of Chemical Engineering, University of Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Rodriguez, Oscar [Department of Chemical Engineering, University of Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Soto, Ana [Department of Chemical Engineering, University of Santiago de Compostela, E-15782, Santiago de Compostela (Spain)

    2005-09-15

    (Liquid + liquid) equilibrium data for the ternary system (dibutyl ether + methanol + water) were experimentally determined at T = (298.15, 308.15, and 318.15) K. The experimental results were correlated by means of the NRTL and UNIQUAC equations, the best results being achieved with the UNIQUAC equation, both for the individual correlations at each temperature and for the overall correlation considering all the three experimental data sets. The experimental tie-lines were also compared to the values predicted by the UNIFAC method.

  15. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  16. (Liquid + liquid) equilibrium of (dibutyl ether + methanol + water) at different temperatures

    International Nuclear Information System (INIS)

    Arce, Alberto; Rodriguez, Hector; Rodriguez, Oscar; Soto, Ana

    2005-01-01

    (Liquid + liquid) equilibrium data for the ternary system (dibutyl ether + methanol + water) were experimentally determined at T = (298.15, 308.15, and 318.15) K. The experimental results were correlated by means of the NRTL and UNIQUAC equations, the best results being achieved with the UNIQUAC equation, both for the individual correlations at each temperature and for the overall correlation considering all the three experimental data sets. The experimental tie-lines were also compared to the values predicted by the UNIFAC method

  17. A liquid-liquid distribution method for the study of complexation of cadmium in natural waters

    International Nuclear Information System (INIS)

    Stary, J.; Kratzer, K.

    1990-01-01

    Liquid-liquid distribution of cadmium between pyridine solution in benzene and aqueous phase containing iodide was radiometrically investigated, in order to develop a simple method for the study of complexation of cadmium in aqueous solutions. The degree of complexation can be determined from the decrease of the distribution ratio in the presence of complexing agents forming non-extractable complexes with cadmium. The method was verified for the determination of the composition and stability constants of cadmium with acetate, tartrate, oxalate and glycolate anions and applied for the study of complexation of cadmium in natural waters. (author) 9 refs.; 4 figs

  18. Magnetic properties and core electron binding energies of liquid water

    Science.gov (United States)

    Galamba, N.; Cabral, Benedito J. C.

    2018-01-01

    The magnetic properties and the core and inner valence electron binding energies of liquid water are investigated. The adopted methodology relies on the combination of molecular dynamics and electronic structure calculations. Born-Oppenheimer molecular dynamics with the Becke and Lee-Yang-Parr functionals for exchange and correlation, respectively, and includes an empirical correction (BLYP-D3) functional and classical molecular dynamics with the TIP4P/2005-F model were carried out. The Keal-Tozer functional was applied for predicting magnetic shielding and spin-spin coupling constants. Core and inner valence electron binding energies in liquid water were calculated with symmetry adapted cluster-configuration interaction. The relationship between the magnetic shielding constant σ(17O), the role played by the oxygen atom as a proton acceptor and donor, and the tetrahedral organisation of liquid water are investigated. The results indicate that the deshielding of the oxygen atom in water is very dependent on the order parameter (q) describing the tetrahedral organisation of the hydrogen bond network. The strong sensitivity of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between σ(17O) and the energy gap between the 1a1[O1s] (core) and the 2a1 (inner valence) orbitals of water. Although several studies discussed the eventual connection between magnetic properties and core electron binding energies, such a correlation could not be clearly established. Here, we demonstrate that for liquid water this correlation exists although involving the gap between electron binding energies of core and inner valence orbitals.

  19. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    Science.gov (United States)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  20. Laser spectrometry applied to the simultaneous determination of the δ2H, δ17O, and δ18O isotope abundances in water

    International Nuclear Information System (INIS)

    Kerstel, E.R.T.; Trigt, R. van; Dam, N.; Reuss, J.; Meijer, H.A.J.

    2001-01-01

    We demonstrate the first successful application of infrared laser spectrometry to the accurate, simultaneous determination of the relative 2 H/ 1 H, 17 O/ 16 O, and 18 O/ 16 O isotope abundance ratios in natural water. The method uses a narrow line width color center laser to record the direct absorption spectrum of low-pressure gas-phase water samples (presently 10 μl liquid) in the 3μm spectral region. The precision of the spectroscopic technique is shown to be 0.7 per mille for δ 2 H and 0.5 per mille for δ 17 O and δ 18 O, while the calibrated accuracy for natural waters amounts to about 3 per mille and 1 per mille, respectively. (author)

  1. The liquid water balance of the Greenland ice sheet

    Science.gov (United States)

    Steger, Christian; Reijmer, Carleen; van den Broeke, Michiel

    2017-04-01

    Mass loss from the Greenland Ice Sheet (GrIS) is an increasingly important contributor to global sea level rise. During the last decade, the mass loss was dominated by meltwater runoff. Linking actual runoff from the ice sheet to melt and other forms of liquid water input at the surface (rainfall and condensation) is however complex, as liquid water may be retained within the ice sheet due to refreezing and/or (perennial) storage. In the ablation zone on bare ice, liquid water runs of laterally at the surface, accumulates in supraglacial lakes or enters the ice sheet's en- or subglacial hydraulic system via moulins and crevasses. In the higher elevated accumulation zone, liquid water percolates into the porous firn layer and part of it may be retained due to refreezing and/or perennial storage in so called firn aquifers. In this study, we investigate the liquid water balance of the GrIS focussing on the role of the firn layer. For this purpose, we ran SNOWPACK, a relatively complex one-dimensional snow model, on a horizontal resolution of ˜ 11km and for the transient period of 1960 to 2015. At the snow-atmosphere-interface, the model was forced by output of the regional atmospheric climate model RACMO2.3. A comparison of SNOWPACK with in-situ observations (firn density profiles) and remote sensing data (firn aquifer locations inferred from radar measurements) indicated a good agreement for most climatic conditions. On a GrIS-wide scale, the modelled surface mass balance of SNOWPACK exhibits, in combination with ice-discharge data for ocean-terminating glaciers, an excellent agreement with GRACE data for the period 2003 - 2012. GrIS-integrated amounts of surface melt reveal a significant positive trend (+11.6Gta-2) in the second half of the simulation period. Within this interval, the trend in runoff is larger (+8.3Gta-2) than the one in refreezing (+3.6Gta-2), which results in an overall decrease of the refreezing fraction. This decrease is for instance less

  2. Liquid radioactive waste processing system for pressurized water reactor plants

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    This Standard sets forth design, construction, and performance requirements, with due consideration for operation, of the Liquid Radioactive Waste Processing System for pressurized water reactor plants for design basis inputs. For the purpose of this Standard, the Liquid Radioactive Waste Processing System begins at the interfaces with the reactor coolant pressure boundary and the interface valve(s) in lines from other systems, or at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material; and it terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system, and at the point of recycle back to storage for reuse

  3. Effect of ionic liquid 1-methylimidazolium chloride on the vapour liquid equilibrium of water, methanol, ethanol, and {water + ethanol} mixture

    International Nuclear Information System (INIS)

    Shen Chong; Li Xuemei; Lu Yingzhou; Li Chunxi

    2011-01-01

    Highlights: → Vapour pressure data for three binary systems and a ternary system were measured. → Water, ethanol, methanol, and 1-methylimidazolium chloride were studied. → The vapour pressure data can be well correlated by the NRTL model. → The isobaric (vapour + liquid) equilibria were predicted by the NRTL model. → The salt effect of ILs on the VLE of {water + ethanol} mixture was investigated. - Abstract: Measurements of vapour pressure data were conducted using a quasi-static ebulliometer for systems containing water, methanol, ethanol, and a mixture of {water + ethanol} in the presence of an ionic liquid (IL), namely, 1-methylimidazolium chloride ([MIm]Cl), wherein the IL-content ranged from w 2 = (0.10 to 0.50). The vapour pressure data of IL-containing binary systems were correlated by the NRTL model with an overall average absolute relative deviation (AARD) of 0.0103, and the resulting binary parameters were used to predict the vapour pressures of a ternary system {water + ethanol + [MIm]Cl} with an AARD less than 0.0077. Further, the isobaric vapour liquid equilibria (VLE) for the ternary system {water + ethanol + IL} with IL-content of w 3 = (0.10, 0.30, and 0.50) for [MIm]Cl and x 3 = 0.15 for [MIm]Cl, [C 4 MIm]Cl, and [C 6 MIm]Cl were predicted at 101.3 kPa, respectively. It is indicated that [MIm]Cl presents the strongest ability to enhance the relative volatility of ethanol to water in the mixture of {water + ethanol} than that of [C 4 MIm]Cl and [C 6 MIm]Cl, which is consistent with the cationic sizes and hence the ionic hydration ability. Therefore, distillation separation of the azeotrope of {water + ethanol} can be sufficiently facilitated by the addition of [MIm]Cl at a specified content.

  4. Liquid-liquid critical point in a simple analytical model of water

    Science.gov (United States)

    Urbic, Tomaz

    2016-10-01

    A statistical model for a simple three-dimensional Mercedes-Benz model of water was used to study phase diagrams. This model on a simple level describes the thermal and volumetric properties of waterlike molecules. A molecule is presented as a soft sphere with four directions in which hydrogen bonds can be formed. Two neighboring waters can interact through a van der Waals interaction or an orientation-dependent hydrogen-bonding interaction. For pure water, we explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility and found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations. The model exhibits also two critical points for liquid-gas transition and transition between low-density and high-density fluid. Coexistence curves and a Widom line for the maximum and minimum in thermal expansion coefficient divides the phase space of the model into three parts: in one part we have gas region, in the second a high-density liquid, and the third region contains low-density liquid.

  5. Abundant plankton-sized microplastic particles in shelf waters of the northern Gulf of Mexico.

    Science.gov (United States)

    Di Mauro, Rosana; Kupchik, Matthew J; Benfield, Mark C

    2017-11-01

    Accumulation of marine debris is a global problem that affects the oceans on multiple scales. The majority of floating marine debris is composed of microplastics: plastic particles up to 5 mm in diameter. With similar sizes and appearances to natural food items, these small fragments pose potential risks to many marine organisms including zooplankton and zooplanktivores. Semi-enclosed seas are reported to have high concentrations of microplastics, however, the distribution and concentration of microplastics in one such system, the Gulf of Mexico, remains unknown. Our study documented and characterized microplastics in continental shelf waters off the Louisiana coast in the northern Gulf of Mexico, using bongo nets, neuston nets, and Niskin bottles. Additionally, we compared the size distributions of microplastics and zooplankton collected using the nets. Plastics were manually sorted from the samples, documented, and measured using digital microscopy. Confirmation of putative plastics was carried out by hydrofluoric acid digestion and a subsample was analyzed using FTIR microscopy. Estimated concentrations of microplastics collected on the inner continental shelf during this study are among the highest reported globally. Total microplastic concentrations ranged from 4.8 to 8.2 particles m -3 and 5.0-18.4 particles m -3 for the bongo and neuston samples, respectively. Niskin bottles collected smaller plastic particles than the nets and indicated total microplastic concentrations (primarily fibers) from 6.0E4 - 15.7E4 particles m -3 . Microplastic concentrations were greater than the abundances of all but four of the five most abundant taxa from bongo nets and were not statistically different from the abundances of any of the most numerous taxa from neuston nets. Sizes of microplastics and zooplankton partially or completely overlapped, suggesting the potential for confusion with natural prey. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Dispersive liquid-liquid microextraction of silver nanoparticles in water using ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate.

    Science.gov (United States)

    Chen, Sha; Sun, Yuanjing; Chao, Jingbo; Cheng, Liping; Chen, Yun; Liu, Jingfu

    2016-03-01

    Using the ionic liquid (IL) 1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent, a dispersive liquid-liquid microextraction method was developed to extract silver nanoparticles (AgNPs) from environmental water samples. Parameters that influenced the extraction efficiency such as IL concentration, pH and extraction time were optimized. Under the optimized conditions, the highest extraction efficiency for AgNPs was above 90% with an enrichment factor of >90. The extracted AgNPs in the IL phase were identified by transmission electron microscopy and ultraviolet-visible spectroscopy, and quantified by inductively coupled plasma mass spectrometry after microwave digestion, with a detection limit of 0.01μg/L. The spiked recovery of AgNPs was 84.4% with a relative standard deviation (RSD) of 3.8% (n=6) at a spiked level of 5μg/L, and 89.7% with a RSD of 2.2% (n=6) at a spiked level of 300μg/L, respectively. Commonly existed environmental ions had a very limited influence on the extraction efficiency. The developed method was successfully applied to the analysis of AgNPs in river water, lake water, and the influent and effluent of a wastewater treatment plant, with recoveries in the range of 71.0%-90.9% at spiking levels of 0.11-4.7μg/L. Copyright © 2015. Published by Elsevier B.V.

  7. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals.

    Science.gov (United States)

    Yin, Qiushi; Tan, Jeffrey Miles; Besson, Claire; Geletii, Yurii V; Musaev, Djamaladdin G; Kuznetsov, Aleksey E; Luo, Zhen; Hardcastle, Ken I; Hill, Craig L

    2010-04-16

    Traditional homogeneous water oxidation catalysts are plagued by instability under the reaction conditions. We report that the complex [Co4(H2O)2(PW9O34)2]10-, comprising a Co4O4 core stabilized by oxidatively resistant polytungstate ligands, is a hydrolytically and oxidatively stable homogeneous water oxidation catalyst that self-assembles in water from salts of earth-abundant elements (Co, W, and P). With [Ru(bpy)3]3+ (bpy is 2,2'-bipyridine) as the oxidant, we observe catalytic turnover frequencies for O2 production > or = 5 s(-1) at pH = 8. The rate's pH sensitivity reflects the pH dependence of the four-electron O2-H2O couple. Extensive spectroscopic, electrochemical, and inhibition studies firmly indicate that [Co4(H2O)2(PW9O34)2]10- is stable under catalytic turnover conditions: Neither hydrated cobalt ions nor cobalt hydroxide/oxide particles form in situ.

  8. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  9. Optically Thin Liquid Water Clouds: Their Importance and Our Challenge

    Science.gov (United States)

    Turner, D. D.; Vogelmann, A. M.; Austin, R. T.; Barnard, J. C.; Cady-Pereira, K.; Chiu, J. C.; Clough, S. A.; Flynn, C.; Khaiyer, M. M.; Liljegren, J.; hide

    2006-01-01

    Many of the clouds important to the Earth's energy balance, from the tropics to the Arctic, are optically thin and contain liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP) when the liquid water path is small (i.e., importance of these thin clouds to the Earth's energy balance, and explain the difficulties in observing them. In particular, because these clouds are optically thin, potentially mixed-phase, and often (i.e., have large 3-D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. The intercomparison included eighteen different algorithms to evaluate their retrieved LWP, optical depth, and effective radii. Surprisingly, evaluation of the simplest case, a single-layer overcast cloud, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss potential avenues for future work.

  10. Emergence of the Coherent Structure of Liquid Water

    Directory of Open Access Journals (Sweden)

    Ivan Bono

    2012-07-01

    Full Text Available We examine in some detail the interaction of water molecules with the radiative electromagnetic field and find the existence of phase transitions from the vapor phase to a condensed phase where all molecules oscillate in unison, in tune with a self-trapped electromagnetic field within extended mesoscopic space regions (Coherence Domains. The properties of such a condensed phase are examined and found to be compatible with the phenomenological properties of liquid water. In particular, the observed value of critical density is calculated with good accuracy.

  11. Crossover between tetrahedral and hexagonal structures in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Chara, Osvaldo [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina); McCarthy, Andres N., E-mail: amccarthy@iflysib.unlp.edu.a [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina); Grigera, J. Raul [Instituto de Fisica de Liquidos y Sistemas Biologicos (IFLYSIB), CONICET - Universidad Nacional de La Plata (Argentina)

    2011-01-17

    It is widely accepted that liquid water structure is comprised of two closely interweaved components; i.e. tetrahedral (low density) and hexagonal (high density) structures. The relative amount of these components is temperature and pressure dependent. We propose an order parameter, based on the radial distribution function, that quantifies the relative structural composition at any defined temperature and pressure, thus establishing the crossover point in structural dominance. At 300 K this point lies close to 2 kbar, pressure at which water looses most of its 'anomalous' properties.

  12. Distribution, abundance and feeding ecology of baleen whales in Icelandic waters: have recent environmental changes had an effect?

    Directory of Open Access Journals (Sweden)

    Gísli Arnór Víkingsson

    2015-02-01

    Full Text Available The location of Iceland at the junction of submarine ridges in the North-East Atlantic where warm and cold water masses meet south of the Arctic Circle contributes to high productivity of the waters around the island. During the last two decades, substantial increases in sea temperature and salinity have been reported. Concurrently, pronounced changes have occurred in the distribution of several fish species and euphausiids. The distribution and abundance of cetaceans in the Central and Eastern North Atlantic have been monitored regularly since 1987. Significant changes in the distribution and abundance of several cetacean species have occurred in this time period. The abundance of Central North Atlantic humpback and fin whales has increased from 1,800 to 11,600 and 15,200 to 20,600, respectively, in the period 1987-2007. In contrast, the abundance of minke whales on the Icelandic continental shelf decreased from around 44,000 in 2001 to 20,000 in 2007 and 10,000 in 2009. The increase in fin whale abundance was accompanied by expansion of distribution into the deep waters of the Irminger Sea. The distribution of the endangered blue whale has shifted northwards in this period. The habitat selection of fin whales was analyzed with respect to physical variables (temperature, depth, salinity using a generalized additive model, and the results suggest that abundance was influenced by an interaction between the physical variables depth and distance to the 2000m isobaths, but also by sea surface temperature and sea surface height, However, environmental data generally act as proxies of other variables, to which the whales respond directly. Overall, these changes in cetacean distribution and abundance may be a functional feeding response of the cetacean species to physical and biological changes in the marine environment, including decreased abundance of euphausiids, a northward shift in summer distribution of capelin and a crash in the abundance of

  13. Selective extraction of emerging contaminants from water samples by dispersive liquid-liquid microextraction using functionalized ionic liquids.

    Science.gov (United States)

    Yao, Cong; Li, Tianhao; Twu, Pamela; Pitner, William R; Anderson, Jared L

    2011-03-25

    Functionalized ionic liquids containing the tris(pentafluoroethyl)trifluorophosphate (FAP) anion were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) for the extraction of 14 emerging contaminants from water samples. The extraction efficiencies and selectivities were compared to those of an in situ IL DLLME method which uses an in situ metathesis reaction to exchange 1-butyl-3-methylimidazolium chloride (BMIM-Cl) to 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (BMIM-NTf(2)). Compounds containing tertiary amine functionality were extracted with high selectivity and sensitivity by the 1-(6-amino-hexyl)-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate (HNH(2)MPL-FAP) IL compared to other FAP-based ILs and the BMIM-NTf(2) IL. On the other hand, polar or acidic compounds without amine groups exhibited higher enrichment factors using the BMIM-NTf(2) IL. The detection limits for the studied analytes varied from 0.1 to 55.1 μg/L using the traditional IL DLLME method with the HNH(2)MPL-FAP IL as extraction solvent, and from 0.1 to 55.8 μg/L using in situ IL DLLME method with BMIM-Cl+LiNTf(2) as extraction solvent. A 93-fold decrease in the detection limit of caffeine was observed when using the HNH(2)MPL-FAP IL compared to that obtained using in situ IL DLLME method. Real water samples including tap water and creek water were analyzed with both IL DLLME methods and yielded recoveries ranging from 91% to 110%. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-06-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.

  15. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Transformation of acidic poorly water soluble drugs into ionic liquids.

    Science.gov (United States)

    Balk, Anja; Wiest, Johannes; Widmer, Toni; Galli, Bruno; Holzgrabe, Ulrike; Meinel, Lorenz

    2015-08-01

    Poor water solubility of active pharmaceutical ingredients (API) is a major challenge in drug development impairing bioavailability and therapeutic benefit. This study is addressing the possibility to tailor pharmaceutical and physical properties of APIs by transforming these into tetrabutylphosphonium (TBP) salts, including the generation of ionic liquids (IL). Therefore, poorly water soluble acidic APIs (Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole, and Tolbutamide) were converted into TBP ILs or low melting salts and compared to the corresponding sodium salts. Free acids and TBP salts were characterized by NMR and IR spectroscopy, DSC and XRPD, DVS and dissolution rate measurements, release profiles, and saturation concentration measurements. TBP salts had lower melting points and glass transition temperatures and dissolution rates were improved up to a factor of 1000 as compared to the corresponding free acid. An increase in dissolution rates was at the expense of increased hygroscopicity. In conclusion, the creation of TBP ionic liquids or solid salts from APIs is a valuable concept addressing dissolution and solubility challenges of poorly water soluble acidic compounds. The data suggested that tailor-made counterions may substantially expand the formulation scientist's armamentarium to meet challenges of poorly water soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  18. Spectrophotometric determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Lemos, Valfredo Azevedo; dos Santos, Liz Oliveira; Silva, Eldevan dos Santos; Vieira, Emanuel Vitor dos Santos

    2012-01-01

    A simple method for the determination of mercury in water samples after preconcentration using dispersive liquid-liquid microextraction is described. The procedure is based on the extraction of mercury in the form of a complex and its subsequent determination by spectrophotometry. The complex is formed between Hg(II) and 2-(2-benzothiazolylazo)-p-cresol. The detection at 650 nm is performed directly in the metal-rich phase, which is spread on a triacetylcellulose membrane. The method eliminates the need to use a cuvet or large quantities of samples and reagents. The parameters that influence the preconcentration were studied, and the analytical characteristics were determined. The enrichment factor and the consumptive index for this method were 64 and 0.16 mL, respectively. The LOD (3.3 microg/L) and LOQ (11.1 microg/L) were also determined. The accuracy of the method was tested by the determination of mercury in certified reference materials BCR 397 (Human Hair) and SRM 2781 (Domestic Sludge). The method was applied to the determination of mercury in samples of drinking water, sea water, and river water.

  19. Phytoplankton abundance in relation to the quality of the coastal water – Arabian Gulf, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Mostafa Abdel Mohsen El Gammal

    2017-12-01

    Full Text Available Phytoplankton abundance in relation to some physicochemical characters of the costal water of Arabian Gulf (Saudi Arabia was studied for one year. The sampling program included 15 locations in Dammam, Saihat, Al-Qatif, Al-Awamia and Safwa. Water samples were analyzed monthly for these parameters; temperature, pH, salinity, dissolved oxygen, nitrite, nitrate, ammonia, carbon dioxide, total chloride, reactive orthophosphate and total phosphorus and alkalinity, also phytoplankton communities were identified and Chlorophyll a was estimated. The results showed that, the high phytoplankton density attaining the maximum (190.3 × 104/m3 during May and June, and the minimum (10.4 × 104/m3 during November and December. Forty Five species belonging to 5 phytoplankton groups were recorded. Bacillariophyceae was the first dominant group forming 48% of the total phytoplankton communities (23 species. The dominant species of Bacillariophyceae were Pleurosigma strigosum, Pleurosigma elongatum, Lyrella clavata, Rhizosolenia shrubsolei, Cylindrotheca closterium, Nitzschia panduriform, Nitzschia longissimia, Amphora sp and Stephanopyxis. Dinophyceae was the second dominant group and formed 31% of the total phytoplankton communities (10 species; the dominant species were Ceratium fusus, Heterosigma sp, Ceratium furca, Prorocentrum triestium, Protoperidinium sp, Gyrodinium spirale, Noctiluca scintillans and Scrippsiella trochoidea. Cyanophyceae formed 13% (5 species where Nostoc sp, Oscillatoria and Merismopedia sp were the dominant species. Chlorophyceae had 8% (6 species; Scendesmus sp., Chlorella sp., Chlamydomonas sp., Dunaliella salina and Nannochloropsis sp were the dominant species. The Euglinophyceae was rare only one species (Euglina sp. The relationship was positive between the phytoplankton, chlorophyll a and carbon dioxide while negative amongst dissolved oxygen and total nitrogen. This research indicated that the relation between water quality

  20. (Liquid + liquid) equilibria of (water + butyric acid + dibasic esters) ternary systems

    International Nuclear Information System (INIS)

    Kirbaslar, S. Ismail; Sahin, Selin; Bilgin, Mehmet

    2007-01-01

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {water (1) + butyric acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3)} at T = 298.15 K and p = (101.3 ± 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the dibasic esters layers than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region

  1. (Liquid + liquid) equilibria of the (water + acetic acid + dibasic esters mixture) system

    Energy Technology Data Exchange (ETDEWEB)

    Ince, Erol [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: erolince@istanbul.edu.tr

    2006-12-15

    (Liquid + liquid) equilibrium (LLE) data for the {l_brace}water + acetic acid + dibasic esters mixture (dimethyl adipate + dimethyl glutarate + dimethyl succinate){r_brace} system have been determined experimentally at T = (298.2, 308.2, and 318.2) K. Complete phase diagrams were obtained by determining solubility curve and tie-line data. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The UNIFAC model was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between CH{sub 2}, CH{sub 3}COO, CH{sub 3}, COOH, and H{sub 2}O functional groups. Distribution coefficients and separation factors were compared with previous studies.

  2. (Liquid + liquid) equilibria of (water + propionic acid + dibasic esters) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Ince, Erol [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: erolince@istanbul.edu.tr; Sahin, Selin; Dramur, Umur [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2007-11-15

    (Liquid + liquid) equilibrium (LLE) data for the solubility curves and tie-line compositions were examined for mixtures of {l_brace}water (1) + propionic acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3){r_brace} at T = 298.15 K and atmospheric pressure, (101.3 {+-} 0.7) kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters phases than in the aqueous phase. The reliability of the experimental tie-line data were confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC and modified UNIFAC methods. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  3. (Liquid + liquid) equilibria of (water + butyric acid + isoamyl alcohol) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Bilgin, Mehmet [Engineering Faculty, Chemical Engineering Department, Istanbul University, Avcilar-Campus, 34320 Istanbul (Turkey); Ismail Kirbaslar, S. [Engineering Faculty, Chemical Engineering Department, Istanbul University, Avcilar-Campus, 34320 Istanbul (Turkey)]. E-mail: krbaslar@istanbul.edu.tr; Oezcan, Oender [Mustafa Nevzat Ilac San. AS., 34530 Yenibosna, Istanbul (Turkey); Dramur, Umur [Engineering Faculty, Chemical Engineering Department, Istanbul University, Avcilar-Campus, 34320 Istanbul (Turkey)

    2005-04-15

    (Liquid + liquid) equilibrium (LLE) data for the ternary system (water + butyric acid + isoamyl alcohol) have been determined experimentally at T (298.15, 308.15 and 318.15) K. Complete phase diagrams were obtained by determining solubility and the tie-line data. Tie-line compositions were correlated by Othmer-Tobias method. The UNIFAC method was used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data between groups CH{sub 3}, CH{sub 2}, CH, COOH, OH and H{sub 2}O. It is found that UNIFAC group interaction parameters used for LLE could not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  4. (Liquid + liquid) equilibria of (water + butyric acid + dibasic esters) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: krbaslar@istanbul.edu.tr; Sahin, Selin [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey); Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2007-02-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for mixtures of {l_brace}water (1) + butyric acid (2) + dimethyl succinate or dimethyl glutarate or dimethyl adipate (3){r_brace} at T = 298.15 K and p = (101.3 {+-} 0.7) kPa. The relative mutual solubility of the butyric acid is higher in the dibasic esters layers than in the aqueous layer. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  5. Abundance of broad bacterial Taxa in the Sargasso Sea explained by environmental conditions but not water mass

    DEFF Research Database (Denmark)

    Sjöstedt, Johanna; Martiny, Jennifer Bellanca Hughes; Munk, Peter

    2014-01-01

    To explore the potential linkage between distribution of marine bacterioplankton groups, environmental conditions, and water mass, we investigated the factors determining the abundance of bacterial taxa across the hydrographically complex Subtropical Convergence Zone in the Sargasso Sea. Based...... of Synechococcus, Prochlorococcus, and picoalgae were determined by flow cytometry. Linear multiple-regression models determining the relative effects of eight environmental variables and of water mass explained 35 to 86% of the variation in abundance of the quantified taxa, even though only one to three variables...... the Sargasso Sea using only a few environmental parameters....

  6. Interplay of the Glass Transition and the Liquid-Liquid Phase Transition in Water

    Science.gov (United States)

    Giovambattista, Nicolas; Loerting, Thomas; Lukanov, Boris R.; Starr, Francis W.

    2012-01-01

    Water has multiple glassy states, often called amorphous ices. Low-density (LDA) and high-density (HDA) amorphous ice are separated by a dramatic, first-order like phase transition. It has been argued that the LDA-HDA transformation connects to a first-order liquid-liquid phase transition (LLPT) above the glass transition temperature Tg. Direct experimental evidence of the LLPT is challenging to obtain, since the LLPT occurs at conditions where water rapidly crystallizes. In this work, we explore the implications of a LLPT on the pressure dependence of Tg(P) for LDA and HDA by performing computer simulations of two water models – one with a LLPT, and one without. In the absence of a LLPT, Tg(P) for all glasses nearly coincide. When there is a LLPT, different glasses exhibit dramatically different Tg(P) which are directly linked with the LLPT. Available experimental data for Tg(P) are only consistent with the scenario including a LLPT. PMID:22550566

  7. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity.

    Science.gov (United States)

    Cao, Yuanyuan; Chen, Yu; Sun, Xiaofu; Zhang, Zhongmin; Mu, Tiancheng

    2012-09-21

    Most of the ionic liquids (ILs) are hygroscopic in air. The effects of structural factors of ILs (cation, anion, alkyl chain length at cation, and C2 methylation at cation) and external factors (temperature, relative humidity, and impurity) on the kinetics of water sorption by 18 ILs were investigated. A modified two-step sorption mechanism was proposed to correlate the water sorption data in the ILs. Three type of parameters (sorption capacity, sorption rate and degree of difficulty to reach sorption equilibrium) based on the modified two-step mechanism were derived to comprehensively characterize the water sorption processes. These parameters have similar tendencies, providing an efficient way to evaluate them by one parameter that can be easily obtained. The hydrophilicity of the ILs was classified to four levels (super-high, high, medium, low) according to the water sorption capacity. The results show that cation of the ILs also plays an important role in water sorption, and the impurities affect the water sorption enormously. Acetate and halogen-based ILs have the highest hydrophilicity when combined with the imidazolium or pyridinium cation.

  8. Interfacial thermodynamics of water and six other liquid solvents.

    Science.gov (United States)

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  9. Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea

    Directory of Open Access Journals (Sweden)

    Elisa Martí

    2017-11-01

    Full Text Available The floating plastic debris along the Arabian coast of the Red Sea was sampled by using surface-trawling plankton nets. A total of 120 sampling sites were spread out over the near-shore waters along 1,500 km of coastline during seven cruises performed during 2016 and 2017. Plastic debris, dominated by millimeter-sized pieces, was constituted mostly of fragments of rigid objects (73% followed by pieces of films (17%, fishing lines (6%, and foam (4%. These fragments were mainly made up by polyethylene (69% and polypropylene (21%. Fibers, likely released from synthetic textiles, were ubiquitous and abundant, although were analyzed independently due to the risk of including non-plastic fibers and airborne contamination of samples in spite of the precautions taken. The plastic concentrations (excluding possible plastic fibers contrasts with those found in other semi-closed seas, such as the neighboring Mediterranean. They were relatively low all over the Red Sea (<50,000 items km−2; mean ± SD = 3,546 ± 8,154 plastic item km−2, 1.1 ± 3.0 g km−2 showing no clear spatial relationship with the distribution of coastal population. Results suggests a low plastic waste input from land as the most plausible explanation for this relative shortage of plastic in the surface waters of the Red Sea; however, the additional intervention of particular processes of surface plastic removal by fish or the filtering activity of the extensive coral reefs along the coastline cannot be discarded. In addition, our study highlights the relevance of determining specific regional conversion rates of mismanaged plastic waste to marine debris, accounting for the role of near-shore activities (e.g., beach tourism, recreational navigation, in order to estimate plastic waste inputs into the ocean.

  10. Low Abundance of Plastic Fragments in the Surface Waters of the Red Sea

    KAUST Repository

    Martí, Elisa

    2017-11-08

    The floating plastic debris along the Arabian coast of the Red Sea was sampled by using surface-trawling plankton nets. A total of 120 sampling sites were spread out over the near-shore waters along 1,500 km of coastline during seven cruises performed during 2016 and 2017. Plastic debris, dominated by millimeter-sized pieces, was constituted mostly of fragments of rigid objects (73%) followed by pieces of films (17%), fishing lines (6%), and foam (4%). These fragments were mainly made up by polyethylene (69%) and polypropylene (21%). Fibers, likely released from synthetic textiles, were ubiquitous and abundant, although were analyzed independently due to the risk of including non-plastic fibers and airborne contamination of samples in spite of the precautions taken. The plastic concentrations (excluding possible plastic fibers) contrasts with those found in other semi-closed seas, such as the neighboring Mediterranean. They were relatively low all over the Red Sea ( < 50,000 items km; mean ± SD = 3,546 ± 8,154 plastic item km, 1.1 ± 3.0 g km) showing no clear spatial relationship with the distribution of coastal population. Results suggests a low plastic waste input from land as the most plausible explanation for this relative shortage of plastic in the surface waters of the Red Sea; however, the additional intervention of particular processes of surface plastic removal by fish or the filtering activity of the extensive coral reefs along the coastline cannot be discarded. In addition, our study highlights the relevance of determining specific regional conversion rates of mismanaged plastic waste to marine debris, accounting for the role of near-shore activities (e.g., beach tourism, recreational navigation), in order to estimate plastic waste inputs into the ocean.

  11. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  12. The structural origin of anomalous properties of liquid water

    Science.gov (United States)

    Nilsson, Anders; Pettersson, Lars G. M.

    2015-12-01

    Water is unique in its number of unusual, often called anomalous, properties. When hot it is a normal simple liquid; however, close to ambient temperatures properties, such as the compressibility, begin to deviate and do so increasingly on further cooling. Clearly, these emerging properties are connected to its ability to form up to four well-defined hydrogen bonds allowing for different local structural arrangements. A wealth of new data from various experiments and simulations has recently become available. When taken together they point to a heterogeneous picture with fluctuations between two classes of local structural environments developing on temperature-dependent length scales.

  13. Gastric emptying of liquids in rats dehydrated by water deprivation

    Directory of Open Access Journals (Sweden)

    Baracat E.C.E.

    1997-01-01

    Full Text Available The gastric emptying of liquids was investigated in male Wistar rats (8 to 10 weeks old, 210-300 g dehydrated by water deprivation. In this model of dehydration, weight loss, hematocrit and plasma density were significantly higher in the dehydrated animals than in the control groups after 48 and 72 h of water deprivation (P<0.05. Three test meals (saline (N = 10, water (N = 10 and a WHO rehydrating solution containing in one liter 90 mEq sodium, 20 mEq potassium, 80 mEq chloride and 30 mEq citrate (N = 10 were used to study gastric emptying following water deprivation for 24, 48 and 72 h. After 72 h, gastric emptying of the water (39.4% retention and rehydrating solution (49.2% retention test meals was significantly retarded compared to the corresponding control groups (P<0.05, Mann-Whitney test. The 72-h period of deprivation was used to study the recovery from dehydration, and water was supplied for 60 or 120 min after 67 h of deprivation. Body weight loss, hematocrit and plasma density tended to return to normal when water was offered for 120 min. In the animals supplied with water for 60 min, there was a recovery in the gastric emptying of water while the gastric emptying of the rehydrating solution was still retarded (53.1% retention; P<0.02, Kruskal-Wallis test. In the group supplied with water for 120 min, the gastric emptying of the rehydrating (51.7% retention and gluco-saline (46.0% retention solutions tended to be retarded (P = 0.04, Kruskal-Wallis test. In this model of dehydration caused by water deprivation, with little alteration in the body electrolyte content, gastric emptying of the rehydrating solution was retarded after rehydration with water. We conclude that the mechanisms whereby receptors in the duodenal mucosa can modify gastric motility are altered during dehydration caused by water deprivation

  14. Innovative Strategy on Hydrogen Evolution Reaction Utilizing Activated Liquid Water

    Science.gov (United States)

    Hwang, Bing-Joe; Chen, Hsiao-Chien; Mai, Fu-Der; Tsai, Hui-Yen; Yang, Chih-Ping; Rick, John; Liu, Yu-Chuan

    2015-11-01

    Splitting water for hydrogen production using light, or electrical energy, is the most developed ‘green technique’. For increasing efficiency in hydrogen production, currently, the most exciting and thriving strategies are focused on efficient and inexpensive catalysts. Here, we report an innovative idea for efficient hydrogen evolution reaction (HER) utilizing plasmon-activated liquid water with reduced hydrogen-bonded structure by hot electron transfer. This strategy is effective for all HERs in acidic, basic and neutral systems, photocatalytic system with a g-C3N4 (graphite carbon nitride) electrode, as well as in an inert system with an ITO (indium tin oxide) electrode. Compared to deionized water, the efficiency of HER increases by 48% based on activated water ex situ on a Pt electrode. Increase in energy efficiency from activated water is 18% at a specific current yield of -20 mA in situ on a nanoscale-granulated Au electrode. Moreover, the onset potential of -0.023 V vs RHE was very close to the thermodynamic potential of the HER (0 V). The measured current density at the corresponding overpotential for HER in an acidic system was higher than any data previously reported in the literature. This approach establishes a new vista in clean green energy production.

  15. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    water molecules. The variation of the energy flow characteristics with rotational axis, initial rotational energy excitation magnitude, method of excitation, and temperature is discussed. Finally, the relation of the nonequilibrium results to equilibrium time correlations is investigated.......The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...... hydration shell, dominated by those partners’ rotational motion, in a fairly symmetric fashion over the hydration shell. The minority component of the energy transfer, to these neighboring waters’ translational motion, exhibits an asymmetry in energy reception between hydrogen-bond-donating and -accepting...

  16. Determination of the Deuterium Abundances in Water from 156 to 10,000 ppm by SIFT-MS

    Czech Academy of Sciences Publication Activity Database

    Španěl, Patrik; Shestivska, Violetta; Chippendale, T. W. E.; Smith, D.

    2011-01-01

    Roč. 22, č. 1 (2011), s. 179-186 ISSN 1044-0305 Institutional research plan: CEZ:AV0Z40400503 Keywords : deuterium abundance * total body water * selected ion flow tube mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.002, year: 2011

  17. Solute Isotope Fractionation by Diffusion in Liquid Water

    Science.gov (United States)

    Bourg, I. C.; Sposito, G.

    2009-12-01

    In natural systems where molecular diffusion plays an important role, isotope distributions can be highly sensitive to the mass dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely assume that this mass-dependence (heretofore essentially unknown) either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relation. However, experiments and molecular dynamics (MD) simulations show that the mass-dependence of D is intermediate between these hydrodynamic and kinetic theory predictions for alkali metals, alkaline earth metals, halides, and noble gases (Richter et al., 2006; Bourg and Sposito, 2007, 2008; Bourg et al., 2009). In this talk, we present a general description of the influence of solute valence and radius on the mass-dependence of D for mono-atomic solutes in liquid water. We explain the molecular-scale origin of this mass-dependence and highlight its applications in geochemistry and groundwater hydrology. Bourg I.C., and Sposito G. (2007) Geochim. Cosmochim. Acta 71, 5583-5589. Bourg I.C., and Sposito G. (2008) Geochim. Cosmochim. Acta 72, 2237-2247. Bourg I.C., Richter F.M., et al. (2009) Geochim. Cosmochim. Acta, in preparation. Richter F.M., Mendybaev R.A., et al. (2006) Geochim. Cosmochim. Acta 70, 277-289.

  18. Stability of amorphous silica-alumina in hot liquid water.

    Science.gov (United States)

    Hahn, Maximilian W; Copeland, John R; van Pelt, Adam H; Sievers, Carsten

    2013-12-01

    Herein, the hydrothermal stability of amorphous silica-alumina (ASA) is investigated under conditions relevant for the catalytic conversion of biomass, namely in liquid water at 200 °C. The hydrothermal stability of ASA is much higher than that of pure silica or alumina. Interestingly, the synthetic procedure used plays a major role in its resultant stability: ASA prepared by cogelation (CG) lost its microporous structure, owing to hydrolysis of the siloxane bonds, but the resulting mesoporous material still had a considerable surface area. ASA prepared by deposition precipitation (DP) contained a silicon-rich core and an aluminum-rich shell. In hot liquid water, the latter structure was transformed into a layer of amorphous boehmite, which protected the particle from further hydrolysis. The surface area showed relatively minor changes during the transformation. Independent of the synthetic method used, the ASAs retained a considerable concentration of acid sites. The concentration of acid sites qualitatively followed the changes in surface area, but the changes were less pronounced. The performance of different ASAs for the hydrolysis of cellobiose into glucose is compared. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Thermodynamic mechanism of density anomaly of liquid water

    Directory of Open Access Journals (Sweden)

    Makoto eYasutomi

    2015-03-01

    Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.

  20. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  1. NEAR-INFRARED PHOTOMETRY OF Y DWARFS: LOW AMMONIA ABUNDANCE AND THE ONSET OF WATER CLOUDS

    International Nuclear Information System (INIS)

    Leggett, S. K.; Morley, Caroline V.; Marley, M. S.; Saumon, D.

    2015-01-01

    We present new near-infrared photometry for seven late-type T dwarfs and nine Y-type dwarfs, and lower limit magnitudes for a tenth Y dwarf, obtained at Gemini Observatory. We also present a reanalysis of H-band imaging data from the Keck Observatory Archive, for an 11th Y dwarf. These data are combined with earlier MKO-system photometry, Spitzer and WISE mid-infrared photometry, and available trigonometric parallaxes, to create a sample of late-type brown dwarfs that includes 10 T9-T9.5 dwarfs or dwarf systems, and 16 Y dwarfs. We compare the data to our models, which include updated H 2 and NH 3 opacity, as well as low-temperature condensate clouds. The models qualitatively reproduce the trends seen in the observed colors; however, there are discrepancies of around a factor of two in flux for the Y0-Y1 dwarfs, with T eff ≈ 350-400 K. At T eff ∼ 400 K, the problems could be addressed by significantly reducing the NH 3 absorption, for example by halving the abundance of NH 3 possibly by vertical mixing. At T eff ∼ 350 K, the discrepancy may be resolved by incorporating thick water clouds. The onset of these clouds might occur over a narrow range in T eff , as indicated by the observed small change in 5 μm flux over a large change in J – W2 color. Of the known Y dwarfs, the reddest in J –W2 are WISEP J182831.08+265037.8 and WISE J085510.83–071442.5. We interpret the former as a pair of identical 300-350 K dwarfs, and the latter as a 250 K dwarf. If these objects are ∼3 Gyr old, their masses are ∼10 and ∼5 Jupiter-masses, respectively

  2. Correlation Between Existence of Reef Sharks with Abundance of Reef Fishes in South Waters of Morotai Island (North Moluccas)

    Science.gov (United States)

    Mukharror, Darmawan Ahmad; Tiara Baiti, Isnaini; Ichsan, Muhammad; Pridina, Niomi; Triutami, Sanny

    2017-10-01

    Despite increasing academic research citation on biology, abundance, and the behavior of the blacktip reef sharks, the influence of reef fish population on the density of reef sharks: Carcharhinus melanopterus and Triaenodon obesus population in its habitat were largely unassessed. This present study examined the correlation between abundance of reef fishes family/species with the population of reef sharks in Southern Waters of Morotai Island. The existence of reef sharks was measured with the Audible Stationary Count (ASC) methods and the abundance of reef fishes was surveyed using Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The coefficient of Determination (R2) was used to investigate the degree of relationships between sharks and the specific reef fishes species. The research from 8th April to 4th June 2015 showed the strong positive correlations between the existence of reef sharks with abundance of reef fishes. The correlation values between Carcharhinus melanopterus/Triaenodon obesus with Chaetodon auriga was 0.9405, blacktip/whitetip reef sharks versus Ctenochaetus striatus was 0.9146, and Carcharhinus melanopterus/Triaenodon obesus to Chaetodon kleinii was 0.8440. As the shark can be worth more alive for shark diving tourism than dead in a fish market, the abundance of these reef fishes was important as an early indication parameter of shark existence in South Water of Morotai Island. In the long term, this highlights the importance of reef fishes abundance management in Morotai Island’s Waters to enable the establishment of appropriate and effective reef sharks conservation.

  3. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography ? Mass Spectrometry

    International Nuclear Information System (INIS)

    Petyuk, Vladislav A.; Qian, Weijun; Chin, Mark H.; Wang, Haixing H.; Livesay, Eric A.; Monroe, Matthew E.; Adkins, Joshua N.; Jaitly, Navdeep; Anderson, David J.; Camp, David G.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a ''universal'' stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion

  4. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W|mIL)...

  5. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  6. Physicochemical Factors Influence the Abundance and Culturability of Human Enteric Pathogens and Fecal Indicator Organisms in Estuarine Water and Sediment

    Directory of Open Access Journals (Sweden)

    Francis Hassard

    2017-10-01

    Full Text Available To assess fecal pollution in coastal waters, current monitoring is reliant on culture-based enumeration of bacterial indicators, which does not account for the presence of viable but non-culturable or sediment-associated micro-organisms, preventing effective quantitative microbial risk assessment (QMRA. Seasonal variability in viable but non-culturable or sediment-associated bacteria challenge the use of fecal indicator organisms (FIOs for water monitoring. We evaluated seasonal changes in FIOs and human enteric pathogen abundance in water and sediments from the Ribble and Conwy estuaries in the UK. Sediments possessed greater bacterial abundance than the overlying water column, however, key pathogenic species (Shigella spp., Campylobacter jejuni, Salmonella spp., hepatitis A virus, hepatitis E virus and norovirus GI and GII were not detected in sediments. Salmonella was detected in low levels in the Conwy water in spring/summer and norovirus GII was detected in the Ribble water in winter. The abundance of E. coli and Enterococcus spp. quantified by culture-based methods, rarely matched the abundance of these species when measured by qPCR. The discrepancy between these methods was greatest in winter at both estuaries, due to low CFU's, coupled with higher gene copies (GC. Temperature accounted for 60% the variability in bacterial abundance in water in autumn, whilst in winter salinity explained 15% of the variance. Relationships between bacterial indicators/pathogens and physicochemical variables were inconsistent in sediments, no single indicator adequately described occurrence of all bacterial indicators/pathogens. However, important variables included grain size, porosity, clay content and concentrations of Zn, K, and Al. Sediments with greater organic matter content and lower porosity harbored a greater proportion of non-culturable bacteria (including dead cells and extracellular DNA in winter. Here, we show the link between physicochemical

  7. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  8. The modelled liquid water balance of the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    C. R. Steger

    2017-11-01

    Full Text Available Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960–2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model–observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a−1 during 1990–2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a−1, respectively, where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  9. Development of Predictive Techniques for Estimating Liquid Water-Hydrate Equilibrium of Water-Hydrocarbon System

    Directory of Open Access Journals (Sweden)

    Amir H. Mohammadi

    2009-01-01

    Full Text Available In this communication, we review recent studies by these authors for modeling the -H equilibrium. With the aim of estimating the solubility of pure hydrocarbon hydrate former in pure water in equilibrium with gas hydrates, a thermodynamic model is introduced based on equality of water fugacity in the liquid water and hydrate phases. The solid solution theory of Van der Waals-Platteeuw is employed for calculating the fugacity of water in the hydrate phase. The Henry's law approach and the activity coefficient method are used to calculate the fugacities of the hydrocarbon hydrate former and water in the liquid water phase, respectively. The results of this model are successfully compared with some selected experimental data from the literature. A mathematical model based on feed-forward artificial neural network algorithm is then introduced to estimate the solubility of pure hydrocarbon hydrate former in pure water being in equilibrium with gas hydrates. Independent experimental data (not employed in training and testing steps are used to examine the reliability of this algorithm successfully.

  10. Use of Spacecraft Data to Drive Regions on Mars where Liquid Water would be Stable

    Science.gov (United States)

    Lobitz, Brad; Wood, Byron L.; Averner, Maurice M.; McKay, Christopher P.; MacElroy, Robert D.

    2001-01-01

    Combining Viking pressure and temperature data with Mars Orbital Laser Altimeter (MOLA) topography data we have computed the fraction of the martian year during which pressure and temperature allow for liquid water to be stable on the martian surface. We find that liquid water would be stable within the Hellas and Argyre basin and over the northern lowlands equatorward of about 40 degrees. The location with the maximum period of stable conditions for liquid water is in the southeastern portion of Utopia Planitia where 34% of the year liquid water would be stable if it was present. Locations of stability appear to correlate with the distribution of valley networks.

  11. Thermodynamic constraint on the cloud liquid water feedback in climate models

    Science.gov (United States)

    Betts, Alan K.; HARSHVARDHAN

    1987-01-01

    The cloud liquid water feedback in climate models consists of the increase (decrease) in optical depth of clouds resulting from higher (lower) liquid water contents that might accompany tropospheric warming (cooling). The change in cloud liquid water with temperature is shown to depend on the rate of change of the slope of the moist adiabat with respect to temperature, and it is a strong function of temperature. The value of this rate of change in the tropics is about half that in mid and high latitudes and is much less than the value obtained by assuming that liquid water scales with the saturation mixing ratio.

  12. Influence of liquid water and water vapor on antimisting kerosene (AMK)

    Science.gov (United States)

    Yavrouian, A. H.; Sarolouki, M.; Sarohia, V.

    1983-01-01

    Experiments have been performed to evaluate the compatibility of liquid water and water vapor with antimisting kerosenes (AMK) containing polymer additive FM-9 developed by Imperial Chemical Industries. This effort consists of the determination of water solubility in AMK, influence of water on restoration (degradation) of AMK, and effect of water on standard AMK quality control methods. The principal conclusions of this investigation are: (1) the uptake of water in AMK critically depends upon the degree of agitation and can be as high as 1300 ppm at 20 C, (2) more than 250 to 300 ppm of water in AMK causes an insoluble second phase to form. The amount of this second phase depends on fuel temperature, agitation, degree of restoration (degradation) and the water content of the fuel, (3) laboratory scale experiments indicate precipitate formation when water vapor comes in contact with cold fuel surfaces at a much lower level of water (125 to 150 ppm), (4) precipitate formation is very pronounced in these experiments where humid air is percolated through a cold fuel (-20 C), (5) laboratory tests further indicate that water droplet settling time is markedly reduced in AMK as compared to jet A, (6) limited low temperature testing down to -30 C under laboratory conditions indicates the formation of stable, transparent gels.

  13. The relative importance of water temperature and residence time in predicting cyanobacteria abundance in regulated rivers.

    Science.gov (United States)

    Cha, YoonKyung; Cho, Kyung Hwa; Lee, Hyuk; Kang, Taegu; Kim, Joon Ha

    2017-11-01

    Despite a growing awareness of the problems associated with cyanobacterial blooms in rivers, and particularly in regulated rivers, the drivers of bloom formation and abundance in rivers are not well understood. We developed a Bayesian hierarchical model to assess the relative importance of predictors of summer cyanobacteria abundance, and to test whether the relative importance of each predictor varies by site, using monitoring data from 16 sites in the four major rivers of South Korea. The results suggested that temperature and residence time, but not nutrient levels, are important predictors of summer cyanobacteria abundance in rivers. Although the two predictors were of similar significance across the sites, the residence time was marginally better in accounting for the variation in cyanobacteria abundance. The model with spatial hierarchy demonstrated that temperature played a consistently significant role at all sites, and showed no effect from site-specific factors. In contrast, the importance of residence time varied significantly from site to site. This variation was shown to depend on the trophic state, indicated by the chlorophyll-a and total phosphorus levels. Our results also suggested that the magnitude of weir inflow is a key factor determining the cyanobacteria abundance under baseline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  15. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water-water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid-liquid transition that could take place in the no-man's land, the temperature-pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  16. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  17. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Science.gov (United States)

    Voytkov, Ivan V.; Zabelin, Maksim V.; Vysokomornaya, Olga V.

    2016-02-01

    The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  18. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  19. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Chen, Junhua; Zhou, Guangming; Deng, Yongli; Cheng, Hongmei; Shen, Jie; Gao, Yi; Peng, Guilong

    2016-01-01

    Solid-phase extraction coupled with dispersive liquid-liquid microextraction was developed as an ultra-preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion-methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid-phase extraction coupled with dispersive liquid-liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid-phase extraction coupled with dispersive liquid-liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9-6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ionic Liquid Dispersive Liquid-Liquid Microextraction Method for the Determination of Irinotecan, an Anticancer Drug, in Water and Urine Samples Using UV-Vis Spectrophotometry.

    Science.gov (United States)

    Uysal, Deniz; Karadaş, Cennet; Kara, Derya

    2017-05-01

    A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.

  1. Self Assembly of Ionic Liquids at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Minofar, Babak

    2015-01-01

    Roč. 3, aug (2015), s. 27-40 ISSN 2245-4551 Institutional support: RVO:67179843 Keywords : Ionic liquids * air/ water interface * self assembly * ion- water interaction * ion-ion interaction Subject RIV: CE - Biochemistry

  2. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water.

    Science.gov (United States)

    Canbay, Hale Seçilmiş

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds ( r 2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs 95%). For compounds such as α -pinene, linalool, β -caryophyllene, α -humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE.

  3. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    Directory of Open Access Journals (Sweden)

    Hale Seçilmiş Canbay

    2017-01-01

    Full Text Available Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE, headspace technique (HS, and solid phase extraction (SPE, were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS. In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2≥0.999. Optimized methods showed acceptable repeatability (RSDs 95%. For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE.

  4. LIQUID-LIQUID EQUILIBRIA OF THE ACETIC ACID-WATER-MIXED SOLVENT (CYCLOHEXYL ACETATE-CYCLOHEXANOL SYSTEM

    Directory of Open Access Journals (Sweden)

    S. Çehreli

    2002-03-01

    Full Text Available Mixtures of cyclohexyl acetate and cyclohexanol were used as a mixed solvent to study liquid-liquid equilibria (LLE of the acetic acid-water-cyclohexanol-cyclohexyl acetate quaternary system. The solubility diagram and tie-line data were determined at 298±0.20 K and atmospheric pressure, using various compositions of mixed solvent. Reliability of the data was ascertained by making Othmer-Tobias and Hand plots.

  5. LIQUID-LIQUID EQUILIBRIA OF THE ACETIC ACID-WATER-MIXED SOLVENT (CYCLOHEXYL ACETATE-CYCLOHEXANOL) SYSTEM

    OpenAIRE

    Çehreli S.

    2002-01-01

    Mixtures of cyclohexyl acetate and cyclohexanol were used as a mixed solvent to study liquid-liquid equilibria (LLE) of the acetic acid-water-cyclohexanol-cyclohexyl acetate quaternary system. The solubility diagram and tie-line data were determined at 298±0.20 K and atmospheric pressure, using various compositions of mixed solvent. Reliability of the data was ascertained by making Othmer-Tobias and Hand plots.

  6. EXAMINATION OF LIQUID-LIQUID EQUILIBRIA OF WATER + ACETIC ACID + CYCLOHEXANOL TERNARIES AT 298, 303 AND 316 K

    OpenAIRE

    Beşir TATLI; Ş. İsmail KIRBAŞLAR; Metin HASDEMİR; F. Teoman MERİÇLİ

    2000-01-01

    Experimental liquid-liquid equilibria of water + acetic acid + cyclohexanol system was investigated at 298.16 ± 0.2, 303.16 ± 0.2 and 313.16 ± 0.2 K. The reliability of experimental tie-line data were ascertained through an Othmer-Tobias plot. Distribution coefficient was evaluated over the immiscibility region. It is concluded that the high boiling solvent cyclohexanol is suitable separating agent for dilute aqueous acetic acid solutions.

  7. EXAMINATION OF LIQUID-LIQUID EQUILIBRIA OF WATER + ACETIC ACID + CYCLOHEXANOL TERNARIES AT 298, 303 AND 316 K

    Directory of Open Access Journals (Sweden)

    Beşir TATLI

    2000-01-01

    Full Text Available Experimental liquid-liquid equilibria of water + acetic acid + cyclohexanol system was investigated at 298.16 ± 0.2, 303.16 ± 0.2 and 313.16 ± 0.2 K. The reliability of experimental tie-line data were ascertained through an Othmer-Tobias plot. Distribution coefficient was evaluated over the immiscibility region. It is concluded that the high boiling solvent cyclohexanol is suitable separating agent for dilute aqueous acetic acid solutions.

  8. Seasonal distribution and abundance of cetaceans within French waters- Part II: The Bay of Biscay and the English Channel

    Science.gov (United States)

    Laran, Sophie; Authier, Matthieu; Blanck, Aurélie; Doremus, Ghislain; Falchetto, Hélène; Monestiez, Pascal; Pettex, Emeline; Stephan, Eric; Van Canneyt, Olivier; Ridoux, Vincent

    2017-07-01

    From the Habitat Directive to the recent Marine Strategy Framework Directive, the conservation status of cetaceans in European water has been of concern for over two decades. In this study, a seasonal comparison of the abundance and distribution of cetaceans was carried out in two contrasted regions of the Eastern North Atlantic, the Bay of Biscay and the English Channel. Estimates were obtained in the two sub-regions (375,000 km²) from large aerial surveys conducted in the winter (November 2011 to February 2012) and in the summer (May to August 2012). The most abundant species encountered in the Channel, the harbour porpoise, displayed strong seasonal variations in its distribution but a stable abundance (18,000 individuals, CV=30%). In the Bay of Biscay, abundance and distribution patterns of common / striped dolphins varied from 285,000 individuals (95% CI: 174,000-481,000) in the winter, preferentially distributed close to the shelf break, to 494,000 individuals (95% CI: 342,000-719,000) distributed beyond the shelf break in summer. Baleen whales also exhibited an increase of their density in summer. Seasonal abundances of bottlenose dolphins were quite stable, with a large number of 'pelagic' encounters offshore in winter. No significant seasonal difference was estimated for pilot whales and sperm whale. These surveys provided baseline estimates to inform policies to be developed, or for existing conservation instruments such as the Habitats Directive. In addition, our results supported the hypothesis of a shift in the summer distributions of some species such as harbour porpoise and minke whale in European waters.

  9. Vapor-Liquid Equilibria of Imidazolium Ionic Liquids with Cyano Containing Anions with Water and Ethanol.

    Science.gov (United States)

    Khan, Imran; Batista, Marta L S; Carvalho, Pedro J; Santos, Luís M N B F; Gomes, José R B; Coutinho, João A P

    2015-08-13

    Isobaric vapor-liquid equilibria of 1-butyl-3-methylimidazolium thiocyanate ([C4C1im][SCN]), 1-butyl-3-methylimidazolium dicyanamide ([C4C1im][N(CN)2]), 1-butyl-3-methylimidazolium tricyanomethanide ([C4C1im][C(CN)3]), and 1-ethyl-3-methylimidazolium tetracyanoborate ([C2C1im][B(CN)4]), with water and ethanol were measured over the whole concentration range at 0.1, 0.07, and 0.05 MPa. Activity coefficients were estimated from the boiling temperatures of the binary systems, and the data were used to evaluate the ability of COSMO-RS for describing these molecular systems. Aiming at further understanding the molecular interactions on these systems, molecular dynamics (MD) simulations were performed. On the basis of the interpretation of the radial and spatial distribution functions along with coordination numbers obtained through MD simulations, the effect of the increase of CN-groups in the IL anion in its capability to establish hydrogen bonds with water and ethanol was evaluated. The results obtained suggest that, for both water and ethanol systems, the anion [N(CN)2](-) presents the higher ability to establish favorable interactions due to its charge, and that the ability of the anions to interact with the solvent, decreases with further increasing of the number of cyano groups in the anion. The ordering of the partial charges in the nitrogen atoms from the CN-groups in the anions agrees with the ordering obtained for VLE and activity coefficient data.

  10. Connecting thermodynamic and dynamical anomalies of water-like liquid-liquid phase transition in the Fermi-Jagla model

    Science.gov (United States)

    Higuchi, Saki; Kato, Daiki; Awaji, Daisuke; Kim, Kang

    2018-03-01

    We present a study using molecular dynamics simulations based on the Fermi-Jagla potential model, which is the continuous version of the mono-atomic core-softened Jagla model [J. Y. Abraham, S. V. Buldyrev, and N. Giovambattista, J. Phys. Chem. B 115, 14229 (2011)]. This model shows the water-like liquid-liquid phase transition between high-density and low-density liquids at the liquid-liquid critical point. In particular, the slope of the coexistence line becomes weakly negative, which is expected to represent one of the anomalies of liquid polyamorphism. In this study, we examined the density, dynamic, and thermodynamic anomalies in the vicinity of the liquid-liquid critical point. The boundaries of density, self-diffusion, shear viscosity, and excess entropy anomalies were characterized. Furthermore, these anomalies are connected according to Rosenfeld's scaling relationship between the excess entropy and the transport coefficients such as diffusion and viscosity. The results demonstrate the hierarchical and nested structures regarding the thermodynamic and dynamic anomalies of the Fermi-Jagla model.

  11. Relation of age-0 largemouth bass abundance to hydrilla coverage and water level at Lochloosa and Orange Lakes, Florida

    Science.gov (United States)

    Tate, W.B.; Allen, M.S.; Myers, R.A.; Nagid, E.J.; Estes, J.R.

    2003-01-01

    Changes in electrofishing catch per hour (CPH) of age-0 largemouth bass Micropterus salmoides were examined in relation to aquatic macrophytes and seasonal water elevation at Lochloosa and Orange lakes, Florida, during the 1990s. At Lochloosa Lake, stepwise multiple regression revealed a significant positive relationship between the mean CPH of age-0 largemouth bass and the percentage of areal coverage by hydrilla Hydrilla verticallata. At Orange Lake, mean CPH was directly associated with the percentage of areal coverage by hydrilla and inversely related to summer water levels. Thus, the influence of vegetation on age-0 largemouth bass abundance was similar at both lakes, but the effects of water levels were not. Further investigations into the effects of fluctuations in water levels on age-0 largemouth bass in natural lakes are needed.

  12. Rates of Dinitrogen Fixation and the Abundance of Diazotrophs in North American Coastal Waters Between Cape Hatteras and Georges Bank

    Science.gov (United States)

    Mulholland, M.R.; Bernhardt, P. W.; Blanco-Garcia, J. L.; Mannino, A.; Hyde, K.; Mondragon, E.; Turk, K.; Moisander, P. H.; Zehr, J. P.

    2012-01-01

    We coupled dinitrogen (N2) fixation rate estimates with molecular biological methods to determine the activity and abundance of diazotrophs in coastal waters along the temperate North American Mid-Atlantic continental shelf during multiple seasons and cruises. Volumetric rates of N2 fixation were as high as 49.8 nmol N L(sup -1) d(sup -1) and areal rates as high as 837.9 micromol N m(sup -2) d(sup -1) in our study area. Our results suggest that N2 fixation occurs at high rates in coastal shelf waters that were previously thought to be unimportant sites of N2 fixation and so were excluded from calculations of pelagic marine N2 fixation. Unicellular N2-fixing group A cyanobacteria were the most abundant diazotrophs in the Atlantic coastal waters and their abundance was comparable to, or higher than, that measured in oceanic regimes where they were discovered. High rates of N2 fixation and the high abundance of diazotrophs along the North American Mid-Atlantic continental shelf highlight the need to revise marine N budgets to include coastal N2 fixation. Integrating areal rates of N2 fixation over the continental shelf area between Cape Hatteras and Nova Scotia, the estimated N2 fixation in this temperate shelf system is about 0.02 Tmol N yr(sup -1), the amount previously calculated for the entire North Atlantic continental shelf. Additional studies should provide spatially, temporally, and seasonally resolved rate estimates from coastal systems to better constrain N inputs via N2 fixation from the neritic zone.

  13. Trends in the distribution and abundance of cetaceans from aerial surveys in Icelandic coastal waters, 1986-2001

    Directory of Open Access Journals (Sweden)

    Daniel G Pike

    2009-09-01

    Full Text Available Aerial surveys were carried out in coastal Icelandic waters 4 times between 1986 and 2001 as part of the North Atlantic Sightings Surveys. The surveys had nearly identical designs in 3 of the 4 years. The target species was the minke whale (Balaenoptera acutorostrata but all species encountered were recorded. Sighting rate and density from line transect analysis were used as indices of relative abundance to monitor trends over the period, and abundance estimates corrected for perception biases were calculated for some species from the 2001 survey. More than 11 species were sighted, of which the most common were the minke whale, humpback whale (Megaptera novaeangliae, dolphins of genus Lagenorhychus, and the harbour porpoise (Phocoena phocoena. Minke whales anddolphins showed little change in distribution or abundance over the period. There were an estimated 31,653 (cv 0.30 dolphins in the survey area in 2001. Humpback whales increased rapidly at a rate of about 12%, with much of the increase occurring off eastern and northeastern Iceland. In 2001 there were an estimated 4,928 (cv 0.463 humpback whales in the survey area. The relative abundance of harbour porpoises decreased over the period, but estimates for this species were compromised by uncorrected perception biases and poor coverage. The ecological and historical significance of these findings with respect to previous whaling activities and present-day fisheries is discussed.

  14. Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions.

    Science.gov (United States)

    Zapata, Paula A; Faria, Jimmy; Ruiz, M Pilar; Jentoft, Rolf E; Resasco, Daniel E

    2012-05-23

    HY zeolites hydrophobized by functionalization with organosilanes are much more stable in hot liquid water than the corresponding untreated zeolites. Silylation of the zeolite increases hydrophobicity without significantly reducing the density of acid sites. This hydrophobization with organosilanes makes the zeolites able to stabilize water/oil emulsions and catalyze reactions of importance in biofuel upgrading, i.e., alcohol dehydration and alkylation of m-cresol and 2-propanol in the liquid phase, at high temperatures. While at 200 °C the crystalline structure of an untreated HY zeolite collapses in a few hours in contact with a liquid medium, the functionalized hydrophobic zeolites keep their structure practically unaltered. Detailed XRD, SEM, HRTEM, and BET analyses indicate that even after reaction under severe conditions, the hydrophobic zeolites retain their crystallinity, surface area, microporosity, and acid density. It is proposed that by preferentially anchoring hydrophobic functionalities on the external surface, the direct contact of bulk liquid water and the zeolite is hindered, thus preventing the collapse of the framework during the reaction in liquid hot water.

  15. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA.

    Science.gov (United States)

    Lodge, David M; Turner, Cameron R; Jerde, Christopher L; Barnes, Matthew A; Chadderton, Lindsay; Egan, Scott P; Feder, Jeffrey L; Mahon, Andrew R; Pfrender, Michael E

    2012-06-01

    Three mantras often guide species and ecosystem management: (i) for preventing invasions by harmful species, 'early detection and rapid response'; (ii) for conserving imperilled native species, 'protection of biodiversity hotspots'; and (iii) for assessing biosecurity risk, 'an ounce of prevention equals a pound of cure.' However, these and other management goals are elusive when traditional sampling tools (e.g. netting, traps, electrofishing, visual surveys) have poor detection limits, are too slow or are not feasible. One visionary solution is to use an organism's DNA in the environment (eDNA), rather than the organism itself, as the target of detection. In this issue of Molecular Ecology, Thomsen et al. (2012) provide new evidence demonstrating the feasibility of this approach, showing that eDNA is an accurate indicator of the presence of an impressively diverse set of six aquatic or amphibious taxa including invertebrates, amphibians, a fish and a mammal in a wide range of freshwater habitats. They are also the first to demonstrate that the abundance of eDNA, as measured by qPCR, correlates positively with population abundance estimated with traditional tools. Finally, Thomsen et al. (2012) demonstrate that next-generation sequencing of eDNA can quantify species richness. Overall, Thomsen et al. (2012) provide a revolutionary roadmap for using eDNA for detection of species, estimates of relative abundance and quantification of biodiversity. © 2012 Blackwell Publishing Ltd.

  16. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Linsen, E-mail: yls2005@mail.ustc.edu.cn [China Academy of Engineering Physics, Mianyang 621900 (China); Luo, Deli [Science and Technology on Surface Physics and Chemistry Laboratory, Jiangyou 621907 (China); Tang, Tao; Yang, Wan; Yang, Yong [China Academy of Engineering Physics, Mianyang 621900 (China)

    2015-11-15

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  17. Hydrogen isotope separation in hydrophobic catalysts between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Ye, Linsen; Luo, Deli; Tang, Tao; Yang, Wan; Yang, Yong

    2015-01-01

    Hydrogen isotope catalytic exchange between hydrogen and liquid water is a very effective process for deuterium-depleted potable water production and heavy water detritiation. To improve the characteristics of hydrophobic catalysts for this type of reaction, foamed and cellular structures of hydrophobic carbon-supported platinum catalysts were successfully prepared. Separation of deuterium or tritium from liquid water was carried out by liquid-phase catalytic exchange. At a gas–liquid ratio of 1.53 and exchange temperature of 70 °C, the theoretical plate height of the hydrophobic catalyst (HETP = 34.2 cm) was slightly lower than previously reported values. Changing the concentration of the exchange column outlet water yielded nonlinear changes in the height of the packing layer. Configurations of deuterium-depleted potable water and detritiation of heavy water provide references for practical applications.

  18. Modeling the liquid-liquid equilibria of water plus fluorocarbons with the cubic-plus-association equation of state

    DEFF Research Database (Denmark)

    Oliveira, Mariana B.; Freire, Mara G.; Marrucho, Isabel M.

    2007-01-01

    -plus-association equation of state (CPA EoS) has been extended to binary mixtures of water with several linear, cyclic, aromatic, and substituted fluorocarbons. The CPA EoS was successfully used to model the liquid-liquid equilibria of aqueous mixtures that contain FCs, while also being able to describe the cross...... dioxide, making them interesting for several biomedical applications. In most of these applications, water or aqueous systems are present for which the knowledge of the mutual solubilities between the fluorocarbons and the aqueous phases is important. In this work, the application of the cubic...

  19. Microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid for the determination of sulfonamides in environmental water samples.

    Science.gov (United States)

    Song, Ying; Wu, Lijie; Lu, Chunmei; Li, Na; Hu, Mingzhu; Wang, Ziming

    2014-12-01

    An easy, quick, and green method, microwave-assisted liquid-liquid microextraction based on solidification of ionic liquid, was first developed and applied to the extraction of sulfonamides in environmental water samples. 1-Ethy-3-methylimidazolium hexafluorophosphate, which is a solid-state ionic liquid at room temperature, was used as extraction solvent in the present method. After microwave irradiation for 90 s, the solid-state ionic liquid was melted into liquid phase and used to finish the extraction of the analytes. The ionic liquid and sample matrix can be separated by freezing and centrifuging. Several experimental parameters, including amount of extraction solvent, microwave power and irradiation time, pH of sample solution, and ionic strength, were investigated and optimized. Under the optimum experimental conditions, good linearity was observed in the range of 2.00-400.00 μg/L with the correlation coefficients ranging from 0.9995 to 0.9999. The limits of detection for sulfathiazole, sulfachlorpyridazine, sulfamethoxazole, and sulfaphenazole were 0.39, 0.33, 0.62, and 0.85 μg/L, respectively. When the present method was applied to the analysis of environmental water samples, the recoveries of the analytes ranged from 75.09 to 115.78% and relative standard deviations were lower than 11.89%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Water Table Depth Reconstruction in Ombrotrophic Peatlands Using Biomarker Abundance Ratios and Compound-Specific Hydrogen Isotope Composition

    Science.gov (United States)

    Nichols, J. E.; Jackson, S. T.; Booth, R. K.; Pendall, E. G.; Huang, Y.

    2005-12-01

    Sediment cores from ombrotrophic peat bogs provide sensitive records of changes in precipitation/evaporation (P/E) balance. Various proxies have been developed to reconstruct surface moisture conditions in peat bogs, including testate amoebae, plant macrofossils, and peat humification. Studying species composition of testate amoeba assemblages is time consuming and requires specialized training. Humification index can be influenced by environmental factors other than moisture balance. The plant macrofossil proxy is less quantitative and cannot be performed on highly decomposed samples. We demonstrate that the ratio of C23 alkane to C29 alkane abundance may provide a simple alternative or complementary means of tracking peatland water-table depth. Data for this proxy can be collected quickly using a small sample (100 mg dry). Water-table depth decreases during drought, and abundance of Sphagnum, the dominant peat-forming genus, decreases as vascular plants increase. Sphagnum moss produces mainly medium chain-length alkanes (C21-C25) while vascular plants (grasses and shrubs) produce primarily longer chain-length alkanes (C27-C31). Therefore, C23:C29 n-alkane ratios quantitatively track the water table depth fluctuations in peat bogs. We compared C23:C29 n-alkane ratios in a core from Minden Bog (southeastern Michigan) with water table depth reconstructions based on testate-amoeba assemblages and humification. The 184-cm core spans the past ~3kyr of continuous peat deposition in the bog. Our results indicate that the alkane ratios closely track the water table depth variations, with C29 most abundant during droughts. We also explored the use of D/H ratios in Sphagnum biomarkers as a water-table depth proxy. Compound-specific hydrogen isotope ratio analyses were performed on Sphagnum biomarkers: C23 and C25 alkane and C24 acid. Dry periods are represented in these records by an enrichment of deuterium in these Sphagnum-specific compounds. These events also correlate

  1. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  2. Dissociative ionization of liquid water induced by vibrational overtone excitation

    International Nuclear Information System (INIS)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H + and OH - ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H 2 O, the quantum yield at 283 +- 1 K varies from 2 x 10 -9 to 4 x 10 -5 for wave numbers between 7605 and 18140 cm -1 . In D 2 O, the dependence of quantum yield on wavelength has the same qualitative shape as for H 2 O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D 2 O than for excitation of D 2 O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H 2 O and with isotopic composition at 25 +- 1 0 C

  3. How well do we know the structure of liquid water?

    International Nuclear Information System (INIS)

    Pusztai, L.

    1999-01-01

    Complete text of publication follows. There have been numerous indications that there may be some problems with the generally accepted set of partial pair correlation functions (pcf) [1]. The origin of these problems is strongly related to the fact that for deriving the three partial pcf's of liquid water with direct separation, one needs to use at least one total structure factor (sf) of a (at least partially) hydrogenated sample. As an attempt to clarify the situation, most of the available data have been modelled by the Reverse Monte Carlo (RMC) technique, using the new code for flexible molecules [2]. It was found that, not surprisingly, neutron diffraction measurements of D 2 O and X-ray diffraction measurements on H 2 O (or D 2 O) [3] are in general the most reliable ones. Existing measurements on pure H 2 O - as it could be expected - should not be considered quantitatively. It is concluded that many different sets of partial pcf's could be generated, all of which are in better agreement with the original measured data than the presently accepted set. (author)

  4. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction.

    Science.gov (United States)

    Jackson, Robert B; Vengosh, Avner; Darrah, Thomas H; Warner, Nathaniel R; Down, Adrian; Poreda, Robert J; Osborn, Stephen G; Zhao, Kaiguang; Karr, Jonathan D

    2013-07-09

    Horizontal drilling and hydraulic fracturing are transforming energy production, but their potential environmental effects remain controversial. We analyzed 141 drinking water wells across the Appalachian Plateaus physiographic province of northeastern Pennsylvania, examining natural gas concentrations and isotopic signatures with proximity to shale gas wells. Methane was detected in 82% of drinking water samples, with average concentrations six times higher for homes drinking water contaminated with stray gases.

  5. Influence of the temperature on the (liquid + liquid) phase equilibria of (water + 1-propanl + linalool or geraniol)

    International Nuclear Information System (INIS)

    Wan, Li; Li, Hengde; Huang, Cheng; Feng, Yuqing; Chu, Guoqiang; Zheng, Yuying; Tan, Wei; Qin, Yanlin; Sun, Dalei; Fang, Yanxiong

    2017-01-01

    Highlights: • Ternary LLEs containing linalool and geraniol are presented. • Distribution ratios of 1-propanol in the mixtures are examined. • Influence of the temperature on the LLE is studied. • The LLE data were correlated using the NRTL and UNIQUAC models. - Abstract: Linalool and geraniol are the primary components of rose oil, palmarosa oil, and citronella oil and many other essential oils, and two important compounds used in the flavour and fragrance, cosmetic or pharmaceutical industries. Phase equilibria (LLE, VLE, solubility, etc.) and related thermodynamic properties of a mixture are essential in the processes design and control of mass transfer process. In this work, experimental (liquid + liquid) equilibria data of the systems (water + 1-propanl + linalool) and (water + 1-propanl + geraniol) are presented. The (liquid + liquid) equilibria of both systems were determined with a tie-line method at T = (283.15, 298.15 and 313.15) K under atmospheric pressure. The well-known Hand, Bachman and Othmer–Tobias equations were used to test the reliability of the experimental values. The influence of the temperature on the (liquid + liquid) phase equilibria of the mixtures, the binodal curves and distribution ratios of 1-propanl are shown and discussed. Moreover, the NRTL and UNIQUAC models were applied to fit the data for both ternary systems. The interaction parameters obtained from both models successfully correlated the equilibrium compositions. Furthermore, the ternary systems could be represented using the binary parameters of the thermodynamic model with a function of temperature.

  6. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2012-01-01

    Aims. Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in

  7. Capture-recapture abundance and survival estimates of three cetacean species in Icelandic coastal waters using trained scientist-volunteers

    Science.gov (United States)

    Bertulli, Chiara G.; Guéry, Loreleï; McGinty, Niall; Suzuki, Ailie; Brannan, Naomi; Marques, Tania; Rasmussen, Marianne H.; Gimenez, Olivier

    2018-01-01

    Knowledge of abundance and survival of humpback whales, white-beaked dolphins and minke whales are essential to manage and conserve these species in Icelandic coastal shelf waters. Our main goal was to test the feasibility of employing inexpensive research methods (data collected by trained-scientist volunteers onboard opportunistic vessels) to assess abundance and apparent survival. No previous studies in Iceland have investigated these two demographic parameters in these three cetacean species using open capture-recapture models accounting for imperfect and possibly heterogeneous detection. A transient effect was accounted for whenever required to estimate the population of resident individuals. Identification photographs were collected by scientist-trained volunteers for 7 years (2006-2013) from onboard commercial whale-watching vessels in the coastal waters of Faxaflói (southwest coast, 4400 km2) and Skjálfandi (northeast coast, 1100 km2), Iceland. We estimated an average abundance of 83 humpback whales (Mn; 95% confidence interval: 54-130) in Skjálfandi; 238 white-beaked dolphins (La; [163-321]) in Faxaflói; and 67 minke whales (Ba; [53-82]) in Faxaflói and 24 (14-31) in Skjálfandi. We also found that apparent survival was constant for all three species (Mn: 0.52 [0.41-0.63], La: 0.79 [0.64-0.88], Ba-Faxaflói: 0.80 [0.67-0.88], Ba-Skjálfandi: 0.96 [0.60-0.99]). Our results showed inter-annual variation in abundance estimates which were small for all species, and the presence of transience for minke whales. A significant increase in abundance during the study period was solely found in minke whale data from Skjálfandi. Humpback whales and white-beaked dolphins showed lower apparent survival rates compared to similar baleen whale and dolphin populations. Our results show data collected by trained-scientist volunteers can produce viable estimates of abundance and survival although bias in the methods we employed exist and need to be addressed. With the

  8. The abundance and hydrogen isotopic composition of water in SNC meteorites

    Science.gov (United States)

    Leshin, Laurie Ann

    1995-01-01

    The water in the current martian atmosphere contains approximately 5 times more deuterium (D) than water on Earth (corresponding to a delta-D value of approximately +4000) resulting from preferential loss of hydrogen relative to deuterium from the martian atmosphere. This thesis places constraints on the D/H of other martian water reservoirs by measuring the D/H of water in hydrous phases within the SNC meteorites, thought to be samples of martian igneous rocks. Results from vacuum extractions of volatiles from bulk SNC samples by stepwise heating show the water yields to decrease and delta-D values to increase to well above terrestrial values with increasing temperature indicative of mixing between terrestrial water (contamination) released at low temperatures and martian water released at high temperatures. The high temperature delta-D values reach approximately +2000 for Shergotty, the most D-enriched sample. However, even the highest delta-D values measured may represent lower limits on the true values due to partial exchange with lighter terrestrial water D/H and water contents of individual amphibole, biotite and apatite grains in several SNC meteorites were measured using an ion microprobe. The amphiboles contain an order of magnitude less water than previously assumed, suggesting that SNC parent magmas may have been less hydrous than previously proposed. The delta-D values of the phases range from approximately +500 to +4300. The variability and D-enriched nature of these values imply that the primary igneous phases have not retained a martian magmatic water signature. Rather, the high and variable D/H of the water in these phases, like that released at high temperatures from bulk SNC samples, is concluded to result from the interaction of the samples with D-enriched martian crustal fluids after crystallization, probably in an environment similar to terrestrial magmatic hydrothermal systems. The data presented in this thesis represent the first direct

  9. Using Schumann Resonance Measurements for Constraining the Water Abundance on the Giant Planets - Implications for the Solar System Formation

    Science.gov (United States)

    Simoes, Fernando; Pfaff, Robert; Hamelin, Michel; Klenzing, Jeffrey; Freudenreich, Henry; Beghin, Christian; Berthelier, Jean-Jacques; Bromund, Kenneth; Grard, Rejean; Lebreton, Jean-Pierre; hide

    2012-01-01

    The formation and evolution of the Solar System is closely related to the abundance of volatiles, namely water, ammonia, and methane in the protoplanetary disk. Accurate measurement of volatiles in the Solar System is therefore important to understand not only the nebular hypothesis and origin of life but also planetary cosmogony as a whole. In this work, we propose a new, remote sensing technique to infer the outer planets water content by measuring Tremendously and Extremely Low Frequency (TLF-ELF) electromagnetic wave characteristics (Schumann resonances) excited by lightning in their gaseous envelopes. Schumann resonance detection can be potentially used for constraining the uncertainty of volatiles of the giant planets, mainly Uranus and Neptune, because such TLF-ELF wave signatures are closely related to the electric conductivity profile and water content.

  10. Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples

    Directory of Open Access Journals (Sweden)

    J. Pérez-Outeiral

    2014-01-01

    Full Text Available A simple and inexpensive method for cadmium determination in water using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry was developed. In order to obtain the best experimental conditions, experimental design was applied. Calibration was made in the range of 10–100 μg/L, obtaining good linearity (R2 = 0.9947. The obtained limit of detection based on calibration curve was 8.5 μg/L. Intra- and interday repeatability were checked at two levels, obtaining relative standard deviation values from 9.0 to 13.3%. The enrichment factor had a value of 73. Metal interferences were also checked and tolerable limits were evaluated. Finally, the method was applied to cadmium determination in real spiked water samples. Therefore, the method showed potential applicability for cadmium determination in highly contaminated liquid samples.

  11. CO2 snow depth and subsurface water-ice abundance in the northern hemisphere of Mars.

    Science.gov (United States)

    Mitrofanov, I G; Zuber, M T; Litvak, M L; Boynton, W V; Smith, D E; Drake, D; Hamara, D; Kozyrev, A S; Sanin, A B; Shinohara, C; Saunders, R S; Tretyakov, V

    2003-06-27

    Observations of seasonal variations of neutron flux from the high-energy neutron detector (HEND) on Mars Odyssey combined with direct measurements of the thickness of condensed carbon dioxide by the Mars Orbiter Laser Altimeter (MOLA) on Mars Global Surveyor show a latitudinal dependence of northern winter deposition of carbon dioxide. The observations are also consistent with a shallow substrate consisting of a layer with water ice overlain by a layer of drier soil. The lower ice-rich layer contains between 50 and 75 weight % water, indicating that the shallow subsurface at northern polar latitudes on Mars is even more water rich than that in the south.

  12. Thermodynamic modeling of ternary and quaternary (liquid + liquid) systems containing water, FeCl3, HCl and diisopropyl ether

    NARCIS (Netherlands)

    Milosevic, M.; Hendriks, I.; Smits, R.E.R.; Schuur, Boelo; de Haan, A.B.

    2013-01-01

    Liquid–liquid extraction using ethers as solvents is a potentially energy saving alternative for the concentration of aqueous ferric chloride solutions. Adequate thermodynamic models that describe the behavior of the resulting quaternary systems (FeCl3, ether, acid and water) are not available in

  13. Spatial Models of Abundance and Habitat Preferences of Commerson’s and Peale’s Dolphin in Southern Patagonian Waters

    Science.gov (United States)

    Dellabianca, Natalia A.; Pierce, Graham J.; Raya Rey, Andrea; Scioscia, Gabriela; Miller, David L.; Torres, Mónica A.; Paso Viola, M. Natalia; Schiavini, Adrián C. M.

    2016-01-01

    Commerson’s dolphins (Cephalorhynchus c. commersonii) and Peale’s dolphins (Lagenorhynchus australis) are two of the most common species of cetaceans in the coastal waters of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN, mainly due to the lack of information about population sizes and trends. The goal of this study was to build spatially explicit models for the abundance of both species in relation to environmental variables using data collected during eight scientific cruises along the Patagonian shelf. Spatial models were constructed using generalized additive models. In total, 88 schools (212 individuals) of Commerson’s dolphin and 134 schools (465 individuals) of Peale’s dolphin were recorded in 8,535 km surveyed. Commerson’s dolphin was found less than 60 km from shore; whereas Peale’s dolphins occurred over a wider range of distances from the coast, the number of animals sighted usually being larger near or far from the coast. Fitted models indicate overall abundances of approximately 22,000 Commerson’s dolphins and 20,000 Peale’s dolphins in the total area studied. This work provides the first large-scale abundance estimate for Peale’s dolphin in the Atlantic Ocean and an update of population size for Commerson’s dolphin. Additionally, our results contribute to baseline data on suitable habitat conditions for both species in southern Patagonia, which is essential for the implementation of adequate conservation measures. PMID:27783627

  14. Separation of rate processes for isotopic exchange between hydrogen and liquid water in packed columns 10

    International Nuclear Information System (INIS)

    Butler, J.P.; Hartog, J. den; Goodale, J.W.; Rolston, J.H.

    1977-01-01

    Wetproofed platinum catalysts in packed columns promote isotopic exchange between counter-current streams of hydrogen saturated with water vapour and liquid water. The net rate of deuterium transfer from isotopically enriched hydrogen has been measured and separated into two rate processes involving the transfer of deuterium from hydrogen to water vapour and from water vapour to liquid. These are compared with independent measurements of the two rate processes to test the two-step successive exchange model for trickle bed reactors. The separated transfer rates are independent of bed height and characterize the deuterium concentrations of each stream along the length of the bed. The dependences of the transfer rates upon hydrogen and liquid flow, hydrogen pressure, platinum loading and the effect of dilution of the hydrophobic catalyst with inert hydrophilic packing are reported. The results indicate a third process may be important in the transfer of deuterium between hydrogen and liquid water. (author)

  15. Atmospheric mass and the record of liquid water on Mars

    Science.gov (United States)

    Halevy, I.; Head, J. W., III

    2017-12-01

    Widespread evidence for the action of liquid water on early Mars is generally accepted to require the presence of atmospheric greenhouse agents other than CO2. Much of this activity clusters in the late Noachian and early Hesperian (3.9-3.6 Ga), and appears to coincide with a long maximum in extrusive and explosive volcanic activity. Among other suggestions, a role for S-bearing volcanic gases has been proposed, but these and any other non-CO2 greenhouse gases or atmospheric components require a background CO2 atmosphere of several hundred mbar. Global climate models suggest that even if the surface reservoir of CO2 were much larger than today, this reservoir would be mostly trapped as CO2 ice, and only a few to tens of mbar would be in the atmosphere. Thus, at the long-term steady state, sustained warmth is difficult to achieve in the face of a fainter Sun. We suggest that episodic volcanism released the CO2 trapped as ice at the planet's surface in two ways. First, the emission of S-bearing greenhouse gases (mostly SO2) would lead to warming of a few Kelvins. Second, the deposition of volcanic ash on water and CO2 ice surfaces would push the local energy budget to favor sublimation, and would also decrease the planetary albedo and lead to additional warming. Inflation of the CO2 atmosphere has been shown in global climate models to shift the distribution of snowfall to high elevations, as opposed to a latitude-dependent distribution at low atmospheric pressure. We suggest that seasonal melting of this snow carved the valley networks and filled basin lakes. The duration of warm periods was limited by the timescale for atmospheric collapse by condensation, which is 102-103 years. Repeated inflation episodes over the duration of active volcanism led to an integrated duration of aqueous activity of 106-107 years, enough to carve the valley networks. The S-bearing gases emitted by eruptions formed sulfate minerals, initially uniformly dispersed, then remobilized and

  16. Homogeneous liquid-liquid extraction of metal ions with non-fluorinated bis(2-ethylhexyl)phosphate ionic liquids having a lower critical solution temperature in combination with water.

    Science.gov (United States)

    Depuydt, Daphne; Liu, Liwang; Glorieux, Christ; Dehaen, Wim; Binnemans, Koen

    2015-09-28

    Ionic liquids with an ether-functionalised cation and the bis(2-ethylhexyl)phosphate anion show thermomorphic behaviour in water, with a lower critical solution temperature. These ionic liquids are useful for homogeneous liquid-liquid extraction of first-row (3d) transition metals.

  17. Examination of an indicative tool for rapidly estimating viable organism abundance in ballast water

    Science.gov (United States)

    Vanden Byllaardt, Julie; Adams, Jennifer K.; Casas-Monroy, Oscar; Bailey, Sarah A.

    2018-03-01

    Regulatory discharge standards stipulating a maximum allowable number of viable organisms in ballast water have led to a need for rapid, easy and accurate compliance assessment tools and protocols. Some potential tools presume that organisms present in ballast water samples display the same characteristics of life as the native community (e.g. rates of fluorescence). This presumption may not prove true, particularly when ships' ballast tanks present a harsh environment and long transit times, negatively impacting organism health. Here, we test the accuracy of a handheld pulse amplitude modulated (PAM) fluorometer, the Hach BW680, for detecting photosynthetic protists at concentrations above or below the discharge standard (sources utilizing three preprocessing techniques to target organisms in the size range of ≥ 10 and life. This is the first study to conduct proof-of-concept testing for a rapid compliance detection tool using freshly collected harbour water concomitantly with in situ ballast water; our results demonstrate that it is important to challenge potential compliance tools with water samples spanning a range of biotic and abiotic conditions.

  18. Measurements of the vertical profile of water vapor abundance in the Martian atmosphere from Mars Observer

    Science.gov (United States)

    Schofield, J. T.; Mccleese, Daniel J.

    1988-01-01

    An analysis is presented of the Pressure Modulator Infrared Radiometer (PMIRR) capabilities along with how the vertical profiles of water vapor will be obtained. The PMIRR will employ filter and pressure modulation radiometry using nine spectral channels, in both limb scanning and nadir sounding modes, to obtain daily, global maps of temperature, dust extinction, condensate extinction, and water vapor mixing ratio profiles as a function of pressure to half scale height or 5 km vertical resolution. Surface thermal properties will also be mapped, and the polar radiactive balance will be monitored.

  19. Liquid-Liquid Equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  20. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the properties of DOM, such as specific ultraviolet absorbance, spectral slope, and biological and humification indices also varied significantly with membrane cutoffs. In addition, different ultrafiltration membranes with the same manufacture-rated cutoff also gave rise to different DOM retention efficiencies and thus different colloidal abundances and size spectra. Thus, the size-dependent DOM properties were related to both sample types and membranes used. Our results here provide not only baseline data for filter pore-size selection when exploring DOM ecological and environmental roles, but also new insights into better understanding the physical definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Salt effect of KBr on the liquid-liquid equilibrium of the water/ethanol/1-pentanol system

    Directory of Open Access Journals (Sweden)

    Santos G.R.

    2000-01-01

    Full Text Available Liquid-liquid equilibrium data for the water/ethanol/1-pentanol/potassium bromide systems were experimentally determined at 25° C and 40ºC. The experimental data were correlated through the NRTL and UNIFAC-Dortmund models for the activity coefficient, with the estimation of new binary interaction parameters for both models, corresponding to the salt-solvent and solvent-solvent interactions for the NRTL model and the ion-ion and solvent-ion interactions for the UNIFAC-Dortmund model. The results obtained have shown that the NRTL model was more able to represent equilibrium data for the studied systems.

  2. Effects of water level changes and wading bird abundance on the ...

    Indian Academy of Sciences (India)

    Unknown

    birds foraged at different water depths and thereby explored the wetlands fully. Spoonbills were chased often; the number varied from 1 to 43 birds. BNS occasionally accepted the presence of other wading birds, including spoonbills and started foraging amidst them. This led to successful foraging of BNS (solitary feeder).

  3. Larval abundance and its relation to macrofouling settlement pattern in the coastal waters of Kalpakkam, southeastern part of India.

    Science.gov (United States)

    Sahu, Gouri; Satpathy, K K; Mohanty, A K; Biswas, Sudeepta; Achary, M Smita; Sarkar, S K

    2013-02-01

    The present work revealed that salinity, water temperature, and food availability were the most crucial factors affecting the abundance of larvae and their settlement as macrofouling community in the coastal waters of Kalpakkam. Quantitative as well as qualitative results showed that late post-monsoon (April-May) and pre-monsoon (June-September) periods were found to be suitable periods for larval growth, development, and survival to adult stages for most of the organisms. Clustering of physico-chemical and biological (including larval and adult availability) data yielded two major clusters; one formed by northeast (NE) monsoon months (October-January) and the other by post-monsoon/summer (February-May) months, whereas; pre-monsoon months (June-September) were distributed between these two clusters. Among all the major macrofouler groups, only bivalves established a successful relationship between its larval abundance and adult settlement. Principal component analysis indicated good associations of bivalve larvae with polychaete larvae and adult bivalves with adult barnacles. However, biotic relation between ascidians and bryozoans was observed both in the larval as well as adult community.

  4. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  5. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    Science.gov (United States)

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  6. Thermal Conductivity of Liquid Water from Reverse Nonequilibrium Ab Initio Molecular Dynamics

    Science.gov (United States)

    Tsuchida, Eiji

    2018-02-01

    We report on a theoretical framework for calculating the thermal conductivity of liquid water from first principles with the aid of the linear scaling method. We also discuss the possibility of obtaining equilibrium properties from a nonequilibrium trajectory.

  7. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  8. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  9. Design of a process for supercritical water desalination with zero liquid discharge

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; van der Ham, Aloysius G.J.; Metz, S.; Kersten, Sascha R.A.

    2015-01-01

    Conventional desalination methods have a major drawback; the production of a liquid waste stream which must be disposed. The treatment of this waste stream has always presented technical, economic, and environmental challenges. The supercritical water desalination (SCWD) process meets these

  10. Ab initio calculation of the electronic absorption spectrum of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  11. Ab initio calculation of the electronic absorption spectrum of liquid water

    International Nuclear Information System (INIS)

    Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa

    2014-01-01

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase

  12. Magnetic retrieval of ionic liquids: fast dispersive liquid-liquid microextraction for the determination of benzoylurea insecticides in environmental water samples.

    Science.gov (United States)

    Zhang, Jiaheng; Li, Min; Yang, Miyi; Peng, Bing; Li, Yubo; Zhou, Wenfeng; Gao, Haixiang; Lu, Runhua

    2012-09-07

    A novel, rapid ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) technique combined with magnetic retrieval (MR-IL-DLLME) has been developed and used to analyze five benzoylurea insecticides (BUs) in environmental water samples. This procedure was based on the magnetic retrieval of the ionic liquid using unmodified magnetic nanoparticles (MNPs). In this experiment, the fine ionic liquid droplets formed in aqueous samples functioned as an extractant for the extraction of BUs; after the extraction process was completed, Fe₃O₄ MNPs were added as a carrier to retrieve and separate the ionic liquid from the sample solution. After the supernatant was removed, the ionic liquid was desorbed using acetonitrile and subsequently injected directly into an HPLC system for analysis. The optimum experimental parameters are as follows: 20 mg of Fe₃O₄ (20 nm) as magnetic sorbents; 70 μL of [C₆MIM][PF₆] as the extraction solvent; 300 μL of acetonitrile as the disperser solvent; a vortex extraction time of 90 s with the vortex agitator set at 2800 rpm and no ionic strength. Under the optimized conditions, good linearity was obtained with correlation coefficients (r) greater than 0.9981. The repeatability and reproducibility of the proposed method were found to be good, and the limits of detection ranged from 0.05 μg L⁻¹ to 0.15 μg L⁻¹. The proposed method was then successfully used for the rapid determination of BUs in real water samples. The recoveries of five BUs at two spiked levels ranged from 79.8 to 91.7% with RSDs less than 6.0%. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Compensating for geographic variation in detection probability with water depth improves abundance estimates of coastal marine megafauna.

    Directory of Open Access Journals (Sweden)

    Rie Hagihara

    Full Text Available The probability of an aquatic animal being available for detection is typically <1. Accounting for covariates that reduce the probability of detection is important for obtaining robust estimates of the population abundance and determining its status and trends. The dugong (Dugong dugon is a bottom-feeding marine mammal and a seagrass community specialist. We hypothesized that the probability of a dugong being available for detection is dependent on water depth and that dugongs spend more time underwater in deep-water seagrass habitats than in shallow-water seagrass habitats. We tested this hypothesis by quantifying the depth use of 28 wild dugongs fitted with GPS satellite transmitters and time-depth recorders (TDRs at three sites with distinct seagrass depth distributions: 1 open waters supporting extensive seagrass meadows to 40 m deep (Torres Strait, 6 dugongs, 2015; 2 a protected bay (average water depth 6.8 m with extensive shallow seagrass beds (Moreton Bay, 13 dugongs, 2011 and 2012; and 3 a mixture of lagoon, coral and seagrass habitats to 60 m deep (New Caledonia, 9 dugongs, 2013. The fitted instruments were used to measure the times the dugongs spent in the experimentally determined detection zones under various environmental conditions. The estimated probability of detection was applied to aerial survey data previously collected at each location. In general, dugongs were least available for detection in Torres Strait, and the population estimates increased 6-7 fold using depth-specific availability correction factors compared with earlier estimates that assumed homogeneous detection probability across water depth and location. Detection probabilities were higher in Moreton Bay and New Caledonia than Torres Strait because the water transparency in these two locations was much greater than in Torres Strait and the effect of correcting for depth-specific detection probability much less. The methodology has application to visual survey of

  14. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, J.L.; Yetter, R.A. [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16801 (United States); Risha, G.A. [The Pennsylvania State University, Division of Business and Engineering, Altoona, PA 16601 (United States); Son, S.F. [Purdue University, School of Mechanical Engineering, West Lafayette, IN 47907 (United States); Tappan, B.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-08-15

    An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. At a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions

  15. On the evaporation of superheated water drops formed by flashing of liquid jets

    International Nuclear Information System (INIS)

    Mutair, Sami; Ikegami, Yasuyuki

    2012-01-01

    The flash evaporation of superheated water in direct contact with its own vapor involves very high heat transfer rates and the existing solutions for the problems of heat diffusion in the superheated water drops underestimate the actual heat transfer rates, even when the gas-side heat transfer coefficient is assumed to be extremely high. This happens due to the poor thermal conductivity of the water which causes the heat transfer to be dominated by the heat flow within the liquid. Accommodation between the analytical results of the heat diffusion in superheated water and those obtained from the experimental measurements requires considering the effective thermal conductivity of the liquid owing to the violent nature of the flow, which is thought to be much larger than the mere molecular thermal conductivity. This paper presents initial attempts on modeling the liquid-side heat transfer process accompanying the surface evaporation of superheated water drops resulting from the flashing of superheated water jets. (authors)

  16. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  17. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    International Nuclear Information System (INIS)

    Shirkhanloo, H.; Sedighi, K.; Mousavi, H. Z.

    2014-01-01

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C 8 MIM) (PF 6 )] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L -1 of lead and the detection limit was 0.8 μg L -1 with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  18. Determination of trace amount of lead in industrial and municipal effluent water samples based on dispersive liquid-liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Shirkhanloo, H. [Iranian Petroleum Industry Health Research Institute, Occupational and Environmental Health Research Center, Tehran (Iran, Islamic Republic of); Sedighi, K.; Mousavi, H. Z., E-mail: hzmousavi@semnan.ac.ir [Semnan University, College of Science, Department of Chemistry, Semnan (Iran, Islamic Republic of)

    2014-10-01

    In this study, a simple, sensitive and accurate method was developed for the determination of lead ion by combining ionic liquid dispersive liquid-liquid extraction (Il-DLL E) with flame atomic absorption spectrometry. Tetraethyl thiuram disulfide (Tetd), acetone and 1-octyl-3m ethylimidazolium hexafluorophosphate [(C{sub 8}MIM) (PF{sub 6})] were used as the chelating agent, dispersive and extraction solvent, respectively. Under the optimal conditions, the calibration graph was linear in the range of 5-190 μg L{sup -1} of lead and the detection limit was 0.8 μg L{sup -1} with a sample volume of 200 ml. The proposed method was validated by the analysis of one certified reference material and applied successfully to the determination of lead in real water samples. (Author)

  19. Combination of solvent extractants for dispersive liquid-liquid microextraction of fungicides from water and fruit samples by liquid chromatography with tandem mass spectrometry.

    Science.gov (United States)

    Pastor-Belda, Marta; Garrido, Isabel; Campillo, Natalia; Viñas, Pilar; Hellín, Pilar; Flores, Pilar; Fenoll, José

    2017-10-15

    A multiresidue method was developed to determine twenty-five fungicides belonging to three different chemical families, oxazoles, strobilurins and triazoles, in water and fruit samples, using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography/tandem mass spectrometry (LC-MS 2 ). Solid-liquid extraction with acetonitrile was used for the analysis in fruits, the extract being used as dispersant solvent in DLLME. Since some of the analytes showed high affinity for chloroform and the others were more efficiently extracted with undecanol, a mixture of both solvents was used as extractant in DLLME. After evaporation of CHCl 3 , the enriched phase was analyzed. Enrichment factors in the 23-119 and 12-60 ranges were obtained for waters and fruits, respectively. The approach was most sensitive for metominostrobin with limits of quantification of 1ngL -1 and 5ngkg -1 in waters and fruits, respectively, while a similar sensitivity was attained for tebuconazole in fruits. Recoveries of the fungicides varied between 86 and 116%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Abundance and composition of indigenous bacterial communities in a multi-step biofiltration-based drinking water treatment plant.

    Science.gov (United States)

    Lautenschlager, Karin; Hwang, Chiachi; Ling, Fangqiong; Liu, Wen-Tso; Boon, Nico; Köster, Oliver; Egli, Thomas; Hammes, Frederik

    2014-10-01

    Indigenous bacterial communities are essential for biofiltration processes in drinking water treatment systems. In this study, we examined the microbial community composition and abundance of three different biofilter types (rapid sand, granular activated carbon, and slow sand filters) and their respective effluents in a full-scale, multi-step treatment plant (Zürich, CH). Detailed analysis of organic carbon degradation underpinned biodegradation as the primary function of the biofilter biomass. The biomass was present in concentrations ranging between 2-5 × 10(15) cells/m(3) in all filters but was phylogenetically, enzymatically and metabolically diverse. Based on 16S rRNA gene-based 454 pyrosequencing analysis for microbial community composition, similar microbial taxa (predominantly Proteobacteria, Planctomycetes, Acidobacteria, Bacteriodetes, Nitrospira and Chloroflexi) were present in all biofilters and in their respective effluents, but the ratio of microbial taxa was different in each filter type. This change was also reflected in the cluster analysis, which revealed a change of 50-60% in microbial community composition between the different filter types. This study documents the direct influence of the filter biomass on the microbial community composition of the final drinking water, particularly when the water is distributed without post-disinfection. The results provide new insights on the complexity of indigenous bacteria colonizing drinking water systems, especially in different biofilters of a multi-step treatment plant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Amyloid proteins are highly abundant in water-repellent but not wettable soils: microbial differentiation matters to soils

    Science.gov (United States)

    van Keulen, Geertje; Quinn, Gerry; Sinclair, Kat; Dudley, Ed; Swain, Martin; Doerr, Stefan; Matthews, Peter; Francis, Lewis; Gazze, Andrea; Hallin, Ingrid

    2017-04-01

    Soil water repellency is a common phenomenon affecting the hydrological responses of many soil and land use types in different climates. This in turn leads to decreased water infiltration, reduced vegetation cover, fertiliser run off and soil erosion. The fundamental (biological) causes of (bulk) soil repellency and its dynamic behaviour remain poorly understood. We have applied soil metaproteomics, the systemic extraction and identification of proteins from a soil, to understand the biological (adaptive) processes and potential for bio-modification of mineral surfaces, which occur at the molecular level in soils switching between wettable and repellent states. Extreme, moderate and sub-critical water-repellent UK silt-loam soils under permanent grass vegetation, including Park Grass at Rothamsted Research, were sampled below the root zone depth under wettable and repellent conditions. Soils were subjected to our new extraction methods for determining the specific ultrahydrophobic and total metaproteomes. Using our ultrahydrophobic extraction protocol, we have identified more than 200, mostly novel amyloid, proteins, which could be extracted from water-repellent soils, but were absent in the comparable wettable soils. One of the novel amyloid proteins was highly abundant in all soils, which has the potential as a soil biomarker for precision land management, especially in irrigation. Comparative profiling of the total metaproteomes of wettable and repellent soils has revealed similarities and dissimilarities in microbial diversity and their activities, which have created a deeper understanding of soil system processes common and adaptive to soil moisture and to the severity of repellence.

  2. Levitation time measurement of water drops on the surface of liquid nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heetae; Lee, Younghee [Sungkyunkwan University, Suwon (Korea, Republic of); Cho, Hoonyoung [Dongguk University, Seoul (Korea, Republic of)

    2011-06-15

    The levitation of water drops on the surface of liquid nitrogen is studied. The water drop evaporates the liquid nitrogen, which makes a nitrogen vapor film between the water drop and the surface of the liquid nitrogen. The temperature of the drop falls from the initial temperature of the drop to the melting temperature and then eventually reaches the Leidenfrost temperature at which an ice sphere falls into the liquid nitrogen. The floating time of the water drop on the surface of liquid nitrogen corresponds to how long the temperature of the water drop takes to go from the initial temperature to the Leidenfrost temperature. We measured the floating time of the water drop on the surface of the liquid nitrogen as a function of the size of the drop and the initial temperature of the drop. The floating time increases linearly with increasing drop size and increases linearly with increasing initial temperature of drop, which can be explained reasonably well by assuming uniform cooling of the drop by heat conduction.

  3. Glass transition of aqueous solutions involving annealing-induced ice recrystallization resolves liquid-liquid transition puzzle of water

    Science.gov (United States)

    Zhao, Li-Shan; Cao, Ze-Xian; Wang, Qiang

    2015-01-01

    Liquid-liquid transition of water is an important concept in condensed-matter physics. Recently, it was claimed to have been confirmed in aqueous solutions based on annealing-induced upshift of glass-liquid transition temperature, . Here we report a universal water-content, , dependence of for aqueous solutions. Solutions with vitrify/devitrify at a constant temperature, , referring to freeze-concentrated phase with left behind ice crystallization. Those solutions with totally vitrify at under conventional cooling/heating process though, of the samples annealed at temperatures   to effectively evoke ice recrystallization is stabilized at . Experiments on aqueous glycerol and 1,2,4-butanetriol solutions in literature were repeated, and the same samples subject to other annealing treatments equally reproduce the result. The upshift of by annealing is attributable to freeze-concentrated phase of solutions instead of ‘liquid II phase of water’. Our work also provides a reliable method to determine hydration formula and to scrutinize solute-solvent interaction in solution. PMID:26503911

  4. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    Science.gov (United States)

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  5. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment

    Directory of Open Access Journals (Sweden)

    Ladisch Michael

    2010-12-01

    Full Text Available Abstract Background Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G and syringyl (S subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively. Results Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled. Conclusions Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.

  6. Variations in natural abundances of 15N and 13C in potassium fed lentil plants grown under water stress

    International Nuclear Information System (INIS)

    Kurdali, F.; Al-Shammaa, M.

    2009-01-01

    The impact of two K-fertilizer treatments [K0 (0) and K1 (150 kg K 2 O/ha)] on dry matter production and N 2 fixation (Ndfa) by Lentil (Lens culinaris.) was evaluated in a pot experiment. The plants were also subjected to three soil moisture regimes starting from bud flower initiation stage to pod formation (low, 45-50%. Moderate, 55-60% and high 75-80% of field capacity, abbreviated as FC1, FC2 and FC3, respectively). The 15 N natural abundance technique (%δ 15 N) was employed to evaluate N 2 fixation using barley as a reference crop. Moreover, the carbon isotope discrimination (%Δ 13 C) was determined to assess factors responsible for crop performance variability in the different treatments. Water restriction occurring during the post-flowering period considerably affects growth and N 2 -fixation. However, K-fertilizer enhanced plant performance by overcoming water shortage influences. The delta 15 N values in lentils ranged from +0.67 to +1.36% depending on soil moisture and K-fertilizer treatments. Whereas, those of N 2 fixation and the reference plant were -0.45 and +2.94%, respectively. Consequently, Ndfa% ranged from 45 and 65%. Water stress reduced Δ 13 C values in the FC1K0 And FC1K1 treatments. However, K fertilizer enhanced the whole plants Δ 13 C along with dry matter yield and N 2 fixation. The water stressed plants amended with K (FC1K1) seemed to be the best treatment because of its highest pod yield, high N balance and N 2 -fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K-fertilizer in alleviating water stress occurring during the post-flowering period of lentil.(Authors)

  7. Calculation for liquid-liquid equilibria of quaternary alkane-ethyl acetate-methanol-water systems used in counter-current chromatography.

    Science.gov (United States)

    Chen, Jian; Zhao, Mengqiang; Yu, Yanmei; Li, Zongcheng

    2007-06-01

    The calculation of liquid-liquid equilibrium compositions of solvent systems is very important for the work on counter-current chromatography (CCC), especially the phase composition and volume ratio obtained from liquid-liquid equilibrium calculation. In this work, liquid-liquid equilibria of quaternary Arizona solvent systems, alkane-ethyl acetate-methanol-water, and related ternary systems are correlated and predicted using the non-random two-liquid model (NRTL). Hexane, heptane and isooctane are the used alkanes. The parameters in the model are regressed only with the special systems considered. Detailed comparison with experimental data shows that liquid-liquid equilibria of these systems can be predicted with greatly improved accuracy as compared to the group contribution method (UNIFAC).

  8. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  9. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna

    2017-12-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  10. Process and apparatus for determining the proportion of water in a liquid containing petroleum

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Arnold, D.M.

    1980-01-01

    This invention concerns nuclear techniques for determining the proportion or percentage of water contained in a petroleum stream and the salinity level of such water in oil refining and production operations. This technique consists in bombarding the liquid with fast neutrons from an appropriate source, these neutrons being slowed down to the point of becoming slow neutrons that can be captured by the substances present in the liquid thus giving rise to capture gamma rays. The energy spectrum of the gamma rays resulting from the capture of these slow or 'thermal' neutrons obtained in this manner, makes it possible to determine the presence of chlorine in the liquid and to measure its concentration so that if the degree of salinity of the liquid is known, the amount of salt water in it may be determined. Furthermore, the sulphur level can also be determined at the same time as the concentration of chlorine in certain conditions [fr

  11. Ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction and derivatization of sulfonamides in river water, honey, milk, and animal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xu; Su Rui; Zhao Xin; Liu Zhuang; Zhang Yupu; Li Dan; Li Xueyuan; Zhang Hanqi [College of Chemistry, Jilin University, Changchun 130012 (China); Wang Ziming, E-mail: analchem@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2011-11-30

    Graphical abstract: The extraction and derivatization efficiency of SAs is dependent on type and volume of extraction solvent, type and volume of disperser, microwave power and irradiation time, volume of derivatization reagent, pH of sample solution as well as ionic strength. Highlights: Black-Right-Pointing-Pointer A new, rapid and sensitive method for determining sulfonamides (SAs) was proposed. Black-Right-Pointing-Pointer Derivatization, extraction and preconcentration of SAs were performed in one step. Black-Right-Pointing-Pointer IL-based MADLLME and derivatization were first applied for the determination of SAs. Black-Right-Pointing-Pointer Trace SAs in river water, honey, milk, and pig plasma were determined. - Abstract: The ionic liquid-based microwave-assisted dispersive liquid-liquid microextraction (IL-based MADLLME) and derivatization was applied for the pretreatment of six sulfonamides (SAs) prior to the determination by high-performance liquid chromatography (HPLC). By adding methanol (disperser), fluorescamine solution (derivatization reagent) and ionic liquid (extraction solvent) into sample, extraction, derivatization, and preconcentration were continuously performed. Several experimental parameters, such as the type and volume of extraction solvent, the type and volume of disperser, amount of derivatization reagent, microwave power, microwave irradiation time, pH of sample solution, and ionic strength were investigated and optimized. When the microwave power was 240 W, the analytes could be derivatized and extracted simultaneously within 90 s. The proposed method was applied to the analysis of river water, honey, milk, and pig plasma samples, and the recoveries of analytes obtained were in the range of 95.0-110.8, 95.4-106.3, 95.0-108.3, and 95.7-107.7, respectively. The relative standard deviations varied between 1.5% and 7.3% (n = 5). The results showed that the proposed method was a rapid, convenient and feasible method for the determination

  12. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects

    DEFF Research Database (Denmark)

    Alexeev, Dmitry; Chen, Jie; Walther, Jens Honore

    2015-01-01

    difference in the phonon mean free path between the FLG and water. Remarkably, RK is strongly dependent on the layering of water adjacent to the FLG, exhibiting an inverse proportionality relationship to the peak density of the first water layer, which is consistent with better acoustic phonon matching...... between FLG and water. These findings suggest novel ways to engineer the thermal transport properties of solid−liquidinterfaces by controlling and regulating the liquid layering at the interface....

  13. Interfacial transport phenomena and stability in liquid-metal/water systems: scaling considerations

    International Nuclear Information System (INIS)

    Abdulla, S.; Liu, X.; Anderson, M.; Bonazza, R.; Corradini, M.; Cho, D.

    2001-01-01

    One concept being considered for steam generation in innovative nuclear reactor applications, involves water coming into direct contact with a circulating molten metal. The vigorous agitation of the two fluids, the direct liquid-liquid contact and the consequent large interfacial area give rise to very high heat transfer coefficients and rapid steam generation. For an optimum design of such direct contact heat exchange and vaporization systems, detailed knowledge is necessary of the various flow regimes, interfacial transport phenomena, heat transfer and operational stability. In this paper we describe current results from the first year of this research that studies the transport phenomena involved with the injection of water into molten metals (e.g., lead alloys). In particular, this work discusses scaling considerations related to direct contact heat exchange, our experimental plans for investigation and a test plan for the important experimental parameters; i.e., the water and liquid metal mass flow rates, the liquid metal pool temperature and the ambient pressure of the direct contact heat exchanger. Past experimental work and initial scaling results suggest that our experiments can directly represent the proper liquid metal pool temperature and the water subcooling. The experimental variation in water and liquid metal flow rates and system pressure (1-10 bar), although smaller than the current conceptual system designs, is sufficient to verify the expected scale effects to demonstrate the phenomena. (authors)

  14. Effect of water presence on choline chloride-2urea ionic liquid and coating platings from the hydrated ionic liquid

    Science.gov (United States)

    Du, Cuiling; Zhao, Binyuan; Chen, Xiao-Bo; Birbilis, Nick; Yang, Haiyan

    2016-07-01

    In the present study, hygroscopicity of the choline chloride-urea (ChCl-2Urea) ionic liquid (IL) was confirmed through Karl-Fisher titration examination, indicating that the water content in the hydrated ChCl-2Urea IL was exposure-time dependent and could be tailored by simple heating treatment. The impact of the absorbed water on the properties of ChCl-2Urea IL, including viscosity, electrical conductivity, electrochemical window and chemical structure was investigated. The results show that water was able to dramatically reduce the viscosity and improve the conductivity, however, a broad electrochemical window could be persisted when the water content was below ~6 wt.%. These characteristics were beneficial for producing dense and compact coatings. Nickel (Ni) coatings plating from hydrated ChCl-2Urea IL, which was selected as an example to show the effect of water on the electroplating, displayed that a compact and corrosion-resistant Ni coating was plated from ChCl-2Urea IL containing 6 wt.% water doped with 400 mg/L NA at a moderate temperature. As verified by FTIR analysis, the intrinsic reason could be ascribed that water was likely linked with urea through strong hydrogen bond so that the water decomposition was suppressed during plating. Present study may provide a reference to prepare some similar water-stable ILs for plating.

  15. Hydrodynamic control of mesozooplankton abundance and biomass in northern Svalbard waters (79-81°N)

    Science.gov (United States)

    Blachowiak-Samolyk, Katarzyna; Søreide, Janne E.; Kwasniewski, Slawek; Sundfjord, Arild; Hop, Haakon; Falk-Petersen, Stig; Nøst Hegseth, Else

    2008-10-01

    The spatial variation in mesozooplankton biomass, abundance and species composition in relation to oceanography was studied in different climatic regimes (warm Atlantic vs. cold Arctic) in northern Svalbard waters. Relationships between the zooplankton community and various environmental factors (salinity, temperature, sampling depth, bottom depth, sea-ice concentrations, algal biomass and bloom stage) were established using multivariate statistics. Our study demonstrated that variability in the physical environment around Svalbard had measurable effect on the pelagic ecosystem. Differences in bottom depth and temperature-salinity best explained more than 40% of the horizontal variability in mesozooplankton biomass (DM m -2) after adjusting for seasonal variability. Salinity and temperature also explained much (21% and 15%, respectively) of the variability in mesozooplankton vertical distribution (ind. m -3) in August. Algal bloom stage, chlorophyll- a biomass, and depth stratum accounted for additional 17% of the overall variability structuring vertical zooplankton distribution. Three main zooplankton communities were identified, including Atlantic species Fritillaria borealis, Oithona atlantica, Calanus finmarchicus, Themisto abyssorum and Aglantha digitale; Arctic species Calanus glacialis, Gammarus wilkitzkii, Mertensia ovum and Sagitta elegans; and deeper-water inhabitants Paraeuchaeta spp., Spinocalanus spp., Aetideopsis minor, Mormonilla minor, Scolecithricella minor, Gaetanus ( Gaidius) tenuispinus, Ostracoda, Scaphocalanus brevicornis and Triconia borealis. Zooplankton biomasses in Atlantic- and Arctic-dominated water masses were similar, but biological "hot-spots" were associated with Arctic communities.

  16. Membrane vesicles in sea water: heterogeneous DNA content and implications for viral abundance estimates

    Science.gov (United States)

    Biller, Steven J; McDaniel, Lauren D; Breitbart, Mya; Rogers, Everett; Paul, John H; Chisholm, Sallie W

    2017-01-01

    Diverse microbes release membrane-bound extracellular vesicles from their outer surfaces into the surrounding environment. Vesicles are found in numerous habitats including the oceans, where they likely have a variety of functional roles in microbial ecosystems. Extracellular vesicles are known to contain a range of biomolecules including DNA, but the frequency with which DNA is packaged in vesicles is unknown. Here, we examine the quantity and distribution of DNA associated with vesicles released from five different bacteria. The average quantity of double-stranded DNA and size distribution of DNA fragments released within vesicles varies among different taxa. Although some vesicles contain sufficient DNA to be visible following staining with the SYBR fluorescent DNA dyes typically used to enumerate viruses, this represents only a small proportion (vesicles. Thus DNA is packaged heterogeneously within vesicle populations, and it appears that vesicles are likely to be a minor component of SYBR-visible particles in natural sea water compared with viruses. Consistent with this hypothesis, chloroform treatment of coastal and offshore seawater samples reveals that vesicles increase epifluorescence-based particle (viral) counts by less than an order of magnitude and their impact is variable in space and time. PMID:27824343

  17. Diversity and abundance of water birds in a subarctic lake during three decades

    Directory of Open Access Journals (Sweden)

    Anders Klemetsen

    2013-12-01

    Full Text Available The numbers of divers, ducks, gulls, terns and waders in the 15 km2 oligotrophic lake Takvatn, North Norway were estimated six times during 1983-2012. Systematic mapping surveys were done by boat within the first week after ice-break in June. Twenty-one species were observed over the years and 12 were regarded as breeding on the lake. Red-breasted merganser Mergus serrator was the dominant diving bird, with estimated minimum number of pairs varying from 15 to 39 among years. Black-throated diver Gavia arctica (1-3 pairs, tufted duck Aythya fuligula (2-15 pairs and common scoter Melanitta nigra (1-5 pairs bred regularly, while velvet scoter Melanitta fusca (1-2 and goldeneye Bucephala clangula (2-4 were found in some years and mallard Anas platyrhynchos (1 pair and wigeon Anas penelope (1 pair in one year. Common gull Larus canus (6-30 pairs and arctic tern Sterna paradisaea (2-35 pairs bred in all years. Common sandpiper Tringa hypoleucos (3-9 pairs and redshank Tringa totanus (1-4 pairs were regular waders. Density variations of mergansers, gulls and terns are possibly related to density variations of three-spined sticklebacks Gasterosteus aculeatus, their dominant fish prey. The water birds are important links in the food web of the lake.

  18. Latitudinal Trends in Abundant and Rare Bacterioplankton Community Structure and Diversity in Surface Waters of the Pacific Ocean

    Science.gov (United States)

    Jeffrey, W. H.; Moss, J. A.; Snyder, R.; Pakulski, J. D.

    2016-02-01

    To fully comprehend planktonic diversity and the roles of microorganisms in global biogeochemical cycling, we must recognize the distribution patterns of planktonic taxa and phylotypes and their controlling environmental factors. To advance this understanding, Illumina sequencing targeting the 16S rRNA gene was used to evaluate latitudinal patterns of bacterial taxa as well as diversity in surface waters in the Pacific Ocean. Surface water was collected at 37 stations at 370 km intervals in a 16,200 km transect from 71 N to 68 S in the Pacific Ocean from August to November 2003. These samples were collected on Sterivex filters and kept continuously at -80 C until recent processing which produced over 200k reads per site, half of which were discernible down to the genus level. Bray-Curtis analysis of known genera produced 4 major clusters—sub-Arctic/Arctic, tropical, temperate, and sub-Antarctic/Antarctic. Analysis of only the rare (< 1%) genera produced the same 4 major clusters, although the clusters were most congruent in their geographic distribution when only the abundant taxa were included. Key phyla responsible for these groupings include genera of the Proteobacteria and Cyanobacteria, and as expected, include the pronounced presence of Prochlorococcus in the temperate and equatorial regions. However, many robust trends such as unipolar and bipolar distribution in both the abundant (≥1%) and rare (< 1%) genera within phyla Verrucomicrobia, Actinobacteria, and Barteriodetes, were also apparent. The data sheds light on distribution patterns of the Oleibacter, Thalassobius, Olleya, Salegentibacter, Ulvibacter, Bizionia, Pirellula, and many other additional, understudied genera. Of the 655 identified genera, no significant gradients in gamma diversity were apparent when 12 commonly used species and phylogenetic indices were applied.

  19. Determination of bromoxynil and ioxynil in the presence of carbamates by supported liquid membrane-liquid chromatography in river waters

    Directory of Open Access Journals (Sweden)

    Titus Motswadi Maswabi

    2003-12-01

    Full Text Available Sample pre-treatment and enrichment using the supported liquid membrane (SLM technique for the determination of phenolic nitrile herbicides in presence of carbamates in river water samples was investigated. The uncharged herbicide molecules from the flowing aqueous solution diffuse through an immobilized water-immiscible organic solvent, supported by a porous polytetrafluoroethylene (PTFE membrane, and trapped in a stagnant acidic acceptor phase in an ionic form. Using n-undecane as a membrane solvent, the SLM extraction methodology was successfully used for the enrichment and separation of phenolic nitrile herbicides in environmental waters with extraction efficiencies of 60% or better. A RDS (% of 2.1 and 1.8 was obtained for the extraction of ioxynil and bromoxynil from river water, respectively.

  20. Are nanometric films of liquid undercooled interfacial water bio-relevant?

    Science.gov (United States)

    Möhlmann, Diedrich T F

    2009-06-01

    It is known that life processes below the melting point temperature can actively evolve and establish in micrometer-sized (and larger) veins and structures in ice and permafrost soil, filled with unfrozen water. Thermodynamic arguments and experimental results indicate the existence of much smaller nanometer sized thin films of undercooled liquid interfacial (ULI) water on surfaces of micrometer sized and larger mineral particles and microbes in icy environments far below the melting point temperature. This liquid interfacial water can be described in terms of a freezing point depression, which is due to the interfacial pressure of van der Waals forces. The physics behind the possibly also life supporting capability of nanometric films of undercooled liquid interfacial water, which also can "mantle" the surfaces of the much larger and micrometer-sized microbes, is discussed. As described, biological processes do not necessarily have to proceed in the "bulk" of the thin interfacial water, as in "vinical" water and in the micrometer sized veins e.g., but they can be supported or are even made possible already by covering thin mantles of liquid interfacial water. These can provide liquid water for metabolic processes and act as carrier for the necessary transport of nutrients and waste. ULI water supports two different and possibly biologically relevant transport processes: 2D molecular diffusion in the interfacial film, and flow-like due to regelation. ULI-water, which is "lost" by transport into microbes, e.g., will be refilled from the neighbouring ice. In this way, the nanometric liquid environment of microbes in ULI-water is comparable to that of microbes in bulk water. Another probably also biologically relevant property of ULI is, depending on the hydrophobic or hydrophilic character of the surfaces, that it is of lower density (LDL) or higher density (HDL) than bulk water. Furthermore, capillary effects and ions in ULI-water solutions can support, enhance, and

  1. Shallow transient liquid water environments on present-day mars, and their implications for life

    Science.gov (United States)

    Jones, Eriita G.

    2018-05-01

    The identification and characterisation of subsurface liquid water environments on Mars are of high scientific interest. Such environments have the potential to support microbial life, and, more broadly, to develop our understanding of the habitability of planets and moons beyond Earth. Given our current state of knowledge of life on Earth, three pre-requisites are necessary for an environment to be considered 'habitable' and therefore capable of supporting terrestrial-like life: energy, biogenic elements, and liquid water with a sufficiently high water activity. The surface of Mars today is predominately cold and dry, and any liquid water exposed to the atmosphere will vaporise or freeze on timescales of hours to days. These conditions have likely persisted for much of the last 10 million years, and perhaps longer. Despite this, briny liquid water flows (Recurrent Slope Linea) have been observed in a number of locations in the present-day. This review examines evidence from the Phoenix Lander (2008) and the Mars Science Laboratory (2012-current), to assess the occurrence of habitable conditions in the shallow Martian regolith. It will be argued that shallow, transient, liquid water brines are potentially habitable by microbial life, are likely a widespread occurrence on Mars, and that future exploration aimed at finding present-day habitable conditions and potential biology should 'follow the salt'.

  2. Ionic liquid based dispersive liquid-liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples.

    Science.gov (United States)

    Ge, Dandan; Lee, Hian Kee

    2013-11-22

    Ionic liquid-dispersive liquid-liquid microextraction combined with micro-solid phase extraction (IL-DLLME-μ-SPE), and high-performance liquid chromatography (HPLC) was developed for the determination of tricyclic antidepressants (TCAs) in water samples. Two hundred microliters of an organic solvent (as disperser solvent) and 20 μl of 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate were injected into a 5.0 ml sample for sonication-assisted DLLME. After this, a μ-SPE device, containing a novel material zeolite imidazolate framework 4 (ZIF-4), was added into the sample solution and 1 min of vortex-assisted extraction was performed. After 5 min of sonication-assisted desorption, 10 μl of desorption solvent was injected into a HPLC system for analysis. A characteristic property of DLLME-VA-μ-SPE is that any organic solvent and solid sorbent immiscible with water can be used. Special apparatus, or conical-bottom test tubes, and tedious procedures conventionally associated with DLLME such as centrifugation, or refrigeration of solvent are not necessary in the present approach. A novel material, ZIF-4 was employed as μ-SPE sorbent. Under the optimized conditions, the calibration curves were linear in the range of 1-1000 μg/L. The relative standard deviations and the limits of detection were in the range of 1.5% and 7.8% and 0.3 and 1 μg/L, respectively. The relative recoveries of canal water samples, spiked with drugs, were in the range of 94.3% and 114.7%. The results showed that IL-DLLME-μ-SPE was suitable for the determination of TCAs in water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Isobaric (vapour + liquid + liquid) equilibrium data for (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) systems at 100 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Lladosa, Estela [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, 46100 Burjassot, Valencia (Spain)], E-mail: estela.lladosa@uv.es; Monton, Juan B. [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, 46100 Burjassot, Valencia (Spain)], E-mail: juan.b.monton@uv.es; Burguet, MaCruz [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, 46100 Burjassot, Valencia (Spain)], E-mail: cruz.burguet@uv.es; Torre, Javier de la [Departamento de Ingenieria Quimica, Escuela Tecnica Superior de Ingenieria, Universitat de Valencia, 46100 Burjassot, Valencia (Spain)], E-mail: javier.torre@uv.es

    2008-05-15

    Isobaric (vapour + liquid + liquid) equilibria were measured for the (di-n-propyl ether + n-propyl alcohol + water) and (diisopropyl ether + isopropyl alcohol + water) system at 100 kPa. The apparatus used for the determination of (vapour + liquid + liquid) equilibrium data was an all-glass dynamic recirculating still with an ultrasonic homogenizer couple to the boiling flask. The experimental data demonstrated the existence of a heterogeneous ternary azeotrope for both ternary systems. The (vapour + liquid + liquid) equilibria data were found to be thermodynamically consistent for both systems. The experimental data were compared with the estimation using UNIQUAC and NRTL models and the prediction of UNIFAC model.

  4. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.

    Science.gov (United States)

    Rykaczewski, Konrad; Chinn, Jeff; Walker, Marlon L; Scott, John Henry J; Chinn, Amy; Jones, Wanda

    2011-12-27

    Nanoparticles adsorbed onto the surface of a drop can fully encapsulate the liquid, creating a robust and durable soft solid with superhydrophobic characteristics referred to as a liquid marble. Artificially created liquid marbles have been studied for about a decade but are already utilized in some hair and skin care products and have numerous other potential applications. These soft solids are usually formed in small quantity by depositing and rolling a drop of liquid on a layer of hydrophobic particles but can also be made in larger quantities in an industrial mixer. In this work, we demonstrate that microscale liquid marbles can also form through self-assembly during water condensation on a superhydrophobic surface covered with a loose layer of hydrophobic nanoparticles. Using in situ environmental scanning electron microscopy and optical microscopy, we study the dynamics of liquid marble formation and evaporation as well as their interaction with condensing water droplets. We demonstrate that the self-assembly of nanoparticle films into three-dimensional liquid marbles is driven by multiple coalescence events between partially covered droplets and is aided by surface flows causing rapid nanoparticle film redistribution. We also show that droplet and liquid marble coalescence can occur due to liquid-to-liquid contact or squeezing of the two objects into each other as a result of compressive forces from surrounding droplets and marbles. Irrelevant of the mechanism, coalescence of marbles and drops can cause their rapid movement across and rolling off the edge of the surface. We also demonstrate that the liquid marbles randomly moving across the surface can be captured and immobilized by hydrophilic surface patterns.

  5. CALCULATED AND MEASURED VALUES OF LIQUID WATER CONTENT IN CLEAN AND POLLUTED ENVIRONMENTS

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Řezáčová, Daniela; Mattanen, J.

    2006-01-01

    Roč. 50, č. 1 (2006), s. 121-130 ISSN 0039-3169 R&D Projects: GA AV ČR(CZ) IAA3042301 Institutional research plan: CEZ:AV0Z30420517 Keywords : liquid water content * visibility * air pollutant * fog /cloud water Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.603, year: 2006

  6. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled us...

  7. Efficiency and mechanism of demulsification of oil-in-water emulsions using ionic liquid

    NARCIS (Netherlands)

    Li, X.; Kersten, Sascha R.A.; Schuur, Boelo

    2016-01-01

    In this work, 13 ionic liquids (ILs), including 9 halogenide ILs and 4 non-halogenide ILs, were evaluated as demulsifiers for a model oil-in-water emulsion prepared with heptane and water, where sodium dodecylbenzenesulfonate (SDBS) was used as a surfactant. The separating efficiency (the fraction

  8. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    Science.gov (United States)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  9. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg + ), ethylmercury (EtHg + ) and inorganic mercury (Hg 2+ ) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL -1 for EtHg + and 5-450ngL -1 for MeHg + and Hg 2+ . Limits of detection were 3.0ngL -1 for EtHg + and 1.5ngL -1 for MeHg + and Hg 2+ . Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mixed reverse micelles facilitated downstream processing of lipase involving water-oil-water liquid emulsion membrane.

    Science.gov (United States)

    Bhowal, Saibal; Priyanka, B S; Rastogi, Navin K

    2014-01-01

    Our earlier work for the first time demonstrated that liquid emulsion membrane (LEM) containing reverse micelles could be successfully used for the downstream processing of lipase from Aspergillus niger. In the present work, we have attempted to increase the extraction and purification fold of lipase by using mixed reverse micelles (MRM) consisting of cationic and nonionic surfactants in LEM. It was basically prepared by addition of the internal aqueous phase solution to the organic phase followed by the redispersion of the emulsion in the feed phase containing enzyme, which resulted in globules of water-oil-water (WOW) emulsion for the extraction of lipase. The optimum conditions for maximum lipase recovery (100%) and purification fold (17.0-fold) were CTAB concentration 0.075 M, Tween 80 concentration 0.012 M, at stirring speed of 500 rpm, contact time 15 min, internal aqueous phase pH 7, feed pH 9, KCl concentration 1 M, NaCl concentration 0.1 M, and ratio of membrane emulsion to feed volume 1:1. Incorporation of the nonionic surfactant (e.g., Tween 80) resulted in remarkable improvement in the purification fold (3.1-17.0) of the lipase. LEM containing a mixture of nonionic and cationic surfactants can be successfully used for the enhancement in the activity recovery and purification fold during downstream processing of enzymes/proteins. © 2014 American Institute of Chemical Engineers.

  11. Study of Solid-Liquid Ratio of Fly Ash Geopolymer as Water Absorbent Material

    OpenAIRE

    Angga Prasetya Fandi; Candra Sukmana Ndaru; Anggarini Ufafa

    2017-01-01

    Geopolymer has been synthesized from fly ash to be applicated as water absorbent material. This research conducted to determine the ability of geopolymer to abrsop water by variation of solid – liquid ratio at optimum molarity of NaOH; 3 M. In this research, the synthesis of geopolymer was conducted at the variation of solid-liquid ratio; 60:40, 65:35, 70:30, and 75:25. Result of the treatment were characterized by XRD and SEM to compare the geopolymer structure. Water absorption capacity was...

  12. (Liquid + liquid) equilibria for the ternary (water + acetic acid + toluene) system at different temperatures: Experimental data and correlation

    International Nuclear Information System (INIS)

    Saien, Javad; Mozafarvandi, Maryam; Daliri, Shabnam; Norouzi, Mahdi

    2013-01-01

    Highlights: ► Solute distribution coefficient rises with temperature; however, mildly at low dosages. ► Solute extraction factor decreases with temperature, favoring extraction efficiency. ► A maximum separation is achieved at solute aqueous phase mass fraction of about 0.27. ► Both well known NRTL and UNIQUAC models predict the experimental data nicely. - Abstract: (Liquid + liquid) equilibrium (LLE) of the ternary (water + acetic acid + toluene) system was investigated at temperatures of (288.2, 298.2, and 313.2) K, under atmospheric pressure. This chemical system is frequently used in liquid–liquid extraction investigations. The results show that the distribution coefficient of acetic acid between organic and aqueous phases rises with increasing temperature, but the separation factor decreases within the temperature range covered. Meanwhile, a maximum extraction factor (about 100) was achieved for the solute aqueous phase mass fraction around 0.27 at T = 288.2 K. The tie line data for this system were sufficiently correlated by Othmer–Tobias and Hand equations. The experimental results were used to obtain binary interaction parameters as predicted by the non-random two liquid (NRTL) and universal quasi chemical (UNIQUAC) equation models using the Aspen Plus simulator. Root mean square deviation (RMSD) values as low as 0.0119 and 0.0139 were obtained for these models, respectively; indicating excellent correlation results for the provided experimental solubility data.

  13. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  14. Mutual Solubilities of Ammonium-based Ionic Liquids with Water and with Water/Methanol Mixture

    Czech Academy of Sciences Publication Activity Database

    Machanová, Karolina; Jacquemin, J.; Wagner, Zdeněk; Bendová, Magdalena

    2012-01-01

    Roč. 42, SI (2012), s. 1229-1241 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] Institutional support: RVO:67985858 Keywords : Ionic liquids * liquid-liquid equilibria * solubility Subject RIV: CF - Physical ; Theoretical Chemistry

  15. Molecular dynamics study of room temperature ionic liquids with water at mica surface

    Directory of Open Access Journals (Sweden)

    Huanhuan Zhang

    2018-04-01

    Full Text Available Water in room temperature ionic liquids (RTILs could impose significant effects on their interfacial properties at a charged surface. Although the interfaces between RTILs and mica surfaces exhibit rich microstructure, the influence of water content on such interfaces is little understood, in particular, considering the fact that RTILs are always associated with water due to their hygroscopicity. In this work, we studied how different types of RTILs and different amounts of water molecules affect the RTIL-mica interfaces, especially the water distribution at mica surfaces, using molecular dynamics (MD simulation. MD results showed that (1 there is more water and a thicker water layer adsorbed on the mica surface as the water content increases, and correspondingly the average location of K+ ions is farther from mica surface; (2 more water accumulated at the interface with the hydrophobic [Emim][TFSI] than in case of the hydrophilic [Emim][BF4] due to the respective RTIL hydrophobicity and ion size. A similar trend was also observed in the hydrogen bonds formed between water molecules. Moreover, the 2D number density map of adsorbed water revealed that the high-density areas of water seem to be related to K+ ions and silicon/aluminum atoms on mica surface. These results are of great importance to understand the effects of hydrophobicity/hydrophicility of RTIL and water on the interfacial microstructure at electrified surfaces. Keywords: Room temperature ionic liquids, Hydrophobicity/hydrophicility, Water content, Electrical double layer, Mica surface

  16. Beneficial effect of added water on sodium metal cycling in super concentrated ionic liquid sodium electrolytes

    Science.gov (United States)

    Basile, Andrew; Ferdousi, Shammi A.; Makhlooghiazad, Faezeh; Yunis, Ruhamah; Hilder, Matthias; Forsyth, Maria; Howlett, Patrick C.

    2018-03-01

    The plating and stripping performance of sodium metal in an ionic liquid electrolyte is improved when including water as an additive. Herein we report for the first time the trend of improved cycling behavior of Na0/+ in N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide with 500 ppm H2O. The addition of water to this ionic liquid electrolyte promotes the breakdown of the [FSI]- anion towards beneficial SEI formation. The benefits during plating and stripping of sodium is observed as lower total polarization during symmetrical cell cycling and decreased electrode/electrolyte interface impedance. Sodium metal surfaces after cycling with 500 ppm H2O are shown to be smooth in morphology in comparison to lower additive concentrations. The outcome of adventitious moisture benefiting Na0/+ cycling in an ionic liquid, contrary to conventional electrolytes, allows flexibility in ionic liquid electrolyte design to the benefit of battery manufacturers.

  17. (Liquid + liquid) equilibria of (water + propionic acid + diethyl succinate or diethyl glutarate or diethyl adipate) ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kirbaslar, S. Ismail [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)], E-mail: krbaslar@istanbul.edu.tr; Sahin, Selin; Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)

    2007-11-15

    (Liquid + liquid) equilibrium (LLE) data of the solubility (binodal) curves and tie-line end compositions were examined for {l_brace}water (1) + propionic acid (2) + diethyl succinate or diethyl glutarate or diethyl adipate (3){r_brace} at T = 298.15 K and 101.3 {+-} 0.7 kPa. The relative mutual solubility of the propionic acid is higher in the dibasic esters layers than in the aqueous layers. The reliability of the experimental tie-line data was confirmed by using the Othmer-Tobias correlation. The LLE data of the ternary systems was predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  18. NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST /WFC3 SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Stevenson, Kevin B.; Bean, Jacob; Kreidberg, Laura [Department of Astronomy and Astrophysics, University of Chicago, 5640 S Ellis Avenue, Chicago, IL 60637 (United States); Desert, Jean-Michel [University of Amsterdam (Netherlands); Fortney, Jonathan J. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom); Showman, Adam P. [Department of Planetary Sciences and Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Diamond-Lowe, Hannah [Department of Astronomy, Harvard Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2016-12-01

    The nature of the thermal structure of hot Jupiter atmospheres is one of the key questions raised by the characterization of transiting exoplanets over the past decade. There have been claims that many hot Jupiters exhibit atmospheric thermal inversions. However, these claims have been based on broadband photometry rather than the unambiguous identification of emission features with spectroscopy, and the chemical species that could cause the thermal inversions by absorbing stellar irradiation at high altitudes have not been identified despite extensive theoretical and observational effort. Here we present high-precision Hubble Space Telescope WFC3 observations of the dayside thermal emission spectrum of the hot Jupiter HD 209458b, which was the first exoplanet suggested to have a thermal inversion. In contrast to previous results for this planet, our observations detect water in absorption at 6.2 σ confidence. When combined with Spitzer photometry, the data are indicative of a monotonically decreasing temperature with pressure over the range of 1–0.001 bars at 7.7 σ confidence. We test the robustness of our results by exploring a variety of model assumptions, including the temperature profile parameterization, presence of a cloud, and choice of Spitzer data reduction. We also introduce a new analysis method to determine the elemental abundances from the spectrally retrieved mixing ratios with thermochemical self-consistency and find plausible abundances consistent with solar metallicity (0.06–10 × solar) and carbon-to-oxygen ratios less than unity. This work suggests that high-precision spectrophotometric results are required to robustly infer thermal structures and compositions of extrasolar planet atmospheres and to perform comparative exoplanetology.

  19. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.

    1990-01-01

    Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

  20. Disposal of liquid radioactive waste - discharge of radioactive waste waters from hospitals

    International Nuclear Information System (INIS)

    Ludwieg, F.

    1976-01-01

    A survey is given about legal prescriptions in the FRG concerning composition and amount of the liquid waste substances and waste water disposal by emitting into the sewerage, waste water decay systems and collecting and storage of patients excretions. The radiation exposure of the population due to drainage of radioactive waste water from hospitals lower by more than two orders than the mean exposure due to nuclear-medical use. (HP) [de

  1. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  2. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.

    Science.gov (United States)

    Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios

    2014-01-07

    Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

  3. Substrate and surfactant effects on the glass-liquid transition of thin water films.

    Science.gov (United States)

    Souda, Ryutaro

    2006-09-07

    Temperature-programmed time-of-flight secondary ion mass spectrometry (TP-TOF-SIMS) and temperature-programmed desorption (TPD) have been used to perform a detailed investigation of the adsorption, desorption, and glass-liquid transition of water on the graphite and Ni(111) surfaces in the temperature range 13-200 K. Water wets the graphite surface at 100-120 K, and the hydrogen-bonded network is formed preferentially in the first monolayer to reduce the number of nonbonding hydrogens. The strongly chemisorbed water molecules at the Ni(111) surface do not form such a network and play a role in stabilizing the film morphology up to 160 K, where dewetting occurs abruptly irrespective of the film thickness. The surface structure of the water film formed on graphite is fluctuated considerably, resulting in deweting at 150-160 K depending on the film thickness. The dewetted patches of graphite are molecularly clean, whereas the chemisorbed water remains on the Ni(111) surface even after evaporation of the film. The abrupt drop in the desorption rate of water molecules at 160 K, which has been attributed to crystallization in the previous TPD studies, is found to disappear completely when a monolayer of methanol is present on the surface. This is because the morphology of supercooled liquid water is changed by the surface tension, and it is quenched by termination of the free OH groups on the surface. The surfactant methanol desorbs above 160 K since the hydrogen bonds of the water molecules are reconstructed. The drastic change in the properties of supercooled liquid water at 160 K should be ascribed to the liquid-liquid phase transition.

  4. Simulation of Water Level Fluctuations in a Hydraulic System Using a Coupled Liquid-Gas Model

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-08-01

    Full Text Available A model for simulating vertical water level fluctuations with coupled liquid and gas phases is presented. The Preissmann implicit scheme is used to linearize the governing equations for one-dimensional transient flow for both liquid and gas phases, and the linear system is solved using the chasing method. Some classical cases for single liquid and gas phase transients in pipelines and networks are studied to verify that the proposed methods are accurate and reliable. The implicit scheme is extended using a dynamic mesh to simulate the water level fluctuations in a U-tube and an open surge tank without consideration of the gas phase. Methods of coupling liquid and gas phases are presented and used for studying the transient process and interaction between the phases, for gas phase limited in a chamber and gas phase transported in a pipeline. In particular, two other simplified models, one neglecting the effect of the gas phase on the liquid phase and the other one coupling the liquid and gas phases asynchronously, are proposed. The numerical results indicate that the asynchronous model performs better, and are finally applied to a hydropower station with surge tanks and air shafts to simulate the water level fluctuations and air speed.

  5. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-02-16

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical.

  6. Regional water implications of reducing oil imports with liquid transportation fuel alternatives in the United States.

    Science.gov (United States)

    Jordaan, Sarah M; Diaz Anadon, Laura; Mielke, Erik; Schrag, Daniel P

    2013-01-01

    The Renewable Fuel Standard (RFS) is among the cornerstone policies created to increase U.S. energy independence by using biofuels. Although greenhouse gas emissions have played a role in shaping the RFS, water implications are less understood. We demonstrate a spatial, life cycle approach to estimate water consumption of transportation fuel scenarios, including a comparison to current water withdrawals and drought incidence by state. The water consumption and land footprint of six scenarios are compared to the RFS, including shale oil, coal-to-liquids, shale gas-to-liquids, corn ethanol, and cellulosic ethanol from switchgrass. The corn scenario is the most water and land intense option and is weighted toward drought-prone states. Fossil options and cellulosic ethanol require significantly less water and are weighted toward less drought-prone states. Coal-to-liquids is an exception, where water consumption is partially weighted toward drought-prone states. Results suggest that there may be considerable water and land impacts associated with meeting energy security goals through using only biofuels. Ultimately, water and land requirements may constrain energy security goals without careful planning, indicating that there is a need to better balance trade-offs. Our approach provides policymakers with a method to integrate federal policies with regional planning over various temporal and spatial scales.

  7. The Abundance of Water

    Directory of Open Access Journals (Sweden)

    Jenny Mitchell

    2009-07-01

    Full Text Available This extract is from a novel-in-progress of the same name that uses historical fiction tropes to examine the legacies of transatlantic enslavement, especially the trans-generational trauma that exists within and between the descendents of both masters and the enslaved. The main protagonist is Louis Mackenzie, a wealthy young English man who travels to Jamaica in 1889 with the intention of claiming back a plantation that once belonged to his slave-owning family. On his arrival he meets the dying but tenacious ex-slave, Miss Queen Fall, who is the legal owner of the plantation and determined to ensure that it is inherited by her grand-daughter, Lily. This extract is concerned with the highly antagonistic relationship between Miss Fall and her 'mixed-breed' daughter, Primrose, whose father was also Miss Fall’s owner. The novel is the first of a proposed quintet that will follow a mixed-race family from 19th century Jamaica to contemporary Britain.

  8. Determination of estrogenic mycotoxins in environmental water samples by low-toxicity dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Emídio, Elissandro Soares; da Silva, Claudia Pereira; de Marchi, Mary Rosa Rodrigues

    2015-04-24

    A novel, simple, rapid and eco-friendly method based on dispersive liquid-liquid microextraction using a bromosolvent was developed to determine six estrogenic mycotoxins (zearalenone, zearalanone, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol) in water samples by liquid chromatography-electrospray ionization tandem mass spectrometry in the negative mode (LC-ESI-MS/MS). The optimal conditions for this method include the use of 100 μL bromocyclohexane as an extraction solvent (using a non-dispersion solvent), 10 mL of aqueous sample (adjusted to pH 4), a vortex extraction time of 2 min, centrifugation for 10 min at 3500 rpm and no ionic strength adjustment. The calibration function was linear and was verified by applying the Mandel fitting test with a 95% confidence level. No matrix effect was observed. According to the relative standard deviations (RSDs), the precision was better than 13% for the repeatability and intermediate precision. The average recoveries of the spiked compounds ranged from 81 to 118%. The method limits of detection (LOD) and quantification (LOQ) considering a 125-fold pre-concentration step were 4-20 and 8-40 ng L(-1), respectively. Next, the method was applied to the analysis of the environmental aqueous samples, demonstrating the presence of β-zearalanol and zearalanone in the river water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Temperature-controlled liquid-liquid microextraction combined with high-performance liquid chromatography for the simultaneous determination of diazinon and fenitrothion in water and fruit juice samples.

    Science.gov (United States)

    Bazmandegan-Shamili, Alireza; Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Moghadam, Masoud Rohani; Saeidi, Mahboubeh

    2018-02-28

    A simple, environmentally benign, and rapid method based on temperature-controlled liquid-liquid microextraction using a deep eutectic solvent was developed for the simultaneous extraction/preconcentration of diazinon and fenitrothion. The method involved the addition of deep eutectic solvent to the aqueous sample followed by heating the mixture in a 75°C water bath until the solvent was completely dissolved in the aqueous phase. Then, the resultant solution was cooled in an ice bath and a cloudy solution was formed. Afterward, the mixture was centrifuged and the enriched deep eutectic solvent phase was analyzed by high-performance liquid chromatography with ultraviolet detection for quantification of the analytes. The factors affecting the extraction efficiency were optimized. Under the optimized extraction conditions, the limits of detection for diazinon and fenitrothion were 0.3 and 0.15 μg/L, respectively. The calibration curves for diazinon and fenitrothion exhibited linearity in the concentration range of 1-100 and 0.5-100 μg/L, respectively. The relative standard deviations for five replicate measurements at 10.0 μg/L level of analytes were less than 2.8 and 4.5% for intra- and interday assays, respectively. The developed method was successfully applied to the determination of diazinon and fenitrothion in water and fruit juice samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Simultaneous Design of Ionic Liquids and Azeotropic Separation for Systems Containing Water

    DEFF Research Database (Denmark)

    Roughton, Brock; Camarda, Kyle V.; Gani, Rafiqul

    , many separation tasks in the petrochemical and chemical industries involve separation of azeotropic mixtures. A common issue with the design and operation of these separation tasks is whether or not to use solvents? And, if solvents are to be used, what kind of solvent should be used and what would...... environmental impact would they cause? Ionic liquids show great promise for solvent-based separation, particularly for extractive distillation-based separations, due to their negligible vapor pressures and the fact that a wide range of solubilities and other properties can be obtained through structural changes....... Since a large number of azeotropes encountered include water as one of the compounds, the use of ionic liquids in solvent-based separation of water in azeotropic systems has been investigated. Along with the design of the ionic liquid being used to entrain water, the extractive distillation process has...

  11. The dielectric behaviour of snow: A study versus liquid water content

    Science.gov (United States)

    Ambach, W.; Denoth, A.

    1980-01-01

    Snow is treated as a heterogeneous dielectric material consisting of ice, air, and water. The greater difference in the high frequency relative permittivity of dry snow and water allows to determine the liquid water content by measurements of the relative permittivity of snow. A plate condenser with a volume of about 1000 cv cm was used to measure the average liquid water content in a snow volume. Calibration was carried out using a freezing calorimeter. In order to measure the liquid water content in thin snow layers, a comb-shaped condenser was developed, which is the two dimensional analogon of the plate condenser. With this moisture meter the liquid water content was measured in layers of a few millimeters in thickness, whereby the effective depth of measurement is given by the penetration depth of electric field lines which is controlled by the spacing of the strip lines. Results of field measurements with both moisture meters, the plate condenser and the comb-shaped condenser, are given.

  12. Freely accessible water does not decrease consumption of ethanol liquid diets.

    Science.gov (United States)

    de Fiebre, NancyEllen C; de Fiebre, Christopher M

    2003-02-01

    In experimental studies, liquid ethanol diets are usually given as the sole source of nutrition and fluid. Two series of experiments were conducted to examine the effect of freely accessible water on the consumption of ethanol liquid diets in male Long-Evans rats. The consumption of diets and subsequent learning ability of rats were first examined in animals given twice-daily saline injections. One group received diet with no access to water for 12 weeks and was subsequently given free access to water with diets for an additional 12 weeks. A second group was given diet and water ad libitum for 24 weeks. Control animals received an isocaloric sucrose-containing diet (with or without ad libitum access to water). Subsequently, rats were tested for active avoidance learning. In the first 12 weeks, animals with ad libitum access to water drank more diet than did water-restricted animals, and previously water-restricted animals increased their diet consumption when access to water was freely available. All water-restricted animals, in both ethanol- and sucrose-treated groups, showed deficits in active avoidance learning, whereas only ethanol-treated animals in groups with ad libitum access to water showed learning deficits. In the second series of experiments, the effect of saline injections on diet consumption, both in the presence and absence of water, was examined. Although saline injections were associated with decreased diet consumption, there was no effect of free access to water. No differences in blood ethanol concentration were seen among groups. Findings obtained from both series of studies demonstrate that consumption of a Sustacal-based liquid ethanol diet does not decrease if access to water is freely available.

  13. An attempt to monitor liquid water content in seasonal snow using capacitance probes

    Science.gov (United States)

    Avanzi, Francesco; Caruso, Marco; Jommi, Cristina; De Michele, Carlo; Ghezzi, Antonio

    2015-04-01

    Liquid water dynamics in snow are a key factor in wet snow avalanche triggering, in ruling snowmelt runoff timing and amounts, and in remote sensing interpretation. It follows that a continuous-time monitoring of this variable would be very desirable. Nevertheless, such an operation is nowadays hampered by the difficulty in obtaining direct, precise and continuous-time measurements of this quantity without perturbing the snowpack itself. As a result, only a few localized examples exist of continuous-time measurements of this variable. In this framework, we tried to get undisturbed measurements of liquid water content using capacitance probes. These instruments were originally designed to obtain liquid water content data in soils. After being installed on a support and driven in the snow, they include part of the medium under investigation in a LC circuit. The resonant frequency of the circuit depends on liquid water content, hence its measurement. To test these sensors, we designed two different field surveys (in April 2013 and April 2014) at a medium elevation site (around 1980 m a.s.l.). In both the cases, a profile of sensors was inserted in the snowpack, and undisturbed measurements of liquid water content were obtained using time-domain-reflectometry based devices. To assist in the interpretation of the readings from these sensors, some laboratory tests were run, and a FEM model of a sensor was implemented. Results show that sensors are sensitive to increasing liquid water content in snow. Nonetheless, long-term tests in snow cause the systematic development of an air gap between the instrument and the surrounding snow, that hampers the interpretation. Perspectives on future investigation are discussed to bring the proposed procedure towards long-term applications in snowpacks.

  14. Method for determination of radon-222 in water by liquid scintillation counting

    International Nuclear Information System (INIS)

    Suomela, J.

    1993-06-01

    The procedure for the determination of radon-222 by liquid scintillation counting is quite specific for this radionuclide. Radon-222 is extracted readily from the water sample by an organic scintillant. The decay products of radon-222 will remain in the water phase whilst radon-222 will be extracted into the organic phase. Before measurement the sample is stored for three hours until equilibrium is reached between radon-222 and its alpha emitting decay products. The alpha activity from radon-222 and its decay products is measured in a liquid scintillation counter

  15. Pressure evolution of the high-frequency sound velocity in liquid water

    International Nuclear Information System (INIS)

    Krisch, M.; Sette, F.; D'Astuto, M.; Lorenzen, M.; Mermet, A.; Monaco, G.; Verbeni, R.; Loubeyre, P.; Le Toullec, R.; Ruocco, G.; Cunsolo, A.

    2002-01-01

    The high-frequency sound velocity v ∞ of liquid water has been determined to densities of 1.37 g/cm 3 by inelastic x-ray scattering. In comparison to the hydrodynamic sound velocity v 0 , the increase of v ∞ with density is substantially less pronounced, indicating that, at high density, the hydrogen-bond network is decreasingly relevant to the physical properties of liquid water. Furthermore, we observe an anomaly in v ∞ at densities around 1.12 g/cm 3 , contrasting the smooth density evolution of v 0

  16. Vapor-Liquid Equilibrium Measurements and Modeling of the Propyl Mercaptan plus Methane plus Water System

    DEFF Research Database (Denmark)

    Awan, Javeed; Thomsen, Kaj; Coquelet, Christophe

    2010-01-01

    In this work, vapor−liquid equilibrium (VLE) measurements of propyl mercaptan (PM) in pure water were performed at three different temperatures, (303, 323, and 365) K, with a pressure variation from (1 to 8) MPa. The total system pressure was maintained by CH4. The inlet mole fraction of propyl...... mercaptan in all experiments was the same, around 4.5·10−4 in the liquid phase. The objective was to provide experimental VLE data points of the propyl mercaptan + methane + water system for modeling since there is a lack of available data. These data will allow the industrial modeling of sulfur emission...

  17. Determinations of cloud liquid water in the tropics from the SSM/I

    Science.gov (United States)

    Alishouse, John C.; Swift, Calvin; Ruf, Christopher; Snyder, Sheila; Vongsathorn, Jennifer

    1989-01-01

    Upward-looking microwave radiometric observations were used to validate the SSM/I determinations, and also as a basis for the determination of new coefficients. Due to insufficiency of the initial four channel algorithm for cloud liquid water, the improved algorithm was derived from the CORRAD (the University of Massachusetts autocorrelation radiometer) measurements of cloud liquid water and the matching SSM/I brightness temperatures using the standard linear regression. The correlation coefficients for the possible four channel combinations, and subsequently the best and the worst combinations were determined.

  18. Experimental determination of cavitation thresholds in liquid water and mercury

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; West, C.D.; Moraga, F.

    1998-01-01

    An overview is provided on cavitation threshold measurement experiments for water and mercury. Various aspects to be considered that affect onset determination are discussed along with design specifications developed for construction of appropriate apparatus types. Both static and transient-cavitation effects were studied using radically different apparatus designs. Preliminary data are presented for cavitation thresholds for water and mercury over a range of temperatures in static and high-frequency environments. Implications and issues related to spallation neutron source target designs and operation are discussed

  19. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water.

    Science.gov (United States)

    Goulart, Simone Machado; Alves, Renata Domingos; Neves, Antônio Augusto; de Queiroz, José Humberto; de Assis, Tamires Condé; de Queiroz, Maria Eliana L R

    2010-06-25

    Using a 2(3) experimental design, liquid-liquid extraction with low temperature partitioning (LLE-LTP) was optimized and validated for analysis of three carbamates (aldicarb, carbofuran and carbaryl) in water samples. In this method, 2.0 mL of sample is placed in contact with 4.0 mL of acetonitrile. After agitation, the sample is placed in a freezer for 3 h for phase separation. The organic extract is analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). For validation of the technique, the following figures of merit were evaluated: accuracy, precision, detection and quantification limits, linearity, sensibility and selectivity. Extraction recovery percentages of the carbamates aldicarb, carbofuran and carbaryl were 90%, 95% and 96%, respectively. Even though extremely low volumes of sample and solvent were used, the extraction method was selective and the detection and quantification limits were between 5.0 and 10.0 microg L(-1), and 17.0 and 33.0 microg L(-1), respectively. Copyright 2010 Elsevier B.V. All rights reserved.

  20. A Novel Statistical Approach for Ocean Colour Estimation of Inherent Optical Properties and Cyanobacteria Abundance in Optically Complex Waters

    Directory of Open Access Journals (Sweden)

    Monika Soja-Woźniak

    2017-04-01

    Full Text Available Eutrophication is an increasing problem in coastal waters of the Baltic Sea. Moreover, algal blooms, which occur every summer in the Gulf of Gdansk can deleteriously impact human health, the aquatic environment, and economically important fisheries, tourism, and recreation industries. Traditional laboratory-based techniques for water monitoring are expensive and time consuming, which usually results in limited numbers of observations and discontinuity in space and time. The use of hyperspectral radiometers for coastal water observation provides the potential for more detailed remote optical monitoring. A statistical approach to develop local models for the estimation of optically significant components from in situ measured hyperspectral remote sensing reflectance in case 2 waters is presented in this study. The models, which are based on empirical orthogonal function (EOF analysis and stepwise multilinear regression, allow for the estimation of parameters strongly correlated with phytoplankton (pigment concentration, absorption coefficient and coloured detrital matter abundance (absorption coefficient directly from reflectance spectra measured in situ. Chlorophyll a concentration, which is commonly used as a proxy for phytoplankton biomass, was retrieved with low error (median percent difference, MPD = 17%, root mean square error RMSE = 0.14 in log10 space and showed a high correlation with chlorophyll a measured in situ (R = 0.84. Furthermore, phycocyanin and phycoerythrin, both characteristic pigments for cyanobacteria species, were also retrieved reliably from reflectance with MPD = 23%, RMSE = 0.23, R2 = 0.77 and MPD = 24%, RMSE = 0.15, R2 = 0.74, respectively. The EOF technique proved to be accurate in the derivation of the absorption spectra of phytoplankton and coloured detrital matter (CDM, with R2 (λ above 0.83 and RMSE around 0.10. The approach was also applied to satellite multispectral remote sensing reflectance data, thus allowing

  1. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    Science.gov (United States)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  2. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Shazad, M.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that

  3. On the existence and stability of liquid water on the surface of mars today

    Science.gov (United States)

    Kuznetz, L. H.; Gan, D. C.

    2002-01-01

    The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.

  4. Liquid chromatography with isotope-dilution mass spectrometry for determination of water-soluble vitamins in foods.

    Science.gov (United States)

    Phillips, Melissa M

    2015-04-01

    Vitamins are essential for improving and maintaining human health, and the main source of vitamins is the diet. Measurement of the quantities of water-soluble vitamins in common food materials is important to understand the impact of vitamin intake on human health, and also to provide necessary information for regulators to determine adequate intakes. Liquid chromatography (LC) and mass spectrometry (MS) based methods for water-soluble vitamin analysis are abundant in the literature, but most focus on only fortified foods or dietary supplements or allow determination of only a single vitamin. In this work, a method based on LC/MS and LC/MS/MS has been developed to allow simultaneous quantitation of eight water-soluble vitamins, including multiple forms of vitamins B3 and B6, in a variety of fortified and unfortified food-matrix Standard Reference Materials (SRMs). Optimization of extraction of unbound vitamin forms and confirmation using data from external laboratories ensured accuracy in the assigned values, and addition of stable isotope labeled internal standards for each of the vitamins allowed for increased precision.

  5. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka

    2013-10-15

    In situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with electrothermal atomic absorption spectrometry (ET AAS) for determination of copper in water samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination by AAS. Some essential parameters of the microextraction and detection techniques such as the pH of sample solution, volume of components for in situ synthesis, matrix interferences and main parameters of graphite furnace atomizer have been studied. Under optimal conditions, high extraction efficiency for copper was achieved for the extraction of 0.7 µg L(-1) in 10.0 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) as the extraction solvent. The detection limit was found as 0.004 µg L(-1) with an enrichment factor of 200. The relative standard deviation (RSD) for seven replicate measurements of 0.7 µg L(-1) in sample solution was 4%. The accuracy of the proposed method was evaluated by analysis of the Certified Reference Materials: NIST SRM 2709 (San Joaquin Soil), NBS SRM 2704 (Buffalo River Sediment), NRCC DOLT-2 (Dogfish Liver) and NIST SRM 1643e (Trace Element in Water). The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the tap, lake and mineral water samples. © 2013 Elsevier B.V. All rights reserved.

  6. Water-free rare-earth-metal ionic liquids/ionic liquid crystals based on hexanitratolanthanate(III) anion.

    Science.gov (United States)

    Ji, Shun-Ping; Tang, Meng; He, Ling; Tao, Guo-Hong

    2013-04-02

    The hexanitratolanthanate anion (La(NO(3))(6)(3-)) is an interesting symmetric anion suitable to construct the component of water-free rare-earth-metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [C(n)mim](3)[La(NO(3))(6)] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3-dimethylimidazolium hexanitratolanthanate ([C(1)mim](3)[La(NO(3))(6)], 1), 1-ethyl-3-methylimidazolium hexanitratolanthanate ([C(2)mim](3)[La(NO(3))(6)], 2), 1-butyl-3-methylimidazolium hexanitratolanthanate ([C(4)mim](3)[La(NO(3))(6)], 3), 1-isobutyl-3-methylimidazolium hexanetratolanthanate ([isoC(4)mim](3)[La(NO(3))(6)], 4), 1-methyl-3-(3'-methylbutyl)imidazolium hexanitratolanthanate ([MC(4)mim](3)[La(NO(3))(6)], 5), 1-hexyl-3-methylimidazolium hexanitratolanthanate ([C(6)mim](3)[La(NO(3))(6)], 6), 1-methyl-3-octylimidazolium hexanitratolanthanate ([C(8)mim](3)[La(NO(3))(6)], 7), 1-dodecyl-3-methylimidazolium hexanitratolanthanate ([C(12)mim](3)[La(NO(3))(6)], 8), 1-methyl-3-tetradecylimidazolium hexanitratolanthanate ([C(14)mim](3)[La-(NO(3))(6)], 9), 1-hexadecyl-3-methylimid-azolium hexanitratolanthanum ([C(16)dmim](3)[La(NO(3))(6)], 10), and 1-methyl-3-octadecylimidazolium hexanitratolanthanate ([C(18)mim](3)[La(NO(3))(6)], 11) are reported. All new compounds were characterized by (1)H and (13)C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single-crystal X-ray diffraction, giving the following crystallographic information: monoclinic; P2(1)/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å(3), Z=4, ρ=1.764 g cm(-3). The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen-bonding network or water molecule was found in 1. The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water

  7. Automated high performance liquid chromatography and liquid scintillation counting determination of pesticide mixture octanol/water partition rates

    International Nuclear Information System (INIS)

    Moody, R.P.; Carroll, J.M.; Kresta, A.M.

    1987-01-01

    Two novel methods are reported for measuring octanol/water partition rates of pesticides. A liquid scintillation counting (LSC) method was developed for automated monitoring of 14 C-labeled pesticides partitioning in biphasic water/octanol cocktail systems with limited success. A high performance liquid chromatography (HPLC) method was developed for automated partition rate monitoring of several constituents in a pesticide mixture, simultaneously. The mean log Kow +/- SD determined from triplicate experimental runs were for: 2,4-D-DMA (2,4-dichlorophenoxyacetic acid dimethylamine), 0.65 +/- .17; Deet (N,N-diethyl-m-toluamide), 2.02 +/- .01; Guthion (O,O-dimethyl-S-(4-oxo-1,2,3-benzotriazin-3(4H)-ylmethyl) phosphorodithioate), 2.43 +/- .03; Methyl-Parathion (O,O-dimethyl-O-(p-nitrophenyl) phosphorothioate), 2.68 +/- .05; and Fenitrothion (O,O-dimethyl O-(4-nitro-m-tolyl) phosphorothioate), 3.16 +/- .03. A strong positive linear correlation (r = .9979) was obtained between log Kow and log k' (log Kow = 2.35 (log k') + 0.63). The advantages that this automated procedure has in comparison with the standard manual shake-flask procedure are discussed

  8. Effect of simple solutes on the long range dipolar correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Anishetty, Ramesh, E-mail: ramesha@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kanth, J. Maruthi Pradeep, E-mail: jmpkanth@gmail.com [Vectra LLC, Mount Road, Chennai 600006 (India)

    2016-03-14

    Intermolecular correlations in liquid water at ambient conditions have generally been characterized through short range density fluctuations described through the atomic pair distribution functions. Recent numerical and experimental results have suggested that such a description of order or structure in liquid water is incomplete and there exist considerably longer ranged orientational correlations in water that can be studied through dipolar correlations. In this study, using large scale classical, atomistic molecular dynamics simulations using TIP4P-Ew and TIP3P models of water, we show that salts such as sodium chloride (NaCl), potassium chloride (KCl), caesium chloride (CsCl), and magnesium chloride (MgCl{sub 2}) have a long range effect on the dipolar correlations, which cannot be explained by the notion of structure making and breaking by dissolved ions. Observed effects are explained through orientational stratification of water molecules around ions and their long range coupling to the global hydrogen bond network by virtue of the sum rule for water. The observations for single hydrophilic solutes are contrasted with the same for a single methane (CH{sub 4}) molecule. We observe that even a single small hydrophobe can result in enhancement of long range orientational correlations in liquid water, contrary to the case of dissolved ions, which have been observed to have a reducing effect. The observations from this study are discussed in the context of hydrophobic effect.

  9. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    International Nuclear Information System (INIS)

    Domanska, Urszula; Lugowska, Katarzyna; Pernak, Juliusz

    2007-01-01

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO 3 ], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO 3 ] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO 3 ] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO 3 ] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G Ex models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular system and the particular

  10. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)]. E-mail: ula@ch.pw.edu.pl; Lugowska, Katarzyna [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Pernak, Juliusz [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland)

    2007-05-15

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO{sub 3}], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO{sub 3}] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO{sub 3}] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO{sub 3}] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G {sup Ex} models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular

  11. Sources of sedimentary PAHs in tropical Asian waters: differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance.

    Science.gov (United States)

    Saha, Mahua; Togo, Ayako; Mizukawa, Kaoruko; Murakami, Michio; Takada, Hideshige; Zakaria, Mohamad P; Chiem, Nguyen H; Tuyen, Bui Cach; Prudente, Maricar; Boonyatumanond, Ruchaya; Sarkar, Santosh Kumar; Bhattacharya, Badal; Mishra, Pravakar; Tana, Touch Seang

    2009-02-01

    whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.

  12. Growth of volcanic ash aggregates in the presence of liquid water and ice: an experimental approach

    Science.gov (United States)

    Van Eaton, Alexa R.; Muirhead, James D.; Wilson, Colin J. N.; Cimarelli, Corrado

    2012-11-01

    Key processes influencing the aggregation of volcanic ash and hydrometeors are examined with an experimental method employing vibratory pan aggregation. Mechanisms of aggregation in the presence of hail and ice pellets, liquid water (≤30 wt%), and mixed water phases are investigated at temperatures of 18 and -20 °C. The experimentally generated aggregates, examined in hand sample, impregnated thin sections, SEM imagery, and X-ray microtomography, closely match natural examples from phreatomagmatic phases of the 27 ka Oruanui and 2010 Eyjafjallajökull eruptions. Laser diffraction particle size analysis of parent ash and aggregates is also used to calculate the first experimentally derived aggregation coefficients that account for changing liquid water contents and subzero temperatures. These indicate that dry conditions (collection of sub-63 μm particles into aggregates (given by aggregation coefficients >1). In contrast, liquid-saturated conditions (>15-20 wt% liquid) promote less size selective processes. Crystalline ice was also capable of preferentially selecting volcanic ash center of natural aggregates was also replicated during interaction of ash and melting ice pellets, followed by sublimation. Fine-grained rims were formed by adding moist aggregates to a dry mixture of sub-31 μm ash, which adhered by electrostatic forces and sparse liquid bridges. From this, we infer that the fine-grained outer layers of natural aggregates reflect recycled exposure of moist aggregates to regions of volcanic clouds that are relatively dry and dominated by <31 μm ash.

  13. Laser-based diagnostics for the measurement of liquid water film thickness.

    Science.gov (United States)

    Greszik, Daniel; Yang, Huinan; Dreier, Thomas; Schulz, Christof

    2011-02-01

    Three different diagnostic techniques are investigated for measurement of the thickness of liquid water films deposited on a transparent quartz plate. The methods are based on laser-induced fluorescence (LIF) from low concentrations of a dissolved tracer substance and spontaneous Raman scattering of liquid water, respectively, both excited with 266 nm of radiation, and diode laser absorption spectroscopy (DLAS) in the near-infrared spectral region. Signal intensities are calibrated using liquid layers of known thickness between 0 and 1000 μm. When applied to evaporating liquid water films, the thickness values derived from the direct DLAS and Raman scattering measurements correlate well with each other as a function of time after the start of data recording, while the LIF signal derived thickness values decrease faster with time due to selective tracer evaporation from the liquid. The simultaneous application of the LIF with a tracer-free detection technique can serve as an in situ reference for quantitative film thickness measurements.

  14. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    Energy Technology Data Exchange (ETDEWEB)

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  15. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  16. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  17. Mars Gully: No Mineral Trace of Liquid Water

    Science.gov (United States)

    2007-01-01

    This image of the Centauri-Hellas Montes region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 2107 UTC (4:07 p.m. EST) on Jan. 9, 2007, near 38.41 degrees south latitude, 96.81 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered is slightly wider than 10 kilometers (6.2 miles) at its narrowest point. Narrow gullies found on hills and crater walls in many mid-latitude regions of Mars have been interpreted previously as cut by geologically 'recent' running water, meaning water that flowed on Mars long after impact cratering, tectonic forces, volcanism or other processes created the underlying landforms. Some gullies even eroded into sand dunes, which would date their formation at thousands to millions of years ago, or less. In fact, Mars Orbiter Camera (MOC) images showed two of the gullies have bright deposits near their downslope ends - but those deposits were absent in images taken just a few years earlier. The bright deposits must have formed within the period 1999-2004. Has there been running water on Mars so recently? To address that question, CRISM and MRO's other instruments observed the bright gully deposits. CRISM's objective was to determine if the bright deposits contained salts left behind from water evaporating into Mars' thin air. The high-resolution imager's (HiRISE's) objective was to determine if the small-scale morphology was consistent with formation by running water. This CRISM image of a bright gully deposit was constructed by showing 2.53, 1.50, and 1.08 micrometer light in the red, green, and blue image planes. CRISM can just resolve the deposits (highlighted by arrows in the inset), which are only a few tens of meters (about 150 feet) across. The spectrum of the deposits barely differs from that of the surrounding material, and is just a little brighter. This difference could simply be

  18. The supramolecular structure of liquid water and quantum coherent processes in biology

    International Nuclear Information System (INIS)

    Ninno, A De; Castellano, A Congiu; Giudice, E Del

    2013-01-01

    Vibrational spectroscopy provides a powerful tool to understand the molecular structures. When applied to the liquid water, this technique reveals so many details which can also shed a light on the supramolecular arrangement of the most ubiquitous of the substances. In particular, the two fluid model of water, proposed several decades ago, founds experimental evidence. Moreover, some fundamental parameters calculated in the realm of the theory of Quantum ElectroDynamics applied to liquid water can be actually measured showing an excellent agreement with the theory. This allows to add a dynamical origin to the mixed cluster model of water well known by the biologists for fifty years and opens the way to the dawn of a real quantum biology.

  19. Sub- and super-Maxwellian evaporation of simple gases from liquid water

    International Nuclear Information System (INIS)

    Kann, Z. R.; Skinner, J. L.

    2016-01-01

    Non-Maxwellian evaporation of light atoms and molecules (particles) such as He and H 2 from liquids has been observed experimentally. In this work, we use simulations to study systematically the evaporation of Lennard-Jones particles from liquid water. We find instances of sub- and super-Maxwellian evaporation, depending on the mass of the particle and the particle-water interaction strength. The observed trends are in qualitative agreement with experiment. We interpret these trends in terms of the potential of mean force and the effectiveness and frequency of collisions during the evaporation process. The angular distribution of evaporating particles is also analyzed, and it is shown that trends in the energy from velocity components tangential and normal to the liquid surface must be understood separately in order to interpret properly the angular distributions.

  20. Changes of liquid Water content in fog at Milešovka Observatory (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav

    2008-01-01

    Roč. 11, - (2008), s. 5-8 ISSN 1335-339X R&D Projects: GA AV ČR IAA3042301; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z30420517 Keywords : fog * liquid water content * month changes * Observatory Milešovka * visibility Subject RIV: DG - Athmosphere Sciences, Meteorology

  1. Observed and simulated temperature dependence of the liquid water path of low clouds

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, A.D.; Wolf, A.B. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  2. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  3. GENERIC, COMPONENT FAILURE DATA BASE FOR LIGHT WATER AND LIQUID SODIUM REACTOR PRAs

    Energy Technology Data Exchange (ETDEWEB)

    S. A. Eide; S. V. Chmielewski; T. D. Swantz

    1990-02-01

    A comprehensive generic component failure data base has been developed for light water and liquid sodium reactor probabilistic risk assessments (PRAs) . The Nuclear Computerized Library for Assessing Reactor Reliability (NUCLARR) and the Centralized Reliability Data Organization (CREDO) data bases were used to generate component failure rates . Using this approach, most of the failure rates are based on actual plant data rather than existing estimates .

  4. Sensitive determination of thallium species in drinking and natural water by ionic liquid-assisted ion-pairing liquid-liquid microextraction and inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Escudero, Leticia B; Wuilloud, Rodolfo G; Olsina, Roberto A

    2013-01-15

    A fast and simple method involving separation and determination of thallium (Tl) species, based on novel ionic liquid-assisted ion pairing dispersive liquid-liquid microextraction (DLLME) method, was developed. Initially, Tl(III) was selectively complexed with chloride ion to form [TlCl(4)](-) chlorocomplex. Subsequently, tetradecyl(trihexyl)phosphonium chloride ionic liquid (CYPHOS(®) IL 101) was used to form the ion-pair with [TlCl(4)](-) anion followed by extraction. The DLLME procedure was developed by dispersing 80 μL of carbon tetrachloride with 100 μL of ethanol added to the aqueous solution. After DLLME, the upper aqueous phase containing Tl(I) only was removed and analysed by inductively coupled plasma-mass spectrometry (ICP-MS). In contrast to Tl(III), Tl(I) species does not form neither stable nor anionic complexes with chloride ions and it was not extracted into the organic phase. Total Tl concentration was obtained by direct introduction of sample into ICP-MS instrument. The calibration graph for the analyte was linear with a correlation coefficient of 0.9989. Under optimal conditions, detection limit of Tl species was 0.4 ng L(-1). The relative standard deviation (n=10) at 1 ng mL(-1) Tl concentration level was 1.3% for Tl(I) and 1.5% for Tl(III). The method was successfully applied for fast speciation analysis of Tl at ultratrace levels in real water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection.

    Science.gov (United States)

    Amde, Meseret; Liu, Jing-Fu; Tan, Zhi-Qiang; Bekana, Deribachew

    2016-01-01

    Zinc oxide nanofluid (ZnO-NF) based vortex assisted liquid liquid microextraction (ZnO-NF VA-LLME) was developed and employed in extraction of inorganic mercury (Hg(2+)) in environmental water samples, followed by cold vapor atomic fluorescence spectrometry (CV-AFS). Unlike other dispersive liquid liquid microextraction techniques, ZnO-NF VA-LLME is free of volatile organic solvents and dispersive solvent consumption. Analytical signals were obtained without back-extraction from the ZnO-NF phase prior to CV-AFS determination. Some essential parameters of the ZnO-NF VA-LLME and cold vapor generation such as composition and volume of the nanofluid, vortexing time, pH of the sample solution, amount of the chelating agent, ionic strength and matrix interferences have been studied. Under optimal conditions, efficient extraction of 1ng/mL of Hg(2+) in 10mL of sample solution was achieved using 50μL of ZnO-NF. The enrichment factor before dilution, detection limits and limits of quantification of the method were about 190, 0.019 and 0.064ng/mL, respectively. The intra and inter days relative standard deviations (n=8) were found to be 4.6% and 7.8%, respectively, at 1ng/mL spiking level. The accuracy of the current method was also evaluated by the analysis of certified reference materials, and the measured Hg(2+) concentration of GBW08603 (9.6ng/mL) and GBW(E)080392 (8.9ng/mL) agreed well with their certified value (10ng/mL). The method was applied to the analysis of Hg(2+) in effluent, influent, lake and river water samples, with recoveries in the range of 79.8-92.8% and 83.6-106.1% at 1ng/mL and 5ng/mL spiking levels, respectively. Overall, ZnO-NF VA-LLME is fast, simple, cost-effective and environmentally friendly and it can be employed for efficient enrichment of the analyte from various water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  7. The Inferred Distribution of Liquid Water in Europa's Ice Shell: Implications for the Europa Lander Mission

    Science.gov (United States)

    Noviello, J. L.; Torrano, Z. A.; Rhoden, A.; Manga, M.

    2017-12-01

    A key objective of the Europa lander mission is to identify liquid water within 30 km of the lander (Europa Lander SDT report, 2017), to provide essential context with which to evaluate samples and enable assessment of Europa's overall habitability. To inform lander mission development, we utilize a model of surface feature formation that invokes liquid water within Europa's ice shell to map out the implied 3D distribution of liquid water and assess the likelihood of a lander to be within 30 km of liquid water given regional variability. Europa's surface displays a variety of microfeatures, also called lenticulae, including pits, domes, spots, and microchaos. A recent model by Manga and Michaut (2017) attributes these features to various stages in the thermal-mechanical evolution of liquid water intrusions (i.e. sills) within the ice shell, from sill emplacement to surface breaching (in the case of microchaos) to freezing of the sill. Pits are of particular interest because they appear only when liquid water is still present. Another key feature of the model is that the size of a microfeature at the surface is controlled by the depth of the sill. Hence, we can apply this model to regions of Europa that contain microfeatures to infer the size, depth, and spatial distribution of liquid water within the ice shell. We are creating a database of microfeatures that includes digitized, collated data from previous mapping efforts along with our own mapping study. We focus on images with 220 m/pixel resolution, which includes the regional mapping data sets. Analysis of a preliminary study area suggests that sills are typically located at depths of 2km or less from the surface. We will present analysis of the full database of microfeatures and the corresponding 3D distribution of sills implied by the model. Our preliminary analysis also shows that pits are clustered in some regions, consistent with previous results, although individual pits are also observed. We apply a

  8. Distribution and relative abundance of humpback whales in relation to environmental variables in coastal British Columbia and adjacent waters

    Science.gov (United States)

    Dalla Rosa, Luciano; Ford, John K. B.; Trites, Andrew W.

    2012-03-01

    Humpback whales are common in feeding areas off British Columbia (BC) from spring to fall, and are widely distributed along the coast. Climate change and the increase in population size of North Pacific humpback whales may lead to increased anthropogenic impact and require a better understanding of species-habitat relationships. We investigated the distribution and relative abundance of humpback whales in relation to environmental variables and processes in BC waters using GIS and generalized additive models (GAMs). Six non-systematic cetacean surveys were conducted between 2004 and 2006. Whale encounter rates and environmental variables (oceanographic and remote sensing data) were recorded along transects divided into 4 km segments. A combined 3-year model and individual year models (two surveys each) were fitted with the mgcv R package. Model selection was based primarily on GCV scores. The explained deviance of our models ranged from 39% for the 3-year model to 76% for the 2004 model. Humpback whales were strongly associated with latitude and bathymetric features, including depth, slope and distance to the 100-m isobath. Distance to sea-surface-temperature fronts and salinity (climatology) were also constantly selected by the models. The shapes of smooth functions estimated for variables based on chlorophyll concentration or net primary productivity with different temporal resolutions and time lags were not consistent, even though higher numbers of whales seemed to be associated with higher primary productivity for some models. These and other selected explanatory variables may reflect areas of higher biological productivity that favor top predators. Our study confirms the presence of at least three important regions for humpback whales along the BC coast: south Dixon Entrance, middle and southwestern Hecate Strait and the area between La Perouse Bank and the southern edge of Juan de Fuca Canyon.

  9. The influence of water on the structural and transport properties of model ionic liquids.

    Science.gov (United States)

    Spohr, Heidrun V; Patey, G N

    2010-06-21

    Molecular dynamics simulations are used to investigate the influence of water on model ionic liquids. Several models, where the ions vary in size, and in the location of the charge with respect to the center of mass, are considered. Particular attention is focused on the variation in transport properties (diffusion coefficients, shear viscosity, and electrical conductivity) with water concentration. An effort is made to identify the underlying physical reasons for water's influence. The results for our model ionic liquids fall loosely into two categories, depending on the molecular characteristics of the constituent ions. If the ion size disparity is not too large (cation:anion diameter ratio water concentration. This agrees with what is commonly observed experimentally for room temperature ionic liquids (RTILs). For these systems, we do not find changes in the equilibrium structure that can account for the strong influence of water on the transport properties. Rather, by varying the molecular mass of water in our simulations, we demonstrate that the dominant effect of water can be dynamical in origin. In RTIL-water mixtures, the molecular mass of water is generally much less than that of the ions it replaces. These lighter water molecules tend to displace much heavier counterions from the ion coordination shells. This reduces caging and increases the diffusivity, which leads to higher conductivities and lower viscosities. For models with a larger ion size disparity (3:1), or in charge-off-center systems, where strong directional ion pairs are important in the pure ionic liquid, the behavior can be quite different. In these systems, the diffusion coefficients and electrical conductivity can still display conventional behavior and increase when water is added even though the reasons for this can be more complex than in the simpler cases noted above. However, in these systems the viscosity can increase, sometimes quite steeply, with increasing water concentration. We

  10. A Novel Liquid-Liquid Extraction for the Determination of Sertraline in Tap Water and Waste Water at Trace Levels by GC-MS.

    Science.gov (United States)

    Koçoğlu, Elif Seda; Bakırdere, Sezgin; Keyf, Seyfullah

    2017-09-01

    A simple, green and fast analytical method was developed for the determination of sertraline in tap and waste water samples at trace levels by using supportive liquid-liquid extraction with gas chromatography-mass spectrometry. Different parameters affecting extraction efficiency such as types and volumes of extraction and supporter solvents, extraction period, salt type and amount were optimized to get lower detection limits. Ethyl acetate was selected as optimum extraction solvent. In order to improve the precision, anthracene-D10 was used as an internal standard. The calibration plot of sertraline was linear from 1.0 to 1000 ng/mL with a correlation coefficient of 0.999. The limit of detection value under the optimum conditions was found to be 0.43 ng/mL. In real sample measurements, spiking experiments were performed to check the reliability of the method for these matrices. The spiking experiments yielded satisfactory recoveries of 91.19 ± 2.48%, 90.48 ± 5.19% and 95.46 ± 6.56% for 100, 250 and 500 ng/mL sertraline for tap water, and 85.80 ± 2.15% and 92.43 ± 4.02% for 250 and 500 ng/mL sertraline for waste water.

  11. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea.

    Science.gov (United States)

    He, Yaodong; Sen, Biswarup; Zhou, Shuangyan; Xie, Ningdong; Zhang, Yongfeng; Zhang, Jianle; Wang, Guangyi

    2017-01-01

    Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 10 4 to 2.08 × 10 6 cells/mL and had significant ( p bacterioplankton subgroups, α -Proteobacteria (phylum Proteobacteria ) was the dominant one followed by Family II (phylum Cyanobacteria ), representing 19.1-55.2% and 2.3-54.2% of total sequences, respectively. An inverse relationship ( r = -0.82) was observed between the two dominant subgroups, α -Proteobacteria and Family II . A wide range of inverse Simpson index (10.2 to 105) revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal wasters was probably an indication of their competitive advantage over other bacterioplankton groups in the degradation of anthropogenic inputs. The results provided an evidence of their ecological significance in coastal waters impacted by seasonal inputs of the natural and anthropogenic matter. In conclusion, the findings anticipate future development of effective indicators of coastal health monitoring and subsequent management strategies to control the anthropogenic inputs in

  12. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

    International Nuclear Information System (INIS)

    Orchillés, A. Vicent; Miguel, Pablo J.; González-Alfaro, Vicenta; Llopis, Francisco J.; Vercher, Ernesto; Martínez-Andreu, Antoni

    2017-01-01

    Highlights: • VLE of binary and ternary systems of 2-propanol, water and [emim][DCA] at 100 kPa. • The e-NRTL model fits the VLE data of 2-propanol + water + [emim][DCA] system. • [emim][DCA] breaks the 2-propanol + water azeotrope at an IL mole fraction >0.085. - Abstract: Isobaric vapor–liquid equilibria for the binary systems 2-propanol + water, 2-propanol + 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), and water + [emim][DCA] as well as the vapor–liquid equilibria for the 2-propanol + water + [emim][DCA] ternary system have been obtained at 100 kPa using a recirculating still. The electrolyte nonrandom two-liquid (e-NRTL) model was used for fitting successfully the experimental data. The effect of [emim][DCA] on the 2-propanol + water system has been compared with that produced by other ionic liquids reported in the literature. From the results, [emim][DCA] appears as a good entrainer for the extractive distillation of this solvent mixture, causing the azeotrope to disappear at 100 kPa when the ionic liquid mole fraction is greater than 0.085.

  13. Ionic liquid-based dispersive liquid-liquid microextraction combined with high performance liquid chromatography-UV detection for simultaneous preconcentration and determination of Ni, Co, Cu and Zn in water samples

    Directory of Open Access Journals (Sweden)

    Asghari Alireza

    2014-01-01

    Full Text Available Ionic liquid-based dispersive liquid-liquid microextraction (IL-DLLME coupled with high performance liquid chromatography (HPLC-UV detection was developed for simultaneous extraction and determination of nickel, cobalt, copper and zinc ions. In the proposed approach, salophen (N,N'-bis(salisyliden-1,2-phenylenediamine was used as a chelating agent; the ionic liquid, 1-hexeyl-3-methylimidazolium hexafluorophosphate, and acetone were selected as extracting and dispersive solvents, respectively. After extraction, phase separation was performed by centrifugation and the sedimented phase (ionic liquid was solubilized in acetonitrile and directly injected into the HPLC for subsequent analysis. Baseline separation of metal ion complexes was achieved on a RP-C18 column using a gradient elution of the mixtures of methanol-acetonitrile-water as the mobile phase at a flow rate of 1.0 mL min-1. The influence of variables such as sample pH, concentration of the chelating agent, amount of ionic liquid (extraction solvent, disperser solvent volume, extraction time, salt effect and centrifugation speed were studied and optimized. Under the optimum conditions, the enrichment factor of 222 was obtained. The detection limits for Ni, Co, Cu and Zn were 0.8, 1.6, 1.9 and 2.8 μg L−1, respectively. The relative standard deviations (RSDs were in the range of 3.6-5.0 % for all of the investigated metal ions. The proposed procedure was successfully applied to the determination of the studied metal ions in water samples.

  14. Initial evaluation of profiles of temperature, water vapor, and cloud liquid water from a new microwave profiling radiometer.

    Energy Technology Data Exchange (ETDEWEB)

    Liljegren, J. C.; Lesht, B. M.; Clothiaux, E. E.; Kato, S.

    2000-11-01

    To measure the vertical profiles of temperature and water vapor that are essential for modeling atmospheric processes, the Atmospheric Radiation Measurement (ARM) Program of the U. S. Department of Energy launches approximately 2600 radiosondes each year from its Southern Great Plains (SGP) facilities in Oklahoma and Kansas, USA. The annual cost of this effort exceeds $500,000 in materials and labor. Despite the expense, these soundings have a coarse temporal resolution and reporting interval compared with model time steps. In contrast, the radiation measurements used for model evaluations have temporal resolutions and reporting intervals of a few minutes at most. Conversely, radiosondes have a much higher vertical spatial resolution than most models can use. Modelers generally reduce the vertical resolution of the soundings by averaging over the vertical layers of the model. Recently, Radiometries Corporation (Boulder, Colorado, USA) developed a 12-channel, ground-based microwave radiometer capable of providing continuous, real-time vertical profiles of temperature, water vapor, and limited-resolution cloud liquid water from the surface to 10 km in nearly all weather conditions. The microwave radiometer profiler (MWRP) offers a much finer temporal resolution and reporting interval (about 10 minutes) than the radiosonde but a coarser vertical resolution that may be more appropriate for models. Profiles of temperature, water vapor, and cloud liquid water are obtained at 47 levels: from 0 to 1 km above ground level at 100-m intervals and from 1 to 10 km at 250-m intervals. The profiles are derived from the measured brightness temperatures with neural network retrieval. In Figure 1, profiles of temperature, water vapor, and cloud liquid water for 10 May 2000 are presented as time-height plots. MWRP profiles coincident with the 11:31 UTC (05:31 local) and 23:47 UTC (17:47 local) soundings for 10 May are presented in Figures 2 and 3, respectively. These profiles

  15. Distinct Seasonal Patterns of Bacterioplankton Abundance and Dominance of Phyla α-Proteobacteria and Cyanobacteria in Qinhuangdao Coastal Waters Off the Bohai Sea

    Directory of Open Access Journals (Sweden)

    Yaodong He

    2017-08-01

    Full Text Available Qinhuangdao coastal waters in northern China are heavily impacted by anthropogenic and natural activities, and we anticipate a direct influence of the impact on the bacterioplankton abundance and diversity inhabiting the adjacent coastal areas. To ascertain the anthropogenic influences, we first evaluated the seasonal abundance patterns and diversity of bacterioplankton in the coastal areas with varied levels of natural and anthropogenic activities and then analyzed the environmental factors which influenced the abundance patterns. Results indicated distinct patterns in bacterioplankton abundance across the warm and cold seasons in all stations. Total bacterial abundance in the stations ranged from 8.67 × 104 to 2.08 × 106 cells/mL and had significant (p < 0.01 positive correlation with total phosphorus (TP, which indicated TP as the key monitoring parameter for anthropogenic impact on nutrients cycling. Proteobacteria and Cyanobacteria were the most abundant phyla in the Qinhuangdao coastal waters. Redundancy analysis revealed significant (p < 0.01 influence of temperature, dissolved oxygen and chlorophyll a on the spatiotemporal abundance pattern of α-Proteobacteria and Cyanobacteria groups. Among the 19 identified bacterioplankton subgroups, α-Proteobacteria (phylum Proteobacteria was the dominant one followed by Family II (phylum Cyanobacteria, representing 19.1–55.2% and 2.3–54.2% of total sequences, respectively. An inverse relationship (r = -0.82 was observed between the two dominant subgroups, α-Proteobacteria and Family II. A wide range of inverse Simpson index (10.2 to 105 revealed spatial heterogeneity of bacterioplankton diversity likely resulting from the varied anthropogenic and natural influences. Overall, our results suggested that seasonal variations impose substantial influence on shaping bacterioplankton abundance patterns. In addition, the predominance of only a few cosmopolitan species in the Qinhuangdao coastal

  16. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Xueguan Song

    2014-01-01

    Full Text Available Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ozone as the secondary fluid. In this study, high-pressure water and air, instead of ballast water and ozone, are considered through extensive numerical and experimental research. The ejector is particularly studied by a steady three-dimensional multiphase computational fluid dynamics (CFD analysis with commercial software ANSYS-CFX 14.5. Different turbulence models (including standard k-ε, RNG k-ε, SST, and k-ω with different grid size and bubble size are compared extensively and the experiments are carried out to validate the numerical design and optimization. This study concludes that the RNG k-ε turbulence model is the most efficient and effective for the ballast water treatment system under consideration and simple change of nozzle shape can greatly improve the ejector performance under high back pressure conditions.

  17. Assessing abundance and foraging habitat affinities of western Pacific leatherback turtles in coastal waters of California, USA

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerial surveys were conducted during 3-29 September 2013 to determine distribution and abundance of endangered leatherback turtles (Dermochelys coriacea), and...

  18. A tentative detection of the 183-GHz water vapor line in the martian atmosphere: Constraints upon the H2O abundance and vertical distribution

    Science.gov (United States)

    Encrenaz, TH.; Lellouch, E.; Cernicharo, J.; Paubert, G.; Gulkis, S.

    1995-01-01

    The 183-GHz water vapor line was tentatively detected on Mars in January 1991, with the IRAM 30-m millimeter antenna, under extremely dry atmospheric conditions. The measurement refers to the whole disk. The spectral line, although marginally detected, can be fit with a constant H2O mixing ratio of 1.0 x 10(exp -5), which corresponds to a water abundance of 1 pr-microns; in any case, an upper limit of 3 pr-microns is inferred. This value is comparable to the very small abundances measured by Clancy (1992) 5 weeks before our observation and seems to imply both seasonal and long-term variations in the martian water cycle.

  19. Ab Initio Liquid Water Dynamics in Aqueous TMAO Solution.

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Sulpizi, Marialore; Ohto, Tatsuhiko; Bonn, Mischa; Nagata, Yuki

    2015-08-20

    Ab initio molecular dynamics (AIMD) simulations in trimethylamine N-oxide (TMAO)-D2O solution are employed to elucidate the effects of TMAO on the reorientational dynamics of D2O molecules. By decomposing the O-D groups of the D2O molecules into specific subensembles, we reveal that water reorientational dynamics are retarded considerably in the vicinity of the hydrophilic TMAO oxygen (O(TMAO)) atom, due to the O-D···O(TMAO) hydrogen-bond. We find that this reorientational motion is governed by two distinct mechanisms: The O-D group rotates (1) after breaking the O-D···O(TMAO) hydrogen-bond, or (2) together with the TMAO molecule while keeping this hydrogen-bond intact. While the orientational slow-down is prominent in the AIMD simulation, simulations based on force field models exhibit much faster dynamics. The simulated angle-resolved radial distribution functions illustrate that the O-D···O(TMAO) hydrogen-bond has a strong directionality through the sp(3) orbital configuration in the AIMD simulation, and this directionality is not properly accounted for in the force field simulation. These results imply that care must be taken when modeling negatively charged oxygen atoms as single point charges; force field models may not adequately describe the hydration configuration and dynamics.

  20. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; hide

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  1. A novel vortex-assisted liquid-liquid microextraction approach using auxiliary solvent: Determination of iodide in mineral water samples.

    Science.gov (United States)

    Zaruba, Serhii; Vishnikin, Andriy B; Andruch, Vasil

    2016-01-01

    A novel vortex-assisted liquid-liquid microextraction (VA-LLME) for determination of iodide was developed. The method includes the oxidation of iodide with iodate in the presence of hydrochloric acid followed by VA-LLME of the ion-pair formed between ICl2(-) and Astra Phloxine reagent (AP) and subsequent absorbance measurement at 555nm. The appropriate experimental conditions were investigated and found to be: 5mL of sample, 0.27molL(-)(1) HCl, 0.027mmolL(-1) KIO3 as the oxidation agent, 250μL of extraction mixture containing amyl acetate as the extraction solvent and carbon tetrachloride as the auxiliary solvent (1:1, v/v), 0.04mmolL(-1) AP reagent, vortex time: 20s at 3000rpm, centrifugation: 4min at 3000rpm. The calibration plot was linear in the range 16.9-169μg L(-1) of iodide, with a correlation coefficient (R(2)) of 0.996, and the relative standard deviation ranged from 1.9 to 5.7%. The limit of detection (LOD) and limit of quantification (LOQ) were 1.75 and 6.01μgL(-)(1) of iodide, respectively. The suggested procedure was applied for determination of iodide in real mineral water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Polypropylene Nonwoven Fabric@Poly(ionic liquid)s for Switchable Oil/Water Separation, Dye Absorption, and Antibacterial Applications.

    Science.gov (United States)

    Ren, Yongyuan; Guo, Jiangna; Lu, Qian; Xu, Dan; Qin, Jing; Yan, Feng

    2018-03-22

    Pollutants in wastewater include oils, dyes, and bacteria, making wastewater cleanup difficult. Multifunctional wastewater treatment media consisting of poly(ionic liquid)-grafted polypropylene (PP) nonwoven fabrics (PP@PIL) are prepared by a simple and scalable surface-grafting process. The fabricated PP@PIL fabrics exhibit impressive switchable oil/water separation (η>99 %) and dye absorption performance (q=410 mg g -1 ), as well as high antibacterial properties. The oil/water separation can be easily switched by anion exchanging of the PIL segments. Moreover, the multiple functions (oil/water separation, dye absorption, and antibacterial properties) occurred at the same time, and did not interfere with each other. The multifunctional fibrous filter can be easily regenerated by washing with an acid solution, and the absorption capacity is maintained after many recycling tests. These promising features make PIL-grafted PP nonwoven fabric a potential one-step treatment for multicomponent wastewater. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    This special section has been inspired by the workshop on Dynamic Crossover Phenomena in Water and Other Glass-Forming Liquids, held during November 11-13, 2010 at Pensione Bencistà, Fiesole, Italy, a well-preserved 14th century Italian villa tucked high in the hills overlooking Florence. The meeting, an assembly of world renowned scientists, was organized as a special occasion to celebrate the 75th birthday of Professor Sow-Hsin Chen of MIT, a pioneer in several aspects of complex fluids and soft matter physics. The workshop covered a large variety of experimental and theoretical research topics of current interest related to dynamic crossover phenomena in water and, more generally, in other glass-forming liquids. The 30 invited speakers/lecturers and approximately 60 participants were a select group of prominent physicists and chemists from the USA, Europe, Asia and Mexico, who are actively working in the field. Some highlights of this special issue include the following works. Professor Yamaguchi's group and their collaborators present a neutron spin echo study of the coherent intermediate scattering function of heavy water confined in cylindrical pores of MCM-41-C10 silica material in the temperature range 190-298 K. They clearly show that a fragile-to-strong (FTS) dynamic crossover occurs at about 225 K. They attribute the FTS dynamic crossover to the formation of a tetrahedral-like structure, which is preserved in the bulk-like water confined to the central part of the cylindrical pores. Mamontov and Kolesnikov et al study the collective excitations in an aqueous solution of lithium chloride over a temperature range of 205-270 K using neutron and x-ray Rayleigh-Brillouin (coherent) scattering. They detect both the low-frequency and the high-frequency sounds known to exist in pure bulk water above the melting temperature. They also perform neutron (incoherent) and x-ray (coherent) elastic intensity scan measurements. Clear evidence of the crossover in the

  4. Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Kui; Li, Xianguo [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario (Canada); Park, Jaewan [Department of Mechanical and Aeronautical Engineering, University of California, Davis One Shields Ave., Davis, CA 95616 (United States)

    2010-09-15

    The cross flow from channel to channel through gas diffusion layer (GDL) under the land could play an important role for water removal in proton exchange membrane (PEM) fuel cells. In this study, characteristics of liquid water removal from GDL have been investigated experimentally, through measuring unsteady pressure drop in a cell which has the GDL initially wet with liquid water. The thickness of GDL is carefully controlled by inserting various thicknesses of metal shims between the plates. It has been found that severe compression of GDL could result in excessive pressure drop from channel inlet to channel outlet. Removing liquid water from GDL by cross flow is difficult for GDL with high compression levels and for low inlet air flow rates. However, effective water removal can still be achieved at high compression levels of GDL if the inlet air flow rate is high. Based on different compressed GDL thicknesses, different GDL porosities and permeabilities were calculated and their effects on the characteristics of liquid water removal from GDL were evaluated. Visualization of liquid water transport has been conducted by using transparent flow channel, and liquid water removal from GDL under the land was observed for all the tested inlet air flow rates, which confirms that cross flow is practically effective to remove the liquid water accumulated in GDL under the land area. (author)

  5. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  6. Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids

    International Nuclear Information System (INIS)

    Andanson, J.-M.; Meng, X.; Traïkia, M.; Husson, P.

    2016-01-01

    Highlights: • Residual water has a negligible impact on density of hydrophobic ionic liquids. • The density of a dry sample can be calculated from the density of a wet ionic liquid. • The viscosity of a dry sample can be calculated from the one of a wet ionic liquid. • Water can be quantified by NMR spectroscopy even in dried hydrophobic ionic liquids. - Abstract: The objective of this work was to quantify the effect of the presence of water as impurity in ionic liquids. First, density and viscosity of five ionic liquids as well as their aqueous solutions were measured. For hydrophobic dried ionic liquids, traces of water (50 ppm) have measurable impact neither on the density nor on the viscosity values. In the concentration range studied (up to 5000 ppm), a linear evolution of the molar volume of the mixture with the mole fraction composition is observed. Practically, this allows to estimate the density of an neat ionic liquid provided (i) the water quantity and (ii) the density of the undried sample are known. This is particularly useful for hydrophilic ionic liquids that are difficult to dry. In the studied concentration range, a linear evolution of the relative viscosity was also depicted as a function of the mass fraction composition. It is thus possible to evaluate the viscosity of the pure ionic liquid knowing the water quantity and the viscosity of the undried sample. The comparison of the results obtained using two viscosimeters confirms that a Stabinger viscosimeter is appropriate to precisely measure ionic liquids viscosities. Second, NMR and IR spectroscopies were used to characterize the pure ionic liquids and their solutions with water. The sensitivity of IR spectroscopy does allow neither the quantification nor the detection of water below 1 mol%. With NMR spectroscopy, water can be quantified using either the intensity or the chemical shift of the water proton peak for mole fractions as low as 200 ppm. It is even possible to detect water in

  7. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    Science.gov (United States)

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  8. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  9. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    OpenAIRE

    Korolchenko Dmitriy; Voevoda Sergey

    2016-01-01

    Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL) surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam...

  10. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  11. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  12. Prokaryotic abundance, activitiy and community composition in relation to the quality of dissoved organic matter in the deep waters off the Galician Coast (NW Spain)

    OpenAIRE

    Guerrero-Feijóo, E. (Elisa); Nieto-Cid, M (Maria del Mar); álvarez-Salgado, X.A. (Xosé-Antón); et al.; Varela-Rozados, M. (Marta)

    2014-01-01

    We have simultaneously studied the abundance, activity and prokaryotic community structure in relation to the quality of oceanic dissolved organic matter (DOM) in the meso- and bathypelagic waters off the Galician Coast (NW Spain, from 43ºN, 9ºW to 43ºN, 15ºW).Distint water masses were identified based on their physical and chemical characteristics. While prokaryotic heterotrophic production decreased from the euphotic layer to the bathypelagic waters by two orders of magnitude, prokaryotic a...

  13. Speciation analysis of mercury in water samples by dispersive liquid-liquid microextraction coupled to capillary electrophoresis.

    Science.gov (United States)

    Yang, Fangfang; Li, Jinhua; Lu, Wenhui; Wen, Yingying; Cai, Xiaoqiang; You, Jinmao; Ma, Jiping; Ding, Yangjun; Chen, Lingxin

    2014-02-01

    In this study, a method of pretreatment and speciation analysis of mercury by dispersive liquid-liquid microextraction along with CE was developed. The method was based on the fact that mercury species including methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and Hg(II) were complexed with 1-(2-pyridylazo)-2-naphthol to form hydrophobic chelates and l-cysteine could displace 1-(2-pyridylazo)-2-naphthol to form hydrophilic chelates with the four mercury species. Factors affecting complex formation and extraction efficiency, such as pH value, type, and volume of extractive solvent and disperser solvent, concentration of the chelating agent, ultrasonic time, and buffer solution were investigated. Under the optimal conditions, the enrichment factors were 102, 118, 547, and 46, and the LODs were 1.79, 1.62, 0.23, and 1.50 μg/L for MeHg, EtHg, PhHg, and Hg(II), respectively. Method precisions (RSD, n = 5) were in the range of 0.29-0.54% for migration time, and 3.08-7.80% for peak area. Satisfactory recoveries ranging from 82.38 to 98.76% were obtained with seawater, lake, and tap water samples spiked at three concentration levels, respectively, with RSD (n = 5) of 1.98-7.18%. This method was demonstrated to be simple, convenient, rapid, cost-effective, and environmentally benign, and could be used as an ideal alternative to existing methods for analyzing trace residues of mercury species in water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water.

    Science.gov (United States)

    Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen

    2017-09-15

    Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10 -3 -3.6×10 -1 nmol/L in the influent and from 1.3×10 -2 -2.2×10 -1 nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  16. Thermal conductivity coefficients of water and heavy water in the liquid state up to 3700C

    International Nuclear Information System (INIS)

    Le Neindre, B.; Bury, P.; Tufeu, R.; Vodar, B.

    1976-01-01

    The thermal conductivity coefficients of water and heavy water of 99.75 percent isotopic purity were measured using a coaxial cylinder apparatus, covering room temperature to their critical temperatures, and pressures from 1 to 500 bar for water, and from 1 to 1000 bar for heavy water. Following the behavior of the thermal conductivity coefficient of water, which shows a maximum close to 135 0 C, the thermal conductivity coefficient of heavy water exhibits a maximum near 95 0 C and near saturation pressures. This maximum is displaced to higher temperatures when the pressure is increased. Under the same temperature and pressure conditions the thermal conductivity coefficient of heavy water was lower than for water. The pressure effect was similar for water and heavy water. In the temperature range of our experiments, isotherms of thermal conductivity coefficients were almost linear functions of density

  17. Formation of radical and active chemical species in electrical discharge plasma in the presence of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Shih, K.Y.; Burlica, R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering

    2010-07-01

    This study investigated the interactions of plasma with liquid water using a combination of emission spectroscopy of radical and atomic species and direct measurements of more stable chemical compounds. The study focused on electrical discharge plasma formed directly in liquid water and on discharges formed in the gas phase above liquid water, in bubbles in liquid water, and in the gas phase with water droplet spray that result in a variety of active chemical species that can be used for pollution control as well as other applications in biomedical and materials engineering. The purpose was to improve the design and operation of plasma reactors for a variety of applications. This presentation also reviewed the mechanisms for the formation of active chemical species such as hydroxyl and other radicals, hydrogen peroxide and molecular hydrogen, in electrical discharge plasma formed in the presence of water.

  18. Water hammer phenomena occurring in nuclear power installations while filling horizontal pipe containing saturated steam with liquid

    International Nuclear Information System (INIS)

    Selivanov, Y.F.; Kirillov, P.L.; Yefanov, A.D.

    1995-01-01

    The potentiality of the water hammer occurrence in nuclear reactor loop components has been considered under the conditions of filling a steam-containing pipeline leg involving horizontal and vertical sections with liquid subcooled to the saturation temperature. As a result of free discharging from the tank, the liquid enters the horizontal pipeline. When the liquid slug formation in the pipeline is fulfilled. The pressure drop being occurred in steam flowing along the pipelines causes the liquid slug to move to the pipeline inlet. When the liquid slug decelerates, a water hammer occurs. This mechanism of water hammer occurrence is tested by experiments. The regimes of the occurrence of multiple considerable water hammers were identified

  19. Water hammer phenomena occurring in nuclear power installations while filling horizontal pipe containing saturated steam with liquid

    Energy Technology Data Exchange (ETDEWEB)

    Selivanov, Y.F.; Kirillov, P.L.; Yefanov, A.D. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1995-09-01

    The potentiality of the water hammer occurrence in nuclear reactor loop components has been considered under the conditions of filling a steam-containing pipeline leg involving horizontal and vertical sections with liquid subcooled to the saturation temperature. As a result of free discharging from the tank, the liquid enters the horizontal pipeline. When the liquid slug formation in the pipeline is fulfilled. The pressure drop being occurred in steam flowing along the pipelines causes the liquid slug to move to the pipeline inlet. When the liquid slug decelerates, a water hammer occurs. This mechanism of water hammer occurrence is tested by experiments. The regimes of the occurrence of multiple considerable water hammers were identified.

  20. Comparison of dispersive liquid-liquid microextraction and hollow fiber liquid-liquid-liquid microextraction for the determination of fentanyl, alfentanil, and sufentanil in water and biological fluids by high-performance liquid chromatography.

    Science.gov (United States)

    Saraji, Mohammad; Khalili Boroujeni, Malihe; Hajialiakbari Bidgoli, Ali Akbar

    2011-06-01

    Dispersive liquid-liquid microextraction (DLLME) and hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) combined with HPLC-DAD have been applied for the determination of three narcotic drugs (alfentanil, fentanyl, and sufentanil) in biological samples (human plasma and urine). Different DLLME parameters influencing the extraction efficiency such as type and volume of the extraction solvent and the disperser solvent, concentration of NaOH, and salt addition were investigated. In the HF-LLLME, the effects of important parameters including organic solvent type, concentration of NaOH as donor solution, concentration of H(2)SO(4) as acceptor phase, salt addition, stirring rate, temperature, and extraction time were investigated and optimized. The results showed that both extraction methods exhibited good linearity, precision, enrichment factor, and detection limit. Under optimal condition, the limits of detection ranged from 0.4 to 1.9 μg/L and from 1.1 to 2.3 μg/L for DLLME and HF-LLLME, respectively. For DLLME, the intra- and inter-day precisions were 1.7-6.4% and 14.2-15.9%, respectively; and for HF-LLLME were 0.7-5.2% and 3.3-10.1%, respectively. The enrichment factors were from 275 to 325 and 190 to 237 for DLLME and HF-LLLME, respectively. The applicability of the proposed methods was investigated by analyzing biological samples. For analysis of human plasma and urine samples, HF-LLLME showed higher precision, more effective sample clean-up, higher extraction efficiency, lower organic solvent consumption than DLLME.

  1. First Principles Modeling of Structure and Transport in Solid Polymer Electrolytes, Ionic Liquids, and Methanol/Water Mixtures

    Science.gov (United States)

    2016-02-10

    the general formula: PEO6:XPF6, where X = H, Li, or Na; (2) methanol /water solution over a range of methanol mole fractions (0 to 1); and (3...Electrolytes, Ionic Liquids, and Methanol /Water Mixtures The views, opinions and/or findings contained in this report are those of the author(s) and...dynamics, quantum chemistry, electronic structure, solid polymer electrolytes, ionic liquids, methanol /water mixtures REPORT DOCUMENTATION PAGE 11

  2. Determination of selected azaarenes in water by bonded-phase extraction and liquid chromatography

    Science.gov (United States)

    Steinheimer, T.R.; Ondrus, M.G.

    1986-01-01

    A method for the rapid and simple quantitative determination of quinoline, isoquinoline, and five selected three-ring azaarenes in water has been developed. The azaarene fraction is separated from its carbon analogues on n-octadecyl packing material by edition with acidified water/acetonitrile. Concentration as great as 1000-fold is achieved readily. Instrumental analysis involves high-speed liquid chromatography on flexible-walled, wide-bore columns with fluorescence and ultraviolet detection at several wavelengths employing filter photometers in series. Method-validation data is provided as azaarene recovery efficiency from fortified samples. Distilled water, river water, contaminated ground water, and secondary-treatment effluent have been tested. Recoveries at part-per-billion levels are nearly quantitative for the three-ring compounds, but they decrease for quinoline and isoquinoline. ?? 1986 American Chemical Society.

  3. (Liquid + liquid) equilibria of (water + linalool + limonene) ternary system at T = (298.15, 308.15, and 318.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Gramajo de Doz, Monica B. [Departamento de Fisica, Facultad de Ciencias Exactas y Tecnologia, Universidad Nacional de Tucuman, Avenida Independencia 1800, 4000 Tucuman (Argentina)], E-mail: mgramajo@herrera.unt.edu.ar; Cases, Alicia M.; Solimo, Horacio N. [Departamento de Fisica, Facultad de Ciencias Exactas y Tecnologia, Universidad Nacional de Tucuman, Avenida Independencia 1800, 4000 Tucuman (Argentina)

    2008-11-15

    (Liquid + liquid) equilibrium (LLE) data for {l_brace}water (1) + linalool (2) + limonene (3){r_brace} ternary system at T = (298.15, 308.15, and 318.15 {+-} 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed.

  4. (Liquid + liquid) equilibria of (water + linalool + limonene) ternary system at T = (298.15, 308.15, and 318.15) K

    International Nuclear Information System (INIS)

    Gramajo de Doz, Monica B.; Cases, Alicia M.; Solimo, Horacio N.

    2008-01-01

    (Liquid + liquid) equilibrium (LLE) data for {water (1) + linalool (2) + limonene (3)} ternary system at T = (298.15, 308.15, and 318.15 ± 0.05) K are reported. The organic chemicals were quantified by gas chromatography using a flame ionisation detector while water was quantified using a thermal conductivity detector. The effect of the temperature on (liquid + liquid) equilibrium is determined and discussed. Experimental data for the ternary mixture are compared with values calculated by the NRTL and UNIQUAC equations, and predicted by means of the UNIFAC group contribution method. It is found that the UNIQUAC and NRTL models provide a good correlation of the solubility curve at these three temperatures, while comparing the calculated values with the experimental ones, the best fit is obtained with the NRTL model. Finally, the UNIFAC model provides poor results, since it predicts a greater heterogeneous region than experimentally observed

  5. Multisensor Advanced Climatology Mean Liquid Water Path Diurnal Cycle L3 Monthly 1 degree x 1 degree V1 (MACLWP_diurnal) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP) data set contains monthly 1.0-degree ocean-only estimates of cloud liquid water path...

  6. Multisensor Advanced Climatology Mean Liquid Water Path L3 Monthly 1 degree X 1 degree V1 (MACLWP_mean) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP) data set contains monthly 1.0-degree ocean-only estimates of cloud liquid water path...

  7. Multisensor Advanced Climatology Total Liquid Water Path L3 Monthly 1 degree x 1 degree V1 (MACTWP_mean) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — The Multi-Sensor Advanced Climatology of Liquid Water Path (MAC-LWP) data set contains monthly 1.0-degree ocean-only estimates of cloud liquid water path...

  8. Liquid-solid contact measurements using a surface thermocouple temperature probe in atmospheric pool boiling water

    International Nuclear Information System (INIS)

    Lee, L.Y.W.; Chen, J.C.; Nelson, R.A.

    1984-01-01

    Objective was to apply the technique of using a microthermocouple flush-mounted at the boiling surface for the measurement of the local-surface-temperature history in film and transition boiling on high temperature surfaces. From this measurement direct liquid-solid contact in film and transition boiling regimes was observed. In pool boiling of saturated, distilled, deionized water on an aluminum-coated copper surface, the time-averaged, local-liquid-contact fraction increased with decreasing surface superheat. Average contact duration increased monotonically with decreasing surface superheat, while frequency of liquid contact reached a maximum of approx. 50 contacts/s at a surface superheat of approx. 100 K and decreased gradually to 30 contacts/s near the critical heat flux. The liquid-solid contact duration distribution was dominated by short contacts 4 ms at low surface superheats, passing through a relatively flat contact duration distribution at about 80 0 K. Results of this paper indicate that liquid-solid contacts may be the dominant mechanism for energy transfer in the transition boiling process

  9. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water

    Science.gov (United States)

    Zelong, ZHANG; Jie, SHEN; Cheng, CHENG; Zimu, XU; Weidong, XIA

    2018-04-01

    Atmospheric pressure helium/water dielectric barrier discharge (DBD) plasma is used to investigate the generation of reactive species in a gas-liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy (OES) with different discharge powers at the gas-liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary long-lived reactive species such as H2O2, {{{{NO}}}3}- and O3 are measured based on plasma treatment time. After 5 min of discharge treatment, the concentration of H2O2, {{{{NO}}}3}-, and O3 increased from 0 mg · L-1 to 96 mg · L-1, 19.5 mg · L-1, and 3.5 mg · L-1, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.

  10. Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water.

    Science.gov (United States)

    Zhuang, Xinshu; Yu, Qiang; Wang, Wen; Qi, Wei; Wang, Qiong; Tan, Xuesong; Yuan, Zhenhong

    2012-09-01

    Hemicellulose and lignin are the main factors limiting accessibility of hydrolytic enzymes besides the crystallinity of cellulose. The decomposition behavior of hemicellulose and lignin in the step-change flow rate hot water system was investigated. Xylan removal increased from 64.53% for batch system (solid concentration 4.25% w/v, 18 min, 184°C) to 83.78% at high flow rates of 30 ml/min for 8 min, and then 10 ml/min for 10 min. Most of them (80-90%) were recovered as oligosaccharide. It was hypothesized that the flowing water could enhance the mass transfer to improve the sugars recovery. In addition, the solubilization mechanism of lignin in the liquid hot water was proposed according to the results of Fourier transform-infrared spectroscopy and scanning electron microscopy of the water-insoluble fraction and gas chromatography-mass spectrometry of the water-soluble fraction. It was proposed that lignin in the liquid hot water first migrated out of the cell wall in the form of molten bodies, and then flushed out of the reactor. A small quantity of them was further degraded into monomeric products such as vanillin, syringe aldehyde, coniferyl aldehyde, ferulic acid, and p-hydroxy-cinnamic acid. All of these observations would provide important information for the downstream processing, such as purification and concentration of sugars and the enzymatic digestion of residual solid.

  11. Liquid-liquid equilibria of propionic acid - water - solvent (n-hexane, cyclohexane, cyclohexanol and cyclohexyl acetate ternaries at 298.15 K

    Directory of Open Access Journals (Sweden)

    Özmen D.

    2004-01-01

    Full Text Available The experimental liquid-liquid equilibrium data on propionic acid-water-solvent ternary mixtures at a temperature of 298.15 K are presented. The solvents are n-hexane, cyclohexane, cyclohexanol and cyclohexyl acetate. The distribution coefficients and separation factors are reported. The tie line data are correlated using the methods of Othmer-Tobias and Hand. The experimental results are compared with the values predicted by the UNIFAC group-contribution method.

  12. Operational procedures for reduction of liquid wastes from pressurized water reactors

    International Nuclear Information System (INIS)

    Ribeiro, Gilberto Soares; Lopes, Roberto Machado

    1996-01-01

    This work is based upon the fact that, during core life, it is necessary to make up for the Reactor Coolant System (RCS) losses and also to dilute the same system to compensate for the fuel depletion and core fission products poisoning. It was developed taking into consideration the possibility of doing both operations without having an additive effect in terms of liquid waste production. In other words it is always desirable to compensate for the RCS losses with pure water (boron free) instead of doing it with borated water, because some time later it will be necessary to dilute the RCS. By doing this, at Angra Unit I, it is possible to reduce about 20.5% in the liquid waste production what could correspond to volumes ranging from 250,000 to 300,000 liters, per fuel cycle. Besides that, there will be a great reduction of the total activity released to the environment. (author)

  13. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water

    Science.gov (United States)

    Ivanov, Sergei D.; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik

    2010-01-01

    Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."

  14. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam-air mixture becomes nonflammable. As a result of solve of a heat balance equation it was made the following conclusion: water drops which size is equal to 100 μm will completely evaporate in a zone of combustion with extent of 1 m if the flying speed of drops is even 16 mps (acc. to Stokes v = 3 mps; whereas drops of larger size will evaporate only partially.

  15. Nuclear spin optical rotation and Faraday effect in gaseous and liquid water.

    Science.gov (United States)

    Pennanen, Teemu S; Ikäläinen, Suvi; Lantto, Perttu; Vaara, Juha

    2012-05-14

    Nuclear spin optical rotation (NSOR) of linearly polarized light, due to the nuclear spins through the Faraday effect, provides a novel probe of molecular structure and could pave the way to optical detection of nuclear magnetization. We determine computationally the effects of the liquid medium on NSOR and the Verdet constant of Faraday rotation (arising from an external magnetic field) in water, using the recently developed theory applied on a first-principles molecular dynamics trajectory. The gas-to-liquid shifts of the relevant antisymmetric polarizability and, hence, NSOR magnitude are found to be -14% and -29% for (1)H and (17)O nuclei, respectively. On the other hand, medium effects both enhance the local electric field in water and, via bulk magnetization, the local magnetic field. Together these two effects partially cancel the solvation influence on the single-molecular property. We find a good agreement for the hydrogen NSOR with a recent pioneering experiment on H(2)O(l).

  16. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  17. Low-energy electron inelastic mean free paths for liquid water.

    Science.gov (United States)

    Nguyen-Truong, Hieu T

    2018-04-18

    We improve the Mermin-Penn algorithm (MPA) for determining the energy loss function (ELF) within the dielectric formalism. The present algorithm is applicable not only to real metals, but also to materials that have an energy gap in the excitation spectrum. Applying the improved MPA to liquid water, we show that the present algorithm is able to address the ELF overestimation at the energy gap, and the calculated results are in good agreement with experimental data.

  18. Low-energy electron inelastic mean free paths for liquid water

    Science.gov (United States)

    Nguyen-Truong, Hieu T.

    2018-04-01

    We improve the Mermin–Penn algorithm (MPA) for determining the energy loss function (ELF) within the dielectric formalism. The present algorithm is applicable not only to real metals, but also to materials that have an energy gap in the excitation spectrum. Applying the improved MPA to liquid water, we show that the present algorithm is able to address the ELF overestimation at the energy gap, and the calculated results are in good agreement with experimental data.

  19. Expanding the calculation of activation volumes: Self-diffusion in liquid water.

    Science.gov (United States)

    Piskulich, Zeke A; Mesele, Oluwaseun O; Thompson, Ward H

    2018-04-07

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  20. Expanding the calculation of activation volumes: Self-diffusion in liquid water

    Science.gov (United States)

    Piskulich, Zeke A.; Mesele, Oluwaseun O.; Thompson, Ward H.

    2018-04-01

    A general method for calculating the dependence of dynamical time scales on macroscopic thermodynamic variables from a single set of simulations is presented. The approach is applied to the pressure dependence of the self-diffusion coefficient of liquid water as a particularly useful illustration. It is shown how the activation volume associated with diffusion can be obtained directly from simulations at a single pressure, avoiding approximations that are typically invoked.

  1. Brown shrimp abundance in northwest European coastal waters in the period 1970 - 2010 and potential causes for contrasting trends

    NARCIS (Netherlands)

    Tulp, I.Y.M.; Bolle, L.J.; Meesters, H.W.G.; Vries, de P.

    2012-01-01

    We investigated long-term trends in abundance of the NE Atlantic population of brown shrimp Crangon crangon based on data collected in annual autumn surveys carried out along the coasts of the North Sea in The Netherlands, Germany and Denmark. Surveys covered some estuaries and intertidal areas, as

  2. Effect of water stress on seedling growth in two species with different abundances: the importance of Stress Resistance Syndrome in seasonally dry tropical forest

    Directory of Open Access Journals (Sweden)

    Wanessa Nepomuceno Ferreira

    2015-09-01

    Full Text Available ABSTRACTIn seasonally dry tropical forests, species carrying attributes of Stress Resistance Syndrome (SRS may have ecological advantages over species demanding high quantities of resources. In such forests, Poincianella bracteosa is abundant, while Libidibia ferrea has low abundance; therefore, we hypothesized that P. bracteosa has characteristics of low-resource species, while L. ferrea has characteristics of high-resource species. To test this hypothesis, we assessed morphological and physiological traits of seedlings of these species under different water regimes (100%, 70%, 40%, and 10% field capacity over 85 days. For most of the studied variables we observed significant decreases with increasing water stress, and these reductions were greater in L. ferrea. As expected, L. ferreamaximized their growth with increased water supply, while P. bracteosa maintained slower growth and had minor adjustments in biomass allocation, characteristics representative of low-resource species that are less sensitive to stress. We observed that specific leaf area, biomass allocation to roots, and root/shoot ratio were higher in L. ferrea, while biomass allocation to leaves and photosynthesis were higher in P. bracteosa. Results suggest that the attributes of SRS can facilitate high abundance of P. bracteosa in dry forest.

  3. Calculated depth-dose distributions for H+ and He+ beams in liquid water

    International Nuclear Information System (INIS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-01-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  4. A surprisingly simple correlation between the classical and quantum structural networks in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.

    2017-08-14

    Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) and quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.

  5. Lysozyme Solubility and Conformation in Neat Ionic Liquids and Their Mixtures with Water.

    Science.gov (United States)

    Strassburg, Stephen; Bermudez, Harry; Hoagland, David

    2016-06-13

    The room temperature solubility of a number of model proteins is assessed for a diverse set of neat ionic liquids (ILs). For two soluble protein-IL pairs, lysozyme in [C2MIM][EtSO4] (1-ethyl-3-methylimidazolium ethylsulfate) and in [C2,4,4,4P][Et2PO4] (tributyl(ethyl)phosphonium diethylphosphate), protein solubility and structure at various temperatures are probed by dynamic light scattering (assessing dissolved molecular size), turbidimetry (reflecting degree of solubility), and Fourier transform infrared spectroscopy (uncovering helical secondary structure). As compared to aqueous environments, [C2,4,4,4P][Et2PO4] thermally stabilizes protein size and secondary structure while [C2MIM][EtSO4] does the opposite. Lysozyme denatured in [C2MIM][EtSO4] does not aggregate, presumably due to an absence of hydrophobic interactions, and the denaturation appears thermally reversible. Both ILs at room temperature are miscible with water in all proportions, but to create the corresponding ternary mixtures with protein, the order of mixing is important. Mixed to avoid additions of water to IL-dissolved protein, stable solutions are obtained with [C2MIM][EtSO4] at all solvent compositions. When water is added to IL-rich solutions, liquid-liquid demixing is noted.

  6. Isobaric-isothermal Monte Carlo simulations from first principles: Application to liquid water at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; VandeVondele, J; Hutter, J; Mohamed, F; Krack, M

    2004-12-02

    A series of first principles Monte Carlo simulations in the isobaric-isothermal ensemble were carried out for liquid water at ambient conditions (T = 298 K and p = 1 atm). The Becke-Lee-Yang-Parr (BLYP) exchange and correlation energy functionals and norm-conserving Goedecker-Teter-Hutter (GTH) pseudopotentials were employed with the CP2K simulation package to examine systems consisting of 64 water molecules. The fluctuations in the system volume encountered in simulations in the isobaric-isothermal ensemble requires a reconsideration of the suitability of the typical charge density cutoff and the regular grid generation method previously used for the computation of the electrostatic energy in first principles simulations in the microcanonical or canonical ensembles. In particular, it is noted that a much higher cutoff is needed and that the most computationally efficient method of creating grids can result in poor simulations. Analysis of the simulation trajectories using a very large charge density cutoff at 1200 Ry and four different grid generation methods point to a substantially underestimated liquid density of about 0.85 g/cm{sup 3} resulting in a somewhat understructured liquid (with a value of about 2.7 for the height of the first peak in the oxygen/oxygen radial distribution function) for BLYP-GTH water at ambient conditions.

  7. Determination of 226Ra and 224Ra in drinking waters by liquid scintillation counting

    International Nuclear Information System (INIS)

    Manjon, G.; Vioque, I.; Moreno, H.; Garcia-Tenorio, R.; Garcia-Leon, M.

    1997-01-01

    A method for the determination of Ra-isotopes in water samples has been developed. Ra is coprecipitated with Ba as sulphate. The precipitate is then dissolved with EDTA and counted with a liquid scintillation system after mixing with a scintillation cocktail. The study of the temporal evolution of the separated activity gives the isotopic composition of the sample, i.e. the 224 Ra and 226 Ra contribution to the total activity. The method has been applied to some Spanish drinking waters. (author)

  8. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  9. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    Science.gov (United States)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-08-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids' nanostructure. It is observed that as the cationic alkyl

  10. Photochemical synthesis of silver particles in Tween 20/water/ionic liquid microemulsions.

    Science.gov (United States)

    Harada, Masafumi; Kimura, Yoshifumi; Saijo, Kenji; Ogawa, Tetsuya; Isoda, Seiji

    2009-11-15

    Metal particles of silver (Ag) were synthesized by the photoreduction of silver perchlorate (AgClO(4)) in water-in-ionic liquid (ILs) microemulsions consisting of Tween 20, water and ionic liquids. The ILs were tetrafluoroborate anions associated with the cations 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF(4)]) and 1-octyl-3-methylimidazolium tetrafluoroborate ([OMIm][BF(4)]). The time evolution of Ag particle formation by photoreduction using UV-irradiation was investigated by UV-Vis, cryo-TEM, extended X-ray absorption fine structure (EXAFS) and small angle X-ray scattering (SAXS) measurements. The average diameter of the metallic Ag particles prepared in the water-in-[BMIm][BF(4)] and water-in-[OMIm][BF(4)] microemulsions was estimated from TEM to be 8.9 and 4.9nm, respectively, which was consistent with that obtained from the SAXS analysis. Using Guinier plots in a low q-range (ionic precursors of AgClO(4) before reduction and Ag particles after reduction, in the microemulsions, was estimated to be about 20-40nm. The diameter of the water droplets increased as a function of photoreduction time because of the formation of Ag particles and their aggregates. EXAFS analysis indicated that Ag(+) ions were completely reduced to Ag(0) atoms during the photoreduction, followed by the formation of larger Ag particles.

  11. Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice.

    Science.gov (United States)

    Smit, Wilbert J; Versluis, Jan; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J

    2018-02-26

    We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H 2 O and D 2 O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, both for water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.

  12. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  13. An analysis on water hammer in liquid injection shutdown system of CANDU-9

    International Nuclear Information System (INIS)

    Kim, T. H.; Heo, J.; Han, S. K.; Choi, H. Y.; No, T. S.

    2000-01-01

    The water hammer analysis code, PTRAN, is used for computation of transient pressures and pressure differentials in the Liquid Injection Shutdown System(LISS) piping network of CANDU-9 to ensure that the design allowables for LEVEL C Service Limit are met for the water hammer loads resulting from the water hammer. The LISS piping network of CANDU-9 has incorporated design improvement in considering the water hammer, such as declining the horizontal part of helium header, and raising the elevation of the overall system piping configuration, etc. The maximum pressure in the LISS piping network is found to be 7.92 MPa(a) at the closed valve in the vent line, which is below the allowable working pressure and the valve design pressure under Level C service conditions. And it is also shown that the maximum pressure in CANDU-9 is much lower than that in CANDU-6

  14. LIQUID-LIQUID EQUILIBRIA OF THE TERNARY SYSTEMS PROPIONIC ACID - WATER - SOLVENT (n-AMYL ALCOHOL AND n-AMYL ACETATE

    Directory of Open Access Journals (Sweden)

    Dilek ÖZMEN

    2005-02-01

    Full Text Available The experimental liquid-liquid equilibrium (LLE data have been obtained at 25 oC for ternary systems propionic acid-water-n-amyl alcohol and propionic acid-water-n-amyl acetate. The reliability of the experimental tie line data are checked using the methods of Othmer-Tobias and Hand. The distribution coefficients and separation factors were obtained from experimental results and are also reported. The predicted tie line data obtained by UNIFAC method are compared with experimental data. It is concluded that n-amyl alcohol and n-amyl acetate are suitable separating agents for dilute aqueous propionic acid solutions.

  15. LIQUID-LIQUID EQUILIBRIA OF THE TERNARY SYSTEMS PROPIONIC ACID - WATER - SOLVENT (n-AMYL ALCOHOL AND n-AMYL ACETATE)

    OpenAIRE

    Dilek ÖZMEN

    2005-01-01

    The experimental liquid-liquid equilibrium (LLE) data have been obtained at 25 oC for ternary systems propionic acid-water-n-amyl alcohol and propionic acid-water-n-amyl acetate. The reliability of the experimental tie line data are checked using the methods of Othmer-Tobias and Hand. The distribution coefficients and separation factors were obtained from experimental results and are also reported. The predicted tie line data obtained by UNIFAC method are compared with experimental data. It i...

  16. Steam water cycle chemistry of liquid metal cooled innovative nuclear power reactors

    International Nuclear Information System (INIS)

    Yurmanov, Victor; Lemekhov, Vadim; Smykov, Vladimir

    2012-09-01

    selection of chemistry controls is vital for NPPs with liquid metal cooled reactors. This paper highlights principles and approaches to chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors. The recommendations on how to arrange chemistry controls in steam/water cycles of future NPPs with innovative liquid metal cooled reactors are based taking into account: - the experience with operation of fossil power industry; - secondary side water chemistry of lead-bismuth eutectics cooled nuclear reactors at submarines; - steam/water cycles of NPPs with sodium cooled fast breeders BN-350 and BN-600; - secondary water chemistry at conventional NPPs with WER, RBMK and some other reactors. (authors)

  17. Water-clustering in hygroscopic ionic liquids-an implicit solvent analysis.

    Science.gov (United States)

    Maiti, Amitesh; Kumar, Arvind; Rogers, Robin D

    2012-04-21

    Most ionic liquids are known to be hygroscopic to varying degrees, and that can be detrimental or useful depending upon the application in question. Water can accumulate slowly over hours or days to saturation levels corresponding to the humidity level. When designing or deploying a new ionic liquid it is important to be able to estimate its maximum moisture absorbing ability at the temperature and pressure of its operation. With this goal in mind we have carried out computational studies on three ionic liquid systems based on [BF(4)](-), [PF(6)](-), and [Tf(2)N](-) anions and 1-alkyl-3-methyl-imidazolium ([C(n)mim](+)) cations within an implicit solvent formalism. For highly hygroscopic systems like [C(n)mim][BF(4)] we find that non-iterative calculations with single water molecules can lead to significant underestimation of the maximum moisture content, while iterative calculations can result in miscibility behavior qualitatively different from experimental observations. On the other hand, the inclusion of small hydrogen-bonded water-clusters up to an appropriately chosen size is shown to yield better quantitative agreements with experimentally observed water uptake. Additionally, such calculations appear consistent with a number of thermodynamically interesting phase behaviors, including limited-solubility to full-miscibility transitions as a function of temperature and as a function of the alkyl chain length of the imidazolium cation. For hydrophobic systems like [C(n)mim][PF(6)] and [C(n)mim][Tf(2)N] the computed solubility (for each n) is found to have a smooth convergence behavior as a function of the largest cluster-size considered with the results for the larger clusters being close to that obtained by iterative calculations with single water molecules. This journal is © the Owner Societies 2012

  18. Spatial Autocorrelation, Source Water and the Distribution of Total and Viable Microbial Abundances within a Crystalline Formation to a Depth of 800 m

    Directory of Open Access Journals (Sweden)

    E. D. Beaton

    2017-09-01

    Full Text Available Proposed radioactive waste repositories require long residence times within deep geological settings for which we have little knowledge of local or regional subsurface dynamics that could affect the transport of hazardous species over the period of radioactive decay. Given the role of microbial processes on element speciation and transport, knowledge and understanding of local microbial ecology within geological formations being considered as host formations can aid predictions for long term safety. In this relatively unexplored environment, sampling opportunities are few and opportunistic. We combined the data collected for geochemistry and microbial abundances from multiple sampling opportunities from within a proposed host formation and performed multivariate mixing and mass balance (M3 modeling, spatial analysis and generalized linear modeling to address whether recharge can explain how subsurface communities assemble within fracture water obtained from multiple saturated fractures accessed by boreholes drilled into the crystalline formation underlying the Chalk River Laboratories site (Deep River, ON, Canada. We found that three possible source waters, each of meteoric origin, explained 97% of the samples, these are: modern recharge, recharge from the period of the Laurentide ice sheet retreat (ca. ∼12000 years before present and a putative saline source assigned as Champlain Sea (also ca. 12000 years before present. The distributed microbial abundances and geochemistry provide a conceptual model of two distinct regions within the subsurface associated with bicarbonate – used as a proxy for modern recharge – and manganese; these regions occur at depths relevant to a proposed repository within the formation. At the scale of sampling, the associated spatial autocorrelation means that abundances linked with geochemistry were not unambiguously discerned, although fine scale Moran’s eigenvector map (MEM coefficients were correlated with

  19. A history of violence: Insights into post-accretionary heating in carbonaceous chondrites from volatile element abundances, Zn isotopes and water contents

    Science.gov (United States)

    Mahan, Brandon; Moynier, Frédéric; Beck, Pierre; Pringle, Emily A.; Siebert, Julien

    2018-01-01

    Carbonaceous chondrites (CCs) may have been the carriers of water, volatile and moderately volatile elements to Earth. Investigating the abundances of these elements, their relative volatility, and isotopes of state-change tracer elements such as Zn, and linking these observations to water contents, provide vital information on the processes that govern the abundances and isotopic signatures of these species in CCs and other planetary bodies. Here we report Zn isotopic data for 28 CCs (20 CM, 6 CR, 1 C2-ung, and 1 CV3), as well as trace element data for Zn, In, Sn, Tl, Pb, and Bi in 16 samples (8 CM, 6 CR, 1 C2-ung, and 1 CV3), that display a range of elemental abundances from case-normative to intensely depleted. We use these data, water content data from literature and Zn isotopes to investigate volatile depletions and to discern between closed and open system heating. Trace element data have been used to construct relative volatility scales among the elements for the CM and CR chondrites. From least volatile to most, the scale in CM chondrites is Pb-Sn-Bi-In-Zn-Tl, and for CR chondrites it is Tl-Zn-Sn-Pb-Bi-In. These observations suggest that heated CM and CR chondrites underwent volatile loss under different conditions to one another and to that of the solar nebula, e.g. differing oxygen fugacities. Furthermore, the most water and volatile depleted samples are highly enriched in the heavy isotopes of Zn. Taken together, these lines of evidence strongly indicate that heated CM and CR chondrites incurred open system heating, stripping them of water and volatiles concomitantly, during post-accretionary shock impact(s).

  20. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    Science.gov (United States)

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  1. The study of water + HCl + ethanol vapor-liquid equilibrium at 78 kPa

    International Nuclear Information System (INIS)

    Ojeda Toro, Juan Carlos; Dobrosz-Gómez, Izabela; Gómez García, Miguel Ángel

    2017-01-01

    Graphical abstract: Comparison between experimental and calculated saturation temperature of water + HCl + ethanol system using two rigorous electrolyte models. - Highlights: • Data for the water + HCl + ethanol VLE is reported at 78 kPa. • The VLE for the system water + HCl + ethanol was determined. • A new set of parameters for extended UNIQUAC model were correlated. • A new set of parameters for LIQUAC model were correlated. - Abstract: In this work, the isobaric vapor-liquid equilibrium (VLE) data obtained for the ternary system water + HCl + ethanol at 78 kPa, using an Ellis still, were studied. Two rigorous electrolyte models (extended UNIQUAC and LIQUAC) were fitted to the experimental data. Ethanol-H + , water-H + , ethanol-Cl − , water-Cl − , and Cl − -H + interaction parameters were determined. Likewise, Henry’s law constants for the volatile electrolyte were defined. A high goodness of fit was obtained for both electrolyte models; however, the extended UNIQUAC one showed better performance (AAD = 0.1326%). Two azeotropes observed in the system were accurately predicted (ethanol + water: x EtOH = 0.86 at 344.6 K; and HCl + water: x HCl = 0.11 at 375.5 K).

  2. Distribution and abundance of large whales in Norwegian and adjacent waters based on ship surveys 1995-2001

    Directory of Open Access Journals (Sweden)

    Nils Øien

    2009-09-01

    Full Text Available The abundances of large whale species are presented for the northeast Atlantic from near-complete survey coverage in 1995 and from multiple partial-area surveys during 1996-2001. These Norwegian shipboard surveys were generally conducted with 2 independent observer platforms, except for single-platform surveys during part of 1995. Tracking procedures implemented for minke whales – Balaenoptera acutorostrata (the target species meant that the surveys had to be conducted in passing mode, and there were therefore only limited opportunities for closing on sightings to determine species identity and school size. Abundance estimates for large whale species (fin – Balaenoptera physalus, humpback – Megaptera novaeangliae and sperm whales – Physeter macrocephalus were obtained by combining sightings from both platforms, and applying standard distance sampling techniques to the smeared and truncated perpendicular distances for each species. Abundance estimates for the 2 survey groupings (1995 and 1996-2001 summarised over comparable areas were: fin whales, 5,034 (cv 0.209 and 6,409 (cv 0.18; humpback whales, 1,059 (cv 0.248 and 1,450 (cv 0.29; and sperm whales, 4,319 (cv 0.199 and 6,207 (cv 0.22. The estimated cv’s are likely underestimates and specifically the combined partial-area survey cv’s do not include additional variance due to possible distributional shifts between years. Inclusion of a new survey stratum north of Iceland (block NVS in the later set of surveys revealed a high additional abundance there of fin whales 3,960 (cv 0.538 and humpback whales 3,246 (cv 0.512. The high humpback whale estimate for this stratum confirms the Icelandic survey findings of a large humpback whale population summering in that area.

  3. Theoretical investigation of the ultrafast dissociation of core-ionized water and uracil molecules immersed in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Stia, C.R.; Fojon, O.A. [Instituto de Fisica Rosario - CONICET-Universidad Nacional de Rosario, Rosario (Argentina); Gaigeot, M.P. [Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, LAMBE, UMR-CNRS 8587, Universite d' Evry-Val-d' Essonne, 91 - Evry (France); Institut Universitaire de France, 75 - Paris (France); Vuilleumier, R. [Departement de chimie, Ecole Normale Superieure, 75 - Paris (France); Herve du Penhoat, M.A.; Politis, M.F. [Institut de Mineralogie et de Physique des Milieux Condenses, IMPMC, UMR-CNRS 7590, Universite Pierre et Marie Curie, 75 - Paris (France)

    2010-10-15

    We present a series of ab initio density functional based calculations of the fragmentation dynamics of core-ionized biomolecules. The computations are performed for pure liquid water, aqueous and isolated Uracil. Core ionization is described by replacing the 1s{sup 2} pseudopotential of one atom of the target molecule (C, N or O) with a pseudopotential for a 1s{sup 1} core-hole state. Our results predict that the dissociation of core-ionized water molecules may be reached during the lifetime of inner-shell vacancy (less than 10 fs), leading to OH bond breakage as a primary outcome. We also observe a second fragmentation channel in which total Coulomb explosion of the ionized water molecule occurs. Fragmentation pathways are found similar for pure water or when the water molecule is in the primary hydration shell of the uracil molecule. In the latter case, the proton may be transferred towards the uracil oxygen atoms. When the core hole is located on the uracil molecule, ultrafast dissociation is only observed in the aqueous environment and for nitrogen-K vacancies, resulting in proton transfers towards the hydrogen-bonded water molecule. (authors)

  4. Experimental evidence for the formation of liquid saline water on Mars.

    Science.gov (United States)

    Fischer, Erik; Martínez, Germán M; Elliott, Harvey M; Rennó, Nilton O

    2014-07-16

    Evidence for deliquescence of perchlorate salts has been discovered in the Martian polar region while possible brine flows have been observed in the equatorial region. This appears to contradict the idea that bulk deliquescence is too slow to occur during the short periods of the Martian diurnal cycle during which conditions are favorable for it. We conduct laboratory experiments to study the formation of liquid brines at Mars environmental conditions. We find that when water vapor is the only source of water, bulk deliquescence of perchlorates is not rapid enough to occur during the short periods of the day during which the temperature is above the salts' eutectic value, and the humidity is above the salts' deliquescence value. However, when the salts are in contact with water ice, liquid brine forms in minutes, indicating that aqueous solutions could form temporarily where salts and ice coexist on the Martian surface and in the shallow subsurface. The formation of brines at Martian conditions was studied experimentallyBulk deliquescence from water vapor is too slow to occur diurnally on MarsBrines form in minutes when salts are placed in direct contact with ice.

  5. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  6. Enrichment and isotope separation of tritium between hydrogen and liquid water in trikle bed reactor

    International Nuclear Information System (INIS)

    Boumahraz, L.

    1986-09-01

    The tritium produced by ternary fission within pent fuel will be in most part as HTO form in aqueous effluents of the reprocessing plant. Its decharge to the environment will prove detrimental and studies have been undertaken to develop techniques to confine it and process it. For confining tritium in small volumes of aqueous effluents, a special study has been achieved using the ELEX process which should be adapted for use in the design of reprocessing plant. This process is a combination of water electrolysis and tritium exchange between hydrogen and liquid water in contre - courant trikle bed reactor in presence of platined hydrophobic catalyst. Experiments carried out have enabled : demonstration of the effectiveness of platined hydrophobic catalyst in isotope exchange and separation reaction of tritium between hydrogen and liquid water. Development of a pretreatment method of aqueous effluents that have to be detriliated to eliminate impurities which would be detrimental to the ELEX process system by accumulating in the electrolyser and being absorbed in the exchange column. To check hydrodynamical functionment for contre-courant flow system water-hydrogen in trikle bed reactor

  7. The management plan of liquid effluent in Korean advanced light water reactor

    International Nuclear Information System (INIS)

    Kim, S. H.; Lim, H. S.; Jeong, D. W.; Jeong, D. Y.

    2001-01-01

    Non-radioactive liquid effluent in Korean Advanced Light Water Reactor is transferred and treated in centralized waste treatment facility after the radioactivity in effluent is checked within power block. The liquid effluent from centralized waste treatment facility will be discharged by way of discharge canal in order to be in the sufficient condition. As a result of investigating the radiation monitoring design in accordance with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring with 20 provisions by Korean Regulatory Authority, each effluent radiation monitoring design satisfies the regulatory guideline. In relation to sampling and analyses, most systems satisfy the regulatory guideline except for some effluents from turbine building. And, though sampling and analyses are performed after radioactivity is monitored at each system in turbine building, these exceptions in turbine building effluents are expected to cause no significant problems because radioactivity is monitored by direct or indirect methods prior to release from turbine building. Integrated monitoring on liquid effluent from the centralized waste water treatment facility is not necessary because radiation monitoring, sampling and analyses on each system within power block are performed, and operational effectiveness compared with cost according to adding the radiation monitoring equipment is too low. So, whether the radiation monitoring in this effluent is reflected on design or not is planned to be determined through discussion with regulatory authority

  8. A thermomechanical model for the fragmentation of a liquid metal droplet cooled by water

    Science.gov (United States)

    Ivochkin, Yu P.; Monastyrskiy, V. P.

    2017-11-01

    A thermo mechanical aspect of the fragmentation of a liquid metal droplet, solidified as it falls into cold water, is considered in the presented model. The formation of a solid phase in the form of continuous, fluid-tight and relatively rigid casting skin results in a pressure decrease inside the droplet due to the difference between liquid and solid metal density. Because of the high compression modulus of the melt, the pressure in the droplet becomes negative when the thickness of the solid skin achieves several microns. The tensile stress in the melt results in the deformation of the casting skin or the melt’s continuity violation in the form of a shrinkage pore. The rupture of the deformed solid crust results in the penetration of steam jets into the liquid part of the drop. Due to the difference in pressure in the surrounding steam and in the droplet, the casting skin is crushed and the melt is blown out. Both scenarios contribute to the hydrodynamic destruction of the droplet. The suggested thermo mechanical model gives a qualitative explanation for experimental data. In the experimental part of the work, droplets of molten Sn were solidified in water. The solidified pieces of the droplets usually include deformed, thin-walled shells and dispersed particles. On a qualitative level the composition and shape of the solid fragments can be explained within the bounds of the suggested thermo mechanical model.

  9. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Science.gov (United States)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  10. Liquid and Frozen Storage of Agouti (Dasyprocta leporina) Semen Extended with UHT Milk, Unpasteurized Coconut Water, and Pasteurized Coconut Water.

    Science.gov (United States)

    Mollineau, W M; Adogwa, A O; Garcia, G W

    2010-09-14

    This study evaluated the effects of semen extension and storage on forward progressive motility % (FPM%) in agouti semen. Three extenders were used; sterilized whole cow's milk (UHT Milk), unpasteurized (CW) and pasteurized coconut water (PCW), and diluted to 50, 100, 150, and 200 × 10(6) spermatozoa/ml. Experiment 1: 200 ejaculates were extended for liquid storage at 5(∘)C and evaluated every day for 5 days to determine FPM% and its rate of deterioration. Experiment 2: 150 ejaculates were extended for storage as frozen pellets in liquid nitrogen at -195(∘)C, thawed at 30(∘) to 70(∘)C for 20 to 50 seconds after 5 days and evaluated for FPM% and its rate of deterioration. Samples treated with UHT milk and storage at concentrations of 100 × 10(6) spermatozoa/ml produced the highest means for FPM% and the slowest rates of deterioration during Experiment 1. During Experiment 2 samples thawed at 30(∘)C for 20 seconds exhibited the highest means for FPM% (12.18 ± 1.33%), 85% rate of deterioration. However, samples were incompletely thawed. This was attributed to the diameter of the frozen pellets which was 1 cm. It was concluded that the liquid storage method was better for short term storage.

  11. Discrepancies between two measurements and two model approaches for liquid water flow in snow

    Science.gov (United States)

    Wever, N.; Schmid, L.; Heilig, A.; Fierz, C. G.; Lehning, M.

    2014-12-01

    Liquid water flow in snowpacks is a complicated process to measure or to simulate in snowpack models, although it is important for assessing, for example, soil moisture variations, streamflow discharge or wet snow avalanche formation. The measurement site Weissfluhjoch (WFJ) is equipped with instruments recording meteorological conditions and snowpack properties, including a snow lysimeter and an upward looking ground penetrating radar (upGPR). The upGRP, among other capabilities, is able to track the progress of the melt water front through the seasonal snowpack at WFJ, whereas the snow lysimeter only records liquid water runoff from the snowpack. The 1 dimensional physics-based snowpack model SNOWPACK has recently been extended with a solver for Richards equation, which provides a demonstrable improvement in simulating snowpack runoff, especially on the hourly time scale, when compared to a simpler bucket-type approach. Here, we compare the two measurement methods and the two snowpack simulations for four snow seasons with respect to the progress of the melt water front through the snowpack and snowpack runoff. We show that in the studied period, snowpack runoff in the melt season starts before the arrival of the melt water front at the bottom of the snowpack as detected by the upGPR. This discrepancy is in the order of several days to 1-2 weeks. The agreement between measured and modeled snowpack runoff is higher, although modeled snowpack runoff is still lagging several days from observed runoff, depending on the used water transport scheme. This demonstrates that the early start of snowpack runoff is likely associated with the existence of preferential flow paths. The modeled progress of the melt water front is faster than observed in the upGPR data. This contributes to a better predicition of the onset of snowpack runoff, but may have consequences for the representation of the internal snowpack in the model. The study highlights the extreme difficulties in

  12. Determination of the H/D abundance ratio in heavy water by means of the in situ pyrolysis of several hydrated compounds

    International Nuclear Information System (INIS)

    Ishimori, Tomitaro; Sakamoto, Masatomi; Hatanaka, Kenji; Kitamura, Hidekazu

    1989-01-01

    The abundance ratio of H and D in heavy water is determined by means of the in situ pyrolysis of several hydrated salts. Salts used for this purpose are CuSO 4 ·5(H,D) 2 O, CaC 2 O 4 ·(H,D) 2 O, BeSO 4 ·4(H,D) 2 O and BaCl 2 ·2(H,D) 2 O, the hydration/dehydration of which is reversible. The weight percentages of TG plateaus corresponding to these intermediates or final products decrease with the increasing abundance ratio of D. Such weight %-values at a given temperature are employed as a measure of enrichment of D 2 O. The mol% D 2 O can be determined within 5-7% σ. The results obtained for the 4 kinds of salts described above are compared

  13. Phase equilibria of liquid (water + butyric acid + oleyl alcohol) ternary system

    International Nuclear Information System (INIS)

    Bilgin, Mehmet

    2006-01-01

    (Liquid + liquid) equilibrium (LLE) data for the ternary system of (water + butyric acid + oleyl alcohol) at T = (298.15, 308.15, and 318.15) K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie lines was confirmed by using Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium data. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. Distribution coefficients and separation factors were evaluated for the immiscibility region. A comparison of the solvent extracting capability was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases for T = (298.15, 308.15, and 318.15) K. It is concluded that oleyl alcohol may serve as an adequate solvent to extract butyric acid from its dilute aqueous solutions

  14. Phase equilibria of liquid (water + butyric acid + oleyl alcohol) ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Bilgin, Mehmet [Istanbul University, Engineering Faculty, Chemical Engineering Department, 34320 Avcilar, Istanbul (Turkey)]. E-mail: mbilgin@istanbul.edu.tr

    2006-12-15

    (Liquid + liquid) equilibrium (LLE) data for the ternary system of (water + butyric acid + oleyl alcohol) at T = (298.15, 308.15, and 318.15) K are reported. Complete phase diagrams were obtained by determining solubility and the tie-line data. The reliability of the experimental tie lines was confirmed by using Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium data. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. Distribution coefficients and separation factors were evaluated for the immiscibility region. A comparison of the solvent extracting capability was made with respect to distribution coefficients, separation factors, and solvent-free selectivity bases for T = (298.15, 308.15, and 318.15) K. It is concluded that oleyl alcohol may serve as an adequate solvent to extract butyric acid from its dilute aqueous solutions.

  15. A novel mechanism for the extraction of metals from water to ionic liquids.

    Science.gov (United States)

    Janssen, Camiel H C; Sánchez, Antonio; Witkamp, Geert-Jan; Kobrak, Mark N

    2013-11-11

    We present a novel mechanism for the extraction of metals from aqueous phases to room-temperature ionic liquids (ILs) by use of a high-temperature salt as an extraction agent. The mechanism capitalizes on the fact that charged metal complexes are soluble in ILs; this allows for extraction of charged complexes rather than the neutral species, which are formed by conventional approaches. The use of a well-chosen extraction agent also suppresses the competing ion-exchange mechanism, thus preventing degradation of the ionic liquid. The approach permits the use of excess extractant to drive the recovery of metals in high yield. This work presents both a thermodynamic framework for understanding the approach and experimental verification of the process in a range of different ILs. The method has great potential value in the recovery of metals, water purification and nuclear materials processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Measurement of capacity coefficient of inclined liquid phase catalytic exchange column for tritiated water processing

    International Nuclear Information System (INIS)

    Yamai, Hideki; Konishi, Satoshi; Yamanishi, Toshihiko; Okuno, Kenji

    1994-01-01

    Liquid phase catalytic exchange (LPCE) is effective method for enrichment and removal of tritium from tritiated water. Capacity coefficients of operating LPCE column that are essential to evaluate column performance were measured. Experiments were performed with short catalyst packed columns and effect of inclination was studied. Method for evaluation of capacity coefficients was established from measurement of isotope concentration of liquid, vapor, gas phases at the two ends of the column. The capacity coefficients were measured under various superficial gas velocities. Feasibility study of helical columns with roughened inner surface was performed with short inclined columns. The column performance was not strongly affected by the inclination. The result indicates technological feasibility of helical LPCE column, that is expected to have operation stability and reduced height

  17. Advantages of liquid fluoride thorium reactor in comparison with light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bahri, Che Nor Aniza Che Zainul, E-mail: anizazainul@gmail.com; Majid, Amran Ab.; Al-Areqi, Wadeeah M. [Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-04-29

    Liquid Fluoride Thorium Reactor (LFTR) is an innovative design for the thermal breeder reactor that has important potential benefits over the traditional reactor design. LFTR is fluoride based liquid fuel, that use the thorium dissolved in salt mixture of lithium fluoride and beryllium fluoride. Therefore, LFTR technology is fundamentally different from the solid fuel technology currently in use. Although the traditional nuclear reactor technology has been proven, it has perceptual problems with safety and nuclear waste products. The aim of this paper is to discuss the potential advantages of LFTR in three aspects such as safety, fuel efficiency and nuclear waste as an alternative energy generator in the future. Comparisons between LFTR and Light Water Reactor (LWR), on general principles of fuel cycle, resource availability, radiotoxicity and nuclear weapon proliferation shall be elaborated.

  18. Geminal Brønsted Acid Ionic Liquids as Catalysts for the Mannich Reaction in Water

    Directory of Open Access Journals (Sweden)

    Leqin He

    2014-05-01

    Full Text Available Quaternary ammonium geminal Brønsted acid ionic liquids (GBAILs based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18 and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 °C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity.

  19. Geminal Brønsted acid ionic liquids as catalysts for the Mannich reaction in water.

    Science.gov (United States)

    He, Leqin; Qin, Shenjun; Chang, Tao; Sun, Yuzhuang; Zhao, Jiquan

    2014-05-15

    Quaternary ammonium geminal Brønsted acid ionic liquids (GBAILs) based on zwitterionic 1,2-bis[N-methyl-N-(3-sulfopropyl)-alkylammonium]ethane (where the carbon number of the alkyl chain is 4, 8, 10, 12, 14, 16, or 18) and p-toluenesulfonic acid monohydrate were synthesized. The catalytic ionic liquids were applied in three-component Mannich reactions with an aldehyde, ketone, and amine at 25 °C in water. The effects of the type and amount of catalyst and reaction time as well as the scope of the reaction were investigated. Results showed that GBAIL-C14 has excellent catalytic activity and fair reusability. The catalytic procedure was simple, and the catalyst could be recycled seven times via a simple separation process without noticeable decreases in catalytic activity.

  20. Scattering data for modelling positron tracks in gaseous and liquid water

    International Nuclear Information System (INIS)

    Blanco, F; Roldán, A M; Krupa, K; García, G; McEachran, R P; Machacek, J R; Buckman, S J; Sullivan, J P; White, R D; Marjanović, S; Petrović, Z Lj; Brunger, M J; Chiari, L; Limão-Vieira, P

    2016-01-01

    We present in this study a self-consistent set of scattering cross sections for positron collisions with water molecules, in the energy range 0.1–10 000 eV, with the prime motivation being to provide data for modelling purposes. The structure of the database is based on a new model potential calculation, including interference terms, which provides differential and integral elastic as well as integral inelastic positron scattering cross sections for water molecules over the whole energy range considered here. Experimental and theoretical data available in the literature have been integrated into the database after a careful analysis of their uncertainties and their self-consistency. These data have been used as input parameters for a step-by-step Monte Carlo simulation procedure, providing valuable information on energy deposition, positron range, and the relative percentages of specific interactions (e.g. positronium formation, direct ionisation, electronic, vibrational and rotational excitations) in gaseous and liquid water. (paper)

  1. Phase transitions on (liquid + liquid) equilibria for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems at T = (563, 573, and 583) K

    International Nuclear Information System (INIS)

    Togo, Masaki; Inamori, Yoshiki; Shimoyama, Yusuke

    2012-01-01

    Highlights: ► Mixtures of (water + 1-methylnaphthalene + light aromatic hydrocarbon) are focused. ► Phase transition pressures on (liquid + liquid) equilibria were measured. ► Effects of aromatic hydrocarbons on phase transition pressure are investigated. ► Phase transition pressures are discussed using dielectric constants of hydrocarbons. - Abstract: Phase transitions for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems are observed at their (liquid + liquid) equilibria at T = (563, 573, and 583) K and (8.6 to 25.0) MPa. The phase transition pressures at T = (563, 573, and 583) K were measured for the five species of light aromatic hydrocarbons, o-, m-, p-xylenes, ethylbenzene, and mesitylene. The measurements of the phase transition pressures were carried out by changing the feed mole fraction of water and 1-methylnaphthalene in water free, respectively. Effects of the feed mole fraction of water on the phase transition pressures are very small. Increasing the feed mole fraction of 1-methylnaphthalene results in decreasing the phase transition pressures at constant temperature. The slopes depending on the feed mole fraction for 1-methylnaphthalene at the phase transition pressures are decreased with increasing temperature for (water + 1-methylnaphthalene + p-xylene), (water + 1-methylnaphthalene + o-xylene), and (water + 1-methylnaphthalene + mesitylene) systems. For xylene isomers, the highest and lowest of the phase transition pressures are obtained in the case of p- and o-xylenes, respectively. The phase transition pressures for ethylbenzene are lower than those in the case of p-xylene. The similar phase transition pressures are given for p-xylene and mesitylene.

  2. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  3. Water-based synthesis of hydrophobic ionic liquids for high-energy electrochemical devices

    International Nuclear Information System (INIS)

    Montanino, Maria; Alessandrini, Fabrizio; Passerini, Stefano; Appetecchi, Giovanni Battista

    2013-01-01

    Highlights: ► Water-based synthesis of ionic liquids with high yield. ► Full recycling of reagents. ► High purity pyrrolidinium-based ionic liquids with exceptional electrochemical stability window. ► Lithium plating from pyrrolidinium-based ionic liquids. -- Abstract: In this work is described an innovative synthesis route for hydrophobic ionic liquids (ILs) composed of N-methyl-N-alkylpyrrolidinium (or piperidinium) or imidazolium or tetralkylammonium cations and (perfluoroalkylsulfonyl)imide, ((C n F 2n+1 SO 2 )(C m F 2m+1 SO 2 )N − ), anions. This synthesis does not require the use of any environmental unfriendly solvent such as acetone, acetonitrile or halogen-containing compounds, which is not welcome in industrial applications. Only water is used as the process solvent throughout the entire process. In addition, the commonly used iodine-containing reagents were replaced by the cheaper, more chemically stable and less toxic bromine-containing compounds. A particular care was devoted to the development of the purification route, which is especially important for ILs to be used in high-energy electrochemical devices such as high voltage supercapacitors and lithium batteries. The effect of the reaction temperature, the time and the stoichiometry in the various steps of the synthesis have been investigated in detail. This novel procedure allowed obtaining ultrapure (>99.9 wt.%), clear, colourless, inodorous ILs with an overall yield above 92 wt.% and moisture content below 1 ppm. NMR measurements were run to confirm the chemical structure whereas elemental analysis and electrochemical tests were performed to check the purity of the synthesized ILs

  4. Ice versus liquid water saturation in simulations of the indian summer monsoon

    Science.gov (United States)

    Glazer, Russell H.; Misra, Vasubandhu

    2018-02-01

    At the same temperature, below 0 °C, the saturation vapor pressure (SVP) over ice is slightly less than the SVP over liquid water. Numerical models use the Clausius-Clapeyron relation to calculate the SVP and relative humidity, but there is not a consistent method for the treatment of saturation above the freezing level where ice and mixed-phase clouds may be present. In the context of current challenges presented by cloud microphysics in climate models, we argue that a better understanding of the impact that this treatment has on saturation-related processes like cloud formation and precipitation, is needed. This study explores the importance of the SVP calculation through model simulations of the Indian summer monsoon (ISM) using the regional spectral model (RSM) at 15 km grid spacing. A combination of seasonal and multiyear simulations is conducted with two saturation parameterizations. In one, the SVP over liquid water is prescribed through the entire atmospheric column (woIce), and in another the SVP over ice is used above the freezing level (wIce). When SVP over ice is prescribed, a thermodynamic drying of the middle and upper troposphere above the freezing level occurs due to increased condensation. In the wIce runs, the model responds to the slight decrease in the saturation condition by increasing, relative to the SVP over liquid water only run, grid-scale condensation of water. Increased grid-scale mean seasonal precipitation is noted across the ISM region in the simulation with SVP over ice prescribed. Modification of the middle and upper troposphere moisture results in a decrease in mean seasonal mid-level cloud amount and an increase in high cloud amount when SVP over ice is prescribed. Multiyear simulations strongly corroborate the qualitative results found in the seasonal simulations regarding the impact of ice versus liquid water SVP on the ISM's mean precipitation and moisture field. The mean seasonal rainfall difference over All India between w

  5. Clean water billing monitoring system using flow liquid meter sensor and SMS gateway

    Science.gov (United States)

    Fahmi, F.; Hizriadi, A.; Khairani, F.; Andayani, U.; Siregar, B.

    2018-03-01

    Public clean water company (PDAM) as a public service is designed and organized to meet the needs of the community. Currently, the number of PDAM subscribers is very big and will continue to grow, but the service and facilities to customers are still done conventionally by visiting the customer’s home to record the last position of the meter. One of the problems of PDAM is the lack of disclosure of PDAM customers’ invoice because it is only done monthly. This, of course, makes PDAM customers difficult to remember the date of payment of water account. Therefore it is difficult to maintain the efficiency. The purpose of this research is to facilitate customers of PDAM water users to know the details of water usage and the time of payment of water bills easily. It also facilitates customers in knowing information related to the form of water discharge data used, payment rates, and time grace payments using SMS Gateway. In this study, Flow Liquid Meter Sensor was used for data retrieval of water flowing in the piping system. Sensors used to require the help of Hall Effect sensor that serves to measure the speed of water discharge and placed on the pipe that has the same diameter size with the sensor diameter. The sensor will take the data from the rate of water discharge it passes; this data is the number of turns of the mill on the sensor. The results of the tests show that the built system works well in helping customers know in detail the amount of water usage in a month and the bill to be paid

  6. Mechanism for migration of light nonaqueous phase liquids beneath the water table

    International Nuclear Information System (INIS)

    Krueger, J.P.; Portman, M.E.

    1991-01-01

    This paper reports on an interesting transport mechanism may account for the presence of light nonaqueous phase liquid (LNAPL) found beneath the water table in fine-grained aquifers. During the course of two separate site investigations related to suspected releases from underground petroleum storage tanks, LNAPL was found 7 to 10 feet below the regional water table. In both cases, the petroleum was present within a sand seam which was encompassed within a deposit of finer-grained sediments. The presence of LNAPL below the water table is uncommon; typically, LNAPL is found floating on the water table or on the capillary fringe. The occurrence of LNAPL below the water table could have resulted from fluctuating regional water levels which allowed the petroleum to enter the sand when the water table was a lower stage or, alternately, could have occurred as a result of the petroleum depressing the water table beneath the level of the sand. In fine-grained soils where the lateral migration rate is low, the infiltrating LNAPL may depress the water table to significant depth. The LNAPL may float on the phreatic surface with the bulk of its volume beneath the phreatic surface. Once present in the sand and surrounded by water-saturated fine-grained sediments, capillary forces prevent the free movement of the petroleum back across the boundary from the coarse-grained sediments to the fine-grained sediments. Tapping these deposits with a coarser grained filter packed monitoring well releases the LNAPL, which may accumulate to considerable thickness in the monitoring well

  7. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Science.gov (United States)

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-01-01

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007

  8. {sup 222}Rn determination in water and brine samples using liquid scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: oliveiratco2010@gmail.com [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Monteiro, Roberto P.G.; Moreira, Rubens M., E-mail: rpgm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for {sup 222}Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. {sup 241}Am, {sup 90}Sr and {sup 226}Ra standard solutions were used for LSC calibration. {sup 214}Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for {sup 222}Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l{sup -1} were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l{sup -1} were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  9. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2014-11-01

    Full Text Available The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS. For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0 and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  10. Analysis of trace dicyandiamide in stream water using solid phase extraction and liquid chromatography UV spectrometry.

    Science.gov (United States)

    Qiu, Huidong; Sun, Dongdi; Gunatilake, Sameera R; She, Jinyan; Mlsna, Todd E

    2015-09-01

    An improved method for trace level quantification of dicyandiamide in stream water has been developed. This method includes sample pretreatment using solid phase extraction. The extraction procedure (including loading, washing, and eluting) used a flow rate of 1.0mL/min, and dicyandiamide was eluted with 20mL of a methanol/acetonitrile mixture (V/V=2:3), followed by pre-concentration using nitrogen evaporation and analysis with high performance liquid chromatography-ultraviolet spectroscopy (HPLC-UV). Sample extraction was carried out using a Waters Sep-Pak AC-2 Cartridge (with activated carbon). Separation was achieved on a ZIC(®)-Hydrophilic Interaction Liquid Chromatography (ZIC-HILIC) (50mm×2.1mm, 3.5μm) chromatography column and quantification was accomplished based on UV absorbance. A reliable linear relationship was obtained for the calibration curve using standard solutions (R(2)>0.999). Recoveries for dicyandiamide ranged from 84.6% to 96.8%, and the relative standard deviations (RSDs, n=3) were below 6.1% with a detection limit of 5.0ng/mL for stream water samples. Copyright © 2015. Published by Elsevier B.V.

  11. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  12. Interactions between drops of a molten aluminum-lithium alloy and liquid water

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1994-01-01

    In certain hypothesized nuclear reactor accident scenarios, 1- to 10-g drops of molten aluminum-lithium alloys might contact liquid water. Because vigorous steam explosions have occurred when large amounts of molten aluminum-lithium alloys were released into water or other coolants, it becomes important to know whether there will be explosions if smaller amounts of these molten alloys similarly come into contact with water. Therefore, the authors released drops of molten Al-3.1 wt pct Li alloy into deionized water at room temperature. The experiments were performed at local atmospheric pressure (0.085 MPa) without pressure transient triggers applied to the water. The absence of these triggers allowed them to (a) investigate whether spontaneous initiation of steam explosions would occur with these drops and (b) study the alloy-water chemical reactions. The drop sizes and melt temperatures were chosen to simulate melt globules that might form during the hypothesized melting of the aluminum-lithium alloy components

  13. Chemometric exploration of the abundance of trace metals and ions in desalinated and bottled drinking water in Kuwait.

    Science.gov (United States)

    Al-Mudhaf, Humood F; Astel, Aleksander M; Al-Hayan, Mohammad N; Abu-Shady, Abdel-Sattar I

    2014-01-01

    Chemometric exploration of desalinated and bottled water in Kuwait was employed to interpret the spatial variation in the physicochemical parameters. The data set consisted of the concentrations of principal macronutrient elements, ions, trace elements, temperature, pH, electrolytic conductivity, and total dissolved solids measured in indoor, outdoor, and bottled water samples. Quantitative assessment of the Cd, Hg, and Sb contents revealed rare cases of elevated concentrations; however, these concentrations were always below international health agency standards. Two general clusters of similar parameters were discovered in the variables mode and were associated with "natural" water characteristics or "conditions" of the pipeline system. We found that an increase in temperature facilitates the leaching of metals from the metallic equipment in the system. Spatial variation in the water quality was discovered, which indicates that residential areas fed from the Az-Zoor plant are supplied with water that contains lower concentrations of Ca, Cr, Mg, Mo, Ni, Na, TDS, and SO4 (2-) than the desalinated water produced and fed from the Doha plant. However, on the basis of the aluminum concentration in the water, cement mortar lining is assumed to be prevalent in the pipeline systems of the Mubarak Al-Kabeer, Ahmadi, Umm Al-Haiman, and Sorra areas.

  14. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent.

    Science.gov (United States)

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia

    2017-11-17

    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Directory of Open Access Journals (Sweden)

    L. Bernet

    2017-11-01

    Full Text Available Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW, all performed at the aerological station (MeteoSwiss in Payerne (Switzerland. Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  16. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Science.gov (United States)

    Bernet, Leonie; Navas-Guzmán, Francisco; Kämpfer, Niklaus

    2017-11-01

    Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer) to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW), all performed at the aerological station (MeteoSwiss) in Payerne (Switzerland). Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler) radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  17. Study of Aerosol Liquid Water Content based on Hygroscopicity Measurements at High Relative Humidity in the North China Plain

    Science.gov (United States)

    Bian, Y.; Zhao, C.

    2013-12-01

    Aerosol has significant effects on direct/indirect climate forcing, visibility, tropospheric chemistry and human health. Water can represent an extensive proportion of the mass of aerosol particles, and can also serve as a medium for aqueous-phase reactions in such particulate matter. In this study, a new method is proposed to estimate the aerosol liquid water content at high relative humidity, based on aerosol hygroscopic growth factors, particle number size distribution and relative humidity measured during the Haze in China (HaChi) campaign of July-August, 2009. The aerosol liquid water content estimated by this method is compared to the results calculated by a thermodynamic equilibrium model (ISORROPIA II). The calculation results from these two methods agree well at high relative humidity above 60% with the correlation coefficient of 0.9658. At relative humidity lower than 60%, the thermodynamic equilibrium model underestimates the aerosol liquid water content. The discrepancy is mainly caused by the ISORROPIA II model, which considers only limited chemical species. The mean and maximum value of aerosol liquid water content during July-August, 2009 in the North China Plain reached 1.69×10^{-4}g/m^3 and 9.71×10^{-4}g/m^3, respectively. Aerosol liquid water content is highly related to the relative humidity. There exists a distinct diurnal variation of the aerosol liquid water content, with lower values during daytime and higher ones during night time. The contribution to the aerosol liquid water content from the accumulation mode is dominating among all the aerosol particle modes.

  18. Empirical Relations for Optical Attenuation Prediction from Liquid Water Content of Fog

    Directory of Open Access Journals (Sweden)

    M. S. Khan

    2012-09-01

    Full Text Available Simultaneous measurements of the liquid water content (LWC and optical attenuation have been analyzed to predict optical attenuation caused by fog particles. Attenuation has been measured at two different wavelengths, 830 nm and 1550 nm, across co-located links. Five months measured data have been processed to assess power-law empirical models, which estimate optical attenuation from the LWC. The proposed models are compared with other published models and are demonstrated to perform sufficiently well to predict optical attenuation if the LWC values are available.

  19. Reaction of water vapour with a clean liquid uranium surface. Revised 1

    International Nuclear Information System (INIS)

    McLean, W. II; Siekhaus, W.

    1986-01-01

    To study the reaction of water vapour with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X/sup s//sub O/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X/sup b//sub O/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 11 refs., 5 figs

  20. Geant4-DNA simulation of electron slowing-down spectra in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170, Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Kyriakou, I. [Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina (Greece); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2017-04-15

    This work presents the simulation of monoenergetic electron slowing-down spectra in liquid water by the Geant4-DNA extension of the Geant4 Monte Carlo toolkit (release 10.2p01). These spectra are simulated for several incident energies using the most recent Geant4-DNA physics models, and they are compared to literature data. The influence of Auger electron production is discussed. For the first time, a dedicated Geant4-DNA example allowing such simulations is described and is provided to Geant4 users, allowing further verification of Geant4-DNA track structure simulation capabilities.

  1. Electrochemical assessment of water|ionic liquid biphasic systems towards cesium extraction from nuclear waste

    International Nuclear Information System (INIS)

    Stockmann, T. Jane; Zhang, Jing; Montgomery, Anne-Marie; Ding, Zhifeng

    2014-01-01

    Highlights: • Electroanalytical chemistry was employed to assess cesium ion extraction in biphasic systems. • Water|ionic liquid systems are much more efficient than traditional water|organic ones. • The metal ion to ligand stoichiometry and overall complexation constant were determined. • The stoichiometry was confirmed by mass spectrometry. • The ligand CMPO used in TRUEX processes was found to be effective for the FIT. - Abstract: A room temperature ionic liquid (IL) composed of a quaternary alkylphosphonium (trihexyltetradecylphosphonium, P 66614 + ) and tetrakis(pentafluorophenyl)borate anion (TB − ) was employed within a water|P 66614 TB (w|P 66614 TB or w|IL) biphasic system to evaluate cesium ion extraction in comparison to that with a traditional water|organic solvent (w|o) combination. 137 Cs is a major contributor to the radioactivity of spent nuclear fuel as it leaves the reactor, and its extraction efficiency is therefore of considerable importance. The extraction was facilitated by the ligand octyl(phenyl)-N,N′-diisobutylcarbamoylphosphine oxide (CMPO) used in TRans-Uranium EXtraction processes and investigated through well established liquid|liquid electrochemistry. This study gave access to the metal ion to ligand (1:n) stoichiometry and overall complexation constant, β, of the interfacial complexation reaction which were determined to be 1:3 and 1.6 × 10 11 at the w|P 66614 TB interface while the study at w|o elicited an n equal to 1 with β equal to 86.5. Through a straightforward relationship, these complexation constant values were converted to distribution coefficients, δ α , with the ligand concentrations studied for comparison to other studies present in the literature; the w|o and w|IL systems gave δ α of 2 and 8.2 × 10 7 , respectively, indicating a higher overall extraction efficiency for the latter. For the w|o system, the metal ion-ligand stoichiometries were confirmed through isotopic distribution analysis of mass

  2. Enhancing efficiency of using water due to explosive breakup of liquid drop

    Directory of Open Access Journals (Sweden)

    Borisova Anastasia G.

    2017-01-01

    Full Text Available Using high-speed video recording, the experiments were performed to research quantitative characteristics of explosive breakup phenomenon of 5–15 μl water droplets containing 2×2×1 mm and 2×2×2 mm solid inclusions, when heated in a tube furnace at temperatures of 1070–1370 K. Experimental results report number and size of the droplets detached during explosive breakup. We show that the fragmentation of liquid layer covering solid particles facilitates the increase the evaporation surface area 15-fold versus the initial surface area of a drop.

  3. Abundance of Pathogenic Escherichia coli Virulence-Associated Genes in Well and Borehole Water Used for Domestic Purposes in a Peri-Urban Community of South Africa

    Directory of Open Access Journals (Sweden)

    Akebe Luther King Abia

    2017-03-01

    Full Text Available In the absence of pipe-borne water, many people in Africa, especially in rural communities, depend on alternative water sources such as wells, boreholes and rivers for household and personal hygiene. Poor maintenance and nearby pit latrines, however, lead to microbial pollution of these sources. We evaluated the abundance of Escherichia coli and the prevalence of pathogenic E. coli virulence genes in water from wells, boreholes and a river in a South African peri-urban community. Monthly samples were collected between August 2015 and November 2016. In all, 144 water samples were analysed for E. coli using the Colilert 18 system. Virulence genes (eagg, eaeA, stx1, stx2, flichH7, ST, ipaH, ibeA were investigated using real-time polymerase chain reaction. Mean E. coli counts ranged between 0 and 443.1 Most Probable Number (MPN/100 mL of water sample. Overall, 99.3% of samples were positive for at least one virulence gene studied, with flicH7 being the most detected gene (81/140; 57.6% and the stx2 gene the least detected gene (8/140; 5.7%. Both intestinal and extraintestinal pathogenic E. coli genes were detected. The detection of virulence genes in these water sources suggests the presence of potentially pathogenic E. coli strains and is a public health concern.

  4. Shockingly low water abundances in Herschel/PACS observations of low-mass protostars in Perseus

    DEFF Research Database (Denmark)

    Karska, A.; Kristensen, L. E.; Dishoeck, E. F. van

    2014-01-01

    Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low......-mass young stellar objects in order to characterize shocks and the possible role of ultraviolet radiation in the immediate protostellar environment. Herschel/PACS spectral maps of 22 objects in the Perseus molecular cloud were obtained as part of the `William Herschel Line Legacy' survey. Line emission from......$_\\mathrm{2}$O in the models since the excitation is well-reproduced. Illumination of the shocked material by ultraviolet photons produced either in the star-disk system or, more locally, in the shock, would decrease the H$_\\mathrm{2}$O abundances and reconcile the models with observations. Detections of hot...

  5. Emergence of Algal Blooms: The Effects of Short-Term Variability in Water Quality on Phytoplankton Abundance, Diversity, and Community Composition in a Tidal Estuary

    Directory of Open Access Journals (Sweden)

    Todd A. Egerton

    2014-01-01

    Full Text Available Algal blooms are dynamic phenomena, often attributed to environmental parameters that vary on short timescales (e.g., hours to days. Phytoplankton monitoring programs are largely designed to examine long-term trends and interannual variability. In order to better understand and evaluate the relationships between water quality variables and the genesis of algal blooms, daily samples were collected over a 34 day period in the eutrophic Lafayette River, a tidal tributary within Chesapeake Bay’s estuarine complex, during spring 2006. During this period two distinct algal blooms occurred; the first was a cryptomonad bloom and this was followed by a bloom of the mixotrophic dinoflagellate, Gymnodinium instriatum. Chlorophyll a, nutrient concentrations, and physical and chemical parameters were measured daily along with phytoplankton abundance and community composition. While 65 phytoplankton species from eight major taxonomic groups were identified in samples and total micro- and nano-phytoplankton cell densities ranged from 5.8 × 106 to 7.8 × 107 cells L−1, during blooms, cryptomonads and G. instriatum were 91.6% and 99.0%, respectively, of the total phytoplankton biomass during blooms. The cryptomonad bloom developed following a period of rainfall and concomitant increases in inorganic nitrogen concentrations. Nitrate, nitrite and ammonium concentrations 0 to 5 days prior were positively lag-correlated with cryptomonad abundance. In contrast, the G. insriatum bloom developed during periods of low dissolved nitrogen concentrations and their abundance was negatively correlated with inorganic nitrogen concentrations.

  6. At the forefront: evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations

    Science.gov (United States)

    Klobucar, Stephen L.; Rodgers, Torrey W.; Budy, Phaedra

    2017-01-01

    Environmental DNA (eDNA) sampling has proven to be a valuable tool for detecting species in aquatic ecosystems. Within this rapidly evolving field, a promising application is the ability to obtain quantitative estimates of relative species abundance based on eDNA concentration rather than traditionally labor-intensive methods. We investigated the relationship between eDNA concentration and Arctic char (Salvelinus alpinus) abundance in five well-studied natural lakes; additionally, we examined the effects of different temporal (e.g., season) and spatial (e.g., depth) scales on eDNA concentration. Concentrations of eDNA were linearly correlated with char population estimates ( = 0.78) and exponentially correlated with char densities ( = 0.96 by area; 0.82 by volume). Across lakes, eDNA concentrations were greater and more homogeneous in the water column during mixis; however, when stratified, eDNA concentrations were greater in the hypolimnion. Overall, our findings demonstrate that eDNA techniques can produce effective estimates of relative fish abundance in natural lakes. These findings can guide future studies to improve and expand eDNA methods while informing research and management using rapid and minimally invasive sampling.

  7. Preconcentration procedure using vortex-assisted liquid-liquid microextraction for the fast determination of trace levels of thorium in water samples

    International Nuclear Information System (INIS)

    Ehsan Zolfonoun; Maryam Salahinejad

    2013-01-01

    A new simple and rapid vortex-assisted liquid-liquid microextraction method was applied for the determination of thorium in water samples. In this method, chloroform used as extraction solvent was directly injected into the water sample solution. The extraction solvent was dispersed into the aqueous phase under vigorously shaking with the vortex. After centrifuging, the fine droplets of extractant phase were settled to the bottom of the conical-bottom centrifuge tube. The effect of different experimental parameters on the performance of the method were studied and discussed. Under the optimum conditions, the detection limit for Th(IV) was 7.5 ng mL -1 . The precision of the method, evaluated as the relative standard deviation obtained by analyzing of 10 replicates, was 2.8 %. The practical applicability of the developed method was examined using natural water and monazite sand samples. (author)

  8. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  9. Dentin wear after simulated toothbrushing with water, a liquid dentifrice or a standard toothpaste.

    Science.gov (United States)

    Jang, Youngjune; Ihm, Jung-joon; Baik, Su-jin; Yoo, Kyung-jin; Jang, Da-hyun; Roh, Byoung-duck; Seo, Deog-gyu

    2015-12-01

    To investigate the influence of dentifrices with and without abrasives on the wear and surface topography of human dentin following simulated toothbrushing in vitro. 24 dentin specimens were prepared and randomly allocated to a liquid dentifrice (Garglin Gum-Guard), conventional dentifrice (333 Clinic Total Care), and control (distilled water) groups. Specimens were subjected to simulated toothbrushing of 50,000 repeated strokes under a 150 g-load. The dentin surface was profiled in each specimen using a profilometer before and after toothbrushing. The mean surface roughness (Ra) of the specimens was calculated and compared by one-way ANOVA and Tukey's post-hoc test (α = 0.05). The dentin surfaces were further examined by scanning electron microscopy (SEM). The Ra values were similar between the liquid dentifrice and control groups (P > 0.05), and was significantly higher in the conventional dentifrice group (P < 0.001). On SEM examination, patent dentin tubules were observed in the conventional dentifrice and liquid dentifrice groups, but were not observed in the control group.

  10. Determination of chlorobenzenes in textiles by pressurized hot water extraction followed by vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lu, Yang; Zhu, Yan

    2013-12-06

    A method for quantitative determination of chlorobenzenes in textiles is developed, using pressurized hot water extraction (PHWE), vortex-assisted liquid-liquid microextraction (VALLME) and gas chromatography-mass spectrometry (GC-MS). VALLME serves as a trapping step after PHWE. The extraction conditions are investigated, as well as the quantitative features such as linearity, limits of detection (LODs), limits of quantification (LOQs), repeatabilities and reproducibilities between days. LOQs of 0.018-0.032mg/kg were achieved. The present method provides good repeatabilities (RSDtextiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms.

    Science.gov (United States)

    Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb

    2013-11-01

    Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.

  12. Infrared and Raman Spectroscopy of Liquid Water through "First-Principles" Many-Body Molecular Dynamics.

    Science.gov (United States)

    Medders, Gregory R; Paesani, Francesco

    2015-03-10

    Vibrational spectroscopy is a powerful technique to probe the structure and dynamics of water. However, deriving an unambiguous molecular-level interpretation of the experimental spectral features remains a challenge due to the complexity of the underlying hydrogen-bonding network. In this contribution, we present an integrated theoretical and computational framework (named many-body molecular dynamics or MB-MD) that, by systematically removing uncertainties associated with existing approaches, enables a rigorous modeling of vibrational spectra of water from quantum dynamical simulations. Specifically, we extend approaches used to model the many-body expansion of interaction energies to develop many-body representations of the dipole moment and polarizability of water. The combination of these "first-principles" representations with centroid molecular dynamics simulations enables the simulation of infrared and Raman spectra of liquid water under ambient conditions that, without relying on any ad hoc parameters, are in good agreement with the corresponding experimental results. Importantly, since the many-body energy, dipole, and polarizability surfaces employed in the simulations are derived independently from accurate fits to correlated electronic structure data, MB-MD allows for a systematic analysis of the calculated spectra in terms of both electronic and dynamical contributions. The present analysis suggests that, while MB-MD correctly reproduces both the shifts and the shapes of the main spectroscopic features, an improved description of quantum dynamical effects possibly combined with a dissociable water potential may be necessary for a quantitative representation of the OH stretch band.

  13. The Effect of Community-Based Soil and Water Conservation Practices on Abundance and Diversity of Soil Macroinvertebrates in the Northern Highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Mengistu Welemariam

    2018-04-01

    Full Text Available Soil and water conservation (SWC practices in the northern highlands of Ethiopia have important implications for land restoration and biodiversity recovery. The present study determined soil macroinvertebrate (SMI abundance and diversity in response to spatial conditions i.e., generated by different conservation practices, soil depth, and temporal seasonality with the wet and dry season. The SWC practices considered were exclosure + terrace, exclosure alone, terraces, and non-conserved grazing lands. Each SWC measure was selected in three sites that were considered as replications due to low heterogeneity in terms of human and livestock disturbances and biophysical factors. Soil macroinvertebrates were collected using a monolith according to tropical soil biology and fertility (TSBF method. The highest density (55% of SMI was found in exclosures followed by terraces 26%. Non-conserved communal grazing lands account for only 19% of the total. Shannon diversity index was significantly (P < 0.05 higher (1.21 in the exclosures supported with terraces and the lowest (0.9 was observed in the non-conserved communal grazing lands. Diversity was also significantly (P < 0.05 higher (1.26 in wet than dry season (0.70. The highest (41% Sorensen similarity index among SMI was found between exclosures with terraces and exclosures alone during the wet season. The lowest (20% Sorensen similarity index was found between terraces alone and exclosures with terraces in dry season. Soil macroinvertebrate abundance was higher in upper (0–10 cm than lower (10–20 and 20–30 cm soil depth. Soil macroinvertebrate abundance was positively and strongly correlated with soil moisture (R2 = 0.85 and soil organic carbon stock (R2 = 0.95. However, it was negatively (R2 = −0.71 correlated with bulk density. Generally, the abundance and diversity of SMI increased as exclosures and communal grazing lands are supported with terraces.

  14. Study of a system for tritium analysis in water by electrolytic enrichment and liquid scintillation

    International Nuclear Information System (INIS)

    Pane, L.

    1979-01-01

    A system for the measurement of the low-level tritium concentrations in water samples has been experimentally studied. The enrichment of the samples is performed through electrolysis in twenty cells connected in series, and the counting is made in a liquid scintillation counter. Several parameters that could affect the accuracy of the results are analysed and the optimization of the system is discussed. For a sample volume reduction from 1000 to 15ml, the recovery of tritium, during electrolysis is of 63% and the enrichment factor is about 40. The lowest detection limit of the system is 1.0+-0.5 U.T. Its analytical capacity is of 30 samples a month. The results obtained in the determination of 3 H concentration in a series of samples from rain, surface and underground waters can be considered satisfactory. (Author) [pt

  15. Fate of major radionuclides in the liquid wastes released to coastal waters

    International Nuclear Information System (INIS)

    Bhat, I.S.; Verma, P.C.; Iyer, R.S.; Chandramouli, S.

    1980-01-01

    131 I, 134 Cs, 137 Cs and 60 Co have been reported as the major radionuclides in the low level liquid wastes released to coastal waters from atomic power stations. Silt absorption and desorption of the radionuclides were investigated. The exchangeability of the silt absorbed radionuclides and its dependence on particle size were also studied. More than 80% instantaneous absorpt;.on of 60 Co by suspended silt and less than 5% exchangeability of absorbed 60 Co were observed. Biological uptake of the radionuclides by the marine organisms present in sea waters was studied to evaluate radiation exposure pathways. A few benthic and crustacean organisms wnich are consumed by coastal population as fresh sea food, were observed to concentrate the radionuclides to a greater extent than other organisms. (H.K.)

  16. Trends in Particle-phase Liquid Water Measurements During the Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Nguyen, T. V.; Petters, M. D.; Carlton, A. G.; Suda, S.

    2013-12-01

    Particle-phase liquid water (H2Optcl) contributes to total aerosol mass concentrations. Previous studies established links between inorganic species, particle hygroscopicity, ambient relative humidity, and condensed phase liquid water. These relationships are also included in thermodynamic modules of atmospheric chemistry models. Conversely, relationships between H2Optcl and organic species are poorly understood, and there are few field measurements linking the two. In this study, we present in situ measurements of H2Optcl using a newly developed technique - the semi-volatile differential mobility analysis (SVDMA). Measurements were conducted June 1 - July 15, 2013, during the Southern Oxidant and Aerosol Study (SOAS) in the southeast U.S., a biogenically dominated and photochemically active environment impacted by anthropogenic pollution and known to contain high concentrations of organic aerosol mass. The SVDMA measures volume distributions of ambient atmospheric aerosols in three states: unperturbed, dried, and dried then re-humidified. Unperturbed measurements characterize the aerosol distribution at ambient conditions. For dry spectra, the sample is routed through a cold trap (ΔT = -30K) upstream of the DMA inlet. The total volume of water and semi-volatile organic compounds (SVOCs) lost during drying is quantified by differencing dry and unperturbed volumes from the integrated size spectra, while SVOC volumes are quantified by re-humidifying the sample and referencing to the unperturbed state. Results indicate that liquid water is an important contributor to ambient aerosol volume in the southeast U.S. during the early morning period when the relative humidity differential is largest. Measured H2Optcl volumes can be characterized by hygroscopicity parameter κ ranging from 0.2 to 0.3, which is consistent with a mix of hygroscopic organic and inorganic compounds. Both H2Optcl and κ peak in the early morning when ambient relative humidity is decreasing

  17. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  18. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Y; Cowan, MG; Masuda, M; Bhowmick, I; Shores, MP; Gin, DL; Noble, RD

    2014-01-01

    A metal-containing ionic liquid (MCIL) has been prepared in which the [CoII(salicylate)(2)](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  19. A cobalt(II) bis(salicylate)-based ionic liquid that shows thermoresponsive and selective water coordination.

    Science.gov (United States)

    Kohno, Yuki; Cowan, Matthew G; Masuda, Miyuki; Bhowmick, Indrani; Shores, Matthew P; Gin, Douglas L; Noble, Richard D

    2014-06-25

    A metal-containing ionic liquid (MCIL) has been prepared in which the [Co(II)(salicylate)2](2-) anion is able to selectively coordinate two water molecules with a visible colour change, even in the presence of alcohols. Upon moderate heating or placement in vacuo, the hydrated MCIL undergoes reversible thermochromism by releasing the bound water molecules.

  20. CGR MeV program for water and liquid sludges treatment with high-energy electron beams. Pt. 1

    International Nuclear Information System (INIS)

    Gallien, C.L.; Icre, P.; Levaillant, C.; Montiel, A.

    1976-01-01

    Research on the application of high-energy electron beams treatment to water and liquid sludges is described. Topics discussed include limitations of conventional methods of water treatment, dosimetry, biological assays with Pleurodeles waltlii, radioactivity measurement, chemical and bacteriological analysis. (author)

  1. Dimerization and DNA-binding of ASR1, a small hydrophilic protein abundant in plant tissues suffering from water loss

    International Nuclear Information System (INIS)

    Maskin, Laura; Frankel, Nicolas; Gudesblat, Gustavo; Demergasso, Maria J.; Pietrasanta, Lia I.; Iusem, Norberto D.

    2007-01-01

    The Asr gene family is present in Spermatophyta. Its members are generally activated under water stress. We present evidence that tomato ASR1, one of the proteins of the family, accumulates in seed during late stages of embryogenesis, a physiological process characterized by water loss. In vitro, electrophoretic assays show a homo-dimeric structure for ASR1 and highlight strong non-covalent interactions between monomers prone to self-assemble. Direct visualization of single molecules by atomic force microscopy (AFM) confirms that ASR1 forms homodimers and that uncovers both monomers and dimers bind double stranded DNA

  2. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Nhan Chuong [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure

  3. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. ...... a maximum of the bubble nucleation curve in the ϱ–T plane at around 40 °C. The new experimental data represent valuable benchmarks to evaluate and further improve theoretical models describing the p–V–T properties of metastable water in the low-temperature region......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...... used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophase liquid inclusions. Water densities were calculated based on prograde homogenisation temperatures using the IAPWS-95 formulation. We found retrograde liquid-vapour homogenisation temperatures in excellent...

  4. Early Mars was wet but not warm: Erosion, fluvial features, liquid water habitats, and life below freezing

    Science.gov (United States)

    Mckay, C. P.; Davis, W. L.

    1993-01-01

    There is considerable evidence that Mars had liquid water early in its history and possibly at recurrent interval. It has generally been assumed that this implied that the climate was warmer as a result of a thicker CO2 atmosphere than at the present. However, recent models suggest that Mars may have had a thick atmosphere but may not have experienced mean annual temperatures above freezing. In this paper we report on models of liquid water formation and maintenance under temperatures well below freezing. Our studies are based on work in the north and south polar regions of Earth. Our results suggest that early Mars did have a thick atmosphere but precipitation and hence erosion was rare. Transient liquid water, formed under temperature extremes and maintained under thick ice covers, could account for the observed fluvial features. The main difference between the present climate and the early climate was that the total surface pressure was well above the triple point of water.

  5. Mercury Concentration Reduction In Waste Water By Using Liquid Surfactant Membrane Technique

    International Nuclear Information System (INIS)

    Prayitno; Sardjono, Joko

    2000-01-01

    The objective of this research is ti know effectiveness of liquid surfactant membrane in diminishing mercury found in waste water. This process can be regarded as transferring process of solved mercury from the external phase functioning as a moving phase to continue to the membrane internal one. The existence of the convection rotation results in the change of the surface pressure on the whole interface parts, so the solved mercury disperses on every interface part. Because of this rotation, the solved mercury will fulfil every space with particles from dispersion phase in accordance with its volume. Therefore, the change of the surface pressure on the whole interface parts can be kept stable to adsorb mercury. The mercury adsorbed in the internal phase moves to dispersed particles through molecule diffusion process. The liquid surfactant membrane technique in which the membrane phase is realized into emulsion contains os kerosene as solvent, sorbitan monoleat (span-80) 5 % (v/v) as surfactant, threbuthyl phosphate (TBP) 10 % (v/v) as extractant, and solved mercury as the internal phase. All of those things are mixed and stirred with 8000 rpm speed for 20 minutes. After the stability of emulsion is formed, the solved mercury is extracted by applying extraction process. The effective condition required to achieve mercury ion recovery utilizing this technique is obtained through extraction and re-extraction process. This process was conducted in 30 minutes with membrane and mercury in scale 1 : 1 on 100 ppm concentration. The results of the processes was 99,6 % efficiency. This high efficiency shows that the liquid surfactant membrane technique is very effective to reduce waste water contamined by mercury

  6. Accounting for subgroup structure in line-transect abundance estimates of false killer whales (Pseudorca crassidens) in Hawaiian waters.

    Science.gov (United States)

    Bradford, Amanda L; Forney, Karin A; Oleson, Erin M; Barlow, Jay

    2014-01-01

    For biological populations that form aggregations (or clusters) of individuals, cluster size is an important parameter in line-transect abundance estimation and should be accurately measured. Cluster size in cetaceans has traditionally been represented as the total number of individuals in a group, but group size may be underestimated if group members are spatially diffuse. Groups of false killer whales (Pseudorca crassidens) can comprise numerous subgroups that are dispersed over tens of kilometers, leading to a spatial mismatch between a detected group and the theoretical framework of line-transect analysis. Three stocks of false killer whales are found within the U.S. Exclusive Economic Zone of the Hawaiian Islands (Hawaiian EEZ): an insular main Hawaiian Islands stock, a pelagic stock, and a Northwestern Hawaiian Islands (NWHI) stock. A ship-based line-transect survey of the Hawaiian EEZ was conducted in the summer and fall of 2010, resulting in six systematic-effort visual sightings of pelagic (n = 5) and NWHI (n = 1) false killer whale groups. The maximum number and spatial extent of subgroups per sighting was 18 subgroups and 35 km, respectively. These sightings were combined with data from similar previous surveys and analyzed within the conventional line-transect estimation framework. The detection function, mean cluster size, and encounter rate were estimated separately to appropriately incorporate data collected using different methods. Unlike previous line-transect analyses of cetaceans, subgroups were treated as the analytical cluster instead of groups because subgroups better conform to the specifications of line-transect theory. Bootstrap values (n = 5,000) of the line-transect parameters were randomly combined to estimate the variance of stock-specific abundance estimates. Hawai'i pelagic and NWHI false killer whales were estimated to number 1,552 (CV = 0.66; 95% CI = 479-5,030) and 552 (CV = 1.09; 95% CI = 97

  7. Accounting for subgroup structure in line-transect abundance estimates of false killer whales (Pseudorca crassidens in Hawaiian waters.

    Directory of Open Access Journals (Sweden)

    Amanda L Bradford

    Full Text Available For biological populations that form aggregations (or clusters of individuals, cluster size is an important parameter in line-transect abundance estimation and should be accurately measured. Cluster size in cetaceans has traditionally been represented as the total number of individuals in a group, but group size may be underestimated if group members are spatially diffuse. Groups of false killer whales (Pseudorca crassidens can comprise numerous subgroups that are dispersed over tens of kilometers, leading to a spatial mismatch between a detected group and the theoretical framework of line-transect analysis. Three stocks of false killer whales are found within the U.S. Exclusive Economic Zone of the Hawaiian Islands (Hawaiian EEZ: an insular main Hawaiian Islands stock, a pelagic stock, and a Northwestern Hawaiian Islands (NWHI stock. A ship-based line-transect survey of the Hawaiian EEZ was conducted in the summer and fall of 2010, resulting in six systematic-effort visual sightings of pelagic (n = 5 and NWHI (n = 1 false killer whale groups. The maximum number and spatial extent of subgroups per sighting was 18 subgroups and 35 km, respectively. These sightings were combined with data from similar previous surveys and analyzed within the conventional line-transect estimation framework. The detection function, mean cluster size, and encounter rate were estimated separately to appropriately incorporate data collected using different methods. Unlike previous line-transect analyses of cetaceans, subgroups were treated as the analytical cluster instead of groups because subgroups better conform to the specifications of line-transect theory. Bootstrap values (n = 5,000 of the line-transect parameters were randomly combined to estimate the variance of stock-specific abundance estimates. Hawai'i pelagic and NWHI false killer whales were estimated to number 1,552 (CV = 0.66; 95% CI = 479-5,030 and 552 (CV = 1.09; 95% CI = 97

  8. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C., E-mail: lmatsushima@ipen.br [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Veneziani, Glauco R. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sakuraba, Roberto K. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil); Cruz, Jose C. da [Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil)

    2012-07-15

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms. - Highlights: Black-Right-Pointing-Pointer Dosimetric study of thermoluminescent detectors of CaSO{sub 4}:Dy, LiF:Mg,Ti and {mu}LiF:Mg,Ti. Black-Right-Pointing-Pointer Clinical (6 and 15 MV) photon beams dosimetry using liquid water and PMMA phantom. Black-Right-Pointing-Pointer Linear behavior to the dose range (0.1 to 5 Gy). Black-Right-Pointing-Pointer TL response reproducibility better than {+-}4.34%. Black-Right-Pointing-Pointer CaSO{sub 4}:Dy represent a cheaper alternative to the TLD-100.

  9. Anomalous partitioning of water in coexisting liquid phases of lipid multilayers near 100% relative humidity.

    Science.gov (United States)

    Ma, Yicong; Ghosh, Sajal K; Bera, Sambhunath; Jiang, Zhang; Schlepütz, Christian M; Karapetrova, Evguenia; Lurio, Laurence B; Sinha, Sunil K

    2016-01-14

    Ternary lipid mixtures incorporating cholesterol are well-known to phase separate into liquid-ordered (L(o)) and liquid-disordered (L(d)) phases. In multilayers of these systems, the laterally phase separated domains register in columnar structures with different bilayer periodicities, resulting in hydrophobic mismatch energies at the domain boundaries. In this paper, we demonstrate via synchrotron-based X-ray diffraction measurements that the system relieves the hydrophobic mismatch at the domain boundaries by absorbing larger amounts of inter-bilayer water into the L(d) phase with lower d-spacing as the relative humidity approaches 100%. The lamellar repeat distance of the L(d) phase swells by an extra 4 Å, well beyond the equilibrium spacing predicted by the inter-bilayer forces. This anomalous swelling is caused by the hydrophobic mismatch energy at the domain boundaries, which produces a surprisingly long-range effect. We also demonstrate that the d-spacings of the lipid multilayers at 100% relative humidity do not change when bulk water begins to condense on the sample.

  10. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  11. Electron microscopic observation of montmorillonite swelled by water with the aid of hydrophilic ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Chisato [Advanced Ceramics Research Center, Nagoya Institute of Technology, Honmachi 3-101-1, Tajimi, Gifu 507-0033 (Japan); Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University, Kusumoto 1-100, Chikusa, Nagoya, Aichi 464-8650 (Japan); Shirai, Takashi [Advanced Ceramics Research Center, Nagoya Institute of Technology, Honmachi 3-101-1, Tajimi, Gifu 507-0033 (Japan); Fuji, Masayoshi, E-mail: fuji@nitech.ac.jp [Advanced Ceramics Research Center, Nagoya Institute of Technology, Honmachi 3-101-1, Tajimi, Gifu 507-0033 (Japan)

    2013-09-16

    The morphology and structure of hydrous montmorillonite in different swelling condition have been observed with the aid of hydrophilic ionic liquid (IL; 1-Butyl-3-methylimidazolium Tetrafluoroborate) using electron microscope. The observation mechanism of hydrous montmorillonite with layer structure using IL was revealed by swelling behavior as measured by X-ray diffraction (XRD) and transmission electron microscopy (TEM) with selected area electron diffraction pattern (SAED). The morphology of hydrous montmorillonite containing a large amount of water was also successfully observed by field emission electron microscope (FE-SEM). In addition, the inductively coupled plasma (ICP) and thermogravimetric – differential thermal analysis (TG-DTA) results showed the ion-exchange behavior of hydrous montmorillonite during the IL treatment. The technique allowed the exact morphology to be observed of hydrated materials with layer structure in civil engineering, cosmetics, medical and agricultural fields. - Highlights: • Observation of two different conditions of hydrated montmorillonite was investigated. • The swelling structure by water molecules was characterized by TEM. • The observation mechanism of hydrous montmorillonite was revealed. • Ionic liquid is useful for characterization of hydrated materials with layer structure.

  12. Hauled liquid waste as a pollutant of soils and waters in Poland

    Directory of Open Access Journals (Sweden)

    Karczmarczyk Agnieszka

    2016-06-01

    Full Text Available Hauled liquid waste as a pollutant of soils and waters in Poland. Improperly maintained holding tanks are often underestimated source of contamination of soil, groundwater and surface water. As a rule, wastewater stored in holding tanks, should be transported and treated in municipal wastewater treatment plants (WWTPs. There are 2,257,000 holding tanks in Poland, located mainly in rural areas. The article presents the results of analysis of wastewater management in 20 rural and urban-rural communes, which were chosen at random from the total number of 2,174 communes in Poland. The only criterion of commune selection was total or partial lack of sewerage system. Analysis of the collected data showed that on average only 27% of liquid waste from holding tanks ended at the WWTPs. The median is even lower and amounts to 17.5%. More than 4,000 Mg of P and 26,000 Mg of N is dispersed in the environment in uncontrolled manner. Those diffuse point sources of pollution may be one of the reasons in the difficulty of achieving of good ecological status of rivers and affect the quality of the Baltic Sea.

  13. Test of prototype liquid-water-content meter for aircraft use

    Science.gov (United States)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  14. Gross alpha and gross beta determination in surface and groundwater water by liquid scintillation counting (LSC)

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Ligia S.; Moreira, Rubens M., E-mail: ligsfaria@gmail.com, E-mail: rubens@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The present study has used 40 samples of groundwater and surface water collected at four different sites along the period of one year in Brumadinho and Nova Lima, two municipalities in the State of Minas Gerais, Brazil, as part of a more extensive study aiming at determination of the natural radioactivity in the water used for domestic use. These two sites are inside an Environmental Protection Area is located in a region of very intensive iron ore exploration. In addition of mineral resources, the region has a geological characteristic that includes quartzitic conglomerates associated with uranium. Radioactivity levels were determined via liquid scintillation counting (LSC), a fast and high counting efficiency method that can be advantageously employed to determine gross alpha and gross beta activity in liquid samples. Previously to gross alpha and gross beta counting the samples were acidified with concentrated HNO{sub 3} in the field. The technique involved a pre-concentration of the sample to obtain a low detection limit. Specific details of the employed methodology are commented. The results showed that concentrations of gross alpha natural activity and gross beta values ranged from less than the detection limit of the equipment (0.03 Bq.L{sup -1}) to 0.275 ± 0.05 Bq.L{sup -1} for gross alpha. As regards gross beta, all samples were below the limit of detection. (author)

  15. On the dissociative electron attachment as a potential source of molecular hydrogen in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Jay-Gerin, J.-P.; Frongillo, Y. [Sherbrooke Univ., PQ (Canada). Faculte de Medecine; Patau, J.P. [Toulouse-3 Univ., 31 (France)

    1996-02-01

    In the radiolysis of liquid water, different mechanisms for the formation of molecular hydrogen (H{sub 2}) are involved at different times after the initial energy disposition. It has been suggested that the contributions of the e{sub aq}{sup -} + e{sub aq}{sup -}, H + e{sub aq}{sup -} and H + H reactions between hydrated electrons (e{sub aq}{sup -}) and hydrogen atoms in the spurs are not sufficient to account for all of the observed H{sub 2} yield (0.45 molecules/100 eV) on the microsecond time scale. Addressing the question of the origin of an unscavengeable H{sub 2} yield of 0.15 molecules/100 eV produced before spur expansion, we suggest that the dissociative capture of the so-called vibrationally-relaxing electrons by H{sub 2}O molecules is a possible pathway for the formation of part of the initial H{sub 2} yield. Comparison of recent dissociative-electron-attachment H{sup -}-anion yield-distribution measurements from amorphous H{sub 2}O films with the energy spectrum of vibrationally-relaxing electrons in irradiated liquid water, calculated by Monte Carlo simulations, plays in favor of this hypothesis. (author).

  16. RESEARCH ON TRANSFER OF LIQUID WATER ABSORPTION OF KNITTED STRUCTURES FOR SOCKS DESTINATION

    Directory of Open Access Journals (Sweden)

    VLAD Dorin

    2016-05-01

    Full Text Available For to adjust the heat, body removes heat. Depending on physical effort, it gives more or less moisture. Moisture removed from the body should be taken from the skin and directed outwards through clothing. This can be due to moisture absorption ability, and because of the capillary effect. This study is a part of a very extensive work on the influence of characteristics and raw materials, knitted structure and density on comfort properties of socks. If a high level of perspiration, moisture liquid, it is important that it be removed as quickly from skin and clothing led outside. From here can evaporate into the environment. This is achieved through the capillary effect of fabrics that may effectively transport moisture. Storage capacity and moisture transfer of a textile depends on the composition and structure. In laboratory conditions, methods for assessing the behavior of textiles against moisture is applied differentially depending on the state humidity: vapor or liquid. With this method of determining the capacity of absorbing water by capillary action, samples have dimensions of 200/200 mm and at one end is immersed in water. The samples knit were made in two versions of the fineness machine.

  17. Retrieval of Aerosol Liquid Water Path and Hygroscopic Growth from the AERONET database

    Science.gov (United States)

    Schuster, G. L.; Lin, B.; Dubovik, O.; Holben, B.; Sinyuk, A.

    2007-12-01

    Aerosol water uptake in the atmosphere alters aerosol size distributions, changes aerosol optical properties, and consequently impacts the aerosol radiative forcing. The parameterization of water uptake in aerosol transport models is empirical and unchecked, largely because of the lack of available measurements. We have developed a retrieval of the aerosol liquid water path (LWP) and hygroscopic growth using the AERONET database, and apply our results at over 200 AERONET locations. The real refractive index of prevalent atmospheric aerosols at the 500 nm wavelength ranges from 1.50 for sea salt to 1.56 for dust. Liquid water, on the other hand, has a real refractive index of 1.33 at 500 nm. We use this disparity in refractive indices to determine the equivalent water fractions for aerosol mixtures associated with the AERONET refractive index retrievals. Once the aerosol water fraction is known, we can also determine the hygroscopic growth factor, aerosol LWP, and the dry aerosol loading in the atmospheric column. Our aerosol LWP results are highly correlated with the following parameters: fine mode volume concentration, aerosol optical thickness (440 nm), aerosol water fraction, and coarse mode volume concentration (average correlation coefficients for all 200 sites ranges from 0.47 for the coarse mode concentration to 0.78 for the fine mode concentration). The regressions of these parameters have different slopes at each of the AERONET sites, which suggests a LWP sensitivity to aerosol composition. Aerosol liquid water path is not highly correlated with the mode radii or the fine mode volume fraction (average correlation coefficients for all sites range from 0.11 for the coarse mode median radius to 0.27 for the fine mode volume fraction). We compiled monthy-averaged statistics at over 200 AERONET locations based upon the daily-average AERONET retrievals; our results are consistent with regional and seasonal expectations. Aerosol water fractions range from a low

  18. Abundance of grey seals in Icelandic waters, based on trends of pup-counts from aerial surveys

    Directory of Open Access Journals (Sweden)

    Erlingur Hauksson

    2007-01-01

    Full Text Available Grey seals (Halichoerus grypus Fabricius, 1791 are distributed all around the Icelandic coast. The majority of the population breeds on the west- and northwest shores, with a second high density in the breeding distribution on the southeast coast of Iceland. During the last 5 decades the Icelandic grey seals have dispersed from the west- to the northwest-, the north- and the northeast-coast. The breeding period occurs from the middle of September to early November, with a maximum in mid October. The time of peak pupping shows some variation, beginning earlier along the west coast and later in the north and southeast. Seven aerial surveys to estimate pup production in Iceland were flown during October to November during the period from 1980 to 2004. Pup counts of the Icelandic grey seal, at all breeding sites combined, have been decreasing annually by about 3% (±1% s.e., during the period 1982-2002. During the period 1990-2002, this downward trend doubled to about 6% annually. The abundance of the grey seal around Iceland in the year 2002 was estimated to be 4,100 to 5,900 animals. This is higher than estimates of around 2,000 animals during the 1960s, but much less than the estimated population of 8,000 to 11,500 in 1982.

  19. Tile Drainage Management Influences on Surface-Water and Groundwater Quality following Liquid Manure Application.

    Science.gov (United States)

    Frey, Steven K; Topp, Ed; Ball, Bonnie R; Edwards, Mark; Gottschall, Natalie; Sunohara, Mark; Zoski, Erin; Lapen, David R

    2013-01-01

    This study investigated the potential for controlled tile drainage (CD) to reduce bacteria and nutrient loading to surface water and groundwater from fall-season liquid manure application (LMA) on four macroporous clay loam plots, of which two had CD and two had free-draining (FD) tiles. Rhodamine WT (RWT) was mixed into the manure and monitored in the tile water and groundwater following LMA. Tile water and groundwater quality were influenced by drainage management. Following LMA on the FD plots, RWT, nutrients, and bacteria moved rapidly via tiles to surface water; at the CD plots, tiles did not flow until the first post-LMA rainfall, so the immediate risk of LMA-induced contamination of surface water was abated. During the 36-d monitoring period, flow-weighted average specific conductance, redox potential, and turbidity, as well as total Kjeldahl N (TKN), total P (TP), NH-N, reactive P, and RWT concentrations, were higher in the CD tile effluent; however, because of lower tile discharge from the CD plots, there was no significant ( ≤ 0.05) difference in surface water nutrient and RWT loading between the CD and FD plots when all tiles were flowing. The TKN, TP, and RWT concentrations in groundwater also tended to be higher at the CD plots. Bacteria behaved differently than nutrients and RWT, with no significant difference in total coliform, , fecal coliform, fecal streptococcus, and concentrations between the CD and FD tile effluent; however, for all but , hourly loading was higher from the FD plots. Results indicate that CD has potential for mitigating bacteria movement to surface water. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Computational studies of atmospherically-relevant chemical reactions in water clusters and on liquid water and ice surfaces.

    Science.gov (United States)

    Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J

    2015-02-17

    CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on

  1. Development of Nanostructured Water Treatment Membranes Based on Thermotropic Liquid Crystals: Molecular Design of Sub-Nanoporous Materials.

    Science.gov (United States)

    Sakamoto, Takeshi; Ogawa, Takafumi; Nada, Hiroki; Nakatsuji, Koji; Mitani, Masato; Soberats, Bartolome; Kawata, Ken; Yoshio, Masafumi; Tomioka, Hiroki; Sasaki, Takao; Kimura, Masahiro; Henmi, Masahiro; Kato, Takashi

    2018-01-01

    Supply of safe fresh water is currently one of the most important global issues. Membranes technologies are essential to treat water efficiently with low costs and energy consumption. Here, the development of self-organized nanostructured water treatment membranes based on ionic liquid crystals composed of ammonium, imidazolium, and pyridinium moieties is reported. Membranes with preserved 1D or 3D self-organized sub-nanopores are obtained by photopolymerization of ionic columnar or bicontinuous cubic liquid crystals. These membranes show salt rejection ability, ion selectivity, and excellent water permeability. The relationships between the structures and the transport properties of water molecules and ionic solutes in the sub-nanopores in the membranes are examined by molecular dynamics simulations. The results suggest that the volume of vacant space in the nanochannel greatly affects the water and ion permeability.

  2. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    Science.gov (United States)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  3. The effect of drought and interspecific interactions on depth of water uptake in deep- and shallow-rooting grassland species as determined by δ18O natural abundance

    Science.gov (United States)

    Hoekstra, N. J.; Finn, J. A.; Hofer, D.; Lüscher, A.

    2014-08-01

    Increased incidence of drought, as predicted under climate change, has the potential to negatively affect grassland production. Compared to monocultures, vertical belowground niche complementarity between shallow- and deep-rooting species may be an important mechanism resulting in higher yields and higher resistance to drought in grassland mixtures. However, very little is known about the belowground responses in grassland systems and increased insight into these processes may yield important information both to predict the effect of future climate change and better design agricultural systems to cope with this. This study assessed the effect of a 9-week experimental summer drought on the depth of water uptake of two shallow-rooting species (Lolium perenne L. and Trifolium repens L.) and two deep-rooting species (Cichorium intybus L. and Trifolium pratense L.) in grassland monocultures and four-species mixtures by using the natural abundance δ18O isotope method. We tested the following three hypotheses: (1) drought results in a shift of water uptake to deeper soil layers, (2) deep-rooting species take up a higher proportion of water from deeper soil layers relative to shallow-rooting species, and (3) as a result of interspecific interactions in mixtures, the water uptake of shallow-rooting species becomes shallower when grown together with deep-rooting species and vice versa, resulting in reduced niche overlap. The natural abundance δ18O technique provided novel insights into the depth of water uptake of deep- and shallow- rooting grassland species and revealed large shifts in depth of water uptake in response to drought and interspecific interactions. Compared to control conditions, drought reduced the proportional water uptake from 0-10 cm soil depth (PCWU0-10) of L. perenne, T. repens and C. intybus in monocultures by on average 54%. In contrast, the PCWU0-10 of T. pratense in monoculture increased by 44%, and only when grown in mixture did the PCWU0-10 of T

  4. Analysis and characterization of an optical fiber for Carrol-Water liquid pair

    International Nuclear Information System (INIS)

    Basurto-Pensado, M.A.; Romero, R.J.; Sanchez-Mondragon, J.J.; Dorantes-Romero, D.

    2011-01-01

    A system of energy recovery depends on the process operation conditions from which it receives the energy when a Carrol-Water pair is used. To improve the performance of the energy recovery system, the variables of temperature, pressure and concentration must be in balance. External sensors for temperature and pressure may be installed for all components. However, concentration is not determined online, and therefore an indirect method must be considered, such as optical transmittance correlation. Humidity contamination accounts for the hygroscopicity of Carrol water samples. The analysis of Carrol-Water optical characteristics is presented at multiple concentrations and temperatures, in which a transfer function involving absorbance and temperature is determined in order to define liquid pair concentration, as a function of actual temperature and signal intensity. This calculation provided the guideline to generate a control system that helps regulate thermal regimens. The characterization of this pair was made from temperature values ranging from 25 o C to 80 o C and mass concentration ranging from 51.79% to 66.2%. -- Highlights: → This paper shows a non invasive way for the Carrol-water concentration measurement. → The use of an optical technique using arbitrary units for a generalized transmittance method is proposed. → The in-line determination for concentration into an AHT (absorption heat transformer) allows to the operators lead to higher efficiencies. → Main advantage of the tested method is the simplification of the measured equipment required.

  5. Ionic liquids for the passive sampling of sulfonamides from water-applicability and selectivity study.

    Science.gov (United States)

    Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda

    2017-06-01

    Ionic liquids (ILs) are new-generation, non-volatile solvents which are designable, and their structure may be specifically adjusted to the current application needs. Therefore, it is possible to create and apply ILs which efficiently and selectively extract various analytes from different matrices. It has already been examined that ILs may be applied as receiving phases in passive sampling for the long-term water monitoring of PAHs and pharmaceuticals in water. In this paper, the concept of passive sampling with ILs (PASSIL applied as receiving phases) was continued and developed using phosphonium-, imidazolium-, and morpholinium-cation-based ILs. The target group of analytes was pharmaceuticals which represent one of the most common categories of water contaminants. Fourteen-day-long extractions using various ILs were performed in stirred conditions at a constant temperature (20 °C). The best extraction efficiency was achieved for trihexyl(tetradecyl)phosphonium dicyanamide ([P666-14][N(CN) 2 ]). For this preliminary calibration, the sampling rates were calculated for each sulfonamide. Once again, selectivity was observed in passive sampling using [P666-14][N(CN) 2 ]. Therefore, PASSIL is seen as a very promising method for pharmaceutical monitoring in water.

  6. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    International Nuclear Information System (INIS)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D.

    2015-01-01

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ( 14 C from organically compounds, 36 Cl as chloride and free chlorine, 40 K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na 2 O 2 and KMnO 4 ), lyophilization, chemical treatment (Na 2 O 2 and KMnO 4 ) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization

  7. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  8. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  9. Sensitive limits on the abundance of cold water vapor in the DM Tauri protoplanetary disk

    DEFF Research Database (Denmark)

    Bergin, E. A.; Hogerheijde, M. R.; Brinch, Christian

    2010-01-01

    We performed a sensitive search for the ground-state emission lines of ortho- and para-water vapor in the DM Tau protoplanetary disk using the Herschel/HIFI instrument. No strong lines are detected down to 3σ levels in 0.5 km s-1 channels of 4.2 mK for the 110-101 line and 12.6 mK for the 111...

  10. Dynamic crossover in deeply cooled water confined in MCM-41 at 4 kbar and its relation to the liquid-liquid transition hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhe; Le, Peisi; Ito, Kanae; Chen, Sow-Hsin, E-mail: sowhsin@mit.edu [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Leão, Juscelino B. [National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Tyagi, Madhusudan [National Institute of Standards and Technology Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-09-21

    With quasi-elastic neutron scattering, we study the single-particle dynamics of the water confined in a hydrophilic silica material, MCM-41, at 4 kbar. A dynamic crossover phenomenon is observed at 219 K. We compare this dynamic crossover with the one observed at ambient pressure and find that (a) above the crossover temperature, the temperature dependence of the characteristic relaxation time at ambient pressure exhibits a more evident super-Arrhenius behavior than that at 4 kbar. Especially, at temperatures below about 230 K, the relaxation time at 4 kbar is even smaller than that at ambient pressure. This feature is different from many other liquids. (b) Below the crossover temperature, the Arrhenius behavior found at ambient pressure has a larger activation energy compared to the one found at 4 kbar. We ascribe the former to the difference between the local structure of the low-density liquid (LDL) phase and that of the high-density liquid (HDL) phase, and the latter to the difference between the strength of the hydrogen bond of the LDL and that of the HDL. Therefore, we conclude that the phenomena observed in this paper are consistent with the LDL-to-HDL liquid-liquid transition hypothesis.

  11. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L -1 level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Use of water in aiding olefin/paraffin (liquid + liquid) extraction via complexation with a silver bis(trifluoromethylsulfonyl)imide salt

    International Nuclear Information System (INIS)

    Wang, Yu; Thompson, Jillian; Zhou, Jingjing; Goodrich, Peter; Atilhan, Mert; Pensado, Alfonso S.; Kirchner, Barbara; Rooney, David; Jacquemin, Johan; Khraisheh, Majeda

    2014-01-01

    Highlights: • Silver-based ILs used as olefin extracting agents for olefin/paraffin mixtures. • Each extraction process is based on the olefin complexation and solvation. • The presence of water influences positively each extraction process. • Each extraction process was evaluated by DFT calculations, NMR, IR and Raman. • LLE data were then correlated by using the UNIQUAC model. - Abstract: This paper describes the extraction of C 5 –C 8 linear α-olefins from olefin/paraffin mixtures of the same carbon number via a reversible complexation with a silver salt (silver bis(trifluoromethylsulfonyl)imide, Ag[Tf 2 N]) to form room temperature ionic liquids [Ag(olefin) x ][Tf 2 N]. From the experimental (liquid + liquid) equilibrium data for the olefin/paraffin mixtures and Ag[Tf 2 N], 1-pentene showed the best separation performance while C 7 and C 8 olefins could only be separated from the corresponding mixtures on addition of water which also improves the selectivity at lower carbon numbers like the C 5 and C 6 , for example. Using infrared and Raman spectroscopy of the complex and Ag[Tf 2 N] saturated by olefin, the mechanism of the extraction was found to be based on both chemical complexation and the physical solubility of the olefin in the ionic liquid ([Ag(olefin) x ][Tf 2 N]). These experiments further support the use of such extraction techniques for the separation of olefins from paraffins

  13. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  15. Bull trout distribution and abundance in the waters on and bordering the Warm Springs Indian Reservation: 2001 annual report

    International Nuclear Information System (INIS)

    Brun, Christopher V.; Dodson, Rebekah D.

    2002-01-01

    The range of bull trout (Salvelinus confluentus) in the Deschutes River basin has decreased from historic levels due to many factors including dam construction, habitat degradation, brook trout introduction and eradication efforts. While the bull trout population appears to be stable in the Metolius River-Lake Billy Chinook system they have been largely extirpated from the upper Deschutes River (Buchanan et al. 1997). Little was known about bull trout in the lower Deschutes basin until BPA funded project No.9405400 began during 1998. In this progress report we describe the findings from the fourth year (2001) of the multi-year study aimed at determining the life history, habitat needs and limiting factors of bull trout in the lower Deschutes subbasin. Juvenile bull trout and brook trout (Salvelinus fontinalis) relative abundance was assessed in the Warm Springs River and Shitike Creek by night snorkeling. In the Warm Springs R. juvenile bull trout were slightly more numerous than brook trout, however, both were found in low densities. Relative densities of both species were the lowest observed since surveys began in 1999. Relative densities of juvenile bull trout and brook trout increased in Shitike Cr. Juvenile bull trout vastly out numbered brook trout in Shitike Cr. The utility of using index reaches to monitor trends in juvenile bull trout and brook trout relative abundance was assessed in the Warm Springs R. for the third year. Mean relative densities of juvenile bull trout within the index reaches was slightly higher than what was observed in the 2.4 km control reach. However, the mean relative density of brook trout in the 2.4 km control reach was slightly higher than what was observed in within the index reaches. Habitat use by both juvenile bull trout and brook trout was determined in the Warm Springs R. Juvenile bull trout and brook trout occupied pools more frequently than glides, riffles and rapids. However, pools accounted for only a small percentage

  16. A New Dispersive Liquid-Liquid Microextraction Method for Preconcentration and Determination of Aluminum, Iron, Copper, and Lead in Real Water Samples by HPLC.

    Science.gov (United States)

    Alpdoğan, Güzin; Zor, Şule Dinç

    2017-09-01

    In this study, dispersive liquid-liquid microextraction coupled with HPLC with variable-wavelength detection was applied for the simultaneous determination of Al, Fe, Cu, and Pb in various water samples at trace levels. In the proposed method, all the system parameters in both the extraction and separation/determination steps, such as extraction and disperser solvent type and their volumes, complexing reagent concentration, salt addition, extraction and centrifugation times, and pH, were optimized to get not only high extraction efficiency but also lower LODs for the analytes. Hematoxylin was used as a complexing reagent, and carbon tetrachloride and methanol were chosen as the extraction and disperser solvents, respectively. Metal complexes were separated with a reversed-phase C18 column by isocratic elution, with methanol-tetrahydrofuran-water (20 + 12 + 68, v/v/v) as the mobile phase at a flow rate of 1.0 mL/min and detection at 575 nm. The accuracy of the method was checked by a Standard Reference Material of water (SRM 1643e), and the recovery values for the analytes were found in the range of 95.6-101.3%. Under the optimum conditions, the developed method was applied to tap water, bottled mineral water, lake water, and seawater for the accurate and sensitive determination of the analytes of interest.

  17. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish [Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, California 94041-1518 (United States); Liebson, Lindsay [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the

  18. Optical Thickness and Effective Radius Retrievals of Liquid Water Clouds over Ice and Snow Surface

    Science.gov (United States)

    Platnick, S.; King, M. D.; Tsay, S.-C.; Arnold, G. T.; Gerber, H.; Hobbs, P. V.; Rangno, A.

    1999-01-01

    Cloud optical thickness and effective radius retrievals from solar reflectance measurements traditionally depend on a combination of spectral channels that are absorbing and non-absorbing for liquid water droplets. Reflectances in non-absorbing channels (e.g., 0.67, 0.86 micrometer bands) are largely dependent on cloud optical thickness, while longer wavelength absorbing channels (1.6, 2.1, and 3.7 micrometer window bands) provide cloud particle size information. Retrievals are complicated by the presence of an underlying ice/snow surface. At the shorter wavelengths, sea ice is both bright and highly variable, significantly increasing cloud retrieval uncertainty. However, reflectances at the longer wavelengths are relatively small and may be comparable to that of dark open water. Sea ice spectral albedos derived from Cloud Absorption Radiometer (CAR) measurements during April 1992 and June 1995 Arctic field deployments are used to illustrate these statements. A modification to the traditional retrieval technique is devised. The new algorithm uses a combination of absorbing spectral channels for which the snow/ice albedo is relatively small. Using this approach, preliminary retrievals have been made with the MODIS Airborne Simulator (MAS) imager flown aboard the NASA ER-2 during FIRE-ACE. Data from coordinated ER-2 and University of Washington CV-580 aircraft observations of liquid water stratus clouds on June 3 and June 6, 1998 have been examined. Size retrievals are compared with in situ cloud profile measurements of effective radius made with the CV-580 PMS FSSP probe, and optical thickness retrievals are compared with extinction profiles derived from the Gerber Scientific "g-meter" probe. MAS retrievals are shown to be in good agreement with the in situ measurements.

  19. Basic prerequisites and the practice of using deep water tables for burying liquid radioactive wastes

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Pimenov, M.K.; Balukova, V.D.; Leontichuk, A.S.; Kokorin, I.N.; Yudin, F.P.; Rakov, N.A.

    In the USSR, creating reservoirs for liquid radioactive wastes is one of the promising methods of safely disposing of them in deep water tables, in zones with a standing regime or a slow rate of subterranean water exchange. The results of investigations and the practice of burying (the wastes) indicate the reliability and effectiveness of such a method of final waste disposal when the basic requirements of environmental protection are observed. Geological formations and collector strata that guarantee the localization of the liquid radioactive wastes placed in them for many tens and even hundreds of thousands of years can be studied and chosen in different regions. The basic requirements and criteria to which the geological structures and collector strata must correspond for ensuring the safe burial of wastes have been formulated. Wastes are buried only after a comprehensive, scientifically based evaluation of the sanitary-radiation safety for this generation and future ones, taking into account the burial regime and the physico-chemical processes that accompany combining wastes with rocks and stratal waters, as well as the time of holding wastes to maximum permissible concentrations. Positive and negative factors that characterize the method are analyzed. Possible emergency situations with subterranean burial are evaluated. The composition and methods of the geological survey, hydrodynamic, geophysical, physico-chemical and sanitary-radiation investigations; methods of calculating and predicting the movement of wastes underground;methods of preparing wastes for burial and chemical methods of restoring the suitability of wells; design characteristics and conditions of preparing wells for use; methods of estimating heating and processes of radiolysis for a medium containing highly radioactive wastes; methods of operational and remote control of the burial process and the condition of the ambient medium, etc. are briefly examined

  20. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe 3 O 4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN) 2 ] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P 4448 ][Br] (aqueous solution, 200 μL, 0.2 mmol mL -1 ) reaction in-situ with anion-exchange reagent Na[N(CN) 2 ] (aqueous solution, 300 μL, 0.2 mmol mL -1 ) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L -1 . The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A study on the development of advanced models to predict the critical heat flux for water and liquid metals

    International Nuclear Information System (INIS)

    Lee, Yong Bum

    1994-02-01

    The critical heat flux (CHF) phenomenon in the two-phase convective flows has been an important issue in the fields of design and safety analysis of light water reactor (LWR) as well as sodium cooled liquid metal fast breeder reactor (LMFBR). Especially in the LWR application many physical aspects of the CHF phenomenon are understood and reliable correlations and mechanistic models to predict the CHF condition have been proposed. However, there are few correlations and models which are applicable to liquid metals. Compared with water, liquid metals show a divergent picture for boiling pattern. Therefore, the CHF conditions obtained from investigations with water cannot be applied to liquid metals. In this work a mechanistic model to predict the CHF of water and a correlation for liquid metals are developed. First, a mechanistic model to predict the CHF in flow boiling at low quality was developed based on the liquid sublayer dryout mechanism. In this approach the CHF is assumed to occur when a vapor blanket isolates the liquid sublayer from bulk liquid and then the liquid entering the sublayer falls short of balancing the rate of sublayer dryout by vaporization. Therefore, the vapor blanket velocity is the key parameter. In this work the vapor blanket velocity is theoretically determined based on mass, energy, and momentum balance and finally the mechanistic model to predict the CHF in flow boiling at low quality is developed. The accuracy of the present model is evaluated by comparing model predictions with the experimental data and tabular data of look-up tables. The predictions of the present model agree well with extensive CHF data. In the latter part a correlation to predict the CHF for liquid metals is developed based on the flow excursion mechanism. By using Baroczy two-phase frictional pressure drop correlation and Ledinegg instability criterion, the relationship between the CHF of liquid metals and the principal parameters is derived and finally the

  2. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benedetto, Antonio [School of Physics, University College Dublin, Dublin 4 (Ireland); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Bingham, Richard J. [York Centre for Complex Systems Analysis, University of York, York YO10 5GE (United Kingdom); Ballone, Pietro [Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia (IIT), 00185 Roma (Italy); Department of Physics, Università di Roma “La Sapienza,” 00185 Roma (Italy)

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF{sub 6}]) salts of the 1-buthyl-3-methylimidazolium ([bmim]{sup +}) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]{sup +} into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]{sup +} and of POPC. The [bmim]{sup +} absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D{sub POPC}) does not reveal a clearly identifiable trend, since D{sub POPC} increases upon addition of [bmim][Cl] and decreases in the [bmim][PF{sub 6}] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  3. Phase equilibria study of the binary systems (1-butyl-3-methylimidazolium tosylate ionic liquid + water, or organic solvent)

    International Nuclear Information System (INIS)

    Domanska, Urszula; Krolikowski, Marek

    2010-01-01

    (Solid + liquid) phase equilibria (SLE) and (liquid + liquid) phase equilibria (LLE) for the binary systems: ionic liquid (IL) 1-butyl-3-methylimidazolim tosylate (p-toluenesulfonate) {[BMIM][TOS] + water, an alcohol (ethanol, or 1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or n-hexane, or an aromatic hydrocarbons (benzene, or toluene, or ethylbenzene, or propylbenzene, or thiophene)} have been determined at ambient pressure. A dynamic method was used over a broad range of mole fractions and temperatures from (230 to 340) K. For the binary systems containing water, or an alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. As usual, with increasing chain length of the alcohol the solubility decreases. In the case of mixtures {IL + n-hexane, or benzene, or alkylbenzene, or thiophene} the eutectic systems with mutual immiscibility in the liquid phase with an upper critical solution temperature (UCST) were detected. The basic thermal properties of the pure IL, i.e. melting and glass-transition temperatures, as well as the enthalpy of fusion have been measured using a differential scanning microcalorimetry technique (DSC). Density at high temperatures was determined and extrapolated to 298.15 K. Well-known UNIQUAC, Wilson and NRTL equations have been used to correlate experimental SLE data sets for alcohols and water. For the systems containing immiscibility gaps {IL + n-hexane, or benzene, or alkylbenzene, or thiophene}, parameters of the LLE correlation equation have been derived using only the NRTL equation.

  4. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    Science.gov (United States)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  5. Natural abundances of 15Nitrogen and 13Carbon indicative of growth and N2 fixation in potassium fed lentil grown under water stress

    International Nuclear Information System (INIS)

    Kurdali, F.; Alshmmaa, M.

    2010-01-01

    Dual natural abundance analysis of 15 N and 13 C isotopes in lentil plants subjected to different soil moisture levels and rates of potassium fertilizer (K) were determined to assess crop performance variability in terms of growth and N 2 -fixation (Ndfa). δ 15 N values in lentils ranged from +0.67 to +1.36%; whereas, those of the N 2 -fixed and reference plant were -0.45 and +2.94%, respectively. Consequently, the Ndfa% ranged from 45 and 65% of total plant N uptake. Water stress reduced Δ 13 C values. However, K fertilization enhanced whole plant Δ 13 C along with dry matter yield and N 2 -fixation. The water stressed plants amended with K fertilizer seemed to be the best treatment because of its highest pod yield, high N balance and N 2 -fixation with low consumption of irrigation water. This illustrates the ecological and economical importance of K fertilizer in alleviating water stress occurring during the post-flowering period of lentil. (author)

  6. Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C

    Directory of Open Access Journals (Sweden)

    D. L. Mitchell

    2012-07-01

    Full Text Available This study describes a satellite remote sensing method for directly retrieving the liquid water fraction in mixed phase clouds, and appears unique in this respect. The method uses MODIS split-window channels for retrieving the liquid fraction from cold clouds where the liquid water fraction is less than 50% of the total condensate. This makes use of the observation that clouds only containing ice exhibit effective 12-to-11 μm absorption optical thickness ratios (βeff that are quasi-constant with retrieved cloud temperature T. This observation was made possible by using two CO2 channels to retrieve T and then using the 12 and 11 μm channels to retrieve emissivities and βeff. Thus for T < −40 °C, βeff is constant, but for T > −40 °C, βeff slowly increases due to the presence of liquid water, revealing mean liquid fractions of ~ 10% around −22 °C from tropical clouds identified as cirrus by the cloud mask. However, the uncertainties for these retrievals are large, and extensive in situ measurements are needed to refine and validate these retrievals. Such liquid levels are shown to reduce the cloud effective diameter De such that cloud optical thickness will increase by more than 50% for a given water path, relative to De corresponding to pure ice clouds. Such retrieval information is needed for validation of the cloud microphysics in climate models. Since low levels of liquid water can dominate cloud optical properties, tropical clouds between −25 and −20 °C may be susceptible to the first aerosol indirect effect.

  7. The relationship between seal abundance and cod worm (Phocanema decipiens) infestation in cod in Norwegian coastal waters

    OpenAIRE

    Bjørge, Arne

    1985-01-01

    A sample of 52 cods, Gadus morhua, caught close to a grey seal, Halichoerus grypus, haul out site, and a total of 652 cods from 18 commercial catches (average sample size 36 cods) were examined with regard to cod worm infestation. The sampling was carried out from July 1978 to January 1981 in Norwegian coastal waters between 62° and 66° North. The presence of larval cod worm was recorded in 64% of the examined fishes, and the average infestation in all 704 fishes was 8.5 ...