WorldWideScience

Sample records for abundant biopolymers cellulose

  1. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  2. MICROBIAL FERMENTATION OF ABUNDANT BIOPOLYMERS: CELLULOSE AND CHITIN

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    Our research has dealt with seven major areas of investigation: i) characterization of cellulolytic members of microbial consortia, with special attention recently given to Clostridium phytofermentans, a bacterium that decomposes cellulose and produces uncommonly large amounts of ethanol, ii) investigations of the chitinase system of Cellulomonas uda; including the purification and characterization of ChiA, the major component of this enzyme system, iii) molecular cloning, sequence and structural analysis of the gene that encodes ChiA in C. uda, iv) biofilm formation by C. uda on nutritive surfaces, v) investigations of the effects of humic substances on cellulose degradation by anaerobic cellulolytic microbes, vi) studies of nitrogen metabolism in cellulolytic anaerobes, and vii) understanding the molecular architecture of the multicomplex cellulase-xylanase system of Clostridium papyrosolvens. Also, progress toward completing the research of more recent projects is briefly summarized. Major accomplishments include: 1. Characterization of Clostridium phytofermentans, a cellulose-fermenting, ethanol-producing bacterium from forest soil. The characterization of a new cellulolytic species isolated from a cellulose-decomposing microbial consortium from forest soil was completed. This bacterium is remarkable for the high concentrations of ethanol produced during cellulose fermentation, typically more than twice the concentration produced by other species of cellulolytic clostridia. 2. Examination of the use of chitin as a source of carbon and nitrogen by cellulolytic microbes. We discovered that many cellulolytic anaerobes and facultative aerobes are able to use chitin as a source of both carbon and nitrogen. This major discovery expands our understanding of the biology of cellulose-fermenting bacteria and may lead to new applications for these microbes. 3. Comparative studies of the cellulase and chitinase systems of Cellulomonas uda. Results of these studies indicate

  3. POSS-Modified Cellulose for Improved Biopolymer Performance

    Science.gov (United States)

    2011-09-30

    E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH 09-30-2011 Final Technical 07-01-2010 to 06-30-2011 POSS-Modified Cellulose for Improved Biopolymer ... Biopolymer Performance” (AFOSR-DURIP Grant #FA9550-10-1-0323) DATE: September 30, 2011 Summary Funding for this project was used to purchase...promise in biomedical applications, such as medical implants, surgical sutures, and tissue scaffolding . To improve the low impact strength, poor

  4. Dispersion of cellulose nanofibers in biopolymer based nanocomposites

    Science.gov (United States)

    Wang, Bei

    The focus of this work was to understand the fundamental dispersion mechanism of cellulose based nanofibers in bionanocomposites. The cellulose nanofibers were extracted from soybean pod and hemp fibers by chemo-mechanical treatments. These are bundles of cellulose nanofibers with a diameter ranging between 50 to 100 nm and lengths of thousands of nanometers which results in very high aspect ratio. In combination with a suitable matrix polymer, cellulose nanofiber networks show considerable potential as an effective reinforcement for high quality specialty applications of bio-based nanocomposites. Cellulose fibrils have a high density of --OH groups on the surface, which have a tendency to form hydrogen bonds with adjacent fibrils, reducing interaction with the surrounding matrix. The use of nanofibers has been mostly restricted to water soluble polymers. This thesis is focused on synthesizing the nanocomposite using a solid phase matrix polypropylene (PP) or polyethylene (PE) by hot compression and poly (vinyl alcohol) (PVA) in an aqueous phase by film casting. The mechanical properties of nanofiber reinforced PVA film demonstrated a 4-5 fold increase in tensile strength, as compared to the untreated fiber-blend-PVA film. It is necessary to reduce the entanglement of the fibrils and improve their dispersion in the matrix by surface modification of fibers without deteriorating their reinforcing capability. Inverse gas chromatography (IGC) was used to explore how various surface treatments would change the dispersion component of surface energy and acid-base character of cellulose nanofibers and the effect of the incorporation of these modified nanofibers into a biopolymer matrix on the properties of their nano-composites. Poly (lactic acid) (PLA) and polyhydroxybutyrate (PHB) based nanocomposites using cellulose nanofibers were prepared by extrusion, injection molding and hot compression. The IGC results indicated that styrene maleic anhydride coated and ethylene

  5. Ionic Liquid Microemullsions, Templates for Directing Morphology of Cellulose Biopolymer Nanoparticles (Briefing Charts)

    Science.gov (United States)

    2015-08-19

    Charts 3. DATES COVERED (From - To) July 2015-August 2015 4. TITLE AND SUBTITLE Ionic Liquid Microemullsions, Templates for Directing Morphology of...unlimited AFRL Public Affairs Clearance No. TBD Ionic Liquid Microemullsions, Templates for Directing Morphology of Cellulose Biopolymer...AFRL Public Affairs Clearance No. 15438 Outline • Background on Cellulose and Ionic Liquids • Materials and Methods • Results: Designing an IL

  6. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Science.gov (United States)

    Rapp, F.; Schneider, A.; Elsner, P.

    2014-05-01

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO2 balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength).

  7. Biopolymer foams - Relationship between material characteristics and foaming behavior of cellulose based foams

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, F., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de; Schneider, A., E-mail: florian.rapp@ict.fraunhofer.de, E-mail: anja.schneider@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT (Germany); Elsner, P., E-mail: peter.elsner@ict.fraunhofer.de [Fraunhofer Institute for Chemical Technology ICT, Germany and Karlsruhe Institute of Technology KIT (Germany)

    2014-05-15

    Biopolymers are becoming increasingly important to both industry and consumers. With regard to waste management, CO{sub 2} balance and the conservation of petrochemical resources, increasing efforts are being made to replace standard plastics with bio-based polymers. Nowadays biopolymers can be built for example of cellulose, lactic acid, starch, lignin or bio mass. The paper will present material properties of selected cellulose based polymers (cellulose propionate [CP], cellulose acetate butyrate [CAB]) and corresponding processing conditions for particle foams as well as characterization of produced parts. Special focus is given to the raw material properties by analyzing thermal behavior (differential scanning calorimetry), melt strength (Rheotens test) and molecular weight distribution (gel-permeation chromatography). These results will be correlated with the foaming behavior in a continuous extrusion process with physical blowing agents and underwater pelletizer. Process set-up regarding particle foam technology, including extrusion foaming and pre-foaming, will be shown. The characteristics of the resulting foam beads will be analyzed regarding part density, cell morphology and geometry. The molded parts will be tested on thermal conductivity as well as compression behavior (E-modulus, compression strength)

  8. In situ enzyme aided adsorption of soluble xylan biopolymers onto cellulosic material.

    Science.gov (United States)

    Chimphango, Annie F A; Görgens, J F; van Zyl, W H

    2016-06-05

    The functional properties of cellulose fibers can be modified by adsorption of xylan biopolymers. The adsorption is improved when the degree of biopolymers substitution with arabinose and 4-O-methyl-glucuronic acid (MeGlcA) side groups, is reduced. α-l-Arabinofuranosidase (AbfB) and α-d-glucuronidase (AguA) enzymes were applied for side group removal, to increase adsorption of xylan from sugarcane (Saccharum officinarum L) bagasse (BH), bamboo (Bambusa balcooa) (BM), Pinus patula (PP) and Eucalyptus grandis (EH) onto cotton lint. The AguA treatment increased the adsorption of all xylans by up to 334%, whereas, the AbfB increased the adsorption of the BM and PP by 31% and 44%, respectively. A combination of AguA and AbfB treatment increased the adsorption, but to a lesser extent than achieved with AguA treatment. This indicated that the removal of the glucuronic acid side groups provided the most significant increase in xylan adsorption to cellulose, in particular through enzymatic treatment.

  9. Biopolymer-based nanocomposites: effect of lignin acetylation in cellulose triacetate films

    Science.gov (United States)

    Nevárez, Laura Alicia Manjarrez; Casarrubias, Lourdes Ballinas; Celzard, Alain; Fierro, Vanessa; Muñoz, Vinicio Torres; Davila, Alejandro Camacho; Lubian, José Román Torres; Sánchez, Guillermo González

    2011-01-01

    We have prepared all-biopolymer nanocomposite films using lignin as a filler and cellulose triacetate (CTA) as a polymer matrix, and characterized them by several analytical methods. Three types of lignin were tested: organosolv, hydrolytic and kraft, with or without acetylation. They were used in the form of nanoparticles incorporated at 1 wt% in CTA. Self-supported films were prepared by vapor-induced phase separation at controlled temperature (35–55 °C) and relative humidity (10–70%). The efficiency of acetylation of each type of lignin was studied and discussed, as well as its effects on film structure, homogeneity and mechanical properties. The obtained results are explained in terms of intermolecular filler-matrix interaction at the nanometer scale, for which the highest mechanical resistance was reached using hydrolytic lignin in the nanocomposite. PMID:27877425

  10. Active biopolymer film based on carboxymethyl cellulose and ascorbic acid for food preservation

    Science.gov (United States)

    Halim, Al Luqman Abdul; Kamari, Azlan

    2017-05-01

    In the present study, an active biopolymer film based on carboxymethyl cellulose (CMC) and ascorbic acid (AA) was synthesised at an incorporation rate of 15% (w/w). Several analytical instruments such as Fourier Transform Infrared Spectrometer (FTIR), Thermogravimetry Analyser (TGA), UV-Visible Spectrophotometer (UV-Vis), Scanning Electron Microscope (SEM) and Universal Testing Machine were used to characterise the physical and chemical properties of CMC-AA film. The addition of AA significantly reduced elongation at break (322%) and tensile strength (10 MPa) of CMC-AA film. However, CMC-AA film shows a better antimicrobial property against two bacteria, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as compared to CMC film. The CMC-AA film was able to preserve cherry tomato with low weight loss and browning index. Overall, results from this study highlight the feasibility of CSAA film for food preservation.

  11. Effect of carboxymethyl cellulose (CMC) as biopolymers to the edible film sorghum starch hydrophobicity characteristics

    Science.gov (United States)

    Putri, Rr. Dewi Artanti; Setiawan, Aji; Anggraini, Puji D.

    2017-03-01

    The use of synthetic plastic should be limited because it causes the plastic waste that can not be decomposed quickly, triggering environmental problems. The solution of the plastic usage is the use of biodegradable plastic as packaging which is environmentally friendly. Synthesis of edible film can be done with a variety of components. The component mixture of starch and cellulose derivative products are one of the methods for making edible film. Sorghum is a species of cereal crops containing starch amounted to 80.42%, where the use of sorghum in Indonesia merely fodder. Therefore, sorghum is a potential material to be used as a source of starch synthesis edible film. This research aims to study the characteristics of edible starch films Sorghum and assess the effect of CMC (Carboxymethyl Cellulose) as additional materials on the characteristics of biopolymers edible film produced sorghum starch. This study is started with the production of sorghum starch, then the film synthesizing with addition of CMC (5, 10, 15, 20, and 25% w/w starch), and finally the hydrophobicity characteristics test (water uptake test and water solubility test). The addition of CMC will decrease the percentage of water absorption to the film with lowest level of 65.8% in the degree of CMC in 25% (w/w starch). The addition of CMC also influences the water solubility of film, where in the degree of 25% CMC (w/w starch) the solubility of water was the lowest, which was 28.2% TSM.

  12. Phase distribution of products of radiation and post-radiation distillation of biopolymers: Cellulose, lignin and chitin

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, A.V., E-mail: ponomarev@ipc.rssi.ru [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation); Kholodkova, E.M.; Metreveli, A.K.; Metreveli, P.K.; Erasov, V.S.; Bludenko, A.V.; Chulkov, V.N. [A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119991 Moscow (Russian Federation)

    2011-11-15

    Influence of both the absorbed dose and the dose rate of 8 MeV electron-beam radiation on destruction of microcrystalline cellulose, pine lignin and krill chitin was investigated. Two conversion modes were compared: (1) post-radiation distillation PRD and (2) electron-beam distillation EBD. Cellulose, chitin and lignin demonstrate different responses to irradiation and distillation in PRD and EBD modes. Treatment in EBD mode transforms biopolymers to organic liquid more productively than conventional dry distillation and treatment in PRD mode. Both radiation heating and an irradiation without heating intensify chitin and cellulose decomposition and distillation. At the same time lignin decaying rather efficiently in EBD mode appears to be insensitive to a preliminary irradiation in PRD mode up to a dose of 2.4 MGy. - Highlights: > Direct conversion of cellulose, chitin and lignin to organic liquid is intensified by electron-beam irradiation. > Alternative approach to bio-oil production. > Both electron-beam distillation mode and post-radiation distillation mode are effective for cellulose and chitin conversion. > Electron-beam distillation mode is preferable for lignin conversion. > Preliminary deep dehydration of biopolymers is realizable at low dose rates.

  13. Novel Proton Conducting Solid Bio-polymer Electrolytes Based on Carboxymethyl Cellulose Doped with Oleic Acid and Plasticized with Glycerol

    Science.gov (United States)

    Chai, M. N.; Isa, M. I. N.

    2016-06-01

    The plasticized solid bio-polymer electrolytes (SBEs) system has been formed by introducing glycerol (Gly) as the plasticizer into the carboxymethyl cellulose (CMC) doped with oleic acid (OA) via solution casting techniques. The ionic conductivity of the plasticized SBEs has been studied using Electrical Impedance Spectroscopy. The highest conductivity achieved is 1.64 × 10‑4 S cm‑1 for system containing 40 wt. % of glycerol. FTIR deconvolution technique had shown that the conductivity of CMC-OA-Gly SBEs is primarily influenced by the number density of mobile ions. Transference number measurement has shown that the cation diffusion coefficient and ionic mobility is higher than anion which proved the plasticized polymer system is a proton conductor.

  14. Preparation of Biopolymer Aerogels Using Green Solvents

    Science.gov (United States)

    Subrahmanyam, Raman; Gurikov, Pavel; Meissner, Imke; Smirnova, Irina

    2016-01-01

    Although the first reports on aerogels made by Kistler1 in the 1930s dealt with aerogels from both inorganic oxides (silica and others) and biopolymers (gelatin, agar, cellulose), only recently have biomasses been recognized as an abundant source of chemically diverse macromolecules for functional aerogel materials. Biopolymer aerogels (pectin, alginate, chitosan, cellulose, etc.) exhibit both specific inheritable functions of starting biopolymers and distinctive features of aerogels (80-99% porosity and specific surface up to 800 m2/g). This synergy of properties makes biopolymer aerogels promising candidates for a wide gamut of applications such as thermal insulation, tissue engineering and regenerative medicine, drug delivery systems, functional foods, catalysts, adsorbents and sensors. This work demonstrates the use of pressurized carbon dioxide (5 MPa) for the ionic cross linking of amidated pectin into hydrogels. Initially a biopolymer/salt dispersion is prepared in water. Under pressurized CO2 conditions, the pH of the biopolymer solution is lowered to 3 which releases the crosslinking cations from the salt to bind with the biopolymer yielding hydrogels. Solvent exchange to ethanol and further supercritical CO2 drying (10 - 12 MPa) yield aerogels. Obtained aerogels are ultra-porous with low density (as low as 0.02 g/cm3), high specific surface area (350 - 500 m2/g) and pore volume (3 - 7 cm3/g for pore sizes less than 150 nm). PMID:27403649

  15. Structural and Ionic Transport Properties of Protonic Conducting Solid Biopolymer Electrolytes Based on Carboxymethyl Cellulose Doped with Ammonium Fluoride.

    Science.gov (United States)

    Ramlli, M A; Isa, M I N

    2016-11-10

    Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and transference number measurement (TNM) techniques were applied to investigate the complexation, structural, and ionic transport properties of and the dominant charge-carrier species in a solid biopolymer electrolyte (SBE) system based on carboxymethyl cellulose (CMC) doped with ammonium fluoride (NH4F), which was prepared via a solution casting technique. The SBEs were partially opaque in appearance, with no phase separation. The presence of interactions between the host polymer (CMC) and the ionic dopant (NH4F) was proven by FT-IR analysis at the C-O band. XRD spectra analyzed using Origin 8 software disclose that the degree of crystallinity (χc%) of the SBEs decreased with the addition of NH4F, indicating an increase in the amorphous nature of the SBEs. Analysis of the ionic transport properties reveals that the ionic conductivity of the SBEs is dependent on the ionic mobility (μ) and diffusion of ions (D). TNM analysis confirms that the SBEs are proton conductors.

  16. Effect of gamma irradiation on biopolymer composite films of poly(vinyl alcohol) and bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Jipa, Iuliana Mihaela; Stroescu, Marta [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Stoica-Guzun, Anicuta, E-mail: stoica.anicuta@gmail.com [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Dobre, Tanase; Jinga, Sorin [University Politehnica of Bucharest, Department of Chemical Engineering, 313 Splaiul Independentei, Polizu 1-3, 060042 Bucharest (Romania); Zaharescu, Traian [Advanced Research Institute for Electrical Engineering, 313 Splaiul Unirii, 030138 Bucharest (Romania)

    2012-05-01

    Highlights: Black-Right-Pointing-Pointer The paper reports the obtaining of composite materials between PVA and BC. Black-Right-Pointing-Pointer The composite films were {gamma}-irradiated at doses up to 50 kGy. Black-Right-Pointing-Pointer The films have a good resistance, being suitable as food packaging materials. - Abstract: Composite materials containing in different ratios poly(vinyl alcohol) (PVA), bacterial cellulose (BC) and glycerol (G) as plasticizer were obtained and exposed to different {gamma} radiation doses using an irradiator GAMMATOR provided with {sup 137}Cs source. These films successively received up to 50 kGy absorbed doses at a dose rate of 0.4 kGy/h at room temperature. In order to study the chemical and structural changes during {gamma} irradiation, Fourier-transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and UV-Vis spectroscopy were used. Water vapour permeability (WVP), Hunter colour parameters and hardness were also measured for the irradiated samples. Investigation revealed that WVP was not significantly affected by the irradiation. Colour measurements indicated a slight decrease of pure PVA films transparency and it made clear that all samples became more reddish and yellowish after irradiation. The samples hardness was not affected by the irradiation doses used. However, the results showed no drastic structural or chemical changes of the irradiated samples, which prove, in consequence, a good durability. These composite materials could be used as packaging materials for {gamma} irradiated products.

  17. Texture of cellulose microfibrils of root hair cell walls of Arabidopsis thaliana, Medicago truncatula, and Vicia sativa

    NARCIS (Netherlands)

    Akkerman, M.; Franssen-Verheijen, M.A.W.; Immerzeel, P.; Hollander, den L.; Schel, J.H.N.; Emons, A.M.C.

    2012-01-01

    Cellulose is the most abundant biopolymer on earth, and has qualities that make it suitable for biofuel. There are new tools for the visualisation of the cellulose synthase complexes in living cells, but those do not show their product, the cellulose microfibrils (CMFs). In this study we report the

  18. Occurrence of Cellulose-Producing Gluconacetobacter spp. in Fruit Samples and Kombucha Tea, and Production of the Biopolymer.

    Science.gov (United States)

    Neera; Ramana, Karna Venkata; Batra, Harsh Vardhan

    2015-06-01

    Cellulose producing bacteria were isolated from fruit samples and kombucha tea (a fermented beverage) using CuSO4 solution in modified Watanabe and Yamanaka medium to inhibit yeasts and molds. Six bacterial strains showing cellulose production were isolated and identified by 16S rRNA gene sequencing as Gluconacetobacter xylinus strain DFBT, Ga. xylinus strain dfr-1, Gluconobacter oxydans strain dfr-2, G. oxydans strain dfr-3, Acetobacter orientalis strain dfr-4, and Gluconacetobacter intermedius strain dfr-5. All the cellulose-producing bacteria were checked for the cellulose yield. A potent cellulose-producing bacterium, i.e., Ga. xylinus strain DFBT based on yield (cellulose yield 5.6 g/L) was selected for further studies. Cellulose was also produced in non- conventional media such as pineapple juice medium and hydrolysed corn starch medium. A very high yield of 9.1 g/L cellulose was obtained in pineapple juice medium. Fourier transform infrared spectrometer (FT-IR) analysis of the bacterial cellulose showed the characteristic peaks. Soft cellulose with a very high water holding capacity was produced using limited aeration. Scanning electron microscopy (SEM) was used to analyze the surface characteristics of normal bacterial cellulose and soft cellulose. The structural analysis of the polymer was performed using (13)C solid-state nuclear magnetic resonance (NMR). More interfibrillar space was observed in the case of soft cellulose as compared to normal cellulose. This soft cellulose can find potential applications in the food industry as it can be swallowed easily without chewing.

  19. Cellulose-water interaction: a spectroscopic study

    OpenAIRE

    Lindh, Erik L

    2016-01-01

    The human society of today has a significantly negative impact on the environment and needs to change its way of living towards a more sustainable path if to continue to live on a healthy planet. One path is believed to be an increased usage of naturally degradable and renewable raw materials and, therefore, attention has been focused on the highly abundant biopolymer cellulose. However, a large drawback with cellulose-based materials is the significant change of their mechanical properties w...

  20. Biopolymer chitin: extraction and characterization; Biopolimero quitina: extracao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The biopolymers are materials made from renewable sources such as soybean, corn, cane sugar, cellulose and chitin. Chitin is the most abundant biopolymer found in nature, after cellulose. The chemical structure of chitin is distinguished by the hydroxyl group, of structure from cellulose, located at position C-2, which in the chitin is replaced by acetamine group. The objective of this study was to develop the chitin from exoskeletons of Litopenaeus vannamei shrimp, which are discarded as waste, causing pollutions, environmental problems and thus obtain better utilization of these raw materials. It also, show the extraction process and deacetylation of chitosan. The extraction of chitin followed steps of demineralization, desproteinization and deodorization. Chitin and chitosan were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and the thermals properties were analyzed by thermogravimetry (TG/DTG). (author)

  1. The physics of cellulose biosynthesis : polymerization and self-organization, from plants to bacteria

    NARCIS (Netherlands)

    Diotallevi, F.

    2007-01-01

    This thesis deals with many different biological problems concerning cellulose biosynthesis. Cellulose is made by all plants, and therefore it is probably the most abundant organic compound on Earth. Aside from being the primary building material for plants, this biopolymer is of great economic impo

  2. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    Science.gov (United States)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  3. Biopolymer chitosan: Properties, interactions and its use in the treatment of textiles

    Directory of Open Access Journals (Sweden)

    Jocić Dragan

    2004-01-01

    Full Text Available The biopolymer chitosan is obtained by the deacetylation of chitin, the second most abundant polysaccharide in nature, after cellulose. It is becoming an increasingly important biopolymer because it offers unique physico-chemical and biological properties. Due to its solubility, chitosan allows processing from aqueous solutions. This review provides information on important chitosan properties, as well as on some interactions that are of special interest for chitosan application. It summarizes some of the most important developments in the use of chitosan in the treatment of textile materials. Special emphasis is given to improved dyeing properties of the textile material treated with chitosan.

  4. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  5. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.

    Science.gov (United States)

    H P S, Abdul Khalil; Saurabh, Chaturbhuj K; A S, Adnan; Nurul Fazita, M R; Syakir, M I; Davoudpour, Y; Rafatullah, M; Abdullah, C K; M Haafiz, M K; Dungani, R

    2016-10-01

    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications.

  6. Biopolymers as a flexible resource for nanochemistry.

    Science.gov (United States)

    Schnepp, Zoe

    2013-01-21

    Biomass is an abundant source of chemically diverse macromolecules, including polysaccharides, polypeptides, and polyaromatics. Many of these biological polymers (biopolymers) are highly evolved for specific functions through optimized chain length, functionalization, and monomer sequence. As biopolymers are a chemical resource, much current effort is focused on the breakdown of these molecules into fuels or platform chemicals. However there is growing interest in using biopolymers directly to create functional materials. This Minireview uses recent examples to show how biopolymers are providing new directions in the synthesis of nanostructured materials.

  7. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Science.gov (United States)

    Liu, Lifeng; Shang-Guan, Keke; Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  8. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  9. Discovery of abundant cellulose microfibers encased in 250 Ma Permian halite: a macromolecular target in the search for life on other planets.

    Science.gov (United States)

    Griffith, Jack D; Willcox, Smaranda; Powers, Dennis W; Nelson, Roger; Baxter, Bonnie K

    2008-04-01

    In this study, we utilized transmission electron microscopy to examine the contents of fluid inclusions in halite (NaCl) and solid halite crystals collected 650 m below the surface from the Late Permian Salado Formation in southeastern New Mexico (USA). The halite has been isolated from contaminating groundwater since deposition approximately 250 Ma ago. We show that abundant cellulose microfibers are present in the halite and appear remarkably intact. The cellulose is in the form of 5 nm microfibers as well as composite ropes and mats, and was identified by resistance to 0.5 N NaOH treatment and susceptibility to cellulase enzyme treatment. These cellulose microfibers represent the oldest native biological macromolecules to have been directly isolated, examined biochemically, and visualized (without growth or replication) to date. This discovery points to cellulose as an ideal macromolecular target in the search for life on other planets in our Solar System.

  10. Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications.

    Science.gov (United States)

    Brinchi, L; Cotana, F; Fortunati, E; Kenny, J M

    2013-04-15

    The use of renewables materials for industrial applications is becoming impellent due to the increasing demand of alternatives to scarce and unrenewable petroleum supplies. In this regard, nanocrystalline cellulose, NCC, derived from cellulose, the most abundant biopolymer, is one of the most promising materials. NCC has unique features, interesting for the development of new materials: the abundance of the source cellulose, its renewability and environmentally benign nature, its mechanical properties and its nano-scaled dimensions open a wide range of possible properties to be discovered. One of the most promising uses of NCC is in polymer matrix nanocomposites, because it can provide a significant reinforcement. This review provides an overview on this emerging nanomaterial, focusing on extraction procedures, especially from lignocellulosic biomass, and on technological developments and applications of NCC-based materials. Challenges and future opportunities of NCC-based materials will be are discussed as well as obstacles remaining for their large use.

  11. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    OpenAIRE

    Udeni Gunathilake T.M. Sampath; Yern Chee Ching; Cheng Hock Chuah; Johari J. Sabariah; Pai-Chen Lin

    2016-01-01

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and the...

  12. Lignin biopolymer based triboelectric nanogenerators

    Science.gov (United States)

    Bao, Yukai; Wang, Ruoxing; Lu, Yunmei; Wu, Wenzhuo

    2017-07-01

    Ongoing research in triboelectric nanogenerators (TENGs) focuses on increasing power generation, but obstacles concerning economical and eco-friendly utilization of TENGs continue to prevail. Being the second most abundant biopolymer on earth, lignin offers a valuable opportunity for low-cost TENG applications in biomedical devices, benefitting from its biodegradability and biocompatibility. Here, we develop for the first time a lignin biopolymer based TENGs for harvesting mechanical energy in the environment, which shows great potential for self-powered biomedical devices among other applications and opens doors to new technologies that utilize otherwise wasted materials for economically feasible and ecologically friendly production of energy devices.

  13. Disordered Cellulose-Based Nanostructures for Enhanced Light Scattering

    Science.gov (United States)

    2017-01-01

    Cellulose is the most abundant biopolymer on Earth. Cellulose fibers, such as the one extracted form cotton or woodpulp, have been used by humankind for hundreds of years to make textiles and paper. Here we show how, by engineering light–matter interaction, we can optimize light scattering using exclusively cellulose nanocrystals. The produced material is sustainable, biocompatible, and when compared to ordinary microfiber-based paper, it shows enhanced scattering strength (×4), yielding a transport mean free path as low as 3.5 μm in the visible light range. The experimental results are in a good agreement with the theoretical predictions obtained with a diffusive model for light propagation. PMID:28191920

  14. Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants.

    Science.gov (United States)

    Li, Shundai; Bashline, Logan; Zheng, Yunzhen; Xin, Xiaoran; Huang, Shixin; Kong, Zhaosheng; Kim, Seong H; Cosgrove, Daniel J; Gu, Ying

    2016-10-04

    Cellulose, often touted as the most abundant biopolymer on Earth, is a critical component of the plant cell wall and is synthesized by plasma membrane-spanning cellulose synthase (CESA) enzymes, which in plants are organized into rosette-like CESA complexes (CSCs). Plants construct two types of cell walls, primary cell walls (PCWs) and secondary cell walls (SCWs), which differ in composition, structure, and purpose. Cellulose in PCWs and SCWs is chemically identical but has different physical characteristics. During PCW synthesis, multiple dispersed CSCs move along a shared linear track in opposing directions while synthesizing cellulose microfibrils with low aggregation. In contrast, during SCW synthesis, we observed swaths of densely arranged CSCs that moved in the same direction along tracks while synthesizing cellulose microfibrils that became highly aggregated. Our data support a model in which distinct spatiotemporal features of active CSCs during PCW and SCW synthesis contribute to the formation of cellulose with distinct structure and organization in PCWs and SCWs of Arabidopsis thaliana This study provides a foundation for understanding differences in the formation, structure, and organization of cellulose in PCWs and SCWs.

  15. Impact of Biofield Treatment on Chemical and Thermal Properties of Cellulose and Cellulose Acetate

    OpenAIRE

    Trivedi, Mahendra Kumar

    2015-01-01

    Cellulose being an excellent biopolymer has cemented its place firmly in many industries as a coating material, textile, composites, and biomaterial applications. In the present study, we have investigated the effect of biofield treatment on physicochemical properties of cellulose and cellulose acetate. The cellulose and cellulose acetate were exposed to biofield and further the chemical and thermal properties were investigated. X-ray diffraction study asserted that the biofield treatment did...

  16. Using biopolymers to remove heavy metals from soil and water

    Energy Technology Data Exchange (ETDEWEB)

    Krishnamurthy, S.; Frederick, R.M.

    1993-11-19

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae. (Copyright (c) Remediation 1994.)

  17. Antibacterial activity of nanocomposites of copper and cellulose.

    Science.gov (United States)

    Pinto, Ricardo J B; Daina, Sara; Sadocco, Patrizia; Pascoal Neto, Carlos; Trindade, Tito

    2013-01-01

    The design of cheap and safe antibacterial materials for widespread use has been a challenge in materials science. The use of copper nanostructures combined with abundant biopolymers such as cellulose offers a potential approach to achieve such materials though this has been less investigated as compared to other composites. Here, nanocomposites comprising copper nanofillers in cellulose matrices have been prepared by in situ and ex situ methods. Two cellulose matrices (vegetable and bacterial) were investigated together with morphological distinct copper particulates (nanoparticles and nanowires). A study on the antibacterial activity of these nanocomposites was carried out for Staphylococcus aureus and Klebsiella pneumoniae, as pathogen microorganisms. The results showed that the chemical nature and morphology of the nanofillers have great effect on the antibacterial activity, with an increase in the antibacterial activity with increasing copper content in the composites. The cellulosic matrices also show an effect on the antibacterial efficiency of the nanocomposites, with vegetal cellulose fibers acting as the most effective substrate. Regarding the results obtained, we anticipate the development of new approaches to prepare cellulose/copper based nanocomposites thereby producing a wide range of interesting antibacterial materials with potential use in diverse applications such as packaging or paper coatings.

  18. New and improved method of investigation using thermal tools for characterization of cellulose from eucalypts pulp

    Energy Technology Data Exchange (ETDEWEB)

    Lengowski, Elaine Cristina, E-mail: elainelengowski@yahoo.com.br [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Magalhães, Washington Luiz Esteves, E-mail: washington.magalhaes@embrapa.br [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil); Programa de Pós Graduação em Engenharia de Materiais – PIPE Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Nisgoski, Silvana, E-mail: silnis@yahoo.com [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Muniz, Graciela Inês Bolzon de, E-mail: graciela.ufpr@gmail.com [Laboratório de Anatomia e Qualidade da Madeira – LANAQM, Departamento de Engenharia e Tecnologia Florestal – DETF/Universidade Federal do Paraná, (UFPR), Curitiba, PR (Brazil); Satyanarayana, Kestur Gundappa [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil); Lazzarotto, Marcelo, E-mail: marcelo.lazzarotto@embrapa.br [Embrapa Florestas, Estrada da Ribeira km 111 P.O. Box 319, 83411-000 Colombo, PR (Brazil)

    2016-08-20

    Highlights: • Cellulose was treated to modify its crystallinity. • Cellulose was characterized by X-ray diffraction to evaluate Segal’s index. • TGA and DTA with chemometric tools were used to predict Segal’s index. • MLR model was applied to predict XRD cellulose Segal’s index from TGA curves. • MLR model was applied to predict XRD cellulose Segal’s index from DTA curves. - Abstract: Despite cellulose being the most abundant biopolymer on earth and an important commodity, there is a lack of deeper knowledge about its structure as well as faster and more efficient characterization techniques. This paper presents preparation of nanocellulose from bleached cellulose pulp of Eucalyptus by chemical and mechanical pre-treatments, while the cellulose was given treatment to obtain a great range of crystallinity index. The nanocellulose is characterized by X-ray diffraction to evaluate Segal’s index while chemometric tools by TGA and DTA were used to predict Segal’s index. DTA curves, along with multivariate statistical model, presented better result than TGA. The coefficient of variation and standard error of prediction for the proposed models using external validation samples were in the range of 0.91–0.96 and 4.18–8.71, respectively. These successful mathematical models are discussed by correlating them with the observed characteristics of cellulose.

  19. Cellulose is not just cellulose

    DEFF Research Database (Denmark)

    Hidayat, Budi Juliman; Felby, Claus; Johansen, Katja Salomon

    2012-01-01

    or enzymatic hydrolysis of plant cell walls is carried out simultaneously with the application of shear stress, plant cells such as fibers or tracheids break at their dislocations. At present it is not known whether specific carbohydrate binding modules (CBMs) and/or cellulases preferentially access cellulose......Most secondary plant cell walls contain irregular regions known as dislocations or slip planes. Under industrial biorefining conditions dislocations have recently been shown to play a key role during the initial phase of the enzymatic hydrolysis of cellulose in plant cell walls. In this review we...... are not regions where free cellulose ends are more abundant than in the bulk cell wall. In more severe cases cracks between fibrils form at dislocations and it is possible that the increased accessibility that these cracks give is the reason why hydrolysis of cellulose starts at these locations. If acid...

  20. Cellulosic fibril–rubber nanocomposites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2010-06-01

    Full Text Available Cellulose is the most abundant polymer on earth- has emerged as an ideal candidate for providing nanoparticles as reinforcing agents. There is a growing interest in cellulose nanocomposites within the research community and especially...

  1. Biopolymers and supramolecular polymers as biomaterials for biomedical applications

    OpenAIRE

    Freeman, Ronit; Boekhoven, Job; Dickerson, Matthew B.; Naik, Rajesh R.; Stupp, Samuel I.

    2015-01-01

    Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in bio...

  2. Plant cellulose synthesis: CESA proteins crossing kingdoms.

    Science.gov (United States)

    Kumar, Manoj; Turner, Simon

    2015-04-01

    Cellulose is a biopolymer of considerable economic importance. It is synthesised by the cellulose synthase complex (CSC) in species ranging from bacteria to higher plants. Enormous progress in our understanding of bacterial cellulose synthesis has come with the recent publication of both the crystal structure and biochemical characterisation of a purified complex able to synthesis cellulose in vitro. A model structure of a plant CESA protein suggests considerable similarity between the bacterial and plant cellulose synthesis. In this review article we will cover current knowledge of how plant CESA proteins synthesise cellulose. In particular the focus will be on the lessons learned from the recent work on the catalytic mechanism and the implications that new data on cellulose structure has for the assembly of CESA proteins into the large complex that synthesis plant cellulose microfibrils.

  3. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Directory of Open Access Journals (Sweden)

    Chithra Karunakaran

    Full Text Available Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  4. Introduction of soft X-ray spectromicroscopy as an advanced technique for plant biopolymers research.

    Science.gov (United States)

    Karunakaran, Chithra; Christensen, Colleen R; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M; Perumal, Vijayan; Miller, Shea S; Hitchcock, Adam P

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed.

  5. Introduction of Soft X-Ray Spectromicroscopy as an Advanced Technique for Plant Biopolymers Research

    Science.gov (United States)

    Karunakaran, Chithra; Christensen, Colleen R.; Gaillard, Cedric; Lahlali, Rachid; Blair, Lisa M.; Perumal, Vijayan; Miller, Shea S.; Hitchcock, Adam P.

    2015-01-01

    Soft X-ray absorption spectroscopy coupled with nano-scale microscopy has been widely used in material science, environmental science, and physical sciences. In this work, the advantages of soft X-ray absorption spectromicroscopy for plant biopolymer research were demonstrated by determining the chemical sensitivity of the technique to identify common plant biopolymers and to map the distributions of biopolymers in plant samples. The chemical sensitivity of soft X-ray spectroscopy to study biopolymers was determined by recording the spectra of common plant biopolymers using soft X-ray and Fourier Transform mid Infrared (FT-IR) spectroscopy techniques. The soft X-ray spectra of lignin, cellulose, and polygalacturonic acid have distinct spectral features. However, there were no distinct differences between cellulose and hemicellulose spectra. Mid infrared spectra of all biopolymers were unique and there were differences between the spectra of water soluble and insoluble xylans. The advantage of nano-scale spatial resolution exploited using soft X-ray spectromicroscopy for plant biopolymer research was demonstrated by mapping plant cell wall biopolymers in a lentil stem section and compared with the FT-IR spectromicroscopy data from the same sample. The soft X-ray spectromicroscopy enables mapping of biopolymers at the sub-cellular (~30 nm) resolution whereas, the limited spatial resolution in the micron scale range in the FT-IR spectromicroscopy made it difficult to identify the localized distribution of biopolymers. The advantages and limitations of soft X-ray and FT-IR spectromicroscopy techniques for biopolymer research are also discussed. PMID:25811457

  6. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies.

    Science.gov (United States)

    Simão, Claudia D; Reparaz, Juan S; Wagner, Markus R; Graczykowski, Bartlomiej; Kreuzer, Martin; Ruiz-Blanco, Yasser B; García, Yamila; Malho, Jani-Markus; Goñi, Alejandro R; Ahopelto, Jouni; Sotomayor Torres, Clivia M

    2015-08-01

    Nanofibrillated cellulose, a polymer that can be obtained from one of the most abundant biopolymers in nature, is being increasingly explored due to its outstanding properties for packaging and device applications. Still, open challenges in engineering its intrinsic properties remain to address. To elucidate the optical and mechanical stability of nanofibrillated cellulose as a standalone platform, herein we report on three main findings: (i) for the first time an experimental determination of the optical bandgap of nanofibrillated cellulose, important for future modeling purposes, based on the onset of the optical bandgap of the nanofibrillated cellulose film at Eg≈275 nm (4.5 eV), obtained using absorption and cathodoluminescence measurements. In addition, comparing this result with ab-initio calculations of the electronic structure the exciton binding energy is estimated to be Eex≈800 meV; (ii) hydrostatic pressure experiments revealed that nanofibrillated cellulose is structurally stable at least up to 1.2 GPa; and (iii) surface elastic properties with repeatability better than 5% were observed under moisture cycles with changes of the Young modulus as large as 65%. The results obtained show the precise determination of significant properties as elastic properties and interactions that are compared with similar works and, moreover, demonstrate that nanofibrillated cellulose properties can be reversibly controlled, supporting the extended potential of nanofibrillated cellulose as a robust platform for green-technology applications.

  7. Multifilament cellulose/chitin blend yarn spun from ionic liquids.

    Science.gov (United States)

    Mundsinger, Kai; Müller, Alexander; Beyer, Ronald; Hermanutz, Frank; Buchmeiser, Michael R

    2015-10-20

    Cellulose and chitin, both biopolymers, decompose before reaching their melting points. Therefore, processing these unmodified biopolymers into multifilament yarns is limited to solution chemistry. Especially the processing of chitin into fibers is rather limited to distinctive, often toxic or badly removable solvents often accompanied by chemical de-functionalization to chitosan (degree of acetylation, DA, cellulose/chitin blend fibers using ionic liquids (ILs) as gentle, removable, recyclable and non-deacetylating solvents. Chitin and cellulose are dissolved in ethylmethylimidazolium propionate ([C2mim](+)[OPr](-)) and the obtained one-pot spinning dope is used to produce multifilament fibers by a continuous wet-spinning process. Both the rheology of the corresponding spinning dopes and the structural and physical properties of the obtained fibers have been determined for different biopolymer ratios. With respect to medical or hygienic application, the cellulose/chitin blend fiber show enhanced water retention capacity compared to pure cellulose fibers.

  8. Biopolymer organization upon confinement

    Energy Technology Data Exchange (ETDEWEB)

    Marenduzzo, D [SUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ (United Kingdom); Micheletti, C [SISSA, International School for Advanced Studies, CNR-INFM Democritos and Italian Institute of Technology, SISSA Unit via Bonomea, 265, Trieste (Italy); Orlandini, E [Dipartimento di Fisica, Universita di Padova and Sezione INFN Padova, Via Marzolo 8, 35131, Padova (Italy)

    2010-07-21

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered. (topical review)

  9. Coupled biopolymer networks

    Science.gov (United States)

    Schwarz, J. M.; Zhang, Tao

    2015-03-01

    The actin cytoskeleton provides the cell with structural integrity and allows it to change shape to crawl along a surface, for example. The actin cytoskeleton can be modeled as a semiflexible biopolymer network that modifies its morphology in response to both external and internal stimuli. Just inside the inner nuclear membrane of a cell exists a network of filamentous lamin that presumably protects the heart of the cell nucleus--the DNA. Lamins are intermediate filaments that can also be modeled as semiflexible biopolymers. It turns out that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins that bridge the outer and inner nuclear membranes. We, therefore, probe the consequences of such a coupling via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the cytoskeletal network. Such study could have implications for mechanical mechanisms of the regulation of transcription, since DNA--yet another semiflexible polymer--contains lamin-binding domains, and, thus, widen the field of epigenetics.

  10. The use of natural abundance stable isotopic ratios to indicate the presence of oxygen-containing chemical linkages between cellulose and lignin in plant cell walls.

    Science.gov (United States)

    Zhou, Youping; Stuart-Williams, Hilary; Farquhar, Graham D; Hocart, Charles H

    2010-06-01

    Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted "standard" three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO(2), respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO(2) reagent in aqueous media of contrasting (18)O/(16)O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the "standard" method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal. Cellulose samples isolated from processing plant-derived cellulose-lignin mixtures in media of contrasting (18)O/(16)O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Cellulose nanocrystals: synthesis, functional properties, and applications

    OpenAIRE

    George J.; Sabapathi SN

    2015-01-01

    Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers...

  12. A multipurpose natural and renewable polymer in medical applications: Bacterial cellulose.

    Science.gov (United States)

    de Oliveira Barud, Hélida Gomes; da Silva, Robson Rosa; da Silva Barud, Hernane; Tercjak, Agnieszka; Gutierrez, Junkal; Lustri, Wilton Rogério; de Oliveira, Osmir Batista; Ribeiro, Sidney J L

    2016-11-20

    Bacterial cellulose (BC) produced by some bacteria, among them Gluconacetobacter xylinum, which secrets an abundant 3D networks fibrils, represents an interesting emerging biocompatible nanomaterial. Since its discovery BC has shown tremendous potential in a wide range of biomedical applications, such as artificial skin, artificial blood vessels and microvessels, wound dressing, among others. BC can be easily manipulated to improve its properties and/or functionalities resulting in several BC based nanocomposites. As example BC/collagen, BC/gelatin, BC/Fibroin, BC/Chitosan, etc. Thus, the aim of this review is to discuss about the applicability in biomedicine by demonstrating a variety of forms of this biopolymer highlighting in detail some qualities of bacterial cellulose. Therefore, various biomedical applications ranging from implants and scaffolds, carriers for drug delivery, wound-dressing materials, etc. that were reported until date will be presented.

  13. Production of novel microbial biopolymers

    Science.gov (United States)

    Microorganisms are well known to produce a wide variety of biobased polymers. These biopolymers have found a wide range of commercial uses, including food, feed, and consumer and industrial products. The production and possible uses of several novel biopolymers from both bacteria and fungi will be d...

  14. Fracture mechanisms in biopolymer films using coupling of mechanical analysis and high speed visualization technique

    NARCIS (Netherlands)

    Paes, S.S.; Yakimets, I.; Wellner, N.; Hill, S.E.; Wilson, R.H.; Mitchell, J.R.

    2010-01-01

    The aim of this study was to provide a detailed description of the fracture mechanisms in three different biopolymer thin materials: gelatin, hydroxypropyl cellulose (HPC) and cassava starch films. That was achieved by using a combination of fracture mechanics methodology and in situ visualization w

  15. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  16. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    Science.gov (United States)

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic-co-glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  17. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    Directory of Open Access Journals (Sweden)

    Mehmet Isik

    2014-07-01

    Full Text Available Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels.

  18. Biopolymers and supramolecular polymers as biomaterials for biomedical applications.

    Science.gov (United States)

    Freeman, Ronit; Boekhoven, Job; Dickerson, Matthew B; Naik, Rajesh R; Stupp, Samuel I

    2015-12-01

    Protein- and peptide-based structural biopolymers are abundant building blocks of biological systems. Either in their natural forms, such as collagen, silk or fibronectin, or as related synthetic materials they can be used in various technologies. An emerging area is that of biomimetic materials inspired by protein-based biopolymers, which are made up of small molecules rather than macromolecules and can therefore be described as supramolecular polymers. These materials are very useful in biomedical applications because of their ability to imitate the extracellular matrix both in architecture and their capacity to signal cells. This article describes important features of the natural extracellular matrix and highlight how these features are being incorporated into biomaterials composed of biopolymers and supramolecular polymers. We particularly focus on the structures, properties, and functions of collagen, fibronectin, silk, and the supramolecular polymers inspired by them as biomaterials for regenerative medicine.

  19. Conformational changes in biopolymers

    Science.gov (United States)

    Ivanov, Vassili

    2005-12-01

    Biopolymer conformational changes are involved in many biological processes. This thesis summarizes some theoretical and experimental approaches which I have taken at UCLA to explore conformational changes in biopolymers. The reversible thermal denaturation of the DNA double helix is, perhaps, the simplest example of biopolymer conformational change. I have developed a statistical mechanics model of DNA melting with reduced degrees of freedom, which allows base stacking interaction to be taken into account and treat base pairing and stacking separately. Unlike previous models, this model describes both the unpairing and unstacking parts of the experimental melting curves and explains the observed temperature dependence of the effective thermodynamic parameters used in models of the nearest neighbor type. I developed a basic kinetic model for irreversible thermal denaturation of F-actin, which incorporates depolymerization of F-actin from the ends and breaking of F-actin fiber in the middle. The model explains the cooperativity of F-actin thermal denaturation observed by D. Pavlov et al. in differential calorimetry measurements. CG-rich DNA sequences form left-handed Z-DNA at high ionic strength or upon binding of polyvalent ions and some proteins. I studied experimentally the B-to-Z transition of the (CG)6 dodecamer. Improvement of the locally linearized model used to interpret the data gives evidence for an intermediate state in the B-to-Z transition of DNA, contrary to previous research on this subject. In the past 15 years it has become possible to study the conformational changes of biomolecules using single-molecule techniques. In collaboration with other lab members I performed a single-molecule experiment, where we monitored the displacement of a micrometer-size bead tethered to a surface by a DNA probe undergoing the conformational change. This technique allows probing of conformational changes with subnanometer accuracy. We applied the method to detect

  20. Abiotic origin of biopolymers

    Science.gov (United States)

    Oro, J.; Stephen-Sherwood, E.

    1976-01-01

    A variety of methods have been investigated in different laboratories for the polymerization of amino acids and nucleotides under abiotic conditions. They include (1) thermal polymerization; (2) direct polymerization of certain amino acid nitriles, amides, or esters; (3) polymerization using polyphosphate esters; (4) polymerization under aqueous or drying conditions at moderate temperatures using a variety of simple catalysts or condensing agents like cyanamide, dicyandiamide, or imidazole; and (5) polymerization under similar mild conditions but employing activated monomers or abiotically synthesized high-energy compounds such as adenosine 5'-triphosphate (ATP). The role and significance of these methods for the synthesis of oligopeptides and oligonucleotides under possible primitive-earth conditions is evaluated. It is concluded that the more recent approach involving chemical processes similar to those used by contemporary living organisms appears to offer a reasonable solution to the prebiotic synthesis of these biopolymers.

  1. Processes for xanthomonas biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Engelskirchen, K.; Stein, W.; Bahn, M.; Schieferstein, L.; Schindler, J.

    1984-03-27

    A process is described for producing xanthan gum in which the use of a stable, water-in-oil emulsion in the fermentation medium markedly lowers the viscosity of the medium, resulting in lower energy requirements for the process, and also resulting in enhanced yields of the biopolymer. In such an emulsion, the aqueous fermentation phase, with its microbial growth and metabolic processes, takes place in a finely dispersed homogeneous oil phase. The viscosity increase in each droplet of the aqueous nutrient solution will not noticeably affect this mixture in the fermenter because the viscosity of the reaction mixture in the fermenter is determined primarily by the viscosity of the oil phase. 45 claims

  2. Identification of microbial populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis.

    Science.gov (United States)

    Ivanova, Anastasia A; Wegner, Carl-Eric; Kim, Yongkyu; Liesack, Werner; Dedysh, Svetlana N

    2016-10-01

    Northern peatlands play a crucial role in the global carbon balance, serving as a persistent sink for atmospheric CO2 and a global carbon store. Their most extensive type, Sphagnum-dominated acidic peatlands, is inhabited by microorganisms with poorly understood degradation capabilities. Here, we applied a combination of barcoded pyrosequencing of SSU rRNA genes and Illumina RNA-Seq of total RNA (metatranscriptomics) to identify microbial populations and enzymes involved in degrading the major components of Sphagnum-derived litter and exoskeletons of peat-inhabiting arthropods: cellulose, xylan, pectin and chitin. Biopolymer addition to peat induced a threefold to fivefold increase in bacterial cell numbers. Functional community profiles of assembled mRNA differed between experimental treatments. In particular, pectin and xylan triggered increased transcript abundance of genes involved in energy metabolism and central carbon metabolism, such as glycolysis and TCA cycle. Concurrently, the substrate-induced activity of bacteria on these two biopolymers stimulated grazing of peat-inhabiting protozoa. Alveolata (ciliates) was the most responsive protozoa group as confirmed by analysis of both SSU rRNA genes and SSU rRNA. A stimulation of alphaproteobacterial methanotrophs on pectin was consistently shown by rRNA and mRNA data. Most likely, their significant enrichment was due to the utilization of methanol released during the degradation of pectin. Analysis of SSU rRNA and total mRNA revealed a specific response of Acidobacteria and Actinobacteria to chitin and pectin, respectively. Relatives of Telmatobacter bradus were most responsive among the Acidobacteria, while the actinobacterial response was primarily affiliated with Frankiales and Propionibacteriales. The expression of a wide repertoire of carbohydrate-active enzymes (CAZymes) corresponded well to the detection of a highly diverse peat-inhabiting microbial community, which is dominated by yet uncultivated

  3. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  4. The cellulose resource matrix.

    Science.gov (United States)

    Keijsers, Edwin R P; Yılmaz, Gülden; van Dam, Jan E G

    2013-03-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where large scale competition can be expected and already is observed for the traditional industries such as the paper industry. Cellulose and lignocellulosic raw materials (like wood and non-wood fibre crops) are being utilised in many industrial sectors. Due to the initiated transition towards biobased economy, these raw materials are intensively investigated also for new applications such as 2nd generation biofuels and 'green' chemicals and materials production (Clark, 2007; Lange, 2007; Petrus & Noordermeer, 2006; Ragauskas et al., 2006; Regalbuto, 2009). As lignocellulosic raw materials are available in variable quantities and qualities, unnecessary competition can be avoided via the choice of suitable raw materials for a target application. For example, utilisation of cellulose as carbohydrate source for ethanol production (Kabir Kazi et al., 2010) avoids the discussed competition with easier digestible carbohydrates (sugars, starch) deprived from the food supply chain. Also for cellulose use as a biopolymer several different competing markets can be distinguished. It is clear that these applications and markets will be influenced by large volume shifts. The world will have to reckon with the increase of competition and feedstock shortage (land use/biodiversity) (van Dam, de Klerk-Engels, Struik, & Rabbinge, 2005). It is of interest - in the context of sustainable development of the bioeconomy - to categorize the already available and emerging lignocellulosic resources in a matrix structure. When composing such "cellulose resource matrix" attention should be given to the quality aspects as well as to the available quantities and practical possibilities of processing the

  5. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls.

    Science.gov (United States)

    Wang, Guifeng; Gao, Yan; Wang, Jinjun; Yang, Liwei; Song, Rentao; Li, Xiaorong; Shi, Jisen

    2011-05-01

    Expansins are unique plant cell wall proteins that possess the ability to induce immediately cell wall extension in vitro and cell expansion in vivo. To investigate the biological functions of expansins that are abundant in wood-forming tissues, we cloned two expansin genes from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Phylogenetic reconstruction indicated that they belong to α-expansin (EXPA), named ClEXPA1 and ClEXPA2. Expression pattern analysis demonstrated that they are preferentially expressed in the cambium region. Overexpression of ClEXPA1 and ClEXPA2 in tobacco plants yielded pleiotropic phenotypes of plant height, stem diameter, leaf number and seed pod. The height and diameter growth of the 35S(pro) :ClEXPA1 and 35S(pro) :ClEXPA2 transgenic plants were increased drastically, exhibiting an enlargement of pith parenchyma cell size. Isolated cell walls of ClEXPA1 and ClEXPA2 overexpressors contained 30%-50% higher cellulose contents than the wild type, accompanied by a thickening of the cell walls in the xylem region. Both ClEXPA1 and ClEXPA2 are involved in plant growth and development, with a partially functional overlap. Expansins are not only able to induce cell expansion in different tissues/organs in vivo, but they also can act as a potential activator during secondary wall formation by directly or indirectly affecting cellulose metabolism, probably in a cell type-dependent manner.

  6. Characterization of maize roothairless6 which encodes a D-type cellulose synthase and controls the switch from bulge formation to tip growth

    Science.gov (United States)

    Li, Li; Hey, Stefan; Liu, Sanzhen; Liu, Qiang; McNinch, Colton; Hu, Heng-Cheng; Wen, Tsui-Jung; Marcon, Caroline; Paschold, Anja; Bruce, Wesley; Schnable, Patrick S.; Hochholdinger, Frank

    2016-01-01

    Root hairs are tubular extensions of the epidermis. Root hairs of the monogenic recessive maize mutant roothairless 6 (rth6) are arrested after bulge formation during the transition to tip growth and display a rough cell surface. BSR-Seq in combination with Seq-walking and subsequent analyses of four independently generated mutant alleles established that rth6 encodes CSLD5 a plasma membrane localized 129 kD D-type cellulose synthase with eight transmembrane domains. Cellulose synthases are required for the biosynthesis of cellulose, the most abundant biopolymer of plant cell walls. Phylogenetic analyses revealed that RTH6 is part of a monocot specific clade of D-type cellulose synthases. D-type cellulose synthases are highly conserved in the plant kingdom with five gene family members in maize and homologs even among early land plants such as the moss Physcomitrella patens or the clubmoss Selaginella moellendorffii. Expression profiling demonstrated that rth6 transcripts are highly enriched in root hairs as compared to all other root tissues. Moreover, in addition to the strong knock down of rth6 expression in young primary roots of the mutant rth6, the gene is also significantly down-regulated in rth3 and rth5 mutants, while it is up-regulated in rth2 mutants, suggesting that these genes interact in cell wall biosynthesis. PMID:27708345

  7. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    Science.gov (United States)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  8. Studies on amendment of different biopolymers in sandy loam and their effect on germination, seedling growth of Gossypium herbaceum L.

    Science.gov (United States)

    Patil, Satish Vitthalrao; Salunke, B K; Patil, C D; Salunkhe, R B

    2011-03-01

    Different biopolymers, agar, cellulose, alginate, psyllium gaur gum, and bacterial exopolysaccharide (EPS) powders were amended to check their efficacy in enhancing maximum water holding capacity (MWHC), permanent wilting point (PWP), and germination and seedling growth of the Gossypium herbaceum in a laboratory scale. The efficacy of all biopolymers for enhancement of MWHC, PWP, and growth was also analyzed by measuring organic carbon, organic matter, total nitrogen, respiration rate, and microflora in amended and control sandy loams. The range of concentrations (0.2-2%) of all biopolymers was incorporated in sandy loam containing pots. The soil without polymer was considered as control. The psyllium (0.6%) and bacterial EPS (1%) amended soil has 242 and 233% increase in MWHC and thus delaying in the permanent wilting point by 108 and 84 h at 37 °C, respectively, as compared to control. All biopolymers found to increase more or less MWHC, organic matter, total nitrogen, microflora, and PWP as compared to control. The psyllium and bacterial EPS show the highest increase organic matter, biomass, and microflora. The highest reduction in MWHC after 12 weeks were observed in cellulose, gaur gum, and alginate; besides, psyllium, bacterial EPS, and agar showed comparatively less reduction MWHC, i.e., 24% and 14.5%, respectively. The toxicity studies of biopolymer were carried out on earthworm (Eisenia foetida). It revealed their nontoxic nature. The biopolymer amendment in sandy loam can be an effective strategy to improved soil texture, fertility, and thereby crop yield.

  9. Characterization of functional biopolymers under various external stimuli

    Energy Technology Data Exchange (ETDEWEB)

    Maleki, Atoosa

    2008-07-01

    Polymers are large molecules composed of repeating structural units connected by covalent chemical bonds. Biopolymers are a class of polymers produced by living organisms, which exhibit both biocompatible and biodegradable properties. The behavior of a biopolymer in solution is strongly dependent on the chemical and physical structure of the polymer chain, as well as external environmental conditions. To improve biopolymers in the direction of higher performance and better functionality, understanding of their physicochemical behavior and their response to external stimuli are of great importance. Rheology, rheo-small angle light scattering, dynamic light scattering, small angle neutron scattering, and asymmetric flow field-flow fractionation were utilized in this thesis to investigate the properties of hydroxyethyl cellulose and its hydrophobically modified analogue, as well as dextran, hyaluronan, and mucin under different conditions such as temperature, solvent, mechanical stress and strain, and radiation. Different novel hydrogels were prepared by using various chemical cross-linking agents. Specific features of these macromolecules provide them to be used as 'functional' materials, e.g., sensors, actuators, personal care products, enhanced oil recovery, and controlled drug delivery systems (author)

  10. Fate of biopolymers during rapeseed meal and wheat bran composting as studied by two-dimensional correlation spectroscopy in combination with multiple fluorescence labeling techniques.

    Science.gov (United States)

    Wang, Li-Ping; Shen, Qi-Rong; Yu, Guang-Hui; Ran, Wei; Xu, Yang-Chun

    2012-02-01

    Detailed knowledge of the molecular events during composting is important in improving the efficiency of this process. By combining two-dimensional Fourier transform infrared (FTIR) correlation spectroscopy and multiple fluorescent labeling, it was possible to study the degradation of biopolymers during rapeseed meal and wheat bran composting. Two-dimensional FTIR correlation spectroscopy provided structural information and was used to deconvolute overlapping bands found in the compost FTIR spectra. The degradation of biopolymers in rapeseed meal and wheat bran composts followed the sequence: cellulose, heteropolysaccharides, and proteins. Fluorescent labeling suggested that cellulose formed an intact network-like structure and the other biopolymers were embedded in the core of this structure. The sequence of degradation of biopolymers during composting was related to their distribution patterns.

  11. Semiflexible Biopolymers in Bundled Arrangements

    Directory of Open Access Journals (Sweden)

    Jörg Schnauß

    2016-07-01

    Full Text Available Bundles and networks of semiflexible biopolymers are key elements in cells, lending them mechanical integrity while also enabling dynamic functions. Networks have been the subject of many studies, revealing a variety of fundamental characteristics often determined via bulk measurements. Although bundles are equally important in biological systems, they have garnered much less scientific attention since they have to be probed on the mesoscopic scale. Here, we review theoretical as well as experimental approaches, which mainly employ the naturally occurring biopolymer actin, to highlight the principles behind these structures on the single bundle level.

  12. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis

    OpenAIRE

    Xie, Liqiong; Yang, Cangjing; Wang, Xuelu

    2011-01-01

    The phytohormones, brassinosteroids (BRs), play important roles in regulating cell elongation and cell size, and BR-related mutants in Arabidopsis display significant dwarf phenotypes. Cellulose is a biopolymer which has a major contribution to cell wall formation during cell expansion and elongation. However, whether BRs regulate cellulose synthesis, and if so, what the underlying mechanism of cell elongation induced by BRs is, is unknown. The content of cellulose and the expression levels o...

  13. Biopolymer nanocomposites: processing, properties, and applications (wiley series on polymer engineering and technology)

    CERN Document Server

    2013-01-01

    Interest in biopolymer nanocomposites is soaring. Not only are they green and sustainable materials, they can also be used to develop a broad range of useful products with special properties, from therapeutics to coatings to packaging materials. With contributions from an international team of leading nanoscientists and materials researchers, this book draws together and reviews the most recent developments and techniques in biopolymer nano-composites. It describes the preparation, processing, properties, and applications of bio- polymer nanocomposites developed from chitin, starch, and cellulose, three renewable resources.Biopolymer Nanocomposites features a logical organization and approach that make it easy for readers to take full advantage of the latest science and technology in designing these materials and developing new products and applications. It begins with a chapter reviewing our current understanding of b...

  14. Nanostructured gel scaffolds for osteogenesis through biological assembly of biopolymers via specific nucleobase pairing.

    Science.gov (United States)

    Fan, Ming; Yan, Jingxuan; Tan, Huaping; Ben, Dandan; He, Qiuling; Huang, Zhongwei; Hu, Xiaohong

    2014-11-01

    Biopolymer-based gel scaffolds have great potential in the field of tissue regenerative medicine. In this work, a nanostructured biopolymer gel scaffold via specific pairing of functionalized nucleobases was developed for specifically targeted drug delivery and in vitro osteogenesis. The biopolymer gel system was established by the Watson-Crick base pairing between thymine and adenine via the hydrogen bonding. As gel scaffold precursors, opposite charged polysaccharide derivatives, e.g. quaternized cellulose and heparin, could be additionally crosslinked by extra electrostatic interactions. The potential application of this gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. In combination with cell growth factor, e.g. bone morphogenetic protein, the nanostructured gel scaffold exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss.

  15. Film forming microbial biopolymers for commercial applications--a review.

    Science.gov (United States)

    Vijayendra, S V N; Shamala, T R

    2014-12-01

    Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging

  16. Dynamics of forced biopolymer translocation

    CERN Document Server

    Lehtola, V V; Kaski, K; 10.1209/0295-5075/85/58006

    2009-01-01

    We present results from our simulations of biopolymer translocation in a solvent which explain the main experimental findings. The forced translocation can be described by simple force balance arguments for the relevant range of pore potentials in experiments and biological systems. Scaling of translocation time with polymer length varies with pore force and friction. Hydrodynamics affects this scaling and significantly reduces translocation times.

  17. Monomers of cutin biopolymer: sorption and esterification on montmorillonite surfaces

    Science.gov (United States)

    Olshansky, Yaniv; Polubesova, Tamara; Chefetz, Benny

    2013-04-01

    One of the important precursors for soil organic matter is plant cuticle, a thin layer of predominantly lipids that cover all primary aerial surfaces of vascular plants. In most plant species cutin biopolymer is the major component of the cuticle (30-85% weight). Therefore cutin is the third most abundant plant biopolymer (after lignin and cellulose). Cutin is an insoluble, high molecular weight bio-polyester, which is constructed of inter-esterified cross linked hydroxy-fatty acids and hydroxyepoxy-fatty acids. The most common building blocks of the cutin are derivatives of palmitic acid, among them 9(10),16 dihydroxy palmitic acid (diHPA) is the main component. These fatty acids and their esters are commonly found in major organo-mineral soil fraction-humin. Hence, the complexes of cutin monomers with minerals may serve as model of humin. Both cutin and humin act as adsorption efficient domains for organic contaminants. However, only scarce information is available about the interactions of cutin with soil mineral surfaces, in particular with common soil mineral montmorillonite. The main hypothesize of the study is that adsorbed cutin monomers will be reconstituted on montmorillonite surface due to esterification and oligomerization, and that interactions of cutin monomers with montmorillonite will be affected by the type of exchangeable cation. Cutin monomers were obtained from the fruits of tomato (Lycopersicon esculentum). Adsorption of monomers was measured for crude Wyoming montmorillonites and montmorillonites saturated with Fe3+ and Ca2+. To understand the mechanism of monomer-clay interactions and to evaluate esterification on the clay surface, XRD and FTIR analyses of the montmorillonite-monomers complexes were performed. Our results demonstrated that the interactions of cutin monomers with montmorillonite are affected by the type of exchangeable cation. Isotherms of adsorption of cutin monomers on montmorillonites were fitted by a dual mode model of

  18. Studies of antibacterial efficacy of different biopolymer protected silver nanoparticles synthesized under reflux condition

    Science.gov (United States)

    Su, Chia Hung; Velusamy, Palaniyandi; Kumar, Govindarajan Venkat; Adhikary, Shritama; Pandian, Kannaiyan; Anbu, Periyasamy

    2017-01-01

    In the present study, a simple method to impregnate silver nanoparticles (AgNPs) into carboxymethyl cellulose (CMC) and sodium alginate (SA) is reported for the first time. Single step synthesis of carboxymethyl cellulose (CMC) and sodium alginate (SA) biopolymer protected silver nanoparticles (AgNPs) using aniline as a reducing agent under reflux conditions was investigated. The synthesized nanoparticles were characterized by UV-Vis spectrophotometry, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). The FESEM results of CMC@AgNPs and SA@AgNPs showed the formation of spherical nanoparticles sized 30-60 nm. Testing of the antibiofilm efficacy of the polymer protected AgNPs against different bacterial strains such as Klebsiella pneumoniae MTCC 4032 and Streptococcus pyogenes MTCC 1924 revealed that the biopolymer protected AgNPs had excellent antibiofilm activity.

  19. Research and development of two marine-degradable biopolymers. Rept. for 1 Oct 89-30 Sep 90

    Energy Technology Data Exchange (ETDEWEB)

    Andrady, A.L.; Pegram, J.E.; Olson, T.M.

    1992-03-01

    The Navy is developing a biopolymeric film material suitable for fabrication into marine-disposable trash bags so that it can comply with impending national and international requirements which will prohibit the discharge of plastics into the sea. Two biopolymers, chitosan and regenerated cellulose, were selected and tested to meet this need. After 6 weeks of marine exposure, regenerated cellulose samples disappeared; after 10 weeks, chitosan samples became brittle and separated, while chitosan showed greater anaerobic degradation than regenerated cellulose in soil studies, the opposite occurred in the marine sediment environment. Aerobic degradation was much higher than anaerobic degradation for both biopolymers. To improve flexibility, 50 plasticizers were tested in chitosan. Ten percent lithium bromide and 5% lithium acetate/10% PEG 400 in chitosan were the most effective plasticizers. Regenerated cellulose films treated with lithium salt solutions also showed improved flexibility. Incorporating urea and potassium phosphate into cellulose showed that degradation could be increased in soil. Tests are ongoing to further accelerate the rate of biodegradation by increasing the availability of nitrogen and phosphorus. Fabricating trash bags will require adhesive bonding. Five adhesives were evaluated with regenerated cellulose. Covinax 220, JW 2-47, and Adcote 333T proved acceptable. Chitosan requires further development to be produced and processed into bags efficiently. With minor adjustments, regenerated cellulose presently meets this requirement; thus, it is the more promising film. Progress towards the goal of developing a biopolymeric film material meeting the Navy's requirements is continuing.

  20. Bacterial Cellulose (BC) as a Functional Nanocomposite Biomaterial

    Science.gov (United States)

    Nandgaonkar, Avinav Ghanashyam

    Cellulosic is the most abundant biopolymer in the landscape and can be found in many different organisms. It has been already seen use in the medical field, for example cotton for wound dressings and sutures. Although cellulose is naturally occurring and has found a number of applications inside and outside of the medical field, it is not typically produced in its pure state. A lengthy process is required to separate the lignin, hemicelluloses and other molecules from the cellulose in most renewables (wood, agricultural fibers such as cotton, monocots, grasses, etc.). Although bacterial cellulose has a similar chemical structure to plant cellulose, it is easier to process because of the absence of lignin and hemicelluloses which require a lot of energy and chemicals for removal. Bacterial cellulose (BC) is produced from various species of bacteria such as Gluconacetobacter xylinus. Due to its high water uptake, it has the tendency to form gels. It displays high tensile strength, biocompatibility, and purity compared to wood cellulose. It has found applications in fields such as paper, paper products, audio components (e.g., speaker diaphragms), flexible electronics, supercapacitors, electronics, and soft tissue engineering. In my dissertation, we have functionalized and studied BC-based materials for three specific applications: cartilage tissue engineering, bioelectronics, and dye degradation. In our first study, we prepared a highly organized porous material based on BC by unidirectional freezing followed by a freeze-drying process. Chitosan was added to impart additional properties to the resulting BC-based scaffolds that were evaluated in terms of their morphological, chemical, and physical properties for cartilage tissue engineering. The properties of the resulting scaffold were tailored by adjusting the concentration of chitosan over 1, 1.5, and 2 % (by wt-%). The scaffolds containing chitosan showed excellent shape recovery and structural stability after

  1. Crosslinking biopolymers for biomedical applications.

    Science.gov (United States)

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications.

  2. Biocompatibility of plasma nanostructured biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Slepičková Kasálková, N. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Bačáková, L. [Institute of Physiology, Academy of Sciences of the Czech Republic 142 20 Prague (Czech Republic); Sajdl, P. [Department of Power Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2013-07-15

    Many areas of medicine such as tissue engineering requires not only mastery of modification techniques but also thorough knowledge of the interaction of cells with solid state substrates. Plasma treatment can be used to effective modification, nanostructuring and therefore can significantly change properties of materials. In this work the biocompatibility of the plasma nanostructured biopolymers substrates was studied. Changes in surface chemical structure were studied by X-ray photoelectron spectroscopy (XPS). The morphology pristine and modified samples were determined using atomic force microscopy (AFM). The surface wettability was determined by goniometry from contact angle. Biocompatibility was determined by in vitro tests, the rat vascular smooth muscle cells (VSMCs) were cultivated on the pristine and plasma modified biopolymer substrates. Their adhesion, proliferation, spreading and homogeneous distribution on polymers was monitored. It was found that the plasma treatment leads to rapid decrease of contact angle for all samples. Contact angle decreased with increasing time of modification. XPS measurements showed that plasma treatment leads to changes in ratio of polar and non-polar groups. Plasma modification was accompanied by a change of surface morphology. Biological tests found that plasma treatment have positive effect on cells adhesion and proliferation cells and affects the size of cell’s adhesion area. Changes in plasma power or in exposure time influences the number of adhered and proliferated cells and their distribution on biopolymer surface.

  3. Elucidating the mechanisms of assembly and subunit interaction of the cellulose synthase complex of Arabidopsis secondary cell walls.

    Science.gov (United States)

    Atanassov, Ivan I; Pittman, Jon K; Turner, Simon R

    2009-02-06

    Cellulose is the most abundant biopolymer in nature; however, questions relating to the biochemistry of its synthesis including the structure of the cellulose synthase complex (CSC) can only be answered by the purification of a fully functional complex. Despite its importance, this goal remains elusive. The work described here utilizes epitope tagging of cellulose synthase A (CESA) proteins that are known components of the CSC. To avoid problems associated with preferential purification of CESA monomers, we developed a strategy based on dual epitope tagging of the CESA7 protein to select for CESA multimers. With this approach, we used a two-step purification that preferentially selected for larger CESA oligomers. These preparations consisted solely of the three known secondary cell wall CESA proteins CESA4, CESA7, and CESA8. No additional CESA isoforms or other proteins were identified. The data are consistent with a model in which CESA protein homodimerization occurs prior to formation of larger CESA oligomers. This suggests that the three different CESA proteins undergo dimerization independently, but the presence of all three subunits is required for higher order oligomerization. Analysis of purified CESA complex and crude extracts suggests that disulfide bonds and noncovalent interactions contribute to the stability of the CESA subunit interactions. These results demonstrate that this approach will provide an excellent framework for future detailed analysis of the CSC.

  4. Structure and engineering of celluloses.

    Science.gov (United States)

    Pérez, Serge; Samain, Daniel

    2010-01-01

    This chapter collates the developments and conclusions of many of the extensive studies that have been conducted on cellulose, with particular emphasis on the structural and morphological features while not ignoring the most recent results derived from the elucidation of unique biosynthetic pathways. The presentation of structural and morphological data gathered together in this chapter follows the historical development of our knowledge of the different structural levels of cellulose and its various organizational levels. These levels concern features such as chain conformation, chain polarity, chain association, crystal polarity, and microfibril structure and organization. This chapter provides some historical landmarks related to the evolution of concepts in the field of biopolymer science, which parallel the developments of novel methods for characterization of complex macromolecular structures. The elucidation of the different structural levels of organization opens the way to relating structure to function and properties. The chemical and biochemical methods that have been developed to dissolve and further modify cellulose chains are briefly covered. Particular emphasis is given to the facets of topochemistry and topoenzymology where the morphological features play a key role in determining unique physicochemical properties. A final chapter addresses what might be considered tomorrow's goal in amplifying the economic importance of cellulose in the context of sustainable development. Selected examples illustrate the types of result that can be obtained when cellulose fibers are no longer viewed as inert substrates, and when the polyhydroxyl nature of their surfaces, as well as their entire structural complexity, are taken into account. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Gel Point Determination of Biopolymer Based Semi-IPN Hydrogels

    Science.gov (United States)

    Choudhary, Soumitra; Bhatia, Surita R.

    2008-07-01

    Water-based semi-IPNs (Interpenetrating Polymer Networks) were prepared by mixing two biopolymers, alginate and hydrophobically modified ethylhydroxy ethyl cellulose (HMEHEC), followed by crosslinking the alginate by in-situ release of calcium ions. By altering two different parameters, molecular weight of HMEHEC and calcium crosslinker concentration, we were able to fine tune the rheological properties of the semi-IPNs. Rheological studies in the linear viscoelastic region indicate storage moduli comparable to soft tissue for hydrogels having 90 wt% water. The system is found to be stable over a prolonged period of time, i.e. no phase separation is observed. Uniformity of the structure is confirmed by monotonic behavior of the intensity-q slope in SAXS and SANS over the entire length scale.

  6. [Magnetic nanoparticles and intracellular delivery of biopolymers].

    Science.gov (United States)

    Kornev, A A; Dubina, M V

    2014-03-01

    The basic methods of intracellular delivery of biopolymers are present in this review. The structure and synthesis of magnetic nanoparticles, their stabilizing surfactants are described. The examples of the interaction of nanoparticles with biopolymers such as nucleic acids and proteins are considered. The final part of the review is devoted to problems physiology and biocompatibility of magnetic nanoparticles.

  7. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Science.gov (United States)

    Khan, Asif; Abas, Zafar; Kim, Heung Soo; Kim, Jaehwan

    2016-01-01

    We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications. PMID:27472335

  8. Recent Progress on Cellulose-Based Electro-Active Paper, Its Hybrid Nanocomposites and Applications

    Directory of Open Access Journals (Sweden)

    Asif Khan

    2016-07-01

    Full Text Available We report on the recent progress and development of research into cellulose-based electro-active paper for bending actuators, bioelectronics devices, and electromechanical transducers. The cellulose electro-active paper is characterized in terms of its biodegradability, chirality, ample chemically modifying capacity, light weight, actuation capability, and ability to form hybrid nanocomposites. The mechanical, electrical, and chemical characterizations of the cellulose-based electro-active paper and its hybrid composites such as blends or coatings with synthetic polymers, biopolymers, carbon nanotubes, chitosan, and metal oxides, are explained. In addition, the integration of cellulose electro-active paper is highlighted to form various functional devices including but not limited to bending actuators, flexible speaker, strain sensors, energy harvesting transducers, biosensors, chemical sensors and transistors for electronic applications. The frontiers in cellulose paper devices are reviewed together with the strategies and perspectives of cellulose electro-active paper and cellulose nanocomposite research and applications.

  9. Microfibrillated cellulose and new nanocomposite materials: a review

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David

    2010-01-01

    Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject...... in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose....

  10. Bioplastic production from cellulose of oil palm empty fruit bunch

    Science.gov (United States)

    Isroi; Cifriadi, A.; Panji, T.; Wibowo, Nendyo A.; Syamsu, K.

    2017-05-01

    Empty fruit bunch is available abundantly in Indonesia as side product of CPO production. EFB production in Indonesia reached 28.65 million tons in 2015. EFB consist of 36.67% cellulose, 13.50% hemicellulose and 31.16% lignin. By calculation, potential cellulose from EFB is 11.50 million tons. Cellulose could be utilized as source for bioplastic production. This research aims to develop bioplastic production based on cellulose from EFB and to increase added value of EFB. Cellulose fiber has no plastic properties. Molecular modification of cellulose, composite with plasticizer and compatibilizer is a key success for utilization of cellulose for bioplastic. Main steps of bioplastic production from EFB are: 1) isolation and purification of cellulose, 2) cellulose modification and 3) synthesis of bioplastic. Cellulose was isolated by sodium hydroxide methods and bleached using sodium hypochlorite. Purity of obtained cellulose was 97%. Cellulose yield could reach 30% depend on cellulose content of EFB. Cellulose side chain was oxidized to reduce hydroxyl group and increase the carboxyl group. Bioplastic synthesis used glycerol as plasticizer and cassava starch as matrix. This research was successfully producing bioplastic sheet by casting method. In future prospects, bioplastic from EFB cellulose can be developed as plastic bag and food packaging.

  11. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    Directory of Open Access Journals (Sweden)

    Palaniyandi Velusamy

    Full Text Available In the current study, facile synthesis of carboxymethyl cellulose (CMC and sodium alginate capped silver nanoparticles (AgNPs was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%, volumes of reducing agent (50, 100, 150 μL, and duration of heat treatment (30 s to 240 s. The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  12. Biopolymers Regulate Silver Nanoparticle under Microwave Irradiation for Effective Antibacterial and Antibiofilm Activities.

    Science.gov (United States)

    Velusamy, Palaniyandi; Su, Chia-Hung; Venkat Kumar, Govindarajan; Adhikary, Shritama; Pandian, Kannaiyan; Gopinath, Subash C B; Chen, Yeng; Anbu, Periasamy

    2016-01-01

    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.

  13. Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.

    Science.gov (United States)

    Niegelhell, Katrin; Süßenbacher, Michael; Jammernegg, Katrin; Ganner, Thomas; Schwendenwein, Daniel; Schwab, Helmut; Stelzer, Franz; Plank, Harald; Spirk, Stefan

    2016-11-14

    The creation of nano- and micropatterned polymer films is a crucial step for innumerous applications in science and technology. However, there are several problems associated with environmental aspects concerning the polymer synthesis itself, cross-linkers to induce the patterns as well as toxic solvents used for the preparation and even more important development of the films (e.g., chlorobenzene). In this paper, we present a facile method to produce micro- and nanopatterned biopolymer thin films using enzymes as so-called biodevelopers. Instead of synthetic polymers, naturally derived ones are employed, namely, poly-3-hydroxybutyrate and a cellulose derivative, which are dissolved in a common solvent in different ratios and subjected to spin coating. Consequently, the two biopolymers undergo microphase separation and different domain sizes are formed depending on the ratio of the biopolymers. The development step proceeds via addition of the appropriate enzyme (either PHB-depolymerase or cellulase), whereas one of the two biopolymers is selectively degraded, while the other one remains on the surface. In order to highlight the enzymatic development of the films, video AFM studies have been performed in real time to image the development process in situ as well as surface plasmon resonance spectroscopy to determine the kinetics. These studies may pave the way for the use of enzymes in patterning processes, particularly for materials intended to be used in a physiological environment.

  14. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  15. Natural Composites: Cellulose Fibres and the related Performance of Composites

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2014-01-01

    Biobased materials are becoming of increasing interest as potential structural materials for the future. A useful concept in this context is the fibre reinforcement of materials by stiff and strong fibres. The biobased resources can contribute with cellulose fibres and biopolymers. This offers...... the potential for stiff and strong biocomposite materials, but these have some limitations and obstacles to full performance. The focus will be on the ultra-structure, and the strength and stiffness of cellulose fibres, on the (unavoidable) defects causing large reductions in strength and moderate reductions...... in stiffness, on the packing ability of cellulose fibres and the related maximum fibre volume fraction in composites, on the moisture sorption of cellulose fibres and the related mass increase and (large) hygral strains induced, and on the mechanical performance of composites....

  16. Autonomous valve for detection of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Noeth, Nadine-Nicole; Fetz, Stefanie

    2009-01-01

    We present a polymer microvalve that allows the detection of biopolymer degradation without the need of external energy. The valve is based on a polymer container filled with a colored marker solution and closed by a thin lid. This structure is covered by a film of poly(L-lactide) and degradation...... of the biopolymer triggers the release of the color which is detected visually. The autonomous valve has potential for the fast testing of biopolymer degradation under various environmental conditions or by specific enzymes....

  17. Topology and geometry of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Janse Van Rensburg, E.J. [York Univ., Downsview, Ontario (Canada); Orlandini, E.; Tesi, M.C. [Univ. of Toronto, Ontario (Canada)] [and others

    1996-12-31

    This paper is concerned with some simple lattice models of the entanglement complexity of polymers in dilute solution, with special reference to biopolymers such as DNA. We review a number of rigorous results about the asymptotic behavior of the knot probability, the entanglement complexity and the writhe of a lattice polygon (as a model of a ring polymer) and discuss Monte Carlo results for intermediate length polygons. In addition we discuss how this model can be augmented to include the effect of solvent quality and ionic strength. We also describe a lattice ribbon model which is able to capture the main properties of an oriented ribbon-like molecule (such as duplex DNA). 47 refs., 1 fig.

  18. Mixed Biopolymer Systems Based on Starch

    Directory of Open Access Journals (Sweden)

    Takahiro Noda

    2012-01-01

    Full Text Available A binary mixture of starch–starch or starch with other biopolymers such as protein and non-starch polysaccharides could provide a new approach in producing starch-based food products. In the context of food processing, a specific adjustment in the rheological properties plays an important role in regulating production processing and optimizing the applicability, stability, and sensory of the final food products. This review examines various biopolymer mixtures based on starch and the influence of their interaction on physicochemical and rheological properties of the starch-based foods. It is evident that the physicochemical and rheological characteristics of the biopolymers mixture are highly dependent on the type of starch and other biopolymers that make them up mixing ratios, mixing procedure and presence of other food ingredients in the mixture. Understanding these properties will lead to improve the formulation of starch–based foods and minimize the need to resort to chemically modified starch.

  19. Biopolymers coated superparamagnetic Nickel Ferrites: Enhanced biocompatibility and MR imaging probe for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bano, Shazia, E-mail: shaziaphy@gmail.com [Department of Physics, The Islamia University of Bahawalpur (Pakistan); Zafar, Tayyaba [Department of Physics, The Islamia University of Bahawalpur (Pakistan); Akhtar, Shahnaz [Department of Pharmacy, The Islamia University of Bahawalpur (Pakistan); Buzdar, Saeed Ahmed [Department of Physics, The Islamia University of Bahawalpur (Pakistan); Waraich, Mustansar Mahmood, E-mail: mustansarwaraich@gmail.com [Quaid-e-Azam Medical College B.V. Hospital, Bahawalpur (Pakistan); Afzal, Muhammad [Department of Physics, The Islamia University of Bahawalpur (Pakistan)

    2016-11-01

    We report evidence for the promising application of bovine serum albumin (BSA), chitosan (CS) or carboxymethyl cellulose (CMC) coated NiFe{sub 2}O{sub 4} cores for improved biocompatibility and enhanced T2 relaxivity, through a single combinatorial approach. Pure nickel-ferrite nano cores (NFs) successfully synthesized by thermolysis, were immobilize with BSA, CS or CMC layer employing a simple cross linking procedure to avoid any significant influence of these biopolymers on the morphology and crystal structure of the cores. Phase, morphology, magnetic hysteresis and surface chemistry were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and Fourier transform infrared (FTIR) spectroscopy. The preliminary haemolysis and cell viability experiments show that biopolymers conjugation mitigates the haemolytic effect of the NFs on erythrocytes as the haemolytic index is less than 2% and cell viability is up to 100%, when normalized with the nontreated cells. The relaxivity value of coated NFs is 351±2.6 when compared to 84±0.22 of NFs without biopolymer conjugation. The results demonstrate that BSA, CS or CMC covering on NFs provide a single combinatorial approach to improve the biocompatibility and enhance the relaxivity value. Thus addressing the current challenge of the same with very good contrast for targeting MCF-7 without any further vectorization. - Highlights: • A single combinatorial system for the promising application of biopolymers coated NiFe{sub 2}O{sub 4} cores. • Immobilization of a thin layer of three different biopolymers via a simple approach. • Excellent MR contrast enhancement and targeting of MCF-7 without any further vectorization.

  20. Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur–arene interaction as key to catalysis

    OpenAIRE

    Sun, Shi-jing; Horikawa, Yoshiki; Wada, Masahisa; SUGIYAMA, Junji; Imai, Tomoya

    2016-01-01

    Cellulose is one of the most abundant biological polymers on Earth, and is synthesized by the cellulose synthase complex in cell membranes. Although many cellulose synthase genes have been identified over the past 25 years, functional studies of cellulose synthase using recombinant proteins have rarely been conducted. In this study, we conducted a functional analysis of cellulose synthase with site-directed mutagenesis, by using recombinant cellulose synthase reconstituted in living Escherich...

  1. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2017-04-01

    Full Text Available Seaweed and cellulose are promising natural polymers. This article reviews the basic information and recent developments of both seaweed and cellulose biopolymer materials as well as analyses the feasible formation of seaweed/cellulose composite films. Seaweed and cellulose both exhibit interesting film-forming properties. Nevertheless, seaweed has poor water vapour barrier and mechanical properties, whereas cellulose is neither meltable nor soluble in water or common organic solvents due to its highly crystalline structure. Therefore, modification of these hydrocolloids has been done to exploit their useful properties. Blending of biopolymers is a must recommended approach to improve the desired characteristics. From the review, seaweed is well compatible with cellulose, which possesses excellent mechanical strength and water resistance properties. Moreover, seaweed/cellulose composite films can prolong a product’s shelf life while maintaining its biodegradability. Additionally, the films show potential in contributing to the bioeconomy. In order to widen seaweed and cellulose in biocomposite application across various industries, some of the viewpoints are highlighted to be focused for future developments and applications.

  2. A temperature responsive biopolymer for mercury remediation.

    Science.gov (United States)

    Kostal, Jan; Mulchandani, Ashok; Gropp, Katie E; Chen, Wilfred

    2003-10-01

    Tunable biopolymers based on elastin-like polypeptides (ELP) were engineered for the selective removal of mercury. ELP undergoes a reversible thermal precipitation within a wide range of temperatures and was exploited to enable easy recovery of the sequestered mercury. A bacterial metalloregulatory protein, MerR, which binds mercury with an unusually high affinity and selectivity, was fused to the ELP to provide the highly selective nature of the biopolymers. Selective binding of mercury was demonstrated at an expected ratio of 0.5 mercury/biopolymer, and minimal binding of competing heavy metals (cadmium, nickel, and zinc), even at 100-fold excess, was observed. The sequestered mercury was extracted easily, enabling continuous reuse of the biopolymers. In repeating cycles, mercury concentration was reduced to ppb levels, satisfying even drinking water limits. Utility of the biopolymers with mercury-contaminated Lake Elsinore water was demonstrated with no decrease in efficiency. The nanoscale biopolymers reported here using metalloregulatory proteins represent a "green" technology for environmentally benign mercury removal. As nature offers a wide selection of specific metalloregulatory proteins, this technology offers promising solutions to remediation of other important pollutants such as arsenic or chromium.

  3. Biolubricant induced phase inversion and superhydrophobicity in rubber-toughened biopolymer/organoclay nanocomposites

    Science.gov (United States)

    Bayer, Ilker S.; Steele, Adam; Martorana, Philip; Loth, Eric; Robinson, Scott J.; Stevenson, Darren

    2009-08-01

    We present a simple technique to fabricate rubber-toughened biopolymer/organoclay nanocomposite coatings with highly water repellent surface wetting characteristics and strong adhesion to metal surfaces. The technique combines the principles of phase inversion and atomization of multicomponent polymer/organoclay suspensions containing a biolubricant as the nonsolvent. The biolubricant was a blend of cyclomethicone/dimethiconol oil with fruit kernel oils. The ternary system of cellulose nitrate/solvent/biolubricant was blended with rubber dispersed organoclay nanofluids. Natural, synthetic, and fluoroacrylic latex rubbers were used for the purpose. Self-cleaning superhydrophobic coatings were obtained from synthetic and fluoroacrylic rubbers whereas natural rubber containing formulations resulted in sticky superhydrophobic coatings.

  4. Characterization of cellulose nanowhiskers; Caracterizacao do nanowhiskers de celulose

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Nayra R.; Pinheiro, Ivanei F.; Morales, Ana R.; Ravagnani, Sergio P.; Mei, Lucia, E-mail: 25nareis@gmail.com [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2013-07-01

    Cellulose is the most abundant polymer earth. The cellulose nanowhiskers can be extracted from the cellulose. These have attracted attention for its use in nanostructured materials for various applications, such as nanocomposites, because they have peculiar characteristics, among them, high aspect ratio, biodegradability and excellent mechanical properties. This work aims to characterize cellulose nanowhiskers from microcrystalline cellulose. Therefore, these materials were characterized by X-ray diffraction (XRD) to assess the degree of crystallinity, infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) to the morphology of nanowhiskers and thermal stability was evaluated by Thermogravimetric Analysis (TGA). (author)

  5. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  6. Structure and Properties of Polysaccharide Based BioPolymer Gels

    Science.gov (United States)

    Prud'Homme, Robert K.

    2000-03-01

    Nature uses the pyranose ring as the basic building unit for a wideclass of biopolymers. Because of their biological origin these biopolymers naturally find application as food additives, rheology modifiers. These polymers range from being rigid skeletal material, such as cellulose that resist dissolution in water, to water soluble polymers, such as guar or carrageenan. The flexibility of the basic pyranose ring structure to provide materials with such a wide range of properties comes from the specific interactions that can be engineered by nature into the structure. We will present several examples of specific interactions for these systems: hydrogen bonding, hydrophobic interactions, and specific ion interactions. The relationship between molecular interations and rheology will be emphasized. Hydrogen bonding mediated by steric interference is used to control of solubility of starch and the rheology of guar gels. A more interesting example is the hydrogen bonding induced by chemical modification in konjac glucomannan that results in a gel that melts upon cooling. Hydrogen bonding interactions in xanthan lead to gel formation at very low polymer concentrations which is a result of the fine tuning of the polymer persistence length and total contour length. Given the function of xanthan in nature its molecular architecture has been optimized. Hydrophobic interactions in methylcellulose show a reverse temperature dependence arising from solution entropy. Carrageenan gelation upon the addition of specific cations will be addressed to show the interplay of polymer secondary structure on chemical reactivity. And finally the cis-hydroxyls on galactomannans permit crosslinking by a variety of metal ions some of which lead to "living gels" and some of which lead to permanently crosslinked networks.

  7. Cell patterning with mucin biopolymers

    Science.gov (United States)

    Crouzier, T.; Jang, H.; Ahn, J.; Stocker, R.; Ribbeck, K.

    2014-01-01

    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces. PMID:23980712

  8. Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; Budhi, Sridhar; Thompson, Logan; Iisa, Kristiina; Nimlos, Mark R.; Donohoe, Bryon S.

    2016-09-06

    Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fast pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.

  9. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.

    Science.gov (United States)

    Sheikhi, Amir; Yang, Han; Alam, Md Nur; van de Ven, Theo G M

    2016-07-20

    Nanoparticles, as one of the key materials in nanotechnology and nanomedicine, have gained significant importance during the past decade. While metal-based nanoparticles are associated with synthetic and environmental hassles, cellulose introduces a green, sustainable alternative for nanoparticle synthesis. Here, we present the chemical synthesis and separation procedures to produce new classes of hairy nanoparticles (bearing both amorphous and crystalline regions) and biopolymers based on wood fibers. Through periodate oxidation of soft wood pulp, the glucose ring of cellulose is opened at the C2-C3 bond to form 2,3-dialdehyde groups. Further heating of the partially oxidized fibers (e.g., T = 80 °C) results in three products, namely fibrous oxidized cellulose, sterically stabilized nanocrystalline cellulose (SNCC), and dissolved dialdehyde modified cellulose (DAMC), which are well separated by intermittent centrifugation and co-solvent addition. The partially oxidized fibers (without heating) were used as a highly reactive intermediate to react with chlorite for converting almost all aldehyde to carboxyl groups. Co-solvent precipitation and centrifugation resulted in electrosterically stabilized nanocrystalline cellulose (ENCC) and dicarboxylated cellulose (DCC). The aldehyde content of SNCC and consequently surface charge of ENCC (carboxyl content) were precisely controlled by controlling the periodate oxidation reaction time, resulting in highly stable nanoparticles bearing more than 7 mmol functional groups per gram of nanoparticles (e.g., as compared to conventional NCC bearing < 1 mmol functional group/g). Atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) attested to the rod-like morphology. Conductometric titration, Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), dynamic light scattering (DLS), electrokinetic-sonic-amplitude (ESA) and acoustic attenuation

  10. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension, formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows: pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  11. PREPARATION AND PROPERTIES OF EXTRACELLULAR BIOPOLYMER FLOCCULANT

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; LIU Binbin; XIONG Jinshui; YAN Jingchun

    2007-01-01

    The biopolymer flocculant (named PS-2) producing by Pseudomonas fluorescens was investigated. The PS-2 had high efficiency with small dosage, when dealing with kaolin suspension,formed larger floc, with big sedimentation rate, over a wide range of temperatures. Distributing of flocculating activity test showed that the biopolymer flocculant was an extracellular product. The composition analysis of purified biopolymer flocculant showed that it composed mainly of polysaccharide and nucleic acid. The content of polysaccharide was 86.7%, which determined by using phenol-vitriol method, and the content of nucleic acid was 7.8%, which determined by UV absorption method. The biopolymer flocculant as a powder form showed much better stability than that as a supernatant. The character of biopolymer flocculant was stable even it was heated to 100 ℃ when it in acidic condition. The optimal conditions to flocculate kaolin suspension were as follows:pH 8~12, flocculant dosage 1mL/L, and Ca2+ as the optimal cation.

  12. Cellulose nanocrystals: synthesis, functional properties, and applications

    Directory of Open Access Journals (Sweden)

    George J

    2015-11-01

    Full Text Available Johnsy George, SN Sabapathi Food Engineering and Packaging Division, Defence Food Research Laboratory, Siddarthanagar, Mysore, Karnataka, India Abstract: Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. Keywords: sources of cellulose, mechanical properties, liquid crystalline nature, surface modification, nanocomposites 

  13. Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials.

    Science.gov (United States)

    Tang, X Z; Kumar, P; Alavi, S; Sandeep, K P

    2012-01-01

    Plastic packaging for food and non-food applications is non-biodegradable, and also uses up valuable and scarce non-renewable resources like petroleum. With the current focus on exploring alternatives to petroleum and emphasis on reduced environmental impact, research is increasingly being directed at development of biodegradable food packaging from biopolymer-based materials. The proposed paper will present a review of recent developments in biopolymer-based food packaging materials including natural biopolymers (such as starches and proteins), synthetic biopolymers (such as poly lactic acid), biopolymer blends, and nanocomposites based on natural and synthetic biopolymers. The paper will discuss the various techniques that have been used for developing cost-effective biodegradable packaging materials with optimum mechanical strength and oxygen and moisture barrier properties. This is a timely review as there has been a recent renewed interest in research studies, both in the industry and academia, towards development of a new generation of biopolymer-based food packaging materials with possible applications in other areas.

  14. STUDY OF THE STRUCTURE OF WOOD-RELATED BIOPOLYMERS BY SORPTION METHODS

    Directory of Open Access Journals (Sweden)

    Jelena Chirkova

    2009-08-01

    Full Text Available The potentialities of different vapour sorption methods are analized for the investigation of the microstructure of wood sorbents (wood, cellulose and lignin as a particular case of biopolymers. There are two important distinctions in the sorption behaviour of biopolymers from traditional rigid sorbents, namely, the dependence of the characteristics of the porous structure on the thermodynamic properties of the sorbate, and the manifestation of the sorption hysteresis over the whole region of the sorption–desorption isotherm. The reason for these distinctions is the low rigidity (low values of modulus of elasticity of biopolymers, hence, their considerable deformability under the action of sorption forces, resulting in the cleavage of interstructural bonds. This process, manifesting itself phenomenologically as swelling, depends on the activity of the sorbate and results in the appearance of porosity and a new surface. The criterion for the activity of the sorbate is close values of the solubility parameters of the polymer and the sorbate. Inert substances are adsorbed on the surface of large morphological formations and characterise the intact structure of the sorbent, while active sorbates cause the swelling of these formations and penetrate them, which enables a study of the microstructure of sorbents. In the desorption process, the cleaved bonds are restored, blocking a part of the sorbate in the polymer’s structure, which results in the appearance of sorption hysteresis, not connected directly with the porous structure of the sorbent.

  15. Biopolymers coated superparamagnetic Nickel Ferrites: Enhanced biocompatibility and MR imaging probe for breast cancer

    Science.gov (United States)

    Bano, Shazia; Zafar, Tayyaba; Akhtar, Shahnaz; Buzdar, Saeed Ahmed; Waraich, Mustansar Mahmood; Afzal, Muhammad

    2016-11-01

    We report evidence for the promising application of bovine serum albumin (BSA), chitosan (CS) or carboxymethyl cellulose (CMC) coated NiFe2O4 cores for improved biocompatibility and enhanced T2 relaxivity, through a single combinatorial approach. Pure nickel-ferrite nano cores (NFs) successfully synthesized by thermolysis, were immobilize with BSA, CS or CMC layer employing a simple cross linking procedure to avoid any significant influence of these biopolymers on the morphology and crystal structure of the cores. Phase, morphology, magnetic hysteresis and surface chemistry were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), vibrating sample magnetometer (VSM) and Fourier transform infrared (FTIR) spectroscopy. The preliminary haemolysis and cell viability experiments show that biopolymers conjugation mitigates the haemolytic effect of the NFs on erythrocytes as the haemolytic index is less than 2% and cell viability is up to 100%, when normalized with the nontreated cells. The relaxivity value of coated NFs is 351±2.6 when compared to 84±0.22 of NFs without biopolymer conjugation. The results demonstrate that BSA, CS or CMC covering on NFs provide a single combinatorial approach to improve the biocompatibility and enhance the relaxivity value. Thus addressing the current challenge of the same with very good contrast for targeting MCF-7 without any further vectorization.

  16. Molecular entanglement and electrospinnability of biopolymers.

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R

    2014-09-03

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level.

  17. TOPICAL REVIEW: Biopolymer organization upon confinement

    Science.gov (United States)

    Marenduzzo, D.; Micheletti, C.; Orlandini, E.

    2010-07-01

    Biopolymers in vivo are typically subject to spatial restraints, either as a result of molecular crowding in the cellular medium or of direct spatial confinement. DNA in living organisms provides a prototypical example of a confined biopolymer. Confinement prompts a number of biophysics questions. For instance, how can the high level of packing be compatible with the necessity to access and process the genomic material? What mechanisms can be adopted in vivo to avoid the excessive geometrical and topological entanglement of dense phases of biopolymers? These and other fundamental questions have been addressed in recent years by both experimental and theoretical means. A review of the results, particularly of those obtained by numerical studies, is presented here. The review is mostly devoted to DNA packaging inside bacteriophages, which is the best studied example both experimentally and theoretically. Recent selected biophysical studies of the bacterial genome organization and of chromosome segregation in eukaryotes are also covered.

  18. Separation of biopolymer from fermentation broths

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, W.L.; Compere, A.L.; Westmoreland, C.G.; Johnson, J.S. Jr.

    1981-01-01

    Application of recent developments in filtration separations have been applied to separation of biopolymers from fermentation broths. More economical production of biopolymers near the site of use would be especially attractive for use in micellar flood programs for enhanced oil recovery. Solutions of the organisms Sclerotium rolfsii producing scleroglucans were used for the tests because the organisms are genetically more stable than the organisms that produce xanthan gums and because their more acid broths are less apt to become contaminated. Three types of filtration, axial filtration, pleated ultrafiltration module, and microscreens were tested on the broth. Filtration results are reported for broths with various preparation histories. An economic comparison is presented for processing of a ton of biopolymer per day, and the microscreening process is shown to be the most efficient, but a polishing step would have to be added. (BLM)

  19. How the first biopolymers could have evolved.

    Science.gov (United States)

    Abkevich, V I; Gutin, A M; Shakhnovich, E I

    1996-01-01

    In this work, we discuss a possible origin of the first biopolymers with stable unique structures. We suggest that at the prebiotic stage of evolution, long organic polymers had to be compact to avoid hydrolysis and had to be soluble and thus must not be exceedingly hydrophobic. We present an algorithm that generates such sequences for model proteins. The evolved sequences turn out to have a stable unique structure, into which they quickly fold. This result illustrates the idea that the unique three-dimensional native structures of first biopolymers could have evolved as a side effect of nonspecific physicochemical factors acting at the prebiotic stage of evolution. PMID:8570645

  20. Microrheology of Biopolymer-Membrane Complexes

    Science.gov (United States)

    Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.

    2000-07-01

    We create tailored microstructures, consisting of complexes of lipid membranes with self-assembled biopolymer shells, to study the fundamental properties and interactions of these basic components of living cells. We measure the mechanical response of these artificial structures at the micrometer scale, using optical tweezers and single-particle tracking. These systems exhibit rich dynamics that illustrate the viscoelastic character of the quasi-two-dimensional biopolymer network. We present a theoretical model relating the rheological properties of these membranes to the observed dynamics.

  1. Preparation of new Calix[4]arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol-gel encapsulation.

    Science.gov (United States)

    Ozyilmaz, Elif; Sayin, Serkan

    2013-08-01

    The article describes preparation of new calixarene biopolymers consisting of the immobilization of convenience calixarene derivative onto cellulose and chitosan biopolymers, and the encapsulation of these calixarene biopolymers with Candida rugosa lipase within a chemical inert sol-gel supported by polycondensation with tetraethoxysilane and octyltriethoxysilane. The catalytic properties of immobilized lipase were evaluated into model reactions employing the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of naproxen methyl esters from racemic prodrugs in aqueous buffer solution/isooctane reaction system. The resolution studies using sol-gel support have observed more improvement in the enantioselectivity of naproxen E = 300 with Cel-Calix-E than with encapsulated lipase without calixarene-based materials. Furthermore, the encapsulated lipase (Cel-Calix-E) was still retained about 39 % of their conversion ratios after the fifth reuse in the enantioselective reaction.

  2. Cellulose metabolism in plants.

    Science.gov (United States)

    Hayashi, Takahisa; Yoshida, Kouki; Park, Yong Woo; Konishi, Teruko; Baba, Kei'ichi

    2005-01-01

    Many bacterial genomes contain a cellulose synthase operon together with a cellulase gene, indicating that cellulase is required for cellulose biosynthesis. In higher plants, there is evidence that cell growth is enhanced by the overexpression of cellulase and prevented by its suppression. Cellulase overexpression could modify cell walls not only by trimming off the paracrystalline sites of cellulose microfibrils, but also by releasing xyloglucan tethers between the microfibrils. Mutants for membrane-anchored cellulase (Korrigan) also show a typical phenotype of prevention of cellulose biosynthesis in tissues. All plant cellulases belong to family 9, which endohydrolyzes cellulose, but are not strong enough to cause the bulk degradation of cellulose microfibrils in a plant body. It is hypothesized that cellulase participates primarily in repairing or arranging cellulose microfibrils during cellulose biosynthesis in plants. A scheme for the roles of plant cellulose and cellulases is proposed.

  3. Cellulose nanowhiskers and nanofibers from biomass for composite applications

    Science.gov (United States)

    Wang, Tao

    2011-12-01

    Biological nanocomposites such as plant cell wall exhibit high mechanical properties at a light weight. The secret of the rigidity and strength of the cell wall lies in its main structural component -- cellulose. Native cellulose exists as highly-ordered microfibrils, which are just a few nanometers wide and have been found to be stiffer than many synthetic fibers. In the quest for sustainable development around the world, using cellulose microfibrils from plant materials as renewable alternatives to conventional reinforcement materials such as glass fibers and carbon fibers is generating particular interest. In this research, by mechanical disintegration and by controlled chemical hydrolysis, both cellulose nanofibers and nanowhiskers were extracted from the cell wall of an agricultural waste, wheat straw. The reinforcement performances of the two nanofillers were then studied and compared using the water-soluble polyvinyl alcohol (PVOH) as a matrix material. It was found that while both of these nanofillers could impart higher stiffness to the polymer, the nanofibers from biomass were more effective in composite reinforcement than the cellulose crystals thanks to their large aspect ratio and their ability to form interconnected network structures through hydrogen bonding. One of the biggest challenges in the development of cellulose nanocomposites is achieving good dispersion. Because of the high density of hydroxyl groups on the surface of cellulose, it remains a difficult task to disperse cellulose nanofibers in many commonly used polymer matrices. The present work addresses this issue by developing a water-based route taking advantage of polymer colloidal suspensions. Combining cellulose nanofibers with one of the most important biopolymers, poly(lactic acid) (PLA), we have prepared nanocomposites with excellent fiber dispersion and improved modulus and strength. The bio-based nanocomposites have a great potential to serve as light-weight structural materials

  4. Exploring Modifications of Cotton with Biopolymers

    Science.gov (United States)

    Biopolymers including starch, alginate, and chitosan were grafted on to both nonwoven and woven cotton fabrics to examine their hemostatic and antimcrobial properties. The development of cotton-based health care fabrics that promote blood clotting and prevent microbial growth have wide applicability...

  5. [Conformation theory of polymers and biopolymers].

    Science.gov (United States)

    Volkenstein, M V

    1977-01-01

    A short review is given of the Soviet investigations in the field of physics of polymers and biopolymers based on the concept of conformational motility of macromolecules. It is shown that the ideas originally used for the treatment of the properties of the synthetic polymers and, in particular, of the rubber elasticity, have found broad applications in molecular biophysics.

  6. Fabrication of biopolymer cantilevers using nanoimprint lithography

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Feidenhans'l, Nikolaj Agentoft; Fisker-Bødker, Nis

    2011-01-01

    The biodegradable polymer poly(l-lactide) (PLLA) was introduced for the fabrication of micromechanical devices. For this purpose, thin biopolymer films with thickness around 10 μm were spin-coated on silicon substrates. Patterning of microcantilevers is achieved by nanoimprint lithography. A major...

  7. Biopolymer colloids for controlling and templating inorganic synthesis

    Directory of Open Access Journals (Sweden)

    Laura C. Preiss

    2014-11-01

    Full Text Available Biopolymers and biopolymer colloids can act as controlling agents and templates not only in many processes in nature, but also in a wide range of synthetic approaches. Inorganic materials can be either synthesized ex situ and later incorporated into a biopolymer structuring matrix or grown in situ in the presence of biopolymers. In this review, we focus mainly on the latter case and distinguish between the following possibilities: (i biopolymers as controlling agents of nucleation and growth of inorganic materials; (ii biopolymers as supports, either as molecular supports or as carrier particles acting as cores of core–shell structures; and (iii so-called “soft templates”, which include on one hand stabilized droplets, micelles, and vesicles, and on the other hand continuous scaffolds generated by gelling biopolymers.

  8. Cellulose-Based Nanomaterials for Energy Applications.

    Science.gov (United States)

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-09-13

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent.

    Science.gov (United States)

    Wang, Shiwen; Sun, Jiashu; Jia, Yuexiao; Yang, Lu; Wang, Nuoxin; Xianyu, Yunlei; Chen, Wenwen; Li, Xiaohong; Cha, Ruitao; Jiang, Xingyu

    2016-07-11

    Nanocrystalline cellulose (NCC) is a kind of natural biopolymers with merits of large surface area, high specific strength and unique optical properties. This report shows that NCC can serve as the substrate, allowing glucose to reduce Tollen's reagent to produce silver nanoparticles (AgNPs) at room temperature. The generation of AgNPs is affected by the factors such as the concentrations of silver ions, NCC and glucose, as well as the different reaction temperatures. The AgNPs with NCC are applied for the development of a visual, quantitative, nonenzymatic and high-sensitive assay for glucose detection in serum. This assay is also used for monitoring the concentration change of glucose in medium during cell culture. For the antibacterial activity, the minimal inhibitory concentration (MIC) of the generated AgNPs with NCC is much lower than that of commercial AgNPs, attributed to the good dispersion of AgNPs with the presence of NCC. As NCC exhibits unique advantages including green, stable, inexpensive, and abundant, the NCC-based generation of AgNPs may find promising applications in clinical diagnosis, environmental monitoring, and the control of bacteria.

  10. A comparative study of biopolymers and alum in the separation and recovery of pulp fibres from paper mill effluent by flocculation.

    Science.gov (United States)

    Mukherjee, Sumona; Mukhopadhyay, Soumyadeep; Pariatamby, Agamuthu; Ali Hashim, Mohd; Sahu, Jaya Narayan; Sen Gupta, Bhaskar

    2014-09-01

    Recovery of cellulose fibres from paper mill effluent has been studied using common polysaccharides or biopolymers such as Guar gum, Xanthan gum and Locust bean gum as flocculent. Guar gum is commonly used in sizing paper and routinely used in paper making. The results have been compared with the performance of alum, which is a common coagulant and a key ingredient of the paper industry. Guar gum recovered about 3.86mg/L of fibre and was most effective among the biopolymers. Settling velocity distribution curves demonstrated that Guar gum was able to settle the fibres faster than the other biopolymers; however, alum displayed the highest particle removal rate than all the biopolymers at any of the settling velocities. Alum, Guar gum, Xanthan gum and Locust bean gum removed 97.46%, 94.68%, 92.39% and 92.46% turbidity of raw effluent at a settling velocity of 0.5cm/min, respectively. The conditions for obtaining the lowest sludge volume index such as pH, dose and mixing speed were optimised for guar gum which was the most effective among the biopolymers. Response surface methodology was used to design all experiments, and an optimum operational setting was proposed. The test results indicate similar performance of alum and Guar gum in terms of floc settling velocities and sludge volume index. Since Guar gum is a plant derived natural substance, it is environmentally benign and offers a green treatment option to the paper mills for pulp recycling.

  11. Active biopolymers confer fast reorganization kinetics.

    Science.gov (United States)

    Swanson, Douglas; Wingreen, Ned S

    2011-11-18

    Many cytoskeletal biopolymers are "active," consuming energy in large quantities. In this Letter, we identify a fundamental difference between active polymers and passive, equilibrium polymers: for equal mean lengths, active polymers can reorganize faster than equilibrium polymers. We show that equilibrium polymers are intrinsically limited to linear scaling between mean lifetime (or mean first-passage time, or MFPT) and mean length, MFPT∼, by analogy to 1D Potts models. By contrast, we present a simple active-polymer model that improves upon this scaling, such that MFPT∼(1/2). Since, to be biologically useful, structural biopolymers must typically be many monomers long yet respond dynamically to the needs of the cell, the difference in reorganization kinetics may help to justify the active polymers' greater energy cost.

  12. Scleroglucan biopolymer production, properties, and economics

    Energy Technology Data Exchange (ETDEWEB)

    Compere, A. L.; Griffith, W. L.

    1980-01-01

    Production and solution properties which may make scleroglucan polysaccharide economically advantageous for onsite production and use in tertiary oil recovery were investigated. Scleroglucan, which is similar in viscosity and shear thinning to xanthan, can be produced in a 3-day batch or 12 h continuous fermentation. Yield is nearly 50% based on input glucose. Gross biopolymer-biomass separation may be effected using microscreening, a low energy process, followed by polish filtration. Polymer flux may be improved by hydrolysis with an endolaminarinase from Rhizopus arrhizius QM 1032. Simple feedstock requirements and low growth pH, together with the difficulty of resuspending dried polymer, may encourage field biopolymer fermentation and use of purified culture broth.

  13. Biopolymer elasticity: Mechanics and thermal fluctuations.

    Science.gov (United States)

    Sinha, Supurna; Samuel, Joseph

    2012-04-01

    We present an analytical study of the role of thermal fluctuations in shaping molecular elastic properties of semiflexible polymers. Our study interpolates between mechanics and statistical mechanics in a controlled way and shows how thermal fluctuations modify the elastic properties of biopolymers. We present a study of the minimum-energy configurations with explicit expressions for their energy and writhe and plots of the extension versus link for these configurations and a study of fluctuations around the local minima of energy and approximate analytical formulas for the free energy of stretched twisted polymers. The central result of our study is a closed-form expression for the leading thermal fluctuation correction to the free energy around the nonperturbative writhing family solution for the configuration of a biopolymer. From the derived formulas, the predictions of the wormlike chain model for molecular elasticity can be worked out for a comparison against numerical simulations and experiments.

  14. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  15. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    Science.gov (United States)

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  16. Binding capacity: cooperativity and buffering in biopolymers.

    Science.gov (United States)

    Di Cera, E; Gill, S J; Wyman, J

    1988-01-01

    The group of linkage potentials resulting from the energy of a physicochemical system expressed per mol of a reference component, say a polyfunctional macromolecule, leads to the concept of binding capacity. This concept applies equally to both chemical and physical ligands and opens the way to consideration of higher-order linkage relationships. It provides a means of exploring the consequences of thermodynamic stability on generalized binding phenomena in biopolymers. PMID:3422436

  17. Rheology of Biopolymer Solutions and Gels

    OpenAIRE

    David R. Picout; Ross-Murphy, Simon B.

    2003-01-01

    Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio) polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi...

  18. Rheology of Biopolymer Solutions and Gels

    Directory of Open Access Journals (Sweden)

    David R. Picout

    2003-01-01

    Full Text Available Rheological techniques and methods have been employed for many decades in the characterization of polymers. Originally developed and used on synthetic polymers, rheology has then found much interest in the field of natural (bio polymers. This review concentrates on introducing the fundamentals of rheology and on discussing the rheological aspects and properties of the two major classes of biopolymers: polysaccharides and proteins. An overview of both their solution properties (dilute to semi-dilute and gel properties is described.

  19. The glass transition process in humid biopolymers. DSC study

    Energy Technology Data Exchange (ETDEWEB)

    Grunina, N A; Belopolskaya, T V; Tsereteli, G I [V.A. Fock Research Institute for Physics of Saint-Petersburg State University, 198504, Petrodvorets (Russian Federation)

    2006-05-15

    Thermal properties of native and denatured biopolymers with quite different chemical and steric structure (globular and fibrillar proteins, DNA, starches) were studied by means of differential scanning calorimetry in a wide range of temperatures and concentrations of water. It was shown that both native and denatured humid biopolymers are glassy systems. The glass transition temperature of these systems strongly depends on percentage of water, with water being simultaneously an intrinsic element of systems' ordered structure and a plasticizer of its amorphous state. On the base of the absolute values of heat capacities for biopolymer-water systems as a whole, heat capacities for biopolymers themselves were calculated as functions on water concentration at fixed temperatures. The S-shaped change of heat capacity observed on diagrams of state both for native and denatured biopolymers is the manifestation of biopolymers' passing through the vitrification region, as it occurs for denatured samples at heating.

  20. Molecular Entanglement and Electrospinnability of Biopolymers

    Science.gov (United States)

    Kong, Lingyan; Ziegler, Gregory R.

    2014-01-01

    Electrospinning is a fascinating technique to fabricate micro- to nano-scale fibers from a wide variety of materials. For biopolymers, molecular entanglement of the constituent polymers in the spinning dope was found to be an essential prerequisite for successful electrospinning. Rheology is a powerful tool to probe the molecular conformation and interaction of biopolymers. In this report, we demonstrate the protocol for utilizing rheology to evaluate the electrospinnability of two biopolymers, starch and pullulan, from their dimethyl sulfoxide (DMSO)/water dispersions. Well-formed starch and pullulan fibers with average diameters in the submicron to micron range were obtained. Electrospinnability was evaluated by visual and microscopic observation of the fibers formed. By correlating the rheological properties of the dispersions to their electrospinnability, we demonstrate that molecular conformation, molecular entanglement, and shear viscosity all affect electrospinning. Rheology is not only useful in solvent system selection and process optimization, but also in understanding the mechanism of fiber formation on a molecular level. PMID:25226274

  1. Hydrogels from biopolymer hybrid for biomedical, food, and functional food applications

    Science.gov (United States)

    Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer st...

  2. Significance of collective motions in biopolymers and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Go, Nobuhiro [Kyoto Univ. (Japan)

    1996-05-01

    Importance of collective variable description of conformational dynamics of biopolymers and the vital role that neutron inelastic scattering phenomena would play in its experimental determination are discussed. (author)

  3. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    Science.gov (United States)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous

  4. Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery

    Science.gov (United States)

    Samrot, Antony V.; Akanksha; Jahnavi, Tatipamula; Padmanaban, S.; Philip, Sheryl-Ann; Burman, Ujjala; Rabel, Arul Maximus

    2016-07-01

    In this study, polyphenolic curcumin is entrapped within microcomposites made of biopolymers chitosan (CS) and carboxymethyl cellulose (CMC) formulated by ionic gelation method. Here, different concentrations of two chelating agents, barium chloride and sodium tripolyphosphate, are used to make microcomposites. Thus, the synthesized microparticles were characterized by FTIR, and their surface morphology was studied by SEM. Drug encapsulation efficiency and the drug release kinetics of CS-CMC composites are also studied. The produced microcomposites were used to study antibacterial activity in vitro.

  5. Chelators influenced synthesis of chitosan-carboxymethyl cellulose microparticles for controlled drug delivery

    Science.gov (United States)

    Samrot, Antony V.; Akanksha; Jahnavi, Tatipamula; Padmanaban, S.; Philip, Sheryl-Ann; Burman, Ujjala; Rabel, Arul Maximus

    2016-11-01

    In this study, polyphenolic curcumin is entrapped within microcomposites made of biopolymers chitosan (CS) and carboxymethyl cellulose (CMC) formulated by ionic gelation method. Here, different concentrations of two chelating agents, barium chloride and sodium tripolyphosphate, are used to make microcomposites. Thus, the synthesized microparticles were characterized by FTIR, and their surface morphology was studied by SEM. Drug encapsulation efficiency and the drug release kinetics of CS-CMC composites are also studied. The produced microcomposites were used to study antibacterial activity in vitro.

  6. Surface Modification of Polypropylene Membrane Using Biopolymers with Potential Applications for Metal Ion Removal

    Directory of Open Access Journals (Sweden)

    Omar Alberto Hernández-Aguirre

    2016-01-01

    Full Text Available This work aims to present the modification of polypropylene (PP membranes using three different biopolymers, chitosan (CHI, potato starch (PS, and cellulose (CEL, in order to obtain three new materials. The modified membranes may be degraded easier than polypropylene ones and could be used as selective membranes for metal ions removal, among other applications. For this purpose, the UV energy induced graft copolymerization reaction among polypropylene membrane, acrylic acid, benzophenone (as photoinitiator, and the biopolymer (CHI, PS, or CEL was conducted. The results of FT-IR-ATR, XRD, TGA, DSC, SEM, BET, and AFM analyses and mechanical properties clearly indicate the successful modification of the membrane surface. The change of surface wettability was monitored by contact angle. The grafting reaction depends on natural polymer, reaction time, and concentration. In order to prove the potential application of the modified membranes, a preliminary study of sorption of metal ion was carried out. For this purpose, the PP-CHI membrane was chosen because of the high hydrophilicity, proportionate to -OH and NH2; these groups could act as ligands of metal ions, provoking the interaction between PP-CHI and M+ (PP-CHI-M+ and therefore the metal ion removal from water.

  7. The Effects of Biopolymer Encapsulation on Total Lipids and Cholesterol in Egg Yolk during in Vitro Human Digestion

    Directory of Open Access Journals (Sweden)

    Si-Kyung Lee

    2013-08-01

    Full Text Available The purpose of this study was to examine the effect of biopolymer encapsulation on the digestion of total lipids and cholesterol in egg yolk using an in vitro human digestion model. Egg yolks were encapsulated with 1% cellulose, pectin, or chitosan. The samples were then passed through an in vitro human digestion model that simulated the composition of mouth saliva, stomach acid, and the intestinal juice of the small intestine by using a dialysis tubing system. The change in digestion of total lipids was monitored by confocal fluorescence microscopy. The digestion rate of total lipids and cholesterol in all egg yolk samples dramatically increased after in vitro human digestion. The digestion rate of total lipids and cholesterol in egg yolks encapsulated with chitosan or pectin was reduced compared to the digestion rate of total lipids and cholesterol in other egg yolk samples. Egg yolks encapsulated with pectin or chitosan had lower free fatty acid content, and lipid oxidation values than samples without biopolymer encapsulation. Moreover, the lipase activity decreased, after in vitro digestion, in egg yolks encapsulated with biopolymers. These results improve our understanding of the effects of digestion on total lipids and cholesterol in egg yolk within the gastrointestinal tract.

  8. Use of a gel biopolymer for the treatment of eviscerated eyes: experimental model in rabbits

    Directory of Open Access Journals (Sweden)

    Francisco de Assis Cordeiro-Barbosa

    2012-08-01

    Full Text Available PURPOSE: To evaluate histologically the integration process of cellulose gel produced by Zoogloea sp when implanted into rabbits' eviscerated eyes. METHODS: This experimental study employed 36 eyes of 18 rabbits subjected to evisceration of their right eyes. The sclerocorneal bag was sutured and filled with biopolymer from sugar cane in the gel state. All animals were clinically examined by biomicroscopy until the day of their sacrifice which occurred on the 7th, 30th, 60th, 90th, 120th, or 240th day. The eyeballs obtained, including the left eyes considered controls were sent for histopathological study by optical macroscopy and microscopy. Tissue staining techniques used included hematoxylin-eosin, Masson trichrome (with aniline, Gomori trichrome, Van Gienson, Picrosirius red, and periodic acid-Schiff (PAS. RESULTS: No clinical signs of infection, allergy, toxicity, or extrusion were observed throughout the experiment. The corneas were relatively preserved. Macroscopic examination revealed a decrease of ~ 8% in the volume of the bulbs implanted with the biopolymer. After cutting, the sclerocorneal bag was solid, compact, elastic, and resistant to traction, with a smooth and whitish surface, and showed no signs of necrosis or liquefaction. The episcleral tissues were somewhat hypertrophied. The histological preparations studied in different colors revealed an initial lymphoplasmacytic infiltration, replaced by a fibroblastic response and proliferation of histiocytes, along with formation of giant cells. Few polymorphonuclearneutrophils and eosinophils were also found. Neovascularization and collagen deposition were present in all animals starting from day 30; although on the 240th day of the experiment the chronic inflammatory response, neovascularization and collagen deposition had not yet reached the center of the implant. CONCLUSION: In this model, the cellulose gel produced by Zoogloea sp proved to be biocompatible and integrated into the

  9. Fine Structure of Starch-Clay Composites as Biopolymers

    Science.gov (United States)

    Midsol 50 wheat starch and 5% Cloisite clay with or without the addition of glycerin were used to prepare biopolymers in a twin-screw extruder. Early trials of sectioning the unembedded biopolymer resulted in the immediate absorption of water and subsequent dissolution of the sample due to the the ...

  10. Formulation of indomethacin emulsion using biopolymer of Prunus avium.

    Science.gov (United States)

    Verma, Shivangi; Dabral, Prashant; Rana, Vinod; Upadhaya, Kumud; Bhardwaj

    2012-03-01

    The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  11. Formulation of indomethacin emulsion using biopolymer of Prunus avium

    Directory of Open Access Journals (Sweden)

    Shivangi Verma

    2012-01-01

    Full Text Available The aim of the investigation was to formulate Indomethacin Emulsion using Bio-polymer as Emulsifier. Different batches of emulsions were prepared by varying concentration of biopolymer prunus avium. Based evaluation of the prepared polymers, a conclusion can be drawn that in the Prunus avium bio-material can serve as a promising film forming agent for formulating various drug.

  12. Sugar and polyol solutions as effective solvent for biopolymers

    NARCIS (Netherlands)

    Sman, van der R.G.M.

    2016-01-01

    Ternary mixtures of biopolymers, sugars or polyols and water can be treated as a pseudo binary system with respect to melting of the biopolymer. Sugar and polyol solutions can be treated as an effective solvent, characterized by the density of hydroxyl groups available for intermolecular hydrogen

  13. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Energy Technology Data Exchange (ETDEWEB)

    Kweon, Jin Jung [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310 (United States); Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui, E-mail: rscel@korea.ac.kr [Department of Physics, Korea University, Seoul 136-713 (Korea, Republic of); Jung, Seunho [Department of Bioscience and Biotechnology and UBITA, Konkuk University, Seoul 143-701 (Korea, Republic of); Kwon, Chanho [Naraebio Research Laboratories, 177 Dangha-ri, Bongdam-eup, Hawseong-si 445-892 (Korea, Republic of)

    2014-07-07

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame {sup 1}H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  14. Ideal-Chain Collapse in Biopolymers

    CERN Document Server

    Neumann, R M

    2000-01-01

    A conceptual difficulty in the Hooke's-law description of ideal Gaussian polymer-chain elasticity is sometimes apparent in analyses of experimental data or in physical models designed to simulate the behavior of biopolymers. The problem, the tendency of a chain to collapse in the absence of external forces, is examined in the following examples: DNA-stretching experiments, gel electrophoresis, and protein folding. We demonstrate that the application of a statistical-mechanically derived repulsive force, acting between the chain ends, whose magnitude is proportional to the absolute temperature and inversely proportional to the scalar end separation removes this difficulty.

  15. Mathematical methods of analysis of biopolymer sequences

    CERN Document Server

    Gindikin, S G

    1992-01-01

    This collection contains papers by participants in the seminar on mathematical methods in molecular biology who worked for several years at the Laboratory of Molecular Biology and Bioorganic Chemistry (now the Institute of Physical and Chemical Problems in Biology) at Moscow State University. The seminar united mathematicians and biologists around the problems of biological sequences. The collection includes original results as well as expository material and spans a range of perspectives, from purely mathematical problems to algorithms and their computer realizations. For this reason, the book is of interest to mathematicians, statisticians, biologists, and computational scientists who work with biopolymer sequences.

  16. Proton conduction in biopolymer exopolysaccharide succinoglycan

    Science.gov (United States)

    Kweon, Jin Jung; Lee, Kyu Won; Kim, Hyojung; Lee, Cheol Eui; Jung, Seunho; Kwon, Chanho

    2014-07-01

    Protonic currents play a vital role in electrical signalling in living systems. It has been suggested that succinoglycan plays a specific role in alfalfa root nodule development, presumably acting as the signaling molecules. In this regard, charge transport and proton dynamics in the biopolymer exopolysaccharide succinoglycan have been studied by means of electrical measurements and nuclear magnetic resonance (NMR) spectroscopy. In particular, a dielectric dispersion in the system has revealed that the electrical conduction is protonic rather electronic. Besides, our laboratory- and rotating-frame 1H NMR measurements have elucidated the nature of the protonic conduction, activation of the protonic motion being associated with a glass transition.

  17. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    Science.gov (United States)

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  18. 3D-Printed Biopolymers for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2014-01-01

    Full Text Available 3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.

  19. Biopolymer-Based Delivery Systems: Challenges and Opportunities.

    Science.gov (United States)

    Joye, Iris J; McClements, D Julian

    2016-01-01

    Biopolymer-based nanostructures or microstructures can be fabricated with different compositions, structures, and properties so that colloidal delivery systems can be tailored for specific applications. These structures can be assembled using various approaches, including electrospinning, coacervation, nanoprecipitation, injection, layer-by-layer deposition, and/or gelation. A major application of biopolymer-based particles is to encapsulate, protect, and release active molecules in the agricultural, food, supplements, personal care, and pharmaceutical sectors. The inherent variability and complexity of biopolymers (proteins and polysaccharides) often makes it challenging to produce particles with well-defined physicochemical and functional attributes. In this review, we discuss the properties of biopolymers, common particle fabrication methods, and some of the major challenges and opportunities associated with developing biopolymer-based particles for application as food-grade delivery systems.

  20. Recent advances in microbial biopolymer production and purification.

    Science.gov (United States)

    Kreyenschulte, Dirk; Krull, Rainer; Margaritis, Argyrios

    2014-03-01

    Over the past decades a large amount of biopolymers originating from various types of microorganisms have been reported. With ongoing research the number of possible applications has increased rapidly, ranging from use as food additives and biomedical agents to biodegradable plastics from renewable resources. In spite of the plethora of applications, the large-scale introduction of biopolymers into the market has often been forestalled by high production costs mainly due to complex or inefficient downstream processing. In this article, state-of-the-art methods and recent advances in the separation and purification of microbial polymers are reviewed, with special focus on the biopolymers, γ-polyglutamic acid and xanthan gum. Furthermore, a study of the general factors affecting production and purification is presented, including biopolymer rheology, enzymatic degradation and production of biopolymer mixtures.

  1. The dynamic process of atmospheric water sorption in [EMIM][Ac] and mixtures of [EMIM][Ac] with biopolymers and CO2 capture in these systems.

    Science.gov (United States)

    Chen, Yu; Sun, Xiaofu; Yan, Chuanyu; Cao, Yuanyuan; Mu, Tiancheng

    2014-10-02

    There are mainly three findings related to the dynamic process of atmospheric water sorption in the ionic liquid (IL) 1-ethyl-3-methlyl-imidazolium acetate ([EMIM][Ac]) and its mixtures with biopolymers (i.e., cellulose, chitin, and chitosan), and CO2 capture in these systems above. The analytical methods mainly include gravimetric hygroscopicity measurement and in situ infrared spectroscopy with the techniques of difference, derivative, deconvoluted attenuated total reflectance and two-dimensional correlation. These three findings are listed as below. (1) Pure [EMIM][Ac] only shows a two-regime pattern, while all the mixtures of [EMIM][Ac] with biopolymers (i.e., cellulose, chitin, and chitosan) present a three-regime tendency for the dynamic process of atmospheric water sorption. Specifically, the IL/chitosan mixture has a clear three-regime mode; the [EMIM][Ac]/chitin mixture has an unclear indiscernible regime 3; and the [EMIM][Ac]/cellulose mixture shows an indiscernible regime 2. (2) [EMIM][Ac] and its mixtures with biopolymers could physically absorb a trace amount of and chemically react with a much larger amount of CO2 from the air. The chemisorption capacity of CO2 in these pure and mixed systems is ordered as chitosan/[EMIM][Ac] mixture > chitin/[EMIM][Ac] mixture > cellulose/[EMIM][Ac] mixture > pure [EMIM][Ac] (ca. 0.09 mass ratio % g/g CO2/IL). (3) The CO2 solubility in [EMIM][Ac] decreases about 50% after being exposed to the atmospheric moist air for some specific time period.

  2. Loosening Xyloglucan Accelerates the Enzymatic Degradation of Cellulose in Wood

    Institute of Scientific and Technical Information of China (English)

    Rumi Kaida; Tomomi Kaku; Kei'ichi Baba; Masafumi Oyadomari; Takashi Watanabe; Koji Nishida; Toshiji Kanaya; Ziv Shani; Oded Shoseyov; Takahisa Hayashi

    2009-01-01

    In order to create trees in which cellulose, the most abundant component in biomass, can be enzymatically hydrolyzed highly for the production of bioethanol, we examined the saccharification of xylem from several transgenic poplars, each overexpressing either xyloglucanase, cellulase, xylanase, or galactanase. The level of cellulose degradation achieved by a cellulase preparation was markedly greater in the xylem overexpressing xyloglucanase and much greater in the xylems overexpressing xylanase and cellulase than in the xylem of the wild-type plant. Although a high degree of degradation occurred in all xylems at all loci, the crystalline region of the cellulose microfibrUs was highly degraded in the xylem overexpressing xyloglucanase. Since the complex between microfibrils and xyloglucans could be one region that is particularly resistant to cellulose degradation, loosening xyloglucan could facilitate the enzymatic hydrolysis of cellulose in wood.

  3. Permeability and Tensile Strength of Concrete with Arabic Gum Biopolymer

    Directory of Open Access Journals (Sweden)

    Abdeliazim Mustafa Mohamed

    2017-01-01

    Full Text Available The use of materials of vegetal origin is increasingly being promoted in many industries due to their cost effectiveness and the rising sensitivity to environmental protection and sustainability. Arabic Gum Biopolymer (AGB is a wild plant byproduct that is abundantly found in Sudan and is also produced in other African countries. It has long been used in various industries. However, its utilization is very limited in the construction sector although there appears to be a significant potential for use of AGB in the building industry. As an example, there is evidence that AGB may be an effective additive to concrete mixes that would improve fresh and hardened concrete properties. The aim of the present work is to provide further experimental evidence on the improvement that can be achieved in the physical and mechanical properties of hardened concrete when AGB is added to the mixture. The experimental results show a significant reduction in permeability for an optimum percentage of AGB and an increase in flexural and tensile strength and in the elastic modulus.

  4. How new biopolymers can improve muds

    Energy Technology Data Exchange (ETDEWEB)

    Dino, D.; Lindblad, D.E.; Moorhouse, R. (Rhoene-Poulenc Inc. (France))

    1993-11-01

    Xantham gum was introduced as a drilling-fluid component in the mid-1960s, but its use has risen noticeably since 1970, as prevalence of inhibitive polymeric drilling fluids has increased. Xanthan is known for its ability to build viscosity in both fresh water and salt solutions, its exceptional shear-thinning properties, and its tolerance to pH, all without environmental problems. Although biopolymers like xanthan typically represent only 0.25--1.5 lb/bbl of a drilling fluid, they are critical in building rheology, from spudding to the special demands of angled drilling and well completion. They add properties to muds which expand their use across a variety of formations and over a wide temperature range. Beyond xanthan, another useful class of biopolymers are the guar gums. Just as muds incorporating xanthan have been in the mainstay in rheology building over the years for many muds, fluids incorporating guar have long been the backbone of fracturing fluids. Guar and its derivatives are extremely versatile as rheology modifiers, particularly when used in conjunction with xanthans. In fact, xanthan/guar combinations have already been enhancing the effectiveness of muds at drill sites in the US. This paper reviews the performance of mixed xantham/guar additives to obtain an even better mud control system.

  5. Cellulose Degradation by Cellulose-Clearing and Non-Cellulose-Clearing Brown-Rot Fungi

    OpenAIRE

    Highley, Terry L.

    1980-01-01

    Cellulose degradation by four cellulose-clearing brown-rot fungi in the Coniophoraceae—Coniophora prasinoides, C. puteana, Leucogyrophana arizonica, and L. olivascens—is compared with that of a non-cellulose-clearing brown-rot fungus, Poria placenta. The cellulose- and the non-cellulose-clearing brown-rot fungi apparently employ similar mechanisms to depolymerize cellulose; most likely a nonenzymatic mechanism is involved.

  6. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  7. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers

    Science.gov (United States)

    2017-01-01

    Conspectus Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition

  8. Molecular Biodynamers: Dynamic Covalent Analogues of Biopolymers.

    Science.gov (United States)

    Liu, Yun; Lehn, Jean-Marie; Hirsch, Anna K H

    2017-02-21

    Constitutional dynamic chemistry (CDC) features the use of reversible linkages at both molecular and supramolecular levels, including reversible covalent bonds (dynamic covalent chemistry, DCC) and noncovalent interactions (dynamic noncovalent chemistry, DNCC). Due to its inherent reversibility and stimuli-responsiveness, CDC has been widely utilized as a powerful tool for the screening of bioactive compounds, the exploitation of receptors or substrates driven by molecular recognition, and the fabrication of constitutionally dynamic materials. Implementation of CDC in biopolymer science leads to the generation of constitutionally dynamic analogues of biopolymers, biodynamers, at the molecular level (molecular biodynamers) through DCC or at the supramolecular level (supramolecular biodynamers) via DNCC. Therefore, biodynamers are prepared by reversible covalent polymerization or noncovalent polyassociation of biorelevant monomers. In particular, molecular biodynamers, biodynamers of the covalent type whose monomeric units are connected by reversible covalent bonds, are generated by reversible polymerization of bio-based monomers and can be seen as a combination of biopolymers with DCC. Owing to the reversible covalent bonds used in DCC, molecular biodynamers can undergo continuous and spontaneous constitutional modifications via incorporation/decorporation and exchange of biorelevant monomers in response to internal or external stimuli. As a result, they behave as adaptive materials with novel properties, such as self-healing, stimuli-responsiveness, and tunable mechanical and optical character. More specifically, molecular biodynamers combine the biorelevant characters (e.g., biocompatibility, biodegradability, biofunctionality) of bioactive monomers with the dynamic features of reversible covalent bonds (e.g., changeable, tunable, controllable, self-healing, and stimuli-responsive capacities), to realize synergistic properties in one system. In addition, molecular

  9. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers.

    Science.gov (United States)

    Koutinas, Apostolis A; Vlysidis, Anestis; Pleissner, Daniel; Kopsahelis, Nikolaos; Lopez Garcia, Isabel; Kookos, Ioannis K; Papanikolaou, Seraphim; Kwan, Tsz Him; Lin, Carol Sze Ki

    2014-04-21

    The transition from a fossil fuel-based economy to a bio-based economy necessitates the exploitation of synergies, scientific innovations and breakthroughs, and step changes in the infrastructure of chemical industry. Sustainable production of chemicals and biopolymers should be dependent entirely on renewable carbon. White biotechnology could provide the necessary tools for the evolution of microbial bioconversion into a key unit operation in future biorefineries. Waste and by-product streams from existing industrial sectors (e.g., food industry, pulp and paper industry, biodiesel and bioethanol production) could be used as renewable resources for both biorefinery development and production of nutrient-complete fermentation feedstocks. This review focuses on the potential of utilizing waste and by-product streams from current industrial activities for the production of chemicals and biopolymers via microbial bioconversion. The first part of this review presents the current status and prospects on fermentative production of important platform chemicals (i.e., selected C2-C6 metabolic products and single cell oil) and biopolymers (i.e., polyhydroxyalkanoates and bacterial cellulose). In the second part, the qualitative and quantitative characteristics of waste and by-product streams from existing industrial sectors are presented. In the third part, the techno-economic aspects of bioconversion processes are critically reviewed. Four case studies showing the potential of case-specific waste and by-product streams for the production of succinic acid and polyhydroxyalkanoates are presented. It is evident that fermentative production of chemicals and biopolymers via refining of waste and by-product streams is a highly important research area with significant prospects for industrial applications.

  10. Grafting of acrylonitrile onto cellulosic material derived from bamboo (Dendrocalamus strictus

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available Bamboo, a lignocellulosic biopolymer material, is of interest as feedstock for production of cellulose derivatives by chemical functionalization. Optimization of grafting of acrylonitrile onto cellulosic material (average Degree of Polymerization 816, isolated from bamboo (Dendrocalamus stictus was performed by varying the process parameters such as duration of soaking of cellulosic material in ceric ammonium nitrate solution, ceric ammonium nitrate concentration, polymerization time, temperature of reaction and acrylonitrile concentration to study their influence on percent grafting and grafting efficiency. Graft copolymerization of acrylonitrile onto cellulosic material derived from bamboo (Dendrocalamus strictus in heterogenous medium can be initiated effectively with ceric ammonium nitrate. The optimum reaction conditions obtained for grafting of acrylonitrile onto cellulosic material were: duration of dipping cellulosic material in ceric ammonium nitrate solution 1 hr, ceric ammonium nitrate concentration 0.02 M, acrylonitrile concentration 24.6 mol/anhydroglucose unit, temperature of reaction 40°C and polymerization time 4 hrs. The percent grafting for optimized samples is 210.3% and grafting efficiency is 97%. The characterization of the grafted products by means of FTIR and Scanning Electron Microscopy furnished the evidence of grafting of acrylonitrile onto the cellulosic material.

  11. Sustainable green composites of thermoplastic starch and cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2014-04-01

    Full Text Available Green composites have gained renewed interest as environmental friendly materials and as biodegradable renewable resources for a sustainable development. This review provides an overview of recent advances in green composites based on thermoplastic starch (TPS and cellulose fibers. It includes information about compositions, preparations, and properties of starch, cellulose fibers, TPS, and green composites based on TPS and cellulose fibers. Introduction and production of these recyclable composites into the material market would be important for environmental sustainability as their use can decrease the volume of petroleum derived plastic waste dumps. Green composites are comparable cheap and abundant, but further research and development is needed for a broader utilization.

  12. Hazy Transparent Cellulose Nanopaper

    Science.gov (United States)

    Hsieh, Ming-Chun; Koga, Hirotaka; Suganuma, Katsuaki; Nogi, Masaya

    2017-01-01

    The aim of this study is to clarify light scattering mechanism of hazy transparent cellulose nanopaper. Clear optical transparent nanopaper consists of 3–15 nm wide cellulose nanofibers, which are obtained by the full nanofibrillation of pulp fibers. At the clear transparent nanopaper with 40 μm thickness, their total transmittance are 89.3–91.5% and haze values are 4.9–11.7%. When the pulp fibers are subjected to weak nanofibrillation, hazy transparent nanopapers are obtained. The hazy transparent nanopaper consists of cellulose nanofibers and some microsized cellulose fibers. At the hazy transparent nanopaper with 40 μm thickness, their total transmittance were constant at 88.6–92.1% but their haze value were 27.3–86.7%. Cellulose nanofibers are solid cylinders, whereas the pulp fibers are hollow cylinders. The hollow shape is retained in the microsized cellulose fibers, but they are compressed flat inside the nanopaper. This compressed cavity causes light scattering by the refractive index difference between air and cellulose. As a result, the nanopaper shows a hazy transparent appearance and exhibits a high thermal durability (295–305 °C), and low thermal expansion (8.5–10.6 ppm/K) because of their high density (1.29–1.55 g/cm3) and crystallinity (73–80%).

  13. Optical properties of DNA-CTMA biopolymers and applications in metal-biopolymer-metal photodetectors

    Science.gov (United States)

    Zhou, Bin; Kim, Sung Jin; Bartsch, Carrie M.; Heckman, Emily M.; Ouchen, Fahima; Cartwright, Alexander N.

    2011-09-01

    The potential of using a DNA biopolymer in an electro-optic device is presented. A complex of DNA with the cationic surfactant cetyltrimethylammonium-chloride (CTMA) was used to obtain an organic-soluble DNA material (DNA-CTMA). Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) was added to the DNACTMA to increase the electrical conductivity of the biopolymer. The CW absorbance and time-resolved photoluminescence of the resulting DNA-CTMA and DNA-CTMA-PEDOT:PSS were investigated. Both DNA materials have absorbance peaks at ~260 nm and a broad, Stokes shifted, photoluminescence peak around 470nm. The photoluminescence lifetime of the materials was observed to decrease with increasing UV excitation. Specifically, excitation with a high power ultrafast (~150fs) UV (266nm) laser pulse resulted in a drastic decrease in the photoluminescence lifetime decreases after a few minutes. Moreover, the observed decrease was faster in an air ambient than in a nitrogen ambient. This is most likely due to photo-oxidation that degrades the polymer surface resulting in an increase in the non-radiative recombination. In order to investigate the photoconductivity of these two materials, metal-biopolymer-metal (MBM) ultraviolet photodetectors with interdigitated electrodes were fabricated and characterized. The photoresponsivity of these devices was limited by the transport dynamics within the film. The prospects for the use of these materials in optical devices will be discussed.

  14. Elastin-like polypeptides: biomedical applications of tunable biopolymers.

    Science.gov (United States)

    MacEwan, Sarah R; Chilkoti, Ashutosh

    2010-01-01

    Artificial repetitive polypeptides have grown in popularity as a bioinspired alternative to synthetic polymers. The genetically encoded synthesis, monodispersity, potential lack of toxicity, and biocompatibility are attractive features of these biopolymers for biological applications. Elastin-like polypeptides (ELPs) are one such class of biopolymers that are of particular interest because of their "smart"-stimuli responsive-properties. Herein, we discuss the genetically encoded design and recombinant synthesis of ELPs that enable precise control of their physicochemical properties and which have led to a wide range of biomedical applications of these biopolymers in the last decade.

  15. An experimental investigation of electrical conductivities in biopolymers

    Indian Academy of Sciences (India)

    H Mallick; A Sarkar

    2000-08-01

    Gum arabica obtained from acacia plant is a conducting biopolymer. Experiments are carried out on this natural gum arabica. In the present study TGA, ion transference number, transient ionic current, thermal analysis, frequency and temperature variation of a.c. conductivity, Arrhenius plot and volt–ampere characteristics of specimens are carried out. The total electrical conductivity of these biopolymers are comparable to that of synthetic polymers doped with inorganic salts. The ion transference number of these biopolymers show their superionic nature of electrical conduction. The overall conduction mechanism seems to be protonic in nature rather than electronic one.

  16. Dual production of biopolymers from bacteria.

    Science.gov (United States)

    Sukan, Artun; Roy, Ipsita; Keshavarz, Tajalli

    2015-08-01

    Rapid depletion of natural resources with continued demands of an increasing population and high consumption rates of today's world will cause serious problems in the future. This, along with environmental concerns, has directed research towards finding alternatives in variety of sectors including sustainable and environmentally friendly consumer goods. Biopolymers of bacterial origin, with their vast range of applications, biodegradability and eco-friendly manufacturing processes, are one of the alternatives for a more sustainable future. However, the cost of their production is a drawback. Simultaneous production processes have always been an option for researchers in order to reduce cost, but the variable requirements of microorganisms to produce both different and valuable products are a hindering factor. This review will look at some examples and identify ideas towards developing a successful strategy for simultaneous production of bio-products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Manipulating Biopolymer Dynamics by Anisotropic Nanoconfinement

    CERN Document Server

    Zhang, Shao-Qing

    2007-01-01

    How the geometry of nano-sized confinement affects dynamics of biomaterials is interesting yet poorly understood. An elucidation of structural details upon nano-sized confinement may benefit manufacturing pharmaceuticals in biomaterial sciences and medicine. The behavior of biopolymers in nano-sized confinement is investigated using coarse-grained models and molecular simulations. Particularly, we address the effects of shapes of a confinement on protein folding dynamics by measuring folding rates and dissecting structural properties of the transition states in nano-sized spheres and ellipsoids. We find that when the form of a confinement resembles the geometrical properties of the transition states, the rates of folding kinetics are most enhanced. This knowledge of shape selectivity in identifying optimal conditions for reactions will have a broad impact in nanotechnology and pharmaceutical sciences.

  18. Fermentable sugars from biopolymers of bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, K.; Das, K.; Sharma, D.K.

    1987-11-01

    Ethanol can replace oil as a fuel and its use would help in the conservation of the meagre oil reserves in India. The article indicates some convenient and cost-effective processes for the production of ethanol from biopolymers available in bagasse, an agricultural residue. A two-stage acid hydrolysis process produced a maximum of fermentable sugars at 35%. Calcium chloride used as a promoter enhanced production by 3.5%. Other promoters are under investigation. Agitation had a significant effect on production, complete hydrolysis being possible between 10-45 minutes depending on temperature. The fermentable sugars obtained, xylose and glucose, can then be fermented to ethanol in an integrated three-stage process. 11 refs., 3 figs., 3 tabs.

  19. High-performance liquid chromatography of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, F.E.

    1983-10-21

    The ability to separate biological macromolecules with good resolution on liquid chromatographic columns has depended on the development of suitable packing materials. In size exclusion chromatography, molecules are separated by size on the basis of differential permeation of the packing. Ion exchange, hydrophobic interaction (or reversed-phase), and affinity chromatography are all surface-mediated separation methods, although they depend on different retention mechanisms. High-performance liquid chromatographic columns designed for biopolymers offer major advantages over conventional columns in both speed and resolving power. The exponential growth of literature on the high-performance separation of peptides and proteins in particular indicates that the techniques will become the dominant form of column liquid chromatography. 92 refs., 4 figs.

  20. Terrestiral plant biopolymers in marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Gough, M.A.; Fauzi, R.; Mantoura, C. (Plymouth Marine Lab. (United Kingdom)); Preston, M. (Univ. of Liverpool (United Kingdom))

    1993-03-01

    The vascular land plant biopolymers lignin and cutin were surveyed in the surface sediments of coastal and open ocean waters by controlled alkaline CuO oxidation/reaction. Two contrasting oceanic regimes were studied: the northwest Mediterranean (NWM) Sea, which receives significant particulate terrigenous debris through riverine discharge; and the northeast Atlantic (NEA) Ocean, with poorly characterized terrestrial carbon inputs. In the NWM products of lignin and cutin co-occurred at all stations, elevated levels (ca. 0.5-3.0 mg lignin phenols/100 mg organic carbon; ca. 0.01-0.09 mg cutin acids/100 mg organic carbon) were observed for near-shore deltaic and shelf sediments. The influence of terrestrial land plant inputs extended across the shelf and through the slope to the abyssal plain, providing molecular evidence for advective offshore transfer of terrestrial carbon. Mass balance estimates for the basin suggest riverine inputs account for the majority of surface sedimentary ligin/cutin, most of which (>90%) is deposited on the shelf. Products of CuO oxidation of lignin and cutin were also detected in NEA surface sediments, at levels comparable to those observed for the NWM continental slope, and were detectable at low concentrations in the sediments of the abyssal plains (>4,000 m depth). While atmospheric deposition of lignin/cutin-derived material cannot be discounted in this open ocean system, lateral advective transfer of enriched shelf sediments is inferred as a possible transport process. A progressive enrichment in cutin-derived material relative to lignin was observed offshore, with evidence of an increase in the degree of oxidative alteration of lignin residues. Preliminary mass balance calculations applied to the global ocean margin suggest riverine sources of both particulate lignin and cutin are important and that most (>95%) deposition of recognizable land plant biopolymers occurs in shelf seas. 74 refs., 7 figs., 5 tabs.

  1. Multimodal CARS microscopy of structured carbohydrate biopolymers

    OpenAIRE

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the comm...

  2. Fulton Cellulosic Ethanol Biorefinery

    Energy Technology Data Exchange (ETDEWEB)

    Sumait, Necy [BlueFire Ethanol, Irvine, CA (United States); Cuzens, John [BlueFire Ethanol, Irvine, CA (United States); Klann, Richard [BlueFire Ethanol, Irvine, CA (United States)

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  3. End-of-life of starch-polyvinyl alcohol biopolymers.

    Science.gov (United States)

    Guo, M; Stuckey, D C; Murphy, R J

    2013-01-01

    This study presents a life cycle assessment (LCA) model comparing the waste management options for starch-polyvinyl alcohol (PVOH) biopolymers including landfill, anaerobic digestion (AD), industrial composting and home composting. The ranking of biological treatment routes for starch-PVOH biopolymer wastes depended on their chemical compositions. AD represents the optimum choice for starch-PVOH biopolymer containing N and S elements in global warming potential (GWP(100)), acidification and eutrophication but not on the remaining impact categories, where home composting was shown to be a better option due to its low energy and resource inputs. For those starch-PVOH biopolymers with zero N and S contents home composting delivered the best environmental performance amongst biological treatment routes in most impact categories (except for GWP(100)). The landfill scenario performed generally well due largely to the 100-year time horizon and efficient energy recovery system modeled but this good performance is highly sensitive to assumptions adopted in landfill model.

  4. Sequence-Dependent Effects on the Properties of Semiflexible Biopolymers

    CERN Document Server

    Zicong, Bela

    2008-01-01

    Using path integral technique, we show exactly that for a semiflexible biopolymer in constant extension ensemble, no matter how long the polymer and how large the external force, the effects of short range correlations in the sequence-dependent spontaneous curvatures and torsions can be incorporated into a model with well-defined mean spontaneous curvature and torsion as well as a renormalized persistence length. Moreover, for a long biopolymer with large mean persistence length, the sequence-dependent persistence lengths can be replaced by their mean. However, for a short biopolymer or for a biopolymer with small persistence lengths, inhomogeneity in persistence lengths tends to make physical observables very sensitive to details and therefore less predictable.

  5. Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films

    Science.gov (United States)

    Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.

    2017-08-01

    Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.

  6. Laser-induced periodic surface structuring of biopolymers

    Science.gov (United States)

    Pérez, Susana; Rebollar, Esther; Oujja, Mohamed; Martín, Margarita; Castillejo, Marta

    2013-03-01

    We report here on a systematic study about the formation of laser-induced periodic surface structures (LIPSS) on biopolymers. Self-standing films of the biopolymers chitosan, starch and the blend of chitosan with the synthetic polymer poly (vinyl pyrrolidone), PVP, were irradiated in air with linearly polarized laser beams at 193, 213 and 266 nm, with pulse durations in the range of 6-17 ns. The laser-induced periodic surface structures were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via Raman spectroscopy. Formation of LIPSS parallel to the laser polarization direction, with periods similar to the laser wavelength, was observed at efficiently absorbed wavelengths in the case of the amorphous biopolymer chitosan and its blend with PVP, while formation of LIPSS is prevented in the crystalline starch biopolymer.

  7. Surface cellulose modification with 2-aminomethylpyridine for copper, cobalt, nickel and zinc removal from aqueous solution

    Directory of Open Access Journals (Sweden)

    Edson Cavalcanti Silva Filho

    2013-02-01

    Full Text Available Cellulose was first modified with thionyl chloride, followed by reaction with 2-aminomethylpyridine to yield 6-(2'-aminomethylpyridine-6-deoxycellulose. The resulting chemically-immobilized surface was characterized by elemental analysis, FTIR, 13C NMR and thermogravimetry. From 0.28% of nitrogen incorporated in the polysaccharide backbone, the amount of 0.10 ± 0.01 mmol of the proposed molecule was anchored per gram of the chemically modified cellulose. The available basic nitrogen centers attached to the covalent pendant chain bonded to the biopolymer skeleton were investigated for copper, cobalt, nickel and zinc adsorption from aqueous solution at room temperature. The newly synthesized biopolymer gave maximum sorption capacities of 0.100 ± 0.012, 0.093 ± 0.021, 0.074 ± 0.011 and 0.071 ± 0.019 mmol.g-1 for copper, cobalt, nickel and zinc cations, respectively, using the batchwise method, whose data was fitted to different sorption models, the best fit being obtained with the Langmuir model. The results suggested the use of this anchored biopolymer for cation removal from the environment.

  8. Role of Native and Exotic Earthworms in Plant Biopolymer Dynamics in Forest Soil

    Science.gov (United States)

    Filley, Timothy

    2010-05-01

    Many forests within northern North America are experiencing the introduction of earthworms for the first time, presumably since before the last major glaciation. Forest dynamics are undergoing substantial changes because of the activity of the mainly European lumbricid species. Documented losses in litter layers, expansion of A-horizons, loss of the organic horizon, changes in fine root density, and shifts in microbial populations have all been documented in invaded zones. Two free air CO2 enrichment (FACE) forest experiments (aspen FACE at Rhinelander, Wisconsin and sweet gum FACE at Oak Ridge National Lab, Tennessee) lie within the zones of invasion and exhibit differences in amounts of exotic and native species as well as endogeic (predominantly mineral soil dwelling) and epigeic (litter and organic matter horizon dwelling) types. Considerations of carbon accrual dynamics and relative input of above vs. below ground plant input in these young successional systems do not consider the potential impact of these ecosystem engineers. We investigated the impact of earthworm activity by tracking the relative abundance and stable carbon isotope compositions of lignin and substituted fatty acids extracted from isolated earthworms and their fecal pellets and from host soils. Indications of root vs leaf input to earthworm casts and fecal matter were derived from differences in the chemical composition of cutin, suberin, and lignin. The isotopically depleted CO2 used in FACE and the resulting isotopically depleted plant organic matter afford an excellent opportunity to assess biopolymer-specific turnover dynamics. We find that endogeic species are proportionately more responsible for fine root cycling while some epigeic species are responsible for microaggregation of foliar cutin. CSIA of fecal pellet lignin and SFA indicates how these biopolymer pools can be derived from variable sources, roots, background soil, foliar tissue within one earthworm. Additionally, CSIA

  9. Single Molecule Science for Personalized Nanomedicine: Atomic Force Microscopy of Biopolymer-Protein Interactions

    Science.gov (United States)

    Hsueh, Carlin

    Nanotechnology has a unique and relatively untapped utility in the fields of medicine and dentistry at the level of single-biopolymer and -molecule diagnostics. In recent years atomic force microscopy (AFM) has garnered much interest due to its ability to obtain atomic-resolution of molecular structures and probe biophysical behaviors of biopolymers and proteins in a variety of biologically significant environments. The work presented in this thesis focuses on the nanoscale manipulation and observation of biopolymers to develop an innovative technology for personalized medicine while understanding complex biological systems. These studies described here primarily use AFM to observe biopolymer interactions with proteins and its surroundings with unprecedented resolution, providing a better understanding of these systems and interactions at the nanoscale. Transcriptional profiling, the measure of messenger RNA (mRNA) abundance in a single cell, is a powerful technique that detects "behavior" or "symptoms" at the tissue and cellular level. We have sought to develop an alternative approach, using our expertise in AFM and single molecule nanotechnology, to achieve a cost-effective high throughput method for sensitive detection and profiling of subtle changes in transcript abundance. The technique does not require amplification of the mRNA sample because the AFM provides three-dimensional views of molecules with unprecedented resolution, requires minimal sample preparation, and utilizes a simple tagging chemistry on cDNA molecules. AFM images showed collagen polymers in teeth and of Drebrin-A remodeling of filamentous actin structure and mechanics. AFM was used to image collagen on exposed dentine tubules and confirmed tubule occlusion with a desensitizing prophylaxis paste by Colgate-Palmolive. The AFM also superseded other microscopy tools in resolving F-actin helix remodeling and possible cooperative binding by a neuronal actin binding protein---Drebrin-A, an

  10. Applications of biopolymers and synthetic polymers blends: literature review

    OpenAIRE

    Lady Joana Rodríguez Sepúlveda; Carlos Eduardo Orrego Alzate

    2016-01-01

    Biopolymers are biodegradable commonly, fragile, hydrophilic and have low thermal resistance, which has limited its commercial application. In contrast, synthetic polymers or derived from non-renewable resources generally lower cost and limited or minimal biodegradability, have good mechanical and thermal characteristics. The blend of biopolymers and synthetic polymers provides materials with properties and reasonable costs for certain applications. This article is a literature review on the ...

  11. Effect of ozone on biopolymers in biofiltration and ultrafiltration processes.

    Science.gov (United States)

    Siembida-Lösch, Barbara; Anderson, William B; Wang, Yulang Michael; Bonsteel, Jane; Huck, Peter M

    2015-03-01

    The focus of this full-scale study was to determine the effect of ozone on biopolymer concentrations in biofiltration and ultrafiltration (UF) processes treating surface water from Lake Ontario. Ozonation was out of service for maintenance for 9 months, hence, it was possible to investigate ozone's action on biologically active carbon contactors (BACCs) and UF, in terms of biopolymer removal. Given the importance of biopolymers for fouling, this fraction was quantified using a chromatographic technique. Ozone pre-treatment was observed to positively impact the active biomass in biofilters. However, since an increase of the active biomass did not result in higher biopolymer removal, active biomass concentration cannot be a surrogate for biofiltration performance. It was evident that increasing empty bed contact time (EBCT) from 4 to 19 min only had a positive effect on biopolymer removal through BACCs when ozone was out of service. However, as a mass balance experiment showed, ozone-free operation resulted in higher deposition of biopolymers on a UF membrane and slight deterioration in its performance.

  12. Preparation and characterization of a novel micro- and nanocomposite hydrogels containing cellulosic fibrils

    Science.gov (United States)

    In recent years, the preparation of cellulosic composites and nanocomposites has become an important approach because of the wide abundance of cellulose, its biodegradability, renewability, and the ability to effectively reinforce a polymer matrix in an environmentally benign nature. The main object...

  13. Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis.

    Science.gov (United States)

    Xie, Liqiong; Yang, Cangjing; Wang, Xuelu

    2011-08-01

    The phytohormones, brassinosteroids (BRs), play important roles in regulating cell elongation and cell size, and BR-related mutants in Arabidopsis display significant dwarf phenotypes. Cellulose is a biopolymer which has a major contribution to cell wall formation during cell expansion and elongation. However, whether BRs regulate cellulose synthesis, and if so, what the underlying mechanism of cell elongation induced by BRs is, is unknown. The content of cellulose and the expression levels of the cellulose synthase genes (CESAs) was measured in BR-related mutants and their wild-type counterpart. The chromatin immunoprecipitation (CHIP) experiments and genetic analysis were used to demonstrate that BRs regulate CESA genes. It was found here that the BR-deficient or BR-perceptional mutants contain less cellulose than the wild type. The expression of CESA genes, especially those related to primary cell wall synthesis, was reduced in det2-1 and bri1-301, and was only inducible by BRs in the BR-deficient mutant det2-1. CHIP experiments show that the BR-activated transcription factor BES1 can associate with upstream elements of most CESA genes particularly those related with the primary cell wall. Furthermore, over-expression of the BR receptor BRI1 in CESA1, 3, and 6 mutants can only partially rescue the dwarf phenotypes. Our findings provide potential insights into the mechanism that BRs regulate cellulose synthesis to accomplish the cell elongation process in plant development.

  14. Cellulose-pectin composite hydrogels: Intermolecular interactions and material properties depend on order of assembly.

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Martinez-Sanz, Marta; Bonilla, Mauricio R; Wang, Dongjie; Gilbert, Elliot P; Stokes, Jason R; Gidley, Michael J

    2017-04-15

    Plant cell walls have a unique combination of strength and flexibility however, further investigations are required to understand how those properties arise from the assembly of the relevant biopolymers. Recent studies indicate that Ca(2+)-pectates can act as load-bearing components in cell walls. To investigate this proposed role of pectins, bioinspired wall models were synthesised based on bacterial cellulose containing pectin-calcium gels by varying the order of assembly of cellulose/pectin networks, pectin degree of methylesterification and calcium concentration. Hydrogels in which pectin-calcium assembly occurred prior to cellulose synthesis showed evidence for direct cellulose/pectin interactions from small-angle scattering (SAXS and SANS), had the densest networks and the lowest normal stress. The strength of the pectin-calcium gel affected cellulose structure, crystallinity and material properties. The results highlight the importance of the order of assembly on the properties of cellulose composite networks and support the role of pectin in the mechanics of cell walls. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Pyrolytic sugars from cellulosic biomass

    Science.gov (United States)

    Kuzhiyil, Najeeb

    Sugars are the feedstocks for many promising advanced cellulosic biofuels. Traditional sugars derived from starch and sugar crops are limited in their availability. In principle, more plentiful supply of sugars can be obtained from depolymerization of cellulose, the most abundant form of biomass in the world. Breaking the glycosidic bonds between the pyranose rings in the cellulose chain to liberate glucose has usually been pursued by enzymatic hydrolysis although a purely thermal depolymerization route to sugars is also possible. Fast pyrolysis of pure cellulose yields primarily levoglucosan, an anhydrosugar that can be hydrolyzed to glucose. However, naturally occurring alkali and alkaline earth metals (AAEM) in biomass are strongly catalytic toward ring-breaking reactions that favor formation of light oxygenates over anhydrosugars. Removing the AAEM by washing was shown to be effective in increasing the yield of anhydrosugars; but this process involves removal of large amount of water from biomass that renders it energy intensive and thereby impractical. In this work passivation of the AAEM (making them less active or inactive) using mineral acid infusion was explored that will increase the yield of anhydrosugars from fast pyrolysis of biomass. Mineral acid infusion was tried by previous researchers, but the possibility of chemical reactions between infused acid and AAEM in the biomass appears to have been overlooked, possibly because metal cations might be expected to already be substantially complexed to chlorine or other strong anions that are found in biomass. Likewise, it appears that previous researchers assumed that as long as AAEM cations were in the biomass, they would be catalytically active regardless of the nature of their complexion with anions. On the contrary, we hypothesized that AAEM can be converted to inactive or less active salts using mineral acids. Various biomass feedstocks were infused with mineral (hydrochloric, nitric, sulfuric and

  16. Thin blend films of cellulose and polyacrylonitrile

    Science.gov (United States)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  17. Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks

    Science.gov (United States)

    Kachan, Devin Michael

    Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I

  18. Characterizing the changes in biopolymer composition in roots of photosynthetically divergent grasses exposed to future climates

    Science.gov (United States)

    Suseela, V.; Tharayil, N.; Pendall, E.

    2014-12-01

    A majority of carbon in soil is derived from plant roots, yet roots remain remarkably less explored. Root tissues are abundant in heteropolymers such as suberin, lignin and tannins which are energetically demanding to depolymerize, thus facilitating the accrual of carbon in soil. Most biopolymers are operationally/functionally defined and their function is regulated by the identity of monomers and the linkages connecting these monomers. The structural chemistry of these biopolymers could vary with the environmental conditions experienced during their formative stage thus altering the potential for soil carbon sequestration. We examined the biopolymer composition in the roots of a C3 (Hesperostipa comata) and a C4 (Bouteloua gracilis) grass species exposed to a factorial combination of warming and elevated CO2 at the Prairie Heating and CO2 Enrichment (PHACE) experiment, Wyoming, USA. The grass roots were subjected to a sequential solvent extraction and base hydrolysis to delineate various operational fractions within the polydisperse matrix. The extracted fractions were analyzed using various chromatography mass spectrometry platforms. Warming and elevated CO2 increased the total suberin content and the amount of ω-hydroxy acids in C4 grass species while in C3 species there was a trend of increasing concentration of α,ω-dioic acids in roots exposed to elevated CO2 compared to ambient CO2 treatment. Our results highlight the effect of warming and elevated CO2 on the chemical composition of heteropolymers in roots that may potentially alter root function and rate of decomposition leading to changes in soil carbon in a future warmer world.

  19. Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan-Cellulose Composites and Their Anion Uptake Properties.

    Science.gov (United States)

    Udoetok, Inimfon A; Wilson, Lee D; Headley, John V

    2016-12-07

    Self-assembled and cross-linked chitosan/cellulose glutaraldehyde composite materials (CGC) were prepared with enhanced surface area and variable morphology. FTIR, CHN, and (13)C solid state NMR studies provided support for the cross-linking reaction between the amine groups of chitosan and glutaraldehyde; whereas, XRD and TGA studies provided evidence of cellulose-chitosan interactions for the composites. SEM, equilibrium swelling, and nitrogen adsorption studies corroborate the enhanced surface area and variable morphology of the cross-linked biopolymers. Equilibrium sorption studies at alkaline conditions with phenolic dyes, along with single component and mixed naphthenates in aqueous solution revealed variable uptake properties with the composites. The Freundlich isotherm model revealed that the composite at the highest levels of cross-linker, CGC3, had the highest sorption affinity (KF; L mmol/g) for phenolphthalein (phth) followed by ortho-nitrophenyl acetic acid (ONPAA) and para-nitrophenol (PNP), as follows: Phth (5.03 × 10(-1)) > ONPAA (2.28 × 10(-1)) > PNP (8.49 × 10(-2)). The Sips isotherm model provided a good description of the sorption profile of single component and naphthenate mixtures. The monolayer uptake capacity (Qm; mg g(-1)) is given in parentheses: 2-hexyldecanoic acid (S1; 115 mg/g) > 2-naphthoxyacetic acid (S3; 40.5 mg/g) > trans-4-pentylcyclohexylcarboxylic acid (S2; 13.7 mg/g). By comparison, the Qm values for CGC3 with naphthenate mixtures (24.1 and 27.4 mg/g) according to UV spectroscopy and electrospray ionization mass spectrometry (ESI-HRMS). The sorbent materials generally show greater uptake with naphthenates that possess lower vs higher double bond equivalence (DBE) values. Kinetic studies revealed that the sorption of phth adopted behavior described by the pseudo-second order model, while uptake for S3 and naphthenate mixtures adopted pseudo-first order behavior. This study contributes to a greater understanding of the

  20. Multimodal CARS microscopy of structured carbohydrate biopolymers

    Science.gov (United States)

    Slepkov, Aaron D.; Ridsdale, Andrew; Pegoraro, Adrian F.; Moffatt, Douglas J.; Stolow, Albert

    2010-01-01

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the commonly-measured C-H stretch (2750 cm−1–2970 cm−1) and SHG provide potentially important structural information and contrast in these materials. PMID:21258555

  1. Multimodal CARS microscopy of structured carbohydrate biopolymers.

    Science.gov (United States)

    Slepkov, Aaron D; Ridsdale, Andrew; Pegoraro, Adrian F; Moffatt, Douglas J; Stolow, Albert

    2010-11-08

    We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm(-1)-3400 cm(-1)), together with the commonly-measured C-H stretch (2750 cm(-1)-2970 cm(-1)) and SHG provide potentially important structural information and contrast in these materials.

  2. Photoresponsive Cellulose Nanocrystals

    Directory of Open Access Journals (Sweden)

    Dimitris S Argyropoulos

    2011-07-01

    Full Text Available In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side‐ chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO‐mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO‐ oxidized CNCs via carbodiimide‐mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO‐oxidized CNCs. Finally, the reaction of surface‐modified TEMPO‐oxidized cellulose nanocrystals and azido‐bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I‐catalyzed Azide‐Alkyne Cycloaddition (CuAAC to produce highly photo‐responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side‐chains were shown to undergo UV‐induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano‐arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.

  3. Formatting and ligating biopolymers using adjustable nanoconfinement

    Science.gov (United States)

    Berard, Daniel J.; Shayegan, Marjan; Michaud, Francois; Henkin, Gil; Scott, Shane; Leslie, Sabrina

    2016-07-01

    Sensitive visualization and conformational control of long, delicate biopolymers present critical challenges to emerging biotechnologies and biophysical studies. Next-generation nanofluidic manipulation platforms strive to maintain the structural integrity of genomic DNA prior to analysis but can face challenges in device clogging, molecular breakage, and single-label detection. We address these challenges by integrating the Convex Lens-induced Confinement (CLiC) technique with a suite of nanotopographies embedded within thin-glass nanofluidic chambers. We gently load DNA polymers into open-face nanogrooves in linear, concentric circular, and ring array formats and perform imaging with single-fluorophore sensitivity. We use ring-shaped nanogrooves to access and visualize confinement-enhanced self-ligation of long DNA polymers. We use concentric circular nanogrooves to enable hour-long observations of polymers at constant confinement in a geometry which eliminates the confinement gradient which causes drift and can alter molecular conformations and interactions. Taken together, this work opens doors to myriad biophysical studies and biotechnologies which operate on the nanoscale.

  4. Rotational molding of bio-polymers

    Science.gov (United States)

    Greco, Antonio; Maffezzoli, Alfonso; Forleo, Stefania

    2014-05-01

    This paper is aimed to study the suitability of bio-polymers, including poly-lactic acid (PLLA) and Mater-Bi, for the production of hollow components by rotational molding. In order to reduce the brittleness of PLLA, the material was mixed with two different plasticizers, bis-ethyl-hexyl-phthalate (DEHP) and poly-ethylene-glycol (PEG). The materials were characterized in terms of sinterability. To this purpose, thermomechanical (TMA) analysis was performed at different heating rates, in order to identify the endset temperatures of densification and the onset temperatures of degradation. Results obtained indicated that the materials are characterized by a very fast sintering process, occurring just above the melting temperature, and an adequately high onset of degradation. The difference between the onset of degradation and the endset of sintering, defined as the processing window of the polymer, is sufficiently wide, indicating that the polymers can be efficiently processed by rotational molding. Therefore, a laboratory scale apparatus was used for the production of PLLA and Mater-Bi prototypes. The materials were processed using very similar conditions to those used for LLDPE. The production of void-free samples of uniform wall thickness was considered as an indication of the potentiality of the process for the production of biodegradable containers.

  5. Customizable Biopolymers for Heavy Metal Remediation

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, Jan; Prabhukumar, Giridhar; Lao, U. Loi; Chen Alin; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred [University of California, Department of Chemical and Environmental Engineering (United States)], E-mail: wilfred@engr.ucr.edu

    2005-10-15

    Nanoscale materials have been gaining increasing interest in the area of environmental remediation because of their unique physical, chemical and biological properties. One emerging area of research has been the development of novel materials with increased affinity, capacity, and selectivity for heavy metals because conventional technologies are often inadequate to reduce concentrations in wastewater to acceptable regulatory standards. Genetic and protein engineering have emerged as the latest tools for the construction of nanoscale materials that can be controlled precisely at the molecular level. With the advent of recombinant DNA techniques, it is now possible to create 'artificial' protein polymers with fundamentally new molecular organization. The most significant feature of these nanoscale biopolymers is that they are specifically pre-programmed within a synthetic gene template and can be controlled precisely in terms of sizes, compositions and functions at the molecular level. In this review, the use of specifically designed protein-based nano-biomaterials with both metal-binding and tunable properties for heavy metal removal is summarized. Several different strategies for the selective removal of heavy metals such as cadmium and mercury are highlighted.

  6. Bacterial cellulose in biomedical applications: A review.

    Science.gov (United States)

    Picheth, Guilherme Fadel; Pirich, Cleverton Luiz; Sierakowski, Maria Rita; Woehl, Marco Aurélio; Sakakibara, Caroline Novak; de Souza, Clayton Fernandes; Martin, Andressa Amado; da Silva, Renata; de Freitas, Rilton Alves

    2017-11-01

    Bacterial cellulose (BC) derived materials represents major advances to the current regenerative and diagnostic medicine. BC is a highly pure, biocompatible and versatile material that can be utilized in several applications - individually or in the combination with different components (e.g. biopolymers and nanoparticles) - to provide structural organization and flexible matrixes to distinct finalities. The wide application and importance of BC is described by its common utilization as skin repair treatments in cases of burns, wounds and ulcers. BC membranes accelerate the process of epithelialization and avoid infections. Furthermore, BC biocomposites exhibit the potential to regulate cell adhesion, an important characteristic to scaffolds and grafts; ultra-thin films of BC might be also utilized in the development of diagnostic sensors for its capability in immobilizing several antigens. Therefore, the growing interest in BC derived materials establishes it as a great promise to enhance the quality and functionalities of the current generation of biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Process Dependence of Cellulose Nanofiber Fabrication

    Science.gov (United States)

    Henderson, Doug; Zhang, Xin; Mao, Yimin; Jang, Soo-Hwan; Hu, Liangbing; Briber, Robert; Wang, Howard

    Cellulose nanofibers (CNF) are the most abundant natural nanomaterial on earth with potential applications in renewable energy, polymer nanocomposites and flexible electronics. CNF can be produced through TEMPO oxidation which separates the hierarchical structure of cellulose fibers into smaller micro- and nanofibers by altering their surface chemistry, inducing a repulsive electrostatic charge on the fibers. This work will examine the structural evolution of CNF during production. Samples were prepared by removing and quenching aliquots during the TEMPO reaction. The fibers were washed, filtered and re-dispersed into D2O for small angle neutron scattering (SANS) measurements. The SANS data was analyzed to track the changes in the CNF structure as a function of reaction time.

  8. Increasing cellulose production and transgenic plant growth in forest tree species

    Institute of Scientific and Technical Information of China (English)

    TANG Wei; Aaron Nelson; Emmanuel Johnson

    2005-01-01

    Cellulose is one of many important polymers in plants. Cellulose is made of repeat units of the monomer glucose. Cellulose is a major industrial biopolymer in the forest products, textile, and chemical industries. It also forms a large portion of the biomass useful in the generation of energy. Moreover, cellulose-based biomass is a renewable energy source that can be used for the generation of ethanol as a fuel. Cellulose is synthesized by a variety of living organisms such as plants and algae. It is the major component of plant cell walls with secondary cell walls having a much higher content of cellulose. The relationship between cellulose and lignin biosynthesis is complicated, but it is confirmed that inhibition of lignin biosynthesis in transgenic trees will increase cellulose biosynthesis and plant growth. Cellulose accumulation may be increased by down-regulating 4-coumarate:coenzyme A ligase (4CL, EC 6.2.1.12) as shown in transgenic aspen. There is no similar reports on down-regulating 4CL in transgenic conifers. Based on our established Agrobacterium tumefaciens-mediated transformation system in loblolly pine, we are able to produce antisense 4-CL transgenic loblolly pine which is predicted to have increasing cellulose accumulation. The overall objective of this project is to genetically engineer forest tree species such as loblolly pine with reduced amount of lignin and increased cellulose content. The research strategy includes: (1) isolate the 4-coumarate:coenzyme A ligase gene from loblolly pine seedlings by reverse transcription-polymerase chain reaction (RT-PCR) and Rapid Amplification of cDNA Ends-Polymerase Chain Reaction (RACE-PCR) techniques from the cDNA library; (2) construct binary expression vectors with antisense 4CL coding sequences and introduce antisense constructs of the 4-coumarate:coenzyme A ligase gene cloned from loblolly pine into the loblolly pine to down regulate the 4-coumarate:coenzyme A ligase gene expression; (3) study the

  9. Acid hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  10. Conformon-driven biopolymer shape changes in cell modeling.

    Science.gov (United States)

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  11. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Snadra L. Fox; X. Xie; K. D. Schaller; E. P. Robertson; G. A. Bala

    2003-10-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones. Current technology relies on the use of cross-linking agents to initiate gelation. The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts at the Idaho National Engineering and Environmental Laboratory (INEEL) have produced a reactive alkaline-soluble biopolymer from Agrobacterium sp. ATCC no. 31749 that gels upon decreasing the pH of the polymeric solution. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability. Permeability modification was investigated by injecting solubilized biopolymer into Berea sandstone cores and defining the contribution of pH, salt, temperature, and Schuricht crude oil on biopolymer gelation. The biopolymer was soluble in KOH at a pH greater than 11.4 and gelled when the pH dropped below 10.8. The Berea sandstone core buffered the biopolymer solution, decreasing the pH sufficiently to form a gel, which subsequently decreased the permeability. The effluent pH of the control cores injected with 0.01 {und M} KOH (pH 12.0) and 0.10{und M} KOH (pH 13.0) decreased to 10.6 and 12.7, respectively. The permeability of the sandstone core injected with biopolymer was decreased to greater than 95% of the original permeability at 25 C in the presence of 2% NaCl, and Schuricht crude oil; however, the permeability increased when the temperature of the core was increased to 60 C. Residual resistance factors as high as 792 were seen in Berea cores treated with biopolymer. The buffering capacity of sandstone has been demonstrated to reduce the pH of a biopolymer solution sufficiently to cause the polymer to form a stable in-situ gel. This finding could potentially lead to alternate technology for permeability modification, thus

  12. Flexible cellulose nanofibril composite films with reduced hygroscopic capacity

    Science.gov (United States)

    Yan Qing; Ronald Sabo; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Cellulose nanofibrils (CNFs), which are generated from abundant, environmentally friendly natural plant resources, display numerous interesting properties such as outstanding mechanical strength, negligible light scattering, and low thermal expansion (Zimmermann et al., 2010). These nanofibers are usually created by mechanical fibrillation or chemical oxidation of pulp...

  13. Recyclable organic solar cells on cellulose nanocrystal substrates

    Science.gov (United States)

    Yinhua Zhou; Canek Fuentes-Hernandez; Talha M. Khan; Jen-Chieh Liu; James Hsu; Jae Won Shim; Amir Dindar; Jeffrey P. Youngblood; Robert J. Moon; Bernard. Kippelen

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant,...

  14. Design and characterization of cellulose nanocrystal-enhanced epoxy hardeners

    Science.gov (United States)

    Shane X. Peng; Robert J. Moon; Jeffrey P. Youngblood

    2014-01-01

    Cellulose nanocrystals (CNCs) are renewable, sustainable, and abundant nanomaterial widely used as reinforcing fillers in the field of polymer nanocomposites. In this study, two-part epoxy systems with CNC-enhanced hardeners were fabricated. Three types of hardeners, Jeffamine D400 (JD400), diethylenetriamine (DETA), and (±)-trans-1,2- diaminocyclohexane (DACH), were...

  15. Coupled actin-lamin biopolymer networks and protecting DNA

    Science.gov (United States)

    Zhang, Tao; Rocklin, D. Zeb; Mao, Xiaoming; Schwarz, J. M.

    The mechanical properties of cells are largely determined by networks of semiflexible biopolymers forming the cytoskeleton. Similarly, the mechanical properties of cell nuclei are also largely determined by networks of semiflexible biopolymers forming the nuclear cytoskeleton. In particular, a network of filamentous lamin sits just inside the inner nuclear membrane to presumably protect the heart of the cell nucleus--the DNA. It has been demonstrated over the past decade that the actin cytoskeletal biopolymer network and the lamin biopolymer network are coupled via a sequence of proteins bridging the outer and inner nuclear membranes, known as the LINC complex. We, therefore, probe the consequences of such a coupling in a model biopolymer network system via numerical simulations to understand the resulting deformations in the lamin network in response to perturbations in the actin cytoskeletal network. We find, for example, that the force transmission across the coupled system can depend sensitively on the concentration of LINC complexes. Such study could have implications for mechanical mechanisms of the regulation of transcription since DNA couples to lamin via lamin-binding domains so that deformations in the lamin network may result in deformations in the DNA.

  16. Biopolymers as transdermal drug delivery systems in dermatology therapy.

    Science.gov (United States)

    Basavaraj, K H; Johnsy, George; Navya, M A; Rashmi, R; Siddaramaiah

    2010-01-01

    The skin is considered a complex organ for drug delivery because of its structure. Drug delivery systems are designed for the controlled release of drugs through the skin into the systemic circulation, maintaining consistent efficacy and reducing the dose of the drugs and their related side effects. Transdermal drug delivery represents one of the most rapidly advancing areas of novel drug delivery. The excellent impervious nature of the skin is the greatest challenge that must be overcome for successful drug delivery. Today, polymers have been proven to be successful for long-term drug delivery applications as no single polymer can satisfy all of the requirements. Biopolymers in the field of dermal application are rare and the mechanisms that affect skin absorption are almost unknown. Biopolymers are widely used as drug delivery systems, but as such the use of biopolymers as drug delivery systems in dermatologic therapy is still in progress. Commonly used biopolymers include hydrocolloids, alginates, hydrogels, polyurethane, collagen, poly(lactic-co-glycolic acid), chitosan, proteins and peptides, pectin, siRNAs, and hyaluronic acid. These new and exciting methods for drug delivery are already increasing the number and quality of dermal and transdermal therapies. This article reviews current research on biopolymers and focuses on their potential as drug carriers, particularly in relation to the dermatologic aspects of their use.

  17. Force spectroscopy of complex biopolymers with heterogeneous elasticity

    Science.gov (United States)

    Valdman, David; Lopez, Benjamin J.

    2013-01-01

    Cellular biopolymers can exhibit significant compositional heterogeneities as a result of the non-uniform binding of associated proteins, the formation of microstructural defects during filament assembly, or the imperfect bundling of filaments into composite structures of variable diameter. These can lead to significant variations in the local mechanical properties of biopolymers along their length. Existing spectral analysis methods assume filament homogeneity and therefore report only a single average stiffness for the entire filament. However, understanding how local effects modulate biopolymer mechanics in a spatially resolved manner is essential to understanding how binding and bundling proteins regulate biopolymer stiffness and function in cellular contexts. Here, we present a new method to determine the spatially varying material properties of individual complex biopolymers from the observation of passive thermal fluctuations of the filament conformation. We develop new statistical mechanics-based approaches for heterogeneous filaments that estimate local bending elasticities as a function of the filament arc-length. We validate this methodology using simulated polymers with known stiffness distributions, and find excellent agreement between derived and expected values. We then determine the bending elasticity of microtubule filaments of variable composition generated by repeated rounds of tubulin polymerization using either GTP or GMPCPP, a nonhydrolyzable GTP analog. Again, we find excellent agreement between mechanical and compositional heterogeneities. PMID:24049545

  18. Quantitative analysis of biopolymers by matrix-assisted laser desorption

    Energy Technology Data Exchange (ETDEWEB)

    Tang, K.; Allman, S.L.; Jones, R.B.; Chen, C.H. (Oak Ridge National Lab., TN (United States))

    1993-08-01

    During the past few years, major efforts have been made to use mass spectrometry to measure biopolymers because of the great potential benefit to biological and medical research. Although the theoretical details of laser desorption and ionization mechanisms of MALDI are not yet fully understood, several models have been presented to explain the production of large biopolymer ions. In brief, it is very difficult to obtain reliable measurements of the absolute quantity of analytes by MALDI. If MALDI is going to become a routine analytical tool, it is obvious that quantitative measurement capability must be pursued. Oligonucleotides and protein samples used in this work were purchased from commercial sources. Nicotinic acid was used as matrix for both types of biopolymers. From this experiment, it is seen that it is difficult to obtain absolute quantitative measurements of biopolymers using MALDI. However, internal calibration with molecules having similar chemical properties can be used to resolve these difficulties. Chemical reactions between biopolymers must be avoided to prevent the destruction of the analyte materials. 10 refs., 8 figs.

  19. Biodegradable Nanocomposite Films Based on Sodium Alginate and Cellulose Nanofibrils

    Directory of Open Access Journals (Sweden)

    B. Deepa

    2016-01-01

    Full Text Available Biodegradable nanocomposite films were prepared by incorporation of cellulose nanofibrils (CNF into alginate biopolymer using the solution casting method. The effects of CNF content (2.5, 5, 7.5, 10 and 15 wt % on mechanical, biodegradability and swelling behavior of the nanocomposite films were determined. The results showed that the tensile modulus value of the nanocomposite films increased from 308 to 1403 MPa with increasing CNF content from 0% to 10%; however, it decreased with further increase of the filler content. Incorporation of CNF also significantly reduced the swelling percentage and water solubility of alginate-based films, with the lower values found for 10 wt % in CNF. Biodegradation studies of the films in soil confirmed that the biodegradation time of alginate/CNF films greatly depends on the CNF content. The results evidence that the stronger intermolecular interaction and molecular compatibility between alginate and CNF components was at 10 wt % in CNF alginate films.

  20. Associative polymers and physical gels derived from natural biopolymers; Polymeres associes et gels physiques derives de biopolymeres naturels

    Energy Technology Data Exchange (ETDEWEB)

    Muller, G.; Huguet, J.; Merle, L.; Grisel, M.; Picton, L.; Bataille, I.; Charpentier, D.; Glinel, K. [CNRS, Polymeres, Biopolymeres et Membranes, Universite de Rouen, 76 - Mont-Saint-Aignan (France)

    1997-04-01

    Polymers are largely used in oil-field operations where the control of rheology of aqueous phases ids of primary importance. Polymers systems showing high viscosity present many advantages as candidates for drilling muds. Associating polymers, i.e. polymers the hydrophilic main chains of which have been properly modified by introducing hydrophobic groups and weak physical ges are good examples of such systems. The different systems chosen to be studied are derived from natural biopolymers. They are: Alkyl derivatives issued from neutral (HEC) and ionic (CMC) cellulosic ether derivatives; alkyl and fluoro alkyl derivatives from neutral (Pull) and ionic (CMP) bacterial polysaccharide pullulane; weak physical gels resulting from complex formation between borate ions and the neutral fungal polysaccharide schizophyllan. The different results are given in tables and figures. (N.C.)

  1. Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels.

    Science.gov (United States)

    Gallego, R; Arteaga, J F; Valencia, C; Franco, J M

    2013-10-15

    The -NCO-functionalization of methyl cellulose with HMDI and its application to chemically gel the castor oil is explored in this work by analyzing the influence of functionalization degree on the rheological and thermogravimetric behavior of resulting chemical oleogels. With this aim, different methyl cellulose chemical modifications were achieved by limiting the proportion of HMDI and, subsequently, oleogels were obtained by dispersing these polymers in castor oil and promoting the reaction between those biopolymers and the hydroxyl groups located in the ricinoleic fatty acid chain. -NCO-functionalized methyl cellulose-based oleogels were characterized from themogravimetric and rheological points of view. Suitable thermal resistance and rheological characteristics were found in order to propose these oleogels as promising bio-based alternatives to traditional lubricating greases based on non-renewable resources. In general, -NCO-functionalized methyl cellulose thermally decomposed in three main steps whereas resulting oleogels thermal decomposition takes place in one main single stage which comprises the thermal degradation of both the polymer and the castor oil. Temperature range for thermal degradation is broadened when using highly -NCO-functionalized methyl cellulose. A cross-linked viscoelastic gel was obtained with methyl cellulose functionalized in a relatively low degree (around 6% -NCO molar content). The rheological properties of highly functionalized methyl cellulose-based oleogels evolve during several months of aging, but mainly during the first week, due to the progress of the reaction between -NCO functional groups and castor oil -OH groups. SAOS functions analyzed and oleogel relative elasticity increase with the functionalization degree. Oleogel linear viscoelastic response is also extremely dependent on NCO-functionalized methyl cellulose concentration.

  2. Imidazolium-based ionic liquids for cellulose pretreatment: recent progresses and future perspectives.

    Science.gov (United States)

    Cao, Yujin; Zhang, Rubing; Cheng, Tao; Guo, Jing; Xian, Mo; Liu, Huizhou

    2017-01-01

    As the most abundant biomass in nature, cellulose is considered to be an excellent feedstock to produce renewable fuels and fine chemicals. Due to its hydrogen-bonded supramolecular structure, cellulose is hardly soluble in water and most conventional organic solvents, limiting its further applications. The emergence of ionic liquids (ILs) provides an environmentally friendly, biodegradable solvent system to dissolve cellulose. This review summarizes recent advances concerning imidazolium-based ILs for cellulose pretreatment. The structure of cations and anions which has an influence on the solubility is emphasized. Methods to assist cellulose pretreatment with ILs are discussed. The state of art of the recovery, regeneration, and reuse aspects of ILs is also presented in this work. The current challenges and development directions of cellulose dissolution in ILs are put forward. Although further studies are still much required, commercialization of IL-based processes has made great progress in recent years.

  3. Cellulose Microfibril Formation by Surface-Tethered Cellulose Synthase Enzymes.

    Science.gov (United States)

    Basu, Snehasish; Omadjela, Okako; Gaddes, David; Tadigadapa, Srinivas; Zimmer, Jochen; Catchmark, Jeffrey M

    2016-02-23

    Cellulose microfibrils are pseudocrystalline arrays of cellulose chains that are synthesized by cellulose synthases. The enzymes are organized into large membrane-embedded complexes in which each enzyme likely synthesizes and secretes a β-(1→4) glucan. The relationship between the organization of the enzymes in these complexes and cellulose crystallization has not been explored. To better understand this relationship, we used atomic force microscopy to visualize cellulose microfibril formation from nickel-film-immobilized bacterial cellulose synthase enzymes (BcsA-Bs), which in standard solution only form amorphous cellulose from monomeric BcsA-B complexes. Fourier transform infrared spectroscopy and X-ray diffraction techniques show that surface-tethered BcsA-Bs synthesize highly crystalline cellulose II in the presence of UDP-Glc, the allosteric activator cyclic-di-GMP, as well as magnesium. The cellulose II cross section/diameter and the crystal size and crystallinity depend on the surface density of tethered enzymes as well as the overall concentration of substrates. Our results provide the correlation between cellulose microfibril formation and the spatial organization of cellulose synthases.

  4. Biopolymers for sample collection, protection, and preservation.

    Science.gov (United States)

    Sorokulova, Iryna; Olsen, Eric; Vodyanoy, Vitaly

    2015-07-01

    One of the principal challenges in the collection of biological samples from air, water, and soil matrices is that the target agents are not stable enough to be transferred from the collection point to the laboratory of choice without experiencing significant degradation and loss of viability. At present, there is no method to transport biological samples over considerable distances safely, efficiently, and cost-effectively without the use of ice or refrigeration. Current techniques of protection and preservation of biological materials have serious drawbacks. Many known techniques of preservation cause structural damages, so that biological materials lose their structural integrity and viability. We review applications of a novel bacterial preservation process, which is nontoxic and water soluble and allows for the storage of samples without refrigeration. The method is capable of protecting the biological sample from the effects of environment for extended periods of time and then allows for the easy release of these collected biological materials from the protective medium without structural or DNA damage. Strategies for sample collection, preservation, and shipment of bacterial, viral samples are described. The water-soluble polymer is used to immobilize the biological material by replacing the water molecules within the sample with molecules of the biopolymer. The cured polymer results in a solid protective film that is stable to many organic solvents, but quickly removed by the application of the water-based solution. The process of immobilization does not require the use of any additives, accelerators, or plastifiers and does not involve high temperature or radiation to promote polymerization.

  5. Synthetic and Biopolymer Gels - Similarities and Difference.

    Science.gov (United States)

    Horkay, Ferenc

    2006-03-01

    Ion exchange plays a central role in a variety of physiological processes, such as nerve excitation, muscle contraction and cell locomotion. Hydrogels can be used as model systems for identifying fundamental chemical and physical interactions that govern structure formation, phase transition, etc. in biopolymer systems. Polyelectrolyte gels are particularly well-suited to study ion-polymer interactions because their structure and physical-chemical properties (charge density, crosslink density, etc) can be carefully controlled. They are sensitive to different external stimuli such as temperature, ionic composition and pH. Surprisingly few investigations have been made on polyelectrolyte gels in salt solutions containing both monovalent and multivalent cations. We have developed an experimental approach that combines small angle neutron scattering and osmotic swelling pressure measurements. The osmotic pressure exerted on a macroscopic scale is a consequence of changes occurring at a molecular level. The intensity of the neutron scattering signal, which provides structural information as a function of spatial resolution, is directly related to the osmotic pressure. We have found a striking similarity in the scattering and osmotic behavior of polyacrylic acid gels and DNA gels swollen in nearly physiological salt solutions. Addition of calcium ions to both systems causes a sudden volume change. This volume transition, which occurs when the majority of the sodium counterions are replaced by calcium ions, is reversible. Such reversibility implies that the calcium ions are not strongly bound by the polyanion, but are free to move along the polymer chain, which allows these ions to form temporary bridges between negative charges on adjacent chains. Mechanical measurements reveal that the elastic modulus is practically unchanged in the calcium-containing gels, i.e., ion bridging is qualitatively different from covalent crosslinks.

  6. CHARACTERIZATION OF REGENERATED CELLULOSE MEMBRANES HYDROLYZED FROM CELLULOSE ACETATE

    Institute of Scientific and Technical Information of China (English)

    Yun Chen; Xiao-peng Xiong; Guang Yang; Li-na Zhang; Sen-lin Lei; Hui Lianga

    2002-01-01

    A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range of cellulose acetate membranes can be expanded.

  7. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  8. Recovery of copper and cobalt by biopolymer gels.

    Science.gov (United States)

    Jang, L K; Lopez, S L; Eastman, S L; Pryfogle, P

    1991-02-05

    The recovery of copper from synthetic aqueous media circulating in a loop fluidized bed reactor operated batchwise was investigated by using the following biopolymer systems: (1) a viscous solution of sodium alginate (from kelp) dispensed directly into the reactor fluid containing dissolved copper (sulfate salt) at initial concentrations of 60-200 ppm, (2) partially coagulated calcium alginate spheres for absorbing dissolved copper at initial concentrations of 10-40 ppm, and (3) a mixture of green algae Microcystis and sodium alginate dispensed directly into the reactor fluid. The recovery of copper and cobalt, a strategic metal, from cobalt ore leachate was achieved by a two-step approach: direct dispensing of sodium alginate to absorb the bulk of metals followed by the addition of partially coagulated calcium alginate spheres to "polish" the leachate. Metal binding capacity and conditional stability constant of each biopolymer system as well as the effective diffusivity of cupric ion in the matrix of biopolymer gels are reported.

  9. Applications of biopolymers and synthetic polymers blends: literature review

    Directory of Open Access Journals (Sweden)

    Lady Joana Rodríguez Sepúlveda

    2016-08-01

    Full Text Available Biopolymers are biodegradable commonly, fragile, hydrophilic and have low thermal resistance, which has limited its commercial application. In contrast, synthetic polymers or derived from non-renewable resources generally lower cost and limited or minimal biodegradability, have good mechanical and thermal characteristics. The blend of biopolymers and synthetic polymers provides materials with properties and reasonable costs for certain applications. This article is a literature review on the main applications recently reported for the most important blends of biopolymers and biodegradable synthetic polymers. The literature search was performed with the "Tree of Science" tool and narratively. The results showed that mixtures of aliphatic and polysaccharide polymers are the most used in engineering applications biological tissues, control drug delivery and packaging industry.

  10. Optically controlled multiple switching operations of DNA biopolymer devices

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chao-You; Tu, Waan-Ting; Lin, Yi-Tzu [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Fruk, Ljiljana [Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA (United Kingdom); Hung, Yu-Chueh, E-mail: ychung@ee.nthu.edu.tw [Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2015-12-21

    We present optically tunable operations of deoxyribonucleic acid (DNA) biopolymer devices, where a single high-resistance state, write-once read-many-times memory state, write-read-erase memory state, and single low-resistance state can be achieved by controlling UV irradiation time. The device is a simple sandwich structure with a spin-coated DNA biopolymer layer sandwiched by two electrodes. Upon irradiation, the electrical properties of the device are adjusted owing to a phototriggered synthesis of silver nanoparticles in DNA biopolymer, giving rise to multiple switching scenarios. This technique, distinct from the strategy of doping of pre-formed nanoparticles, enables a post-film fabrication process for achieving optically controlled memory device operations, which provides a more versatile platform to fabricate organic memory and optoelectronic devices.

  11. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  12. Calculating cellulose diffraction patterns

    Science.gov (United States)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  13. The cellulose resource matrix

    NARCIS (Netherlands)

    Keijsers, E.R.P.; Yilmaz, G.; Dam, van J.E.G.

    2013-01-01

    The emerging biobased economy is causing shifts from mineral fossil oil based resources towards renewable resources. Because of market mechanisms, current and new industries utilising renewable commodities, will attempt to secure their supply of resources. Cellulose is among these commodities, where

  14. Conducting and non-conducting biopolymer composites produced by particle bonding

    Science.gov (United States)

    In this report, we introduce two types of processes for the production of biopolymer composites: one is fabricated by bonding biopolymers with corn protein or wheat protein and the other by bonding starch with a synthetic polymer. These two types of biopolymer composites make use of the strong bon...

  15. Chelators influenced synthesis of chitosan–carboxymethyl cellulose microparticles for controlled drug delivery

    Directory of Open Access Journals (Sweden)

    Antony V. Samrot

    2016-07-01

    Full Text Available Abstract In this study, polyphenolic curcumin is entrapped within microcomposites made of biopolymers chitosan (CS and carboxymethyl cellulose (CMC formulated by ionic gelation method. Here, different concentrations of two chelating agents, barium chloride and sodium tripolyphosphate, are used to make microcomposites. Thus, the synthesized microparticles were characterized by FTIR, and their surface morphology was studied by SEM. Drug encapsulation efficiency and the drug release kinetics of CS–CMC composites are also studied. The produced microcomposites were used to study antibacterial activity in vitro.

  16. Models of the solvent-accessible surface of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.E.

    1996-09-01

    Many biopolymers such as proteins, DNA, and RNA have been studied because they have important biomedical roles and may be good targets for therapeutic action in treating diseases. This report describes how plastic models of the solvent-accessible surface of biopolymers were made. Computer files containing sets of triangles were calculated, then used on a stereolithography machine to make the models. Small (2 in.) models were made to test whether the computer calculations were done correctly. Also, files of the type (.stl) required by any ISO 9001 rapid prototyping machine were written onto a CD-ROM for distribution to American companies.

  17. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2012-10-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  18. Length regulation of active biopolymers by molecular motors.

    Science.gov (United States)

    Johann, Denis; Erlenkämper, Christoph; Kruse, Karsten

    2012-06-22

    For biopolymers like cytoskeletal actin filaments and microtubules, assembly and disassembly are inherently dissipative processes. Molecular motors can affect the rates of subunit removal at filament ends. We introduce a driven lattice-gas model to study the effects of motor-induced depolymerization on the length of active biopolymers and find that increasing motor activity sharpens unimodal steady-state length distributions. Furthermore, for sufficiently fast moving motors, the relative width of the length distribution is determined only by the attachment rate of motors. Our results show how established molecular processes can be used to robustly regulate the size of cytoskeletal structures like mitotic spindles.

  19. Precision biopolymers from protein precursors for biomedical applications.

    Science.gov (United States)

    Kuan, Seah Ling; Wu, Yuzhou; Weil, Tanja

    2013-03-12

    The synthesis of biohybrid materials with tailored functional properties represents a topic of emerging interest. Combining proteins as natural, macromolecular building blocks, and synthetic polymers opens access to giant brush-like biopolymers of high structural definition. The properties of these precision polypeptide copolymers can be tailored through various chemical modifications along their polypeptide backbone, which expands the repertoire of known protein-based materials to address biomedical applications. In this article, the synthetic strategies for the design of precision biopolymers from proteins through amino acid specific conjugation reagents are highlighted and the different functionalization strategies, their characterization, and applications are discussed.

  20. Nonlinearities of biopolymer gels increase the range of force transmission

    Science.gov (United States)

    Xu, Xinpeng; Safran, Samuel A.

    2015-09-01

    We present a model of biopolymer gels that includes two types of elastic nonlinearities, stiffening under extension and softening (due to buckling) under compression, to predict the elastic anisotropy induced by both external as well as internal (e.g., due to cell contractility) stresses in biopolymer gels. We show how the stretch-induced anisotropy and the strain-stiffening nonlinearity increase both the amplitude and power-law range of transmission of internal, contractile, cellular forces, and relate this to recent experiments.

  1. Solid state NMR of biopolymers and synthetic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jelinski, Lynn W. [Cornell Univ., Geneva, NY (United States)

    1995-12-31

    Solid state NMR has been invaluable in evaluating the structure, phase separation, and dynamics of polymers. Because polymers are generally used in the solid state, solid state NMR is especially powerful because it provides information about the materials in their native state. This review gives a general overview of solid state NMR, concentrating on solid state {sup 13} C and {sup 2} H NMR. It then focuses on two examples: the biopolymer spider silka and the engineering material polyurethane. It illustrates how solid state NMR can provide new information about synthetic and bio-polymers. (author) 11 refs., 5 figs., 3 tabs.

  2. Micromechanical sensors for the measurement of biopolymer degradation

    DEFF Research Database (Denmark)

    Keller, Stephan Sylvest; Gammelgaard, Lene; Jensen, M P

    2011-01-01

    We present microcantilever-based sensors for the characterization of biopolymer degradation by enzymes. Thin films of Poly(L-lactide) (PLLA) were spray-coated onto SU-8 cantilevers with well-known material properties and dimensions. The micromechanical sensors were immersed in solutions of protei......We present microcantilever-based sensors for the characterization of biopolymer degradation by enzymes. Thin films of Poly(L-lactide) (PLLA) were spray-coated onto SU-8 cantilevers with well-known material properties and dimensions. The micromechanical sensors were immersed in solutions...

  3. FORMULATION AND TECHNOLOGY DEVELOPMENT OF HERBAL PHENOLIC BIOPOLYMER-CONTAINING FILMS FOR BURN TREATMENT.

    Science.gov (United States)

    Gokadze, S; Barbakadze, V; Mulkijanyan, K; Bakuridze, A; Bakuridze, L

    2017-06-01

    Application of phytofilms based on biosolublepolymers is considered as a prospectivemethod for burn treatment . Herbal remedies contain biologically active substances, that are relatively less toxic, do not cause skin irritation or allergic reactions and, importantly, affectstrains of the microorganisms and viruses resistant to antibiotics and synthetic drugs. Nowadays, the advantages are given to such burn healing drugs, which along with high specific efficacy, have analgesic, anti-inflammatory and antimicrobial effects, and don't irritate the tissues. The mentioned peculiarities are characteristic for a new herbal phenolic biopolymer poly[3-(3,4-dihydroxyphenyl) glyceric acid](PDGA), isolated from the roots and stems of different comfrey species . The aim of the study was the development of the formulation and technology of biosoluble films for burn treatment on the basis of PDGA. The optimal content of phytofilm for burn healing was selected on the basis of the biopharmaceutical study results. The impact of the film-former on the quality, adhesion and moisture absorption of the phytofilmhas been studied. The optimal degree of the phytofilm moisture, determining its high adhesive properties,was established. The film prepared on the basis of sodium alginate, with 30.4% humidity, demonstrated the greatest adhesion strength. After investigation of the PDGA release it was found, that the hydrophilic bases such as: sodium carboxymethyl-cellulose (69.2%) andsodium alginate (78,65%) appeared to be optimal among the others. At the same time, taking into consideration the disadvantages of sodium carboxymethyl-cellulose (tautening effect on burnt surface, relatively low stability), a film based on sodium alginate has been chosen. The manufacturing technology for obtaining PDGA-containing phytofilm by casting is proposed. Theshelf-lifeofproposedPDGA-containingphytofilmis 2 years.

  4. Breakdown of hierarchical architecture in cellulose during dilute acid pretreatments

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Northeastern Univ., Boston, MA (United States); Inouye, Hideyo [Northeastern Univ., Boston, MA (United States); Yang, Lin [Brookhaven National Lab. (BNL), Upton, NY (United States); Himmel, Michael E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tucker, Melvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Makowski, Lee [Northeastern Univ., Boston, MA (United States)

    2015-02-28

    Cellulose can work as a feedstock for sustainable bioenergy because of its global abundance. Pretreatment of biomass has significant influence on the chemical availability of cellulose locked in recalcitrant microfibrils. Optimizing pretreatment depends on an understanding of its impact on the microscale and nanoscale molecular architecture. X-ray scattering experiments have been performed on native and pre-treated maize stover and models of cellulose architecture have been derived from these data. Ultra small-angle, very small-angle and small-angle X-ray scattering (USAXS, VSAXS and SAXS) probe three different levels of architectural scale. USAXS and SAXS have been used to study cellulose at two distinct length scales, modeling the fibrils as ~30 Å diameter rods packed into ~0.14 μm diameter bundles. VSAXS is sensitive to structural features at length scales between these two extremes. Detailed analysis of diffraction patterns from untreated and pretreated maize using cylindrical Guinier plots and the derivatives of these plots reveals the presence of substructures within the ~0.14 μm diameter bundles that correspond to grouping of cellulose approximately 30 nm in diameter. These sub-structures are resilient to dilute acid pretreatments but are sensitive to pretreatment when iron sulfate is added. Our results provide evidence of the hierarchical arrangement of cellulose at three length scales and the evolution of these arrangements during pre-treatments.

  5. The Impact of Invasive Earthworm Activity on Biopolymer Character of ýDecayed Litter ý

    Science.gov (United States)

    Filley, T.; Crow, S.; Johnston, C.; McCormick, M.; Szlavecz, K.

    2007-12-01

    Over the last 400-500 years invasive European earthworm populations have ýmoved steadily into North American forests either previously devoid of ýearthworms or that contained their own native populations. This has profound ýimpacts upon litter decay and soil organic matter dynamics. To determine the ýimpact of earthworm activity on the biopolymer and stable isotope chemistry of ýlitter residues and the nature of organic carbon moved to the soil profile we ýanalyzed tulip poplar leaves from a multi-year addition experiment in open ýsurface decay litter and litter bag decay experiments, as well as the associated ýsoils among forest plots that varied in non-native earthworm density and ýbiomass. The chemical alteration of biopolymers was tracked with FTIR ýspectroscopy, 13C-TMAH thermochemolysis, alkaline CuO extraction, and stable ýisotope mass spectrometry. Earthworm activity resulted in residues and soil ýparticulate organic matter depleted in cuticular aliphatic components and ýpolyphenols but highly enriched in ether-linked lignin with respect to initial litter ýmaterial. Decay in low earthworm abundance plots, as well as all experiments ýwith earthworm-excluding litter bags, resulted in enrichment in cutin aliphatics ýand only minor increases in ether linked lignin phenols which was also reflected ýin the soils below the amendments. Additionally, the stable carbon and nitrogen ýisotope composition of tulip poplar residues became isotopically distinct. The ýresults from litter bag decays were only reflective of the chemistry at sites with ývery low earthworm abundances. ý

  6. Semiflexible biopolymers: Microrheology and single filament condensation

    Science.gov (United States)

    Schnurr, Bernhard

    Polymers and their elementary subunits, called monomers, come in an immense variety of structures and sizes, and are of great importance for their material properties as well as a multitude of biological functions. The emphasis here is on semiflexible polymers, which are identified by their intermediate degree of stiffness. Their individual as well as their collective properties when assembled into entangled networks is a topic of great interest to polymer physics, materials science, and biology. Some of the most important semiflexible polymers are biopolymers, with such prominent examples as DNA, F-actin, and microtubules. Their functions range from their use as structural elements in the cytoskeleton of most plant and animal cells, to their role as transport tracks for molecular motors, and the storage of genetic information in their linear sequence. The two parts of this experimental and theoretical thesis address single filament aspects as well as network properties of solutions of semiflexible polymers. In the first part, we describe an optical technique for measuring the bulk properties of soft materials at the local scale. We apply it to a solution of entangled, filamentous actin, a particularly difficult material to characterize with conventional techniques. Beyond a description of measurements and apparatus, we also discuss, from a theoretical point of view, the interpretation and fundamental limitations of this and other microrheological techniques. In the second part, we describe the condensation dynamics of a single, semiflexible filament, induced by changing solvent conditions. A biologically important example of this phenomenon is the condensation of DNA into toroidal structures, which occurs, for instance, in viral capsids. Our observations of a molecular simulation motivate an unexpected pathway of collapse via a series of metastable intermediates we call ``racquet'' states. The analysis of the conformational energies of these structures in the

  7. Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations.

    Science.gov (United States)

    Kulasinski, Karol; Guyer, Robert; Derome, Dominique; Carmeliet, Jan

    2015-08-01

    Molecular simulation of adsorption of water molecules in nanoporous amorphous biopolymers, e.g., cellulose, reveals nonlinear swelling and nonlinear mechanical response with the increase in fluid content. These nonlinearities result from hydrogen bond breakage by water molecules. Classical poroelastic models, employing porosity and pore pressure as basic variables for describing the "pore fluid," are not adequate for the description of these systems. There is neither a static geometric structure to which porosity can sensibly be assigned nor arrangements of water molecules that are adequately described by giving them a pressure. We employ molar concentration of water and chemical potential to describe the state of the "pore fluid" and stress-strain as mechanical variables. A thermodynamic description is developed using a model energy function having mechanical, fluid, and fluid-mechanical coupling contributions. The parameters in this model energy are fixed by the output of the initial simulation and validated with the results of further simulation. The poroelastic properties, e.g., swelling and mechanical response, are found to be functions both of the molar concentration of water and the stress. The basic fluid-mechanical coupling coefficient, the swelling coefficient, depends on the molar concentration of water and stress and is interpreted in terms of porosity change and solid matrix deformation. The difference between drained and undrained bulk stiffness is explained as is the dependence of these moduli on concentration and stress.

  8. [Poly(3-hydroxybutyrate) and biopolymer systems on the basis of this polyester].

    Science.gov (United States)

    Bonartsev, A P; Bonartseva, G A; Shaĭtan, K V; Kirpichnikov, M P

    2011-01-01

    Biodegradable biopolymers attract much attention in biology and medicine due to its wide application. The present review is designed to be a comprehensive source for research of biodegradable and biocompatible bacterial polymer, poly(3-hydroxybutyrate). This paper focuses on basic properties of biopolymer: biodegradability and biocompatibility, as well as on biopolymer systems: various materials, devices and compositions on the basis of biopolymer. Application of biopolymer systems based on poly(3-hydroxybutyrate) in medicine as surgical implants, in bioengineering as scaffold for cell cultures, and in pharmacy as drug dosage forms and drug systems is observed in the present review.

  9. Hierarchical Self-Assembly of Cellulose Nanocrystals in a Confined Geometry.

    Science.gov (United States)

    Parker, Richard M; Frka-Petesic, Bruno; Guidetti, Giulia; Kamita, Gen; Consani, Gioele; Abell, Chris; Vignolini, Silvia

    2016-09-27

    Complex hierarchical architectures are ubiquitous in nature. By designing and controlling the interaction between elementary building blocks, nature is able to optimize a large variety of materials with multiple functionalities. Such control is, however, extremely challenging in man-made materials, due to the difficulties in controlling their interaction at different length scales simultaneously. Here, hierarchical cholesteric architectures are obtained by the self-assembly of cellulose nanocrystals within shrinking, micron-sized aqueous droplets. This confined, spherical geometry drastically affects the colloidal self-assembly process, resulting in concentric ordering within the droplet, as confirmed by simulation. This provides a quantitative tool to study the interactions of cellulose nanocrystals beyond what has been achieved in a planar geometry. Our developed methodology allows us to fabricate truly hierarchical solid-state architectures from the nanometer to the macroscopic scale using a renewable and sustainable biopolymer.

  10. Zwitterionic Cellulose Carbamate with Regioselective Substitution Pattern: A Coating Material Possessing Antimicrobial Activity.

    Science.gov (United States)

    Elschner, Thomas; Lüdecke, Claudia; Kalden, Diana; Roth, Martin; Löffler, Bettina; Jandt, Klaus D; Heinze, Thomas

    2016-04-01

    A polyzwitterion is synthesized by regioselective functionalization of cellulose possessing a uniform charge distribution. The positively charged ammonium group is present at position 6, while the negative charge of carboxylate is located at positions 2 and 3 of the repeating unit. The molecular structure of the biopolymer derivative is proved by NMR spectroscopy. This cellulose-based zwitterion is applied to several support materials by spin-coating and characterized by means of atomic force microscope, contact angle measurements, ellipsometry, and X-ray photoelectron spectroscopy. The coatings possess antimicrobial activity depending on the support materials (glass, titanium, tissue culture poly(styrene)) as revealed by confocal laser scanning microscopy and live/dead staining.

  11. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices.

    Science.gov (United States)

    Zepon, Karine Modolon; Petronilho, Fabricia; Soldi, Valdir; Salmoria, Gean Vitor; Kanis, Luiz Alberto

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes.

  12. Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure

    Directory of Open Access Journals (Sweden)

    Art J. Ragauskas

    2011-11-01

    Full Text Available In order to obtain accurate information about the ultrastructure of cellulose from native biomass by 13C cross polarization magic angle spinning (CP/MAS NMR spectroscopy the cellulose component must be isolated due to overlapping resonances from both lignin and hemicellulose. Typically, cellulose isolation has been achieved via holocellulose pulping to remove lignin followed by an acid hydrolysis procedure to remove the hemicellulose components. Using 13C CP/MAS NMR and non-linear line-fitting of the cellulose C4 region, it was observed that the standard acid hydrolysis procedure caused an apparent increase in crystallinity of ~10% or less on the cellulose isolated from Populus holocellulose. We have examined the effect of the cellulose isolation method, particularly the acid treatment time for hemicellulose removal, on cellulose ultrastructural characteristics by studying these effects on cotton, microcrystalline cellulose (MCC and holocellulose pulped Populus. 13C CP/MAS NMR of MCC indicated that holocellulose pulping and acid hydrolysis has little effect on the crystalline ultrastructural components of cellulose. Although any chemical method to isolate cellulose from native biomass will invariably alter substrate characteristics, especially those related to regions accessible to solvents, we found those changes to be minimal and consistent in samples of typical crystallinity and lignin/hemicellulose content. Based on the rate of the hemicellulose removal, as determined by HPLC-carbohydrate analysis and magnitude of cellulose ultrastructural alteration, the most suitable cellulose isolation methodology utilizes a treatment of 2.5 M HCl at 100 °C for a standard residence time between 1.5 and 4 h. However, for the most accurate crystallinity results this residence time should be determined empirically for a particular sample.

  13. Thermal Degradation and Damping Characteristic of UV Irradiated Biopolymer

    Directory of Open Access Journals (Sweden)

    Anika Zafiah M. Rus

    2015-01-01

    Full Text Available Biopolymer made from renewable material is one of the most important groups of polymer because of its versatility in application. In this study, biopolymers based on waste vegetable oil were synthesized and cross-link with commercial polymethane polyphenyl isocyanate (known as BF. The BF was compressed by using hot compression moulding technique at 90°C based on the evaporation of volatile matter, known as compress biopolymer (CB. Treatment with titanium dioxide (TiO2 was found to affect the physical property of compressed biopolymer composite (CBC. The characterization of thermal degradation, activation energy, morphology structure, density, vibration, and damping of CB were determined after UV irradiation exposure. This is to evaluate the photo- and thermal stability of the treated CB or CBC. The vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness, and percentages of TiO2 loading at the frequency range of 15–25 Hz due to the potential of the sample to dissipate energy during the oscillation harmonic system. The damping property of CBC was improved markedly upon prolonged exposure to UV irradiation.

  14. Segregative phase separation in aqueous mixtures of polydisperse biopolymers

    NARCIS (Netherlands)

    Edelman, M.W.

    2003-01-01

    Keywords: biopolymer, gelatine, dextran, PEO, phase separation, polydispersity, molar mass distribution, SEC-MALLS, CSLM The temperature-composition phase diagram of aqueous solutions of gelatine and dextran, which show liquid/liquid phase segregation, were explored at temperatures above the gelatio

  15. Biopolymers produced from gelatin and other sustainable resources using polyphenols

    Science.gov (United States)

    Several researchers have recently demonstrated the feasibility of producing biopolymers from the reaction of polyphenolics with gelatin in combination with other proteins (e.g. whey) or with carbohydrates (e.g. chitosan and pectin). These combinations would take advantage of the unique properties o...

  16. Biopolymers in controlled release devices for agricultural applications.

    Science.gov (United States)

    The use of biopolymers such as starch for agricultural applications including controlled release devices is growing due the environmental benefits. Recently, concerns have grown about the worldwide spread of parasitic mites (Varroa destructor) that infect colonies of honey bees (Apis mellifera L.). ...

  17. Production of Degradable Biopolymer Composites by Particle-bonding

    Science.gov (United States)

    Conventionally, polymer composites had been manufactured by mixing the component materials in the extruder at high temperature. Agricultural biopolymers are usually mixtures of many types of compounds; when used as raw materials, however, high-temperature process causes unwanted consequences such a...

  18. USING BIOPOLYMERS TO REMOVE HEAVY METALS FROM SOIL AND WATER

    Science.gov (United States)

    Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy me...

  19. Physicochemical Characterization of Alginate Beads Containing Sugars and Biopolymers

    Directory of Open Access Journals (Sweden)

    Tatiana Aguirre Calvo

    2016-01-01

    Full Text Available Alginate hydrogels are suitable for the encapsulation of a great variety of biomolecules. Several alternatives to the conventional alginate formulation are being studied for a broad range of biotechnological applications; among them the addition of sugars and biopolymers arises as a good and economic strategy. Sugars (trehalose and β-cyclodextrin, a cationic biopolymer (chitosan, an anionic biopolymer (pectin, and neutral gums (Arabic, guar, espina corona, and vinal gums provided different characteristics to the beads. Here we discuss the influence of beads composition on several physicochemical properties, such as size and shape, analyzed through digital image analysis besides both water content and activity. The results showed that the addition of a second biopolymer, β-CD, or trehalose provoked more compact beads, but the fact that they were compact not necessarily implies a concomitant increase in their circularity. Espina corona beads showed the highest circularity value, being useful for applications which require a controlled and high circularity, assuring quality control. Beads with trehalose showed lower water content than the rest of the system, followed by those containing galactomannans (espina corona, vinal, and guar gums, revealing polymer structure effects. A complete characterization of the beads was performed by FT-IR, assigning the characteristics bands to each individual component.

  20. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects

    NARCIS (Netherlands)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-01-01

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule s

  1. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    OpenAIRE

    Shih-Chen Shi; Chieh-Chang Su

    2016-01-01

    The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC), hydroxypropyl methylcellulose phthalate (HPMCP), and hydroxypropyl methylcellulose acetate succinate (HPMCAS) film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate prom...

  2. Production of a Biopolymer at Reactor Scale: A Laboratory Experience

    Science.gov (United States)

    Genc, Rukan; Rodriguez-Couto, Susana

    2011-01-01

    Undergraduate students of biotechnology became familiar with several aspects of bioreactor operation via the production of xanthan gum, an industrially relevant biopolymer, by "Xanthomonas campestris" bacteria. The xanthan gum was extracted from the fermentation broth and the yield coefficient and productivity were calculated. (Contains 2 figures.)

  3. Enhanced enzymatic hydrolysis of cellulose in microgels.

    Science.gov (United States)

    Chang, Aiping; Wu, Qingshi; Xu, Wenting; Xie, Jianda; Wu, Weitai

    2015-07-04

    A cellulose-based microgel, where an individual microgel contains approximately one cellulose chain on average, is synthesized via free radical polymerization of a difunctional small-molecule N,N'-methylenebisacrylamide in cellulose solution. This microgelation leads to a low-ordered cellulose, favoring enzymatic hydrolysis of cellulose to generate glucose.

  4. Effect of temperature on the AC impedance of protein and carbohydrate biopolymers

    Indian Academy of Sciences (India)

    S Muthulakshmi; S Iyyapushpam; D Pathinettam Padiyan

    2014-12-01

    The influence of temperature on the electrical behaviour of protein biopolymer papain and carbohydrate biopolymers like gum acacia, gum tragacanth and guar gum has been investigated using AC impedance technique. The observed semi-circles represent the material’s bulk electrical property that indicate the single relaxation process in the biopolymers. An increase in bulk electrical conductivity in the biopolymers with temperature is due to the hopping of charge carriers between the trapped sites. The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model, gum acacia and gum guar obey ion or electron tunnelling model, and gum tragacanth obeys the correlated barrier hopping model of conduction mechanisms.

  5. Chemical composition and molecular structure of polysaccharide-protein biopolymer from Durio zibethinus seed: extraction and purification process

    Directory of Open Access Journals (Sweden)

    Amid Bahareh

    2012-10-01

    Full Text Available Abstract Background The biological functions of natural biopolymers from plant sources depend on their chemical composition and molecular structure. In addition, the extraction and further processing conditions significantly influence the chemical and molecular structure of the plant biopolymer. The main objective of the present study was to characterize the chemical and molecular structure of a natural biopolymer from Durio zibethinus seed. A size-exclusion chromatography coupled to multi angle laser light-scattering (SEC-MALS was applied to analyze the molecular weight (Mw, number average molecular weight (Mn, and polydispersity index (Mw/Mn. Results The most abundant monosaccharide in the carbohydrate composition of durian seed gum were galactose (48.6-59.9%, glucose (37.1-45.1%, arabinose (0.58-3.41%, and xylose (0.3-3.21%. The predominant fatty acid of the lipid fraction from the durian seed gum were palmitic acid (C16:0, palmitoleic acid (C16:1, stearic acid (C18:0, oleic acid (C18:1, linoleic acid (C18:2, and linolenic acid (C18:2. The most abundant amino acids of durian seed gum were: leucine (30.9-37.3%, lysine (6.04-8.36%, aspartic acid (6.10-7.19%, glycine (6.07-7.42%, alanine (5.24-6.14%, glutamic acid (5.57-7.09%, valine (4.5-5.50%, proline (3.87-4.81%, serine (4.39-5.18%, threonine (3.44-6.50%, isoleucine (3.30-4.07%, and phenylalanine (3.11-9.04%. Conclusion The presence of essential amino acids in the chemical structure of durian seed gum reinforces its nutritional value.

  6. Development of new phosphated cellulose for application as an efficient biomaterial for the incorporation/release of amitriptyline.

    Science.gov (United States)

    Bezerra, Roosevelt D S; Morais, Alan I S; Osajima, Josy A; Nunes, Livio C C; Silva Filho, Edson C

    2016-05-01

    In the last years has increased the study about the using of natural biopolymers and theirs derivatives in the removal (adsorption/incorporation) of contaminats of medium aqueous, and theirs utilization in the desorption (release) de drugs. However, there not in the literature studies about the utilization of the cellulose and cellulose phosphate in the adsorption (incorporation)/desorption (release) of the drug amitriptyline (AMI). Therefore, in this study was accomplished the synthesized of the phosphated cellulose (PC) through the reaction of pure cellulose (C) with sodium trimetaphosphate (P) under-reflux, for 4h and at 393K. The efficiency of the reaction was observed by XRD, TG/DTG, (31)P NMR and EDS. The adsorption study for the AMI in aqueous medium was carried out by varying the time, pH, concentration, temperature and ionic strength. The results showed that the PC showed a greater adsorption capacity of AMI than pure cellulose, presenting an increase of about 102.72% in the adsorption capacity of the drug by cellulose after the phosphating reaction. In desorption of drug from the surface of biomaterials was performed by varying the pH and time, where it was observed that PC showed a maximum release of 40.98% ± 0.31% at pH 7.

  7. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  8. Nanostructured cellulose-xyloglucan blends via ionic liquid/water processing.

    Science.gov (United States)

    Bendaoud, Amine; Kehrbusch, Rene; Baranov, Anton; Duchemin, Benoît; Maigret, Jean Eudes; Falourd, Xavier; Staiger, Mark P; Cathala, Bernard; Lourdin, Denis; Leroy, Eric

    2017-07-15

    In this work, the properties of cellulose (CE)/xyloglucan (XG) biopolymer blends are investigated, taking inspiration from the outstanding mechanical properties of plant cell walls. CE and XG were first co-solubilized in an ionic liquid, 1-ethyl-3-methylimidazolium acetate, in order to blend these biopolymers with a varying CE:XG ratio. The biopolymers were then regenerated together using water to produce solid blends in the form of films. Water-soluble XG persisted in the films following regeneration in water, indicating an attractive interaction between the CE and XG. The final CE:XG ratio of the blends was close to the initial value in solutions, further suggesting that intimate mixing takes place between CE and XG. The resulting CE/XG films were found to be free of ionic liquid, transparent and with no evidence of phase separation at the micron scale. The mechanical properties of the blend with a CE:XG ratio close to one revealed a synergistic effect for which a maximum in the elongation and stress at break was observed in combination with a high elastic modulus. Atomic force microscopy indicates a co-continuous nanostructure for this composition. It is proposed that the non-monotonous variation of the mechanical performance of the films with XG content is due to this observed nanostructuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cellulose biogenesis in Dictyostelium discoideum

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, R.L.

    1993-12-31

    Organisms that synthesize cellulose can be found amongst the bacteria, protistans, fungi, and animals, but it is in plants that the importance of cellulose in function (as the major structural constituent of plant cell walls) and economic use (as wood and fiber) can be best appreciated. The structure of cellulose and its biosynthesis have been the subjects of intense investigation. One of the most important insights gained from these studies is that the synthesis of cellulose by living organisms involves much more than simply the polymerization of glucose into a (1{r_arrow}4)-{beta}-linked polymer. The number of glucoses in a polymer (the degree of polymerization), the crystalline form assumed by the glucan chains when they crystallize to form a microfibril, and the dimensions and orientation of the microfibrils are all subject to cellular control. Instead of cellulose biosynthesis, a more appropriate term might be cellulose biogenesis, to emphasize the involvement of cellular structures and mechanisms in controlling polymerization and directing crystallization and deposition. Dictyostelium discoideum is uniquely suitable for the study of cellulose biogenesis because of its amenability to experimental study and manipulation and the extent of our knowledge of its basic cellular mechanisms (as will be evident from the rest of this volume). In this chapter, I will summarize what is known about cellulose biogenesis in D. discoideum, emphasizing its potential to illuminate our understanding both of D. discoideum development and plant cellulose biogenesis.

  10. Fabrication of cellulose nanofiber transparent films for IT applications

    Science.gov (United States)

    Zhai, Lindong; Song, Sangho; Kim, Jeong Woong; Li, Yaguang; Kim, Jaehwan

    2016-04-01

    One of the abundant renewable biomaterials in the world - cellulose is produced from plants forming micro-fibrils which in turn aggregate of form cellulose fibers. These fibers size can be disintegrated from micro-fibrils to nanofibers by physical and chemical methods. Cellulose nanofibers (CNF) can be a new building block of renewable smart materials. The CNF has excellent mechanical strength, dimensional stability, thermal stability and good optical properties on top of their renewable behavior. This paper reports CNF transparent films made by CNF extracted by the physical method: a high pressure physical, so called aqueous counter collision method. Natural behaviors, extraction and film formation of CNF are explained and their characteristics are illustrated, which is suit for IT applications.

  11. Potential of Cellulases and Cellulosomes for Cellulosic Waste Management

    Energy Technology Data Exchange (ETDEWEB)

    Bayer, E. A.; Lamed, R.; Himmel, M. E.

    2007-01-01

    Lignocellulose is the most abundant plant cell wall component of the biosphere and the most voluminous waste produced by our society. Fortunately, it is not toxic or directly harmful, but our major waste disposal facilities - the landfills - are rapidly filling up with few realistic alternatives. Because cellulose is pure glucose, its conversion to fine products or fuels has remained a romantic and popular notion; however, the heterogeneous and recalcitrant nature of cellulosic waste presents a major obstacle for conventional conversion processes. One paradigm for the conversion of biomass to products in nature relies on a multienzyme complex, the cellulosome. Microbes that produce cellulosomes convert lignocelluose to microbial cell mass and products (e.g. ethanol) simultaneously. The combination of designer cellulosomes with novel production concepts could in the future provide the breakthroughs necessary for economical conversion of cellulosic biomass to biofuels.

  12. The potential of cellulases and cellulosomes for cellulosic waste management.

    Science.gov (United States)

    Bayer, Edward A; Lamed, Raphael; Himmel, Michael E

    2007-06-01

    Lignocellulose is the most abundant plant cell wall component of the biosphere and the most voluminous waste produced by our society. Fortunately, it is not toxic or directly harmful, but our major waste disposal facilities--the landfills--are rapidly filling up with few realistic alternatives. Because cellulose is pure glucose, its conversion to fine products or fuels has remained a romantic and popular notion; however, the heterogeneous and recalcitrant nature of cellulosic waste presents a major obstacle for conventional conversion processes. One paradigm for the conversion of biomass to products in nature relies on a multienzyme complex, the cellulosome. Microbes that produce cellulosomes convert lignocelluose to microbial cell mass and products (e.g. ethanol) simultaneously. The combination of designer cellulosomes with novel production concepts could in the future provide the breakthroughs necessary for economical conversion of cellulosic biomass to biofuels.

  13. Ultrafiltration and Nanofiltration Multilayer Membranes Based on Cellulose

    KAUST Repository

    Livazovic, Sara

    2016-06-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose, has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. In the search for less harsh, greener membrane manufacture, the combination of cellulose and ionic liquid is of high interest. Due to the abundance of OH groups and hydrophilicity, cellulose-based membranes have high permeability and low fouling tendency. Membrane fouling is one of the biggest challenges in membrane industry and technology. Accumulation and deposition of foulants onto the surface reduce membrane efficiency and requires harsh chemical cleaning, therefore increasing the cost of maintenance and replacement. In this work the resistance of cellulose 5 membranes towards model organic foulants such as Suwanee River Humic Acid (SRHA) and crude oil have been investigated. Cellulose membrane was tested in this work for oil-water (o/w) separation and exhibited practically 100 % oil rejection with good flux recovery ratio and membrane resistivity. The influence of anionic, cationic and ionic surfactant as well as pH and crude oil concentration on oil separation was investigated, giving a valuable insight in experimental and operational planning.

  14. Acetoacetylation of Hydroxyethyl Cellulose

    Institute of Scientific and Technical Information of China (English)

    陈晓锋; 高彦芳; 杜奕; 刘德山

    2002-01-01

    The acetoacetyl group can be used to improve superabsorbent resins since it is more active than the hydroxyethyl group. The acetoacetyl group can be introduced into the side group of hydroxyethyl cellulose (HEC) to activate HEC using the ester exchange reaction between HEC and ethyl acetoacetate (EAA) to improve HEC grafting. This paper discusses the main factors affecting the reaction, such as the amount of EAA and catalyzer, the reaction temperature, and the reaction time. The acetoacetyl group was successfully introduced into HEC. Within specified ranges, increasing the amount of EAA, the reaction temperature and the reaction time will increase the acetoacetylation.

  15. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting.

    Science.gov (United States)

    Xia, Ye; Lei, Lei; Brabham, Chad; Stork, Jozsef; Strickland, James; Ladak, Adam; Gu, Ying; Wallace, Ian; DeBolt, Seth

    2014-01-01

    In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI), named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM) to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

  16. Acetobixan, an inhibitor of cellulose synthesis identified by microbial bioprospecting.

    Directory of Open Access Journals (Sweden)

    Ye Xia

    Full Text Available In plants, cellulose biosynthesis is an essential process for anisotropic growth and therefore is an ideal target for inhibition. Based on the documented utility of small-molecule inhibitors to dissect complex cellular processes we identified a cellulose biosynthesis inhibitor (CBI, named acetobixan, by bio-prospecting among compounds secreted by endophytic microorganisms. Acetobixan was identified using a drug-gene interaction screen to sift through hundreds of endophytic microbial secretions for one that caused synergistic reduction in root expansion of the leaky AtcesA6prc1-1 mutant. We then mined this microbial secretion for compounds that were differentially abundant compared with Bacilli that failed to mimic CBI action to isolate a lead pharmacophore. Analogs of this lead compound were screened for CBI activity, and the most potent analog was named acetobixan. In living Arabidopsis cells visualized by confocal microscopy, acetobixan treatment caused CESA particles localized at the plasma membrane (PM to rapidly re-localize to cytoplasmic vesicles. Acetobixan inhibited 14C-Glc uptake into crystalline cellulose. Moreover, cortical microtubule dynamics were not disrupted by acetobixan, suggesting specific activity towards cellulose synthesis. Previous CBI resistant mutants such as ixr1-2, ixr2-1 or aegeus were not cross resistant to acetobixan indicating that acetobixan targets a different aspect of cellulose biosynthesis.

  17. Cellulose binding domain fusion proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  18. Cellulose Synthesis in Agrobacterium tumefaciens

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. White; Ann G. Matthysse

    2004-07-31

    We have cloned the celC gene and its homologue from E. coli, yhjM, in an expression vector and expressed the both genes in E. coli; we have determined that the YhjM protein is able to complement in vitro cellulose synthesis by extracts of A. tumefaciens celC mutants, we have purified the YhjM protein product and are currently examining its enzymatic activity; we have examined whole cell extracts of CelC and various other cellulose mutants and wild type bacteria for the presence of cellulose oligomers and cellulose; we have examined the ability of extracts of wild type and cellulose mutants including CelC to incorporate UDP-14C-glucose into cellulose and into water-soluble, ethanol-insoluble oligosaccharides; we have made mutants which synthesize greater amounts of cellulose than the wild type; and we have examined the role of cellulose in the formation of biofilms by A. tumefaciens. In addition we have examined the ability of a putative cellulose synthase gene from the tunicate Ciona savignyi to complement an A. tumefaciens celA mutant. The greatest difference between our knowledge of bacterial cellulose synthesis when we started this project and current knowledge is that in 1999 when we wrote the original grant very few bacteria were known to synthesize cellulose and genes involved in this synthesis were sequenced only from Acetobacter species, A. tumefaciens and Rhizobium leguminosarum. Currently many bacteria are known to synthesize cellulose and genes that may be involved have been sequenced from more than 10 species of bacteria. This additional information has raised the possibility of attempting to use genes from one bacterium to complement mutants in another bacterium. This will enable us to examine the question of which genes are responsible for the three dimensional structure of cellulose (since this differs among bacterial species) and also to examine the interactions between the various proteins required for cellulose synthesis. We have carried out one

  19. Ultrasonic dyeing of cellulose nanofibers.

    Science.gov (United States)

    Khatri, Muzamil; Ahmed, Farooq; Jatoi, Abdul Wahab; Mahar, Rasool Bux; Khatri, Zeeshan; Kim, Ick Soo

    2016-07-01

    Textile dyeing assisted by ultrasonic energy has attained a greater interest in recent years. We report ultrasonic dyeing of nanofibers for the very first time. We chose cellulose nanofibers and dyed with two reactive dyes, CI reactive black 5 and CI reactive red 195. The cellulose nanofibers were prepared by electrospinning of cellulose acetate (CA) followed by deacetylation. The FTIR results confirmed complete conversion of CA into cellulose nanofibers. Dyeing parameters optimized were dyeing temperature, dyeing time and dye concentrations for each class of the dye used. Results revealed that the ultrasonic dyeing produced higher color yield (K/S values) than the conventional dyeing. The color fastness test results depicted good dye fixation. SEM analysis evidenced that ultrasonic energy during dyeing do not affect surface morphology of nanofibers. The results conclude successful dyeing of cellulose nanofibers using ultrasonic energy with better color yield and color fastness results than conventional dyeing.

  20. Soil Improvement Using MICP and Biopolymers: A Review

    Science.gov (United States)

    Sohail Ashraf, Muhammad; Baharom Azahar, Syed; Zulaikha Yusof, Nur

    2017-08-01

    Ground improvement techniques provide strong natural platforms for construction activities and save the need for designing more resistant structures which would have been necessary on weak ground. This paper discusses the biogeotechnical techniques for improving the resistance of unsaturated sand dunes against surficial erosion by natural processes of wave actions and storm surges. Mechanism of microbially induced calcite precipitation (MICP) and its optimization by utilizing sea water and minimal urea usage is discussed. Common factors affecting the MICP process are briefly discussed. Biomineralization using biopolymers is also described along with the soil strengthening mechanisms. Geotechnical applications of some commonly available biopolymers are described briefly. Advantages and limitations in both these mineralization methods are analyzed and some research opportunities are pointed out for future research.

  1. Mucin biopolymers as broad-spectrum antiviral agents

    Science.gov (United States)

    Lieleg, Oliver; Lieleg, Corinna; Bloom, Jesse; Buck, Christopher B.; Ribbeck, Katharina

    2012-01-01

    Mucus is a porous biopolymer matrix that coats all wet epithelia in the human body and serves as the first line of defense against many pathogenic bacteria and viruses. However, under certain conditions viruses are able to penetrate this infection barrier, which compromises the protective function of native mucus. Here, we find that isolated porcine gastric mucin polymers, key structural components of native mucus, can protect an underlying cell layer from infection by small viruses such as human papillomavirus (HPV), Merkel cell polyomavirus (MCV), or a strain of influenza A virus. Single particle analysis of virus mobility inside the mucin barrier reveals that this shielding effect is in part based on a retardation of virus diffusion inside the biopolymer matrix. Our findings suggest that purified mucins may be used as a broad-range antiviral supplement to personal hygiene products, baby formula or lubricants to support our immune system. PMID:22475261

  2. Field experience with floodwater diversion by complexed biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, M.K.; Chung, M.S.; Klaric, T.M.; Phelps, C.H.

    1984-04-01

    Due to preferential flow of the injected water through the most permeable zones, waterflooding of stratified reservoirs is generally inefficient. A process for improving the performance of waterfloods in such reservoirs has been developed; it is based on complexing biopolymers with multivalent cations to form gels for selective blocking of water-thief zones, thereby diverting the trailing floodwater to previously under-invaded reservoir regions to recover by-passed oil. This polymeric modification of stratification and of water injection profile leads to increased volumetric sweep of the reservoir by the floodwater and, in turn, to improved oil production. This paper summarizes Mobil's experience in its first seven field projects in Oklahoma using this process. A total of two hundred and five injection wells were treated with complexed biopolymers, resulting in substantial alteration of water flow patterns and in significant incremental oil recovery.

  3. Corrosion Inhibition of High Speed Steel by Biopolymer HPMC Derivatives

    Directory of Open Access Journals (Sweden)

    Shih-Chen Shi

    2016-07-01

    Full Text Available The corrosion inhibition characteristics of the derivatives of biopolymer hydroxypropyl methylcellulose (HPMC, hydroxypropyl methylcellulose phthalate (HPMCP, and hydroxypropyl methylcellulose acetate succinate (HPMCAS film are investigated. Based on electrochemical impedance spectroscopic measurements and potentiodynamic polarization, the corrosion inhibition performance of high speed steel coated with HPMC derivatives is evaluated. The Nyquist plot and Tafel polarization demonstrate promising anti-corrosion performance of HPMC and HPMCP. With increasing film thickness, both materials reveal improvement in corrosion inhibition. Moreover, because of a hydrophobic surface and lower moisture content, HPMCP shows better anti-corrosion performance than HPMCAS. The study is of certain importance for designing green corrosion inhibitors of high speed steel surfaces by the use of biopolymer derivatives.

  4. Mobility Enhancement of Red Blood Cells with Biopolymers

    Science.gov (United States)

    Tahara, Daiki; Oikawa, Noriko; Kurita, Rei

    2016-03-01

    Adhesion of red blood cells (RBC) to substrates are one of crucial problems for a blood clot. Here we investigate the mobility of RBC between two glass substrates in saline with polymer systems. We find that RBCs are adhered to the glass substrate with PEG, however the mobility steeply increases with fibrinogen and dextran, which are biopolymers. We also find that the mobility affects an aggregation dynamics of RBCs, which is related with diseases such as influenza, blood clot and so on. The Brownian motion helps to increase probability of contact with each other and to find a more stable condition of the aggregation. Thus the biopolymers play important roles not only for preventing the adhesion but also for the aggregation.

  5. Production of biopolymers by Pseudomonas aeruginosa isolated from marine source

    Directory of Open Access Journals (Sweden)

    Nazia Jamil

    2008-06-01

    Full Text Available Two bacterial strains, Pseudomonas aeruginosa CMG607w and CMG1421 produce commercially important biopolymers. CMG607w isolated from the sediments of Lyari outfall to Arabian Sea synthesize the mcl-polyhydroxyalkanoates from various carbon sources. The production of PHAs was directly proportional to the incubation periods. Other strain CMG1421, a dry soil isolate, produced high viscous water absorbing extracellular acidic polysaccharide when it was grown aerobically in the minimal medium containing glucose or fructose or sucrose as sole source of carbon. The biopolymer had the ability to absorb water 400 times more than its dry weight. This property was superior to that of currently used non-degradable synthetic water absorbents. It acted as salt filter and had rheological and stabilizing activity as well.

  6. Interaction between polymer constituents and the structure of biopolymers

    Science.gov (United States)

    Rein, R.

    1974-01-01

    The paper reviews the current status of methods for calculating intermolecular interactions between biopolymer units. The nature of forces contributing to the various domains of intermolecular separations is investigated, and various approximations applicable in the respective regions are examined. The predictive value of current theory is tested by establishing a connection with macroscopic properties and comparing the theoretical predicted values with those derived from experimental data. This has led to the introduction of a statistical model describing DNA.

  7. Application of Raman spectroscopy method for analysis of biopolymer materials

    Science.gov (United States)

    Timchenko, Elena V.; Timchenko, Pavel E.; Volchkov, S. E.; Mahortova, Alexsandra O.; Asadova, Anna A.; Kornilin, Dmitriy V.

    2016-10-01

    This work presents the results of spectral analysis of biopolymer materials that are implemented in medical sphere. Polymer samples containing polycaprolactone and iron oxides of different valence were used in the studies. Raman spectroscopy method was used as a main control method. Relative content of iron and polycaprolactone in studied materials was assessed using ratio of RS intensities values at 604 cm-1 and 1726 cm-1 wavenumbers to intensity value of 1440 cm-1 line.

  8. PROPERTIES OF PREPARATIONS FUNCTIONAL BIOPOLYMERS OF A FISH ORIGIN

    Directory of Open Access Journals (Sweden)

    L. V. Antipova

    2014-01-01

    Full Text Available Development of theoretical and practical bases of technology of biocompatible materials of a domestic production on the basis of the natural polymeric systems allocated from raw materials of an animal, fish and a phytogenesis is actual in interests of development of science, health care, ecology. Now practically there are no domestic materials on the basis of products of modification of biopolymers for production of biocompatible materials with adjustable physical and chemical and biological properties. In this regard the special importance is gained by works on studying of functional properties of natural biopolymers, in particular collagen, elastin, hyaluronic acid. Interest of researchers to biopolymers of the proteinaceous nature is quite reasonable as they possess sufficient permeability, a big specific surface and sorption capacity, possibility of receiving convenient in technological forms, a low immunogenicity, possibility of regulation лизиса. Data on possible ways of use are presented in article secondary the collagenic wastes - skins of fishes of internal reservoirs of Russia. Innovative processing methods of processing of secondary raw materials with receiving functional biopolymers of a wide range of application are developed. With application of modern methods of researches their characteristics and property are defined. On a complex of organoleptic, physical and chemical indicators, indexes of biological activity the received preparations hyaluronic acid and collagen can find broad application in medicine, cosmetology. The resource-saving technology of receiving tanning semi-finished products easily giving in to further processing for the purpose of receiving leather haberdashery and textile production is developed. Thus, scientific new approaches in processing of skins of pond fishes on the basis of their deep processing are proved.

  9. Quantum effective potential, electron transport and conformons in biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Dandoloff, Rossen [Laboratoire de Physique Theorique et Modelisation, Universite de Cergy-Pontoise, F-95302 Cergy-Pontoise (France); Balakrishnan, Radha [The Institute of Mathematical Sciences, Chennai 600113 (India)

    2005-07-08

    In the Kirchhoff model of a biopolymer, conformation dynamics can be described in terms of solitary waves, for certain special cross-section asymmetries. Applying this to the problem of electron transport, we show that the quantum effective potential arising due to the bends and twists of the polymer enables us to formalize and quantify the concept of a conformon that has been hypothesized in biology. Its connection to the soliton solution of the cubic nonlinear Schroedinger equation emerges in a natural fashion.

  10. Investigation of biopolymer networks by means of AFM

    Science.gov (United States)

    Keresztes, Z.; Rigó, T.; Telegdi, J.; Kálmán, E.

    Natural hydrogel alginate was investigated by means of atomic force microscopy (AFM) to gain microscale information on the morphological and rheological properties of the biopolymer network cross-linked by various cations. Local rheological properties of the gels measured by force spectroscopy gave correlation between increasing ion selectivity and increasing polymer elasticity. Adhesive forces acting between the surface of the gel and the probe, and also the intrinsic rheological properties of bulk polymers affect the microscopical image formation.

  11. Light-activated ionic gelation of common biopolymers.

    Science.gov (United States)

    Javvaji, Vishal; Baradwaj, Aditya G; Payne, Gregory F; Raghavan, Srinivasa R

    2011-10-18

    Biopolymers such as alginate and pectin are well known for their ability to undergo gelation upon addition of multivalent cations such as calcium (Ca(2+)). Here, we report a simple way to activate such ionic gelation by UV irradiation. Our approach involves combining an insoluble salt of the cation (e.g., calcium carbonate, CaCO(3)) with an aqueous solution of the polymer (e.g., alginate) along with a third component, a photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H(+) ions, which react with the CaCO(3) to generate free Ca(2+). In turn, the Ca(2+) ions cross-link the alginate chains into a physical network, thereby resulting in a hydrogel. Dynamic rheological experiments confirm the elastic character of the alginate gel, and the gel modulus is shown to be tunable via the irradiation time as well as the PAG and alginate concentrations. The above approach is easily extended to other biopolymers such as pectin. Using this approach, a photoresponse can be imparted to conventional biopolymers without the need for any chemical modification of the molecules. Photoresponsive alginate gels may be useful in creating biomaterials or tissue mimics. As a step toward potential applications, we demonstrate the ability to photopattern a thin film of alginate gel onto a glass substrate under mild conditions.

  12. Biodegradation study of some food packaging biopolymers based on PVA

    Directory of Open Access Journals (Sweden)

    Elena Elisabeta Tanase

    2016-03-01

    Full Text Available Abstract Polymers are a common choice as protective materials since they combine flexibility, variable sizes and shapes, relatively light weight, stability, resistance to breaking, barrier properties and perceived high-quality image with cost-effectiveness. Currently, mainly non-biodegradable petroleum-based synthetic polymers are used as packaging materials for foods, because of their availability, low cost and functionality. However, biopolymers can be made from renewable resources without the environmental issues of petroleum-based polymers and with the additional advantage of being available from renewable sources or as by-products or waste-products from the food and agriculture industries. The aim of this study was to test some food packaging biopolymers based on PVA. In this respect, some biopolymers for food packaging applications were subjected to biodegradation tests by covering the tested samples with soil. The samples were incubated in known temperature and humidity conditions. The experiment lasted 45 days, after that the samples were washed, weighed and the biodegradation degree was calculated. The obtained results shows that PVA is a promising material for food packaging usage, as it is made from renewable resources and it is environmentally friendly.

  13. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC

    Science.gov (United States)

    Q.Q. Wang; J.Y. Zhu; R.S. Reiner; S.P. Verrill; U. Baxa; S.E. McNeil

    2012-01-01

    This study demonstrated the potential of simultaneously recovering cellulosic solid residues (CSR) and producing cellulose nanocrystals (CNCs) by strong sulfuric acid hydrolysis to minimize cellulose loss to near zero. A set of slightly milder acid hydrolysis conditions than that considered as “optimal” were used to significantly minimize the degradation of cellulose...

  14. A Novel Approach for Entrapment of Biopolymers in Silica Matrix by Sol-gel Technique

    Institute of Scientific and Technical Information of China (English)

    Yu.Shchipunov

    2007-01-01

    1 Results The entrapment of biopolymers into silica by the sol-gel technique meets with incompatibility of inorganic and bioorganic components. The aim was to develop a compatible procedure biomimicking the biomineralization processes in the living nature. A suggested solution in Ref.[1-2] for the biopolymer entrapment into silica matrix is based on a novel silica precursor. The developed approach is distinguished from the common technique for fabrication of hybrid biopolymer-silica nanocomposite materi...

  15. Microcrystalline Cellulose from Plant Wastes through Sodium Hydroxide-Anthraquinone-Ethanol Pulping

    Directory of Open Access Journals (Sweden)

    Olugbenga Oludayo Oluwasina

    2014-08-01

    Full Text Available Microcrystalline cellulose was prepared from wastes of Tithonia diversifolia, inflorescence stems of Musa sapientum, and Musa paradisiaca by soda-anthraquinone–ethanol pulping method. They were bleached by sodium chlorite and then alpha-cellulose was isolated, followed by preparation of microcrystalline cellulose. The study revealed the effect of various processing stages on the properties of the cellulose obtained. Yields of more than 80% of microcrystalline cellulose were obtained. Fourier transform infrared (FTIR and solid state 13C Nuclear magnetic resonance (13C NMR confirmed the presence of the major expected peaks in microcrystalline cellulose. Scanning electron microscopy (SEM revealed that Musa species had short fiber length and mixtures of non-aggregated spherical, rod-shaped and thread like microcrystalline cellulose, but Tithonia diversifolia had aggregate crystal packed formation. The results compared well with those of other authors and were able to meet most of the requirements specified in British Pharmacopoeia. The study revealed that a drug excipient like microcrystalline cellulose that could protect thermo-labile active ingredients could be successfully obtained from abundant non-woody agricultural wastes.

  16. Research and Development of Two Marine-Degradable Biopolymers.

    Science.gov (United States)

    1992-03-01

    Polyethylene glycol 400 (PEG 400) 7. Diethyl succinate 8. Dextrin -based adhesive (Swift 37189) 9. 1.2.6-trihvdroxyhexane Chitosan films containing these...results for the adhesives are also provided in Table 8. All adhesives ex- cept the dextrin -based adhesive had bond strengths that equaled or exceeded...solution to this problem. Regenerated Cellulose. Cellulose is a carbohydrate with the molecular formula (C6H-10 O5 ), where n is in thousands. It is the most

  17. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose...

  18. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  19. Cellulose Nanomaterials in Water Treatment Technologies

    OpenAIRE

    Carpenter, Alexis Wells; de Lannoy, Charles François; Mark R. Wiesner

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, ...

  20. Atomic-scale modeling of cellulose nanocrystals

    Science.gov (United States)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  1. Application Research Progress of Ionic Liquids in Cellulose Chemistry%离子液体在纤维素化学中的应用研究新进展

    Institute of Scientific and Technical Information of China (English)

    张金明; 吕玉霞; 罗楠; 武进; 余坚; 何嘉松; 张军

    2011-01-01

    As the most abundant natural polymer on the earth, cellulose has many attractive properties such as renewability, biodegradability, biocompatibility, and broad chemical-modifying capacity. Cellulose has been considered as the sustainable raw material of energy and chemical engineering in the future. However, because of the well-developed intra- and intermolecular hydrogen bonding network,cellulose is unmeltable and insoluble in water or conventional organic solvents,which limits its wide utilization. More recently, it is found that certain ionic liquids (ILs) have excellent dissolving capability for cellulose,which provids a new and versatile platform for cellulose processing and derivatization. A series of biopolymer-based materials, biomass energy, platform chemicals, and so on,have been produced with the aid of ILs. Based on about 210 relevant papers published during the past 10 years, this review article highlights recent progress in the field of dissolution, regeneration, derivatization, extraction and conversion of cellulose with ILs. In additon, a perspective on ILs application in cellulose chemistry in the future is briefly discussed. It is hoped that this review work will stimulate research and collaborations that will lead to significant progress in this area.%纤维素是自然界中储量最大的天然高分子,具有可再生、可完全生物降解、生物相容性好等诸多优点,被认为是未来能源、化工的主要原料。由于聚集态结构的特点,天然纤维素不熔融、难溶解,使其应用受到极大限制。近年来,人们发现一定结构的离子液体可以高效地溶解纤维素,这为纤维素的加工与功能化提供了一个崭新和多用途的平台。以离子液体为介质,通过溶解再生和均相衍生化反应可以制得一系列纤维素基高分子材料;通过催化分解等方法,可以得到不同类型的生物质能源以及平台化合物等,从而极大地拓展了纤

  2. Methane fermentation of cellulose and ligno-cellulosic materials

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, J.S.; Villermaux, S.; Prost, C. (Laboratoire des Sciences du Genie Chimique, 54 - Nancy (France))

    1985-01-01

    Study of the methane fermentation of two simple substrates i.e. pure cellulose and oat straw. Experiments have been carried out in laboratory fermentors with several initial cellulose concentrations and different straw particle sizes. The results show the effect of adding nutrients and enriched seedings with pure cellulolytic or methanogenic bacteria. In each case, the rate limiting step is defined and the degradation kinetics of the two substrates are compared.

  3. Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems.

    Science.gov (United States)

    Regand, A; Goff, H D

    2002-11-01

    Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was observed but is not the only mechanism of stabilizer action. Thermodynamic incompatibility between biopolymers was observed to promote localized high concentrations of milk proteins located at the ice crystal interface, probably exerting a water-holding action that significantly enhanced the stabilizer effect. Qualitatively, solution heterogeneity (phase separation) was directly proportional to ice crystal growth inhibition. It is suggested that water-holding by stabilizer and proteins, and in some cases steric hindrance induced by a stabilizer gel-like network, caused a reduction in the kinetics of the ice recrystallization phenomena and promoted mechanisms of melt-regrow instead of melt-diffuse-grow recrystallization, thus resulting in the preservation of the ice crystal size and in a small span of the ice crystal size distribution.

  4. Novel enzymes for the degradation of cellulose

    Directory of Open Access Journals (Sweden)

    Horn Svein

    2012-07-01

    Full Text Available Abstract The bulk terrestrial biomass resource in a future bio-economy will be lignocellulosic biomass, which is recalcitrant and challenging to process. Enzymatic conversion of polysaccharides in the lignocellulosic biomass will be a key technology in future biorefineries and this technology is currently the subject of intensive research. We describe recent developments in enzyme technology for conversion of cellulose, the most abundant, homogeneous and recalcitrant polysaccharide in lignocellulosic biomass. In particular, we focus on a recently discovered new type of enzymes currently classified as CBM33 and GH61 that catalyze oxidative cleavage of polysaccharides. These enzymes promote the efficiency of classical hydrolytic enzymes (cellulases by acting on the surfaces of the insoluble substrate, where they introduce chain breaks in the polysaccharide chains, without the need of first “extracting” these chains from their crystalline matrix.

  5. Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films.

    Science.gov (United States)

    Iturriaga, L; Olabarrieta, I; de Marañón, I Martínez

    2012-08-01

    The antimicrobial activity of twelve natural extracts was tested against two fish spoilage bacteria (Pseudomonas fluorescens and Aeromonas hydrophila/caviae) and Listeria innocua, in order to assess their potential utilization in the preservation and safety of minimally processed fish products. After a screening of the active extracts by agar diffusion and vapour diffusion methods, oregano and thyme essential oils and citrus extract were selected. The minimum inhibitory concentration (MIC) of the selected extracts was determined by disc diffusion method against target bacteria and at two temperatures: bacteria's optimal growth temperature (30 °C or 37 °C) and refrigeration temperature (4 °C). Due to its better solubility, lack of odour and greater inhibitory effect obtained against L. innocua at refrigerated temperature, citrus extract was selected and incorporated at 1% (v/v) into different biopolymer film forming solutions (gelatin, methyl cellulose and their blend 50:50 w/w). The antimicrobial activity of the developed films was then evaluated, just after preparation of the films and after one month of storage at 43±3% relative humidity and 24±3 °C. Regardless of the biopolymer matrix, all the developed films showed antimicrobial activity against the target bacteria. The most sensitive bacterium towards active films was L. innocua while P. fluorescens appeared as the most resistant one, in accordance with the previously performed antimicrobial tests for pure extracts. The differences in activity of the films between the tested two temperatures were not significant except for L. innocua, for which three times higher inhibition diameters were observed at refrigerated temperature. The inhibitory effectiveness of the films against the tested strains was maintained regardless of the biopolymer matrix for at least one month. Therefore, these edible films show potential for their future use in fresh fish fillets preservation.

  6. WOOD CELLULOSE ACETATE MEMBRANE 179

    African Journals Online (AJOL)

    DR. AMINU

    2013-06-01

    Jun 1, 2013 ... process. The harnessed cellulose was acetylated by the process of step-wise acetylation to a degree of acetylation (DA) of ... several fields including oil recovery (Heinrich and ..... removed by filtration using the membrane was.

  7. Synthesis and characterization of graphene/cellulose nanocomposite

    Science.gov (United States)

    Kafy, Abdullahil; Yadav, Mithilesh; Kumar, Kishor; Kumar, Kishore; Mun, Seongcheol; Gao, Xiaoyuan; Kim, Jaehwan

    2014-04-01

    Cellulose is one of attractive natural polysaccharides in nature due to its good chemical stability, mechanical strength, biocompatibility, hydrophilic, and biodegradation properties [1-2]. The main disadvantages of biopolymer films like cellulose are their poor mechanical properties. Modification of polymers with inorganic materials is a new way to improve polymer properties such as mechanical strength [3-4]. Presently, the use of graphene/graphene oxide (GO) in materials research has attracted tremendous attention in the past 40 years in various fields including biomedicine, information technology and nanotechnology[5-7]. Graphene, a single sheet of graphite, has an ideal 2D structure with a monolayer of carbon atoms packed into a honeycomb crystal plane. Using both experimental and theoretical scientific research, researchers including Geim, Rao and Stankovich [8-10] have described the attractiveness of graphene in the materials research field. Due to its sp2 hybrid carbon network as well as extraordinary mechanical, electronic, and thermal properties, graphene has opened new pathways for developing a wide range of novel functional materials. Perfect graphene does not exist naturally, but bulk and solution processable functionalized graphene materials including graphene oxide (GO) can now be prepared [11-13].The large surface area of GO has a number of functional groups, such as -OH, -COOH, -O- , and C=O, which make GO hydrophilic and readily dispersible in water as well as some organic solvents[14] , thereby providing a convenient access to fabrication of graphene-based materials by solution casting. According to several reports [15-17], GO can be dispersed throughout a selected polymer matrix to make GO-based nanocomposites with excellent mechanical and thermal properties. Since GO is prepared from low-cost graphite, it has an outstanding price advantage over CNTs, which has encouraged studies of GO/synthetic polymer composites [18-20]. In some reported papers

  8. Bacterial cellulose/boehmite composites

    Energy Technology Data Exchange (ETDEWEB)

    Salvi, Denise T.B. de; Barud, Hernane S.; Messaddeq, Younes; Ribeiro, Sidney J.L. [Universidade Estadual Paulista Julio de Mesquita Filho. UNESP. Instituto de Quimica de Araraquara, SP (Brazil); Caiut, Jose Mauricio A. [Universidade de Sao Paulo. Departamento de Quimica - FFCLRP/USP, Ribeirao Preto, SP (Brazil)

    2011-07-01

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  9. Raccoon abundance inventory report

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes the results of a raccoon abundance inventory on Clarence Cannon National Wildlife Refuge in 2012. Determining raccoon abundance allows for...

  10. Green heterogeneous Pd(II) catalyst produced from chitosan-cellulose micro beads for green synthesis of biaryls.

    Science.gov (United States)

    Baran, Talat; Sargin, Idris; Kaya, Murat; Menteş, Ayfer

    2016-11-01

    In green catalyst systems, both the catalyst and the technique should be environmentally safe. In this study we designed a green palladium(II) catalyst for microwave-assisted Suzuki CC coupling reactions. The catalyst support was produced from biopolymers; chitosan and cellulose. The catalytic activity of the catalyst was tested on 16 substrates in solvent-free media and compared with those of commercial palladium salts. Reusability tests were done. The catalyst was also used in conventional reflux-heating system to demonstrate the efficiency of microwave heating method. We recorded high activity, selectivity and excellent TONs (6600) and TOFs (82500) just using a small catalyst loading (1.5×10(-3)mol%) in short reaction time (5min). The catalyst exhibited a long lifetime (9 runs). The findings indicated that both green chitosan/cellulose-Pd(II) catalyst and the microwave heating are suitable for synthesis of biaryl compounds by using Suzuki CC coupling reactions.

  11. Surface modification of cellulose nanocrystals

    Science.gov (United States)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  12. Microbial production of biopolymers from the renewable resource wheat straw.

    Science.gov (United States)

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  13. The wear of two orthopaedic biopolymers against each other.

    Science.gov (United States)

    Joyce, T J

    2005-01-01

    The potential for all-polymer prostheses has not been widely investigated. It might be expected that the wear of such biomaterial combinations would be excessive, but an in vivo study of all polymer knee prostheses reported that there were no failures due to wear, even after ten years of clinical use. This design of knee prosthesis used polyacetal and ultra high molecular weight polyethylene (UHMWPE) as the biopolymers. Similarly, an earlier in vitro study of polyacetal and UHMWPE hip prostheses indicated lower wear than for a cobalt chrome and UHMWPE combination. Therefore this study set out to test the poly-acetal and UHMWPE combination in a wear screening rig which had previously been validated against clinical data for artificial hip joints. Two different motion conditions were applied to the test samples and each biopolymer was tested as both pin and plate. Interestingly it was found that, whatever the contribution from pin or plate, the total mean wear factors were 1.5 10 -6 mm 3/Nm under reciprocation-only, and 4.1 10 -6 mm 3 /Nm under multi-directional motion. These wear factors were greater than those found when a conventional metal-on-UHMWPE couple was tested under the same loading, motion and lu-bricant conditions. A comparison was also undertaken with the wear of other orthopaedic biopolymer combinations, namely cross-linked polyethylene (XLPE) against itself, and UHMWPE against itself. The XLPE pairing showed somewhat lower wear than the polyacetal and UHMWPE couple, while the UHMWPE pairing showed the highest wear of all, approximately an or-der of magnitude greater than the polyacetal and UHMWPE combination.

  14. Nanomechanics of cellulose crystals and cellulose-based polymer composites

    Science.gov (United States)

    Pakzad, Anahita

    Cellulose-polymer composites have potential applications in aerospace and transportation areas where lightweight materials with high mechanical properties are needed. In addition, these economical and biodegradable composites have been shown to be useful as polymer electrolytes, packaging structures, optoelectronic devices, and medical implants such as wound dressing and bone scaffolds. In spite of the above mentioned advantages and potential applications, due to the difficulties associated with synthesis and processing techniques, application of cellulose crystals (micro and nano sized) for preparation of new composite systems is limited. Cellulose is hydrophilic and polar as opposed to most of common thermoplastics, which are non-polar. This results in complications in addition of cellulose crystals to polymer matrices, and as a result in achieving sufficient dispersion levels, which directly affects the mechanical properties of the composites. As in other composite materials, the properties of cellulose-polymer composites depend on the volume fraction and the properties of individual phases (the reinforcement and the polymer matrix), the dispersion quality of the reinforcement through the matrix and the interaction between CNCs themselves and CNC and the matrix (interphase). In order to develop economical cellulose-polymer composites with superior qualities, the properties of individual cellulose crystals, as well as the effect of dispersion of reinforcements and the interphase on the properties of the final composites should be understood. In this research, the mechanical properties of CNC polymer composites were characterized at the macro and nano scales. A direct correlation was made between: - Dispersion quality and macro-mechanical properties - Nanomechanical properties at the surface and tensile properties - CNC diameter and interphase thickness. Lastly, individual CNCs from different sources were characterized and for the first time size-scale effect on

  15. Influence of Temperature on Mechanical Properties of Jute/Biopolymer Composites

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Laursen, Louise Løcke; Løgstrup Andersen, Tom

    2013-01-01

    Biopolymers and natural fibers are receiving wide attention for the potential to have good performance composites with low environmental impact. A current limitation of most biopolymers is however their change in mechanical properties at elevated temperatures. This study investigates the mechanic...... and composites. © 2012 Wiley Periodicals, Inc....

  16. Patterning surface by site selective capture of biopolymer hydrogel beads.

    Science.gov (United States)

    Guyomard-Lack, Aurélie; Moreau, Céline; Delorme, Nicolas; Marquis, Mélanie; Fang, Aiping; Bardeau, Jean-François; Cathala, Bernard

    2012-06-01

    This communication describes the fabrication of microstructured biopolymer surfaces by the site-selective capture of pectin hydrogel beads. A positively charged surface consisting of poly-L-lysine (PLL) was subjected to site-selective enzymatic degradation using patterned polydimethylsiloxane (PDMS) stamps covalently modified with trypsin, according to the recently described method. The patterned surface was used to capture ionically cross-linked pectin beads. The desired patterning of the hydrogel surfaces was generated by site-selective immobilization of these pectin beads. The ability of the hydrogels to be dried and swollen in water was assessed.

  17. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.

    Science.gov (United States)

    Heredia, Antonio

    2003-03-17

    Cutin is a support biopolyester involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant cells and organs, and minimizing the deleterious impact of pathogens. Despite the complexity and intractable nature of this biopolymer, significant progress in chemical composition, molecular architecture and, more recently, biosynthesis have been made in the past 10 years. This review is focused in the description of these advances and their physiological impacts to improve our knowledge on plant cutin, an unusual topic in most plant physiology and biochemistry books and reviews.

  18. Quantized biopolymer translocation through nanopores: departure from simple scaling

    CERN Document Server

    Melchionna, Simone; Fyta, Maria; Kaxiras, Efthimios; Succi, Sauro

    2009-01-01

    We discuss multiscale simulations of long biopolymer translocation through wide nanopores that can accommodate multiple polymer strands. The simulations provide clear evidence of folding quantization, namely, the translocation proceeds through multi-folded configurations characterized by a well-defined integer number of folds. As a consequence, the translocation time acquires a dependence on the average folding number, which results in a deviation from the single-exponent power-law characterizing single-file translocation through narrow pores. The mechanism of folding quantization allows polymers above a threshold length (approximately $1,000$ persistence lengths for double-stranded DNA) to exhibit cooperative behavior and as a result to translocate noticeably faster.

  19. Peptide-based Biopolymers in Biomedicine and Biotechnology

    Science.gov (United States)

    Chow, Dominic; Nunalee, Michelle L.; Lim, Dong Woo; Simnick, Andrew J.; Chilkoti, Ashutosh

    2008-01-01

    Peptides are emerging as a new class of biomaterials due to their unique chemical, physical, and biological properties. The development of peptide-based biomaterials is driven by the convergence of protein engineering and macromolecular self-assembly. This review covers the basic principles, applications, and prospects of peptide-based biomaterials. We focus on both chemically synthesized and genetically encoded peptides, including poly-amino acids, elastin-like polypeptides, silk-like polymers and other biopolymers based on repetitive peptide motifs. Applications of these engineered biomolecules in protein purification, controlled drug delivery, tissue engineering, and biosurface engineering are discussed. PMID:19122836

  20. Coassembly of gold nanoparticles and cellulose nanocrystals in composite films.

    Science.gov (United States)

    Lukach, Ariella; Thérien-Aubin, Héloïse; Querejeta-Fernández, Ana; Pitch, Natalie; Chauve, Grégory; Méthot, Myriam; Bouchard, Jean; Kumacheva, Eugenia

    2015-05-12

    Coassembly of nanoparticles with different size-, shape-, and composition-dependent properties is a promising approach to the design and fabrication of functional materials and devices. This paper reports the results of a detailed investigation of the formation and properties of free-stranding composite films formed by the coassembly of cellulose nanocrystals and shape-isotropic plasmonic gold nanoparticles. The effect of gold nanoparticle size, surface charge, and concentration on the structural and optical properties of the composite films has been studied. The composite films retained photonic crystal and chiroptical activity properties. The size and surface charge of gold nanoparticles had a minor effect on the structure and properties of the composite films, while the concentration of gold nanoparticles in the composite material played a more significant role and can be used to fine-tune the optical properties of materials derived from cellulose nanocrystals. These findings significantly broaden the range of nanoparticles that can be used for producing nanocomposite materials based on cellulose nanocrystals. The simplicity of film preparation, the abundance of cellulose nanocrystals, and the robust, free-standing nature of the composite films offer highly advantageous features and pave the way for the generation of functional materials with coupled optical properties.

  1. Chemical modeling of acid-base properties of soluble biopolymers derived from municipal waste treatment materials.

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Marinos, Janeth Alicia Tafur; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-02-04

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  2. Simulating microbiologically influenced corrosion by depositing extracellular biopolymers on mild steel surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Roe, F.L.; Lewandowski, Z.; Funk, T. [Montana State Univ., Bozeman, MT (United States). Center for Biofilm Engineering

    1996-10-01

    Electrochemical properties of corroding mild steel (MS) surfaces were measured in real time using three closely spaced microelectrodes. Dissolved oxygen, pH, and ion currents were mapped simultaneously and noninvasively above a MS coupon partially coated with biopolymer gels. Calcium alginate (Ca-Alg [an extracellular biopolymer containing carboxylate functional groups]) and agarose (one without carboxylate functional groups) were tested. Corrosion occurred at approximately the same rate under the two biopolymer spots on the same coupon. Corrosion rates under these biopolymers were {approx} 4 mpy in a weak saline solution. Results suggested corrosion was not influenced by chemical properties of the biopolymer but possibly was controlled by oxygen reduction in noncoated regions of the coupon (i.e., a differential aeration cell).

  3. Microfluidic generation and selective degradation of biopolymer-based Janus microbeads.

    Science.gov (United States)

    Marquis, Mélanie; Renard, Denis; Cathala, Bernard

    2012-04-09

    We describe a microfluidic approach for generating Janus microbeads from biopolymer hydrogels. A flow-focusing device was used to emulsify the coflow of aqueous solutions of one or two different biopolymers in an organic phase to synthesize homo or hetero Janus microbeads. Biopolymer gelation was initiated, in the chip, by diffusion-controlled ionic cross-linking of the biopolymers. Pectin-pectin (homo Janus) and, for the first time, pectin-alginate (hetero Janus) microbeads were produced. The efficiency of separation of the two hemispheres, which reflected mixing and convection phenomena, was investigated by confocal scanning laser microscopy (CSLM) of previously labeled biopolymers. The interface of the hetero Janus structure was clearly defined, whereas that of the homo Janus microbeads was poorly defined. The Janus structure was confirmed by subjecting each microbead hemisphere to specific enzymatic degradation. These new and original microbeads from renewable resources will open up opportunities for studying relationships between combined enzymatic hydrolysis and active compound release.

  4. FUNCTIONALIZATION PATTERN OF TERT-BUTYLDIMETHYL-SILYL CELLULOSE EVALUATED BY NMR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Thomas Heinze

    2008-02-01

    Full Text Available Tert-butyldimethylsilyl cellulose with a degree of substitution (DS of up to 2 could be obtained by homogeneous conversion of the biopolymer with tert-butylchlorosilane in N,N-dimethyl aceteamide/LiCl in the presence of imidazole. The cellulose derivatives were characterized in detail by means of two-dimensional NMR spectroscopic techniques including subsequent derivatization of the original polymer by consecutive methylation-desilyation-acetylation. The very well resolved NMR spectra indicate that dependent on the reaction temperature 2,6-di-O-tert-butyldimethylsilyl moieties are the main repeating units. 3,6-di-O- and 6-mono-O functionalized repeating units were identified in very small amount if the reaction is carried out at room temperature. Additionally, 2,3,6-tri-O-silylated functions appear if reaction is carried out at temperature of 100°C. Thus, a novel path for regioselective protection of position 2 and 6 for cellulose was established.

  5. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.

    Science.gov (United States)

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V

    2013-03-01

    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

  6. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis

    Science.gov (United States)

    Gao, Dahai; Chundawat, Shishir P. S.; Sethi, Anurag; Balan, Venkatesh; Gnanakaran, S.; Dale, Bruce E.

    2013-01-01

    Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme–substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph Iβ to IIII results in 40–50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings. PMID:23784776

  7. Natural organic UV-absorbent coatings based on cellulose and lignin: designed effects on spectroscopic properties.

    Science.gov (United States)

    Hambardzumyan, Arayik; Foulon, Laurence; Chabbert, Brigitte; Aguié-Béghin, Véronique

    2012-12-10

    Novel nanocomposite coatings composed of cellulose nanocrystals (CNCs) and lignin (either synthetic or fractionated from spruce and corn stalks) were prepared without chemical modification or functionalization (via covalent attachment) of one of the two biopolymers. The spectroscopic properties of these coatings were investigated by UV-visible spectrophotometry and spectroscopic ellipsometry. When using the appropriate weight ratio of CNC/lignin (R), these nanocomposite systems exhibited high-performance optical properties, high transmittance in the visible spectrum, and high blocking in the UV spectrum. Atomic force microscopy analysis demonstrated that these coatings were smooth and homogeneous, with visible dispersed lignin nodules in a cellulosic matrix. It was also demonstrated that the introduction of nanoparticles into the medium increases the weight ratio and the CNC-specific surface area, which allows better dispersion of the lignin molecules throughout the solid film. Consequently, the larger molecular expansion of these aromatic polymers on the surface of the cellulosic nanoparticles dislocates the π-π aromatic aggregates, which increases the extinction coefficient and decreases the transmittance in the UV region. These nanocomposite coatings were optically transparent at visible wavelengths.

  8. HYDROLYTIC DEGRADATION BEHAVIOR OF PLLA NANOCOMPOSITES REINFORCED WITH MODIFIED CELLULOSE NANOCRYSTALS

    Directory of Open Access Journals (Sweden)

    Everton Luiz de Paula

    2015-09-01

    Full Text Available Bionanocomposites derived from poly(L-Lactide (PLLA were reinforced with chemically modified cellulose nanocrystals (m-CNCs. The effects of these modified cellulose nanoparticles on the mechanical and hydrolytic degradation behavior of polylactide were studied. The m-CNCs were prepared by a method in which hydrolysis of cellulose chains is performed simultaneously with the esterification of hydroxyl groups to produce modified nanocrystals with ester groups. FTIR, elemental analysis, TEM, XRD and contact angle measurements were used to confirm and characterize the chemical modifications of the m-CNCs. These bionanocomposites gave considerably better mechanical properties than neat PLLA based on an approximately 100% increase in tensile strength. Due to the hydrophobic properties of the esterified nanocrystals incorporated into a polymer matrix, it was also demonstrated that a small amount of m-CNCs could lead to a remarkable decrease in the hydrolytic degradation rate of the biopolymer. In addition, the m-CNCs considerably delay the degradation of the nanocomposite by providing a physical barrier that prevents the permeation of water, which thus hinders the overall absorption of water into the matrix. The results obtained in this study show the nanocrystals can be used to reinforce polylactides and fine-tune their degradation rates in moist or physiological environments.

  9. Application of a water jet system to the pretreatment of cellulose.

    Science.gov (United States)

    Watanabe, Yuka; Kitamura, Shinichi; Kawasaki, Kazunori; Kato, Tomoki; Uegaki, Koichi; Ogura, Kota; Ishikawa, Kazuhiko

    2011-12-01

    Plant cellulose is the most abundant organic compound on earth. Technologies for producing cellulose fiber or improving the enzymatic saccharification of cellulose hold the key to biomass applications. A technology for atomizing biomass without strong acid catalysis remains to be developed. The water jet is a well-known device used in machines (e.g., washing machines, cutters, and mills) that use high-pressure water. In this study, we examined whether a water jet system could be used to atomize crystalline cellulose, which comprises approximately 50% of plant biomass. The Star Burst System manufactured by Sugino Machine Limited (Sugino Machine; Toyama, Japan) is a unique atomization machine that uses a water jet to atomize materials and thereby places lower stress on the environment. After treatment with this system, the crystalline cellulose was converted into a gel-like form. High-angular annular dark-field scanning transmission electron microscopy showed that the cellulose fibers had been converted from a solid crystalline into a matrix of cellulose nanofibers. In addition, our results show that this system can improve the saccharification efficiency of cellulases by more than three-fold. Hence, the Star Burst System provides a new and mild pretreatment system for processing biomass materials. 2011 Wiley Periodicals, Inc.

  10. Temperature impacts differentially on the methanogenic food web of cellulose-supplemented peatland soil.

    Science.gov (United States)

    Schmidt, Oliver; Horn, Marcus A; Kolb, Steffen; Drake, Harold L

    2015-03-01

    The impact of temperature on the largely unresolved intermediary ecosystem metabolism and associated unknown microbiota that link cellulose degradation and methane production in soils of a moderately acidic (pH 4.5) fen was investigated. Supplemental [(13) C]cellulose stimulated the accumulation of propionate, acetate and carbon dioxide as well as initial methane production in anoxic peat soil slurries at 15°C and 5°C. Accumulation of organic acids at 15°C was twice as fast as that at 5°C. 16S rRNA [(13) C]cellulose stable isotope probing identified novel unclassified Bacteria (79% identity to the next cultured relative Fibrobacter succinogenes), unclassified Bacteroidetes (89% identity to Prolixibacter bellariivorans), Porphyromonadaceae, Acidobacteriaceae and Ruminococcaceae as main anaerobic degraders of cellulose-derived carbon at both 15°C and 5°C. Holophagaceae and Spirochaetaceae were more abundant at 15°C. Clostridiaceae dominated the degradation of cellulose-derived carbon only at 5°C. Methanosarcina was the dominant methanogenic taxa at both 15°C and 5°C. Relative abundance of Methanocella increased at 15°C whereas that of Methanoregula and Methanosaeta increased at 5°C. Thaumarchaeota closely related to Nitrosotalea (presently not known to grow anaerobically) were abundant at 5°C but absent at 15°C indicating that Nitrosotalea sp. might be capable of anaerobic growth at low temperatures in peat.

  11. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai; Nicora, Carrie D.; Aldrich, Joshua T.; Frey, Dario; Kolinko, Sebastian; Robinson, Errol W.; Jacobs, Jon M.; Adams, Paul D.; Northen, Trent R.; Simmons, Blake A.; Singer, Steven W.

    2016-08-23

    ABSTRACT

    Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacteriumThermobispora bisporathat were highly abundant in the most active consortium. Among the cellulases fromT. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite ofT. bisporahydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered.

    IMPORTANCECellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose

  12. Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis.

    Science.gov (United States)

    Hiras, Jennifer; Wu, Yu-Wei; Deng, Kai; Nicora, Carrie D; Aldrich, Joshua T; Frey, Dario; Kolinko, Sebastian; Robinson, Errol W; Jacobs, Jon M; Adams, Paul D; Northen, Trent R; Simmons, Blake A; Singer, Steven W

    2016-08-23

    Glycoside hydrolases (GHs) are key enzymes in the depolymerization of plant-derived cellulose, a process central to the global carbon cycle and the conversion of plant biomass to fuels and chemicals. A limited number of GH families hydrolyze crystalline cellulose, often by a processive mechanism along the cellulose chain. During cultivation of thermophilic cellulolytic microbial communities, substantial differences were observed in the crystalline cellulose saccharification activities of supernatants recovered from divergent lineages. Comparative community proteomics identified a set of cellulases from a population closely related to actinobacterium Thermobispora bispora that were highly abundant in the most active consortium. Among the cellulases from T. bispora, the abundance of a GH family 12 (GH12) protein correlated most closely with the changes in crystalline cellulose hydrolysis activity. This result was surprising since GH12 proteins have been predominantly characterized as enzymes active on soluble polysaccharide substrates. Heterologous expression and biochemical characterization of the suite of T. bispora hydrolytic cellulases confirmed that the GH12 protein possessed the highest activity on multiple crystalline cellulose substrates and demonstrated that it hydrolyzes cellulose chains by a predominantly random mechanism. This work suggests that the role of GH12 proteins in crystalline cellulose hydrolysis by cellulolytic microbes should be reconsidered. Cellulose is the most abundant organic polymer on earth, and its enzymatic hydrolysis is a key reaction in the global carbon cycle and the conversion of plant biomass to biofuels. The glycoside hydrolases that depolymerize crystalline cellulose have been primarily characterized from isolates. In this study, we demonstrate that adapting microbial consortia from compost to grow on crystalline cellulose generated communities whose soluble enzymes exhibit differential abilities to hydrolyze crystalline

  13. Enhancement of Lignin Biopolymer Isolation from Hybrid Poplar by Organosolv Pretreatments

    Directory of Open Access Journals (Sweden)

    Miao Wu

    2014-01-01

    Full Text Available Lignocellulosic biomass is an abundant renewable resource that has the potential to displace petroleum in the production of biomaterials and biofuels. In the present study, the fractionation of different lignin biopolymers from hybrid poplar based on organosolv pretreatments using 80% aqueous methanol, ethanol, 1-propanol, and 1-butanol at 220°C for 30 min was investigated. The isolated lignin fractions were characterized by Fourier transform infrared spectroscopy (FT-IR, high-performance anion exchange chromatography (HPAEC, 2D nuclear magnetic resonance (2D NMR, and thermogravimetric analysis (TGA. The results showed that the lignin fraction obtained with aqueous ethanol (EOL possessed the highest yield and the strongest thermal stability compared with other lignin fractions. In addition, other lignin fractions were almost absent of neutral sugars (1.16–1.46% though lignin preparation extracted with 1-butanol (BOL was incongruent (7.53%. 2D HSQC spectra analysis revealed that the four lignin fractions mainly consisted of β-O-4′ linkages combined with small amounts of β-β′ and β-5′ linkages. Furthermore, substitution of Cα in β-O-4′ substructures had occurred due to the effects of dissolvent during the autocatalyzed alcohol organosolv pretreatments. Therefore, aqueous ethanol was found to be the most promising alcoholic organic solvent compared with other alcohols to be used in noncatalyzed processes for the pretreatment of lignocellulosic biomass in biorefinery.

  14. Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers.

    Science.gov (United States)

    Philibert, Tuyishime; Lee, Byong H; Fabien, Nsanzabera

    2017-04-01

    The natural biopolymer chitin and its deacetylated product chitosan are found abundantly in nature as structural building blocks and are used in all sectors of human activities like materials science, nutrition, health care, and energy. Far from being fully recognized, these polymers are able to open opportunities for completely novel applications due to their exceptional properties which an economic value is intrinsically entrapped. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal and insect sources. Significant efforts have been devoted to commercialize chitosan extracted from fungal and insect sources to completely replace crustacean-derived chitosan. However, the traditional chitin extraction processes are laden with many disadvantages. The present review discusses the potential bioextraction of chitosan from fungal, insect, and crustacean as well as its superior physico-chemical properties. The different aspects of fungal, insects, and crustacean chitosan extraction methods and various parameters having an effect on the yield of chitin and chitosan are discussed in detail. In addition, this review also deals with essential attributes of chitosan for high value-added applications in different fields and highlighted new perspectives on the production of chitin and deacetylated chitosan from different sources with the concomitant reduction of the environmental impact.

  15. Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels

    Science.gov (United States)

    Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth

    2016-11-01

    Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.

  16. Synthesis of 9-oxononanoic acid, a precursor for biopolymers.

    Science.gov (United States)

    Otte, Konrad B; Kirtz, Marko; Nestl, Bettina M; Hauer, Bernhard

    2013-11-01

    Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high-performance materials. Unfortunately, interesting building blocks of medium-chain length are difficult to obtain by traditional chemical means. Herein, a biotechnological pathway is established that could provide an environmentally suitable and sustainable alternative. A multiple enzyme two-step one-pot process efficiently catalyzed by a coupled 9S-lipoxygenase (St-LOX1, Solanum tuberosum) and 9/13-hydroperoxide lyase (Cm-9/13HPL, Cucumis melo) cascade reaction is proposed as a potential route for the conversion of linoleic acid into 9-oxononanoic acid, which is a precursor for biopolymers. Lipoxygenase catalyzes the insertion of oxygen into linoleic acid through a radical mechanism to give 9S-hydroperoxy-octadecadienoic acid (9S-HPODE) as a cascade intermediate, which is subsequently cleaved by the action of Cm-9/13HPL. This one-pot process afforded a yield of 73 % combined with high selectivity. The best reaction performance was achieved when lipoxygenase and hydroperoxide lyase were applied in a successive rather than a simultaneous manner. Green leaf volatiles, which are desired flavor and fragrance products, are formed as by-products in this reaction cascade. Furthermore, we have investigated the enantioselectivity of 9/13-HPLs, which exhibited a strong preference for 9S-HPODE over 9R-HPODE.

  17. Associative Interactions in Crowded Solutions of Biopolymers Counteract Depletion Effects.

    Science.gov (United States)

    Groen, Joost; Foschepoth, David; te Brinke, Esra; Boersma, Arnold J; Imamura, Hiromi; Rivas, Germán; Heus, Hans A; Huck, Wilhelm T S

    2015-10-14

    The cytosol of Escherichia coli is an extremely crowded environment, containing high concentrations of biopolymers which occupy 20-30% of the available volume. Such conditions are expected to yield depletion forces, which strongly promote macromolecular complexation. However, crowded macromolecule solutions, like the cytosol, are very prone to nonspecific associative interactions that can potentially counteract depletion. It remains unclear how the cytosol balances these opposing interactions. We used a FRET-based probe to systematically study depletion in vitro in different crowded environments, including a cytosolic mimic, E. coli lysate. We also studied bundle formation of FtsZ protofilaments under identical crowded conditions as a probe for depletion interactions at much larger overlap volumes of the probe molecule. The FRET probe showed a more compact conformation in synthetic crowding agents, suggesting strong depletion interactions. However, depletion was completely negated in cell lysate and other protein crowding agents, where the FRET probe even occupied slightly more volume. In contrast, bundle formation of FtsZ protofilaments proceeded as readily in E. coli lysate and other protein solutions as in synthetic crowding agents. Our experimental results and model suggest that, in crowded biopolymer solutions, associative interactions counterbalance depletion forces for small macromolecules. Furthermore, the net effects of macromolecular crowding will be dependent on both the size of the macromolecule and its associative interactions with the crowded background.

  18. Assessment of respiration activity and ecotoxicity of composts containing biopolymers.

    Science.gov (United States)

    Kopeć, Michał; Gondek, Krzysztof; Baran, Agnieszka

    2013-03-01

    The research was conducted to determine if introducing biodegradable polymer materials to the composting process would affect selected biological properties of mature compost. Determination of biological properties of composts composed of testing their respiration activity and toxicity. Respiration activity was measured in material from the composting process by means of OxiTop Control measuring system. The ecotoxicity of composts was estimated by means of a set of biotests composed of three microbiotests using five test organisms. Introduction of polymer materials caused a decrease in respiration activity of mature compost. Similar dependencies as in the case of mass loss were registered. Compost to which a biodegradable polymer with the highest content of starch was added revealed the smallest difference in comparison with organic material composted without polymers. Lower content of starch in a polymer caused lower respiration activity of composts, whereas microorganism vaccine might have accelerated maturing of composts, thus contributing to the smallest respiration of compost. In composts containing biopolymers the following were observed: an increase in germination inhibition--2.5 times, roots growth inhibition--1.8 times, growth inhibition of Heterocypris incongruens--four times and luminescence inhibition of Vibrio fischeri--1.6 times in comparison with the control (compost K1). Composts containing biopolymers were classified as toxicity class III, whereas the compost without polymer addition as class II.

  19. DEVELOPMENT AND EVALUATION OF PIROXICAM LOADED BIOPOLYMER BASED TRANSDERMAL FILM

    Directory of Open Access Journals (Sweden)

    Kulkarni Parthasarathi Keshavarao

    2011-11-01

    Full Text Available The aim of the present study was to formulate biopolymer based transdermal film loaded with Piroxicam (PX. Transdermal films were prepared by using sodium locust bean gum (LBG and Sodium alginate (SA as biopolymers by varying the blend ratios by solution casting method. The drug loaded membranes were evaluated for thickness, tensile behaviours, content uniformity; transdermal permeation of PX through rat abdominal skin was determined by Franz diffusion cell. In vitro skin permeation profile of optimized formulation was compared with that of PX conventional gel. Carrageen induced rat paw edema model was used to investigate the in vivo performances. Menthol (3% and glycerin (3% are used as permeation enhancer and plasticizer, respectively. PX was found to be compatible and stable with the prepared formulation as confirmed by Fourier transform infrared spectroscopy (FTIR and Differential Scanning Calorimetric (DSC, studies. In-vitro release studies revels effectiveness after 24 h when compared with the conventional gel. The film does not show any signs of edema, erythema or ulceration. From the in-vitro skin permeation and anti inflammatory activity data it can be concluded that the developed optimized formulation (F3 has good potential to achieve the transdermal drug delivery of PX for effective therapy.

  20. Permeability Modification Using a Reactive Alkaline-Soluble Biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Sandra L. Fox; Xina Xie; Greg Bala

    2004-11-01

    Polymer injection has been used in reservoirs to alleviate contrasting permeability zones to enhance oil recovery (EOR). Polymer technology relies mainly on the use of polyacrylamides cross-linked by a hazardous metal or organic. Contemporary polymer plugging has investigated the stimulation of in-situ microorganisms to produce polymers (Jenneman et. al., 2000) and the use of biocatalysts to trigger gelling (Bailey et. al., 2000). The use of biological polymers are advantageous in that they can block high permeability areas, are environmentally friendly, and have potential to form reversible gels without the use of hazardous cross-linkers. Recent efforts have produced a reactive alkaline-soluble biopolymer from Agrobacterium species ATCC # 31749 that gels upon decreasing the pH of the polymeric solution. Microbial polymers are of interest due to their potential cost savings, compared to conventional use of synthetic chemical polymers. Numerous microorganisms are known to produce extracellular polysaccharides. One microbiological polymer of interest is curdlan, â - (1, 3) glucan, which has demonstrated gelling properties by a reduction in pH. The focus of this study was to determine the impact an alkaline-soluble biopolymer can have on sandstone permeability.

  1. Controlling the structure and rheology of TEMPO-oxidized cellulose in zinc chloride aqueous suspensions for fabricating advanced nanopaper

    Science.gov (United States)

    Wang, Sha; Zhang, Xin; Hu, Liangbing; Briber, Robert; Wang, Howard; Zhong, Linxin

    Due to its abundance, low-cost, biocompatibility and renewability, cellulose has become an attractive candidate as a functional material for various advanced applications. A key to novel applications is the control of the structure and rheology of suspensions of fibrous cellulose. Among many different approaches of preparing cellulose suspensions, zinc chloride addition to aqueous suspensions is regarded an effective practice. In this study, effects of ZnCl2 concentration on TEMPO-oxidized cellulose (TOC) nanofiber suspensions have been investigated. Highly-transparent cellulose nanofiber suspension can be rapidly obtained by dissolving TOC in 65 wt.% zinc chloride aqueous solutions at room temperature, whereas a transparent zinc ion cross-linked TOC gel could be obtained with zinc chloride concentration as low as 10 wt. %. The structural and rheological characteristics of TOC/ZnCl2 suspensions have been measured to correlate to the performance of thetransparent and flexible nanocellulose paper subsequently produced via vacuum filtration or wet-casting processes.

  2. Precision Chemical Abundance Measurements

    DEFF Research Database (Denmark)

    Yong, David; Grundahl, Frank; Meléndez, Jorge;

    2012-01-01

    This talk covers preliminary work in which we apply a strictly differential line-by-line chemical abundance analysis to high quality UVES spectra of the globular cluster NGC 6752. We achieve extremely high precision in the measurement of relative abundance ratios. Our results indicate that the ob......This talk covers preliminary work in which we apply a strictly differential line-by-line chemical abundance analysis to high quality UVES spectra of the globular cluster NGC 6752. We achieve extremely high precision in the measurement of relative abundance ratios. Our results indicate...... that the observed abundance dispersion exceeds the measurement uncertainties and that many pairs of elements show significant correlations when plotting [X1/H] vs. [X2/H]. Our tentative conclusions are that either NGC 6752 is not chemically homogeneous at the ~=0.03 dex level or the abundance variations...

  3. Characterization of Cellulose Synthesis in Plant Cells

    Directory of Open Access Journals (Sweden)

    Samaneh Sadat Maleki

    2016-01-01

    Full Text Available Cellulose is the most significant structural component of plant cell wall. Cellulose, polysaccharide containing repeated unbranched β (1-4 D-glucose units, is synthesized at the plasma membrane by the cellulose synthase complex (CSC from bacteria to plants. The CSC is involved in biosynthesis of cellulose microfibrils containing 18 cellulose synthase (CesA proteins. Macrofibrils can be formed with side by side arrangement of microfibrils. In addition, beside CesA, various proteins like the KORRIGAN, sucrose synthase, cytoskeletal components, and COBRA-like proteins have been involved in cellulose biosynthesis. Understanding the mechanisms of cellulose biosynthesis is of great importance not only for improving wood production in economically important forest trees to mankind but also for plant development. This review article covers the current knowledge about the cellulose biosynthesis-related gene family.

  4. Development of nonflammable cellulosic foams

    Science.gov (United States)

    Luttinger, M.

    1972-01-01

    The development of a moldable cellulosic foam for use in Skylab instrument storage cushions is considered. Requirements include density of 10 lb cu ft or less, minimal friability with normal handling, and nonflammability in an atmosphere of 70 percent oxygen and 30 percent nitrogen at 6.2 psia. A study of halogenated foam components was made, including more highly chlorinated binders, halogen-containing additives, and halogenation of the cellulose. The immediate objective was to reduce the density of the foam through reduction in inorganic phosphate without sacrificing flame-retarding properties of the foams. The use of frothing techniques was investigated, with particular emphasis on a urea-formaldehyde foam. Halogen-containing flame retardants were deemphasized in favor of inorganic salts and the preparation of phosphate and sulphate esters of cellulose. Utilization of foam products for civilian applications was also considered.

  5. Cellulose nanocrystals the next big nano-thing?

    Science.gov (United States)

    Postek, Michael T.; Vladar, Andras; Dagata, John; Farkas, Natalia; Ming, Bin; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2008-08-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world's most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. Therefore, the basic raw materials for a future of new nanomaterials breakthroughs already abound in the environment and are available to be utilized in an array of future materials once the manufacturing processes and nanometrology are fully developed. This presentation will discuss some of the instrumentation, metrology and standards issues associated with nanomanufacturing of cellulose nanocrystals. The use of lignocellulosic fibers derived from sustainable, annually renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Today we lack the essential metrology infrastructure that would enable the manufacture of nanotechnology-based products based on CNCs (or other new nanomaterial) to significantly impact the U.S. economy. The basic processes common to manufacturing - qualification of raw materials, continuous synthesis methods, process monitoring and control, in-line and off-line characterization of product for quality control purposes, validation by standard reference materials - are not generally in place for nanotechnology based products, and thus are barriers to innovation. One advantage presented by the study of CNCs is that, unlike other nanomaterials, at least, cellulose nanocrystal manufacturing is already a sustainable and viable bulk process. Literally tons of cellulose nanocrystals can be generated each day, producing other viable byproducts such as glucose (for alternative fuel) and gypsum (for buildings).There is an immediate need for the

  6. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  7. Lignin depletion enhances the digestibility of cellulose in cultured xylem cells.

    Directory of Open Access Journals (Sweden)

    Catherine I Lacayo

    Full Text Available Plant lignocellulose constitutes an abundant and sustainable source of polysaccharides that can be converted into biofuels. However, the enzymatic digestion of native plant cell walls is inefficient, presenting a considerable barrier to cost-effective biofuel production. In addition to the insolubility of cellulose and hemicellulose, the tight association of lignin with these polysaccharides intensifies the problem of cell wall recalcitrance. To determine the extent to which lignin influences the enzymatic digestion of cellulose, specifically in secondary walls that contain the majority of cellulose and lignin in plants, we used a model system consisting of cultured xylem cells from Zinniaelegans. Rather than using purified cell wall substrates or plant tissue, we have applied this system to study cell wall degradation because it predominantly consists of homogeneous populations of single cells exhibiting large deposits of lignocellulose. We depleted lignin in these cells by treating with an oxidative chemical or by inhibiting lignin biosynthesis, and then examined the resulting cellulose digestibility and accessibility using a fluorescent cellulose-binding probe. Following cellulase digestion, we measured a significant decrease in relative cellulose content in lignin-depleted cells, whereas cells with intact lignin remained essentially unaltered. We also observed a significant increase in probe binding after lignin depletion, indicating that decreased lignin levels improve cellulose accessibility. These results indicate that lignin depletion considerably enhances the digestibility of cellulose in the cell wall by increasing the susceptibility of cellulose to enzymatic attack. Although other wall components are likely to contribute, our quantitative study exploits cultured Zinnia xylem cells to demonstrate the dominant influence of lignin on the enzymatic digestion of the cell wall. This system is simple enough for quantitative image analysis

  8. Introduction of Microbial Biopolymers in Soil Treatment for Future Environmentally-Friendly and Sustainable Geotechnical Engineering

    Directory of Open Access Journals (Sweden)

    Ilhan Chang

    2016-03-01

    Full Text Available Soil treatment and improvement is commonly performed in the field of geotechnical engineering. Methods and materials to achieve this such as soil stabilization and mixing with cementitious binders have been utilized in engineered soil applications since the beginning of human civilization. Demand for environment-friendly and sustainable alternatives is currently rising. Since cement, the most commonly applied and effective soil treatment material, is responsible for heavy greenhouse gas emissions, alternatives such as geosynthetics, chemical polymers, geopolymers, microbial induction, and biopolymers are being actively studied. This study provides an overall review of the recent applications of biopolymers in geotechnical engineering. Biopolymers are microbially induced polymers that are high-tensile, innocuous, and eco-friendly. Soil–biopolymer interactions and related soil strengthening mechanisms are discussed in the context of recent experimental and microscopic studies. In addition, the economic feasibility of biopolymer implementation in the field is analyzed in comparison to ordinary cement, from environmental perspectives. Findings from this study demonstrate that biopolymers have strong potential to replace cement as a soil treatment material within the context of environment-friendly construction and development. Moreover, continuing research is suggested to ensure performance in terms of practical implementation, reliability, and durability of in situ biopolymer applications for geotechnical engineering purposes.

  9. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators

    Institute of Scientific and Technical Information of China (English)

    Logan BASHLINE; Juan DU; Ying GU

    2011-01-01

    Cellulose biosynthesis is a topic of intensive research not only due to the significance of cellulose in the integrity of plant cell walls,but also due to the potential of using cellulose,a natural carbon source,in the production ot biofuels.Characterization of the composition,regulation,and trafficking of cellulose synthase complexes (CSCs) is critical to an understanding of cellulose biosynthesis as well as the characterization of additional proteins that contribute to the production of cellulose either through direct interactions with CSCs or through indirect mechanisms.In this review,a highlight of a few proteins that appear to affect cellulose biosynthesis,which includes:KORRIGAN (KOR),Cellulose Synthase-Interactive Protein 1 (CSI1),and the poplar microtubule-associated protein,PttMAP20,will accompany a description of cellulose synthase (CESA) behavior and a discussion of CESA trafficking compartments that might act in the regulation of cellulose biosynthesis.

  10. Cellulose-Enriched Microbial Communities from Leaf-Cutter Ant (Atta colombica Refuse Dumps Vary in Taxonomic Composition and Degradation Ability.

    Directory of Open Access Journals (Sweden)

    Gina R Lewin

    Full Text Available Deconstruction of the cellulose in plant cell walls is critical for carbon flow through ecosystems and for the production of sustainable cellulosic biofuels. Our understanding of cellulose deconstruction is largely limited to the study of microbes in isolation, but in nature, this process is driven by microbes within complex communities. In Neotropical forests, microbes in leaf-cutter ant refuse dumps are important for carbon turnover. These dumps consist of decaying plant material and a diverse bacterial community, as shown here by electron microscopy. To study the portion of the community capable of cellulose degradation, we performed enrichments on cellulose using material from five Atta colombica refuse dumps. The ability of enriched communities to degrade cellulose varied significantly across refuse dumps. 16S rRNA gene amplicon sequencing of enriched samples identified that the community structure correlated with refuse dump and with degradation ability. Overall, samples were dominated by Bacteroidetes, Gammaproteobacteria, and Betaproteobacteria. Half of abundant operational taxonomic units (OTUs across samples were classified within genera containing known cellulose degraders, including Acidovorax, the most abundant OTU detected across samples, which was positively correlated with cellulolytic ability. A representative Acidovorax strain was isolated, but did not grow on cellulose alone. Phenotypic and compositional analyses of enrichment cultures, such as those presented here, help link community composition with cellulolytic ability and provide insight into the complexity of community-based cellulose degradation.

  11. Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation,Characterization and Adsorption Behavior

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Porous spherical cellulose composite (PSCA) coated by aluminum (Ⅲ) oxide was prepared andmodified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it hasspherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon ofthe composite (PSCAS) present aluminum( Ⅲ ) oxide and silicone are uniformly dispersed on the surface. Theadsorption behavior of PSCAS toward metal ions was determined.

  12. Cellulose nanomaterials review: structure, properties and nanocomposites

    Science.gov (United States)

    Robert J. Moon; Ashlie Martini; John Nairn; John Simonsen; Jeff Youngblood

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The...

  13. Bioengineering cellulose-hemicellulose networks in plants

    NARCIS (Netherlands)

    Obembe, O.

    2006-01-01

    The interactions between cellulose and hemicellulose in the cell walls are important in the industrial application of the cellulose (natural) fibres. We strive to modify these interactions (i) by interfering with cellulose biosynthesis and (ii) by direct interference of the

  14. Adsorption and desorption of cellulose derivatives

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.

    In chapter 1

  15. Adsorption and desorption of cellulose derivatives.

    NARCIS (Netherlands)

    Hoogendam, C.W.

    1998-01-01

    Cellulose derivatives, in particular carboxymethyl cellulose (CMC) are used in many (industrial) applications. The aim of this work is to obtain insight into the adsorption mechanism of cellulose derivatives on solid-liquid interfaces.In chapter 1 of this thesis we discuss some appl

  16. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes.

    Science.gov (United States)

    Stumpf, Taisa R; Pértile, Renata A N; Rambo, Carlos R; Porto, Luismar M

    2013-12-01

    Bacterial cellulose (BC) produced by Gluconacetobacter hansenii is a suitable biopolymer for biomedical applications. In order to modulate the properties of BC and expand its use as substrate for tissue engineering mainly in the form of biomembranes, glucose or dextrin were added into a BC fermentation mannitol-based medium (BCGl and BCDe, respectively) under static culture conditions. SEM images showed effects on fiber density and porosity on both sides of the BC membranes. Both enriched media decreased the BET surface area, water holding capacity, and rehydration rate. Fourier transform infrared (attenuated total reflectance mode) spectroscopy (FTIR-ATR) analysis revealed no change in the chemical structure of BC. L929 fibroblast cells were seeded on all BC-based membranes and evaluated in aspects of cell adhesion, proliferation and morphology. BCG1 membranes showed the highest biological performance and hold promise for the use in tissue engineering applications.

  17. Salt Effect on the Cloud Point Phenomenon of Amphiphilic Drug-Hydroxypropylmethyl Cellulose System

    Directory of Open Access Journals (Sweden)

    Mohd. Sajid Ali

    2014-01-01

    Full Text Available Effect of two amphiphilic drugs (tricyclic antidepressant, nortriptyline hydrochloride (NORT, and nonsteroidal anti-inflammatory drug, sodium salt of ibuprofen (IBF on the cloud point of biopolymer hydroxypropylmethyl cellulose (HPMC was studied. Effect of NaCl was also seen on the CP of HPMC-drug system. CP of HPMC increases uniformly on increasing the (drug. Both drugs, though one being anionic (IBF and other cationic (NORT, affect the CP in almost the same manner but with different extent implying the role of hydrophobicity in the interaction between drug and polymer. Salt affects the CP of the drug in a dramatic way as low concentration of salt was only able to increase the value of the CP, though not affecting the pattern. However, in presence of high concentration of salts, minimum was observed on CP versus (drug plots. Various thermodynamic parameters were evaluated and discussed on the basis of the observed results.

  18. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems

    Science.gov (United States)

    López-Mondéjar, Rubén; Zühlke, Daniela; Becher, Dörte; Riedel, Katharina; Baldrian, Petr

    2016-04-01

    Evidence shows that bacteria contribute actively to the decomposition of cellulose and hemicellulose in forest soil; however, their role in this process is still unclear. Here we performed the screening and identification of bacteria showing potential cellulolytic activity from litter and organic soil of a temperate oak forest. The genomes of three cellulolytic isolates previously described as abundant in this ecosystem were sequenced and their proteomes were characterized during the growth on plant biomass and on microcrystalline cellulose. Pedobacter and Mucilaginibacter showed complex enzymatic systems containing highly diverse carbohydrate-active enzymes for the degradation of cellulose and hemicellulose, which were functionally redundant for endoglucanases, β-glucosidases, endoxylanases, β-xylosidases, mannosidases and carbohydrate-binding modules. Luteibacter did not express any glycosyl hydrolases traditionally recognized as cellulases. Instead, cellulose decomposition was likely performed by an expressed GH23 family protein containing a cellulose-binding domain. Interestingly, the presence of plant lignocellulose as well as crystalline cellulose both trigger the production of a wide set of hydrolytic proteins including cellulases, hemicellulases and other glycosyl hydrolases. Our findings highlight the extensive and unexplored structural diversity of enzymatic systems in cellulolytic soil bacteria and indicate the roles of multiple abundant bacterial taxa in the decomposition of cellulose and other plant polysaccharides.

  19. Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells

    OpenAIRE

    Chukwuemeka P. Azubuike; Jimson O. Odulaja; Augustine O Okhamafe

    2012-01-01

    α-Cellulose and microcrystalline cellulose powders, derived from agricultural waste products, that have for thepharmaceutical industry, desirable physical (flow) properties were investigated. α–Cellulose (GCN) wasextracted from groundnut shell (an agricultural waste product) using a non-dissolving method based oninorganic reagents. Modification of this α -cellulose was carried out by partially hydrolysing it with 2Nhydrochloric acid under reflux to obtain microcrystalline cellulose (MCGN). Th...

  20. Atomic force microscopy study of cellulose surface interaction controlled by cellulose binding domains

    OpenAIRE

    Nigmatullin, R.; Lovitt, R.; Wright, C; Linder, M.; Nakari-Setälä, T; Gama, F. M.

    2004-01-01

    Colloidal probe microscopy has been used to study the interaction between model cellulose surfaces and the role of cellulose binding domain (CBD), peptides specifically binding to cellulose, in interfacial interaction of cellulose surfaces modified with CBDs. The interaction between pure cellulose surfaces in aqueous electrolyte solution is dominated by double layer repulsive forces with the range and magnitude of the net force dependent on electrolyte concentration. AFM imaging reve...

  1. A differential vapor-pressure equipment for investigations of biopolymer interactions

    DEFF Research Database (Denmark)

    Andersen, Kim B; Koga, Y.; Westh, Peter

    2002-01-01

    , particularly a "gas-phase titration" routine for changing the cell composition, makes it effective for the investigations of several types of biopolymer interactions. These include isothermal studies of net affinities such as the adsorption of water to proteins or membranes, the preferential interaction...... of biopolymers with the components of a mixed solvent. the partitioning of solutes between a membrane and the aqueous bulk and the weak. specific binding of ligands to macromolecules. Furthermore, a temperature-scanning mode allows real-time elucidation of such interactions at thermally induced conformational...... changes in biopolymers. Selected examples of these applications are presented and discussed....

  2. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    Science.gov (United States)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-01-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces. PMID:27503635

  3. Quercetin as natural stabilizing agent for bio-polymer

    Energy Technology Data Exchange (ETDEWEB)

    Morici, Elisabetta [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, 90128 Palermo (Italy); Arrigo, Rossella; Dintcheva, Nadka Tzankova [Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, 90128 Palermo (Italy)

    2014-05-15

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  4. Reconstruction of cellular forces in fibrous biopolymer network

    CERN Document Server

    Zhang, Yunsong; Heizler, Shay; Levine, Herbert

    2016-01-01

    How cells move through 3d extracellular matrix (ECM) is of increasing interest in attempts to understand important biological processes such as cancer metastasis. Just as in motion on 2d surfaces, it is expected that experimental measurements of cell-generated forces will provide valuable information for uncovering the mechanisms of cell migration. Here, we use a lattice-based mechanical model of ECM to study the cellular force reconstruction issue. We conceptually propose an efficient computational scheme to reconstruct cellular forces from the deformation and explore the performance of our scheme in presence of noise, varying marker bead distribution, varying bond stiffnesses and changing cell morphology. Our results show that micromechanical information, rather than merely the bulk rheology of the biopolymer networks, is essential for a precise recovery of cellular forces.

  5. Conjugates of a photoactivated rhodamine with biopolymers for cell staining.

    Science.gov (United States)

    Zaitsev, Sergei Yu; Shaposhnikov, Mikhail N; Solovyeva, Daria O; Solovyeva, Valeria V; Rizvanov, Albert A

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan ("Chitosan-PFD") and histone H1 ("Histone H1.3-PFD"). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes ("caged" dyes) for microscopic probing of biological objects. Thus, the synthesized "Chitosan-PFD" and "Histone H1-PFD" have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

  6. Parallel multiscale modeling of biopolymer dynamics with hydrodynamic correlations

    CERN Document Server

    Fyta, Maria; Kaxiras, Efthimios; Melchionna, Simone; Bernaschi, Massimo; Succi, Sauro

    2007-01-01

    We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Molecular Dynamics (MD) with a mesoscopic Lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. We describe an efficient parallel implementation of the method which exhibits excellent scalability on the Blue Gene platform. We investigate both dynamical and statistical aspects of the translocation process by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimenta...

  7. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    Science.gov (United States)

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  8. Carbohydrate nanotechnology: hierarchical assembly using nature's other information carrying biopolymers.

    Science.gov (United States)

    Han, Xu; Zheng, Yeting; Munro, Catherine J; Ji, Yiwen; Braunschweig, Adam B

    2015-08-01

    Despite their central role in directing some of the most complex biological processes, carbohydrates--nature's other information carrying biopolymer--have been largely ignored as building blocks for synthetic hierarchical assemblies. The non-stoichiometric binding and astronomical diversity characteristic of carbohydrates could lead to tantalizingly complex assembly algorithms, but these attributes simultaneously increase the difficulty of preparing carbohydrate assemblies and anticipating their behavior. Convergences in biotechnology, nanotechnology, polymer chemistry, surface science, and supramolecular chemistry have led to many recent important breakthroughs in glycan microarrays and synthetic carbohydrate receptors, where the idiosyncrasies of carbohydrate structure and binding are increasingly considered. We hope to inspire more researchers to consider carbohydrate structure, diversity, and binding as attractive tools for constructing synthetic hierarchical assemblies.

  9. Detecting the Biopolymer Behavior of Graphene Nanoribbons in Aqueous Solution

    Science.gov (United States)

    Wijeratne, Sithara S.; Penev, Evgeni S.; Lu, Wei; Li, Jingqiang; Duque, Amanda L.; Yakobson, Boris I.; Tour, James M.; Kiang, Ching-Hwa

    2016-08-01

    Graphene nanoribbons (GNR), can be prepared in bulk quantities for large-area applications by reducing the product from the lengthwise oxidative unzipping of multiwalled carbon nanotubes (MWNT). Recently, the biomaterials application of GNR has been explored, for example, in the pore to be used for DNA sequencing. Therefore, understanding the polymer behavior of GNR in solution is essential in predicting GNR interaction with biomaterials. Here, we report experimental studies of the solution-based mechanical properties of GNR and their parent products, graphene oxide nanoribbons (GONR). We used atomic force microscopy (AFM) to study their mechanical properties in solution and showed that GNR and GONR have similar force-extension behavior as in biopolymers such as proteins and DNA. The rigidity increases with reducing chemical functionalities. The similarities in rigidity and tunability between nanoribbons and biomolecules might enable the design and fabrication of GNR-biomimetic interfaces.

  10. Evolutionary optimization of biopolymers and sequence structure maps

    Energy Technology Data Exchange (ETDEWEB)

    Reidys, C.M.; Kopp, S.; Schuster, P. [Institut fuer Molekulare Biotechnologie, Jena (Germany)

    1996-06-01

    Searching for biopolymers having a predefined function is a core problem of biotechnology, biochemistry and pharmacy. On the level of RNA sequences and their corresponding secondary structures we show that this problem can be analyzed mathematically. The strategy will be to study the properties of the RNA sequence to secondary structure mapping that is essential for the understanding of the search process. We show that to each secondary structure s there exists a neutral network consisting of all sequences folding into s. This network can be modeled as a random graph and has the following generic properties: it is dense and has a giant component within the graph of compatible sequences. The neutral network percolates sequence space and any two neutral nets come close in terms of Hamming distance. We investigate the distribution of the orders of neutral nets and show that above a certain threshold the topology of neutral nets allows to find practically all frequent secondary structures.

  11. Stiffening of semiflexible biopolymers and cross-linked networks

    CERN Document Server

    Van Dillen, T; Van der Giessen, E

    2006-01-01

    We study the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear. Filamental constituents immersed in a fluid undergo thermally excited bending motions. Pulling out these undulations results in an increase in the axial stiffness. We analyze this stiffening behavior of 2D semiflexible filaments in detail: we first investigate the average, {static} force-extension relation by considering the initially present undulated configuration that is pulled straight under a tensile force, and compare this result with the average response in which undulation dynamics is allowed during pulling, as derived earlier by MacKintosh and coworkers. We will show that the resulting mechanical behavior is rather similar, but with the axial stiffness being a factor 2 to 4 larger in the dynamic model. Furthermore, we study the stretching contribution in case of extensible filaments and show that, for 2D filaments, the mechanical response is dominated by {...

  12. LassoProt: server to analyze biopolymers with lassos.

    Science.gov (United States)

    Dabrowski-Tumanski, Pawel; Niemyska, Wanda; Pasznik, Pawel; Sulkowska, Joanna I

    2016-07-01

    The LassoProt server, http://lassoprot.cent.uw.edu.pl/, enables analysis of biopolymers with entangled configurations called lassos. The server offers various ways of visualizing lasso configurations, as well as their time trajectories, with all the results and plots downloadable. Broad spectrum of applications makes LassoProt a useful tool for biologists, biophysicists, chemists, polymer physicists and mathematicians. The server and our methods have been validated on the whole PDB, and the results constitute the database of proteins with complex lassos, supported with basic biological data. This database can serve as a source of information about protein geometry and entanglement-function correlations, as a reference set in protein modeling, and for many other purposes.

  13. The Force-Velocity Relation for Growing Biopolymers

    CERN Document Server

    Carlsson, A E

    2000-01-01

    The process of force generation by the growth of biopolymers is simulated via a Langevin-dynamics approach. The interaction forces are taken to have simple forms that favor the growth of straight fibers from solution. The force-velocity relation is obtained from the simulations for two versions of the monomer-monomer force field. It is found that the growth rate drops off more rapidly with applied force than expected from the simplest theories based on thermal motion of the obstacle. The discrepancies amount to a factor of three or more when the applied force exceeds 2.5kT/a, where a is the step size for the polymer growth. These results are explained on the basis of restricted diffusion of monomers near the fiber tip. It is also found that the mobility of the obstacle has little effect on the growth rate, over a broad range.

  14. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    Science.gov (United States)

    Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.

    2014-01-01

    Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365

  15. Multiscale modeling of biopolymer translocation through a nanopore

    CERN Document Server

    Fyta, M G; Kaxiras, E; Succi, S; Fyta, Maria; Melchionna, Simone; Kaxiras, Efthimios; Succi, Sauro

    2007-01-01

    We employ a multiscale approach to model the translocation of biopolymers through nanometer size pores. Our computational scheme combines microscopic Langevin molecular dynamics (MD) with a mesoscopic lattice Boltzmann (LB) method for the solvent dynamics, explicitly taking into account the interactions of the molecule with the surrounding fluid. Both dynamical and statistical aspects of the translocation process were investigated, by simulating polymers of various initial configurations and lengths. For a representative molecule size, we explore the effects of important parameters that enter in the simulation, paying particular attention to the strength of the molecule-solvent coupling and of the external electric field which drives the translocation process. Finally, we explore the connection between the generic polymers modeled in the simulation and DNA, for which interesting recent experimental results are available.

  16. Topologically ordered magnesium-biopolymer hybrid composite structures.

    Science.gov (United States)

    Oosterbeek, Reece N; Seal, Christopher K; Staiger, Mark P; Hyland, Margaret M

    2015-01-01

    Magnesium and its alloys are intriguing as possible biodegradable biomaterials due to their unique combination of biodegradability and high specific mechanical properties. However, uncontrolled biodegradation of magnesium during implantation remains a major challenge in spite of the use of alloying and protective coatings. In this study, a hybrid composite structure of magnesium metal and a biopolymer was fabricated as an alternative approach to control the corrosion rate of magnesium. A multistep process that combines metal foam production and injection molding was developed to create a hybrid composite structure that is topologically ordered in all three dimensions. Preliminary investigations of the mechanical properties and corrosion behavior exhibited by the hybrid Mg-polymer composite structures suggest a new potential approach to the development of Mg-based biomedical devices.

  17. Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining

    Directory of Open Access Journals (Sweden)

    Sergei Yu. Zaitsev

    2014-01-01

    Full Text Available Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD” and histone H1 (“Histone H1.3-PFD”. The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK. Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy.

  18. Rotating magnetic particle microrheometry in biopolymer fluid dynamics: mucus microrheology.

    Science.gov (United States)

    Besseris, George J; Yeates, Donovan B

    2007-09-14

    The polymer properties of canine mucus were investigated through the method of rotating magnetic particle microrheometry. Mucus is visualized as a physically entangled biopolymer of low polydispersity in a water-based solution. Mucus was modeled according to the constitutive law of a Doi-Edwards fluid. The magnetic-particle equation of rotational motion is analytically solved in the linear viscoelastic limit rendering theoretical flow profiles which are used to fit the experimental trace signals of the particle remanent-magnetic-field decay. The zero-shear-rate viscosity was found to be 18,000 P and the relaxation time at about 42 s. The molecular weight between entanglements for mucins was estimated at 1.7 MDa rendering an estimation of about seven physical cross-links per molecule. Rheological investigations were extended also to diluted and concentrated rations of the normal mucus simulating the conditions found in more physiological extremes.

  19. Interpretation of fluorescence correlation spectra of biopolymer solutions.

    Science.gov (United States)

    Phillies, George D J

    2016-05-01

    Fluorescence correlation spectroscopy (FCS) is regularly used to study diffusion in non-dilute "crowded" biopolymer solutions, including the interior of living cells. For fluorophores in dilute solution, the relationship between the FCS spectrum G(t) and the diffusion coefficient D is well-established. However, the dilute-solution relationship between G(t) and D has sometimes been used to interpret FCS spectra of fluorophores in non-dilute solutions. Unfortunately, the relationship used to interpret FCS spectra in dilute solutions relies on an assumption that is not always correct in non-dilute solutions. This paper obtains the correct form for interpreting FCS spectra of non-dilute solutions, writing G(t) in terms of the statistical properties of the fluorophore motions. Approaches for applying this form are discussed.

  20. Quercetin as natural stabilizing agent for bio-polymer

    Science.gov (United States)

    Morici, Elisabetta; Arrigo, Rossella; Dintcheva, Nadka Tzankova

    2014-05-01

    The introduction of antioxidants in polymers is the main way to prevent or delay the degradation process. In particular natural antioxidants receive attention in the food industry also because of their presumed safety. In this work bio-polymers, i.e. a commercial starch-based polymer (Mater-Bi®) and a bio-polyester (PLA), and a bio-polyether (PEO) were additivated with quercetin, a natural flavonoid antioxidants, in order to formulate bio-based films for ecosustainable packaging and outdoor applications. The photo-oxidation behavior of unstabilized and quercetin stabilized films was analyzed and compared with the behavior of films additivated with a commercial synthetic light stabilizer. The quercetin is able to slow down the photo-degradation rate of all bio-polymeric films investigated in similar way to the synthetic stabilizer.

  1. Cadmium removal from contaminated soil by tunable biopolymers.

    Science.gov (United States)

    Prabhukumar, Giridhar; Matsumoto, Mark; Mulchandani, Ashok; Chen, Wilfred

    2004-06-01

    An elastin-like polypeptide (ELP) composed of a polyhistidine tail (ELPH12) was exploited as a tunable, metal-binding biopolymer with high affinity toward cadmium. By taking advantage of the property of ELPH12 to undergo a reversible thermal precipitation, easy recovery of the sequestered cadmium from contaminated water was demonstrated as the result of a simple temperature change. In this study, batch soil washing experiments were performed to evaluate the feasibility of using ELPH12 as an environmentally benign strategy for removing cadmium from contaminated soil. The stability constant (log KL) for the cadmium-ELPH12 complex was determined to be 6.8, a value similar to that reported for the biosurfactant rhamnolipid. Two washings with 1.25 mg/mL of ELPH12 were able to remove more than 55% of the bound cadmium as compared to only 8% removal with ELP containing no histidine tail or 21% removal using the same concentration of EDTA. Unlike rhamnolipid from Pseudomonas aeruginosa ATCC 9027, which adsorbs extensively to soil, less than 10% of ELPH12 was adsorbed under all soil washing conditions. As a result, a significantly lower concentration of ELPH12 (0.036 mM as compared to 5-10 mM of biosurfactants) was required to achieve similar extraction efficiencies. However, cadmium recovery by simple precipitation was incomplete due to the displacement of bound cadmium by zinc ions present in soil. Owing to its benign nature, ease of production, and selective tailoring of the metal binding domain toward any target metals of interest, ELP biopolymers may find utility as an effective extractant for heavy metal removal from contaminated soil or ore processing.

  2. Load sharing in the growth of bundled biopolymers

    Science.gov (United States)

    Wang, Ruizhe; Carlsson, A. E.

    2014-01-01

    To elucidate the nature of load sharing in the growth of multiple biopolymers, we perform stochastic simulations of the growth of biopolymer bundles against obstacles under a broad range of conditions and varying assumptions. The obstacle motion due to thermal fluctuations is treated explicitly. We assume the “Perfect Brownian Ratchet” (PBR) model, in which the polymerization rate equals the free-filament rate as soon as the filament-obstacle distance exceeds the monomer size. Accurate closed-form formulas are obtained for the case of a rapidly moving obstacle. We find the following: (1) load sharing is usually sub-perfect in the sense that polymerization is slower than for a single filament carrying the same average force; (2) the sub-perfect behavior becomes significant at a total force proportional to the logarithm or the square root of the number of filaments, depending on the alignment of the filaments; (3) for the special case of slow barrier diffusion and low opposing force, an enhanced obstacle velocity for an increasing number of filaments is possible; (4) the obstacle velocity is very sensitive to the alignment of the filaments in the bundle, with a staggered alignment being an order of magnitude faster than an unstaggered one at forces of only 0.5 pN per filament for 20 filaments; (5) for large numbers of filaments, the power is maximized at a force well below 1 pN per filament; (6) for intermediate values of the obstacle diffusion coefficient, the shape of the force velocity relation is very similar to that for rapid obstacle diffusion. PMID:25489273

  3. Nanocomposite Apatite-biopolymer Materials and Coatings for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    L.F. Sukhodub

    2014-04-01

    Full Text Available The microoverview paper describes synthesis and characterization of novel third generation composite biomaterials and coatings which correspond to the second structural level of human bone tissue (HBT organization obtained at Sumy state university “Bionanocomposite” laboratory. To obtain such composites an animal collagen is usually used, which is not potentially safe for medical applications. That is why investigations were started using some other biopolymers to obtain composites close to the second level in the structural hierarchy of HBT. Proposed natural polymers (Na alginate, chitosan are the most perspective because they have bacteriostatic properties for a vast number of aerobic and anaerobic bacteria, high biocompatibility towards the connective tissue, low toxicity, an ability to improve regenerative processes during wounds healing, degradation ability with the creation of chemotaxic activity towards fibroblasts and osteoblasts. The formation of nanosized (25-75 nm calcium deficient hydroxyapatite (cdHA particles in the polymer scaffold approaches the derived material to the biogenic bone tissue, which can provide its more effective implantation. The influence of the imposition of static magnetic field on brushite (CaHPO4·2H2O crystallization was also investigated. It was shown that changing the magnetic field configuration could greatly affect crystallinity and texture of the derived particles. To increase the biocompatibility of existing medical implants (Ti–6Al 4V, Ti Ni, Mg the technology for obtaining bioactive coatings with corresponding mechanical, structural and morphology characteristics is developed in our laboratory. In this direction coatings based on cdHA in combination with biopolymer matrices (Na alginate, chitosan, are obtained in “soft” conditions using a thermal substrate technology. This technology was proposed by Japan scientists [1] and was sufficiently improved by us [2] in order to obtain coatings in

  4. The Amphiphilic Character of Cellulose Molecules in True Solution in Solvent Mixtures Containing Ionic Liquid and its Utilization in Emulsification

    Science.gov (United States)

    Napso, Sofia; Cohen, Yachin; Rein, Dmitry; Khalfin, Rafail; Szekely, Noemi

    2015-03-01

    Cellulose is the most abundant renewable material in nature that is utilized as a raw material for fabrication of synthetic products. Although it is not soluble in common solvents, there is significant interest in the use of solvent mixtures containing ionic liquids (IL) and polar organic solvents for cellulose dissolution. We present evidence for true molecular dissolution of cellulose in binary mixtures of common polar organic solvents with an ionic liquid, using cryogenic transmission electron microscopy, small-angle neutron-, x-ray- and static light scattering. In particular, the measured low values of the molecular, gyration radius and persistence length indicate the absence of significant aggregation of the dissolved chains. We conjecture that the dissolved cellulose chains are amphiphilic. This can be inferred from the facile fabrication of cellulose-encapsulated colloidal oil-in-water or water-in-oil dispersions. This may be done by mixing water, oil and cellulose solution in an ionic liquid. A more practical alternative is to form first a hydrogel from the cellulose/ionic liquid solution by coagulation with water and applying it to sonicated water/oil or oil/water mixtures. Apparently the dissolution/ regeneration process affords higher mobility to the cellulose molecules so an encapsulation coating can be formed at the water-oil interface.

  5. Foaming of Ethyl Hydroxyethyl Cellulose

    OpenAIRE

    Carrillo Agilera, Marc

    2015-01-01

    The current depletion of petroleum resources together with environmental issues have led to new approaches in plastic manufacturing. This trend involves using ecofriendly materials coming from renewable resources. Good candidates for this, due to their properties and availability, are the cellulose derivatives. Some of them, such as hydroxypropyl methylcellulose (HPMC), showed in previous studies a promising behavior when making polymeric foams. Unfortunately, the corresponding...

  6. Cellulose nanomaterials review: structure, properties and nanocomposites.

    Science.gov (United States)

    Moon, Robert J; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeff

    2011-07-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction cellulose composites. Additionally, advances in predictive modeling from molecular dynamic simulations of crystalline cellulose to the continuum modeling of composites made with such particles are reviewed (392 references).

  7. Cellulose nanomaterials in water treatment technologies.

    Science.gov (United States)

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  8. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2017-09-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  9. Removal of heavy metals from emerging cellulosic low-cost adsorbents: a review

    Science.gov (United States)

    Malik, D. S.; Jain, C. K.; Yadav, Anuj K.

    2016-04-01

    Heavy metal pollution is a major problems in the environment. The impact of toxic metal ions can be minimized by different technologies, viz., chemical precipitation, membrane filtration, oxidation, reverse osmosis, flotation and adsorption. But among them, adsorption was found to be very efficient and common due to the low concentration of metal uptake and economically feasible properties. Cellulosic materials are of low cost and widely used, and very promising for the future. These are available in abundant quantity, are cheap and have low or little economic value. Different forms of cellulosic materials are used as adsorbents such as fibers, leaves, roots, shells, barks, husks, stems and seed as well as other parts also. Natural and modified types of cellulosic materials are used in different metal detoxifications in water and wastewater. In this review paper, the most common and recent materials are reviewed as cellulosic low-cost adsorbents. The elemental properties of cellulosic materials are also discussed along with their cellulose, hemicelluloses and lignin contents.

  10. The Arabidopsis cellulose synthase complex: a proposed hexamer of CESA trimers in an equimolar stoichiometry.

    Science.gov (United States)

    Hill, Joseph L; Hammudi, Mustafa B; Tien, Ming

    2014-12-01

    Cellulose is the most abundant renewable polymer on Earth and a major component of the plant cell wall. In vascular plants, cellulose synthesis is catalyzed by a large, plasma membrane-localized cellulose synthase complex (CSC), visualized as a hexameric rosette structure. Three unique cellulose synthase (CESA) isoforms are required for CSC assembly and function. However, elucidation of either the number or stoichiometry of CESAs within the CSC has remained elusive. In this study, we show a 1:1:1 stoichiometry between the three Arabidopsis thaliana secondary cell wall isozymes: CESA4, CESA7, and CESA8. This ratio was determined utilizing a simple but elegant method of quantitative immunoblotting using isoform-specific antibodies and (35)S-labeled protein standards for each CESA. Additionally, the observed equimolar stoichiometry was found to be fixed along the axis of the stem, which represents a developmental gradient. Our results complement recent spectroscopic analyses pointing toward an 18-chain cellulose microfibril. Taken together, we propose that the CSC is composed of a hexamer of catalytically active CESA trimers, with each CESA in equimolar amounts. This finding is a crucial advance in understanding how CESAs integrate to form higher order complexes, which is a key determinate of cellulose microfibril and cell wall properties.

  11. Effect of chitosan biopolymer and UV/TiO2 method for the de ...

    African Journals Online (AJOL)

    ONOS

    2010-08-23

    Aug 23, 2010 ... Key words: Chitosan biopolymer, UV/TiO2, Acid Blue 40, textile wastewater, spectrophotometer. INTRODUCTION ... the organic bonds and to cause metal ions reduction. Either to treat ... (Taiwan). Instruments and analysis.

  12. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements....... Biopolymers that are strengthened using reinforcing nano-scale fillers may improve the packaging quality by increasing barrier function and heat-resistance. Toxicological data on clays containing a nano-fraction and organo-modified clays remain very limited. The aim of this study is to investigate...... the genotoxic potential of clays that can be used in biopolymers for food contact materials. Two clays were tested in the comet assay using Caco-2 cells (a human colon cancer cell line); a natural montmorillonite (Cloisite®Na+) and an organo-modified montmorillonite (Cloisite®30B). Both clays were tested...

  13. Single walled carbon nanotubes functionally adsorbed to biopolymers for use as chemical sensors

    Science.gov (United States)

    Johnson, Jr., Alan T.; Gelperin, Alan; Staii, Cristian

    2011-07-12

    Chemical field effect sensors comprising nanotube field effect devices having biopolymers such as single stranded DNA functionally adsorbed to the nanotubes are provided. Also included are arrays comprising the sensors and methods of using the devices to detect volatile compounds.

  14. Agarose- and alginate-based biopolymers for sample preparation: Excellent green extraction tools for this century.

    Science.gov (United States)

    Sanagi, Mohd Marsin; Loh, Saw Hong; Wan Ibrahim, Wan Nazihah; Pourmand, Neda; Salisu, Ahmed; Wan Ibrahim, Wan Aini; Ali, Imran

    2016-03-01

    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.

  15. Numerical simulation of conformational variability in biopolymer translocation through wide nanopores

    CERN Document Server

    Fyta, Maria; Bernaschi, Massimo; Kaxiras, Efthimios; Succi, Sauro

    2009-01-01

    Numerical results on the translocation of long biopolymers through mid-sized and wide pores are presented. The simulations are based on a novel methodology which couples molecular motion to a mesoscopic fluid solvent. Thousands of events of long polymers (up to 8000 monomers) are monitored as they pass through nanopores. Comparison between the different pore sizes shows that wide pores can host a larger number of multiple biopolymer segments, as compared to smaller pores. The simulations provide clear evidence of folding quantization in the translocation process as the biopolymers undertake multi-folded configurations, characterized by a well-defined integer number of folds. Accordingly, the translocation time is no longer represented by a single-exponent power law dependence on the length, as it is the case for single-file translocation through narrow pores. The folding quantization increases with the biopolymer length, while the rate of translocated beads at each time step is linearly correlated to the numb...

  16. Hydrogels from Biopolymer Hybrid for Biomedical, Food, and Functional Food Applications

    Directory of Open Access Journals (Sweden)

    Robert C. Spiro

    2012-04-01

    Full Text Available Hybrid hydrogels from biopolymers have been applied for various indications across a wide range of biomedical, pharmaceutical, and functional food industries. In particular, hybrid hydrogels synthesized from two biopolymers have attracted increasing attention. The inclusion of a second biopolymer strengthens the stability of resultant hydrogels and enriches its functionalities by bringing in new functional groups or optimizing the micro-environmental conditions for certain biological and biochemical processes. This article presents approaches that have been used by our groups to synthesize biopolymer hybrid hydrogels for effective uses for immunotherapy, tissue regeneration, food and functional food applications. The research has achieved some challenging results, such as stabilizing physical structure, increasing mucoadhesiveness, and the creation of an artificial extracellular matrix to aid in guiding tissue differentiation.

  17. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    Science.gov (United States)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  18. Ion-ion reactions for charge reduction of biopolymer at atmospheric pressure ambient

    Institute of Scientific and Technical Information of China (English)

    Yue Ming Zhou; Jian Hua Ding; Xie Zhang; Huan Wen Chen

    2007-01-01

    Extractive electrospray ionization source (EESI) was adapted for ion-ion reaction, which was demonstrated by using a linear quadrupole ion trap mass spectrometer for the first ion-ion reaction of biopolymers in the atmospheric pressure ambient.

  19. Binary and Ternary Mixtures of Biopolymers and Water: Viscosity, Refractive Index, and Density

    Science.gov (United States)

    Silva, Bárbara Louise L. D.; Costa, Bernardo S.; Garcia-Rojas, Edwin E.

    2016-08-01

    Biopolymers have been the focus of intense research because of their wide applicability. The thermophysical properties of solutions containing biopolymers have fundamental importance for engineering calculations, as well as for thermal load calculations, energy expenditure, and development of new products. In this work, the thermophysical properties of binary and ternary solutions of carboxymethylcellulose and/or high methoxylation pectin and water at different temperatures have been investigated taking into consideration different biopolymer concentrations. The experimental data related to the thermophysical properties were correlated to obtain empirical models that can describe the temperature-concentration combined effect on the density, refractive index, and dynamic viscosity. From data obtained from the experiments, the density, refractive index, and dynamic viscosity increase with increasing biopolymer concentration and decrease with increasing temperature. The polynomial models showed a good fit to the experimental data and high correlation coefficients (R2ge 0.98) for each studied system.

  20. Quantized current blockade and hydrodynamic correlations in biopolymer translocation through nanopores: evidence from multiscale simulations

    CERN Document Server

    Bernaschi, Massimo; Succi, Sauro; Fyta, Maria; Kaxiras, Efthimios

    2008-01-01

    We present a detailed description of biopolymer translocation through a nanopore in the presence of a solvent, using an innovative multi-scale methodology which treats the biopolymer at the microscopic scale as combined with a self-consistent mesoscopic description for the solvent fluid dynamics. We report evidence for quantized current blockade depending on the folding configuration and offer detailed information on the role of hydrodynamic correlations in speeding-up the translocation process.

  1. Interactions Between Biopolymers and Surfactants with Focus on Fluorosurfactants and Proteins

    OpenAIRE

    Macáková, Lubica

    2007-01-01

    The aim of this thesis was to obtain a better understanding of the association between surfactants and biopolymers in bulk solutions and at solid/aqueous liquid interface. In order to do this, the interactions between surfactants and biopolymers were investigated with a variety of experimental techniques. The main focus has been on the interactions between fluorosurfactants and proteins, which are important during electrophoresis of proteins in silica capillaries. Electrophoretic separation o...

  2. Defect-tolerant single-electron charging at room temperature in metal nanoparticle decorated biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Berven, C.A.; Clarke, L.; Wybourne, M.N. [Dartmouth Coll., Hanover, NH (United States). Dept. of Physics and Astronomy; Mooster, J.L.; Hutchison, J.E. [Oregon Univ., Eugene, OR (United States). Dept. of Chemistry

    2001-01-16

    Gold nanoparticles assembled on a biopolymer template between metal electrodes on an insulating substrate are shown to exhibit unambiguous single electron charging effects that are found to depend on the nanoparticle properties and the geometrical contraints imposed by the biopolymer. The results support the idea of using nanoparticles in conjunction with biomolecular organization to produce nanoscale systems with defect-tolerant current-voltage behavior. (orig.)

  3. Low-Cost Foods and Drugs Using Immobilized Enzymes on Biopolymers

    OpenAIRE

    Elnashar, Magdy

    2010-01-01

    The modification of carrageenan and alginate biopolymers with chitosan/PEI imparts three extra benefits to these biopolymers. The first is the creation of a new amino groups functionality; the second, is the amelioration of the gel's thermal stability by forming a polyelectrolyte complex (PEC), while the third is the use of the free amino groups to covalently immobilize enzymes, via glutaraldehyde, as a mediator and a crosslinker. Three industrial enzymes were immobilized using the modified g...

  4. The estimation of harmfulness for environment of moulding sand with biopolymer binder based on polylactide

    Directory of Open Access Journals (Sweden)

    K. Major-Gabryś

    2011-01-01

    Full Text Available The article takes into consideration technological and ecological aspects of IV generation moulding sands. Investigations concerning anapplication of biopolymer materials as binders for moulding sands are presented in the paper. These investigations are the continuation ofexaminations related to applications of various biopolymers as binding agents and to the properties of the moulding sands with biopolymerbinders. In the paper there are the researches concerning analyzing gases emitted from moulding sands during heating.

  5. OXYGEN ABUNDANCES IN CEPHEIDS

    Energy Technology Data Exchange (ETDEWEB)

    Luck, R. E.; Andrievsky, S. M. [Department of Astronomy, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States); Korotin, S. N.; Kovtyukh, V. V., E-mail: luck@fafnir.astr.cwru.edu, E-mail: serkor@skyline.od.ua, E-mail: val@deneb1.odessa.ua, E-mail: scan@deneb1.odessa.ua [Department of Astronomy and Astronomical Observatory, Odessa National University, Isaac Newton Institute of Chile, Odessa Branch, Shevchenko Park, 65014 Odessa (Ukraine)

    2013-07-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  6. Chemical structure analysis of starch and cellulose derivatives.

    Science.gov (United States)

    Mischnick, Petra; Momcilovic, Dane

    2010-01-01

    Starch and cellulose are the most abundant and important representatives of renewable biomass. Since the mid-19th century their properties have been changed by chemical modification for commercial and scientific purposes, and there substituted polymers have found a wide range of applications. However, the inherent polydispersity and supramolecular organization of starch and cellulose cause the products resulting from their modification to display high complexity. Chemical composition analysis of these mixtures is therefore a challenging task. Detailed knowledge on substitution patterns is fundamental for understanding structure-property relationships in modified cellulose and starch, and thus also for the improvement of reproducibility and rational design of properties. Substitution patterns resulting from kinetically or thermodynamically controlled reactions show certain preferences for the three available hydroxyl functions in (1→4)-linked glucans. Spurlin, seventy years ago, was the first to describe this in an idealized model, and nowadays this model has been extended and related to the next hierarchical levels, namely, the substituent distribution in and over the polymer chains. This structural complexity, with its implications for data interpretation, and the analytical approaches developed for its investigation are outlined in this article. Strategies and methods for the determination of the average degree of substitution (DS), monomer composition, and substitution patterns at the polymer level are presented and discussed with respect to their limitations and interpretability. Nuclear magnetic resonance spectroscopy, chromatography, capillary electrophoresis, and modern mass spectrometry (MS), including tandem MS, are the main instrumental techniques employed, in combination with appropriate sample preparation by chemical and enzymatic methods.

  7. Ultrasound mediated enzymatic hydrolysis of cellulose and carboxymethyl cellulose.

    Science.gov (United States)

    Sulaiman, Ahmad Ziad; Ajit, Azilah; Chisti, Yusuf

    2013-01-01

    A recombinant Trichoderma reesei cellulase was used for the ultrasound-mediated hydrolysis of soluble carboxymethyl cellulose (CMC) and insoluble cellulose of various particle sizes. The hydrolysis was carried out at low intensity sonication (2.4-11.8 W cm(-2) sonication power at the tip of the sonotrode) using 10, 20, and 40% duty cycles. [A duty cycle of 10%, for example, was obtained by sonicating for 1 s followed by a rest period (no sonication) of 9 s.] The reaction pH and temperature were always 4.8 and 50°C, respectively. In all cases, sonication enhanced the rate of hydrolysis relative to nonsonicated controls. The hydrolysis of CMC was characterized by Michaelis-Menten kinetics. The Michaelis-Menten parameter of the maximum reaction rate Vmax was enhanced by sonication relative to controls, but the value of the saturation constant Km was reduced. The optimal sonication conditions were found to be a 10% duty cycle and a power intensity of 11.8 W cm(-2) . Under these conditions, the maximum rate of hydrolysis of soluble CMC was nearly double relative to control. In the hydrolysis of cellulose, an increasing particle size reduced the rate of hydrolysis. At any fixed particle size, sonication at a 10% duty cycle and 11.8 W cm(-2) power intensity improved the rate of hydrolysis relative to control. Under the above mentioned optimal sonication conditions, the enzyme lost about 20% of its initial activity in 20 min. Sonication was useful in accelerating the enzyme catalyzed saccharification of cellulose. © 2013 American Institute of Chemical Engineers.

  8. Photoacoustic monitoring of water transport process in calcareous stone coated with biopolymers

    Science.gov (United States)

    May-Crespo, J.; Ortega-Morales, B. O.; Camacho-Chab, J. C.; Quintana, P.; Alvarado-Gil, J. J.; Gonzalez-García, G.; Reyes-Estebanez, M.; Chan-Bacab, M. J.

    2016-12-01

    Moisture is a critical control of chemical and physical processes leading to stone deterioration. These processes can be enhanced by microbial biofilms and associated exopolymers (EPS). There is limited current understanding of the water transport process across rocks covered by EPS. In the present work, we employed the photoacoustic technique to study the influence of three biopolymers (xanthan, microbactan and arabic gum) in the water transport process of two types of limestone rock of similar mineralogy but contrasting porosity. Both controls of RL (low porosity) and RP (high porosity) presented the higher values of water diffusion coefficient ( D) than biopolymer-coated samples, indicating that biopolymer layers slowed down the transport of water. This trend was steeper for RP samples as water was transported seven times faster than in the more porous rock. Important differences of D values were observed among samples coated by different biopolymers. Scanning electron microscopy and optical microscopy showed that surface topography was different between both types of rocks; adherence of coatings was seen predominantly in the less porous rocks samples. FTIR and NMR analysis showed the presence of pyruvate and acetate in microbactan and xanthan gum, suggesting their participation on adherence to the calcareous surfaces, sealing surface pores. These results indicate that water transport at rock interfaces is dependent on the chemistry of biopolymer and surface porosity. The implications for reduced water transport in stone conservation under the influence of biopolymers include both enhanced and lower deterioration rates along with altered efficiency of biocide treatment of epilithic biofilms.

  9. Cellulose nanocrystal submonolayers by spin coating.

    Science.gov (United States)

    Kontturi, Eero; Johansson, Leena-Sisko; Kontturi, Katri S; Ahonen, Päivi; Thüne, Peter C; Laine, Janne

    2007-09-11

    Dilute concentrations of cellulose nanocrystal solutions were spin coated onto different substrates to investigate the effect of the substrate on the nanocrystal submonolayers. Three substrates were probed: silica, titania, and amorphous cellulose. According to atomic force microscopy (AFM) images, anionic cellulose nanocrystals formed small aggregates on the anionic silica substrate, whereas a uniform two-dimensional distribution of nanocrystals was achieved on the cationic titania substrate. The uniform distribution of cellulose nanocrystal submonolayers on titania is an important factor when dimensional analysis of the nanocrystals is desired. Furthermore, the amount of nanocrystals deposited on titania was multifold in comparison to the amounts on silica, as revealed by AFM image analysis and X-ray photoelectron spectroscopy. Amorphous cellulose, the third substrate, resulted in a somewhat homogeneous distribution of the nanocrystal submonolayers, but the amounts were as low as those on the silica substrate. These differences in the cellulose nanocrystal deposition were attributed to electrostatic effects: anionic cellulose nanocrystals are adsorbed on cationic titania in addition to the normal spin coating deposition. The anionic silica surface, on the other hand, causes aggregation of the weakly anionic cellulose nanocrystals which are forced on the repulsive substrate by spin coating. The electrostatically driven adsorption also influences the film thickness of continuous ultrathin films of cellulose nanocrystals. The thicker films of charged nanocrystals on a substrate of opposite charge means that the film thickness is not independent of the substrate when spin coating cellulose nanocrystals in the ultrathin regime (<100 nm).

  10. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  11. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  12. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  13. Preparation of 14C Radiolabelled Sodium Carboxymethyl Cellulose

    Institute of Scientific and Technical Information of China (English)

    CHEN; Bao-jun; YANG; Hong-wei; LI; Shuai

    2013-01-01

    Carboxymethyl cellulose(CMC)is a kind of cellulose derivative.CMC has wide applications,including food,daily chemicals,pharmaceutical industry and chemical industry,etc.In order to study the metabolism of CMC,the sodium carboxymethyl cellulose was labelled with 14C.The carboxymethyl cellulose was labelled with 14C by treatment with alkalized cellulose and 14C-

  14. Flexible Photonic Cellulose Nanocrystal Films

    OpenAIRE

    Guidetti, G.; Atifi, S; Vignolini, S; Hamad, WY

    2016-01-01

    The fabrication of self-assembled cellulose nanocrystal (CNC) films of tunable photonic and mechanical properties using a facile, green approach is demonstrated. The combination of tunable flexibility and iridescence can dramatically expand CNC coating and film barrier capabilities for paints and coating applications, sustainable consumer packaging products, as well as effective templates for photonic and optoelectronic materials and structures. CelluForce Inc., Biotechnology and Biologica...

  15. New application of crystalline cellulose in rubber composites

    Science.gov (United States)

    Bai, Wen

    Rubber without reinforcement has limited applications. The strength of reinforced rubber composites can be ten times stronger than that of unreinforced rubbers. Therefore, rubber composites are widely used in various applications ranging from automobile tires to seals, valves, and gaskets because of their excellent mechanical elastic properties. Silica and carbon black are the two most commonly used reinforcing materials in rubber tires. They are derived from non-renewable materials and are expensive. Silica also contributes to a large amount of ash when used tires are disposed of by incineration. There is a need for a new reinforcing filler that is inexpensive, renewable and easily disposable. Cellulose is the most abundant natural polymer. Native cellulose includes crystalline regions and amorphous regions. Crystalline cellulose can be obtained by removing the amorphous regions with the acid hydrolysis of cellulose because the amorphous cellulose can be hydrolyzed faster than crystalline cellulose. We recently discovered that the partial replacement of silica with microcrystalline cellulose (MCC) provided numerous benefits: (1) low energy consumption for compounding, (2) good processability, (3) strong tensile properties, (4) good heat resistance, and (5) potential for good fuel efficiency in the application of rubber tires. Strong bonding between fillers and a rubber matrix is essential for imparting rubber composites with the desired properties for many specific applications. The bonding between hydrophilic MCC and the hydrophobic rubber matrix is weak and can be improved by addition of a coupling agent or surface modifications of MCC. In this study, MCC was surface-modified with acryloyl chloride or alkenyl ketene dimer (AnKD) to form acrylated MCC (A-MCC) and AnKD-modified MCC (AnKD-MCC). The surface modifications of MCC did not change the integrity and mechanical properties of MCC, but provided functional groups that were able to form covalent linkages with

  16. Effects of reaction conditions on cellulose structures synthesized in vitro by bacterial cellulose synthases.

    Science.gov (United States)

    Penttilä, Paavo A; Sugiyama, Junji; Imai, Tomoya

    2016-01-20

    Cellulose was synthesized by cellulose synthases extracted from the Komagataeibacter xylinus (formerly known as Gluconacetobacter xylinus). The effects of temperature and centrifugation of the reaction solution on the synthesis products were investigated. Cellulose with number-average degree of polymerization (DPn) roughly in the range 60-80 and cellulose II crystal structure was produced under all conditions. The amount of cellulose varied with temperature and centrifugation, and the centrifugation at 2000 × g also slightly reduced the DPn. Cellulose production was maximal around the temperature 35 °C and without centrifugation. At higher temperatures and during centrifugation at 2000 × g the proteins started to denature, causing differences also in the morphology of the cellulosic aggregates, as seen with electron microscopy. These observations serve as a basis for discussions about the factors affecting the structure formation and chain length of in vitro synthesized cellulose.

  17. Cellulose Synthases and Synthesis in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Anne Endler; Staffan Persson

    2011-01-01

    Plant cell walls are complex structures composed of high-molecular-weight polysaccharides,proteins,and lignins. Among the wall polysaccharides,cellulose,a hydrogen-bonded β-1,4-linked glucan microfibril,is the main load-bearing wall component and a key precursor for industrial applications. Cellulose is synthesized by large multi-meric cellulose synthase (CesA) complexes,tracking along cortical microtubules at the plasma membrane. The only known components of these complexes are the cellulose synthase proteins. Recent studies have identified tentative interaction partners for the CesAs and shown that the migratory patterns of the CesA complexes depend on phosphorylation status. These advances may become good platforms for expanding our knowledge about cellulose synthesis in the near future. In addition,our current understanding of cellulose chain polymerization in the context of the CesA complex is discussed.

  18. Assessment of solvents for cellulose dissolution.

    Science.gov (United States)

    Ghasemi, Mohammad; Tsianou, Marina; Alexandridis, Paschalis

    2017-03-01

    A necessary step in the processing of biomass is the pretreatment and dissolution of cellulose. A good solvent for cellulose involves high diffusivity, aggressiveness in decrystallization, and capability of disassociating the cellulose chains. However, it is not clear which of these factors and under what conditions should be improved in order to obtain a more effective solvent. To this end, a newly-developed phenomenological model has been applied to assess the controlling mechanism of cellulose dissolution. Among the findings, the cellulose fibers remain crystalline almost to the end of the dissolution process for decrystallization-controlled kinetics. In such solvents, decreasing the fiber crystallinity, e.g., via pretreatment, would result in a considerable increase in the dissolution rate. Such insights improve the understanding of cellulose dissolution and facilitate the selection of more efficient solvents and processing conditions for biomass. Specific examples of solvents are provided where dissolution is limited due to decrystallization or disentanglement.

  19. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa.

    Science.gov (United States)

    Loziuk, Philip L; Parker, Jennifer; Li, Wei; Lin, Chien-Yuan; Wang, Jack P; Li, Quanzi; Sederoff, Ronald R; Chiang, Vincent L; Muddiman, David C

    2015-10-02

    Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.

  20. Bacterial cellulose membrane as flexible substrate for organic light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Legnani, C.; Vilani, C. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Calil, V.L. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil); Barud, H.S. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Quirino, W.G. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); Achete, C.A. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); COPPE-Programa de Engenharia Metalurgica e de Materiais, UFRJ, Rio de Janeiro, RJ (Brazil); Ribeiro, S.J.L. [Institute of Chemistry, Sao Paulo State University-UNESP, CP 355 Araraquara, SP (Brazil); Cremona, M. [CeDO-Organic Device Center, Dimat-Dimat, Inmetro, Duque de Caxias, RJ (Brazil); LOEM-Molecular Optoelectronic Laboratory-Physics Department-PUC-Rio, Rio de Janeiro, RJ (Brazil)], E-mail: cremona@fis.puc-rio.br

    2008-12-01

    Bacterial cellulose (BC) membranes produced by gram-negative, acetic acid bacteria (Gluconacetobacter xylinus), were used as flexible substrates for the fabrication of Organic Light Emitting Diodes (OLED). In order to achieve the necessary conductive properties indium tin oxide (ITO) thin films were deposited onto the membrane at room temperature using radio frequency (r.f.) magnetron sputtering with an r.f. power of 30 W, at pressure of 8 mPa in Ar atmosphere without any subsequent thermal treatment. Visible light transmittance of about 40% was observed. Resistivity, mobility and carrier concentration of deposited ITO films were 4.90 x 10{sup -4} Ohm cm, 8.08 cm{sup 2}/V-s and - 1.5 x 10{sup 21} cm{sup -3}, respectively, comparable with commercial ITO substrates. In order to demonstrate the feasibility of devices based on BC membranes three OLEDs with different substrates were produced: a reference one with commercial ITO on glass, a second one with a SiO{sub 2} thin film interlayer between the BC membrane and the ITO layer and a third one just with ITO deposited directly on the BC membrane. The observed OLED luminance ratio was: 1; 0.5; 0.25 respectively, with 2400 cd/m{sup 2} as the value for the reference OLED. These preliminary results show clearly that the functionalized biopolymer, biodegradable, biocompatible bacterial cellulose membranes can be successfully used as substrate in flexible organic optoelectronic devices.

  1. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  2. On the suppression of superconducting phase formation in YBCO materials by templated synthesis in the presence of a sulfated biopolymer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Elliott; Schnepp, Zoe [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom); Wimbush, Stuart C. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); Hall, Simon R. [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)], E-mail: simon.hall@bristol.ac.uk

    2008-11-15

    The use of biopolymers as templates to control superconductor crystallization is a recent phenomenon and is generating a lot of interest both from the superconductor community and in materials chemistry circles. This work represents a critical finding in the use of such biopolymers, in particular the contraindicatory nature of sulfur when attempting to affect a morphologically controlled synthesis. Synthesis of superconducting nanoparticles was attempted using carrageenan as a morphological template. Reactive sulfate groups on the biopolymer prevent this, producing instead significant quantities of barium sulfate nanotapes. By substituting the biopolymer for structurally analogous, non-sulfated agar, we show that superconducting nanoparticles could be successfully synthesized.

  3. Strength properties of moulding sands with chosen biopolymer binders

    Directory of Open Access Journals (Sweden)

    St.M. Dobosz

    2010-07-01

    Full Text Available The article presents the results of primary researches of the IV generation moulding sands, in which as the binders are used differentbiodegradable materials. The bending and the tensile strength of the moulding sands with polylactide, poly(lactic-co-glycolic acid,polycaprolactone, polyhydroxybutyrate and cellulose acetate as binders were measured. The researches show that the best strengthproperties have the moulding sands with polylactide as binder. It was proved that the tested moulding sands’ strength properties are goodenough for foundry practice.

  4. Alexa Fluor-labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Mo, Kai-For; Shin, Yongsoon; Vasdekis, Andreas; Warner, Marvin G.; Kelly, Ryan T.; Orr, Galya; Hu, Dehong; Dehoff, Karl J.; Brockman, Fred J.; Wilkins, Michael J.

    2015-03-18

    Cellulose nanocrystal materials have been labeled with modern Alexa Fluor dyes in a process that first links the dye to a cyanuric chloride molecule. Subsequent reaction with cellulose nanocrystals provides dyed solid microcrystalline cellulose material that can be used for bioimaging and suitable for deposition in films and spatially structured microenvironments. It is demonstrated with single molecular fluorescence microscopy that these films are subject to hydrolysis by cellulose enzymes.

  5. Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives

    OpenAIRE

    1982-01-01

    In vivo cellulose ribbon assembly by the Gram-negative bacterium Acetobacter xylinum can be altered by incubation in carboxymethylcellulose (CMC), a negatively charged water-soluble cellulose derivative, and also by incubation in a variety of neutral, water-soluble cellulose derivatives. In the presence of all of these substituted celluloses, normal fasciation of microfibril bundles to form the typical twisting ribbon is prevented. Alteration of ribbon assembly is most extensive in the presen...

  6. Drag Reduction of Bacterial Cellulose Suspensions

    Directory of Open Access Journals (Sweden)

    Satoshi Ogata

    2011-01-01

    Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.

  7. Size Effects of Nano-crystalline Cellulose

    Institute of Scientific and Technical Information of China (English)

    Guo Kang LI; Xiao Fang LI; Yong JIANG; Mei Zhen ZENG; En Yong DING

    2003-01-01

    Natural cellulose with the crystal form of cellulose Ⅰ, when treated with condensed lye(e.g. 18%NaOH), can change into new crystal form of cellulose Ⅱ. But the nano-crystallinecellulose(NCC) can do it when only treated with dilute lye (e.g. 1%NaOH) at room temperatureand even can dissolve into slightly concentrated lye (e.g. 4%NaOH).

  8. Cellulose nanomaterials review: structure, properties and nanocomposites

    OpenAIRE

    Moon, Robert J.; Martini, Ashlie; Nairn, John; Simonsen, John; Youngblood, Jeffrey

    2011-01-01

    This critical review provides a processing-structure-property perspective on recent advances in cellulose nanoparticles and composites produced from them. It summarizes cellulose nanoparticles in terms of particle morphology, crystal structure, and properties. Also described are the self-assembly and rheological properties of cellulose nanoparticle suspensions. The methodology of composite processing and resulting properties are fully covered, with an emphasis on neat and high fraction...

  9. Elasticity of cross-linked semiflexible biopolymers under tension

    CERN Document Server

    von der Heydt, Alice; Benetatos, Panayotis; Zippelius, Annette

    2013-01-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor four. The increase in differential stiffness can ...

  10. Phase Segregation in Individually Dried Particles Composed of Biopolymers.

    Science.gov (United States)

    Nuzzo, Marine; Sloth, Jakob; Bergenstahl, Björn; Millqvist-Fureby, Anna

    2015-10-13

    Mixing of two biopolymers can results in phase separation due to their thermodynamically incompatibility under certain conditions. This phenomenon was first reported when the solution was allowed to equilibrate, but it has later been observed also as a consequence of drying. The challenges of this study were to observe phase segregation by confocal Raman microscopy and LV-SEM on dried film, individually dried particles, and spray dried particles. The influence of the solid content and the phase ratio (composition) of a HPMC/maltodextrin mixture on the localization of the ingredients in the individually dried particles was investigated. We observed that phase segregation of HPMC and maltodextrin is induced by solvent evaporation in film drying, single particle drying, as well as spray drying. The phase ratio is an important parameter that influences the localization of the HPMC-enriched phase and maltodextrin-enriched phase, i.e., to the particle surface, to the core, or in a more or less bicontinuous pattern. The drying time, affected by the solids content, was found to control the level of advancement of the phase segregation.

  11. Elasticity of cross-linked semiflexible biopolymers under tension.

    Science.gov (United States)

    von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

    2013-09-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links.

  12. Refolding dynamics of stretched biopolymers upon force quench

    CERN Document Server

    Hyeon, Changbong; Pincus, David L; Thirumalai, D

    2009-01-01

    Single molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench, using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, $\\tau_F$, depends asymmetrically on $\\delta f_S = f_S - f_m$ and $\\delta f_Q = f_m - f_Q$ where $f_S$ ($f_Q$) is the stretch (quench) force, and $f_m$ is the transition mid-force of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, $R(t)$, occurs in three stages: a rapid initial decrease in the extension is followed by a plateau, and finally an abrupt reduction in $R(t)$ that occurs as the native state is approached. The duration of the plateau increases as $\\lambda =\\tau_Q/\\tau_F$ decreases (where $\\tau_Q$ is the time in which the force is reduced from $f_S$ to $f_Q$). ...

  13. Strain induced critical behavior in athermal biopolymer networks

    Science.gov (United States)

    Sharma, Abhinav; Licup, Albert; Rens, Robbie; Sheinman, Michael; Jansen, Karin; Koenderink, Gijse; Mackintosh, Fred

    2015-03-01

    Biopolymer networks exhibit highly interesting mechanical behavior. An instructive model system is that of a network composed of rope-like filaments-zero resistance to compression but finite resistance to stretching. For networks with connectivity below Maxwell point,there is no elastic modulus for small deformations. However,when networks are subjected to an external strain, stiffness emerges spontaneously beyond a critical strain. We demonstrate that the spontaneous emergence of elasticity is analogous to a continuous phase transition. The critical point is not fixed but depends on the geometry of the underlying network.The elastic behavior near the critical point can be described analogous to that of Magnetization in ferromagnetic material near the curie temperature.Surprisingly, the critical exponents are independent of the dimensionality and depend only on the average connectivity in the network.By including bending interactions in the rope network, we can capture the mechanical behavior of biologically relevant networks.Bending rigidity acts as a coupling constant analogous to the external magnetic field in a ferromagnetic system.We show that nonlinear mechanics of collagen are successfully captured by our framework of regarding nonlinear mechanics as a critical phenomenon

  14. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Directory of Open Access Journals (Sweden)

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  15. Mesoscopic Dynamics of Biopolymers and Protein Molecular Machines

    Science.gov (United States)

    Kapral, Raymond

    2013-03-01

    The dynamics of biopolymers in solution and in crowded molecular environments, which mimic some features of the interior of a biochemical cell, will be discussed. In particular, the dynamics of protein machines that utilize chemical energy to effect cyclic conformational changes to carry out their catalytic functions will be described. The investigation of the dynamics of such complex systems requires knowledge of the time evolution on physically relevant long distance and time scales. This often necessitates a coarse grained or mesoscopic treatment of the dynamics. A hybrid particle-based mesoscopic dynamical method, which combines molecular dynamics for a coarse-grain model of the proteins with multiparticle collision dynamics for the solvent, will be described and utilized to study the dynamics of such systems. See, C. Echeverria, Y. Togashi, A. S. Mikhailov, and R. Kapral, Phys. Chem. Chem. Phys 13, 10527 (2011); C. Echeverria and R. Kapral, Phys. Chem. Chem. Phys., 14, 6755 (2012); J. M. Schofield, P. Inder and R. Kapral, J. Chem. Phys. 136, 205101 (2012). Work was supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

  16. Thermal Behavior of Tacca leontopetaloides Starch-Based Biopolymer

    Directory of Open Access Journals (Sweden)

    Nurul Shuhada Mohd Makhtar

    2013-01-01

    Full Text Available Starch is used whenever there is a need for natural elastic properties combined with low cost of production. However, the hydrophilic properties in structural starch will decrease the thermal performance of formulated starch polymer. Therefore, the effect of glycerol, palm olein, and crude palm oil (CPO, as plasticizers, on the thermal behavior of Tacca leontopetaloides starch incorporated with natural rubber in biopolymer production was investigated in this paper. Four different formulations were performed and represented by TPE1, TPE2, TPE3, and TPE4. The compositions were produced by using two-roll mill compounding. The sheets obtained were cut into small sizes prior to thermal testing. The addition of glycerol shows higher enthalpy of diffusion in which made the material easily can be degraded, leaving to an amount of 6.6% of residue. Blending of CPO with starch (TPE3 had a higher thermal resistance towards high temperature up to 310°C and the thermal behavior of TPE2 only gave a moderate performance compared with other TPEs.

  17. Injectable biopolymer based hydrogels for drug delivery applications.

    Science.gov (United States)

    Atta, Sadia; Khaliq, Shaista; Islam, Atif; Javeria, Irtaza; Jamil, Tahir; Athar, Muhammad Makshoof; Shafiq, Muhammad Imtiaz; Ghaffar, Abdul

    2015-09-01

    Biopolymer based pH-sensitive hydrogels were prepared using chitosan (CS) with polyethylene glycol (PEG) of different molecular weights in the presence of silane crosslinker. The incorporated components remain undissolved in different swelling media as they are connected by siloxane linkage which was confirmed by Fourier transform infrared spectroscopy. The swelling in water was enhanced by the addition of higher molecular weight PEG. The swelling behaviour of the hydrogels against pH showed high swelling in acidic and basic pH, whereas, low swelling was examined at pH 6 and 7. This characteristic pH responsive behaviour at neutral pH made them suitable for injectable controlled drug delivery. The controlled release analysis of Cefixime (CFX) (model drug) loaded CS/PEG hydrogel exhibited that the entire drug was released in 30 min in simulated gastric fluid (SGF) while in simulated intestinal fluid (SIF), 85% of drug was released in controlled manner within 80 min. This inferred that the developed hydrogels can be an attractive biomaterial for injectable drug delivery with physiological pH and other biomedical applications.

  18. In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications.

    Science.gov (United States)

    Mori, Michela; Almeida, Patrick V; Cola, Michela; Anselmi, Giulia; Mäkilä, Ermei; Correia, Alexandra; Salonen, Jarno; Hirvonen, Jouni; Caramella, Carla; Santos, Hélder A

    2014-11-01

    The wound healing stands as very complex and dynamic process, aiming the re-establishment of the damaged tissue's integrity and functionality. Thus, there is an emerging need for developing biopolymer-based composites capable of actively promoting cellular proliferation and reconstituting the extracellular matrix. The aims of the present work were to prepare and characterize biopolymer-functionalized porous silicon (PSi) microparticles, resulting in the development of drug delivery microsystems for future applications in wound healing. Thermally hydrocarbonized PSi (THCPSi) microparticles were coated with both chitosan and a mixture of chondroitin sulfate/hyaluronic acid, and subsequently loaded with two antibacterial model drugs, vancomycin and resveratrol. The biopolymer coating, drug loading degree and drug release behavior of the modified PSi microparticles were evaluated in vitro. The results showed that both the biopolymer coating and drug loading of the THCPSi microparticles were successfully achieved. In addition, a sustained release was observed for both the drugs tested. The viability and proliferation profiles of a fibroblast cell line exposed to the modified THCPSi microparticles and the subsequent reactive oxygen species (ROS) production were also evaluated. The cytotoxicity and proliferation results demonstrated less toxicity for the biopolymer-coated THCPSi microparticles at different concentrations and time points comparatively to the uncoated counterparts. The ROS production by the fibroblasts exposed to both uncoated and biopolymer-coated PSi microparticles showed that the modified PSi microparticles did not induce significant ROS production at the concentrations tested. Overall, the biopolymer-based PSi microparticles developed in this study are promising platforms for wound healing applications.

  19. Economic assessment of flash co-pyrolysis of short rotation coppice and biopolymer waste streams.

    Science.gov (United States)

    Kuppens, T; Cornelissen, T; Carleer, R; Yperman, J; Schreurs, S; Jans, M; Thewys, T

    2010-12-01

    The disposal problem associated with phytoextraction of farmland polluted with heavy metals by means of willow requires a biomass conversion technique which meets both ecological and economical needs. Combustion and gasification of willow require special and costly flue gas treatment to avoid re-emission of the metals in the atmosphere, whereas flash pyrolysis mainly results in the production of (almost) metal free bio-oil with a relatively high water content. Flash co-pyrolysis of biomass and waste of biopolymers synergistically improves the characteristics of the pyrolysis process: e.g. reduction of the water content of the bio-oil, more bio-oil and less char production and an increase of the HHV of the oil. This research paper investigates the economic consequences of the synergistic effects of flash co-pyrolysis of 1:1 w/w ratio blends of willow and different biopolymer waste streams via cost-benefit analysis and Monte Carlo simulations taking into account uncertainties. In all cases economic opportunities of flash co-pyrolysis of biomass with biopolymer waste are improved compared to flash pyrolysis of pure willow. Of all the biopolymers under investigation, polyhydroxybutyrate (PHB) is the most promising, followed by Eastar, Biopearls, potato starch, polylactic acid (PLA), corn starch and Solanyl in order of decreasing profits. Taking into account uncertainties, flash co-pyrolysis is expected to be cheaper than composting biopolymer waste streams, except for corn starch. If uncertainty increases, composting also becomes more interesting than flash co-pyrolysis for waste of Solanyl. If the investment expenditure is 15% higher in practice than estimated, the preference for flash co-pyrolysis compared to composting biopolymer waste becomes less clear. Only when the system of green current certificates is dismissed, composting clearly is a much cheaper processing technique for disposing of biopolymer waste.

  20. Development of novel carboxymethyl cellulose/k-carrageenan blends as an enteric delivery vehicle for probiotic bacteria.

    Science.gov (United States)

    Dafe, Alireza; Etemadi, Hossein; Zarredar, Habib; Mahdavinia, Gholam Reza

    2017-04-01

    This study reports a novel carrier based on blends of carboxymethyl cellulose (CMC) and k-carrageenan (k-Carr) for probiotic colon delivery. Lactobacillus plantarum ATCC:13643 (L. plantarum) cells were encapsulated in CMC/k-Carr blends by extrusion method. k-Carrageenan was used as a coating agent to improve encapsulation of L. plantarum cells in carboxymethyl cellulose biopolymer. K-Carrageenan and carboxymethyl cellulose were ionically cross-linked with K(+) and Ca(2+) ions, respectively. Optical and scanning electron microscopy obviously showed the random distribution of L. plantarum cells throughout the blend network. The viability of encapsulated cells in simulated gastric fluid (SGF) and bile salt solution were conducted. Results indicated that CMC/k-Carr blends could successfully protect L. plantarum cells against adverse conditions of the gastro-intestinal tract and bile salt solution. After sequential exposure to SGF for 2h almost complete death of free cells was observed. However, the number of surviving cells was 5.20 and 7.30 Log CFU/g for uncoated free CMC and CMC/k-Carr blends, respectively. Cumulatively the results of this research offer a suitable media to potentially deliver probiotics to colon site. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  2. Chemo-catalytic valorization of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Palkovits, R. [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie

    2012-07-01

    Cellulose can be utilized as carbon source for the production of novel platform molecules as well as fuel motifs. Promising transformation strategies cover the hydrolytic hydrogenation or hydrogenolysis of cellulose to sugar alcohols, the hydrolysis of cellulose to glucose followed by dehydration to 5-hydroxymethylfurfural or levulinic acid and the further hydrogenation of levulinic acid to {gamma}-valerolactone. Main challenges result from the high degree of functionalization of cellulosic feedstocks. In line, processes are carried out in liquid phase utilizing rather polar solvents and aiming for a tailored defunctionalisation of these oxygen rich compounds. Consequently, such transformations require novel strategies concerning the development of suitable catalysts and appropriate process concepts. (orig.)

  3. Cytocompatible cellulose hydrogels containing trace lignin.

    Science.gov (United States)

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference.

  4. Carboxymethylation of Cellulose by Microwave irradiation

    Institute of Scientific and Technical Information of China (English)

    YE Jun; XIONG Jian; SU Yingzhi; XIAO Ping

    2001-01-01

    @@ Cellulose may be readily converted into ethers involving primary and secondary alcohol groups in each monomer unit and the glycosidic bonds. However, these reactions are rather more complicated than with simple substances, because the stereochemistry of the cellulose molecule is such that the vast majority of its hydroxyl groups form intra-chain hydrogen bonds or inter-chain hydrogen bonds with contiguous molecules. Carboxymethylcellulose (CMC) has played an important part in the commercial uses of cellulose derivatives. CMC becomes alkali and water soluble. The polarity can, in fact, be increased by introduction of ionizing groups, ie carboxymethyl group. CMC is generally produced by the reaction of alkali cellulose with chloroacetic acid.

  5. [Supramolecular reorganizations in cellulose during hydration].

    Science.gov (United States)

    Grunin, Iu B; Grunin, L Iu; Talantsev, V I; Nikol'skaia, E A; Masas, D S

    2015-01-01

    The analysis of modern ideas about the structural organization of the cellulose microfibrils is carried out. The mechanism of the formation of additional capillary-porous system of cellulose under moistening is offered. It is established that when the moisture content of cellulose reaches 8-10%, the filling of its micropores occurs with a simultaneous increase in their cross sizes, a specific surface and reduction in the degree of crystallinity of specimens. Within the proposed model of microfibril construction the parameters of supramolecular structure and capillary-porous system of cotton cellulose are determined.

  6. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    Science.gov (United States)

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  7. Liquid crystalline solutions of cellulose in phosphoric acid for preparing cellulose yarns

    NARCIS (Netherlands)

    Boerstoel, H.

    2006-01-01

    The presen thesis describes a new process for manufacturing high tenacity and high modulus cellulose yarns. A new direct solvent for cellulose has been discovered, leading to liquid crystalline solutions. This new solvent, superphosphoric acid, rapidly dissolves cellulose. These liquid crystalline s

  8. Deuterium abundance and cosmology

    CERN Document Server

    Vidal-Madjar, A; Lemoine, M

    1996-01-01

    We review the status of the measurements of the deuterium abundance from the local interstellar medium to the solar system and high redshifts absorbers toward quasars. We present preliminary results toward a white dwarf and a QSO. We conclude that the deuterium evolution from the Big-Bang to now is still not properly understood.

  9. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  10. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    Science.gov (United States)

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  11. Selection of optimal conditions for anti-corrosive microbial biopolymer production by the Flavobacterium strain using response surface methodology (RSM

    Directory of Open Access Journals (Sweden)

    mojtaba khani

    2016-09-01

    Full Text Available Introduction: Various methods have been proposed to deal with corrosion. One of these methods is using of paints and coatings. In formulation of paints and coatings several anti-corrosion compounds are applied that slow down the corrosion process. In this respect, using microbial biopolymers can improve this problem in the industry with lower costs because of biopolymer production not required to factory and advanced industry. in this study, the effects of temperature, pH and agitation on the biopolymer production using response surface methodology (RSM were evaluated. Materials and methods: To produce biopolymer, the culture medium (300 ml were added in the 500 ml erlenmeyer flasks. Then, the bacterial preculture medium (6% V/V were inoculated in the flasks and incubated for 96hr in different conditions (agitation speed, tempreture and pH. Afterwards, the medium was centrifuged at 9000 rpm for 10 min and the supernatant was mixed with triple volume of chilled absolute ethanol and stored at 4°C for 24hr to precipitate. Results: Analysis of the results of design experiments indicate that the biopolymer production­ was strongly governed by the temperature, pH and agitation. The biopolymer production increased steadily up to pH 8 and decreased in the higher pH values. Also, for cell growth suitable temperature was 33°C and maximum concentration of the biopolymer production was agitation of 210 rpm. Finally, maximum concentration of the biopolymer production (14.3g/l was determined to be in pH of 8, temperature of 33°C and agitation of 210­rpm. Discussion and conclusion: Anti-corrosive biopolymer production by Flavobacterium sp. affected significantly by physical parameters. The results of the biopolymer production by investigating the conditions of temperature, pH and agitation after optimization, indicates the importance of this parameter for economic production of biopolymer.

  12. Interactions between Chitosan and Alginate Dialdehyde Biopolymers and Their Layer-by-Layer Assemblies.

    Science.gov (United States)

    Aston, Robyn; Wimalaratne, Medini; Brock, Aidan; Lawrie, Gwendolyn; Grøndahl, Lisbeth

    2015-06-01

    Biopolymers are researched extensively for their applications in biomaterials science and drug delivery including structures and complexes of more than one polymer. Chemical characterization of complexes formed between chitosan (CHI) and alginate dialdehyde (ADA) biopolymers established that while electrostatic interactions dominate (as determined from X-ray photoelectron spectroscopy (XPS)) covalent cross-linking between these biopolymers also contribute to their stability (evidenced from immersion in salt solution). It was furthermore found that imine bond formation could not be directly detected by any of the techniques XPS, FTIR, (1)H NMR, or fluorescence. The layer-by-layer assemblies of the biopolymers formed on silica colloids, glass slides, and alginate hydrogel beads were evaluated using XPS, as well as zeta potential measurements for the silica colloids and changes to hydration properties for the hydrogels. It was found that the degree of oxidation of ADA affected the LbL assemblies in terms of a greater degree of CHI penetration observed when using the more conformationally flexible biopolymer ADA (higher degree of oxidation).

  13. Novel biopolymer-coated hydroxyapatite foams for removing heavy-metals from polluted water

    Energy Technology Data Exchange (ETDEWEB)

    Vila, M.; Sanchez-Salcedo, S.; Cicuendez, M.; Izquierdo-Barba, I. [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Vallet-Regi, Maria, E-mail: vallet@farm.ucm.es [Inorganic and BioInorganic Chemistry Department, Pharmacy Faculty, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid (Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2011-08-15

    Highlights: {yields} 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams as potential devices for the treatment of heavy metal ions. {yields} HA stable foams coated with biopolymers. {yields} Feasible advance in development of new, easy to handle and low cost water purifying methods. - Abstract: 3D-macroporous biopolymer-coated hydroxyapatite (HA) foams have been developed as potential devices for the treatment of lead, cadmium and copper contamination of consumable waters. These foams have exhibited a fast and effective ion metal immobilization into the HA structure after an in vitro treatment mimicking a serious water contamination case. To improve HA foam stability at contaminated aqueous solutions pH, as well as its handling and shape integrity the 3D-macroporous foams have been coated with biopolymers polycaprolactone (PCL) and gelatine cross-linked with glutaraldehyde (G/Glu). Metal ion immobilization tests have shown higher and fast heavy metals captured as function of hydrophilicity rate of biopolymer used. After an in vitro treatment, foam morphology integrity is guaranteed and the uptake of heavy metal ions rises up to 405 {mu}mol/g in the case of Pb{sup 2+}, 378 {mu}mol/g of Cu{sup 2+} and 316 {mu}mol/g of Cd{sup 2+}. These novel materials promise a feasible advance in development of new, easy to handle and low cost water purifying methods.

  14. Spectral analysis methods for the robust measurement of the flexural rigidity of biopolymers.

    Science.gov (United States)

    Valdman, David; Atzberger, Paul J; Yu, Dezhi; Kuei, Steve; Valentine, Megan T

    2012-03-07

    The mechanical properties of biopolymers can be determined from a statistical analysis of the ensemble of shapes they exhibit when subjected to thermal forces. In practice, extracting information from fluorescence microscopy images can be challenging due to low signal/noise ratios and other artifacts. To address these issues, we develop a suite of tools for image processing and spectral data analysis that is based on a biopolymer contour representation expressed in a spectral basis of orthogonal polynomials. We determine biopolymer shape and stiffness using global fitting routines that optimize a utility function measuring the amount of fluorescence intensity overlapped by such contours. This approach allows for filtering of high-frequency noise and interpolation over sporadic gaps in fluorescence. We use benchmarking to demonstrate the validity of our methods, by analyzing an ensemble of simulated images generated using a simulated biopolymer with known stiffness and subjected to various types of image noise. We then use these methods to determine the persistence lengths of taxol-stabilized microtubules. We find that single microtubules are well described by the wormlike chain polymer model, and that ensembles of chemically identical microtubules show significant heterogeneity in bending stiffness, which cannot be attributed to sampling or fitting errors. We expect these approaches to be useful in the study of biopolymer mechanics and the effects of associated regulatory molecules.

  15. Spectral Analysis Methods for the Robust Measurement of the Flexural Rigidity of Biopolymers

    Science.gov (United States)

    Valdman, David; Atzberger, Paul J.; Yu, Dezhi; Kuei, Steve; Valentine, Megan T.

    2012-01-01

    The mechanical properties of biopolymers can be determined from a statistical analysis of the ensemble of shapes they exhibit when subjected to thermal forces. In practice, extracting information from fluorescence microscopy images can be challenging due to low signal/noise ratios and other artifacts. To address these issues, we develop a suite of tools for image processing and spectral data analysis that is based on a biopolymer contour representation expressed in a spectral basis of orthogonal polynomials. We determine biopolymer shape and stiffness using global fitting routines that optimize a utility function measuring the amount of fluorescence intensity overlapped by such contours. This approach allows for filtering of high-frequency noise and interpolation over sporadic gaps in fluorescence. We use benchmarking to demonstrate the validity of our methods, by analyzing an ensemble of simulated images generated using a simulated biopolymer with known stiffness and subjected to various types of image noise. We then use these methods to determine the persistence lengths of taxol-stabilized microtubules. We find that single microtubules are well described by the wormlike chain polymer model, and that ensembles of chemically identical microtubules show significant heterogeneity in bending stiffness, which cannot be attributed to sampling or fitting errors. We expect these approaches to be useful in the study of biopolymer mechanics and the effects of associated regulatory molecules. PMID:22404937

  16. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Science.gov (United States)

    Pu, Jian; Fukushi, Kensuke

    2013-01-01

    In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA) and biopolymer solution extracted from cultivated activated sludge (ASBP). The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE) method (R2 = 0.989 for BSA, 0.985 for ASBP). PMID:24194678

  17. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Science.gov (United States)

    Tabasso, Silvia; Berto, Silvia; Rosato, Roberta; Tafur Marinos, Janeth Alicia; Ginepro, Marco; Zelano, Vincenzo; Daniele, Pier Giuseppe; Montoneri, Enzo

    2015-01-01

    This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials. PMID:25658795

  18. Measurement of Cadmium Ion in the Presence of Metal-Binding Biopolymers in Aqueous Sample

    Directory of Open Access Journals (Sweden)

    Jian Pu

    2013-01-01

    Full Text Available In aqueous environment, water-soluble polymers are effectively used to separate free metal ions from metal-polymer complexes. The feasibilities of four different analytical techniques, cadmium ion-selective electrode, dialysis sack, chelate disk cartridge, and ultrafiltration, in distinguishing biopolymer-bound and nonbound cadmium in aqueous samples were investigated. And two different biopolymers were used, including bovine serum albumin (BSA and biopolymer solution extracted from cultivated activated sludge (ASBP. The ISE method requires relatively large amount of sample and contaminates sample during the pretreatment. After the long reaction time of dialysis, the equilibrium of cadmium in the dialysis sack would be shifted. Due to the sample nature, chelate disk cartridge could not filter within recommended time, which makes it unavailable for biopolymer use. Ultrafiltration method would not experience the difficulties mentioned above. Ultrafiltration method measuring both weakly and strongly bound cadmium was included in nominally biopolymer-cadmium complex. It had significant correlation with the Ion-selective electrode (ISE method (R2=0.989 for BSA, 0.985 for ASBP.

  19. Chemical Modeling of Acid-Base Properties of Soluble Biopolymers Derived from Municipal Waste Treatment Materials

    Directory of Open Access Journals (Sweden)

    Silvia Tabasso

    2015-02-01

    Full Text Available This work reports a study of the proton-binding capacity of biopolymers obtained from different materials supplied by a municipal biowaste treatment plant located in Northern Italy. One material was the anaerobic fermentation digestate of the urban wastes organic humid fraction. The others were the compost of home and public gardening residues and the compost of the mix of the above residues, digestate and sewage sludge. These materials were hydrolyzed under alkaline conditions to yield the biopolymers by saponification. The biopolymers were characterized by 13C NMR spectroscopy, elemental analysis and potentiometric titration. The titration data were elaborated to attain chemical models for interpretation of the proton-binding capacity of the biopolymers obtaining the acidic sites concentrations and their protonation constants. The results obtained with the models and by NMR spectroscopy were elaborated together in order to better characterize the nature of the macromolecules. The chemical nature of the biopolymers was found dependent upon the nature of the sourcing materials.

  20. Encapsulation of lead from hazardous CRT glass wastes using biopolymer cross-linked concrete systems.

    Science.gov (United States)

    Kim, Daeik; Quinlan, Michael; Yen, Teh Fu

    2009-01-01

    Discarded computer monitors and television sets are identified as hazardous materials due to the high content of lead in their cathode ray tubes (CRTs). Over 98% of lead is found in CRT glass. More than 75% of obsolete electronics including TV and CRT monitors are in storage because appropriate e-waste management and remediation technologies are insufficient. Already an e-waste tsunami is starting to roll across the US and the whole world. Thus, a new technology was developed as an alternative to current disposal methods; this method uses a concrete composite crosslinked with minute amounts of biopolymers and a crosslinking agent. Commercially available microbial biopolymers of xanthan gum and guar gum were used to encapsulate CRT wastes, reducing Pb leachability as measured by standard USEPA methods. In this investigation, the synergistic effect of the crosslinking reaction was observed through blending two different biopolymers or adding a crosslinking agent in biopolymer solution. This CRT-biopolymer-concrete (CBC) composite showed higher compressive strength than the standard concrete and a considerable decrease in lead leachability.

  1. Influence of different treatment condition on biopolymer yield production for coagulation-flocculation process

    Science.gov (United States)

    Aisyah, I. S.; Murshed, M. F.; Norli, I.

    2016-06-01

    Two different agro wastes (banana pseudostem and rice straw) were utilized in order to extract biopolymer (pectin) known as coagulant aid in water and wastewater treatment. Factors such as pH, temperature and time were chosen due to the critical role in hot acid extraction process. The yield of biopolymer extraction from banana pseudostem was found to be higher at 28% meanwhile only 18% from rice straw was manage to produce from the dry weight 10 g, respectively. It was found that extraction temperature and extraction time were the most important factors influencing the biopolymer yield which increased with temperature and time or decreasing pH. Based on two level factorial design, the same condition of pH 1.5, temperature 90 oC and 4 hours extraction time can produce high amount of extracted biopolymer. Fourier Transform Infrared Spectroscopy (FTIR) was used to detect the existence of functional group which helps in the coagulation-flocculation process. Result indicates a similar functional group of biopolymer were detected for both difference agro wastes.

  2. Optimized Monitoring of Production of Cellulose Nanowhiskers from Opuntia ficus-indica (Nopal Cactus

    Directory of Open Access Journals (Sweden)

    Horacio Vieyra

    2015-01-01

    Full Text Available Preparation of cellulose nanowhiskers (CNWs has grown significantly because they are useful for a wide range of applications. Additional advantage in their design requires that they meet the following characteristics: nontoxicity, abundance, sustainability, renewability, and low cost. To address these requirements, nanowhiskers were prepared from Opuntia ficus-indica (nopal cellulose by acid hydrolysis. Monitoring the process of CNWs preparation is necessary to ensure maximum yield and purity of the end product. In this study, the cellulose preparation was monitored by analyzing microscopic morphology by SEM; the purity degree was determined by fluorescence microscopy as a novel and rapid technique, and FTIR spectroscopy was used for confirmation. The additional parameters that monitored the process were the crystallinity index by X-ray diffraction and the size of the particle by dynamic light scattering (DLS. Nopal cellulose was found to be comparable to commercial microcrystalline cellulose. The use of Opuntia ficus-indica is a viable alternative for the production of highly pure CNWs and the strategy to supervise the preparation process was rapid.

  3. Thermophilic microbial cellulose decomposition and methanogenesis pathways recharacterized by metatranscriptomic and metagenomic analysis.

    Science.gov (United States)

    Xia, Yu; Wang, Yubo; Fang, Herbert H P; Jin, Tao; Zhong, Huanzi; Zhang, Tong

    2014-10-21

    The metatranscriptomic recharacterization in the present study captured microbial enzymes at the unprecedented scale of 40,000 active genes belonged to 2,269 KEGG functions were identified. The novel information obtained herein revealed interesting patterns and provides an initial transcriptional insight into the thermophilic cellulose methanization process. Synergistic beta-sugar consumption by Thermotogales is crucial for cellulose hydrolysis in the thermophilic cellulose-degrading consortium because the primary cellulose degraders Clostridiales showed metabolic incompetence in subsequent beta-sugar pathways. Additionally, comparable transcription of putative Sus-like polysaccharide utilization loci (PULs) was observed in an unclassified order of Bacteroidetes suggesting the importance of PULs mechanism for polysaccharides breakdown in thermophilic systems. Despite the abundance of acetate as a fermentation product, the acetate-utilizing Methanosarcinales were less prevalent by 60% than the hydrogenotrophic Methanobacteriales. Whereas the aceticlastic methanogenesis pathway was markedly more active in terms of transcriptional activities in key genes, indicating that the less dominant Methanosarcinales are more active than their hydrogenotrophic counterparts in methane metabolism. These findings suggest that the minority of aceticlastic methanogens are not necessarily associated with repressed metabolism, in a pattern that was commonly observed in the cellulose-based methanization consortium, and thus challenge the causal likelihood proposed by previous studies.

  4. Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure.

    Science.gov (United States)

    Coleman, Heather D; Yan, Jimmy; Mansfield, Shawn D

    2009-08-04

    Overexpression of the Gossypium hirsutum sucrose synthase (SuSy) gene under the control of 2 promoters was examined in hybrid poplar (Populus alba x grandidentata). Analysis of RNA transcript abundance, enzyme activity, cell wall composition, and soluble carbohydrates revealed significant changes in the transgenic lines. All lines showed significantly increased SuSy enzyme activity in developing xylem. This activity manifested in altered secondary cell wall cellulose content per dry weight in all lines, with increases of 2% to 6% over control levels, without influencing plant growth. The elevated concentration of cellulose was associated with an increase in cell wall crystallinity but did not alter secondary wall microfibril angle. This finding suggests that the observed increase in crystallinity is a function of altered carbon partitioning to cellulose biosynthesis rather than the result of tension wood formation. Furthermore, the augmented deposition of cellulose in the transgenic lines resulted in thicker xylem secondary cell wall and consequently improved wood density. These findings clearly implicate SuSy as a key regulator of sink strength in poplar trees and demonstrate the tight association of SuSy with cellulose synthesis and secondary wall formation.

  5. Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers’ tricks

    Directory of Open Access Journals (Sweden)

    Roberto Mazzoli

    2012-10-01

    Full Text Available Cellulose waste biomass is the most abundant and attractive substrate for "biorefinery strategies" that are aimed to produce high-value products (e.g. solvents, fuels, building blocks by economically and environmentally sustainable fermentation processes. However, cellulose is highly recalcitrant to biodegradation and its conversion by biotechnological strategies currently requires economically inefficient multistep industrial processes. The need for dedicated cellulase production continues to be a major constraint to cost-effective processing of cellulosic biomass.Research efforts have been aimed at developing recombinant microorganisms with suitable characteristics for single step biomass fermentation (consolidated bioprocessing, CBP. Two paradigms have been applied for such, so far unsuccessful, attempts: a “native cellulolytic strategies”, aimed at conferring high-value product properties to natural cellulolytic microorganisms; b “recombinant cellulolytic strategies”, aimed to confer cellulolytic ability to microorganisms exhibiting high product yields and titers.By starting from the description of natural enzyme systems for plant biomass degradation and natural metabolic pathways for some of the most valuable product (i.e. butanol, ethanol, and hydrogen biosynthesis, this review describes state-of-the-art bottlenecks and solutions for the development of recombinant microbial strains for cellulosic biofuel CBP by metabolic engineering. Complexed cellulases (i.e. cellulosomes benefit from stronger proximity effects and show enhanced synergy on insoluble substrates (i.e. crystalline cellulose with respect to free enzymes. For this reason, special attention was held on strategies involving cellulosome/designer cellulosome-bearing recombinant microorganisms.

  6. fA cellular automaton model of crystalline cellulose hydrolysis by cellulases

    Directory of Open Access Journals (Sweden)

    Little Bryce A

    2011-10-01

    Full Text Available Abstract Background Cellulose from plant biomass is an abundant, renewable material which could be a major feedstock for low emissions transport fuels such as cellulosic ethanol. Cellulase enzymes that break down cellulose into fermentable sugars are composed of different types - cellobiohydrolases I and II, endoglucanase and β-glucosidase - with separate functions. They form a complex interacting network between themselves, soluble hydrolysis product molecules, solution and solid phase substrates and inhibitors. There have been many models proposed for enzymatic saccharification however none have yet employed a cellular automaton approach, which allows important phenomena, such as enzyme crowding on the surface of solid substrates, denaturation and substrate inhibition, to be considered in the model. Results The Cellulase 4D model was developed de novo taking into account the size and composition of the substrate and surface-acting enzymes were ascribed behaviors based on their movements, catalytic activities and rates, affinity for, and potential for crowding of, the cellulose surface, substrates and inhibitors, and denaturation rates. A basic case modeled on literature-derived parameters obtained from Trichoderma reesei cellulases resulted in cellulose hydrolysis curves that closely matched curves obtained from published experimental data. Scenarios were tested in the model, which included variation of enzyme loadings, adsorption strengths of surface acting enzymes and reaction periods, and the effect on saccharide production over time was assessed. The model simulations indicated an optimal enzyme loading of between 0.5 and 2 of the base case concentrations where a balance was obtained between enzyme crowding on the cellulose crystal, and that the affinities of enzymes for the cellulose surface had a large effect on cellulose hydrolysis. In addition, improvements to the cellobiohydrolase I activity period substantially improved overall

  7. Comparison of physical properties of regenerated cellulose films fabricated with different cellulose feedstocks in ionic liquid.

    Science.gov (United States)

    Pang, JinHui; Wu, Miao; Zhang, QiaoHui; Tan, Xin; Xu, Feng; Zhang, XueMing; Sun, RunCang

    2015-05-05

    With the serious "white pollution" resulted from the non-biodegradable plastic films, considerable attention has been directed toward the development of renewable and biodegradable cellulose-based film materials as substitutes of petroleum-derived materials. In this study, environmentally friendly cellulose films were successfully prepared using different celluloses (pine, cotton, bamboo, MCC) as raw materials and ionic liquid 1-ethyl-3-methylimidazolium acetate as a solvent. The SEM and AFM indicated that all cellulose films displayed a homogeneous and smooth surface. In addition, the FT-IR and XRD analysis showed the transition from cellulose I to II was occurred after the dissolution and regeneration process. Furthermore, the cellulose films prepared by cotton linters and pine possessed the most excellent thermal stability and mechanical properties, which were suggested by the highest onset temperature (285°C) and tensile stress (120 MPa), respectively. Their excellent properties of regenerated cellulose films are promising for applications in food packaging and medical materials.

  8. Spatially resolved characterization of cellulose nanocrystal-polypropylene composite by confocal Raman microscopy.

    Science.gov (United States)

    Agarwal, Umesh P; Sabo, Ronald; Reiner, Richard S; Clemons, Craig M; Rudie, Alan W

    2012-07-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC) -polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nano-scale fraction of microcrystalline cellulose) and two of the three composites investigated used maleated PP as a coupling agent. Raman maps, based on cellulose and PP bands at 1098 and 1460 cm(-1), respectively, obtained at 1 μm spatial resolution showed that the CNCs were aggregated to various degrees in the PP matrix. Of the three composites analyzed, two showed clear existence of phase-separated regions: Raman images with strong PP and absent/weak cellulose or vice versa. For the third composite, the situation was slightly improved but a clear transition interface between the PP-abundant and CNC-abundant regions was observed, indicating that the CNC remained poorly dispersed. The spectroscopic approach to investigating spatial distribution of the composite components was helpful in evaluating CNC dispersion in the composite at the microscopic level, which helped explain the relatively modest reinforcement of PP by the CNCs.

  9. Vibrational spectroscopic studies of newly developed synthetic biopolymers.

    Science.gov (United States)

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2010-05-01

    Vibrational spectroscopic techniques such as near-infrared (NIR), Fourier transform infrared (FTIR), and Raman spectroscopy are valuable diagnostic tools that can be used to elucidate comprehensive structural information of numerous biological samples. In this review article, we have highlighted the advantages of nanotechnology and biophotonics in conjunction with vibrational spectroscopic techniques in order to understand the various aspects of new kind of synthetic biopolymers termed as polyethylene glycol (PEG)ylated lipids. In contrast to conventional phospholipids, these novel lipids spontaneously form liposomes or nanovesicles upon hydration, without the supply of external activation energy. The amphiphiles considered in this study differ in their hydrophobic acyl chain length and contain different units of PEG hydrophilic headgroups. We have further explored the thermotropic phase behaviors and associated changes in the conformational order/disorder of such lipids by using variable-temperature FTIR and Raman spectroscopy. Phase transition temperature profiles and correlation between various spectral indicators have been identified by either monitoring the shifts in the vibrational peak positions or plotting vibrational peak intensity ratios in the C--H stretching region as a function of temperature. To supplement our observations of phase transformations, a thermodynamic approach known as differential scanning calorimetry (DSC) has been applied and revealed a good agreement with the infrared and Raman spectroscopic data. Finally, the investigation of thermal properties of lipids is extremely crucial for numerous purposes, thus the results obtained in this work may find application in a wide variety of studies including the development of PEGylated lipid based drug and substances delivery vehicles.

  10. Carbohydrate Biopolymers Enhance Antibody Responses to Mucosally Delivered Vaccine Antigens

    Science.gov (United States)

    Bacon, A.; Makin, J.; Sizer, P. J.; Jabbal-Gill, I.; Hinchcliffe, M.; Illum, L.; Chatfield, S.; Roberts, M.

    2000-01-01

    We have evaluated the ability of two carbohydrate biopolymers, chitosan and gellan, to enhance antibody responses to subunit influenza virus vaccines delivered to the respiratory tracts of mice. Groups of mice were vaccinated three times intranasally (i.n.) with 10 μg of purified influenza B/Panama virus surface antigens (PSAs), which consist of hemagglutinin (HA) and neuraminidase (NA), either alone or admixed with chitosan or gellan solutions. Separate groups were vaccinated subcutaneously (s.c.) with PSAs adsorbed to Alhydrogel or chitosan or gellan alone i.n. Serum antibody responses were determined by enzyme-linked immunosorbent assay (ELISA) for influenza virus-specific immunoglobulin G (IgG) and by HA inhibition (HAI) and NA inhibition (NAI) assays. The local respiratory immune response was measured by assaying for influenza virus-specific IgA antibody in nasal secretions and by enumerating nasal and pulmonary lymphocytes secreting IgA, IgG, and IgM anti-influenza virus-specific antibodies by enzyme-linked immunospotting (ELISPOT). When administered alone i.n., B/Panama PSA was poorly immunogenic. Parenteral immunization with B/Panama PSA with Alhydrogel elicited high titers of anti-B/Panama antibodies in serum but a very poor respiratory anti-B/Panama IgA response. In contrast, i.n. immunization with PSA plus chitosan stimulated very strong local and systemic anti-B/Panama responses. Gellan also enhanced the local and serum antibody responses to i.n. PSA but not to the same extent as chitosan. The ability of chitosan to augment the immunogenicity of influenza vaccines given i.n. was confirmed using PSA prepared from an influenza A virus (A/Texas H1N1). PMID:10992483

  11. Molecular field theory of reversible unfolding of biopolymers

    Science.gov (United States)

    Cerf, Roger

    1978-01-01

    A simple and general model of reversible conformational changes in biopolymers that lends itself to accounting for cooperativity without resort to a detailed description of the elementary steps is presented. It is suggested that the model permits the description of transitions in specific instances in which long-range effects are present and no simplifying feature allows for a more detailed theory in a straightforward way. The proposed phenomenological approach is based on the concept of molecular field which led to the first theory of ferromagnetism. Equations are given for the temperature dependence of optical properties and of the specific heat, from which the cooperativity parameter introduced by the theory can be obtained when the reaction enthalpy of the elementary step or the number of concerted elements is known. In the limit of a strong molecular field, heterogeneity in composition of a melting sequence does not affect the sharpness of the corresponding transition. Accounting for long-range effects allows for all-or-none transitions that are sharper than those derived from the two-state model. The feasibility of applying the molecular field concept is illustrated by comparing the results for poly(A)·2 poly(U) triple helices (which exhibit hysteresis) and those for poly(A)·poly(U) double helices (which separate reversibly). Tertiary structure is considered, among the sources of cooperativity that possibly may be represented in terms of a molecular field. On the basis of recent results for tRNA1val, it is suggested that the proposed approach may be applicable, in particular, to transfer ribonucleic acids. PMID:275844

  12. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  13. pH induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R D; Insana, M F

    2009-01-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This report focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced, however the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability. PMID:19174599

  14. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Science.gov (United States)

    2010-01-01

    Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA). We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p) that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1) the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58), which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber PMID:20056006

  15. Refolding dynamics of stretched biopolymers upon force quench

    Science.gov (United States)

    Hyeon, Changbong; Morrison, Greg; Pincus, David L.; Thirumalai, D.

    2009-01-01

    Single-molecule force spectroscopy methods can be used to generate folding trajectories of biopolymers from arbitrary regions of the folding landscape. We illustrate the complexity of the folding kinetics and generic aspects of the collapse of RNA and proteins upon force quench by using simulations of an RNA hairpin and theory based on the de Gennes model for homopolymer collapse. The folding time, τF, depends asymmetrically on δfS = f S − f m and δf Q = f m − f Q where f S (f Q) is the stretch (quench) force and f m is the transition midforce of the RNA hairpin. In accord with experiments, the relaxation kinetics of the molecular extension, R(t), occurs in three stages: A rapid initial decrease in the extension is followed by a plateau and finally, an abrupt reduction in R(t) occurs as the native state is approached. The duration of the plateau increases as λ = τ Q/τ F decreases (where τ Q is the time in which the force is reduced from f S to f Q). Variations in the mechanisms of force-quench relaxation as λ is altered are reflected in the experimentally measurable time-dependent entropy, which is computed directly from the folding trajectories. An analytical solution of the de Gennes model under tension reproduces the multistage stage kinetics in R(t). The prediction that the initial stages of collapse should also be a generic feature of polymers is validated by simulation of the kinetics of toroid (globule) formation in semiflexible (flexible) homopolymers in poor solvents upon quenching the force from a fully stretched state. Our findings give a unified explanation for multiple disparate experimental observations of protein folding. PMID:19915145

  16. Mechanics, thermodynamics, and kinetics of ligand binding to biopolymers.

    Science.gov (United States)

    Jarillo, Javier; Morín, José A; Beltrán-Heredia, Elena; Villaluenga, Juan P G; Ibarra, Borja; Cao, Francisco J

    2017-01-01

    Ligands binding to polymers regulate polymer functions by changing their physical and chemical properties. This ligand regulation plays a key role in many biological processes. We propose here a model to explain the mechanical, thermodynamic, and kinetic properties of the process of binding of small ligands to long biopolymers. These properties can now be measured at the single molecule level using force spectroscopy techniques. Our model performs an effective decomposition of the ligand-polymer system on its covered and uncovered regions, showing that the elastic properties of the ligand-polymer depend explicitly on the ligand coverage of the polymer (i.e., the fraction of the polymer covered by the ligand). The equilibrium coverage that minimizes the free energy of the ligand-polymer system is computed as a function of the applied force. We show how ligands tune the mechanical properties of a polymer, in particular its length and stiffness, in a force dependent manner. In addition, it is shown how ligand binding can be regulated applying mechanical tension on the polymer. Moreover, the binding kinetics study shows that, in the case where the ligand binds and organizes the polymer in different modes, the binding process can present transient shortening or lengthening of the polymer, caused by changes in the relative coverage by the different ligand modes. Our model will be useful to understand ligand-binding regulation of biological processes, such as the metabolism of nucleic acid. In particular, this model allows estimating the coverage fraction and the ligand mode characteristics from the force extension curves of a ligand-polymer system.

  17. pH-induced contrast in viscoelasticity imaging of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Yapp, R D; Insana, M F [Department of Bioengineering, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, IL 61801 (United States)], E-mail: ryapp2@illinois.edu

    2009-03-07

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  18. pH-induced contrast in viscoelasticity imaging of biopolymers

    Science.gov (United States)

    Yapp, R. D.; Insana, M. F.

    2009-03-01

    Understanding contrast mechanisms and identifying discriminating features is at the heart of diagnostic imaging development. This paper focuses on how pH influences the viscoelastic properties of biopolymers to better understand the effects of extracellular pH on breast tumour elasticity imaging. Extracellular pH is known to decrease as much as 1 pH unit in breast tumours, thus creating a dangerous environment that increases cellular mutatation rates and therapeutic resistance. We used a gelatin hydrogel phantom to isolate the effects of pH on a polymer network with similarities to the extracellular matrix in breast stroma. Using compressive unconfined creep and stress relaxation measurements, we systematically measured the viscoelastic features sensitive to pH by way of time-domain models and complex modulus analysis. These results are used to determine the sensitivity of quasi-static ultrasonic elasticity imaging to pH. We found a strong elastic response of the polymer network to pH, such that the matrix stiffness decreases as pH was reduced; however, the viscous response of the medium to pH was negligible. While physiological features of breast stroma such as proteoglycans and vascular networks are not included in our hydrogel model, observations in this study provide insight into viscoelastic features specific to pH changes in the collagenous stromal network. These observations suggest that the large contrast common in breast tumours with desmoplasia may be reduced under acidic conditions, and that viscoelastic features are unlikely to improve discriminability.

  19. Speculations on the nature of cellulose pyrolysis

    Science.gov (United States)

    F.J. Kilzer; A. Broido

    1965-01-01

    Consideration of the available data on cellulose pyrolysis suggests that, with relative importance depending upon heating rate in the temperature range 200-400°C, very pure cellulose decomposes by two competitive endothermic processes. lt is postulated that an unzipping reaction produces 1,4-anhydro-α-D-glucopyranose which rearranges to give levoglucosan. The other...

  20. Idealized powder diffraction patterns for cellulose polymorphs

    Science.gov (United States)

    Cellulose samples are routinely analyzed by X-ray diffraction to determine their crystal type (polymorph) and crystallinity. However, the connection is seldom made between those efforts and the crystal structures of cellulose that have been determined with synchrotron X-radiation and neutron diffrac...

  1. Nucleic acids encoding a cellulose binding domain

    Energy Technology Data Exchange (ETDEWEB)

    Shoseyov, Oded (Karmey Yosef, IL); Shpiegl, Itai (Rehovot, IL); Goldstein, Marc A. (Davis, CA); Doi, Roy H. (Davis, CA)

    1996-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  2. 21 CFR 172.870 - Hydroxypropyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Hydroxypropyl cellulose. 172.870 Section 172.870... CONSUMPTION Multipurpose Additives § 172.870 Hydroxypropyl cellulose. The food additive hydroxypropyl... anhydrous basis, not more than 4.6 hydroxypropyl groups per anhydroglucose unit. The additive has a...

  3. Conformational studies of cellulosic fragments by DFT

    Science.gov (United States)

    The study of cellulosic fragments by DFTr is a continuation of our efforts to produce quality structural data that will be valuable to those working in the field of cellulose structure and enzymatic degradation. Using a reduced basis set and density functional DFTr (B3LYP), optimization of cellulosi...

  4. Characterization of cellulose nanofibrillation by micro grinding

    Science.gov (United States)

    Sandeep S. Nair; J.Y. Zhu; Yulin Deng; Arthur J. Ragauskas

    2014-01-01

    A fundamental understanding of the morphological development of cellulose fibers during fibrillation using micro grinder is very essential to develop effective strategies for process improvement and to reduce energy consumption. We demonstrated some simple measures for characterizing cellulose fibers fibrillated at different fibrillation times through the grinder. The...

  5. Diffraction from nonperiodic models of cellulose crystals

    Science.gov (United States)

    Powder and fiber diffraction patterns were calculated for model cellulose crystallites with chains 20 glucose units long. Model sizes ranged from four chains to 169 chains, based on cellulose I' coordinates, and were subjected to various combinations of energy minimization and molecular dynamics (M...

  6. Kinetics of adsorption of whey proteins and hydroxypropyl-methyl-cellulose mixtures at the air-water interface.

    Science.gov (United States)

    Pérez, Oscar E; Carrera Sánchez, Cecilio; Pilosof, Ana M R; Rodríguez Patino, Juan M

    2009-08-15

    The aim of this research is to quantify the competitive adsorption of a whey protein concentrate (WPC) and hydroxypropyl-methyl-cellulose (HPMC so called E4M, E50LV and F4M) at the air-water interface by means of dynamic surface tensiometry and Brewster angle microscopy (BAM). These biopolymers are often used together in many food applications. The concentration of both protein and HPMC, and the WPC/HPMC ratio in the aqueous bulk phase were variables, while pH (7), the ionic strength (0.05 M) and temperature (20 degrees C) were kept constant. The differences observed between mixed systems were in accordance with the relative bulk concentration of these biopolymers (C(HPMC) and C(WPC)) and the molecular structure of HPMC. At short adsorption times, the results show that under conditions where both WPC and HPMC could saturate the air-water interface on their own or when C(HPMC) > or = C(WPC), the polysaccharide dominates the surface. At concentrations where none of the biopolymers was able to saturate the interface, a synergistic behavior was observed for HPMC with lower surface activity (E50LV and F4M), while a competitive adsorption was observed for E4M (the HPMC with the highest surface activity). At long-term adsorption the rate of penetration controls the adsorption of mixed components. The results reflect complex competitive/synergistic phenomena under conditions of thermodynamic compatibility or in the presence of a "depletion mechanism". Finally, the order in which the different components reach the interface will influence the surface composition and the film properties.

  7. Radiation pretreatment of cellulose for energy production

    Science.gov (United States)

    Dela Rosa, A. M.; Dela Mines, A. S.; Banzon, R. B.; Simbul-Nuguid, Z. F.

    The effect of radiation pretreatment of agricultural cellulosic wastes was investigated through hydrolytic reactions of cellulose. Gamma irradiation significantly increased the acid hydrolysis of rice straw, rice hull and corn husk. The yields of reducing sugar were higher with increasing radiation dose in these materials. The observed radiation effect varied with the cellulosic material but it correlated with neither the cellulose content nor the lignin content. Likewise, the radiation pretreatment accelerated the subsequent enzymatic hydrolysis of rice straw and rice hull by cellulase. The irradiated rice straw appeared to be a better growth medium for the cellulolytic microorganism, Myrothecium verrucaria, than the non-irradiated material. This was attributed to increased digestibility of the cellulose by the microorganism.

  8. BIODEGRADATION OF REGENERATED CELLULOSE FILMS BY FUNGI

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lina; LIU Haiqing; ZHENG Lianshuang; ZHANG Jiayao; DU Yumin; LIU Weili

    1996-01-01

    The biodegradability of Aspergillus niger (A. niger), Mucor (M-305) and Trichoderma (T-311) strains on regenerated cellulose films in media was investigated. The results showed that T-311 strain isolated from soil adhered on the cellulose film fragments has stronger degradation effect on the cellulose film than A. niger strain. The weights, molecular weights and tensile strengths of the cellulose films in both shake culture and solid media decreased with incubation time, accompanied by producing CO2 and saccharides. HPLC, IR and released CO2 analysis indicated that the biodegradation products of the regenerated cellulose films mainly contain oligosaccharides, cellobiose, glucose, arabinose, erythrose, glycerose,glycerol, ethanal, formaldehyde and organic acid, the end products were CO2 and water.After a month, the films were completely decomposed by fungi in the media at 30℃.

  9. Human elastin-based recombinant biopolymers improve mesenchymal stem cell differentiation.

    Science.gov (United States)

    Çelebi, Betül; Cloutier, Maxime; Rabelo, Rodrigo B; Balloni, Rodrigo; Mantovani, Diego; Bandiera, Antonella

    2012-11-01

    Elastin-based polypeptides are a class of smart biopolymers representing an important model in the design of biomaterials. The combination of biomimetic materials with cells that have great plasticity provides a promising strategy for the realization of highly engineered cell-based constructs for regenerative medicine and tissue repair applications. Two recombinant biopolymers inspired by human elastin are assessed as coating agents to prepare biomimetic surfaces for cell culture. These substrates are assayed for hBM MSC culture. The coated surfaces are also characterized with AFM to evaluate the topographical features of the deposited biopolymers. The results suggest that the elastin-derived biomimetic surfaces play a stimulatory role on osteogenic differentiation of MSCs.

  10. Enzyme and metabolic engineering for the production of novel biopolymers: crossover of biological and chemical processes.

    Science.gov (United States)

    Matsumoto, Ken'ichiro; Taguchi, Seiichi

    2013-12-01

    The development of synthetic biology has transformed microbes into useful factories for producing valuable polymers and/or their precursors from renewable biomass. Recent progress at the interface of chemistry and biology has enabled the production of a variety of new biopolymers with properties that substantially differ from their petroleum-derived counterparts. This review touches on recent trials and achievements in the field of biopolymer synthesis, including chemo-enzymatically synthesized aliphatic polyesters, wholly biosynthesized lactate-based polyesters, polyhydroxyalkanoates and other unusual bacterially synthesized polyesters. The expanding diversities in structure and the material properties of biopolymers are key for exploring practical applications. The enzyme and metabolic engineering approaches toward this goal are discussed by shedding light on the successful case studies.

  11. The cross-linking influence of electromagnetic radiation on water-soluble polyacrylan compositions with biopolymers

    Directory of Open Access Journals (Sweden)

    B. Grabowska

    2009-01-01

    Full Text Available The results of examinations of the cross-linking influence of electromagnetic radiation - in a microwave range – on polyacrylancompositions with biopolymers, are presented in the hereby paper. The cross-linking process of the tested compositions was determined on the basis of the FT-IR spectroscopic methods. It was shown that microwave operations can lead to the formation of new cross-linkedstructures with strong covalent bonds. The adsorption process and formation of active centres in polymer molecules as well as in highsilica sand were found due to microwave radiations. In this process hydroxyl groups (-OH - present in a polymer - and silane groups (Si- O-H - present in a matrix - are mainly taking part. Spectroscopic and strength tests performed for the system: biopolymer binding agent – matrix indicate that the microwave radiation can be applied for hardening moulding sands with biopolymer binders.

  12. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ghasem Rezanejade Bardajee

    2013-01-01

    Full Text Available This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs by using poly(acrylic acid grafted onto salep (salep-g-PAA as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR spectrum, thermogravimetric (TG analysis, and transmission electron microscopy (TEM. The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical properties of CdTe QDs. The results showed that the optical properties of CdTe QDs were significantly enhanced by using salep-g-PAA-based biopolymer.

  13. Self-(Un)rolling Biopolymer Microstructures: Rings, Tubules, and Helical Tubules from the Same Material.

    Science.gov (United States)

    Ye, Chunhong; Nikolov, Svetoslav V; Calabrese, Rossella; Dindar, Amir; Alexeev, Alexander; Kippelen, Bernard; Kaplan, David L; Tsukruk, Vladimir V

    2015-07-13

    We have demonstrated the facile formation of reversible and fast self-rolling biopolymer microstructures from sandwiched active-passive, silk-on-silk materials. Both experimental and modeling results confirmed that the shape of individual sheets effectively controls biaxial stresses within these sheets, which can self-roll into distinct 3D structures including microscopic rings, tubules, and helical tubules. This is a unique example of tailoring self-rolled 3D geometries through shape design without changing the inner morphology of active bimorph biomaterials. In contrast to traditional organic-soluble synthetic materials, we utilized a biocompatible and biodegradable biopolymer that underwent a facile aqueous layer-by-layer (LbL) assembly process for the fabrication of 2D films. The resulting films can undergo reversible pH-triggered rolling/unrolling, with a variety of 3D structures forming from biopolymer structures that have identical morphology and composition.

  14. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering.

    Science.gov (United States)

    Sell, Scott A; McClure, Michael J; Garg, Koyal; Wolfe, Patricia S; Bowlin, Gary L

    2009-10-05

    The process of electrospinning has seen a resurgence of interest in the last few decades which has led to a rapid increase in the amount of research devoted to its use in tissue engineering applications. Of this research, the area of cardiovascular tissue engineering makes up a large percentage, with substantial resources going towards the creation of bioresorbable vascular grafts composed of electrospun nanofibers of collagen and other biopolymers. These bioresorbable grafts have compositions that allow for the in situ remodeling of the structure, with the eventual replacement of the graft with completely autologous tissue. This review will highlight some of the work done in the field of electrospinning for cardiovascular applications, with an emphasis on the use of biopolymers such as collagens, elastin, gelatin, fibrinogen, and silk fibroin, as well as biopolymers used in combination with resorbable synthetic polymers.

  15. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation.

    Science.gov (United States)

    Lu, Luhua; Chen, Wei

    2011-06-01

    Biopolymers are important natural multifunctional macromolecules for biomimetic and bio-inspired advanced functional material design. They are not only simple dispersants for carbon nanotube stabilization as they have been found to have specific interactions with carbon nanotubes. Their molecular activity, orientation and crystallization are influenced by the CNTs, which endow their composites with a variety of novel sensing and actuation performances. This review focuses on the progress in supramolecular self-assembly of biopolymers with carbon nanotubes, and their advances in sensing and actuation. To promote the development of advanced biopolymer/CNT functional materials, new electromechanical characteristics of biopolymer/CNT composites are discussed in detail based on the relationship between the microscopic biopolymer structures and the macroscopic composite properties.

  16. CdTe Quantum Dots Embedded in Multidentate Biopolymer Based on Salep: Characterization and Optical Properties

    OpenAIRE

    Ghasem Rezanejade Bardajee; Zari Hooshyar

    2013-01-01

    This paper describes a novel method for surface modification of water soluble CdTe quantum dots (QDs) by using poly(acrylic acid) grafted onto salep (salep-g-PAA) as a biopolymer. As-prepared CdTe-salep-g-PAA QDs were characterized by Fourier transform infrared (FT-IR) spectrum, thermogravimetric (TG) analysis, and transmission electron microscopy (TEM). The absorption and fluorescence emission spectra were measured to investigate the effect of salep-g-PAA biopolymer on the optical propertie...

  17. Parallelized system for biopolymer degradation studies through automated microresonator measurement in liquid flow

    DEFF Research Database (Denmark)

    Casci Ceccacci, Andrea; Morelli, Lidia; Bosco, Filippo

    2015-01-01

    In this work we present a novel automated system which allows the study of enzymatic degradation of biopolymer films coated on micromechanical resonators. The system combines an optical readout based on Blu-Ray technology with a software-controlled scanning mechanism. Integrated with a microfluidic...... setup unit, the system allows high-throughput measurements of resonance frequency over microresonator arrays under controlled flow conditions. We here demonstrate the acquisition of statistical data on biopolymer films degradation under enzymatic reaction over a large sample of micromechanical...

  18. Translocation of Biopolymer Chain Through a Nanopore: Coil-Helix Transition

    Institute of Scientific and Technical Information of China (English)

    GU Fang; WANG Hai-Jun; HONG Xiao-Zhong; BA Xin-Wu

    2008-01-01

    @@ The translocation dynamics of a single biopolymer chain through a nanopore in a membrane is investigated by taking the coil-helix transition into account. Based on the changing of the free energy due to the coil-helix transition, the mean first passage time τ is obtained, and then the corresponding numerical simulations are presented under different conditions. It is shown that the coil helix transition can significantly shorten the translocation time of the biopolymer chain. In addition, we also discuss the scaling behaviour for τ with the chain length N and some related problems.

  19. Blu-Ray-based micromechanical characterization platform for biopolymer degradation assessment

    DEFF Research Database (Denmark)

    Casci Ceccacci, Andrea; Chen, Ching-Hsiu; Hwu, En-Te

    2017-01-01

    Degradable biopolymers are used as carrier materials in drug delivery devices. A complete understanding of their degradation behaviour is thus crucial in the design of new delivery systems. Here we combine a reliable method, based on spray coated micromechanical resonators and a disposable...... microfluidic chip, to characterize biopolymer degradation under the action of enzymes in controlled flow condition. The sensing platform is based on the mechanics and optics from a Blu-Ray player, which automatically localize individual sensors within the array, and sequentially measure and record...

  20. Genotoxicity of clays with potential use in biopolymers for food packaging

    DEFF Research Database (Denmark)

    Sharma, Anoop Kumar; Mortensen, Alicja; Hadrup, Niels

    Genotoxicity of clays with potential use in biopolymers for food packaging Plastics produced from biopolymers are of commercial interest as they are manufactured from renewable resources such as agricultural crop wastes and have the potential to meet environmental and health requirements. Biopoly......®30B and Cloisite®Na+ by oral gavage and the comet assay will be performed on cells from different organs including the liver, colon and kidney. A fully automated comet assay scoring system (Imstar) will be used to evaluate the genotoxic potential....