WorldWideScience

Sample records for abundance chemical

  1. Chemical Abundances in SFG and DLA

    OpenAIRE

    Schulte-Ladbeck, Regina E.; König, Brigitte; Cherinka, Brian

    2005-01-01

    We investigate the chemical abundances of local star-forming galaxies which cause Damped Lyman Alpha lines. A metallicity versus redshift diagram is constructed, on which the chemical abundances of low-redshift star-forming galaxy populations are compared with those of high-redshift Damped Lyman Alpha systems. We disucss two types of experiments on individual star-forming galaxies. In the first, the Damped Lyman Alpha line is created against an internal ultraviolet light source generated by a...

  2. Chemical element abundance in K giant atmospheres

    International Nuclear Information System (INIS)

    Komarov, N.S.; Shcherbak, A.N.

    1980-01-01

    With the help of modified method of differential curves of growth studied are physical parameters of atmospheres of giant stars of KO111 spectral class of the NGC 752, M25 and UMa cluster. Observations have been made on reflector of Crimea astrophysical observatory of Academy of Sciences of the USSR in the period from February to May, 1978. Spectograms are obtained for the wave length range from 5000-5500 A. It is shown that the change of chemical content in the wide range in heavy element composition does not influence the star atmosphere structUre. It follows from the results of the investigation that the abundance of chemical elements in stars of various scattered clusters, is the same in the range of errors of measurements and is similar to the abundance of chemical elements in the Sun atmosphere

  3. Chempy: A flexible chemical evolution model for abundance fitting. Do the Sun's abundances alone constrain chemical evolution models?

    Science.gov (United States)

    Rybizki, Jan; Just, Andreas; Rix, Hans-Walter

    2017-09-01

    Elemental abundances of stars are the result of the complex enrichment history of their galaxy. Interpretation of observed abundances requires flexible modeling tools to explore and quantify the information about Galactic chemical evolution (GCE) stored in such data. Here we present Chempy, a newly developed code for GCE modeling, representing a parametrized open one-zone model within a Bayesian framework. A Chempy model is specified by a set of five to ten parameters that describe the effective galaxy evolution along with the stellar and star-formation physics: for example, the star-formation history (SFH), the feedback efficiency, the stellar initial mass function (IMF), and the incidence of supernova of type Ia (SN Ia). Unlike established approaches, Chempy can sample the posterior probability distribution in the full model parameter space and test data-model matches for different nucleosynthetic yield sets. It is essentially a chemical evolution fitting tool. We straightforwardly extend Chempy to a multi-zone scheme. As an illustrative application, we show that interesting parameter constraints result from only the ages and elemental abundances of the Sun, Arcturus, and the present-day interstellar medium (ISM). For the first time, we use such information to infer the IMF parameter via GCE modeling, where we properly marginalize over nuisance parameters and account for different yield sets. We find that 11.6+ 2.1-1.6% of the IMF explodes as core-collapse supernova (CC-SN), compatible with Salpeter (1955, ApJ, 121, 161). We also constrain the incidence of SN Ia per 103M⊙ to 0.5-1.4. At the same time, this Chempy application shows persistent discrepancies between predicted and observed abundances for some elements, irrespective of the chosen yield set. These cannot be remedied by any variations of Chempy's parameters and could be an indication of missing nucleosynthetic channels. Chempy could be a powerful tool to confront predictions from stellar

  4. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy System

    Science.gov (United States)

    Hasselquist, Sten; Shetrone, Matthew D.; Smith, Verne V.; Holtzman, Jon A.; McWilliam, Andrew; APOGEE Team

    2018-06-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze the chemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] > -0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function. We then exploit the unique chemical abundance patters of the Sgr core to trace stars belonging to the Sgr tidal streams elsewhere in the Milky Way.

  5. Chemical Abundance Measurements of Ultra-Faint Dwarf Galaxies Discovered by the Dark Energy Survey

    Science.gov (United States)

    Nagasawa, Daniel; Marshall, Jennifer L.; Simon, Joshua D.; Hansen, Terese; Li, Ting; Bernstein, Rebecca; Balbinot, Eduardo; Drlica-Wagner, Alex; Pace, Andrew; Strigari, Louis; Pellegrino, Craig; DePoy, Darren L.; Suntzeff, Nicholas; Bechtol, Keith; Dark Energy Suvey

    2018-01-01

    We present chemical abundance analysis results derived from high-resolution spectroscopy of ultra-faint dwarfs discovered by the Dark Energy Survey. Ultra-faint dwarf galaxies preserve a fossil record of the chemical abundance patterns imprinted by the first stars in the Universe. High-resolution spectroscopic observations of member stars in several recently discovered Milky Way satellites reveal a range of abundance patterns among ultra-faint dwarfs suggesting that star formation processes in the early Universe were quite diverse. The chemical content provides a glimpse not only of the varied nucleosynthetic processes and chemical history of the dwarfs themselves, but also the environment in which they were formed. We present the chemical abundance analysis of these objects and discuss possible explanations for the observed abundance patterns.

  6. Chemical Abundances of New Member Stars in the Tucana II Dwarf Galaxy

    Science.gov (United States)

    Chiti, Anirudh; Frebel, Anna; Ji, Alexander P.; Jerjen, Helmut; Kim, Dongwon; Norris, John E.

    2018-04-01

    We present chemical abundance measurements for seven stars with metallicities ranging from Fe/H] = ‑3.3 to [Fe/H] = ‑2.4 in the Tucana II ultra-faint dwarf galaxy (UFD), based on high-resolution spectra obtained with the MIKE spectrograph on the 6.5 m Magellan-Clay Telescope. For three stars, we present detailed chemical abundances for the first time. Of those, two stars are newly discovered members of Tucana II and were selected as probable members from deep narrowband photometry of the Tucana II UFD taken with the SkyMapper telescope. This result demonstrates the potential for photometrically identifying members of dwarf galaxy systems based on chemical composition. One new star was selected from the membership catalog of Walker et al. The other four stars in our sample have been reanalyzed, following additional observations. Overall, six stars have chemical abundances that are characteristic of the UFD stellar population. The seventh star shows chemical abundances that are discrepant from the other Tucana II members and an atypical, higher strontium abundance than what is expected for typical UFD stars. While unlikely, its strontium abundance raises the possibility that it may be a foreground metal-poor halo star with the same systemic velocity as Tucana II. If we were to exclude this star, Tucana II would satisfy the criteria to be a surviving first galaxy. Otherwise, this star implies that Tucana II has likely experienced somewhat extended chemical evolution. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. Chemical Abundance Analysis of Moving Group W11450 (Latham 1)

    Science.gov (United States)

    O'Connell, Julia E.; Martens, Kylee; Frinchaboy, Peter M.

    2016-12-01

    We present elemental abundances for all seven stars in Moving Group W11450 (Latham 1) to determine if they may be chemically related. These stars appear to be both spatially and kinematically related, but no spectroscopic abundance analysis exists in literature. Abundances for eight elements were derived via equivalent width analyses of high-resolution (R ˜ 60,000), high-signal-to-noise ratio ( ˜ 100) spectra obtained with the Otto Struve 2.1 m telescope and the Sandiford Echelle Spectrograph at McDonald Observatory. The large star-to-star scatter in metallicity, -0.55 ≤ [Fe/H] ≤slant 0.06 dex (σ = 0.25), implies these stars were not produced from the same chemically homogeneous molecular cloud, and are therefore not part of a remnant or open cluster as previously proposed. Prior to this analysis, it was suggested that two stars in the group, W11449 and W11450, are possible wide binaries. The candidate wide binary pair show similar chemical abundance patterns with not only iron but with other elements analyzed in this study, suggesting the proposed connection between these two stars may be real.

  8. ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE

    Energy Technology Data Exchange (ETDEWEB)

    García Pérez, Ana E.; Majewski, Steven R.; Shane, Neville; Sobeck, Jennifer; Troup, Nicholas [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Prieto, Carlos Allende; Carrera, Ricardo; García-Hernández, D. A.; Zamora, Olga [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Holtzman, Jon A. [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Mészáros, Szabolcs [ELTE Gothard Astrophysical Observatory, H-9704 Szombathely, Szent Imre Herceg St. 112 (Hungary); Bizyaev, Dmitry [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349-0059 (United States); Cunha, Katia [Observatório Nacional, São Cristóvão, Rio de Janeiro (Brazil); Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, Liverpool John Moores University, Egerton Wharf, Birkenhead, Wirral CH41 1LD (United Kingdom); Smith, Verne V. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Bovy, Jo, E-mail: agp@iac.es [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); and others

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution ( R  ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ {sup 2} minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  9. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline

    Science.gov (United States)

    García Pérez, Ana E.; Allende Prieto, Carlos; Holtzman, Jon A.; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D. A.; Johnson, Jennifer A.; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Shane, Neville; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Weinberg, David H.; Bovy, Jo; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Hayden, Michael R.; Hearty, Fred R.; Nguyen, Duy C.; O'Connell, Robert W.; Pinsonneault, Marc H.; Wilson, John C.; Zasowski, Gail

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  10. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    International Nuclear Information System (INIS)

    Hasselquist, Sten; Holtzman, Jon; Shetrone, Matthew; Smith, Verne; Nidever, David L.; McWilliam, Andrew; Fernández-Trincado, J. G.; Tang, Baitian; Beers, Timothy C.; Majewski, Steven R.; Anguiano, Borja; Tissera, Patricia B.; Alvar, Emma Fernández; Carigi, Leticia; Delgado Inglada, Gloria; Allende Prieto, Carlos; Battaglia, Giuseppina; García-Hernández, D. A.; Almeida, Andres; Frinchaboy, Peter

    2017-01-01

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  11. APOGEE Chemical Abundances of the Sagittarius Dwarf Galaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hasselquist, Sten; Holtzman, Jon [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, Matthew [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Smith, Verne; Nidever, David L. [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); McWilliam, Andrew [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Fernández-Trincado, J. G.; Tang, Baitian [Departamento de Astronomía, Casilla 160-C, Universidad de Concepción, Concepción (Chile); Beers, Timothy C. [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); Majewski, Steven R.; Anguiano, Borja [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Tissera, Patricia B. [Department of Physics, Universidad Andres Bello, 700 Fernandez Concha (Chile); Alvar, Emma Fernández; Carigi, Leticia; Delgado Inglada, Gloria [Instituto de Astronomía, Universidad Nacional Autnoma de México, Apdo. Postal 70264, Ciudad de México, 04510 (Mexico); Allende Prieto, Carlos; Battaglia, Giuseppina; García-Hernández, D. A. [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Almeida, Andres [Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Cisternas 1200, La Serena (Chile); Frinchaboy, Peter, E-mail: sten@nmsu.edu, E-mail: holtz@nmsu.edu, E-mail: shetrone@astro.as.utexas.edu, E-mail: vsmith@email.noao.edu [Texas Christian University, Fort Worth, TX 76129 (United States); and others

    2017-08-20

    The Apache Point Observatory Galactic Evolution Experiment provides the opportunity of measuring elemental abundances for C, N, O, Na, Mg, Al, Si, P, K, Ca, V, Cr, Mn, Fe, Co, and Ni in vast numbers of stars. We analyze thechemical-abundance patterns of these elements for 158 red giant stars belonging to the Sagittarius dwarf galaxy (Sgr). This is the largest sample of Sgr stars with detailed chemical abundances, and it is the first time that C, N, P, K, V, Cr, Co, and Ni have been studied at high resolution in this galaxy. We find that the Sgr stars with [Fe/H] ≳ −0.8 are deficient in all elemental abundance ratios (expressed as [X/Fe]) relative to the Milky Way, suggesting that the Sgr stars observed today were formed from gas that was less enriched by Type II SNe than stars formed in the Milky Way. By examining the relative deficiencies of the hydrostatic (O, Na, Mg, and Al) and explosive (Si, P, K, and Mn) elements, our analysis supports the argument that previous generations of Sgr stars were formed with a top-light initial mass function, one lacking the most massive stars that would normally pollute the interstellar medium with the hydrostatic elements. We use a simple chemical-evolution model, flexCE, to further support our claim and conclude that recent stellar generations of Fornax and the Large Magellanic Cloud could also have formed according to a top-light initial mass function.

  12. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Current Status

    Science.gov (United States)

    Frinchaboy, Peter; O'Connell, Julia; Donor, John; Cunha, Katia; Thompson, Benjamin; Melendez, Matthew; Shetrone, Matthew; Zasowski, Gail; Majewski, Steven R.; APOGEE TEAM

    2018-01-01

    The Open Cluster Chemical Analysis and Mapping (OCCAM) survey aims to produce a comprehensive, uniform, infrared-based data set forhundreds of open clusters, and constrain key Galactic dynamical and chemical parameters using the SDSS/APOGEE survey and follow-up from the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We report on multi-element radial abundance gradients obtained from a sample of over 30 disk open clusters. The APOGEE chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS IV Data Release 14, optical follow-up were analyzed using equivalent width analysis and spectral synthesis. We present the current open cluster sample that spans a significant range in age allowing exploration of the evolution of the Galactic abundance gradients. This work is supported by an NSF AAG grants AST-1311835 & AST-1715662.

  13. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Detailed Age and Abundance Gradients using DR12

    Science.gov (United States)

    Frinchaboy, Peter M.; Thompson, Benjamin A.; O'Connell, Julia; Meyer, Brianne; Donor, John; Majewski, Steven R.; Holtzman, Jon A.; Zasowski, Gail; Beers, Timothy C.; Beaton, Rachael; Cunha, Katia M. L.; Hearty, Fred; Nidever, David L.; Schiavon, Ricardo P.; Smith, Verne V.; Hayden, Michael R.

    2015-01-01

    We present detailed abundance results for Galactic open clusters as part of the Open Cluster Chemical Abundances and Mapping (OCCAM) Survey, which is based primarily on data from the Sloan Digital Sky Survey/ Apache Point Observatory Galactic Evolution Experiment. Using 100 open clusters from the uniformly observed complete SDSS-III/APOGEE-1 DR12 dataset, we present age and multi-element abundance gradients for the disk of the Milky Way.This work is supported by an NSF AAG grant AST-1311835.

  14. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    Science.gov (United States)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  15. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    Science.gov (United States)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  16. The population of planetary nebulae near the Galactic Centre: chemical abundances

    Science.gov (United States)

    Mollá, M.; Cavichia, O.; Costa, R. D. D.; Maciel, W. J.

    2017-10-01

    In this work, we report physical parameters and abundances derived for a sample of 15 high extinction planetary nebulae located in the inner 2° of the Galactic bulge, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The new data allow us to extend our database including older, weaker objects that are at the faint end of the planetary nebulae luminosity function. The data provide chemical compositions for PNe located in this region of the bulge to explore the chemical enrichment history of the central region of the Galactic bulge. The results show that the abundances of our sample are skewed to higher metallicities than previous data in the outer regions of the bulge. This can indicate a faster chemical enrichment taking place at the Galactic centre.

  17. Chemical abundances of globular clusters in NGC 5128 (Centaurus A)

    Science.gov (United States)

    Hernandez, Svea; Larsen, Søren; Trager, Scott; Kaper, Lex; Groot, Paul

    2018-06-01

    We perform a detailed abundance analysis on integrated-light spectra of 20 globular clusters (GCs) in the early-type galaxy NGC 5128 (Centaurus A). The GCs were observed with X-Shooter on the Very Large Telescope (VLT). The cluster sample spans a metallicity range of -1.92 poor GCs in NGC 5128 is genuine, it could hint at a chemical enrichment history different than that experienced by the MW. We also measure Na abundances in 9 out of 20 GCs. We find evidence for intracluster abundance variations in six of these clusters where we see enhanced [Na/Fe] > +0.25 dex. We obtain the first abundance measurements of Cr, Mn, and Ni for a sample of the GC population in NGC 5128 and find consistency with the overall trends observed in the MW, with a slight enhancement (<0.1 dex) in the Fe-peak abundances measured in the NGC 5128.

  18. Abundance gradients in disc galaxies and chemical evolution models

    International Nuclear Information System (INIS)

    Diaz, A.I.

    1989-01-01

    The present state of abundance gradients and chemical evolution models of spiral galaxies is reviewed. An up to date compilation of abundance data in the literature concerning HII regions over galactic discs is presented. From these data Oxygen and Nitrogen radial gradients are computed. The slope of the Oxygen gradient is shown to have a break at a radius between 1.5 and 1.75 times the value of the effective radius of the disc, i.e. the radius containing half of the light of the disc. The gradient is steeper in the central parts of the disc and becomes flatter in the outer parts. N/O gradients are shown to be rather different from galaxy to galaxy and only a weak trend of N/O with O/H is found. The existing chemical evolution models for spiral galaxies are reviewed with special emphasis in the interpretation of numerical models having a large number of parameters. (author)

  19. Isotopic Abundance and Chemical Purity Analysis of Stable Isotope Deuterium Labeled Sudan I

    Directory of Open Access Journals (Sweden)

    CAI Yin-ping;LEI Wen;ZHENG Bo;DU Xiao-ning

    2014-02-01

    Full Text Available It is important that to analysis of the isotopic abundance and chemical purity of Sudan I-D5, which is the internal standard of isotope dilution mass spectrometry. The isotopic abundance of Sudan I-D5 is detected by “mass cluster” classification method and LC-MS. The repeatability and reproducibility experiments were carried out by using different mass spectrometers and different operators. The RSD was less than 0.1%, so the repeatability and reproducibility were satisfactory. The accuracy and precision of the isotopic abundance analysis method was good with the results of F test and t test. The high performance liquid chromatography (HPLC had been used for detecting the chemical purity of Sudan I-D5 as external standard method.

  20. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Directory of Open Access Journals (Sweden)

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  1. Molecular abundances and C/O ratios in chemically evolving planet-forming disk midplanes

    Science.gov (United States)

    Eistrup, Christian; Walsh, Catherine; van Dishoeck, Ewine F.

    2018-05-01

    Context. Exoplanet atmospheres are thought be built up from accretion of gas as well as pebbles and planetesimals in the midplanes of planet-forming disks. The chemical composition of this material is usually assumed to be unchanged during the disk lifetime. However, chemistry can alter the relative abundances of molecules in this planet-building material. Aims: We aim to assess the impact of disk chemistry during the era of planet formation. This is done by investigating the chemical changes to volatile gases and ices in a protoplanetary disk midplane out to 30 AU for up to 7 Myr, considering a variety of different conditions, including a physical midplane structure that is evolving in time, and also considering two disks with different masses. Methods: An extensive kinetic chemistry gas-grain reaction network was utilised to evolve the abundances of chemical species over time. Two disk midplane ionisation levels (low and high) were explored, as well as two different makeups of the initial abundances ("inheritance" or "reset"). Results: Given a high level of ionisation, chemical evolution in protoplanetary disk midplanes becomes significant after a few times 105 yr, and is still ongoing by 7 Myr between the H2O and the O2 icelines. Inside the H2O iceline, and in the outer, colder regions of the disk midplane outside the O2 iceline, the relative abundances of the species reach (close to) steady state by 7 Myr. Importantly, the changes in the abundances of the major elemental carbon and oxygen-bearing molecules imply that the traditional "stepfunction" for the C/O ratios in gas and ice in the disk midplane (as defined by sharp changes at icelines of H2O, CO2 and CO) evolves over time, and cannot be assumed fixed, with the C/O ratio in the gas even becoming smaller than the C/O ratio in the ice. In addition, at lower temperatures (C/O ratios of exoplanets to where and how the atmospheres have formed in a disk midplane, chemical evolution needs to be considered and

  2. Chemical Abundances and Physical Parameters of H II Regions in the Magellanic Clouds

    Science.gov (United States)

    Reyes, R. E. C.

    The chemical abundances and physical parameters of H II regions are important pa rameters to determine in order to understand how stars and galaxies evolve. The Magellanic Clouds offer us a unique oportunity to persue such studies in low metallicity galaxies. In this contribution we present the results of the photoionization modeling of 5 H II regions in each of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) sys tems. Optical data were collected from the literature, complemented by our own observa tions (Carlos Reyes et al. 1998), including UV spectra from the new IUE data ban k and infrared fluxes from the IRAS satellite. The chemical abundances of He, C, N, O, Ne, S, Ar and physical parameters like the densities, the ionized masses, the luminosities, the ionization temperatures , the filling factor and optical depth are determined. A comparison of the abundances of these HII regions with those of typical planetary nebulae and supergiants stars is also presented.

  3. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    International Nuclear Information System (INIS)

    Smith, Verne V.; Cunha, Katia; Shetrone, Matthew D.; Meszaros, Szabolcs; Allende Prieto, Carlos; Bizyaev, Dmitry; Garcìa Pèrez, Ana; Majewski, Steven R.; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A.

    2013-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants (α Boo and μ Leo), two M-giants (β And and δ Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes 12 C, 13 C, 14 N, and 16 O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of 12 C synthesized during 4 He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to ∼0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  4. CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION H-BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Verne V.; Cunha, Katia [National Optical Astronomy Observatories, Tucson, AZ 85719 (United States); Shetrone, Matthew D. [Department of Astronomy and McDonald Observatory, University of Texas, Austin, TX 78712 (United States); Meszaros, Szabolcs; Allende Prieto, Carlos [Instituto d' Astrofisica de Canarias, E-38205, La Laguna, Tenerife (Spain); Bizyaev, Dmitry [Apache Point Observatory, Sunspot, NM 88349 (United States); Garcia Perez, Ana; Majewski, Steven R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Schiavon, Ricardo [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5UX (United Kingdom); Holtzman, Jon [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); Johnson, Jennifer A., E-mail: vsmith@noao.edu [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory Fourier transform spectrometer, are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the Sloan Digital Sky Survey III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. The red giant sample studied here was chosen to probe which chemical elements can be derived reliably from the H-band APOGEE spectral region. These red giants consist of two K-giants ({alpha} Boo and {mu} Leo), two M-giants ({beta} And and {delta} Oph), and one thermally pulsing asymptotic giant branch (TP-AGB) star of spectral type MS (HD 199799). Measured chemical abundances include the cosmochemically important isotopes {sup 12}C, {sup 13}C, {sup 14}N, and {sup 16}O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. The K and M giants exhibit the abundance signature of the first dredge-up of CN-cycle material, while the TP-AGB star shows clear evidence of the addition of {sup 12}C synthesized during {sup 4}He-burning thermal pulses and subsequent third dredge-up. A comparison of the abundances derived here with published values for these stars reveals consistent results to {approx}0.1 dex. The APOGEE spectral region and linelist is thus well suited for probing both Galactic chemical evolution, as well as internal nucleosynthesis and mixing in populations of red giants via high-resolution spectroscopy.

  5. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  6. THE CHEMICAL ABUNDANCES IN THE GALACTIC CENTER FROM THE ATMOSPHERES OF RED SUPERGIANTS

    International Nuclear Information System (INIS)

    Davies, Ben; Figer, Don F.; Origlia, Livia; Kudritzki, Rolf-Peter; Rich, R. Michael; Najarro, Francisco

    2009-01-01

    The Galactic center (GC) has experienced a high degree of recent star-forming activity, as evidenced by the large number of massive stars currently residing there. The relative abundances of chemical elements in the GC may provide insights into the origins of this activity. Here, we present high-resolution H-band spectra of two red supergiants (RSGs) in the GC (IRS 7 and VR 5-7), and in combination with spectral synthesis we derive abundances for Fe and C, as well as other α-elements Ca, Si, Mg Ti, and O. We find that the C depletion in VR 5-7 is consistent with the predictions of evolutionary models of RSGs, while the heavy depletion of C and O in IRS 7's atmosphere is indicative of deep mixing, possibly due to fast initial rotation and/or enhanced mass loss. Our results indicate that the current surface Fe/H content of each star is slightly above solar. However, comparisons to evolutionary models indicate that the initial Fe-to-H ratio was likely closer to solar, and has been driven higher by H depletion at the stars' surface. Overall, we find α-to-Fe ratios for both stars, which are consistent with the thin Galactic disk. These results are consistent with other chemical studies of the GC, given the precision to which abundances can currently be determined. We argue that the GC abundances are consistent with a scenario in which the recent star-forming activity in the GC was fueled by either material traveling down the Bar from the inner disk, or from the winds of stars in the inner bulge-with no need to invoke top-heavy stellar initial mass functions to explain anomalous abundance ratios.

  7. Chemical Abundances of Hydrostatic and Explosive Alpha-elements in Sagittarius Stream Stars

    Science.gov (United States)

    Carlin, Jeffrey L.; Sheffield, Allyson A.; Cunha, Katia; Smith, Verne V.

    2018-05-01

    We analyze chemical abundances of stars in the Sagittarius (Sgr) tidal stream using high-resolution Gemini+GRACES spectra of 42 members of the highest surface-brightness portions of both the trailing and leading arms. Targets were chosen using a 2MASS+WISE color–color selection, combined with the Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) radial velocities. In this Letter, we analyze [Fe/H] and α-elements produced by both hydrostatic (O, Mg) and explosive (Si, Ca, Ti) nucleosynthetic processes. The average [Fe/H] for our Sgr stream stars is lower than that for stars in the Sgr core, and stars in the trailing and leading arms show systematic differences in [Fe/H]. Both hydrostatic and explosive elements are depleted relative to Milky Way (MW) disk and halo stars, with a larger gap between the MW trend and Sgr stars for the hydrostatic elements. Chemical abundances of Sgr stream stars show similar patterns to those measured in the core of the Sgr dSph. We explore the ratio of hydrostatic to explosive α-elements [α h/ex] (which we refer to as the “HEx ratio”). Our observed HEx ratio trends for Sgr debris are deficient relative to MW stars. Via simple chemical evolution modeling, we show that these HEx ratio patterns are consistent with a Sgr IMF that lacks the most massive stars. This study provides a link between the chemical properties in the intact Sgr core and the significant portion of the Sgr system’s luminosity that is estimated to currently reside in the streams.

  8. CHEMICAL ABUNDANCE ANALYSIS OF A NEUTRON-CAPTURE ENHANCED RED GIANT IN THE BULGE PLAUT FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I.; Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); McWilliam, Andrew, E-mail: cijohnson@astro.ucla.edu, E-mail: rmr@astro.ucla.edu, E-mail: cjohnson@cfa.harvard.edu, E-mail: andy@obs.carnegiescience.edu [Observatories of the Carnegie Institution of Washington, Pasadena, CA 91101 (United States)

    2013-09-20

    We present chemical abundances for 27 elements ranging from oxygen to erbium in the metal-poor ([Fe/H] = –1.67) bulge red giant branch star 2MASS 18174532-3353235. The results are based on equivalent width and spectrum synthesis analyses of a high-resolution (R ∼ 30, 000) spectrum obtained with the Magellan-MIKE spectrograph. While the light (Z ∼< 30) element abundance patterns match those of similar metallicity bulge and halo stars, the strongly enhanced heavy element abundances are more similar to 'r-II' halo stars (e.g., CS 22892-052) typically found at [Fe/H] ∼< – 2.5. We find that the heaviest elements (Z ≥ 56) closely follow the scaled-solar r-process abundance pattern. We do not find evidence supporting significant s-process contributions; however, the intermediate mass elements (e.g., Y and Zr) appear to have been produced through a different process than the heaviest elements. The light and heavy element abundance patterns of 2MASS 18174532-3353235 are in good agreement with the more metal-poor r-process enhanced stars CS 22892-052 and BD +17{sup o}3248. 2MASS 18174532-3353235 also shares many chemical characteristics with the similar metallicity but comparatively α-poor Ursa Minor dwarf galaxy giant COS 82. Interestingly, the Mo and Ru abundances of 2MASS 18174532-3353235 are also strongly enhanced and follow a similar trend recently found to be common in moderately metal-poor main-sequence turn-off halo stars.

  9. Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920

    Science.gov (United States)

    Kılıçoğlu, Tolgahan; Çalışkan, Şeyma; Ünal, Kübraözge

    2018-01-01

    To understand the origin of the abundance peculiarities of non-magnetic A-type stars, we present the first detailed chemical abundance analysis of a metallic line star HD 23193 (A2m) and an A-type subgiant HD 170920 (A5), which could have been a HgMn star on the main sequence. Our analysis is based on medium (R ∼ 14,000) and high (R ∼ 40,000) resolution spectroscopic data of the stars. The abundances of 18 elements are derived: C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, and Ba. The masses of HD 23193 and HD 170920 are estimated from evolutionary tracks as 2.3 ± 0.1 M ⊙ and 2.9 ± 0.1 M ⊙. The ages are found to be 635 ± 33 Myr for HD 23193 and 480 ± 50 Myr for HD 170920 using isochrones. The abundance pattern of HD 23193 shows deviations from solar values in the iron-peak elements and indicates remarkable overabundances of Sr (1.16), Y (1.03), and Ba (1.24) with respect to the solar abundances. We compare the derived abundances of this moderately rotating (v\\sin i =37.5 km s‑1) Am star to the theoretical chemical evolution models including rotational mixing. The theoretically predicted abundances resemble our derived abundance pattern, except for a few elements (Si and Cr). For HD 170920, we find nearly solar abundances, except for C (‑0.43), S (0.16), Ti (0.15), Ni (0.16), Zn (0.41), Y (0.57), and Ba (0.97). Its low rotational velocity (v\\sin i=14.5 km s‑1), reduced carbon abundance, and enhanced heavy element abundances suggest that the star is most likely an evolved HgMn star. Based on observations made at the TÜBITAK National Observatory (Program ID 14BRTT150–671), and the Ankara University Observatory, Turkey.

  10. Modelling chemical abundance distributions for dwarf galaxies in the Local Group: the impact of turbulent metal diffusion

    Science.gov (United States)

    Escala, Ivanna; Wetzel, Andrew; Kirby, Evan N.; Hopkins, Philip F.; Ma, Xiangcheng; Wheeler, Coral; Kereš, Dušan; Faucher-Giguère, Claude-André; Quataert, Eliot

    2018-02-01

    We investigate stellar metallicity distribution functions (MDFs), including Fe and α-element abundances, in dwarf galaxies from the Feedback in Realistic Environment (FIRE) project. We examine both isolated dwarf galaxies and those that are satellites of a Milky Way-mass galaxy. In particular, we study the effects of including a sub-grid turbulent model for the diffusion of metals in gas. Simulations that include diffusion have narrower MDFs and abundance ratio distributions, because diffusion drives individual gas and star particles towards the average metallicity. This effect provides significantly better agreement with observed abundance distributions in dwarf galaxies in the Local Group, including small intrinsic scatter in [α/Fe] versus [Fe/H] of ≲0.1 dex. This small intrinsic scatter arises in our simulations because the interstellar medium in dwarf galaxies is well mixed at nearly all cosmic times, such that stars that form at a given time have similar abundances to ≲0.1 dex. Thus, most of the scatter in abundances at z = 0 arises from redshift evolution and not from instantaneous scatter in the ISM. We find similar MDF widths and intrinsic scatter for satellite and isolated dwarf galaxies, which suggests that environmental effects play a minor role compared with internal chemical evolution in our simulations. Overall, with the inclusion of metal diffusion, our simulations reproduce abundance distribution widths of observed low-mass galaxies, enabling detailed studies of chemical evolution in galaxy formation.

  11. Chemical Abundances of Main-sequence, Turnoff, Subgiant, and Red Giant Stars from APOGEE Spectra. I. Signatures of Diffusion in the Open Cluster M67

    Science.gov (United States)

    Souto, Diogo; Cunha, Katia; Smith, Verne V.; Allende Prieto, C.; García-Hernández, D. A.; Pinsonneault, Marc; Holzer, Parker; Frinchaboy, Peter; Holtzman, Jon; Johnson, J. A.; Jönsson, Henrik; Majewski, Steven R.; Shetrone, Matthew; Sobeck, Jennifer; Stringfellow, Guy; Teske, Johanna; Zamora, Olga; Zasowski, Gail; Carrera, Ricardo; Stassun, Keivan; Fernandez-Trincado, J. G.; Villanova, Sandro; Minniti, Dante; Santana, Felipe

    2018-04-01

    Detailed chemical abundance distributions for 14 elements are derived for eight high-probability stellar members of the solar metallicity old open cluster M67 with an age of ∼4 Gyr. The eight stars consist of four pairs, with each pair occupying a distinct phase of stellar evolution: two G dwarfs, two turnoff stars, two G subgiants, and two red clump (RC) K giants. The abundance analysis uses near-IR high-resolution spectra (λ1.5–1.7 μm) from the Apache Point Observatory Galactic Evolution Experiment survey and derives abundances for C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe. Our derived stellar parameters and metallicity for 2M08510076+1153115 suggest that this star is a solar twin, exhibiting abundance differences relative to the Sun of ≤0.04 dex for all elements. Chemical homogeneity is found within each class of stars (∼0.02 dex), while significant abundance variations (∼0.05–0.20 dex) are found across the different evolutionary phases; the turnoff stars typically have the lowest abundances, while the RCs tend to have the largest. Non-LTE corrections to the LTE-derived abundances are unlikely to explain the differences. A detailed comparison of the derived Fe, Mg, Si, and Ca abundances with recently published surface abundances from stellar models that include chemical diffusion provides a good match between the observed and predicted abundances as a function of stellar mass. Such agreement would indicate the detection of chemical diffusion processes in the stellar members of M67.

  12. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    Science.gov (United States)

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  13. Chemical Abundances of Red Giant Branch Stars in the Globular Cluster NGC 288

    Science.gov (United States)

    Hsyu, Tiffany; Johnson, C. I.; Pilachowski, C. A.; Lee, Y.; Rich, R. M.

    2013-01-01

    We present chemical abundances and radial velocities for ~30 red giant branch (RGB) stars in the globular cluster NGC 288. The results are based on moderate resolution (R≈18,000) and moderate signal-to-noise ratio 50-75) obtained with the Hydra multi-object spectrograph on the Blanco 4m telescope. NGC 288 has been shown to exhibit two separate RGBs and we investigate possible differences in metallicity and/or light element abundances between stars on each branch. We present a new filter tracing for the CTIO Calcium HK narrow band filter and explore its effects on previous globular cluster color-magnitude diagrams. We also compare the light element abundance patterns of NGC 288 to those of other similar metallicity halo clusters. This material is based upon work supported by the National Science Foundation under award No.AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grants AST-0709479 and AST-121120995.

  14. Chemical abundances in the globular clusters NGC6229 and NGC6779

    Science.gov (United States)

    Khamidullina, D. A.; Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2014-10-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, T eff, and log g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], log t, and Y for the NGC5904 and NGC6254 clusters, which, according to the literature, are considered to be the closest analogues of the two GCs of our study. Using the medium-resolution spectra from the library of Schiavon et al., we obtained for these two clusters a satisfactory agreement with the reported estimates for all the parameters within the errors. We derived the following cluster parameters. NGC6229: [Fe/H] = -1.65 dex, t = 12.6 Gyr, Y = 0.26, [ α/Fe] = 0.28 dex; NGC6779: [Fe/H] = -1.9 dex, t = 12.6 Gyr, Y = 0.23, [ α/Fe] = 0.08 dex; NGC5904: [Fe/H] = -1.6 dex, t = 12.6 Gyr, Y = 0.30, [ α/Fe] = 0.35 dex; NGC6254: [Fe/H] = -1.52 dex, t = 11.2 Gyr, Y = 0.30, [ α/Fe] = 0.025 dex. The value [ α/Fe] denotes the average of the Ca and Mg abundances.

  15. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    Science.gov (United States)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  16. Abundances in planetary nebulae near the galactic centre .1. Abundance determinations

    NARCIS (Netherlands)

    Ratag, MA; Pottasch, [No Value; Dennefeld, M; Menzies, J

    1997-01-01

    Abundance determinations of about 110 planetary nebulae, which are likely to be in the Galactic Bulge are presented. Plasma diagnostics have been performed by making use of the available forbidden line ratios combined with radio continuum measurements. Chemical abundances of He, O, N, Ne, S, Ar, and

  17. Magnetic field topology and chemical abundance distributions of the young, rapidly rotating, chemically peculiar star HR 5624

    Science.gov (United States)

    Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.

    2017-09-01

    Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that

  18. The Chemical Abundances of Stars in the Halo (CASH) Project. II. New Extremely Metal-poor Stars

    Science.gov (United States)

    Krugler, Julie A.; Frebel, A.; Roederer, I. U.; Sneden, C.; Shetrone, M.; Beers, T.; Christlieb, N.

    2011-01-01

    We present new abundance results from the Chemical Abundances of Stars in the Halo (CASH) project. The 500 CASH spectra were observed using the Hobby-Eberly Telescope in "snapshot" mode and are analyzed using an automated stellar parameter and abundance pipeline called CASHCODE. For the 20 most metal-poor stars of the CASH sample we have obtained high resolution spectra using the Magellan Telescope in order to test the uncertainties and systematic errors associated with the snapshot quality (i.e., R 15,000 and S/N 65) HET spectra and to calibrate the newly developed CASHCODE by making a detailed comparison between the stellar parameters and abundances determined from the high resolution and snapshot spectra. We find that the CASHCODE stellar parameters (effective temperature, surface gravity, metallicity, and microturbulence) agree well with the results of the manual analysis of the high resolution spectra. We present the abundances of three newly discovered stars with [Fe/H] ratios with alpha-enhancement and Fe-peak depletion and a range of n-capture elements. The full CASH sample will be used to derive statistically robust abundance trends and frequencies (e.g. carbon and n-capture), as well as placing constraints on nucleosynthetic processes that occurred in the early universe.

  19. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  20. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  1. DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1

    International Nuclear Information System (INIS)

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron

    2011-01-01

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R GC = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 ± 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [α/Fe] ratios, though in agreement with the Galactic stars within the 1σ errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/α] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  2. No Evidence of Chemical Abundance Variations in the Intermediate-age Cluster NGC 1783

    Science.gov (United States)

    Zhang, Hao; de Grijs, Richard; Li, Chengyuan; Wu, Xiaohan

    2018-02-01

    We have analyzed multi-passband photometric observations, obtained with the Hubble Space Telescope, of the massive (1.8 × 105 M ⊙), intermediate-age (1.8 Gyr-old) Large Magellanic Cloud star cluster NGC 1783. The morphology of the cluster’s red giant branch does not exhibit a clear broadening beyond its intrinsic width; the observed width is consistent with that owing to photometric uncertainties alone and independent of the photometric selection boundaries we applied to obtain our sample of red giant stars. The color dispersion of the cluster’s red giant stars around the best-fitting ridgeline is 0.062 ± 0.009 mag, which is equivalent to the width of 0.080 ± 0.001 mag derived from artificial simple stellar population tests, that is, tests based on single-age, single-metallicity stellar populations. NGC 1783 is comparably as massive as other star clusters that show clear evidence of multiple stellar populations. After incorporating mass-loss recipes from its current age of 1.8 Gyr to an age of 6 Gyr, NGC 1783 is expected to remain as massive as some other clusters that host clear multiple populations at these intermediate ages. If we were to assume that mass is an important driver of multiple population formation, then NGC 1783 should have exhibited clear evidence of chemical abundance variations. However, our results support the absence of any chemical abundance variations in NGC 1783.

  3. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R.; Hawkins, Keith; Koposov, Sergey; Sanders, Jason; Gilmore, Gerry [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hogg, David W. [Simons Center for Data Analysis, 160 Fifth Avenue, 7th Floor, New York, NY 10010 (United States); Ness, Melissa; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Enke, Harry [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Zwitter, Tomaž; Matijevič, Gal [University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, 1000 Ljubljana (Slovenia); Freeman, Kenneth C.; Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Seabroke, George [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT (United Kingdom); Bienaymé, Olivier [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Gibson, Brad K. [E.A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX (United Kingdom); and others

    2017-05-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho- Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon . For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC . We derive and validate effective temperature T {sub eff}, surface gravity log g , and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.

  4. CHLORINE ABUNDANCES IN COOL STARS

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Z. G.; Pilachowski, C. A. [Indiana University Bloomington, Astronomy Department, Swain West 319, 727 East Third Street, Bloomington, IN 47405-7105 (United States); Hinkle, K., E-mail: zmaas@indiana.edu, E-mail: cpilacho@indiana.edu, E-mail: hinkle@noao.edu [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States)

    2016-12-01

    Chlorine abundances are reported in 15 evolved giants and 1 M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H{sup 35}Cl at 3.69851 μ m. The high-resolution L -band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4 m telescope. The average [{sup 35}Cl/Fe] abundance in stars with −0.72 < [Fe/H] < 0.20 is [{sup 35}Cl/Fe] = (−0.10 ± 0.15) dex. The mean difference between the [{sup 35}Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16 ± 0.15) dex. The [{sup 35}Cl/Ca] ratio has an offset of ∼0.35 dex above model predictions, suggesting that chemical evolution models are underproducing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and H ii regions. In one star where both H{sup 35}Cl and H{sup 37}Cl could be measured, a {sup 35}Cl/{sup 37}Cl isotope ratio of 2.2 ± 0.4 was found, consistent with values found in the Galactic ISM and predicted chemical evolution models.

  5. Clustering in the stellar abundance space

    Science.gov (United States)

    Boesso, R.; Rocha-Pinto, H. J.

    2018-03-01

    We have studied the chemical enrichment history of the interstellar medium through an analysis of the n-dimensional stellar abundance space. This work is a non-parametric analysis of the stellar chemical abundance space. The main goal is to study the stars from their organization within this abundance space. Within this space, we seek to find clusters (in a statistical sense), that is, stars likely to share similar chemo-evolutionary history, using two methods: the hierarchical clustering and the principal component analysis. We analysed some selected abundance surveys available in the literature. For each sample, we labelled the group of stars according to its average abundance curve. In all samples, we identify the existence of a main enrichment pattern of the stars, which we call chemical enrichment flow. This flow is set by the structured and well-defined mean rate at which the abundances of the interstellar medium increase, resulting from the mixture of the material ejected from the stars and stellar mass-loss and interstellar medium gas. One of the main results of our analysis is the identification of subgroups of stars with peculiar chemistry. These stars are situated in regions outside of the enrichment flow in the abundance space. These peculiar stars show a mismatch in the enrichment rate of a few elements, such as Mg, Si, Sc and V, when compared to the mean enrichment rate of the other elements of the same stars. We believe that the existence of these groups of stars with peculiar chemistry may be related to the accretion of planetary material on to stellar surfaces or may be due to production of the same chemical element by different nucleosynthetic sites.

  6. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    International Nuclear Information System (INIS)

    Lee, Duane M.; Johnston, Kathryn V.; Sen, Bodhisattva; Jessop, Will

    2015-01-01

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10 3–4 mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time

  7. RECONSTRUCTING THE ACCRETION HISTORY OF THE GALACTIC STELLAR HALO FROM CHEMICAL ABUNDANCE RATIO DISTRIBUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Duane M. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Johnston, Kathryn V. [Department of Astronomy, Columbia University, New York City, NY 10027 (United States); Sen, Bodhisattva; Jessop, Will, E-mail: duane@shao.ac.cn [Department of Statistics, Columbia University, New York City, NY 10027 (United States)

    2015-03-20

    Observational studies of halo stars during the past two decades have placed some limits on the quantity and nature of accreted dwarf galaxy contributions to the Milky Way (MW) stellar halo by typically utilizing stellar phase-space information to identify the most recent halo accretion events. In this study we tested the prospects of using 2D chemical abundance ratio distributions (CARDs) found in stars of the stellar halo to determine its formation history. First, we used simulated data from 11 “MW-like” halos to generate satellite template sets (STSs) of 2D CARDs of accreted dwarf satellites, which are composed of accreted dwarfs from various mass regimes and epochs of accretion. Next, we randomly drew samples of ∼10{sup 3–4} mock observations of stellar chemical abundance ratios ([α/Fe], [Fe/H]) from those 11 halos to generate samples of the underlying densities for our CARDs to be compared to our templates in our analysis. Finally, we used the expectation-maximization algorithm to derive accretion histories in relation to the STS used and the sample size. For certain STSs used we typically can identify the relative mass contributions of all accreted satellites to within a factor of two. We also find that this method is particularly sensitive to older accretion events involving low-luminosity dwarfs, e.g., ultra-faint dwarfs—precisely those events that are too ancient to be seen by phase-space studies of stars and too faint to be seen by high-z studies of the early universe. Since our results only exploit two chemical dimensions and near-future surveys promise to provide ∼6–9 dimensions, we conclude that these new high-resolution spectroscopic surveys of the stellar halo will allow us to recover its accretion history—and the luminosity function of infalling dwarf galaxies—across cosmic time.

  8. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    International Nuclear Information System (INIS)

    Barklem, Paul S

    2012-01-01

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X + + H − have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  9. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    Science.gov (United States)

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: I) more than 600 dwarfs of the solar neighborhood and of open clusters and II) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  10. Chemical Abundances of Red Giant Branch Stars in the Globular Clusters NGC 6333 and NGC 6366

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. M.; Pilachowski, C. A.; Kunder, A. M.

    2013-01-01

    We present chemical abundances and radial velocities for >20 red giant branch (RGB) stars in the Galactic globular clusters NGC 6333 ([Fe/H]≈-1.8) and NGC 6366 ([Fe/H]≈-0.6). The results are based on moderate resolution (R=18,000), high signal-to-noise ratio (>100) spectra obtained with the Hydra multifiber positioner and bench spectrograph on the WIYN 3.5m telescope at Kitt Peak National Observatory. Both objects are likely associated with the Galactic bulge globular cluster system, and we therefore compare the cluster abundance patterns with those of nearby bulge field stars. Additionally, we investigate differences in the O-Na anticorrelation and neutron-capture element dispersion between the two clusters, and compare their abundance patterns with those of similar metallicity halo globular clusters. This material is based upon work supported by the National Science Foundation under award No. AST-1003201 to C.I.J. C.A.P. gratefully acknowledges support from the Daniel Kirkwood Research Fund at Indiana University. R.M.R. acknowledges support from NSF grant AST-0709479 and AST-121120995.

  11. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars. Detailed abundance analysis of OGLE-2008-BLG-209S

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. [ABRIDGED] METHODS. We present a detailed elemental abundance analysis of OGLE-2008-BLG-209S, the source star...

  12. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    International Nuclear Information System (INIS)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J.; Basurah, Hassan

    2014-01-01

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T e , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z ☉ /30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T e -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm –3 . We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z ☉ > 0.15.

  13. Metal-poor dwarf galaxies in the SIGRID galaxy sample. I. H II region observations and chemical abundances

    Energy Technology Data Exchange (ETDEWEB)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Jerjen, Helmut; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia); Basurah, Hassan, E-mail: David.Nicholls@anu.edu.au [Astronomy Department, King Abdulaziz University, P.O. Box 80203 Jeddah (Saudi Arabia)

    2014-05-10

    In this paper we present the results of observations of 17 H II regions in thirteen galaxies from the SIGRID sample of isolated gas-rich irregular dwarf galaxies. The spectra of all but one of the galaxies exhibit the auroral [O III] 4363 Å line, from which we calculate the electron temperature, T{sub e} , and gas-phase oxygen abundance. Five of the objects are blue compact dwarf galaxies, of which four have not previously been analyzed spectroscopically. We include one unusual galaxy which exhibits no evidence of the [N II] λλ 6548,6584 Å lines, suggesting a particularly low metallicity (< Z {sub ☉}/30). We compare the electron temperature based abundances with those derived using eight of the new strong-line diagnostics presented by Dopita et al. Using a method derived from first principles for calculating total oxygen abundance, we show that the discrepancy between the T{sub e} -based and strong-line gas-phase abundances have now been reduced to within ∼0.07 dex. The chemical abundances are consistent with what is expected from the luminosity-metallicity relation. We derive estimates of the electron densities and find them to be between ∼5 and ∼100 cm{sup –3}. We find no evidence for a nitrogen plateau for objects in this sample with metallicities 0.5 > Z {sub ☉} > 0.15.

  14. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Science.gov (United States)

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions.

  15. ISM chemical abundances in two intermediate-velocity clouds in the line of sight to SN 1987A

    Science.gov (United States)

    Morgan, Siobahn; Bohm-Vitense, Erika

    1988-01-01

    The earliest IUE high-resolution spectra of SN 1987A have been studied and reveal the presence of several clouds in the line of sight to the LMC. In particular, there are two clouds with radial velocities of about 130 km/s and about 180 km/s. These clouds' velocities are between those of Galactic clouds at 0-80 km/s and those of LMC gas at about 270 km/s. Chemical-abundance determinations may help to determine the origin and location of these clouds. Curve-of-growth analysis and 21-cm observations show that they may be underabundant in heavy elements by about a factor of 2 as compared to solar abundances. No depletion indicative of grain formation can be seen.

  16. ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOOeTES I ULTRAFAINT GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, Gerard [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Norris, John E.; Yong, David [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Monaco, Lorenzo [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19 (Chile); Wyse, Rosemary F. G. [Department of Physics and Astronomy, The Johns Hopkins University, 3900 North Charles Street, Baltimore, MD 21218 (United States); Geisler, D., E-mail: gil@ast.cam.ac.uk, E-mail: jen@mso.anu.edu.au, E-mail: yong@mso.anu.edu.au, E-mail: lmonaco@eso.org, E-mail: wyse@pha.jhu.edu, E-mail: dgeisler@astro-udec.cl [Departamento de Astronomia, Universidad de Concepcion (Chile)

    2013-01-20

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Booetes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from -3.7 to -1.9 and include a CEMP-no star with [Fe/H] = -3.33. We conclude from our chemical abundance data that Booetes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [{alpha}/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [{alpha}/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and 'carbon-normal'.

  17. ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOÖTES I ULTRAFAINT GALAXY

    International Nuclear Information System (INIS)

    Gilmore, Gerard; Norris, John E.; Yong, David; Monaco, Lorenzo; Wyse, Rosemary F. G.; Geisler, D.

    2013-01-01

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Boötes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from –3.7 to –1.9 and include a CEMP-no star with [Fe/H] = –3.33. We conclude from our chemical abundance data that Boötes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [α/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [α/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and 'carbon-normal'.

  18. Chemical Abundances of M-Dwarfs from the Apogee Survey. I. The Exoplanet Hosting Stars Kepler-138 and Kepler-186

    Energy Technology Data Exchange (ETDEWEB)

    Souto, D.; Cunha, K. [Observatório Nacional, Rua General José Cristino, 77, 20921-400 São Cristóvão, Rio de Janeiro, RJ (Brazil); García-Hernández, D. A.; Zamora, O.; Prieto, C. Allende; Jönsson, H.; Pérez, A. E. García [Instituto de Astrofísica de Canarias (IAC), Vía Lactea S/N, E-38205, La Laguna, Tenerife (Spain); Smith, V. V. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Mahadevan, S. [Department of Astronomy and Astrophysics, The Pennsylvania State University (United States); Blake, C. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Johnson, J. A.; Pinsonneault, M. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); Holtzman, J. [New Mexico State University, Las Cruces, NM 88003 (United States); Majewski, S. R.; Sobeck, J. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904-4325 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory (United States); Teske, J. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Nidever, D. [Department of Astronomy, University of Michigan, Ann Arbor, MI, 48104 (United States); Schiavon, R. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); and others

    2017-02-01

    We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution ( R ∼ 22,500) H -band spectra from the SDSS-IV–APOGEE survey. Chemical abundances of 13 elements—C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe—are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H{sub 2}O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H]{sub Kepler-138} = −0.09 ± 0.09 dex and [Fe/H]{sub Kepler-186} = −0.08 ± 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by ∼0.1–0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55±0.10 for Kepler-138 and 0.52±0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.

  19. Physico-chemical characteristics and abundance of aquatic ...

    African Journals Online (AJOL)

    Macroinvertebrates abundance shows that, out of the total number of species identified, 14 were arthropods, distributed among 3 classes; 10 species were of class Insecta, 2 species from class Arachnida and 2 species from the class Crustacean. Phylum Mollusca and phylum Annelida had 2 and 1 species, respectively.

  20. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Durán, María Fernanda; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-01-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between –1.6 and –0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <–0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope

  1. CHEMICAL ABUNDANCE EVIDENCE OF ENDURING HIGH STAR FORMATION RATES IN AN EARLY-TYPE GALAXY: HIGH [Ca/Fe] IN NGC 5128 GLOBULAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Duran, Maria Fernanda; Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, 1156 High Street, UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); McWilliam, Andrew, E-mail: jcolucci@ucolick.org [Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States)

    2013-08-20

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 {+-} 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 {+-} 0.09 and +0.24 {+-} 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope.

  2. VizieR Online Data Catalog: Chemical abundances of 1059 FGK stars (Delgado Mena+, 2017)

    Science.gov (United States)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; Gonzalez Hernandez, J. I.; Israelian, G.

    2017-07-01

    The baseline sample used in this work is formed by 1111 FGK stars observed within the context of the HARPS GTO programs. It is a combination of three HARPS subsamples hereafter called HARPS-1 (Mayor et al., 2003Msngr.114...20M), HARPS-2 (Lo Curto et al., 2010, Cat. J/A+A/512/A48), and HARPS-4 (Santos et al., 2011, Cat. J/A+A/526/A112). The individual spectra of each star were reduced using the HARPS pipeline and then combined with IRAF after correcting for its radial velocity shift. The final spectra have a resolution of R~115000 and high signal-to-noise ratios (55%of the spectra have a S/N higher than 200). The total sample is composed of 136 stars with planets and 975 stars without detected planets. Chemical abundances of these samples for refractory elements with AMena et al., 2014, Cat. J/A+A/562/A92; 2015, Cat. J/A+A/576/A69), and nitrogen abundances (Suarez-Andres et al., 2016A&A...591A..69S, only for a small fraction of stars). (2 data files).

  3. Ammonia abundances in four comets

    International Nuclear Information System (INIS)

    Wickoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    NH2 emission band strengths were measured in four comets and the NH2 column densities were determined in order to measure the ammonia content of the comets. The mean ammonia/water abundance ratio derived for the four comets is found to be 0.13 + or - 0.06 percent, with no significant variation among the comets. The uniformity of this abundance attests to a remarkable degree of chemical homogeneity over large scales in the comet-forming region of the primordial solar nebula, and contrasts with the CO abundance variations found previously in comets. The N2 and NH3 abundances indicate a condensation temperature in the range 20-160 K, consistent with virtually all comet formation hypotheses. 64 refs

  4. Chemical abundances associated with gamma-ray bursts: nucleosynthesis in afterglows

    Science.gov (United States)

    Hu, Tao; Wang, Min

    2014-03-01

    Gamma-ray burst (GRB) ejecta carries huge amounts of energy expanding into the surrounding medium and heats up these materials, making it possible that nucleosynthesis can take place in such hot sites in afterglow stage. Here, we study possible changes in chemical abundances in the GRB afterglow processes of Wolf-Rayet (WR) star wind environments (Case A) and constant density surroundings (Case B). We find that the light element of lithium-beryllium-boron could occur in the afterglows via He+He process and spallation reactions. Some isotopes of F, Ne, Mg, Al, Si, P, S and Fe-group elements are also new species formed in the afterglows via proton-, neutron- and α-capture. The results show that the nucleosynthetic yields might be a diagnostic of the GRB's ambient environment. Our calculations indicate that Mg, Al, Si, P, Cr, Mn, Fe and Co have trended to appear in Case A, while Ne, Ti and Ni trend to occur in Case B. Furthermore, although some species have occurred both in Cases A and B, their mass fractions are quite different in these two cases. Here, we show that the mass fractions of 7Li, 7Be, 24Mg and 30Si are higher in Case A than that in Case B, but 18F gives an opposite conclusion. Nucleosynthetic outputs might also be an indice to estimate the luminosity-temperature relation factor β. In this study, when β reduces, the mass abundances of 11B and 20Ne are higher in Case B than that in Case A; in contrast, as the β becomes larger, this trend would be reversed; therefore, perhaps we could select the above elements as the indicators to estimate the properties of the surroundings around the GRBs. We also suggest that the spectroscopic observations of a GRB afterglow could only reveal the nucleosynthetic outputs from the interaction site between the GRB jet and its ambient matter, but could not represent the original composition of the pre-GRB surrounding medium.

  5. Depleting high-abundant and enriching low-abundant proteins in human serum: An evaluation of sample preparation methods using magnetic nanoparticle, chemical depletion and immunoaffinity techniques.

    Science.gov (United States)

    de Jesus, Jemmyson Romário; da Silva Fernandes, Rafael; de Souza Pessôa, Gustavo; Raimundo, Ivo Milton; Arruda, Marco Aurélio Zezzi

    2017-08-01

    The efficiency of three different depletion methods to remove the most abundant proteins, enriching those human serum proteins with low abundance is checked to make more efficient the search and discovery of biomarkers. These methods utilize magnetic nanoparticles (MNPs), chemical reagents (sequential application of dithiothreitol and acetonitrile, DTT/ACN), and commercial apparatus based on immunoaffinity (ProteoMiner, PM). The comparison between methods shows significant removal of abundant protein, remaining in the supernatant at concentrations of 4.6±0.2, 3.6±0.1, and 3.3±0.2µgµL -1 (n=3) for MNPs, DTT/ACN and PM respectively, from a total protein content of 54µgµL -1 . Using GeLC-MS/MS analysis, MNPs depletion shows good efficiency in removing high molecular weight proteins (>80kDa). Due to the synergic effect between the reagents DTT and ACN, DTT/ACN-based depletion offers good performance in the depletion of thiol-rich proteins, such as albumin and transferrin (DTT action), as well as of high molecular weight proteins (ACN action). Furthermore, PM equalization confirms its efficiency in concentrating low-abundant proteins, decreasing the dynamic range of protein levels in human serum. Direct comparison between the treatments reveals 72 proteins identified when using MNP depletion (43 of them exclusively by this method), but only 20 proteins using DTT/ACN (seven exclusively by this method). Additionally, after PM treatment 30 proteins were identified, seven exclusively by this method. Thus, MNPs and DTT/ACN depletion can be simple, quick, cheap, and robust alternatives for immunochemistry-based protein depletion, providing a potential strategy in the search for disease biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Elemental Abundances and their Implications for the Chemical Enrichment of the Boötes I Ultrafaint Galaxy

    Science.gov (United States)

    Gilmore, Gerard; Norris, John E.; Monaco, Lorenzo; Yong, David; Wyse, Rosemary F. G.; Geisler, D.

    2013-01-01

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Boötes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from -3.7 to -1.9 and include a CEMP-no star with [Fe/H] = -3.33. We conclude from our chemical abundance data that Boötes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [α/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [α/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and "carbon-normal." Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal P82.182.B-0372, PI: G. Gilmore).

  7. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    Science.gov (United States)

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Chemical Abundance Evidence of Enduring High Star Formation Rates in an Early-type Galaxy: High [Ca/Fe] in NGC 5128 Globular Clusters

    Science.gov (United States)

    Colucci, Janet E.; Fernanda Durán, María; Bernstein, Rebecca A.; McWilliam, Andrew

    2013-08-01

    We present [Fe/H], ages, and Ca abundances for an initial sample of 10 globular clusters in NGC 5128 obtained from high-resolution, high signal-to-noise ratio echelle spectra of their integrated light. All abundances and ages are obtained using our original technique for high-resolution integrated light abundance analysis of globular clusters. The clusters have a range in [Fe/H] between -1.6 and -0.2. In this sample, the average [Ca/Fe] for clusters with [Fe/H] <-0.4 is +0.37 ± 0.07, while the average [Ca/Fe] in our Milky Way (MW) and M31 GC samples is +0.29 ± 0.09 and +0.24 ± 0.10, respectively. This may imply a more rapid chemical enrichment history for NGC 5128 than for either the MW or M31. This sample provides the first quantitative picture of the chemical history of NGC 5128 that is directly comparable to what is available for the MW. Data presented here were obtained with the MIKE echelle spectrograph on the Magellan Clay Telescope. This Letter includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. H II region in NGC 6744: Spectrophotometry and chemical abundances

    International Nuclear Information System (INIS)

    Talent, D.L.

    1982-01-01

    Spectrophotometry of emission lines in the lambdalambda3700--6800 spectral range is presented for An H II region in an outer arm of NGC6744, a southern hemisphere galaxy of type SAB(r)bc II. The electron temperature, derived from the [O III] lines and assuming N/sub e/ = 100 cm -3 , was found to be 9,630 +- 450 K. Ionic abundances, derived in the usual fashion from the measured line strengths, were corrected to total relative number abundances by application of the standard ionization correction factor (ICF) scheme and by comparison to models. The derived abundances, relative to log Hequivalent12.00, are log He = 10.96 +- 0.06, log N = 7.34 +- 0.26, log O log O = 8.44 +- 0.10, log Ne = 7.80 +- 0.16, and log S = 6.75 +- 0.28. The NGC 6744 H II region abundances, and various ratios, are compared to similar data for H II regions in the SMC, LMC, and the Perseus arm of the Galaxy,. From the comparison it is suggested that the histories of nucleosynthesis in the outer regions of NGC 6744 and the Galaxy could have been quite similar

  10. Magellanic Clouds Cepheids: Thorium Abundances

    Directory of Open Access Journals (Sweden)

    Yeuncheol Jeong

    2018-03-01

    Full Text Available The analysis of the high-resolution spectra of 31 Magellanic Clouds Cepheid variables enabled the identification of thorium lines. The abundances of thorium were found with spectrum synthesis method. The calculated thorium abundances exhibit correlations with the abundances of other chemical elements and atmospheric parameters of the program stars. These correlations are similar for both Clouds. The correlations of iron abundances of thorium, europium, neodymium, and yttrium relative to the pulsational periods are different in the Large Magellanic Cloud (LMC and the Small Magellanic Cloud (SMC, namely the correlations are negative for LMC and positive or close to zero for SMC. One of the possible explanations can be the higher activity of nucleosynthesis in SMC with respect to LMC in the recent several hundred million years.

  11. Chemical Abundance Analysis of Three α-poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Science.gov (United States)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-01

    We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements, and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a low average metallicity of [Fe/H] ∼ ‑2.6 and are not α-enhanced ([α/Fe] ∼ 0.0). This result is unexpected when compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a Population III supernova, and or an association with the Large Magellanic Cloud. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This paper also includes data based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 096.D-0967(B); PI: E. Balbinot).

  12. THE CHEMICAL ABUNDANCES OF STARS IN THE HALO (CASH) PROJECT. II. A SAMPLE OF 14 EXTREMELY METAL-POOR STARS ,

    International Nuclear Information System (INIS)

    Hollek, Julie K.; Sneden, Christopher; Shetrone, Matthew; Frebel, Anna; Roederer, Ian U.; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-01-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ∼15, 000) and corresponding high-resolution (R ∼35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from –2.9 to –3.9, including four new stars with [Fe/H] < –3.7. We find four stars to be carbon-enhanced metal-poor (CEMP) stars, confirming the trend of increasing [C/Fe] abundance ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]< – 3. We also find four neutron-capture-enhanced stars in the sample, one of which has [Eu/Fe] of 0.8 with clear r-process signatures. These pilot sample stars are the most metal-poor ([Fe/H] ∼< –3.0) of the brightest stars included in CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ∼500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum.

  13. Chemical abundances and physical parameters of RR Lyrae stars

    International Nuclear Information System (INIS)

    Manduca, A.

    1980-01-01

    A grid of model stellar atmospheres has been calculated with a range of physical parameters which effectively cover RR Lyrae stars over all phases of their pulsation cycle. The models, calculated with the computer program MARCS, are flux-constant and include the effects of convection and line blanketing. Synthetic spectra were calculated for these models from 3000 A to 9600 A at 0.1 A resolution using the computer program SSG. These spectra were used directly in the applications below and were also used to computer theoretical colors on the UBVR, Stromgren uvby, and Walraven systems for the models. The uvby colors were used in determinations of effective temperature and surface gravity from photometry by various observers. The models, synthetic spectra, and colors were then applied to the problems detailed below. The data collected by Freeman and Rodgers (1975) for 25 RR Lyrae stars in ω Cen was reanalyzed with an alternative, synthetic spectrum approach to the calibration of their theoretical relations. The results confirm a wide range in calcium abundance for the stars in the cluster but at much lower values than reported by Freeman and Rodgers: a range of [Ca/H] = -1.0 to -1.9 was found. A theoretical calibration was performed for the ΔS system of determining metal abundances for RR Lyrae stars. The results support the existing empirical calibration of Butler in the range [Fe/H] = -0.6 to -2.2 and indicate how the calibration should be extrapolated to even lower metal abundances. For higher metal abundances, however, our calibration yields [Fe/H] values lower than Butler by as much as 0.4. Possible explanations of this discrepancy are investigated and the implications are discussed

  14. On the enrichment of low-abundant isotopes of light chemical elements by gas centrifuges

    International Nuclear Information System (INIS)

    Borisevich, V.D.; Morozov, O.E.; Zaozerskiy, Yu.P.; Shmelev, G.M.; Shipilov, Yu.D.

    2000-01-01

    A brief review of the main areas for the application of the isotopes 15 N and 13 C is made. Separation of the nitrogen isotopes in a single gas centrifuge in the form of pure nitrogen, ammonia, and trifluoride of nitrogen as well as the carbon isotopes in the form of carbon dioxide has been studied by means of numerical simulation. The parameters of the centrifugal machine investigated were close to the parameters of the Iguassu machine. The dependence of the efficiency criterion versus the basic parameters of the separation process has been explored in the computational experiments. Comparisons of the calculated results with the experimental data have shown good agreement. The results obtained have demonstrated the possibility of using gas centrifuge technology to enrich successfully the low-abundant isotopes of light chemical elements

  15. The Chemical Abundances of Stars in the Halo (CASH) Project. II. A Sample of 14 Extremely Metal-poor Stars

    Science.gov (United States)

    Hollek, Julie K.; Frebel, Anna; Roederer, Ian U.; Sneden, Christopher; Shetrone, Matthew; Beers, Timothy C.; Kang, Sung-ju; Thom, Christopher

    2011-11-01

    We present a comprehensive abundance analysis of 20 elements for 16 new low-metallicity stars from the Chemical Abundances of Stars in the Halo (CASH) project. The abundances have been derived from both Hobby-Eberly Telescope High Resolution Spectrograph snapshot spectra (R ~15, 000) and corresponding high-resolution (R ~35, 000) Magellan Inamori Kyocera Echelle spectra. The stars span a metallicity range from [Fe/H] from -2.9 to -3.9, including four new stars with [Fe/H] ratios with decreasing metallicity. Two of these objects can be classified as CEMP-no stars, adding to the growing number of these objects at [Fe/H]CASH and are used to calibrate a newly developed, automated stellar parameter and abundance determination pipeline. This code will be used for the entire ~500 star CASH snapshot sample. We find that the pipeline results are statistically identical for snapshot spectra when compared to a traditional, manual analysis from a high-resolution spectrum. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. Based on observations gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. Elemental abundances of solar sibling candidates

    International Nuclear Information System (INIS)

    Ramírez, I.; Lambert, D. L.; Endl, M.; Cochran, W. D.; MacQueen, P. J.; Bajkova, A. T.; Bobylev, V. V.; Roederer, I. U.; Wittenmyer, R. A.

    2014-01-01

    Dynamical information along with survey data on metallicity and in some cases age have been used recently by some authors to search for candidates of stars that were born in the cluster where the Sun formed. We have acquired high-resolution, high signal-to-noise ratio spectra for 30 of these objects to determine, using detailed elemental abundance analysis, if they could be true solar siblings. Only two of the candidates are found to have solar chemical composition. Updated modeling of the stars' past orbits in a realistic Galactic potential reveals that one of them, HD 162826, satisfies both chemical and dynamical conditions for being a sibling of the Sun. Measurements of rare-element abundances for this star further confirm its solar composition, with the only possible exception of Sm. Analysis of long-term high-precision radial velocity data rules out the presence of hot Jupiters and confirms that this star is not in a binary system. We find that chemical tagging does not necessarily benefit from studying as many elements as possible but instead from identifying and carefully measuring the abundances of those elements that show large star-to-star scatter at a given metallicity. Future searches employing data products from ongoing massive astrometric and spectroscopic surveys can be optimized by acknowledging this fact.

  17. CHEMICAL ABUNDANCE PATTERNS AND THE EARLY ENVIRONMENT OF DWARF GALAXIES

    International Nuclear Information System (INIS)

    Corlies, Lauren; Johnston, Kathryn V.; Bryan, Greg; Tumlinson, Jason

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z = 10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can help to explain observed differences in abundance patterns today. Conversely, these differences are a signature of the inhomogeneity of metal enrichment at early times

  18. CHEMICAL EVOLUTION OF THE UNIVERSE AT 0.7 < z < 1.6 DERIVED FROM ABUNDANCE DIAGNOSTICS OF THE BROAD-LINE REGION OF QUASARS

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, H. [Laboratory of Infrared High-resolution Spectroscopy, Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Yoshii, Y.; Kawara, K., E-mail: sameshima@cc.kyoto-su.ac.jp [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2017-01-10

    We present an analysis of Mg ii λ 2798 and Fe ii UV emission lines for archival Sloan Digital Sky Survey (SDSS) quasars to explore the diagnostics of the magnesium-to-iron abundance ratio in a broad-line region cloud. Our sample consists of 17,432 quasars selected from the SDSS Data Release 7 with a redshift range of 0.72 <  z  < 1.63. A strong anticorrelation between the Mg ii equivalent width (EW) and the Eddington ratio is found, while only a weak positive correlation is found between the Fe ii EW and the Eddington ratio. To investigate the origin of these differing behaviors of Mg ii and Fe ii emission lines, we perform photoionization calculations using the Cloudy code, where constraints from recent reverberation mapping studies are considered. We find from calculations that (1) Mg ii and Fe ii emission lines are created at different regions in a photoionized cloud, and (2) their EW correlations with the Eddington ratio can be explained by just changing the cloud gas density. These results indicate that the Mg ii/Fe ii flux ratio, which has been used as a first-order proxy for the Mg/Fe abundance ratio in chemical evolution studies with quasar emission lines, depends largely on the cloud gas density. By correcting this density dependence, we propose new diagnostics of the Mg/Fe abundance ratio for a broad-line region cloud. In comparing the derived Mg/Fe abundance ratios with chemical evolution models, we suggest that α -enrichment by mass loss from metal-poor intermediate-mass stars occurred at z  ∼ 2 or earlier.

  19. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    Energy Technology Data Exchange (ETDEWEB)

    Laird, J.B.

    1985-02-15

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in (Fe/H) of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to (Fe/H)roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities.

  20. Abundances in field dwarf stars. II. Carbon and nitrogen abundances

    International Nuclear Information System (INIS)

    Laird, J.B.

    1985-01-01

    Intermediate-dispersion spectra of 116 field dwarf stars, plus 10 faint field giants and 3 Hyades dwarfs, have been used to derive carbon and nitrogen abundances relative to iron. The program sample includes both disk and halo stars, spanning a range in [Fe/H] of +0.50 to -2.45. Synthetic spectra of CH and NH bands have been used to determine carbon and nitrogen abundances. The C/Fe ratio is solar over the range of metallicity studied, with an estimated intrinsic scatter of 0.10 dex. Down to [Fe/H]roughly-equal-1.8, below which the nitrogen abundance could not be measured, the N/Fe ratio is also constant for the majority of stars, indicating that nitrogen production is largely primary. Four halo stars are found to be enhanced in nitrogen relative to iron, by factors between 5 and 50, although their carbon abundances appear to be normal. These results are discussed in connection with the chemical evolution of the Galaxy and the sites of C, N, and Fe nucleosynthesis. The results require that C, N, and Fe be produced in stars of similar mass. Our current understanding of N production, then, implies that most Type I supernovae have intermediate-mass progenitors. The nitrogen in the N-enhanced halo stars is very probably primordial, indicating that the interstellar medium at early epochs contained substantial inhomogeneities

  1. Chemical Abundances of Red Giant Stars in the Globular Cluster M107 (NGC 6171)

    Science.gov (United States)

    O'Connell, Julia E.; Johnson, Christian I.; Pilachowski, Catherine A.; Burks, Geoffrey

    2011-10-01

    We present chemical abundances of Al and several Fe-Peak and neutron-capture elements for 13 red giant branch stars in the Galactic globular cluster NGC 6171 (M107). The abundances were determined using equivalent width and spectrum synthesis analyses of moderate-resolution ( R ˜ 15,000), moderate signal-to-noise ratio ( ˜ 80) spectra obtained with the WIYN telescope and Hydra multifiber spectrograph. A comparison between photometric and spectroscopic effective temperature estimates seems to indicate that a reddening value of E(B - V) = 0.46 may be more appropriate for this cluster than the more commonly used value of E(B - V) = 0.33. Similarly, we found that a distance modulus of (m - M)V ≈ 13.7 provided reasonable surface gravity estimates for the stars in our sample. Our spectroscopic analysis finds M107 to be moderately metal-poor with = -0.93 and also exhibits a small star-to-star metallicity dispersion (σ = 0.04). These results are consistent with previous photometric and spectroscopic studies. Aluminum appears to be moderately enhanced in all program stars ( = +0.39, σ = 0.11). The relatively small star-to-star scatter in [Al/Fe] differs from the trend found in more metal-poor globular clusters, and is more similar to what is found in clusters with [Fe/H] ≳ -1. The cluster also appears to be moderately r-process-enriched with = +0.32 (σ = 0.17).

  2. CHEMICAL ABUNDANCE PATTERNS IN THE INNER GALAXY: THE SCUTUM RED SUPERGIANT CLUSTERS

    International Nuclear Information System (INIS)

    Davies, Ben; Origlia, Livia; Kudritzki, Rolf-Peter; Figer, Don F.; Rich, R. Michael; Najarro, Francisco; Negueruela, Ignacio; Clark, J. Simon

    2009-01-01

    The location of the Scutum Red Supergiant (RSG) clusters at the end of the Galactic Bar makes them an excellent probe of the Galaxy's secular evolution, while the clusters themselves are ideal testbeds in which to study the predictions of stellar evolutionary theory. To this end, we present a study of the RSG's surface abundances using a combination of high-resolution Keck/NIRSPEC H-band spectroscopy and spectral synthesis analysis. We provide abundance measurements for elements C, O, Si, Mg, Ti, and Fe. We find that the surface abundances of the stars studied are consistent with CNO burning and deep, rotationally enhanced mixing. The average α/Fe ratios of the clusters are solar, consistent with a thin-disk population. However, we find significantly subsolar Fe/H ratios for each cluster, a result which strongly contradicts a simple extrapolation of the Galactic metallicity gradient to lower Galactocentric distances. We suggest that a simple one-dimensional parameterization of the Galaxy's abundance patterns is insufficient at low Galactocentric distances, as large azimuthal variations may be present. Indeed, we show that the abundances of O, Si, and Mg are consistent with independent measurements of objects in similar locations in the Galaxy. In combining our results with other data in the literature, we present evidence for large-scale (∼ kpc) azimuthal variations in abundances at Galactocentric distances of 3-5 kpc. While we cannot rule out that this observed behavior is due to systematic offsets between different measurement techniques, we do find evidence for similar behavior in a study of the barred spiral galaxy NGC 4736 which uses homogeneous methodology. We suggest that these azimuthal abundance variations could result from the intense but patchy star formation driven by the potential of the central bar.

  3. BOND: A quantum of solace for nebular abundance determinations

    Science.gov (United States)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2017-11-01

    The abundances of chemical elements other than hydrogen and helium in a galaxy are the fossil record of its star formation history. Empirical relations such as mass-metallicity relation are thus seen as guides for studies on the history and chemical evolution of galaxies. Those relations usually rely on nebular metallicities measured with strong-line methods, which assume that H II regions are a one- (or at most two-) parameter family where the oxygen abundance is the driving quantity. Nature is however much more complex than that, and metallicities from strong lines may be strongly biased. We have developed the method BOND (Bayesian Oxygen and Nitrogen abundance Determinations) to simultaneously derive oxygen and nitrogen abundances in giant H II regions by comparing strong and semi-strong observed emission lines to a carefully-defined, finely-meshed grid of photoionization models. Our code and results are public and available at http://bond.ufsc.br.

  4. Chemical Abundance Analysis of Three α -poor, Metal-poor Stars in the Ultrafaint Dwarf Galaxy Horologium I

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, D. Q.; Marshall, J. L.; Li, T. S.; Hansen, T. T.; Simon, J. D.; Bernstein, R. A.; Balbinot, E.; Drlica-Wagner, A.; Pace, A. B.; Strigari, L. E.; Pellegrino, C. M.; DePoy, D. L.; Suntzeff, N. B.; Bechtol, K.; Walker, A. R.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Rosell, A. Carnero; Kind, M. Carrasco; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Davis, C.; Desai, S.; Doel, P.; Eifler, T. F.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Gruen, D.; Gruendl, R. A.; Gschwend, J.; Gutierrez, G.; Hartley, W. G.; Honscheid, K.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; March, M.; Miquel, R.; Nord, B.; Roodman, A.; Sanchez, E.; Santiago, B.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Thomas, D.; Tucker, D. L.; Wechsler, R. H.; Wolf, R. C.; Yanny, B.

    2018-01-10

    We present chemical abundance measurements of three stars in the ultra-faintdwarf galaxy Horologium I, a Milky Way satellite discovered by the Dark EnergySurvey. Using high resolution spectroscopic observations we measure themetallicity of the three stars as well as abundance ratios of several$\\alpha$-elements, iron-peak elements, and neutron-capture elements. Theabundance pattern is relatively consistent among all three stars, which have alow average metallicity of [Fe/H] $\\sim -2.6$ and are not $\\alpha$-enhanced([$\\alpha$/Fe] $\\sim 0.0$). This result is unexpected when compared to otherlow-metallicity stars in the Galactic halo and other ultra-faint dwarfs andhints at an entirely different mechanism for the enrichment of Hor I comparedto other satellites. We discuss possible scenarios that could lead to thisobserved nucleosynthetic signature including extended star formation, aPopulation III supernova, and a possible association with the Large MagellanicCloud.

  5. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Brian D.; O’Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Beers, Timothy C. [Department of Physics and JINA—Center for the Evolution of the Elements, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Tumlinson, Jason, E-mail: crosby.bd@gmail.com [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  6. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver, E-mail: jasmina@physics.ucf.edu [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States)

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  7. TEA: A CODE CALCULATING THERMOCHEMICAL EQUILIBRIUM ABUNDANCES

    International Nuclear Information System (INIS)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows and Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows and Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  8. The RRc Stars: Chemical Abundances and Envelope Kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Sneden, Christopher; Adamów, Monika [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Preston, George W. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Chadid, Merieme, E-mail: chris@verdi.as.utexas.edu, E-mail: astromysz@gmail.com, E-mail: gwp@obs.carnegiescience.edu, E-mail: chadid@unice.fr [Université Nice Sophia–Antipolis, Observatoire de la Côte dAzur, UMR 7293, Parc Valrose, F-06108, Nice Cedex 02 (France)

    2017-10-10

    We analyzed series of spectra obtained for 12 stable RRc stars observed with the echelle spectrograph of the du Pont telescope at Las Campanas Observatory and we analyzed the spectra of RRc Blazhko stars discussed by Govea et al. We derived model atmosphere parameters, [Fe/H] metallicities, and [X/Fe] abundance ratios for 12 species of 9 elements. We co-added all spectra obtained during the pulsation cycles to increase signal to noise and demonstrate that these spectra give results superior to those obtained by co-addition in small phase intervals. The RRc abundances are in good agreement with those derived for the RRab stars of Chadid et al. We used radial velocity (RV) measurements of metal lines and H α to construct variations of velocity with phase, and center-of-mass velocities. We used these to construct RV templates for use in low- to medium-resolution RV surveys of RRc stars. Additionally, we calculated primary accelerations, radius variations, and metal and H α velocity amplitudes, which we display as regressions against primary acceleration. We employ these results to compare the atmosphere structures of metal-poor RRc stars with their RRab counterparts. Finally, we use the RV data for our Blazhko stars and the Blazhko periods of Szczygieł and Fabrycky to falsify the Blazhko oblique rotator hypothesis.

  9. CHROMOSPHERIC MODELS AND THE OXYGEN ABUNDANCE IN GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L., E-mail: dupree@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2016-04-10

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771−7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  10. CHEMICAL ENRICHMENT IN THE FAINTEST GALAXIES: THE CARBON AND IRON ABUNDANCE SPREADS IN THE BOOeTES I DWARF SPHEROIDAL GALAXY AND THE SEGUE 1 SYSTEM

    International Nuclear Information System (INIS)

    Norris, John E.; Yong, David; Wyse, Rosemary F. G.; Gilmore, Gerard; Belokurov, V.; Zucker, Daniel B.; Frebel, Anna; Wilkinson, Mark I.

    2010-01-01

    We present an AAOmega spectroscopic study of red giants in the ultra-faint dwarf galaxy Booetes I (M V ∼ -6) and the Segue 1 system (M V ∼ -1.5), either an extremely low luminosity dwarf galaxy or an unusually extended globular cluster. Both Booetes I and Segue 1 have significant abundance dispersions in iron and carbon. Booetes I has a mean abundance of [Fe/H] = -2.55 ± 0.11 with an [Fe/H] dispersion of σ = 0.37 ± 0.08, and abundance spreads of Δ[Fe/H] = 1.7 and Δ[C/H] = 1.5. Segue 1 has a mean of [Fe/H] = -2.7 ± 0.4 with [Fe/H] dispersion of σ = 0.7 ± 0.3, and abundances spreads of Δ[Fe/H] = 1.6 and Δ[C/H] = 1.2. Moreover, Segue 1 has a radial-velocity member at four half-light radii that is extremely metal-poor and carbon-rich, with [Fe/H] = -3.5, and [C/Fe] = +2.3. Modulo an unlikely non-member contamination, the [Fe/H] abundance dispersion confirms Segue 1 as the least-luminous ultra-faint dwarf galaxy known. For [Fe/H] V = -5. The very low mean iron abundances and the high carbon and iron abundance dispersions in Segue 1 and Booetes I are consistent with highly inhomogeneous chemical evolution starting in near zero-abundance gas. These ultra-faint dwarf galaxies are apparently surviving examples of the very first bound systems.

  11. THE ORIGIN AND EVOLUTION OF THE HALO PN BoBn 1: FROM A VIEWPOINT OF CHEMICAL ABUNDANCES BASED ON MULTIWAVELENGTH SPECTRA

    International Nuclear Information System (INIS)

    Otsuka, Masaaki; Tajitsu, Akito; Hyung, Siek; Izumiura, Hideyuki

    2010-01-01

    We have performed a comprehensive chemical abundance analysis of the extremely metal-poor ([Ar/H] -6 M sun . The photoionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 M sun star that would evolve into a white dwarf with an ∼0.62 M sun core mass and ∼0.09 M sun ionized nebula. We have measured a heliocentric radial velocity of +191.6 ±1.3 km s -1 and expansion velocity 2V exp of 40.5 ± 3.3 km s -1 from an average over 300 lines. The derived elemental abundances have been reviewed from the standpoint of theoretical nucleosynthesis models. It is likely that the elemental abundances except N could be explained either by a 1.5 M sun single star model or by a binary model composed of 0.75 M sun + 1.5 M sun stars. Careful examination implies that BoBn 1 has evolved from a 0.75 M sun + 1.5 M sun binary and experienced coalescence during the evolution to become a visible PN, similar to the other extremely metal-poor halo PN, K 648 in M 15.

  12. Chemical Abundances of Giants in Globular Clusters

    Science.gov (United States)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  13. Nitrogen abundance in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Tegler, S.C.; Engel, L.

    1991-01-01

    Data on the nitrogen-containing compounds that observed spectroscopically in the coma of Comet Halley are summarized, and the elemental abundance of nitrogen in the Comet Halley nucleus is derived. It is found that 90 percent of elemental nitrogen is in the dust fraction of the coma, while in the gas fraction, most of the nitrogen is contained in NH3 and CN. The elemental nitrogen abundance in the ice component of the nucleus was found to be deficient by a factor of about 75, relative to the solar photosphere, indicating that the chemical partitioning of N2 into NH3 and other nitrogen compounds during the evolution of the solar nebula cannot account completely for the low abundance ratio N2/NH3 = 0.1, observed in the comet. It is suggested that the low N2/NH3 ratio in Comet Halley may be explained simply by physical fractionation and/or thermal diffusion. 88 refs

  14. Abundance Survey of M and K Dwarf Stars

    Energy Technology Data Exchange (ETDEWEB)

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  15. Oxygen abundances in unevolved metal-poor stars - Interpretation and consequences

    International Nuclear Information System (INIS)

    Abia, C.; Rebolo, R.

    1989-01-01

    The oxygen abundance has been determined by analysis of the O I infrared triplet in 30 unevolved field stars of metallicities in the range Fe/H abundance ratio between -0.2 and -3.5. The data show that the O/Fe abundance ratio increases monotonically as metallicity decreases from solar, reaching values in the range 1.0-1.2 at an Fe/H abundance ratio of about -2. The results, when compared with those already published for metal-deficient red giants, suggest that oxygen could have been depleted in the latter. A discussion of the O/Fe abundance ratios in connection with the chemical evolution of the Galaxy is also presented. 83 refs

  16. Effect of plant diversification on pest abundance and tomato yields in ...

    African Journals Online (AJOL)

    Diakalia SON

    Effect of plant diversification on pest abundance and tomato yields in two cropping systems in ..... Table 2: Monitoring of evolution of the pests population in IPM plots. Pests ... For pollinators, the most abundant families ...... induced by chemical interaction between unattacked .... in a coastal savannah agro ecological zone.

  17. Nitrogen Abundances and the Distance Moduli of the Pleiades and Hyades

    OpenAIRE

    Miller, Blake; King, Jeremy R.; Chen, Yu; Boesgaard, Ann M.

    2013-01-01

    Recent reanalyses of HIPPARCOS parallax data confirm a previously noted discrepancy with the Pleiades distance modulus estimated from main-sequence fitting in the color-magnitude diagram. One proposed explanation of this distance modulus discrepancy is a Pleiades He abundance that is significantly larger than the Hyades value. We suggest that, based on our theoretical and observational understanding of Galactic chemical evolution, nitrogen abundances may serve as a proxy for helium abundances...

  18. Chemical abundances of primary stars in the Sirius-like binary systems

    Science.gov (United States)

    Kong, X. M.; Zhao, G.; Zhao, J. K.; Shi, J. R.; Kumar, Y. Bharat; Wang, L.; Zhang, J. B.; Wang, Y.; Zhou, Y. T.

    2018-05-01

    Study of primary stars lying in Sirius-like systems with various masses of white dwarf (WD) companions and orbital separations is one of the key aspects to understand the origin and nature of barium (Ba) stars. In this paper, based on high-resolution and high-S/N spectra, we present systematic analysis of photospheric abundances for 18 FGK primary stars of Sirius-like systems including six giants and 12 dwarfs. Atmospheric parameters, stellar masses, and abundances of 24 elements (C, Na, Mg, Al, Si, S, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Ba, La, Ce, and Nd) are determined homogeneously. The abundance patterns in these sample stars show that most of the elements in our sample follow the behaviour of field stars with similar metallicity. As expected, s-process elements in four known Ba giants show overabundance. A weak correlation was found between anomalies of s-process elemental abundance and orbital separation, suggesting that the orbital separation of the binaries could not be the main constraint to differentiate strong Ba stars from mild Ba stars. Our study shows that the large mass (>0.51 M⊙) of a WD companion in a binary system is not a sufficient condition to form a Ba star, even if the separation between the two components is small. Although not sufficient, it seems to be a necessary condition since Ba stars with lower mass WDs in the observed sample were not found. Our results support that [s/Fe] and [hs/ls] ratios of Ba stars are anti-correlated with the metallicity. However, the different levels of s-process overabundance among Ba stars may not be dominated mainly by the metallicity.

  19. Correlation between some environmental variables and abundance ...

    African Journals Online (AJOL)

    Correlation between some environmental variables and abundance of Almophrya mediovacuolata (Ciliophora: Anoplophryidae) endocommensal ciliate of an ... The survey primarily involved soil samples collection from the same spots of EW collection and preparation for physico-chemical analysis; evaluation in situ of the ...

  20. THE RAVE CATALOG OF STELLAR ELEMENTAL ABUNDANCES: FIRST DATA RELEASE

    Energy Technology Data Exchange (ETDEWEB)

    Boeche, C.; Williams, M.; De Jong, R. S.; Steinmetz, M. [Leibniz-Institut fuer Astrophysik Potsdam (AIP), D-14482 Potsdam (Germany); Siebert, A.; Bienayme, O. [Observatoire Astronomique de Strasbourg, Universite de Strasbourg, CNRS, UMR 7550, F-67000 Strasbourg (France); Fulbright, J. P.; Ruchti, G. R. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Bland-Hawthorn, J. [Sydney Institute for Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); Campbell, R. [Department of Physics and Astronomy, Western Kentucky University, Bowling Green, KY (United States); Freeman, K. C. [Research School of Astronomy and Astrophysics, Australia National University, Weston Creek, Canberra ACT 2611 (Australia); Gibson, B. K. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gilmore, G. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum fuer Astronomie der Universitaet Heidelberg, D-69120 Heidelberg (Germany); Helmi, A. [Kapteyn Astronomical Institute, University of Groningen, 9700 AV Groningen (Netherlands); Munari, U. [INAF Osservatorio Astronomico di Padova, Asiago I-36012 (Italy); Navarro, J. F. [Department of Physics and Astronomy, University of Victoria, Victoria BC V8W 3P6 (Canada); Parker, Q. A.; Reid, W. [Department of Physics and Astronomy, Faculty of Sciences, Macquarie University, Sydney, NSW 2109 (Australia); Seabroke, G. M. [Mullard Space Science Laboratory, University College London, Holmbury, St. Mary RH5 6NT (United Kingdom); and others

    2011-12-15

    We present chemical elemental abundances for 36,561 stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes |b| > 25 Degree-Sign and with magnitudes in the range 9 chemical catalog is complementary to the third RAVE data release of radial velocities and stellar parameters, and it contains chemical abundances for the elements Mg, Al, Si, Ca, Ti, Fe, and Ni, with a mean error of {approx}0.2 dex, as judged from accuracy tests performed on synthetic and real spectra. Abundances are estimated through a dedicated processing pipeline in which the curve of growth of individual lines is obtained from a library of absorption line equivalent widths to construct a model spectrum that is then matched to the observed spectrum via a {chi}{sup 2} minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.

  1. Seismological measurement of solar helium abundance

    International Nuclear Information System (INIS)

    Vorontsov, S.V.; Pamyatnykh, A.A.

    1991-01-01

    The internal structure and evolution of the Sun depends on its chemical composition, particularly the helium abundance. In addition, the helium abundance in the solar envelope is thought to represent the protosolar value, making it a datum of cosmological significance. Spectroscopic measurements of the helium abundance are uncertain, and the most reliable estimates until now have come from the calibration of solar evolutionary models. The frequencies of solar acoustic oscillations are sensitive, however, to the behaviour of the speed of sound in the Sun's helium ionization zone, which allows a helioseismological determination of the helium abundance. Sound-speed inversion of helioseismological data can be used for this purpose, but precise frequency measurements of high-degree oscillation modes are needed. Here we describe a new approach based on an analysis of the phase shift of acoustic waves of intermediate-degree modes. From the accurate intermediate-mode data now available, we obtain a helium mass fraction Y=0.25±0.01 in the solar convection zone, significantly smaller than the value Y=0.27-0.29 predicted by recent solar evolutionary models. The discrepancy indicates either that initial helium abundance was reduced in the envelope by downward diffusion or that the protosolar value was lower than currently accepted. (author)

  2. Early chemical enrichment of the Galactic dwarf satellites from a homogeneous and NLTE abundance analysis

    Science.gov (United States)

    Mashonkina, Lyudmila; Jablonka, Pascale; Sitnova, Tatyana; Pakhomov, Yuri; North, Pierre

    2018-06-01

    We review recent abundance results for very metal-poor (VMP, -4 ≤ [Fe/H] ≤ -2) stars in seven dwarf spheroidal galaxies (dSphs) and in the Milky Way (MW) halo comparison sample that were obtained based on high-resolution spectroscopic datasets, homogeneous and accurate atmospheric parameters, and the non-local thermodynamic equilibrium (NLTE) line formation for 10 chemical species. A remarkable gain of using such an approach is the reduction, compared to a simple compilation of the literature data, of the spread in abundance ratios at given metallicity within each galaxy and from one to the other. We show that all massive galaxies in our sample, that is, the MW halo and the classical dSphs Sculptor, Ursa Minor, Sextans, and Fornax, reveal a similar plateau at [α/Fe] \\simeq 0.3 for each of the α-process elements: Mg, Ca, and Ti. We put on a firm ground the evidence for a decline in α/Fe with increasing metallicity in the Boötes I ultra-faint dwarf galaxy (UFD), that is most probably due to the ejecta of type Ia supernovae. In our classical dSphs, we observe the dichotomy in the [Sr/Ba] versus [Ba/H] diagram, similarly to the MW halo, calling for two different nucleosynthesis channels for Sr at the earliest evolution stages of these galaxies. Our three UFDs, that is Boötes I, UMa II, and Leo IV, are depleted in Sr and Ba relative to Fe and Mg, with very similar ratios of [Sr/Mg] ≈ -1.3 and [Ba/Mg] ≈ -1 on the entire range of their Mg abundances. The subsolar Sr/Ba ratios of Boötes I and UMa II indicate a common r-process origin of their neutron-capture elements. For Na/Fe, Na/Mg, and Al/Mg, the MW halo and all dSphs reveal indistinguishable trends with metallicity, suggesting that the processes of Na and Al synthesis are identical in all systems, independent of their mass. Sculptor remains the classical dSph, in which the evidence for inhomogeneous mixing in the early evolution stage, at [Fe/H] < -2, is the strongest.

  3. Detailed abundances in stars belonging to ultra-faint dwarf spheroidal galaxies

    OpenAIRE

    François, P.; Monaco, L.; Villanova, S.; Catelan, M.; Bonifacio, P.; Bellazzini, M.; Bidin, C. Moni; Marconi, G.; Geisler, D.; Sbordone, L.

    2012-01-01

    We report preliminary results concerning the detailed chemical composition of metal poor stars belonging to close ultra-faint dwarf galaxies (hereafter UfDSphs). The abundances have been determined thanks to spectra obtained with X-Shooter, a high efficiency spectrograph installed on one of the ESO VLT units. The sample of ultra-faint dwarf spheroidal stars have abundance ratios slightly lower to what is measured in field halo star of the same metallicity.We did not find extreme abundances in...

  4. An upper limit on the sulphur abundance in HE 1327-2326

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Venn, K. A.; Lambert, D. L.

    2012-08-01

    Context. Star HE 1327-2326 is a unique object, with the lowest measured iron abundance ([Fe/H] ~ -6) and a peculiar chemical composition that includes large overabundances of C, N, and O with respect to iron. One important question is whether the chemical abundances in this star reflect the chemical composition of the gas cloud from which it was formed or if they have been severely affected by other processes, such as dust-gas winnowing. Aims: We measure or provide an upper limit to the abundance of the volatile element sulphur, which can help to discriminate between the two scenarios. Methods: We observed HE 1327-2326 with the high resolution infra-red spectrograph CRIRES at the VLT to observe the S i lines of Multiplet 3 at 1045 nm. Results: We do not detect the S i line. A 3σ upper limit on the equivalent width (EW) of any line in our spectrum is EW winnowing, and the evidence coming from other elements (e.g., Na and Ti) is also inconclusive or contradictory. The formation of dust in the atmosphere versus an origin of the metals in a metal-poor supernova with extensive "fall-back" are not mutually exclusive. It is possible that dust formation distorts the peculiar abundance pattern created by a supernova with fall-back, thus the abundance ratios in HE 1327-2326 may be used to constrain the properties of the supernova(e) that produced its metals, but with some caution. Based on spectra obtained with CRIRES at the 8.2 m Antu ESO telescope, programme 386.D-0095.

  5. Physico-chemical, mineralogical and chemical considerations in ...

    African Journals Online (AJOL)

    ... pH (5.17 – 6.90) and EC (16.53 – 149.20ìS/cm). Values from physico-chemical analyses, secondary minerals abundance index (SMAI) and chemical index of alteration (CIA) of the soils were reflective of particles with high potential for sliding. With major contributions from favourable slope, seismic and hydrologic forces, ...

  6. The chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    1986-01-01

    The chemical evolution of galaxies is reviewed with particular attention to the theoretical interpretation of the distribution and abundances of elements in stars and the interstellar medium. The paper was presented to the conference on ''The early universe and its evolution'', Erice, Italy, 1986. The metallicity distribution of the solar vicinity, age metallicity relationship, abundance gradients in the galaxy, external galaxies, star formation and evolution, major sites of nucleosynthesis, yields of chemical elements, chemical models, and the galactic disk, are all discussed. (U.K.)

  7. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf spheroidal galaxy?

    Science.gov (United States)

    Sbordone, L.; Monaco, L.; Moni Bidin, C.; Bonifacio, P.; Villanova, S.; Bellazzini, M.; Ibata, R.; Chiba, M.; Geisler, D.; Caffau, E.; Duffau, S.

    2015-07-01

    Context. The tidal disruption of the Sagittarius dwarf spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, it is suspected that the Sgr dSph has lost a number of globular clusters (GC). Many Galactic GC are thought to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed owing to chemical similarities, others exist whose chemical composition has never been investigated. Aims: NGC 5053 and NGC 5634 are two of these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. Methods: We analyze high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of unassociated MW halo globulars, and of the metal-poor Sgr dSph main body population. Results: We derive a metallicity of [Fe ii/H] = -2.26 ± 0.10 for NGC 5053, and of [Fe i/H] = -1.99 ± 0.075 and -1.97 ± 0.076 for the two stars in NGC 5634. This makes NGC 5053 one of the most metal-poor globular clusters in the MW. Both clusters display an α enhancement similar to the one of the halo at comparable metallicity. The two stars in NGC 5634 clearly display the Na-O anticorrelation widespread among MW globulars. Most other abundances are in good agreement with standard MW halo trends. Conclusions: The chemistry of the Sgr dSph main body populations is similar to that of the halo at low metallicity. It is thus difficult to discriminate between an origin of NGC 5053 and NGC 5634 in the Sgr dSph, and one in the MW. However, the abundances of these clusters do appear closer to that of Sgr dSph than of the halo, favoring an origin in the Sgr dSph system. Appendix A is available in electronic form at http

  8. Nuclear abundances and evolution of the interstellar medium

    International Nuclear Information System (INIS)

    Wannier, P.G.

    1980-01-01

    Observations of molecular and elemental abundances in the interstellar medium (ISM) are reviewed, with special attention given to isotope ratios. The derivation of molecular isotope abundances for the ISM is discussed, along with H and C fractionation. Millimeter- and centimeter-wave spectra of giant clouds are examined with respect to isotope abundances of C, O, N, Si, S, and D. Evidence for the current enrichment of the ISM by mass loss from evolved stars is considered, together with chemical abundance gradients in H II regions and planetary nebulae. Cosmic-ray observations pertaining to abundances in the ISM are summarized, with emphasis on available results for Ne, Mg, Si, Fe, and Ni. The observations reviewed are shown to support arguments in favor of: (1) the cosmological production of D and He-3 (2) the production of the CNO elements by hydrostatic hydrogen burning (3) the nucleosynthesis of Ne, Mg, Si, S, Fe, and Ni as a result of He burning (4) solar abundances of interstellar S, Fe, and Ni and (5) a direct association between observed inhomogeneities in the ISM and mass loss from evolved stellar objects

  9. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program. II. Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu

    Science.gov (United States)

    Delgado Mena, E.; Tsantaki, M.; Adibekyan, V. Zh.; Sousa, S. G.; Santos, N. C.; González Hernández, J. I.; Israelian, G.

    2017-10-01

    Aims: To understand the formation and evolution of the different stellar populations within our Galaxy it is essential to combine detailed kinematical and chemical information for large samples of stars. The aim of this work is to explore the chemical abundances of neutron capture elements which are a product of different nucleosynthesis processes taking place in diverse objects in the Galaxy, such as massive stars, asymptotic giant branch (AGB) stars and supernovae (SNe) explosions. Methods: We derive chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd, and Eu for a large sample of more than 1000 FGK dwarf stars with high-resolution (R 115 000) and high-quality spectra from the HARPS-GTO program. The abundances are derived by a standard local thermodynamic equilibrium (LTE) analysis using measured equivalent widths (EWs) injected to the code MOOG and a grid of Kurucz ATLAS9 atmospheres. Results: We find that thick disc stars are chemically disjunct for Zn and Eu and also show on average higher Zr but lower Ba and Y than the thin disc stars. We also discovered that the previously identified high-α metal-rich population is also enhanced in Cu, Zn, Nd, and Eu with respect to the thin disc but presents lower Ba and Y abundances on average, following the trend of thick disc stars towards higher metallities and further supporting the different chemical composition of this population. By making a qualitative comparison of O (pure α), Mg, Eu (pure r-process), and s-process elements we can distinguish between the contribution of the more massive stars (SNe II for α and r-process elements) and the lower mass stars (AGBs) whose contribution to the enrichment of the Galaxy is delayed, due to their longer lifetimes. The ratio of heavy-s to light-s elements of thin disc stars presents the expected behaviour (increasing towards lower metallicities) and can be explained by a major contribution of low-mass AGB stars for s-process production at disc metallicities. However, the

  10. The source, discharge, and chemical characteristics of selected springs, and the abundance and health of associated endemic anuran species in the Mojave network parks

    Science.gov (United States)

    Schroeder, Roy A.; Smith, Gregory A.; Martin, Peter; Flint, Alan L.; Gallegos, Elizabeth; Fisher, Robert N.; Martin, Peter; Schroeder, Roy A.

    2015-01-01

    Hydrological and biological investigations were done during 2005 and 2006 in cooperation with the U.S. National Park Service to investigate the source, discharge, and chemical characteristics of selected springs and the abundance and health of endemic anuran (frog and toad) species at Darwin Falls in Death Valley National Park, Piute Spring in Mojave National Preserve, and Fortynine Palms Oasis in Joshua Tree National Park. Discharge from the springs at these sites sustains isolated riparian habitats in the normally dry Mojave Desert. Data were collected on water quantity (discharge) and quality, air and water temperature, and abundance and health of endemic anuran species. In addition, a single survey of the abundance and health of endemic anuran species was completed at Rattlesnake Canyon in Joshua Tree National Park. Results from this study were compared to limited historical data, where they exist, and can provide a baseline for future hydrological and biological investigations to evaluate the health and sustainability of the resource and its response to changing climate and increasing human use.

  11. Deuterium abundance, from ultraviolet to visible

    International Nuclear Information System (INIS)

    Hebrard, Guillaume

    2000-01-01

    In the frame of the standard Big Bang model, the primordial abundance of deuterium is the most sensitive to the baryonic density of the Universe. It was synthesized only during the primordial nucleosynthesis few minutes after the Big Bang and no other standard mechanism is able to produce any further significant amount. On the contrary, since deuterium is burned up within stars, its abundance D/H decreases along cosmic evolution. Thus, D/H measurements constrain Big Bang and galactic chemical evolution models. There are three samples of deuterium abundances: primordial, proto-solar and interstellar. Each of them is representative of a given epoch, respectively about 15 Gyrs past, 4.5 Gyrs past and present epoch. Although the evolution of the deuterium abundance seems to be qualitatively understood, the measurements show some dispersion. Present thesis works are linked to deuterium interstellar abundance measurements. Such measurements are classically obtained from spectroscopic observations of the hydrogen and deuterium Lyman series in absorption in the ultraviolet spectral range, using space observatories. Results presented here were obtained with the Hubble Space Telescope and FUSE, which has recently been launched. Simultaneously, a new way to observe deuterium has been proposed, in the visible spectral range from ground-based telescopes. This has led to the first detections and the identification of the deuterium Balmer series, in emission in HII regions, using CFHT and VLT telescopes. (author) [fr

  12. CHEMICAL ABUNDANCES OF SEVEN IRREGULAR AND THREE TIDAL DWARF GALAXIES IN THE M81 GROUP

    International Nuclear Information System (INIS)

    Croxall, Kevin V.; Van Zee, Liese; Lee, Henry; Miller, Bryan W.; Skillman, Evan D.; Lee, Janice C.; Cote, Stephanie; Kennicutt, Robert C.

    2009-01-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H II regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H II region had a detection of the temperature sensitive [O III] λ4363 line, allowing a 'direct' determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies, and the observed oxygen abundances are typically in agreement with the well-known metallicity-luminosity relation. However, three candidate 'tidal dwarf' galaxies lie well off this relation: UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sight as the M81 tidal debris field. We propose that these H II regions formed from previously enriched gas which was stripped from nearby massive galaxies (e.g., NGC 3077 and M81) during a recent tidal interaction.

  13. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure.

    Directory of Open Access Journals (Sweden)

    Anna Kozak

    Full Text Available In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR. Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment.

  14. Phytoplankton Composition and Abundance in Restored Maltański Reservoir under the Influence of Physico-Chemical Variables and Zooplankton Grazing Pressure

    Science.gov (United States)

    Kozak, Anna; Gołdyn, Ryszard; Dondajewska, Renata

    2015-01-01

    In this paper we present the effects of environmental factors and zooplankton food pressure on phytoplankton in the restored man-made Maltański Reservoir (MR). Two methods of restoration: biomanipulation and phosphorus inactivation have been applied in the reservoir. Nine taxonomical groups of phytoplankton represented in total by 183 taxa were stated there. The richest groups in respect of taxa number were green algae, cyanobacteria and diatoms. The diatoms, cryptophytes, chrysophytes, cyanobacteria, green algae and euglenophytes dominated in terms of abundance and/or biomass. There were significant changes among environmental parameters resulting from restoration measures which influenced the phytoplankton populations in the reservoir. These measures led to a decrease of phosphorus concentration due to its chemical inactivation and enhanced zooplankton grazing as a result of planktivorous fish stocking. The aim of the study is to analyse the reaction of phytoplankton to the restoration measures and, most importantly, to determine the extent to which the qualitative and quantitative composition of phytoplankton depends on variables changing under the influence of restoration in comparison with other environmental variables. We stated that application of restoration methods did cause significant changes in phytoplankton community structure. The abundance of most phytoplankton taxa was negatively correlated with large zooplankton filter feeders, and positively with zooplankton predators and concentrations of ammonium nitrogen and partly of phosphates. However, restoration was insufficient in the case of decreasing phytoplankton abundance. The effects of restoration treatments were of less importance for the abundance of phytoplankton than parameters that were independent of the restoration. This was due to the continuous inflow of large loads of nutrients from the area of the river catchment. PMID:25906352

  15. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    Science.gov (United States)

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance.

  16. 3He Abundances in Planetary Nebulae

    Science.gov (United States)

    Guzman-Ramirez, Lizette

    2017-10-01

    Determination of the 3He isotope is important to many fields of astrophysics, including stellar evolution, chemical evolution, and cosmology. The isotope is produced in stars which evolve through the planetary nebula phase. Planetary nebulae are the final evolutionary phase of low- and intermediate-mass stars, where the extensive mass lost by the star on the asymptotic giant branch is ionised by the emerging white dwarf. This ejecta quickly disperses and merges with the surrounding ISM. 3He abundances in planetary nebulae have been derived from the hyperfine transition of the ionised 3He, 3He+, at the radio rest frequency 8.665 GHz. 3He abundances in PNe can help test models of the chemical evolution of the Galaxy. Many hours have been put into trying to detect this line, using telescopes like the Effelsberg 100m dish of the Max Planck Institute for Radio Astronomy, the National Radio Astronomy Observatory (NRAO) 140-foot telescope, the NRAO Very Large Array, the Arecibo antenna, the Green Bank Telescope, and only just recently, the Deep Space Station 63 antenna from the Madrid Deep Space Communications Complex.

  17. The Effect of an Inert Solid Reservoir on Molecular Abundances in Dense Interstellar Clouds

    Directory of Open Access Journals (Sweden)

    Kalvāns Juris

    2012-12-01

    Full Text Available The question, what is the role of freeze-out of chemical species in determining the molecular abundances in the interstellar gas is a matter of debate. We investigate a theoretical case of a dense interstellar molecular cloud core by time-dependent modeling of chemical kinetics, where grain surface reactions deliberately are not included. That means, the gas-phase and solid-phase abundances are influenced only by gas reactions, accretion on grains and desorption. We compare the results to a reference model where no accretion occurs, and only gas-phase reactions are included. We can trace that the purely physical processes of molecule accretion and desorption have major chemical consequences on the gas-phase chemistry. The main effect of introduction of the gas-grain interaction is long-term molecule abundance changes that come nowhere near an equilibrium during the typical lifetime of a prestellar core.

  18. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    International Nuclear Information System (INIS)

    Yong, David; Carney, Bruce W.; Friel, Eileen D.

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [α/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( –1 ), but for some elements, there is a hint that the local (R GC GC > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age ( –1 ). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [α/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  19. Calibrating Detailed Chemical Analysis of M dwarfs

    Science.gov (United States)

    Veyette, Mark; Muirhead, Philip Steven; Mann, Andrew; Brewer, John; Allard, France; Homeier, Derek

    2018-01-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications including studying the chemical evolution of the Galaxy, assessing membership in stellar kinematic groups, and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres has hindered similar analysis of M-dwarf stars. Large surveys of FGK abundances play an important role in developing methods to measure the compositions of M dwarfs by providing benchmark FGK stars that have widely-separated M dwarf companions. These systems allow us to empirically calibrate metallicity-sensitive features in M dwarf spectra. However, current methods to measure metallicity in M dwarfs from moderate-resolution spectra are limited to measuring overall metallicity and largely rely on astrophysical abundance correlations in stellar populations. In this talk, I will discuss how large, homogeneous catalogs of precise FGK abundances are crucial to advancing chemical analysis of M dwarfs beyond overall metallicity to direct measurements of individual elemental abundances. I will present a new method to analyze high-resolution, NIR spectra of M dwarfs that employs an empirical calibration of synthetic M dwarf spectra to infer effective temperature, Fe abundance, and Ti abundance. This work is a step toward detailed chemical analysis of M dwarfs at a similar precision achieved for FGK stars.

  20. Chemical abundances and dust in planetary nebulae in the Galactic bulge

    NARCIS (Netherlands)

    Gutenkunst, S.; Bernard-Salas, J.; Pottasch, S. R.; Sloan, G. C.; Houck, J. R.

    2008-01-01

    We present mid-infrared Spitzer spectra of 11 planetary nebulae in the Galactic bulge. We derive argon, neon, sulfur, and oxygen abundances for them using mainly infrared line fluxes combined with some optical line fluxes from the literature. Due to the high extinction toward the bulge, the infrared

  1. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  2. Carbon and oxygen abundances across the Hertzsprung gap

    International Nuclear Information System (INIS)

    Adamczak, Jens; Lambert, David L.

    2014-01-01

    We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high-resolution spectra (R = 60,000) of 188 stars in the mass range 2-5 M ☉ with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower-mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with T eff < 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.

  3. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    International Nuclear Information System (INIS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-01-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  4. Chemical Abundances in NGC 5024 (M53): A Mostly First Generation Globular Cluster

    Science.gov (United States)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin-Indiana-Yale-NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = -2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na-O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  5. CHEMICAL ABUNDANCES IN NGC 5024 (M53): A MOSTLY FIRST GENERATION GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico [Astronomy Department, Indiana University, Bloomington, IN 47405 (United States)

    2016-06-10

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = −2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  6. A spectroscopic study of chemical abundances in the globular cluster Omega Centauri

    International Nuclear Information System (INIS)

    Caldwell, S.P.

    1987-10-01

    Blue spectra at a resolution of 0.5 A of red giants in the globular clusters Omega Centauri and NGCs 288, 362, 6397 and 6809 (M55) have been obtained with the Anglo-Australian Telescope. The observations were made to test Sweigart and Mengel's [Astrophy S. J. 229, 624] theory of mixing of nuclearly-processed material to the star's surface, and to elucidate the relationship between primordial and evolutionary origins for the range in abundance within Omega Cen. The Omega Cen stars were chosen in two groups either side of the giant branch, covering the luminosity range where the onset of mixing was predicted to occur. Abundances of C, N, Fe and other heavy elements have been determined by fitting synthetic spectra, calculated from model atmospheres, to the observational data. (author)

  7. Chemical evolution of galaxies

    CERN Document Server

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  8. The AMBRE Project: r-process element abundances in the Milky Way thin and thick discs

    Science.gov (United States)

    Guiglion, Guillaume; de Laverny, Patrick; Recio-Blanco, Alejandra; Worley, C. Clare

    2018-04-01

    Chemical evolution of r-process elements in the Milky Way disc is still a matter of debate. We took advantage of high resolution HARPS spectra from the ESO archive in order to derive precise chemical abundances of 3 r-process elements Eu, Dy & Gd for a sample of 4 355 FGK Milky Way stars. The chemical analysis has been performed thanks to the automatic optimization pipeline GAUGUIN. Based on the [α/Fe] ratio, we chemically characterized the thin and the thick discs, and present here results of these 3 r-process element abundances in both discs. We found an unexpected Gadolinium and Dysprosium enrichment in the thick disc stars compared to Europium, while these three elements track well each other in the thin disc.

  9. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    International Nuclear Information System (INIS)

    Daflon, Simone; Cunha, Katia; De la Reza, Ramiro; Holtzman, Jon; Chiappini, Cristina

    2009-01-01

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc -1 .

  10. Complete Element Abundances of Nine Stars in the r-process Galaxy Reticulum II

    Science.gov (United States)

    Ji, Alexander P.; Frebel, Anna; Simon, Joshua D.; Chiti, Anirudh

    2016-10-01

    We present chemical abundances derived from high-resolution Magellan/Magellan Inamori Kyocera Echelle spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II (Ret II). These stars span the full metallicity range of Ret II (-3.5 contaminated known r-process pattern. The abundances of lighter elements up to the iron peak are otherwise similar to abundances of stars in the halo and in other ultra-faint dwarf galaxies. However, the scatter in abundance ratios is large enough to suggest that inhomogeneous metal mixing is required to explain the chemical evolution of this galaxy. The presence of low amounts of neutron-capture elements in other ultra-faint dwarf galaxies may imply the existence of additional r-process sites besides the source of r-process elements in Ret II. Galaxies like Ret II may be the original birth sites of r-process enhanced stars now found in the halo. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  11. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  12. Carbon and oxygen abundances across the Hertzsprung gap

    Energy Technology Data Exchange (ETDEWEB)

    Adamczak, Jens; Lambert, David L., E-mail: adamczak@astro.as.utexas.edu, E-mail: dll@astro.as.utexas.edu [McDonald Observatory, The University of Texas, Austin, TX 78712 (United States)

    2014-08-10

    We derived atmospheric parameters and spectroscopic abundances for C and O for a large sample of stars located in the Hertzsprung gap in the Hertzsprung-Russell diagram in order to detect chemical peculiarities and get a comprehensive overview of the population of stars in this evolutionary state. We have observed and analyzed high-resolution spectra (R = 60,000) of 188 stars in the mass range 2-5 M{sub ☉} with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory including 28 stars previously identified as Am/Ap stars. We find that the C and O abundances of the majority of stars in the Hertzsprung gap are in accordance with abundances derived for local lower-mass dwarfs but detect expected peculiarities for the Am/Ap stars. The C and O abundances of stars with T{sub eff} < 6500 K are slightly lower than for the hotter objects but the C/O ratio is constant in the analyzed temperature domain. No indication of an alteration of the C and O abundances of the stars by mixing during the evolution across the Hertzsprung gap could be found before the homogenization of their atmospheres by the first dredge-up.

  13. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Science.gov (United States)

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  14. Comparative study on composition and abundance of major planktons and physico-chemical characteristics among two ponds and Lake Tana, Ethiopia

    Directory of Open Access Journals (Sweden)

    Wondie Zelalem Amanu

    2015-11-01

    Full Text Available Objective: To evaluate the difference in physico-chemical characteristics, composition and abundance of plankton communities owing to the supplementary feed added in fish ponds as compared to Lake Tana. Methods: Physico-chemical and biological data of plankton were collected from 3 studied sites from November 2008 to October 2009. Data were compared using One-way ANOVA to see the difference among sites. Diversity indices such as Margalef's index, Shannon-Wiener index, and evenness index were employed to describe the distribution of plankton community among the studied sites. Results: The pH value was remarkably higher in ponds water. However, conductivity and total dissolved solids were the highest in lake water. Nitrate concentration was relatively high in ponds. Zooplankton species richness was higher in lake water than ponds. The lake also had the highest mean value of both Shannon-Wiener index and evenness index in phytoplankton. Conclusions: The results revealed that the supplementary feed added to each pond had influence on nutrient content which enhanced algal biomass and productivity of the ponds. However, the pond water has to be regularly refreshed to control eutrophication.

  15. Cosmological evolution of the nitrogen abundance

    Science.gov (United States)

    Vangioni, Elisabeth; Dvorkin, Irina; Olive, Keith A.; Dubois, Yohan; Molaro, Paolo; Petitjean, Patrick; Silk, Joe; Kimm, Taysun

    2018-06-01

    The abundance of nitrogen in the interstellar medium is a powerful probe of star formation processes over cosmological time-scales. Since nitrogen can be produced both in massive and intermediate-mass stars with metallicity-dependent yields, its evolution is challenging to model, as evidenced by the differences between theoretical predictions and observations. In this work, we attempt to identify the sources of these discrepancies using a cosmic evolution model. To further complicate matters, there is considerable dispersion in the abundances from observations of damped Lyα absorbers (DLAs) at z ˜ 2-3. We study the evolution of nitrogen with a detailed cosmic chemical evolution model and find good agreement with these observations, including the relative abundances of (N/O) and (N/Si). We find that the principal contribution of nitrogen comes from intermediate-mass stars, with the exception of systems with the lowest N/H, where nitrogen production might possibly be dominated by massive stars. This last result could be strengthened if stellar rotation which is important at low metallicity can produce significant amounts of nitrogen. Moreover, these systems likely reside in host galaxies with stellar masses below 108.5 M⊙. We also study the origin of the observed dispersion in nitrogen abundances using the cosmological hydrodynamical simulations Horizon-AGN. We conclude that this dispersion can originate from two effects: difference in the masses of the DLA host galaxies, and difference in their position inside the galaxy.

  16. Understanding and reducing statistical uncertainties in nebular abundance determinations

    Science.gov (United States)

    Wesson, R.; Stock, D. J.; Scicluna, P.

    2012-06-01

    Whenever observations are compared to theories, an estimate of the uncertainties associated with the observations is vital if the comparison is to be meaningful. However, many or even most determinations of temperatures, densities and abundances in photoionized nebulae do not quote the associated uncertainty. Those that do typically propagate the uncertainties using analytical techniques which rely on assumptions that generally do not hold. Motivated by this issue, we have developed Nebular Empirical Analysis Tool (NEAT), a new code for calculating chemical abundances in photoionized nebulae. The code carries out a standard analysis of lists of emission lines using long-established techniques to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEATuses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances. We show that, for typical observational data, this approach is superior to analytic estimates of uncertainties. NEAT also accounts for the effect of upward biasing on measurements of lines with low signal-to-noise ratio, allowing us to accurately quantify the effect of this bias on abundance determinations. We find not only that the effect can result in significant overestimates of heavy element abundances derived from weak lines, but also that taking it into account reduces the uncertainty of these abundance determinations. Finally, we investigate the effect of possible uncertainties in R, the ratio of selective-to-total extinction, on abundance determinations. We find that the uncertainty due to this parameter is negligible compared to the statistical uncertainties due to typical line flux measurement uncertainties.

  17. Do stellar and nebular abundances in the Cocoon nebula agree?

    Science.gov (United States)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2015-05-01

    The Cocoon nebula is an apparently spherical Galactic HII region ionized by a single star (BD+46 3474). This nebula seems to be appropriate to investigate the chemical behavior of oxygen and other heavy elements from two different points of view: a detailed analysis of the chemical content of the ionized gas through nebular spectrophotometry and a detailed spectroscopic analysis of the spectrum of the ionizing star using the state-of-the-art stellar atmosphere modelling. In this poster we present the results from a set of high-quality observations, from 2m-4m class telescopes, including the optical spectrum of the ionizing star BD+46 3474, along with long-slit spatially resolved spectroscopy of the nebula. We have used state-of-the-art stellar atmosphere codes to determine stellar parameters and the chemical content of several heavy elements. Traditional nebular techniques along with updated atomic data have been used to compute gaseous abundances of O, N and S in the Cocoon nebula. Thanks to the low ionization degree of the nebula, we could determine total abundances directly from observable ions (no ionization correction factors were needed) for three of the analyzed elements (O, S, and N). The derived stellar and nebular abundances are compared and the influence of the possible presence of the so-called temperature fluctuations on the nebula is discussed. The results of this study are presented in more detail in García-Rojas, Simón-Díaz & Esteban 2014, A&A, 571, A93.

  18. Stellar Oxygen Abundances

    Science.gov (United States)

    King, Jeremy

    1994-04-01

    the beginning of star formation in the disk. It is noted that the slope of the [O/Fe] versus [Fe/H] relation for [Fe/H] >/= -1 depends on the statistical regression utilized. Hence, alleged "observed" [O/H] - age relations, which do not use truly observed O abundances (but, rather, adopt O abundances based on Fe abundances), should be regarded with caution. Systematic effects on O abundances derived from the 6300A [O I] and 7774A O I lines are considered next. While our Solar observations confirm the disagreement between the observed 7774A O I equivalent widths and LTE model calculations at low microns, we stress that Solar O abundance determinations made from flux spectra are in very good agreement with the meteoritic value. We find the 6300A [O I] equivalent width value appears to be uncertain for the Sun. Given this uncertainty, the inability of authors to reproduce each others' 6300A O abundances, and the results of recent quasi-two-stream calculations, we do not believe it can be readily claimed (as is usually done) that these abundances are more reliable than those derived from the 7774A O I triplet. In a sample of relatively metal-rich F and G dwarfs, we find no systematic difference between the 6300 and 7774A O abundances for Teff abundances are also determined for 8 open clusters or moving groups. A very clear relation between cluster age and O abundance is seen; this is in stark contrast to the lack of any relation between age and Fe abundance in the same clusters. Hence, despite possible a priori objections, O abundances may prove to be a superior chronometer (as others have suggested) in the study of Galactic chemical evolution. Somewhat surprisingly, our our [O/Fe] ratios appear to be larger for the younger clusters. The O abundances in the younger clusters are significantly larger than those seen in H II regions, planetary nebulae, and supergiants. It is

  19. The Abundance Pattern in the Hot ISM of NGC 4472: Insights and Anomalies

    Science.gov (United States)

    Loewenstein, Michael; Davis, David S.

    2010-01-01

    Important clues to the chemical and dynamical history of elliptical galaxies are encoded in the abundances of heavy elements in the X-ray emitting plasma. We derive the hot ISM abundance pattern in inner (0.2.3R(sub e)) and outer (2.3.4.6R(sub e)) regions of NGC 4472 from analysis of Suzaku spectra, supported by analysis of co- spatial XMM-Newton spectra. The low background and relatively sharp spectral resolution of the Suzaku XIS detectors, combined with the high luminosity and temperature in NGC 4472, enable us to derive a particularly extensive abundance pattern that encompasses O, Ne, Mg, Al, Si, S, Ar, Ca, Fe, and Ni in both regions. We apply simple chemical evolution models to these data, and conclude that the abundances are best explained by a combination of alpha-element enhanced stellar mass loss and direct injection of Type Ia supernova (SNIa) ejecta. We thus confirm the inference, based on optical data, that the stars in elliptical galaxies have supersolar [alpha/Fe] ratios, but find that that the present-day SNIa rate is approximately 4.6 times lower than the standard value. We find SNIa yield sets that reproduce Ca and Ar, or Ni, but not all three simultaneously. The low abundance of O relative to Ne and Mg implies that standard core collapse nucleosynthesis models overproduce O by approximately 2.

  20. Seasonal abundance of epipelic algae and sediment parameters of ...

    African Journals Online (AJOL)

    Amadi-Ama creek is located close to sources of wastes which are introduced into the creek thus altering the physico-chemical parameters and the aquatic biota of the creek due to variation in nutrient load of the water. The seasonal abundance of epipelic algae and sediment parameters of Amadi-Ama Creek were ...

  1. Abundances in normal and chemically peculiar B, A and F stars: hortatory remarks and prospectus

    International Nuclear Information System (INIS)

    Cowley, C.R.

    1983-01-01

    A variety of new techniques are discussed which make it possible to determine considerably more accurate abundances than are now available for stars near spectral type A. Specific suggestions are made for implementing them. Adoption of the critically evaluated oscillator strengths by the NBS is recommended as a standard. Many references are given to data sources, both physical and astronomical. Suggestions are made for avoiding the most common sources of error in abundance work. (author)

  2. Primordial helium abundance determination using sulphur as metallicity tracer

    Science.gov (United States)

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  3. Chemical Abundances of Metal-poor stars in Dwarf Galaxies

    NARCIS (Netherlands)

    Venn, Kim A.; Jablonka, Pascale; Hill, Vanessa; Starkenburg, Else; Lemasle, Bertrand; Shetrone, Matthew; Irwin, Mike; Norris, John; Yong, David; Gilmore, Gerry; Salvadori, Stephania; Skuladottir, Asa; Tolstoy, Eline; Bragaglia, A.; Arnaboldi, M.; Rejkuba, M.; Romano, D.

    2016-01-01

    Stars in low-mass dwarf galaxies show a larger range in their chemical properties than those in the Milky Way halo. The slower star formation efficiency make dwarf galaxies ideal systems for testing nucleosynthetic yields. Not only are alpha-poor stars found at lower metallicities, and a higher

  4. Dependence of the Rossby number on helium and metal abundances

    International Nuclear Information System (INIS)

    Rucinski, S.M.; Vandenberg, D.A.

    1990-01-01

    Convective turnover times, tau, are calculated for solar-type stars of the zero-age main-sequence models of VandenBerg and Poll (1989) with helium abundances = 0.22, 0.27, and 0.32 and metal abundances = 0.0169, 0.024, and 0.03. Emphasis is given to the possible dependence of turnover times on the chemical composition of a star. It is found that deviations in log tau from a mean dependence on the (B-V) color are less than + or - 0.1. Thus, the predicted shape of the log tau vs. (B-V) relation is quite robust. 15 refs

  5. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  6. The Ital-FLAMES survey of the Sagittarius dwarf Spheroidal galaxy. I. Chemical abundances of bright RGB stars

    OpenAIRE

    Monaco, L.; Bellazzini, M.; Bonifacio, P.; Ferraro, F. R.; Marconi, G.; Pancino, E.; Sbordone, L.; Zaggia, S.

    2005-01-01

    We present iron and $\\alpha$ element (Mg, Ca, Ti) abundances for a sample of 15 Red Giant Branch stars belonging to the main body of the Sagittarius dwarf Spheroidal galaxy. Abundances have been obtained from spectra collected using the high resolution spectrograph FLAMES-UVES mounted at the VLT. Stars of our sample have a mean metallicity of [Fe/H]=-0.41$\\pm$0.20 with a metal poor tail extending to [Fe/H]=-1.52. The $\\alpha$ element abundance ratios are slightly subsolar for metallicities hi...

  7. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Science.gov (United States)

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  8. A stochastic approach to chemical evolution

    International Nuclear Information System (INIS)

    Copi, C.J.

    1997-01-01

    Observations of elemental abundances in the Galaxy have repeatedly shown an intrinsic scatter as a function of time and metallicity. The standard approach to chemical evolution does not attempt to address this scatter in abundances since only the mean evolution is followed. In this work, the scatter is addressed via a stochastic approach to solving chemical evolution models. Three simple chemical evolution scenarios are studied using this stochastic approach: a closed box model, an infall model, and an outflow model. These models are solved for the solar neighborhood in a Monte Carlo fashion. The evolutionary history of one particular region is determined randomly based on the star formation rate and the initial mass function. Following the evolution in an ensemble of such regions leads to the predicted spread in abundances expected, based solely on different evolutionary histories of otherwise identical regions. In this work, 13 isotopes are followed, including the light elements, the CNO elements, a few α-elements, and iron. It is found that the predicted spread in abundances for a 10 5 M circle-dot region is in good agreement with observations for the α-elements. For CN, the agreement is not as good, perhaps indicating the need for more physics input for low-mass stellar evolution. Similarly for the light elements, the predicted scatter is quite small, which is in contradiction to the observations of 3 He in HII regions. The models are tuned for the solar neighborhood so that good agreement with HII regions is not expected. This has important implications for low-mass stellar evolution and on using chemical evolution to determine the primordial light-element abundances in order to test big bang nucleosynthesis. copyright 1997 The American Astronomical Society

  9. Determination of lunar ilmenite abundances from remotely sensed data

    Science.gov (United States)

    Larson, Stephen M.; Johnson, Jeffrey R.; Singer, Robert B.

    1991-01-01

    The mineral ilmenite (FeTiO3) was found in abundance in lunar mare soils returned during the Apollo project. Lunar ilmenite often contains greater than 50 weight-percent titanium dioxide (TiO2), and is a primary potential resource for oxygen and other raw materials to supply future lunar bases. Chemical and spectroscopic analysis of the returned lunar soils produced an empirical function that relates the spectral reflectance ratio at 400 and 560 nm to the weight percent abundance of TiO2. This allowed mapping of the lunar TiO2 distribution using telescopic vidicon multispectral imaging from the ground; however, the time variant photometric response of the vidicon detectors produced abundance uncertainties of at least 2 to 5 percent. Since that time, solid-state charge-coupled device (CCD) detector technology capable of much improved photometric response has become available. An investigation of the lunar TiO2 distribution was carried out utilizing groundbased telescopic CCD multispectral imagery and spectroscopy. The work was approached in phases to develop optimum technique based upon initial results. The goal is to achieve the best possible TiO2 abundance maps from the ground as a precursor to lunar orbiter and robotic sample return missions, and to produce a better idea of the peak abundances of TiO2 for benefaction studies. These phases and the results are summarized.

  10. Properties of the outer regions of spiral disks: abundances, colors and ages

    Science.gov (United States)

    Mollá, Mercedes; Díaz, Angeles I.; Gibson, Brad K.; Cavichia, Oscar; López-Sánchez, Ángel-R.

    2017-03-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  11. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. IV. THE LARGE MAGELLANIC CLOUD: α, Fe-PEAK, LIGHT, AND HEAVY ELEMENTS

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2012-01-01

    We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R ∼ 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL χ 2 -minimization spectral synthesis technique to facilitate measurement of weak (∼15 mÅ) spectral lines and abundances in low signal-to-noise ratio data (S/N ∼ 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age +0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our results can be used to constrain both future chemical evolution models for the LMC and theories of globular cluster formation.

  12. The Influence of Atomic Diffusion on Stellar Ages and Chemical Tagging

    Energy Technology Data Exchange (ETDEWEB)

    Dotter, Aaron; Conroy, Charlie; Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Asplund, Martin, E-mail: aaron.dotter@gmail.com [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT (Australia)

    2017-05-10

    In the era of large stellar spectroscopic surveys, there is an emphasis on deriving not only stellar abundances but also the ages for millions of stars. In the context of Galactic archeology, stellar ages provide a direct probe of the formation history of the Galaxy. We use the stellar evolution code MESA to compute models with atomic diffusion—with and without radiative acceleration—and extra mixing in the surface layers. The extra mixing consists of both density-dependent turbulent mixing and envelope overshoot mixing. Based on these models we argue that it is important to distinguish between initial, bulk abundances (parameters) and current, surface abundances (variables) in the analysis of individual stellar ages. In stars that maintain radiative regions on evolutionary timescales, atomic diffusion modifies the surface abundances. We show that when initial, bulk metallicity is equated with current, surface metallicity in isochrone age analysis, the resulting stellar ages can be systematically overestimated by up to 20%. The change of surface abundances with evolutionary phase also complicates chemical tagging, which is the concept that dispersed star clusters can be identified through unique, high-dimensional chemical signatures. Stars from the same cluster, but in different evolutionary phases, will show different surface abundances. We speculate that calibration of stellar models may allow us to estimate not only stellar ages but also initial abundances for individual stars. In the meantime, analyzing the chemical properties of stars in similar evolutionary phases is essential to minimize the effects of atomic diffusion in the context of chemical tagging.

  13. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  14. Abundance ratios in dwarf elliptical galaxies

    Science.gov (United States)

    Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.

    2018-04-01

    We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.

  15. THE INFLUENCE OF RADIAL STELLAR MIGRATION ON THE CHEMICAL EVOLUTION OF THE MILKY WAY

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yue; Zhao Gang, E-mail: gzhao@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2013-05-20

    Stellar migration is an important dynamical process in the Galactic disk. Here we model radial stellar migration in the Galactic disk with an analytical method, then add it to a detailed Galactic chemical evolution model to study the influence of radial stellar migration on the chemical evolution of the Milky Way, especially for the abundance gradients. We found that the radial stellar migration in the Galactic disk can make the profile of the G-dwarf metallicity distribution of the solar neighborhood taller and narrower, and thus it becomes another solution to the ''G-dwarf problem''. It can also scatter the age-metallicity relation. However, after migration, the abundance distributions along the Galactic radius do not change much; namely, the abundance gradients would not be flattened by the radial stellar migration, which is different from the predictions of many theoretical works. However, it can flatten the radial gradients of the mean chemical abundance of stars, and older stars possess flatter abundance gradients than younger stars. The most significant effect of radial stellar migration on the chemical abundance is that at a certain position it scatters the abundance of stars from a relatively concentrated value to a range.

  16. Carbon Abundances in Starburst Galaxies of the Local Universe

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Guerrero, María A.; Leitherer, Claus [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Mink, Selma de [Anton Pannekoek Institute for Astronomy, Science Park 904, P.O. Box 94249, 1090 GE, Amsterdam (Netherlands); Wofford, Aida [Instituto de Astronomía, UNAM, Ensenada, CP 22860, Baja California (Mexico); Kewley, Lisa, E-mail: pena@stsci.edu, E-mail: leitherer@stsci.edu, E-mail: S.E.deMink@uva.nl, E-mail: awofford@astrosen.unam.mx, E-mail: lisa.kewley@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston ACT 2611 (Australia)

    2017-10-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  17. Carbon Abundances in Starburst Galaxies of the Local Universe

    International Nuclear Information System (INIS)

    Peña-Guerrero, María A.; Leitherer, Claus; Mink, Selma de; Wofford, Aida; Kewley, Lisa

    2017-01-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  18. Abundance in the planetary nebulae NGC 6537 and He2-111

    NARCIS (Netherlands)

    Pottasch, [No Value; Beintema, DA; Feibelman, WA

    2000-01-01

    The ISO and IUE spectra of the bipolar planetary nebulae NGC 6537 and He2-111 are presented. These spectra are combined with the spectrum in the visual wavelength region from the nebulae to obtain a complete spectrum that is corrected for extinction. The chemical abundance of the nebulae is then

  19. TOPoS. IV. Chemical abundances from high-resolution observations of seven extremely metal-poor stars

    Science.gov (United States)

    Bonifacio, P.; Caffau, E.; Spite, M.; Spite, F.; Sbordone, L.; Monaco, L.; François, P.; Plez, B.; Molaro, P.; Gallagher, A. J.; Cayrel, R.; Christlieb, N.; Klessen, R. S.; Koch, A.; Ludwig, H.-G.; Steffen, M.; Zaggia, S.; Abate, C.

    2018-04-01

    Context. Extremely metal-poor (EMP) stars provide us with indirect information on the first generations of massive stars. The TOPoS survey has been designed to increase the census of these stars and to provide a chemical inventory that is as detailed as possible. Aims: Seven of the most iron-poor stars have been observed with the UVES spectrograph at the ESO VLT Kueyen 8.2 m telescope to refine their chemical composition. Methods: We analysed the spectra based on 1D LTE model atmospheres, but also used 3D hydrodynamical simulations of stellar atmospheres. Results: We measured carbon in six of the seven stars: all are carbon-enhanced and belong to the low-carbon band, defined in the TOPoS II paper. We measured lithium (A(Li) = 1.9) in the most iron-poor star (SDSS J1035+0641, [Fe/H] measure Li in three stars at [Fe/H] -4.0, two of which lie on the Spite plateau. We confirm that SDSS J1349+1407 is extremely rich in Mg, but not in Ca. It is also very rich in Na. Several of our stars are characterised by low α-to-iron ratios. Conclusions: The lack of high-carbon band stars at low metallicity can be understood in terms of evolutionary timescales of binary systems. The detection of Li in SDSS J1035+0641 places a strong constraint on theories that aim at solving the cosmological lithium problem. The Li abundance of the two warmer stars at [Fe/H] -4.0 places them on the Spite plateau, while the third, cooler star, lies below. We argue that this suggests that the temperature at which Li depletion begins increases with decreasing [Fe/H]. SDSS J1349+1407 may belong to a class of Mg-rich EMP stars. We cannot assess if there is a scatter in α-to-iron ratios among the EMP stars or if there are several discrete populations. However, the existence of stars with low α-to-iron ratios is supported by our observations. Based on observations obtained at ESO Paranal Observatory, Programmes 189.D-0165,090.D-0306, 093.D-0136, and 096.D-0468.

  20. Chemical, Physical, and zooplankton abundance/biomass data collected using several instruments in the Coastal Waters of California as a part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 07 January 2000 to 01 July 2000 (NODC Accession 0000298)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, and zooplankton abundance/biomass data were collected using secchi disk, zooplankton net, current meter (ADCP), bottle, and CTD casts in the...

  1. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  2. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. IV. The Large Magellanic Cloud: α, Fe-peak, Light, and Heavy Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2012-02-01

    We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R ~ 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL χ2-minimization spectral synthesis technique to facilitate measurement of weak (~15 mÅ) spectral lines and abundances in low signal-to-noise ratio data (S/N ~ 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age +0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our results can be used to constrain both future chemical evolution models for the LMC and theories of globular cluster formation. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1990-01-01

    Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening complications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk. (orig.)

  4. THE RAVE CATALOG OF STELLAR ELEMENTAL ABUNDANCES: FIRST DATA RELEASE

    International Nuclear Information System (INIS)

    Boeche, C.; Williams, M.; De Jong, R. S.; Steinmetz, M.; Siebert, A.; Bienaymé, O.; Fulbright, J. P.; Ruchti, G. R.; Bland-Hawthorn, J.; Campbell, R.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Grebel, E. K.; Helmi, A.; Munari, U.; Navarro, J. F.; Parker, Q. A.; Reid, W.; Seabroke, G. M.

    2011-01-01

    We present chemical elemental abundances for 36,561 stars observed by the RAdial Velocity Experiment (RAVE), an ambitious spectroscopic survey of our Galaxy at Galactic latitudes |b| > 25° and with magnitudes in the range 9 DENIS 2 minimization technique. We plan to extend this pipeline to include estimates for other elements, such as oxygen and sulfur, in future data releases.

  5. Galactic Pal-eontology: abundance analysis of the disrupting globular cluster Palomar 5

    Science.gov (United States)

    Koch, Andreas; Côté, Patrick

    2017-05-01

    We present a chemical abundance analysis of the tidally disrupted globular cluster (GC) Palomar 5. By co-adding high-resolution spectra of 15 member stars from the cluster's main body, taken at low signal-to-noise with the Keck/HIRES spectrograph, we were able to measure integrated abundance ratios of 24 species of 20 elements including all major nucleosynthetic channels (namely the light element Na; α-elements Mg, Si, Ca, Ti; Fe-peak and heavy elements Sc, V, Cr, Mn, Co, Ni, Cu, Zn; and the neutron-capture elements Y, Zr, Ba, La, Nd, Sm, Eu). The mean metallicity of -1.56 ± 0.02 ± 0.06 dex (statistical and systematic errors) agrees well with the values from individual, low-resolution measurements of individual stars, but it is lower than previous high-resolution results of a small number of stars in the literature. Comparison with Galactic halo stars and other disrupted and unperturbed GCs renders Pal 5 a typical representative of the Milky Way halo population, as has been noted before, emphasizing that the early chemical evolution of such clusters is decoupled from their later dynamical history. We also performed a test as to the detectability of light element variations in this co-added abundance analysis technique and found that this approach is not sensitive even in the presence of a broad range in sodium of 0.6 dex, a value typically found in the old halo GCs. Thus, while methods of determining the global abundance patterns of such objects are well suited to study their overall enrichment histories, chemical distinctions of their multiple stellar populations is still best obtained from measurements of individual stars. Full Table 3 is is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A41

  6. Chemoselective single-site Earth-abundant metal catalysts at metal–organic framework nodes

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin (UC)

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal–organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C–H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  7. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates

    DEFF Research Database (Denmark)

    Elliot, Samuel Gilbert; Tolborg, Søren; Sádaba, Irantzu

    2017-01-01

    -containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters with additional olefin and alcohol functionalities. We employ an NMR approach to identify, quantify and optimize the formation these building blocks in the chemocatalytic transformation of abundant carbohydrates by Sn...

  8. LiHe{sup +} IN THE EARLY UNIVERSE: A FULL ASSESSMENT OF ITS REACTION NETWORK AND FINAL ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Francesco A. [Department of Chemistry, Universita degli Studi di Roma ' La Sapienza' , Piazzale A. Moro 5, 00185 Roma (Italy); Curik, Roman [J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, Prague (Czech Republic); Galli, Daniele, E-mail: fa.gianturco@caspur.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy)

    2012-06-10

    We present the results of quantum calculations based on entirely ab initio methods for a variety of molecular processes and chemical reactions involving the LiHe{sup +} ionic polar molecule. With the aid of these calculations, we derive accurate reaction rates and fitting expressions valid over a range of gas temperatures representative of the typical conditions of the pregalactic gas. With the help of a full chemical network, we then compute the evolution of the abundance of LiHe{sup +} as function of redshift in the early universe. Finally, we compare the relative abundance of LiHe{sup +} with that of other polar cations formed in the same redshift interval.

  9. Light, Alpha, and Fe-peak Element Abundances in the Galactic Bulge

    Science.gov (United States)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ~ 20,000), high signal-to-noise ration (S/N >~ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] >~ -0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ⊙ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars. However, the

  10. Light, alpha, and Fe-peak element abundances in the galactic bulge

    International Nuclear Information System (INIS)

    Johnson, Christian I.; Rich, R. Michael; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-01-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ☉ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars

  11. Light, alpha, and Fe-peak element abundances in the galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christian I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States); Rich, R. Michael [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547 (United States); Kobayashi, Chiaki [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); Kunder, Andrea [Leibniz-Institute für Astrophysik Potsdam (AIP), Ander Sternwarte 16, D-14482, Potsdam (Germany); Koch, Andreas, E-mail: cjohnson@cfa.harvard.edu, E-mail: rmr@astro.ucla.edu, E-mail: c.kobayashi@herts.ac.uk, E-mail: akunder@aip.de, E-mail: akoch@lsw.uni-heidelberg.de [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, Heidelberg (Germany)

    2014-10-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M {sub ☉} are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field

  12. Isotope-abundance variations and atomic weights of selected elements: 2016 (IUPAC Technical Report)

    Science.gov (United States)

    Coplen, Tyler B.; Shrestha, Yesha

    2016-01-01

    There are 63 chemical elements that have two or more isotopes that are used to determine their standard atomic weights. The isotopic abundances and atomic weights of these elements can vary in normal materials due to physical and chemical fractionation processes (not due to radioactive decay). These variations are well known for 12 elements (hydrogen, lithium, boron, carbon, nitrogen, oxygen, magnesium, silicon, sulfur, chlorine, bromine, and thallium), and the standard atomic weight of each of these elements is given by IUPAC as an interval with lower and upper bounds. Graphical plots of selected materials and compounds of each of these elements have been published previously. Herein and at the URL http://dx.doi.org/10.5066/F7GF0RN2, we provide isotopic abundances, isotope-delta values, and atomic weights for each of the upper and lower bounds of these materials and compounds.

  13. Sc and neutron-capture abundances in Galactic low- and high-alpha field halo stars

    DEFF Research Database (Denmark)

    Fishlock, Cherie K.; Yong, D.; Karakas, Amanda I.

    2017-01-01

    We determine relative abundance ratios for the neutron-capture elements Zr, La, Ce, Nd and Eu for a sample of 27 Galactic dwarf stars with -1.5 stars separate into three populations (low-and high-a halo and thick-disc stars) based......-alpha stars have a lower abundance compared to the high-alpha stars. The low-alpha stars display the same abundance patterns of high [Ba/Y] and low [Y/Eu] as observed in present-day dwarf spheroidal galaxies, although with smaller abundance differences, when compared to the high-alpha stars. These distinct...... chemical patterns have been attributed to differences in the star formation rate between the two populations and the contribution of low-metallicity, low-mass asymptotic giant branch (AGB) stars to the low-alpha population. By comparing the low-alpha population with AGB stellar models, we place constraints...

  14. Impacts of different exposure scenarios on transcript abundances in Danio rerio embryos when investigating the toxicological burden of riverine sediments.

    Directory of Open Access Journals (Sweden)

    Kerstin Bluhm

    Full Text Available PURPOSE: Recently, a proof-of-concept study revealed the suitability of transcriptome analyses to obtain and assess changes in the abundance of transcripts in zebrafish (Danio rerio embryos after exposure to organic sediment extracts. The present study investigated changes in the transcript abundance in zebrafish embryos exposed to whole sediment samples and corresponding organic extracts in order to identify the impact of different exposure pathways on sediment toxicity. MATERIALS AND METHODS: Danio rerio embryos were exposed to sublethal concentrations of three sediment samples from the Danube River, Germany. The sediment samples were investigated both as freeze-dried samples and as organic extracts. Silica dust and a process control of the extraction procedure were used as references. After exposure, mRNA was isolated and changes in profiles of gene expression levels were examined by an oligonucleotide microarray. The microarray results were compared with bioassays, chemical analysis of the sediments and profiles of gene expression levels induced by several single substances. RESULTS AND DISCUSSION: The microarray approach elucidated significant changes in the abundance of transcripts in exposed zebrafish embryos compared to the references. Generally, results could be related to Ah-receptor-mediated effects as confirmed by bioassays and chemical analysis of dioxin-like contaminants, as well as to exposure to stress-inducing compounds. Furthermore, the results indicated that mixtures of chemicals, as present in sediment and extract samples, result in complex changes of gene expression level profiles difficult to compare with profiles induced by single chemical substances. Specifically, patterns of transcript abundances were less influenced by the chemical composition at the sampling site compared t the method of exposure (sediment/extract. This effect might be related to different bioavailability of chemicals. CONCLUSIONS: The apparent

  15. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles.

    Science.gov (United States)

    Robatjazi, Hossein; Zhao, Hangqi; Swearer, Dayne F; Hogan, Nathaniel J; Zhou, Linan; Alabastri, Alessandro; McClain, Michael J; Nordlander, Peter; Halas, Naomi J

    2017-06-21

    The rational combination of plasmonic nanoantennas with active transition metal-based catalysts, known as 'antenna-reactor' nanostructures, holds promise to expand the scope of chemical reactions possible with plasmonic photocatalysis. Here, we report earth-abundant embedded aluminum in cuprous oxide antenna-reactor heterostructures that operate more effectively and selectively for the reverse water-gas shift reaction under milder illumination than in conventional thermal conditions. Through rigorous comparison of the spatial temperature profile, optical absorption, and integrated electric field enhancement of the catalyst, we have been able to distinguish between competing photothermal and hot-carrier driven mechanistic pathways. The antenna-reactor geometry efficiently harnesses the plasmon resonance of aluminum to supply energetic hot-carriers and increases optical absorption in cuprous oxide for selective carbon dioxide conversion to carbon monoxide with visible light. The transition from noble metals to aluminum based antenna-reactor heterostructures in plasmonic photocatalysis provides a sustainable route to high-value chemicals and reaffirms the practical potential of plasmon-mediated chemical transformations.Plasmon-enhanced photocatalysis holds promise for the control of chemical reactions. Here the authors report an Al@Cu 2 O heterostructure based on earth abundant materials to transform CO 2 into CO at significantly milder conditions.

  16. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo; Freitas, Fabricio C. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Ramirez, Ivan [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Yong, David; Asplund, Martin; Alves-Brito, Alan; Casagrande, Luca [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bergemann, Maria [Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching (Germany); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Lind, Karin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Castro, Matthieu; Do Nascimento, Jose-Dias [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael, E-mail: tmonroe@usp.br [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.

  17. Nutrients and Other Environmental Factors Influence Virus Abundances across Oxic and Hypoxic Marine Environments

    Directory of Open Access Journals (Sweden)

    Jan F. Finke

    2017-06-01

    Full Text Available Virus particles are highly abundant in seawater and, on average, outnumber microbial cells approximately 10-fold at the surface and 16-fold in deeper waters; yet, this relationship varies across environments. Here, we examine the influence of a suite of environmental variables, including nutrient concentrations, salinity and temperature, on the relationship between the abundances of viruses and prokaryotes over a broad range of spatial and temporal scales, including along a track from the Northwest Atlantic to the Northeast Pacific via the Arctic Ocean, and in the coastal waters of British Columbia, Canada. Models of varying complexity were tested and compared for best fit with the Akaike Information Criterion, and revealed that nitrogen and phosphorus concentrations, as well as prokaryote abundances, either individually or combined, had significant effects on viral abundances in all but hypoxic environments, which were only explained by a combination of physical and chemical factors. Nonetheless, multivariate models of environmental variables showed high explanatory power, matching or surpassing that of prokaryote abundance alone. Incorporating both environmental variables and prokaryote abundances into multivariate models significantly improved the explanatory power of the models, except in hypoxic environments. These findings demonstrate that environmental factors could be as important as, or even more important than, prokaryote abundance in describing viral abundance across wide-ranging marine environments

  18. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott; McWilliam, Andrew; Cohen, Judith G.

    2009-01-01

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R ∼ 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages ≥10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the α-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [α/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  19. The HIFI spectral survey of AFGL 2591 (CHESS). III. Chemical structure of the protostellar envelope

    Science.gov (United States)

    Kaźmierczak-Barthel, M.; Semenov, D. A.; van der Tak, F. F. S.; Chavarría, L.; van der Wiel, M. H. D.

    2015-02-01

    Aims: The aim of this work is to understand the richness of chemical species observed in the isolated high-mass envelope of AFGL 2591, a prototypical object for studying massive star formation. Methods: Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar envelope of AFGL 2591 were derived with a Monte Carlo radiative transfer code (Ratran), assuming a mixture of constant and 1D stepwise radial profiles for abundance distributions. The reconstructed 1D abundances were compared with the results of the time-dependent gas-grain chemical modeling, using the best-fit 1D power-law density structure. The chemical simulations were performed considering ages of 1-5 × 104 years, cosmic ray ionization rates of 5-500 × 10-17 s-1, uniformly-sized 0.1-1 μm dust grains, a dust/gas ratio of 1%, and several sets of initial molecular abundances with C/O 1. The most important model parameters varied one by one in the simulations are age, cosmic ray ionization rate, external UV intensity, and grain size. Results: Constant abundance models give good fits to the data for CO, CN, CS, HCO+, H2CO, N2H+, CCH, NO, OCS, OH, H2CS, O, C, C+, and CH. Models with an abundance jump at 100 K give good fits to the data for NH3, SO, SO2, H2S, H2O, HCl, and CH3OH. For HCN and HNC, the best models have an abundance jump at 230 K. The time-dependent chemical model can accurately explain abundance profiles of 15 out of these 24 species. The jump-like radial profiles for key species like HCO+, NH3, and H2O are consistent with the outcome of the time-dependent chemical modeling. The best-fit model has a chemical age of ~10-50 kyr, a solar C/O ratio of 0.44, and a cosmic-ray ionization rate of ~5 × 10-17 s-1. The grain properties and the intensity of the external UV field do not strongly affect the chemical structure of the AFGL 2591 envelope, whereas its chemical age, the cosmic-ray ionization rate, and the initial abundances play an important role. Conclusions: We

  20. Chemical equilibrium models of interstellar gas clouds

    International Nuclear Information System (INIS)

    Freeman, A.

    1982-10-01

    This thesis contains work which helps towards our understanding of the chemical processes and astrophysical conditions in interstellar clouds, across the whole range of cloud types. The object of the exercise is to construct a mathematical model representing a large system of two-body chemical reactions in order to deduce astrophysical parameters and predict molecular abundances and chemical pathways. Comparison with observations shows that this type of model is valid but also indicates that our knowledge of some chemical reactions is incomplete. (author)

  1. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    Science.gov (United States)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  2. Chemical Characterization of the Inner Galactic bulge: North-South Symmetry

    Science.gov (United States)

    Nandakumar, G.; Ryde, N.; Schultheis, M.; Thorsbro, B.; Jönsson, H.; Barklem, P. S.; Rich, R. M.; Fragkoudi, F.

    2018-05-01

    While the number of stars in the Galactic bulge with detailed chemical abundance measurements is increasing rapidly, the inner Galactic bulge (|b| detect a bimodal MDF with a metal-rich peak at ˜ +0.3 dex and a metal-poor peak at ˜ -0.5 dex, and no stars with [Fe/H] > +0.6 dex. The Galactic Center field reveals in contrast a mainly metal-rich population with a mean metallicity of +0.3 dex. We derived [Mg/Fe] and [Si/Fe] abundances which are consistent with trends from the outer bulge. We confirm for the supersolar metallicity stars the decreasing trend in [Mg/Fe] and [Si/Fe] as expected from chemical evolution models. With the caveat of a relatively small sample, we do not find significant differences in the chemical abundances between the Northern and the Southern fields, hence the evidence is consistent with symmetry in chemistry between North and South.

  3. Mixed poloidal-toroidal magnetic configuration and surface abundance distributions of the Bp star 36 Lyn

    Science.gov (United States)

    Oksala, M. E.; Silvester, J.; Kochukhov, O.; Neiner, C.; Wade, G. A.; the MiMeS Collaboration

    2018-01-01

    Previous studies of the chemically peculiar Bp star 36 Lyn revealed a moderately strong magnetic field, circumstellar material and inhomogeneous surface abundance distributions of certain elements. We present in this paper an analysis of 33 high signal-to-noise ratio, high-resolution Stokes IV observations of 36 Lyn obtained with the Narval spectropolarimeter at the Bernard Lyot Telescope at Pic du Midi Observatory. From these data, we compute new measurements of the mean longitudinal magnetic field, Bℓ, using the multiline least-squares deconvolution (LSD) technique. A rotationally phased Bℓ curve reveals a strong magnetic field, with indications for deviation from a pure dipole field. We derive magnetic maps and chemical abundance distributions from the LSD profiles, produced using the Zeeman-Doppler imaging code INVERSLSD. Using a spherical harmonic expansion to characterize the magnetic field, we find that the harmonic energy is concentrated predominantly in the dipole mode (ℓ = 1), with significant contribution from both the poloidal and toroidal components. This toroidal field component is predicted theoretically, but not typically observed for Ap/Bp stars. Chemical abundance maps reveal a helium enhancement in a distinct region where the radial magnetic field is strong. Silicon enhancements are located in two regions, also where the radial field is stronger. Titanium and iron enhancements are slightly offset from the helium enhancements, and are located in areas where the radial field is weak, close to the magnetic equator.

  4. Imaging the elusive H-poor gas in planetary nebulae with large abundance discrepancy factors

    Science.gov (United States)

    García-Rojas, Jorge; Corradi, Romano L. M.; Boffin, Henri M. J.; Monteiro, Hektor; Jones, David; Wesson, Roger; Cabrera-Lavers, Antonio; Rodríguez-Gil, Pablo

    2017-10-01

    The discrepancy between abundances computed using optical recombination lines (ORLs) and collisionally excited lines (CELs) is a major, unresolved problem with significant implications for the determination of chemical abundances throughout the Universe. In planetary nebulae (PNe), the most common explanation for the discrepancy is that two different gas phases coexist: a hot component with standard metallicity, and a much colder plasma enhanced in heavy elements. This dual nature is not predicted by mass loss theories, and direct observational support for it is still weak. In this work, we present our recent findings that demonstrate that the largest abundance discrepancies are associated with close binary central stars. OSIRIS-GTC tunable filter imaging of the faint O ii ORLs and MUSE-VLT deep 2D spectrophotometry confirm that O ii ORL emission is more centrally concentrated than that of [Oiii] CELs and, therefore, that the abundance discrepancy may be closely linked to binary evolution.

  5. General geochemical properties and abundances of the rare earth elements

    International Nuclear Information System (INIS)

    Henderson, P.

    1984-01-01

    This chapter reviews some of the fundamental aspects of rare earth elements (REE) geochemistry and gives data on abundances in the solar system, the bulk Earth and the Earth's crust. It describes the state of knowledge on the partitioning of the REE, especially in igneous rock systems, and cites reference works concerned with the REE. Several chemical properties of REE are discussed (oxidation states; redox conditions; element coordination and ionic radii; element substitution). (Auth.)

  6. Exploring the Nature of Galaxies with Abundance Gradient Anomalies in the SDSS-IV/MaNGA Survey

    Science.gov (United States)

    Keith, Celeste; Tremonti, Christy; Pace, Zach; Schaefer, Adam

    2018-01-01

    Disk galaxies are known to have radial oxygen abundance gradients with their centers being more chemically enriched than their outskirts. The steepness of the abundance gradient has recently been shown to correlate with galaxy stellar mass, on average. However, individual galaxies sometimes show pronounced deviations from the expected trends, such as flatter or steeper slopes than expected for their mass, abrupt changes in slope, or azimuthal asymmetries. Here we report on a systematic search for galaxies with abundance gradient anomalies using 2-D spectroscopy from the Sloan Digital Sky Survey IV MaNGA. We construct nebular oxygen and nitrogen abundance maps for 300 moderately inclined non-interacting disk galaxies and use visual inspection to identify the most interesting cases. We use this training set to develop an automated pipeline to flag galaxies with abundance anomalies from the larger MaNGA dataset for visual inspection. We combine the metallicity maps with kinematic data and measurements of the galaxies' local environments to better understand the processes that shape the radial abundance gradients of disk galaxies.

  7. Can occupancy-abundance models be used to monitor wolf abundance?

    Directory of Open Access Journals (Sweden)

    M Cecilia Latham

    Full Text Available Estimating the abundance of wild carnivores is of foremost importance for conservation and management. However, given their elusive habits, direct observations of these animals are difficult to obtain, so abundance is more commonly estimated from sign surveys or radio-marked individuals. These methods can be costly and difficult, particularly in large areas with heavy forest cover. As an alternative, recent research has suggested that wolf abundance can be estimated from occupancy-abundance curves derived from "virtual" surveys of simulated wolf track networks. Although potentially more cost-effective, the utility of this approach hinges on its robustness to violations of its assumptions. We assessed the sensitivity of the occupancy-abundance approach to four assumptions: variation in wolf movement rates, changes in pack cohesion, presence of lone wolves, and size of survey units. Our simulations showed that occupancy rates and wolf pack abundances were biased high if track surveys were conducted when wolves made long compared to short movements, wolf packs were moving as multiple hunting units as opposed to a cohesive pack, and lone wolves were moving throughout the surveyed landscape. We also found that larger survey units (400 and 576 km2 were more robust to changes in these factors than smaller survey units (36 and 144 km2. However, occupancy rates derived from large survey units rapidly reached an asymptote at 100% occupancy, suggesting that these large units are inappropriate for areas with moderate to high wolf densities (>15 wolves/1,000 km2. Virtually-derived occupancy-abundance relationships can be a useful method for monitoring wolves and other elusive wildlife if applied within certain constraints, in particular biological knowledge of the surveyed species needs to be incorporated into the design of the occupancy surveys. Further, we suggest that the applicability of this method could be extended by directly incorporating some of its

  8. HD 185330 — chemically peculiar 3He star in the Kepler field

    Science.gov (United States)

    Niemczura, E.; Vennes, S.; Różański, T.; Pigulski, A.; Hełminiak, K.; Lehmann, H.

    2018-01-01

    We analyzed high-resolution spectra of the chemically peculiar 3He star HD 185330. We determined its atmospheric parameters (Teff, log g, ξ) and constrained its rotation velocity and abundance pattern. In particular, we found a large (×100) phosphorus abundance excess and evidence of 3He and 4He abundance stratification in the atmosphere.

  9. A high deuterium abundance at redshift z = 0.7.

    Science.gov (United States)

    Webb, J K; Carswell, R F; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-07-17

    Of the light elements, the primordial abundance of deuterium relative to hydrogen, (D/H)p, provides the most sensitive diagnostic for the cosmological mass density parameter, omegaB. Recent high-redshift D/H measurements are highly discrepant, although this may reflect observational uncertainties. The larger primordial D/H values imply a low omegaB (requiring the Universe to be dominated by non-baryonic matter), and cause problems for galactic chemical evolution models, which have difficulty in reproducing the steep decline in D/H to the present-day values. Conversely, the lower D/H values measured at high redshift imply an omegaB greater than that derived from 7Li and 4He abundance measurements, and may require a deuterium-abundance evolution that is too low to easily explain. Here we report the first measurement of D/H at intermediate redshift (z = 0.7010), in a gas cloud selected to minimize observational uncertainties. Our analysis yields a value of D/H ((2.0 +/- 0.5) x 10[-4]) which is at the upper end of the range of values measured at high redshifts. This finding, together with other independent observations, suggests that there may be inhomogeneity in (D/H)p of at least a factor of ten.

  10. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L; Murray, Philip J

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  11. Impact of Grassland Reseeding, Herbicide spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2016-08-01

    Full Text Available In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: 1 before chemical herbicide spray; 2 after spray but before ploughing; 3 after ploughing but before reseeding; and 4 after one year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favoured those predators with a larger body size and individual weight. After one year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating.

  12. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods

    Science.gov (United States)

    Liu, Wei; Zhang, Junling; Norris, Stuart L.; Murray, Philip J.

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating. PMID:27555863

  13. Environmental chemicals and thyroid function

    DEFF Research Database (Denmark)

    Boas, Malene; Main, Katharina M; Feldt-Rasmussen, Ulla

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...

  14. MODELS FOR METAL-POOR STARS WITH ENHANCED ABUNDANCES OF C, N, O, Ne, Na, Mg, Si, S, Ca, AND Ti, IN TURN, AT CONSTANT HELIUM AND IRON ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    VandenBerg, Don A.; Dotter, Aaron [Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, B.C. V8W 3P6 (Canada); Bergbusch, Peter A. [Department of Physics, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); Ferguson, Jason W. [Department of Physics, Wichita State University, Wichita, KS 67260-0032 (United States); Michaud, Georges; Richer, Jacques [Departement de Physique, Universite de Montreal, Montreal, Quebec H3C 3J7 (Canada); Proffitt, Charles R., E-mail: vandenbe@uvic.ca, E-mail: Aaron.Dotter@gmail.com, E-mail: pbergbusch@accesscomm.ca, E-mail: proffitt@stsci.edu, E-mail: Jason.Ferguson@wichita.edu, E-mail: michaudg@astro.umontreal.ca, E-mail: jacques.richer@umontreal.ca [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-08-10

    Recent work has shown that most globular clusters have at least two chemically distinct components, as well as cluster-to-cluster differences in the mean [O/Fe], [Mg/Fe], and [Si/Fe] ratios at similar [Fe/H] values. In order to investigate the implications of variations in the abundances of these and other metals for H-R diagrams and predicted ages, grids of evolutionary sequences have been computed for scaled solar and enhanced {alpha}-element metal abundances, and for mixtures in which the assumed [m/Fe] value for each of the metals C, N, O, Ne, Na, Mg, Si, S, Ca, and Ti has been increased, in turn, by 0.4 dex at constant [Fe/H]. These tracks, together with isochrones for ages from Almost-Equal-To 5 to 14 Gyr, have been computed for -3.0 {<=} [Fe/H] {<=}-0.6, with helium abundances Y = 0.25, 0.29, and 0.33 at each [Fe/H] value, using upgraded versions of the Victoria stellar structure program and the Regina interpolation code, respectively. Turnoff luminosity versus age relations from isochrones are found to depend almost entirely on the importance of the CNO cycle, and thereby mainly on the abundance of oxygen. Since C, N, and O, as well as Ne and S, do not contribute significantly to the opacities at low temperatures and densities, variations in their abundances do not impact the predicted T{sub eff} scale of red giants. The latter is a strong function of the abundances of only Mg and Si (and Fe, possibly to a lesser extent) because they are so abundant and because they are strong sources of opacity at low temperatures. For these reasons, Mg and Si also have important effects on the temperatures of main-sequence stars. Due to their low abundances, Na, Ca, and Ti are of little consequence for stellar models. The effects of varying the adopted solar metals mixture and the helium abundance at a fixed [Fe/H] are also briefly discussed.

  15. Modeling CO, CO2, and H2O Ice Abundances in the Envelopes of Young Stellar Objects in the Magellanic Clouds

    Science.gov (United States)

    Pauly, Tyler; Garrod, Robin T.

    2018-02-01

    Massive young stellar objects (MYSOs) in the Magellanic Clouds show infrared absorption features corresponding to significant abundances of CO, CO2, and H2O ice along the line of sight, with the relative abundances of these ices differing between the Magellanic Clouds and the Milky Way. CO ice is not detected toward sources in the Small Magellanic Cloud, and upper limits put its relative abundance well below sources in the Large Magellanic Cloud and the Milky Way. We use our gas-grain chemical code MAGICKAL, with multiple grain sizes and grain temperatures, and further expand it with a treatment for increased interstellar radiation field intensity to model the elevated dust temperatures observed in the MCs. We also adjust the elemental abundances used in the chemical models, guided by observations of H II regions in these metal-poor satellite galaxies. With a grid of models, we are able to reproduce the relative ice fractions observed in MC MYSOs, indicating that metal depletion and elevated grain temperature are important drivers of the MYSO envelope ice composition. Magellanic Cloud elemental abundances have a subgalactic C/O ratio, increasing H2O ice abundances relative to the other ices; elevated grain temperatures favor CO2 production over H2O and CO. The observed shortfall in CO in the Small Magellanic Cloud can be explained by a combination of reduced carbon abundance and increased grain temperatures. The models indicate that a large variation in radiation field strength is required to match the range of observed LMC abundances. CH3OH abundance is found to be enhanced in low-metallicity models, providing seed material for complex organic molecule formation in the Magellanic Clouds.

  16. Anomalous behavior of tellurium abundances

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B L

    1984-01-01

    The cosmic abundance of Te is larger than for any element with atomic number greater than 40, but it is one of the least abundant elements in the earth's lithosphere and it is one of the five elements never reported in sea water. On the other hand, it is the fourth most abundant element in the human body (after Fe, Zn and Rb), and is unusually abundant in human food. It is shown that the high abundance in human food combined with the low abundance in soil requires that it be picked up by plant roots very much more efficiently than any other trace element.

  17. A-type Stellar Abundances: A Corollary to Herschel Observations of Debris Disks

    Science.gov (United States)

    Draper, Zachary H.; Matthews, Brenda; Venn, Kim; Lambert, David; Kennedy, Grant; Sitnova, Tatyana

    2018-04-01

    In order to assess the relationship between metallicity and exoplanetary systems, we compare the abundances of AF-type main-sequence stars with debris disk properties assessed using Herschel observations of an unbiased survey of nearby stars. Hot stars are not as commonly observed, given their unique constraints in data reduction, lack of metal lines, and “astrophysical noise” from rotation speed. Here, we address that deficiency using new and archival spectra of 83 AF-type stars. We measure the abundances of a few species in addition to Fe in order to classify the stars with Ap/Am or Lambda Boo signatures. Lambda Boo stars have a chemical signature of solar-abundant volatile species and sub-solar refractory abundances that is hypothesized to be altered by the pollution of volatiles. Overall, we see no correlation between debris disks and metallicity, primarily because the sample size is cut significantly when using only reliable fits to the spectroscopic data. The abundance measured from the Mg II 4481 blend is a useful diagnostic because it can be reliably measured at large v·sin(i) and is found to be lower around stars with bright debris disks. We find that Lambda Boo stars have brighter debris disks compared to a bias-free sample of AF stars. The trend with disk brightness and Mg abundances suggests pollution effects can be significant and used as a marker for the stability of planetary systems. We explore trends with other species, such as with the C/O ratios, but are significantly limited by the low number of reliable detections.

  18. On the Chemical Abundances of Miras in Clusters: V1 in the Metal-rich Globular NGC 5927

    Science.gov (United States)

    D’Orazi, V.; Magurno, D.; Bono, G.; Matsunaga, N.; Braga, V. F.; Elgueta, S. S.; Fukue, K.; Hamano, S.; Inno, L.; Kobayashi, N.; Kondo, S.; Monelli, M.; Nonino, M.; Przybilla, N.; Sameshima, H.; Saviane, I.; Taniguchi, D.; Thevenin, F.; Urbaneja-Perez, M.; Watase, A.; Arai, A.; Bergemann, M.; Buonanno, R.; Dall’Ora, M.; Da Silva, R.; Fabrizio, M.; Ferraro, I.; Fiorentino, G.; Francois, P.; Gilmozzi, R.; Iannicola, G.; Ikeda, Y.; Jian, M.; Kawakita, H.; Kudritzki, R. P.; Lemasle, B.; Marengo, M.; Marinoni, S.; Martínez-Vázquez, C. E.; Minniti, D.; Neeley, J.; Otsubo, S.; Prieto, J. L.; Proxauf, B.; Romaniello, M.; Sanna, N.; Sneden, C.; Takenaka, K.; Tsujimoto, T.; Valenti, E.; Yasui, C.; Yoshikawa, T.; Zoccali, M.

    2018-03-01

    We present the first spectroscopic abundance determination of iron, α-elements (Si, Ca, and Ti), and sodium for the Mira variable V1 in the metal-rich globular cluster NGC 5927. We use high-resolution (R ∼ 28,000), high signal-to-noise ratio (∼200) spectra collected with WINERED, a near-infrared (NIR) spectrograph covering simultaneously the wavelength range 0.91–1.35 μm. The effective temperature and the surface gravity at the pulsation phase of the spectroscopic observation were estimated using both optical (V) and NIR time-series photometric data. We found that the Mira is metal-rich ([Fe/H] = ‑0.55 ± 0.15) and moderately α-enhanced ([α/Fe] = 0.15 ± 0.01, σ = 0.2). These values agree quite well with the mean cluster abundances based on high-resolution optical spectra of several cluster red giants available in the literature ([Fe/H] = ‑ 0.47 ± 0.06, [α/Fe] = + 0.24 ± 0.05). We also found a Na abundance of +0.35 ± 0.20 that is higher than the mean cluster abundance based on optical spectra (+0.18 ± 0.13). However, the lack of similar spectra for cluster red giants and that of corrections for departures from local thermodynamical equilibrium prevents us from establishing whether the difference is intrinsic or connected with multiple populations. These findings indicate a strong similarity between optical and NIR metallicity scales in spite of the difference in the experimental equipment, data analysis, and in the adopted spectroscopic diagnostics. Based on spectra collected with the WINERED spectrograph available as a visitor instrument at the ESO New Technology Telescope (NTT), La Silla, Chile (ESO Proposal: 098.D-0878(A), PI: G. Bono).

  19. Heavy elements abundances in metal-poor stars

    International Nuclear Information System (INIS)

    Magain, P.; Jehin, E.; Neuforge, C.; Noels, A.

    1998-01-01

    A sample of 21 metal-poor stars have been analysed on the basis of high resolution and high signal-to-noise spectra. Correlations between relative abundances of 16 elements have been studied, with a special emphasis on the neutron-capture ones. This analysis reveals the existence of two sub-populations of field halo stars, namely Pop IIa and Pop IIb. They differ by the behaviour of the s-process elements versus the α and r-process elements. We suggest a scenario of formation of these stars, which closely relates the field halo stars to the evolution of globular clusters. The two sub-populations would have evaporated the clusters during two different stages of their chemical evolution

  20. Compilation of solar abundance data

    International Nuclear Information System (INIS)

    Hauge, Oe.; Engvold, O.

    1977-01-01

    Interest in the previous compilations of solar abundance data by the same authors (ITA--31 and ITA--39) has led to this third, revised edition. Solar abundance data of 67 elements are tabulated and in addition upper limits for the abundances of 5 elements are listed. References are made to 167 papers. A recommended abundance value is given for each element. (JIW)

  1. The Carina Project. VIII. The α-element abundances

    Science.gov (United States)

    Fabrizio, M.; Nonino, M.; Bono, G.; Primas, F.; Thévenin, F.; Stetson, P. B.; Cassisi, S.; Buonanno, R.; Coppola, G.; da Silva, R. O.; Dall'Ora, M.; Ferraro, I.; Genovali, K.; Gilmozzi, R.; Iannicola, G.; Marconi, M.; Monelli, M.; Romaniello, M.; Walker, A. R.

    2015-08-01

    We have performed a new abundance analysis of Carina red giant (RG) stars from spectroscopic data collected with UVES (high spectral resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter consists of 65 (high-resolution) and ~800 (medium-resolution) RGs, covering a significant fraction of the galaxy's RG branch, and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity and temperature bin were stacked. This approach allowed us to increase the signal-to-noise ratio in the faint magnitude limit (V≥ 20.5 mag) by at least a factor of five. We took advantage of the new photometry index cU,B,I introduced recently as an age and probably a metallicity indicator to split stars along the red giant branch. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean iron abundances are -2.15 ± 0.06 dex (σ = 0.28), and -1.75 ± 0.03 dex (σ = 0.21), respectively. The two iron distributions differ at the 75% level. This supports preliminary results. Moreover, we found that the old and intermediate-age stellar populations have mean [Mg/H] abundances of -1.91 ± 0.05 dex (σ = 0.22) and -1.35 ± 0.03 dex (σ = 0.22); these differ at the 83% level. Carina's α-element abundances agree, within 1σ, with similar abundances for field halo stars and for cluster (Galactic and Magellanic) stars. The same outcome applies to nearby dwarf spheroidals and ultra-faint dwarf galaxies in the iron range covered by Carina stars. Finally, we found evidence of a clear correlation between Na and O abundances, thus suggesting that Carina's chemical enrichment history is quite different from that in the globular clusters. Based on spectra retrieved from the ESO/ST-ECF Science Archive Facility and collected either with UVES at

  2. The abundance and emission of H2O and O-2 in clumpy molecular clouds

    NARCIS (Netherlands)

    Spaans, M; van Dishoeck, EF

    2001-01-01

    Recent observations with the Submillimeter Wave Astronomy Satellite (SWAS) indicate abundances of gaseous H2O and O-2 in dense molecular clouds that are significantly lower than those found in standard homogeneous chemistry models. We present here results for the thermal and chemical balance of

  3. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    International Nuclear Information System (INIS)

    Klein, B.; Jura, M.; Zuckerman, B.; Melis, C.; Koester, D.

    2010-01-01

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 ± 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

  4. Oxygen abundances in halo stars

    Science.gov (United States)

    Bessell, Michael S.; Sutherland, Ralph S.; Ruan, Kui

    1991-12-01

    The present study determines the oxygen abundance for a sample of metal-poor G dwarfs by analysis of OH lines between 3080 and 3200 A and the permitted high-excitation far-red O I triple. The oxygen abundances determined from the low-excitation OH lines are up to 0.55 dex lower than those measured from the high-excitation O I lines. The abundances for the far-red O I triplet lines agree with those rederived from Abia and Rebolo (1989), and the abundances from the OH lines in dwarfs and giants are in agreement with the rederived O abundances of Barbuy (1988) and others from the forbidden resonance O I line. Because the chi = 0.1.7 eV OH lines are formed in the same layers as the majority of Fe, Ti, and other neutral metal lines used for abundance analyses, it is argued that the OH lines and the forbidden O I line yield the true oxygen abundances relative to the metals.

  5. Atmospheric Composition of Weak G Band Stars: CNO and Li Abundances

    Science.gov (United States)

    Adamczak, Jens; Lambert, David L.

    2013-03-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12C/13C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  6. ATMOSPHERIC COMPOSITION OF WEAK G BAND STARS: CNO AND Li ABUNDANCES

    International Nuclear Information System (INIS)

    Adamczak, Jens; Lambert, David L.

    2013-01-01

    We determined the chemical composition of a large sample of weak G band stars—a rare class of G and K giants of intermediate mass with unusual abundances of C, N, and Li. We have observed 24 weak G band stars with the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory and derived spectroscopic abundances for C, N, O, and Li, as well as for selected elements from Na-Eu. The results show that the atmospheres of weak G band stars are highly contaminated with CN-cycle products. The C underabundance is about a factor of 20 larger than for normal giants and the 12 C/ 13 C ratio approaches the CN-cycle equilibrium value. In addition to the striking CN-cycle signature the strong N overabundance may indicate the presence of partially ON-cycled material in the atmospheres of the weak G band stars. The exact mechanism responsible for the transport of the elements to the surface has yet to be identified but could be induced by rapid rotation of the main sequence progenitors of the stars. The unusually high Li abundances in some of the stars are an indicator for Li production by the Cameron-Fowler mechanism. A quantitative prediction of a weak G band star's Li abundance is complicated by the strong temperature sensitivity of the mechanism and its participants. In addition to the unusual abundances of CN-cycle elements and Li, we find an overabundance of Na that is in accordance with the NeNa chain running in parallel with the CN cycle. Apart from these peculiarities, the element abundances in a weak G band star's atmosphere are consistent with those of normal giants.

  7. INVESTIGATION OF THE PUZZLING ABUNDANCE PATTERN IN THE STARS OF THE FORNAX DWARF SPHEROIDAL GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongjie; Cui Wenyuan; Zhang Bo, E-mail: zhangbo@mail.hebtu.edu.cn [Department of Physics, Hebei Normal University, No. 20 East of South 2nd Ring Road, Shijiazhuang 050024 (China)

    2013-09-20

    Many works have found unusual characteristics of elemental abundances in nearby dwarf galaxies. This implies that there is a key factor of galactic evolution that is different from that of the Milky Way (MW). The chemical abundances of the stars in the Fornax dwarf spheroidal galaxy (Fornax dSph) provide excellent information for setting constraints on the models of galactic chemical evolution. In this work, adopting the five-component approach, we fit the abundances of the Fornax dSph stars, including {alpha} elements, iron group elements, and neutron-capture elements. For most sample stars, the relative contributions from the various processes to the elemental abundances are not usually in the MW proportions. We find that the contributions from massive stars to the primary {alpha} elements and iron group elements increase monotonically with increasing [Fe/H]. This means that the effect of the galactic wind is not strong enough to halt star formation and the contributions from the massive stars to {alpha} elements did not halt for [Fe/H] {approx}< -0.5. The average contribution ratios of various processes between the dSph stars and the MW stars monotonically decrease with increasing progenitor mass. This is important evidence of a bottom-heavy initial mass function (IMF) for the Fornax dSph, compared to the MW. Considering a bottom-heavy IMF for the dSph, the observed relations of [{alpha}/Fe] versus [Fe/H], [iron group/Fe] versus [Fe/H], and [neutron-capture/Fe] versus [Fe/H] for the dSph stars can be explained.

  8. OXYGEN ABUNDANCES IN CEPHEIDS

    International Nuclear Information System (INIS)

    Luck, R. E.; Andrievsky, S. M.; Korotin, S. N.; Kovtyukh, V. V.

    2013-01-01

    Oxygen abundances in later-type stars, and intermediate-mass stars in particular, are usually determined from the [O I] line at 630.0 nm, and to a lesser extent, from the O I triplet at 615.7 nm. The near-IR triplets at 777.4 nm and 844.6 nm are strong in these stars and generally do not suffer from severe blending with other species. However, these latter two triplets suffer from strong non-local thermodynamic equilibrium (NLTE) effects and thus see limited use in abundance analyses. In this paper, we derive oxygen abundances in a large sample of Cepheids using the near-IR triplets from an NLTE analysis, and compare those abundances to values derived from a local thermodynamic equilibrium (LTE) analysis of the [O I] 630.0 nm line and the O I 615.7 nm triplet as well as LTE abundances for the 777.4 nm triplet. All of these lines suffer from line strength problems making them sensitive to either measurement complications (weak lines) or to line saturation difficulties (strong lines). Upon this realization, the LTE results for the [O I] lines and the O I 615.7 nm triplet are in adequate agreement with the abundance from the NLTE analysis of the near-IR triplets.

  9. NEW RADIAL ABUNDANCE GRADIENTS FOR NGC 628 AND NGC 2403

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Danielle A.; Skillman, Evan D. [Department of Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN 55455 (United States); Croxall, Kevin V. [Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Marble, Andrew R. [National Solar Observatory, 950 N Cherry Avenue, Tucson, AZ 85719 (United States); Smith, J. D. [Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606 (United States); Gordon, Karl [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Kennicutt, Robert C. Jr. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Garnett, Donald R., E-mail: berg@astro.umn.edu, E-mail: skillman@astro.umn.edu, E-mail: croxall.5@osu.edu, E-mail: amarble@nso.edu, E-mail: jd.smith@utoledo.edu, E-mail: kgordon@stsci.edu, E-mail: robk@ast.cam.ac.uk

    2013-10-01

    Motivated by recent interstellar medium studies, we present high quality MMT and Gemini spectroscopic observations of H II regions in the nearby spiral galaxies NGC 628 and NGC 2403 in order to measure their chemical abundance gradients. Using long-slit and multi-object mask optical spectroscopy, we obtained measurements of the temperature sensitive auroral lines [O III] λ4363 and/or [N II] λ5755 at a strength of 4σ or greater in 11 H II regions in NGC 628 and 7 regions in NGC 2403. These observations allow us, for the first time, to derive an oxygen abundance gradient in NGC 628 based solely on 'direct' oxygen abundances of H II regions: 12 + log(O/H) = (8.43 ± 0.03) + (–0.017 ± 0.002) × R{sub g} (dex kpc{sup –1}), with a dispersion in log(O/H) of σ = 0.10 dex, from 14 regions with a radial coverage of ∼2-19 kpc. This is a significantly shallower slope than found by previous 'strong-line' abundance studies. In NGC 2403, we derive an oxygen abundance gradient of 12 + log(O/H) = (8.48 ± 0.04) + (–0.032 ± 0.007)× R{sub g} (dex kpc{sup –1}), with a dispersion in log(O/H) of σ = 0.07 dex, from seven H II with a radial coverage of ∼1-10 kpc. Additionally, we measure the N, S, Ne, and Ar abundances. We find the N/O ratio decreases with increasing radius for the inner disk, but reaches a plateau past R{sub 25} in NGC 628. NGC 2403 also has a negative N/O gradient with radius, but we do not sample the outer disk of the galaxy past R{sub 25} and so do not see evidence for a plateau. This bi-modal pattern measured for NGC 628 indicates dominant contributions from secondary nitrogen inside of the R{sub 25} transition and dominantly primary nitrogen farther out. As expected for α-process elements, S/O, Ne/O, and Ar/O are consistent with constant values over a range in oxygen abundance.

  10. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    International Nuclear Information System (INIS)

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-01-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together

  11. Effect of Plant Diversity on Diversity and Abundance of Arthropods in Winter Wheat Fields

    Directory of Open Access Journals (Sweden)

    A Khodashenas

    2011-02-01

    Full Text Available Abstract Plant biomass and diversity play an important role in enhancing of biodiversity of other trophic levels, specially arthropods in terrestrial ecosystems. In order to determine the effects of plants on diversity and abundance of arthropods, a study was carried out in three regions of Razavi and northern Khorasan provinces, Shirvan, Mashhad and Gonabad. In each region, high and low input fields of winter wheat and a natural system for comparison were selected. In ripening stage of wheat growth (90 stage of Zadoks, sampling was done by use of quadrate in each system with five replications. Plants in each quadrate were counted and species richness of plants was determined. Insect sampling was done by sweep net from surface of plants, then species richness and abundance of collected insects were determined. As a result, agricultural practices decreased plant species richness but diversity and abundance of insects and spiders increased in agricultural systems. Our finding revealed that abundance of insects and spiders were not affected by plant species richness and plant biomass was the main factor affecting on species richness and abundance of insects, spiders and beneficial insects. Therefore, decreasing plant species richness that arose from agricultural practices doesn’t effect on arthropods diversity and abundance and doesn’t decrease sustainability of agricultural systems. Irregular use of chemical inputs, specially pesticides, is the main factor to decreasing of plants and arthropods species richness in agricultural systems. Keywords: Plant diversity, Arthropod diversity, Arthropod abundance, Plant-insect interactions, Agricultural systems

  12. Role of Core-collapse Supernovae in Explaining Solar System Abundances of p Nuclides

    Science.gov (United States)

    Travaglio, C.; Rauscher, T.; Heger, A.; Pignatari, M.; West, C.

    2018-02-01

    The production of the heavy stable proton-rich isotopes between 74Se and 196Hg—the p nuclides—is due to the contribution from different nucleosynthesis processes, activated in different types of stars. Whereas these processes have been subject to various studies, their relative contributions to Galactic chemical evolution (GCE) are still a matter of debate. Here we investigate for the first time the nucleosynthesis of p nuclides in GCE by including metallicity and progenitor mass-dependent yields of core-collapse supernovae (ccSNe) into a chemical evolution model. We used a grid of metallicities and progenitor masses from two different sets of stellar yields and followed the contribution of ccSNe to the Galactic abundances as a function of time. In combination with previous studies on p-nucleus production in thermonuclear supernovae (SNIa), and using the same GCE description, this allows us to compare the respective roles of SNeIa and ccSNe in the production of p-nuclei in the Galaxy. The γ process in ccSN is very efficient for a wide range of progenitor masses (13 M ⊙–25 M ⊙) at solar metallicity. Since it is a secondary process with its efficiency depending on the initial abundance of heavy elements, its contribution is strongly reduced below solar metallicity. This makes it challenging to explain the inventory of the p nuclides in the solar system by the contribution from ccSNe alone. In particular, we find that ccSNe contribute less than 10% of the solar p nuclide abundances, with only a few exceptions. Due to the uncertain contribution from other nucleosynthesis sites in ccSNe, such as neutrino winds or α-rich freeze out, we conclude that the light p-nuclides 74Se, 78Kr, 84Sr, and 92Mo may either still be completely or only partially produced in ccSNe. The γ-process accounts for up to twice the relative solar abundances for 74Se in one set of stellar models and 196Hg in the other set. The solar abundance of the heaviest p nucleus 196Hg is

  13. Chemical composition of stars in Ruprecht 106 .

    Science.gov (United States)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  14. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana [Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Casey, Andrew R., E-mail: alexji@mit.edu [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2016-11-20

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  15. CHEMICAL DIVERSITY IN THE ULTRA-FAINT DWARF GALAXY TUCANA II

    International Nuclear Information System (INIS)

    Ji, Alexander P.; Frebel, Anna; Ezzeddine, Rana; Casey, Andrew R.

    2016-01-01

    We present the first detailed chemical abundance study of the ultra-faint dwarf galaxy Tucana II, based on high-resolution Magellan/MIKE spectra of four red giant stars. The metallicities of these stars range from [Fe/H] = −3.2 to −2.6, and all stars are low in neutron-capture abundances ([Sr/Fe] and [Ba/Fe] < −1). However, a number of anomalous chemical signatures are present. One star is relatively metal-rich ([Fe/H] = −2.6) and shows [Na, α , Sc/Fe] < 0, suggesting an extended star formation history with contributions from AGB stars and SNe Ia. Two stars with [Fe/H] < −3 are mildly carbon-enhanced ([C/Fe] ∼ 0.7) and may be consistent with enrichment by faint supernovae, if such supernovae can produce neutron-capture elements. A fourth star with [Fe/H] = −3 is carbon-normal, and exhibits distinct light element abundance ratios from the carbon-enhanced stars. This carbon-normal star implies that at least two distinct nucleosynthesis sources, both possibly associated with Population III stars, contributed to the early chemical enrichment of this galaxy. Despite its very low luminosity, Tucana II shows a diversity of chemical signatures that preclude it from being a simple “one-shot” first galaxy yet still provide a window into star and galaxy formation in the early universe.

  16. Evolution of massive stars with mass loss: surface abundances

    International Nuclear Information System (INIS)

    Greggio, L.

    1984-01-01

    The location of theoretical stellar models in the upper part of the Hertzsprung-Russell diagram depends on a variety of poorly understood physical processes which may occur during the evolution of massive stars. The comparison between theoretical predictions and observations of the surface chemical composition of these objects can help in understanding their evolution and to set more stringent limits to the mentioned parameters. To this end, evolutionary sequences corresponding to 20, 40 and 60 solar masses have been computed up to core He exhaustion, following in detail the abundance variations of CNO, Ne and Mg isotopes. (Auth.)

  17. A TWO MICRON ALL SKY SURVEY VIEW OF THE SAGITTARIUS DWARF GALAXY. VI. s-PROCESS AND TITANIUM ABUNDANCE VARIATIONS ALONG THE SAGITTARIUS STREAM

    International Nuclear Information System (INIS)

    Chou, Mei-Yin; Majewski, Steven R.; Patterson, Richard J.; Cunha, Katia; Smith, Verne V.; Martinez-Delgado, David; Geisler, Doug

    2010-01-01

    We present high-resolution spectroscopic measurements of the abundances of the α element titanium (Ti) and s-process elements yttrium (Y) and lanthanum (La) for 59 candidate M giant members of the Sagittarius (Sgr) dwarf spheroidal (dSph) + tidal tail system pre-selected on the basis of position and radial velocity (RV). As expected, the majority of these stars show peculiar abundance patterns compared to those of nominal Milky Way (MW) stars, but as a group, the stars form a coherent picture of chemical enrichment of the Sgr dSph from [Fe/H] = -1.4 to solar abundance. This sample of spectra provides the largest number of Ti, La, and Y abundances yet measured for a dSph, and spans metallicities not typically probed by studies of the other, generally more metal-poor MW satellites. On the other hand, the overall [Ti/Fe], [Y/Fe], [La/Fe], and [La/Y] patterns with [Fe/H] of the Sgr stream plus Sgr core do, for the most part, resemble those seen in the Large Magellanic Cloud (LMC) and other dSphs, only shifted by Δ[Fe/H] ∼ +0.4 from the LMC and by ∼+1 dex from the other dSphs; these relative shifts reflect the faster and/or more efficient chemical evolution of Sgr compared to the other satellites, and show that Sgr has had an enrichment history more like the LMC than the other dSphs. By tracking the evolution of the abundance patterns along the Sgr stream we can follow the time variation of the chemical make-up of dSph stars donated to the Galactic halo by Sgr. This evolution demonstrates that while the bulk of the stars currently in the Sgr dSph is quite unlike those of the Galactic halo, an increasing number of stars farther along the Sgr stream have abundances like MW halo stars, a trend that shows clearly how the Galactic halo could have been contributed by present-day satellite galaxies even if the present chemistry of those satellites is now different from typical halo field stars. Finally, we analyze the chemical abundances of a moving group of M giants

  18. Prospects for Chemically Tagging Stars in the Galaxy

    Science.gov (United States)

    Ting, Yuan-Sen; Conroy, Charlie; Goodman, Alyssa

    2015-07-01

    It is now well-established that the elemental abundance patterns of stars hold key clues not only to their formation, but also to the assembly histories of galaxies. One of the most exciting possibilities is the use of stellar abundance patterns as “chemical tags” to identify stars that were born in the same molecular cloud. In this paper, we assess the prospects of chemical tagging as a function of several key underlying parameters. We show that in the fiducial case of 104 distinct cells in chemical space and {10}5-{10}6 stars in the survey, one can expect to detect ∼ {10}2-{10}3 groups that are ≥slant 5σ overdensities in the chemical space. However, we find that even very large overdensities in chemical space do not guarantee that the overdensity is due to a single set of stars from a common birth cloud. In fact, for our fiducial model parameters, the typical 5σ overdensity is comprised of stars from a wide range of clusters with the most dominant cluster contributing only 25% of the stars. The most important factors limiting the identification of disrupted clusters via chemical tagging are the number of chemical cells in the chemical space and the survey sampling rate of the underlying stellar population. Both of these factors can be improved through strategic observational plans. While recovering individual clusters through chemical tagging may prove challenging, we show, in agreement with previous work, that different CMFs imprint different degrees of clumpiness in chemical space. These differences provide the opportunity to statistically reconstruct the slope and high-mass cutoff of CMF and its evolution through cosmic time.

  19. Fluorine in the solar neighborhood: Chemical evolution models

    Science.gov (United States)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  20. The use of lead isotopic abundances in trace uranium samples for nuclear forensics analysis

    International Nuclear Information System (INIS)

    Fahey, A.J.; Ritchie, N.W.M.; Newbury, D.E.; Small, J.A.

    2010-01-01

    Secondary ion mass spectrometry (SIMS), secondary electron microscopy (SEM) and X-ray analysis have been applied to the measurement of U-bearing particles with the intent of gleaning information concerning their history and/or origin. The lead isotopic abundances are definitive indicators that U-bearing particles have come from an ore-body, even if they have undergone chemical processing. SEM images and X-ray analysis can add further information to the study that may allude to the extent of chemical processing. The presence of 'common' lead that does not exhibit a radiogenic signature is clear evidence of anthropogenic origin. (author)

  1. THE BIZARRE CHEMICAL INVENTORY OF NGC 2419, AN EXTREME OUTER HALO GLOBULAR CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Judith G.; Kirby, Evan N., E-mail: jlc@astro.caltech.edu, E-mail: enk@astro.caltech.edu [Palomar Observatory, Mail Stop 249-17, California Institute of Technology, Pasadena, CA 91125 (United States)

    2012-11-20

    We present new Keck/HIRES observations of six red giants in the globular cluster (GC) NGC 2419. Although the cluster is among the most distant and most luminous in the Milky Way, it was considered chemically ordinary until very recently. Our previous work showed that the near-infrared Ca II triplet line strength varied more than expected for a chemically homogeneous cluster, and that at least one star had unusual abundances of Mg and K. Here, we confirm that NGC 2419 harbors a population of stars, comprising about one-third of its mass, that is depleted in Mg by a factor of eight and enhanced in K by a factor of six with respect to the Mg-normal population. Although the majority, Mg-normal population appears to have a chemical abundance pattern indistinguishable from ordinary, inner-halo GCs, the Mg-poor population exhibits dispersions of several elements. The abundances of K and Sc are strongly anti-correlated with Mg, and some other elements (Si and Ca among others) are weakly anti-correlated with Mg. These abundance patterns suggest that the different populations of NGC 2419 sample the ejecta of diverse supernovae in addition to asymptotic giant branch ejecta. However, the abundances of Fe-peak elements except Sc show no star-to-star variation. We find no nucleosynthetic source that satisfactorily explains all of the abundance variations in this cluster. Because NGC 2419 appears like no other GC, we reiterate our previous suggestion that it is not a GC at all, but rather the core of an accreted dwarf galaxy.

  2. Relic abundance of WIMPs in non-standard cosmological scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yimingniyazi, W.

    2007-08-06

    In this thesis we study the relic density n{sub {chi}} of non--relativistic long--lived or stable particles {chi} in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles {chi} to achieve full chemical equilibrium. We also investigated the case where {chi} particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T{sub 0} of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the {chi} number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T{sub 0}, assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T{sub 0} {>=}m{sub {chi}}/23, where m{sub {chi}} is the mass of {chi}. Second, we discuss the {chi} density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the {chi} annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T {proportional_to}m{sub {chi}}/20, well before Big Bang Nucleosynthesis. (orig.)

  3. Relic abundance of WIMPs in non-standard cosmological scenarios

    International Nuclear Information System (INIS)

    Yimingniyazi, W.

    2007-01-01

    In this thesis we study the relic density n χ of non--relativistic long--lived or stable particles χ in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles χ to achieve full chemical equilibrium. We also investigated the case where χ particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T 0 of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the χ number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T 0 , assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T 0 ≥m χ /23, where m χ is the mass of χ. Second, we discuss the χ density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T ∝m χ /20, well before Big Bang Nucleosynthesis. (orig.)

  4. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  5. Evolution of heavy-element abundances in the galactic halo and disk

    International Nuclear Information System (INIS)

    Mathews, G.J.; Cowan, J.J.; Schramm, D.N.

    1988-05-01

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is described in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies

  6. Fossil Signatures Using Elemental Abundance Distributions and Bayesian Probabilistic Classification

    Science.gov (United States)

    Hoover, Richard B.; Storrie-Lombardi, Michael C.

    2004-01-01

    Elemental abundances (C6, N7, O8, Na11, Mg12, Al3, P15, S16, Cl17, K19, Ca20, Ti22, Mn25, Fe26, and Ni28) were obtained for a set of terrestrial fossils and the rock matrix surrounding them. Principal Component Analysis extracted five factors accounting for the 92.5% of the data variance, i.e. information content, of the elemental abundance data. Hierarchical Cluster Analysis provided unsupervised sample classification distinguishing fossil from matrix samples on the basis of either raw abundances or PCA input that agreed strongly with visual classification. A stochastic, non-linear Artificial Neural Network produced a Bayesian probability of correct sample classification. The results provide a quantitative probabilistic methodology for discriminating terrestrial fossils from the surrounding rock matrix using chemical information. To demonstrate the applicability of these techniques to the assessment of meteoritic samples or in situ extraterrestrial exploration, we present preliminary data on samples of the Orgueil meteorite. In both systems an elemental signature produces target classification decisions remarkably consistent with morphological classification by a human expert using only structural (visual) information. We discuss the possibility of implementing a complexity analysis metric capable of automating certain image analysis and pattern recognition abilities of the human eye using low magnification optical microscopy images and discuss the extension of this technique across multiple scales.

  7. Exploring Sulfur & Argon Abundances in Planetary Nebulae as Metallicity- Indicator Surrogates for Iron in the Interstellar Medium

    Science.gov (United States)

    Kwitter, Karen B.; Henry, Richard C.

    1999-02-01

    Our primary motivation for studying S and Ar distributions in planetary nebulae (PNe) across the Galactic disk is to explore the possibility of a surrogacy between (S+Ar)/O and Fe/O for use as a metallicity indicator in the interstellar medium. The chemical history of the Galaxy is usually studied through O and Fe distributions among objects of different ages. Historically, though, Fe and O have not been measured in the same systems: Fe is easily seen in stars but hard to detect in nebulae; the reverse is true for O. We know that S and Ar abundances are not affected by PN progenitor evolution, and we therefore seek to exploit both their unaltered abundances and ease of detectability in PNe to explore their surrogacy for Fe. If proven valid, this surrogacy carries broad and important ramifications for bridging the gap between stellar and interstellar abundances in the Galaxy, and potentially beyond. Observed S/O and Ar/O gradients will also provide constraints on theoretical stellar yields of S and Ar, since they can be compared with chemical evolution models (which incorporate theoretically-predicted stellar yields, an initial mass function, and rates of star formation and infall) to help place constraints on model parameters.

  8. Abundances, Ionization States, Temperatures, and FIP in Solar Energetic Particles

    Science.gov (United States)

    Reames, Donald V.

    2018-04-01

    The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in {}3He/{}4He from resonant wave-particle interactions in the small "impulsive" SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio A/Q, rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the "gradual" events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but A/Q-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states Q show coronal temperatures of 1-2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of Q are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of A/Q, we can use abundances to deduce the probable Q-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs

  9. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    International Nuclear Information System (INIS)

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Rockosi, Constance M.; Simon, Joshua D.; Geha, Marla C.; Sneden, Christopher; Sohn, Sangmo Tony; Majewski, Steven R.; Siegel, Michael

    2010-01-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([α/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  10. MEASURING DETAILED CHEMICAL ABUNDANCES FROM CO-ADDED MEDIUM-RESOLUTION SPECTRA. I. TESTS USING MILKY WAY DWARF SPHEROIDAL GALAXIES AND GLOBULAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Lei; Peng, Eric W.; Kirby, Evan N.; Guhathakurta, Puragra; Cheng, Lucy

    2013-01-01

    The ability to measure metallicities and α-element abundances in individual red giant branch (RGB) stars using medium-resolution spectra (R ≈ 6000) is a valuable tool for deciphering the nature of Milky Way dwarf satellites and the history of the Galactic halo. Extending such studies to more distant systems like Andromeda is beyond the ability of the current generation of telescopes, but by co-adding the spectra of similar stars, we can attain the necessary signal-to-noise ratio (S/N) to make detailed abundance measurements. In this paper, we present a method to determine metallicities and α-element abundances using the co-addition of medium-resolution spectra. We test the method of spectral co-addition using high-S/N spectra of more than 1300 RGB stars from Milky Way globular clusters and dwarf spheroidal galaxies obtained with the Keck II telescope/DEIMOS spectrograph. We group similar stars using photometric criteria and compare the weighted ensemble average abundances ([Fe/H], [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) of individual stars in each group with the measurements made on the corresponding co-added spectrum. We find a high level of agreement between the two methods, which permits us to apply this co-added spectra technique to more distant RGB stars, like stars in the M31 satellite galaxies. This paper outlines our spectral co-addition and abundance measurement methodology and describes the potential biases in making these measurements.

  11. SDSS IV MaNGA - metallicity and nitrogen abundance gradients in local galaxies

    Science.gov (United States)

    Belfiore, Francesco; Maiolino, Roberto; Tremonti, Christy; Sánchez, Sebastian F.; Bundy, Kevin; Bershady, Matthew; Westfall, Kyle; Lin, Lihwai; Drory, Niv; Boquien, Médéric; Thomas, Daniel; Brinkmann, Jonathan

    2017-07-01

    We study the gas phase metallicity (O/H) and nitrogen abundance gradients traced by star-forming regions in a representative sample of 550 nearby galaxies in the stellar mass range 109-1011.5 M⊙ with resolved spectroscopic data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory survey. Using strong-line ratio diagnostics (R23 and O3N2 for metallicity and N2O2 for N/O) and referencing to the effective (half-light) radius (Re), we find that the metallicity gradient steepens with stellar mass, lying roughly flat among galaxies with log (M⋆/M⊙) = 9.0 but exhibiting slopes as steep as -0.14 dex R_e^{-1} at log (M⋆/M⊙) = 10.5 (using R23, but equivalent results are obtained using O3N2). At higher masses, these slopes remain typical in the outer regions of our sample (R > 1.5Re), but a flattening is observed in the central regions (R 2.0Re), we detect a mild flattening of the metallicity gradient in stacked profiles, although with low significance. The N/O ratio gradient provides complementary constraints on the average chemical enrichment history. Unlike the oxygen abundance, the average N/O profiles do not flatten out in the central regions of massive galaxies. The metallicity and N/O profiles both depart significantly from an exponential form, suggesting a disconnect between chemical enrichment and stellar mass surface density on local scales. In the context of inside-out growth of discs, our findings suggest that central regions of massive galaxies today have evolved to an equilibrium metallicity, while the nitrogen abundance continues to increase as a consequence of delayed secondary nucleosynthetic production.

  12. A Physically Motivated and Empirically Calibrated Method to Measure the Effective Temperature, Metallicity, and Ti Abundance of M Dwarfs

    Science.gov (United States)

    Veyette, Mark J.; Muirhead, Philip S.; Mann, Andrew W.; Brewer, John M.; Allard, France; Homeier, Derek

    2017-12-01

    The ability to perform detailed chemical analysis of Sun-like F-, G-, and K-type stars is a powerful tool with many applications, including studying the chemical evolution of the Galaxy and constraining planet formation theories. Unfortunately, complications in modeling cooler stellar atmospheres hinders similar analyses of M dwarf stars. Empirically calibrated methods to measure M dwarf metallicity from moderate-resolution spectra are currently limited to measuring overall metallicity and rely on astrophysical abundance correlations in stellar populations. We present a new, empirical calibration of synthetic M dwarf spectra that can be used to infer effective temperature, Fe abundance, and Ti abundance. We obtained high-resolution (R ˜ 25,000), Y-band (˜1 μm) spectra of 29 M dwarfs with NIRSPEC on Keck II. Using the PHOENIX stellar atmosphere modeling code (version 15.5), we generated a grid of synthetic spectra covering a range of temperatures, metallicities, and alpha-enhancements. From our observed and synthetic spectra, we measured the equivalent widths of multiple Fe I and Ti I lines and a temperature-sensitive index based on the FeH band head. We used abundances measured from widely separated solar-type companions to empirically calibrate transformations to the observed indices and equivalent widths that force agreement with the models. Our calibration achieves precisions in T eff, [Fe/H], and [Ti/Fe] of 60 K, 0.1 dex, and 0.05 dex, respectively, and is calibrated for 3200 K < T eff < 4100 K, -0.7 < [Fe/H] < +0.3, and -0.05 < [Ti/Fe] < +0.3. This work is a step toward detailed chemical analysis of M dwarfs at a precision similar to what has been achieved for FGK stars.

  13. [α/Fe] ABUNDANCES OF FOUR OUTER M31 HALO STARS

    International Nuclear Information System (INIS)

    Vargas, Luis C.; Geha, Marla; Tollerud, Erik J.; Gilbert, Karoline M.; Kirby, Evan N.; Guhathakurta, Puragra

    2014-01-01

    We present alpha element to iron abundance ratios, [α/Fe], for four stars in the outer stellar halo of the Andromeda Galaxy (M31). The stars were identified as high-likelihood field halo stars by Gilbert et al. and lie at projected distances between 70 and 140 kpc from M31's center. These are the first alpha abundances measured for a halo star in a galaxy beyond the Milky Way. The stars range in metallicity between [Fe/H] = –2.2 and [Fe/H] = –1.4. The sample's average [α/Fe] ratio is +0.20 ± 0.20. The best-fit average value is elevated above solar, which is consistent with rapid chemical enrichment from Type II supernovae. The mean [α/Fe] ratio of our M31 outer halo sample agrees (within the uncertainties) with that of Milky Way inner/outer halo stars that have a comparable range of [Fe/H

  14. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1979-01-01

    The chemical evolution of disk galaxies is discussed with special reference to results obtained from studies of the oxygen abundance in H II regions. Normal spirals (including our own) display the by now well known radial abundance gradient, which is discussed on the basis of the simple enrichment model and other models. The Magellanic Clouds, on the other hand, and the barred spiral NGC 1365, have been found to have little or no abundance gradient, implying a very different sort of evolution that may involve large-scale mixing. Finally, the simple model is tested against a number of results in H II regions where the ratio of total mass to mass of residual gas can be estimated. It turns out to fit adequately the Magellanic Clouds and a number of H II regions in the outer parts of spiral galaxies, but in more inner parts it fails, as do more sophisticated models involving infall during the formation of galactic disks that have proved very successful in other respects. (Auth.)

  15. A Metastable Equilibrium Model for the Relative Abundances of Microbial Phyla in a Hot Spring

    Science.gov (United States)

    Dick, Jeffrey M.; Shock, Everett L.

    2013-01-01

    Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as “Bison Pool” in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the

  16. X-shooter spectroscopy of young stellar objects in Lupus. Lithium, iron, and barium elemental abundances

    Science.gov (United States)

    Biazzo, K.; Frasca, A.; Alcalá, J. M.; Zusi, M.; Covino, E.; Randich, S.; Esposito, M.; Manara, C. F.; Antoniucci, S.; Nisini, B.; Rigliaco, E.; Getman, F.

    2017-09-01

    Aims: With the purpose of performing a homogeneous determination of elemental abundances for members of the Lupus T association, we analyzed three chemical elements: lithium, iron, and barium. The aims were: 1) to derive the lithium abundance for the almost complete sample ( 90%) of known class II stars in the Lupus I, II, III, and IV clouds; 2) to perform chemical tagging of a region where few iron abundance measurements have been obtained in the past, and no determination of the barium content has been done up to now. We also investigated possible barium enhancement at the very young age of the region, as this element has become increasingly interesting in the last few years following the evidence of barium over-abundance in young clusters, the origin of which is still unknown. Methods: Using the X-shooter spectrograph mounted on the Unit 2 (UT2) at the Very Large Telescope (VLT), we analyzed the spectra of 89 cluster members, both class II (82) and class III (7) stars. We measured the strength of the lithium line at λ6707.8 Å and derived the abundance of this element through equivalent width measurements and curves of growth. For six class II stars we also derived the iron and barium abundances using the spectral synthesis method and the code MOOG. The veiling contribution was taken into account in the abundance analysis for all three elements. Results: We find a dispersion in the strength of the lithium line at low effective temperatures and identify three targets with severe Li depletion. The nuclear age inferred for these highly lithium-depleted stars is around 15 Myr, which exceeds by an order of magnitude the isochronal one. We derive a nearly solar metallicity for the members whose spectra could be analyzed. We find that Ba is over-abundant by 0.7 dex with respect to the Sun. Since current theoretical models cannot reproduce this abundance pattern, we investigated whether this unusually large Ba content might be related to effects due to stellar

  17. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs

    OpenAIRE

    Loh, Tse-Lynn; Pawlik, Joseph R.

    2014-01-01

    Chemical defenses are known to protect some species from consumers, but it is often difficult to detect this advantage at the community or ecosystem levels because of the complexity of abiotic and biotic factors that influence species abundances. We surveyed the community of sponges and sponge predators (angelfishes and parrotfishes) on coral reefs across the Caribbean ranging from heavily overfished sites to protected marine reserves. High predator abundance correlated with high abundance of...

  18. Plasmon-driven sequential chemical reactions in an aqueous environment.

    Science.gov (United States)

    Zhang, Xin; Wang, Peijie; Zhang, Zhenglong; Fang, Yurui; Sun, Mengtao

    2014-06-24

    Plasmon-driven sequential chemical reactions were successfully realized in an aqueous environment. In an electrochemical environment, sequential chemical reactions were driven by an applied potential and laser irradiation. Furthermore, the rate of the chemical reaction was controlled via pH, which provides indirect evidence that the hot electrons generated from plasmon decay play an important role in plasmon-driven chemical reactions. In acidic conditions, the hot electrons were captured by the abundant H(+) in the aqueous environment, which prevented the chemical reaction. The developed plasmon-driven chemical reactions in an aqueous environment will significantly expand the applications of plasmon chemistry and may provide a promising avenue for green chemistry using plasmon catalysis in aqueous environments under irradiation by sunlight.

  19. Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates.

    Science.gov (United States)

    Chin, Krista S; Lento, Jennifer; Culp, Joseph M; Lacelle, Denis; Kokelj, Steven V

    2016-08-01

    Intensification of permafrost thaw has increased the frequency and magnitude of large permafrost slope disturbances (mega slumps) in glaciated terrain of northwestern Canada. Individual thermokarst disturbances up to 40 ha in area have made large volumes of previously frozen sediments available for leaching and transport to adjacent streams, significantly increasing sediment and solute loads in these systems. To test the effects of this climate-sensitive disturbance regime on the ecology of Arctic streams, we explored the relationship between physical and chemical variables and benthic macroinvertebrate communities in disturbed and undisturbed stream reaches in the Peel Plateau, Northwest Territories, Canada. Highly disturbed and undisturbed stream reaches differed with respect to taxonomic composition and invertebrate abundance. Minimally disturbed reaches were not differentiated by these variables but rather were distributed along a disturbance gradient between highly disturbed and undisturbed sites. In particular, there was evidence of a strong negative relationship between macroinvertebrate abundance and total suspended solids, and a positive relationship between abundance and the distance from the disturbance. Increases in both sediments and nutrients appear to be the proximate cause of community differences in highly disturbed streams. Declines in macroinvertebrate abundance in response to slump activity have implications for the food webs of these systems, potentially leading to negative impacts on higher trophic levels, such as fish. Furthermore, the disturbance impacts on stream health can be expected to intensify as climate change increases the frequency and magnitude of thermokarst. © 2016 John Wiley & Sons Ltd.

  20. Chemical abundances of fast-rotating massive stars. I. Description of the methods and individual results

    Science.gov (United States)

    Cazorla, Constantin; Morel, Thierry; Nazé, Yaël; Rauw, Gregor; Semaan, Thierry; Daflon, Simone; Oey, M. S.

    2017-07-01

    Aims: Recent observations have challenged our understanding of rotational mixing in massive stars by revealing a population of fast-rotating objects with apparently normal surface nitrogen abundances. However, several questions have arisen because of a number of issues, which have rendered a reinvestigation necessary; these issues include the presence of numerous upper limits for the nitrogen abundance, unknown multiplicity status, and a mix of stars with different physical properties, such as their mass and evolutionary state, which are known to control the amount of rotational mixing. Methods: We have carefully selected a large sample of bright, fast-rotating early-type stars of our Galaxy (40 objects with spectral types between B0.5 and O4). Their high-quality, high-resolution optical spectra were then analysed with the stellar atmosphere modelling codes DETAIL/SURFACE or CMFGEN, depending on the temperature of the target. Several internal and external checks were performed to validate our methods; notably, we compared our results with literature data for some well-known objects, studied the effect of gravity darkening, or confronted the results provided by the two codes for stars amenable to both analyses. Furthermore, we studied the radial velocities of the stars to assess their binarity. Results: This first part of our study presents our methods and provides the derived stellar parameters, He, CNO abundances, and the multiplicity status of every star of the sample. It is the first time that He and CNO abundances of such a large number of Galactic massive fast rotators are determined in a homogeneous way. Based on observations obtained with the Heidelberg Extended Range Optical Spectrograph (HEROS) at the Telescopio Internacional de Guanajuato (TIGRE) with the SOPHIE échelle spectrograph at the Haute-Provence Observatory (OHP; Institut Pytheas; CNRS, France), and with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph at the Magellan II Clay telescope

  1. Revisiting the radial abundance gradients of nitrogen and oxygen of the Milky Way

    Science.gov (United States)

    Esteban, C.; García-Rojas, J.

    2018-05-01

    We present spectra obtained with the 10.4 m Gran Telescopio Canarias telescope of 13 Galactic H II regions, most of them of very low ionisation degree. The objects are located along the Galactic disc, with RG from 5.7 to 16.1 kpc. We determine Te([N II]) for all of them. We obtain - for the first time - a radial abundance gradient of N that is independent on the ionisation correction factor. The radial distribution of the N/O ratio is almost flat, indicating that the bulk of N is not formed by standard secondary processes. We have made a reassessment of the radial O abundance gradient combining our results with previous similar ones by Esteban et al. (2017); producing a homogeneous dataset of 35 H II regions with direct determinations of the electron temperature. We report the possible presence of a flattening or drop of the O abundance in the inner part of the Galactic disc. This result confirms previous findings from metallicity distributions based on Cepheids and red giants. Finally, we find that the scatter of the N and O abundances of H II regions with respect to the gradient fittings is not substantially larger than the observational uncertainties, indicating that both chemical elements seem to be well mixed in the interstellar gas at a given distance along the Galactic disc

  2. CONSTRAINING THE ABUNDANCES OF COMPLEX ORGANICS IN THE INNER REGIONS OF SOLAR-TYPE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney; Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); López-Sepulcre, Ana; Ceccarelli, Cecilia; Kahane, Claudine [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Neri, Roberto, E-mail: taquet@strw.leidenuniv.nl [Institut de Radioastronomie Millimétrique, Grenoble (France)

    2015-05-10

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  3. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  4. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  5. Project VeSElkA: a search for the vertical stratification of element abundances in HD 157087

    Science.gov (United States)

    Khalack, V.

    2018-06-01

    The new spectropolarimetric spectra of HD 157087 obtained recently with ESPaDOnS (Echelle SpectroPolarimetric Device for Observations of Stars) at the Canada-France-Hawaii Telescope are analysed to verify the nature of this object. The fundamental stellar parameters Teff = 8882 K, log g = 3.57 were obtained for HD 157087 from the analysis of nine Balmer line profiles in two available spectra. A comparison of the results of our abundance analysis with previously published data shows a variability of the average abundance with time for some chemical species, while the abundances of other elements remain almost constant. The abundance analysis also reveals evidence of a significant abundance increase towards the deeper atmospheric layers for C, S, Ca, Sc, V, Cr, Mn, Co, Ni and Zr. Together with the discovered enhanced abundance of Ca and Sc, this finding contradicts the classification of HD 157087 as a marginal Am star. An analysis of the available measurements of radial velocity revealed long- and short-period variations. The long-period variation supports the idea that HD 157087 is an astrometric binary system with a period longer than 6 yr. The presence of the short-period variation of Vr, as well as the detection of the temporal variation of the average abundance, suggests that HD 157087 may be a triple system, in which a short-period binary rotates around a third star. In this case, the short-period binary may consist of slowly rotating Am and A (or Ap with a weak magnetic field) stars that have similar effective temperatures and surface gravities, but different abundance peculiarities.

  6. Future emission scenarios for chemicals that may deplete stratospheric ozone

    International Nuclear Information System (INIS)

    Hammitt, J.K; Camm, Frank; Mooz, W.E.; Wolf, K.A.; Bamezai, Anil; Connel, P.S.; Wuebbles, D.J.

    1990-01-01

    Scenarios are developed for long-term future emissions of seven of the most important manmade chemicals that may deplete ozone and the corresponding effect on stratospheric ozone concentrations is calculated using a one-dimensional atmospheric model. The scenarios are based on detailed analysis of the markets for products that use these chemicals and span a central 90% probability interval for the chemicals joint effect on calculated ozone abundance, assuming no additional regulations. (author). 22 refs., 2 figs., 5 tabs

  7. The GALAH survey: chemical tagging of star clusters and new members in the Pleiades

    Science.gov (United States)

    Kos, Janez; Bland-Hawthorn, Joss; Freeman, Ken; Buder, Sven; Traven, Gregor; De Silva, Gayandhi M.; Sharma, Sanjib; Asplund, Martin; Duong, Ly; Lin, Jane; Lind, Karin; Martell, Sarah; Simpson, Jeffrey D.; Stello, Dennis; Zucker, Daniel B.; Zwitter, Tomaž; Anguiano, Borja; Da Costa, Gary; D'Orazi, Valentina; Horner, Jonathan; Kafle, Prajwal R.; Lewis, Geraint; Munari, Ulisse; Nataf, David M.; Ness, Melissa; Reid, Warren; Schlesinger, Katie; Ting, Yuan-Sen; Wyse, Rosemary

    2018-02-01

    The technique of chemical tagging uses the elemental abundances of stellar atmospheres to 'reconstruct' chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey - which aims to observe one million stars using the Anglo-Australian Telescope - allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we explore t-distributed stochastic neighbour embedding (t-SNE) - which identifies an optimal mapping of a high-dimensional space into fewer dimensions - whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH survey. We recover seven of the nine observed clusters (six globular and three open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6° - one tidal radius away from the cluster centre.

  8. NEW STRONG-LINE ABUNDANCE DIAGNOSTICS FOR H II REGIONS: EFFECTS OF κ-DISTRIBUTED ELECTRON ENERGIES AND NEW ATOMIC DATA

    Energy Technology Data Exchange (ETDEWEB)

    Dopita, Michael A.; Sutherland, Ralph S.; Nicholls, David C.; Kewley, Lisa J.; Vogt, Frédéric P. A., E-mail: Michael.Dopita@anu.edu.au [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia)

    2013-09-01

    Recently, Nicholls et al., inspired by in situ observations of solar system astrophysical plasmas, suggested that the electrons in H II regions are characterized by a κ-distribution of energies rather than a simple Maxwell-Boltzmann distribution. Here, we have collected together new atomic data within a modified photoionization code to explore the effects of both the new atomic data and the κ-distribution on the strong-line techniques used to determine chemical abundances in H II regions. By comparing the recombination temperatures (T {sub rec}) with the forbidden line temperatures (T {sub FL}), we conclude that κ ∼ 20. While representing only a mild deviation from equilibrium, this result is sufficient to strongly influence abundances determined using methods that depend on measurements of the electron temperature from forbidden lines. We present a number of new emission line ratio diagnostics that cleanly separate the two parameters determining the optical spectrum of H II regions—the ionization parameter q or U and the chemical abundance, 12+log(O/H). An automated code to extract these parameters is presented. Using the homogeneous data set from van Zee et al., we find self-consistent results between all of these different diagnostics. The systematic errors between different line ratio diagnostics are much smaller than those found in the earlier strong-line work. Overall, the effect of the κ-distribution on the strong-line abundances derived solely on the basis of theoretical models is rather small.

  9. Chemical composition of δ Scuti stars: 1. AO CVn, CP Boo, KW Aur

    Science.gov (United States)

    Galeev, A. I.; Ivanova, D. V.; Shimansky, V. V.; Bikmaev, I. F.

    2012-11-01

    We used high-resolution echelle spectra acquired with the 1.5-m Russian-Turkish Telescope to determine the fundamental atmospheric parameters and abundances of 30 chemical elements for three δ Scuti stars: AOCVn, CP Boo, and KWAur. The chemical compositions we find for these stars are similar to those for Am-star atmospheres, though some anomalies of up to 0.6-0.7 dex are observed for light and heavy elements. We consider the effect of the adopted stellar parameters (effective temperature, log g, microturbulent velocity) and the amplitude of pulsational variations on the derived elemental abundances.

  10. VizieR Online Data Catalog: CoRoT red giants abundances (Morel+, 2014)

    Science.gov (United States)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalban, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-02-01

    The equivalent widths were measured manually assuming Gaussian profiles or Voigt profiles for the few lines with extended damping wings. Lines with an unsatisfactory fit or significantly affected by telluric features were discarded. Only values eventually retained for the analysis are provided. For the chemical abundances, the usual notation is used: [X/Y]=[log({epsilon}(X))-log({epsilon}(Y))]star - [log({epsilon}(X))-log({epsilon}(Y))]⊙ with log{epsilon}(X)=12+log[N(X)/N(H)] (N is the number density of the species). For lithium, the following notation is used: [Li/H]=log(N(Li))star-log(N(Li))⊙. The adopted solar abundances are taken from Grevesse & Sauval (1998SSRv...85..161G), except for Li for which we adopt our derived values: log({epsilon}(Li))⊙=1.09 and 1.13 in LTE and NLTE, respectively (see text). All the abundances are computed under the assumption of LTE, except Li for which values corrected for departures from LTE using the data of Lind et al. (2009A&A...503..541L) are also provided. All the quoted error bars are 1-sigma uncertainties. (6 data files).

  11. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Li, H. N.; Zhao, G. [Key Lab of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang, Beijing 100012 (China); Ludwig, H.-G.; Caffau, E.; Christlieb, N., E-mail: lhn@nao.cas.cn, E-mail: gzhao@nao.cas.cn, E-mail: hludwig@lsw.uni-heidelberg.de, E-mail: ecaffau@lsw.uni-heidelberg.de, E-mail: N.Christlieb@lsw.uni-heidelberg.de [Zentrum fuer Astronomie der Universitaet Heidelberg, Landessternwarte, Koenigstuhl 12, D-69117 Heidelberg (Germany)

    2013-03-01

    With abundances and 2{sigma} upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 A using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to -2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) {nu}-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II {nu}-process with a neutrino energy of E {sub {nu}} = 3 Multiplication-Sign 10{sup 53} erg. Our sample contains HD 110281, a retrograde orbiting low-{alpha} halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  12. Literature-based cheminformatics for research in chemical toxicity

    Science.gov (United States)

    PubMed is the largest freely available source of published literature available online with access to 27 million citations (as of October 2017). Contained within the literature is an abundance of information about the activity of chemicals in biological systems. Literature inform...

  13. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Directory of Open Access Journals (Sweden)

    Lisa Fauteux

    Full Text Available There is now evidence that aerobic anoxygenic phototrophic (AAP bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively. AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC, whereas cell-specific BChla content was negatively related to chlorophyll a (Chla. As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  14. The GAPS programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet-hosting binary

    Science.gov (United States)

    Biazzo, K.; Gratton, R.; Desidera, S.; Lucatello, S.; Sozzetti, A.; Bonomo, A. S.; Damasso, M.; Gandolfi, D.; Affer, L.; Boccato, C.; Borsa, F.; Claudi, R.; Cosentino, R.; Covino, E.; Knapic, C.; Lanza, A. F.; Maldonado, J.; Marzari, F.; Micela, G.; Molaro, P.; Pagano, I.; Pedani, M.; Pillitteri, I.; Piotto, G.; Poretti, E.; Rainer, M.; Santos, N. C.; Scandariato, G.; Zanmar Sanchez, R.

    2015-11-01

    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure the elemental abundances of both stellar components with high accuracy, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high-resolution HARPS-N at TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect that they possess the same initial elemental abundances. We investigated whether planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC = 40-1741 K, achieving typical precisions of ~0.07 dex. The northern component shows abundances in all elements higher by +0.067 ± 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ level for almost all elements. We discuss that this result might be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S that is due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of M⊕ in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7 ± 0.9) × 10-5 dex K-1, which could mean that both components have not formed terrestrial planets, but first experienced the accretion of rocky core interior to the subsequent giant planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG), operated on the island of La Palma by the INAF - Fundación Galileo Galilei at the Roche de los Muchachos Observatory of the Instituto de Astrofísica de Canarias (IAC) in the

  15. Super-solar Metallicity Stars in the Galactic Center Nuclear Star Cluster: Unusual Sc, V, and Y Abundances

    Science.gov (United States)

    Do, Tuan; Kerzendorf, Wolfgang; Konopacky, Quinn; Marcinik, Joseph M.; Ghez, Andrea; Lu, Jessica R.; Morris, Mark R.

    2018-03-01

    We present adaptive-optics assisted near-infrared high-spectral-resolution observations of late-type giants in the nuclear star cluster of the Milky Way. The metallicity and elemental abundance measurements of these stars offer us an opportunity to understand the formation and evolution of the nuclear star cluster. In addition, their proximity to the supermassive black hole (∼0.5 pc) offers a unique probe of the star formation and chemical enrichment in this extreme environment. We observed two stars identified by medium spectral-resolution observations as potentially having very high metallicities. We use spectral-template fitting with the PHOENIX grid and Bayesian inference to simultaneously constrain the overall metallicity, [M/H], alpha-element abundance [α/Fe], effective temperature, and surface gravity of these stars. We find that one of the stars has very high metallicity ([M/H] > 0.6) and the other is slightly above solar metallicity. Both Galactic center stars have lines from scandium (Sc), vanadium (V), and yttrium (Y) that are much stronger than allowed by the PHOENIX grid. We find, using the spectral synthesis code Spectroscopy Made Easy, that [Sc/Fe] may be an order of magnitude above solar. For comparison, we also observed an empirical calibrator in NGC 6791, the highest metallicity cluster known ([M/H] ∼ 0.4). Most lines are well matched between the calibrator and the Galactic center stars, except for Sc, V, and Y, which confirms that their abundances must be anomalously high in these stars. These unusual abundances, which may be a unique signature of nuclear star clusters, offer an opportunity to test models of chemical enrichment in this region.

  16. Origin of the chemical elements

    Energy Technology Data Exchange (ETDEWEB)

    Tayler, R J

    1984-05-01

    The subject is discussed in relation to the composition of initially created matter and changes which have occurred during the life history of the universe, with particular reference to our galaxy and nearby galaxies. Headings are: observations of element abundances (stars, gas clouds in our own and nearby galaxies, hot gas in galaxy clusters, the solar system); the originally created matter (Big Bang theory and early nuclear reactions); processes changing observed composition (galactic evolution; nuclear fusion reactions in stellar interiors; chemical composition of a highly evolved massive star); supernovae (production of heavy elements); chemical evolution of the galaxy; production of very heavy elements (s process, r process).

  17. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES: KMOS OBSERVATIONS IN NGC 6822

    International Nuclear Information System (INIS)

    Patrick, L. R.; Evans, C. J.; Ferguson, A. M. N.; Davies, B.; Kudritzki, R-P.; Gazak, J. Z.; Bergemann, M.; Plez, B.

    2015-01-01

    We present near-IR spectroscopy of red supergiant (RSG) stars in NGC 6822, obtained with the new K-band Multi-Object Spectrograph Very Large Telescope, Chile. From comparisons with model spectra in the J-band we determine the metallicity of 11 RSGs, finding a mean value of [Z] = −0.52 ± 0.21, which agrees well with previous abundance studies of young stars and H ii regions. We also find an indication for a low-significance abundance gradient within the central 1 kpc. We compare our results with those derived from older stellar populations and investigate the difference using a simple chemical evolution model. By comparing the physical properties determined for RSGs in NGC 6822 with those derived using the same technique in the Galaxy and the Magellanic Clouds, we show that there appears to be no significant temperature variation of RSGs with respect to metallicity, in contrast to recent evolutionary models

  18. Measuring Detailed Chemical Abundances from Co-added Medium-resolution Spectra. I. Tests Using Milky Way Dwarf Spheroidal Galaxies and Globular Clusters

    Science.gov (United States)

    Yang, Lei; Kirby, Evan N.; Guhathakurta, Puragra; Peng, Eric W.; Cheng, Lucy

    2013-05-01

    The ability to measure metallicities and α-element abundances in individual red giant branch (RGB) stars using medium-resolution spectra (R ≈ 6000) is a valuable tool for deciphering the nature of Milky Way dwarf satellites and the history of the Galactic halo. Extending such studies to more distant systems like Andromeda is beyond the ability of the current generation of telescopes, but by co-adding the spectra of similar stars, we can attain the necessary signal-to-noise ratio (S/N) to make detailed abundance measurements. In this paper, we present a method to determine metallicities and α-element abundances using the co-addition of medium-resolution spectra. We test the method of spectral co-addition using high-S/N spectra of more than 1300 RGB stars from Milky Way globular clusters and dwarf spheroidal galaxies obtained with the Keck II telescope/DEIMOS spectrograph. We group similar stars using photometric criteria and compare the weighted ensemble average abundances ([Fe/H], [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) of individual stars in each group with the measurements made on the corresponding co-added spectrum. We find a high level of agreement between the two methods, which permits us to apply this co-added spectra technique to more distant RGB stars, like stars in the M31 satellite galaxies. This paper outlines our spectral co-addition and abundance measurement methodology and describes the potential biases in making these measurements. Data herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. Physical, Chemical and Periphyton/Phytoplankton Study of Onah ...

    African Journals Online (AJOL)

    physico-chemical parameter, viz: ionic conductivity factor contributed 26.07%, nutrient factor contributed 40.61% while dissolved oxygen factor contributed 33.32%. Three divisions, eight families and ten species of periphyton were encountered. The most abundant periphyton species recorded are Closterium spp. (26.37%) ...

  20. Metal-Poor Stars and the Chemical Enrichment of the Universe

    OpenAIRE

    Frebel, Anna; Norris, John E.

    2011-01-01

    Metal-poor stars hold the key to our understanding of the origin of the elements and the chemical evolution of the Universe. This chapter describes the process of discovery of these rare stars, the manner in which their surface abundances (produced in supernovae and other evolved stars) are determined from the analysis of their spectra, and the interpretation of their abundance patterns to elucidate questions of origin and evolution. More generally, studies of these stars contribute to other ...

  1. Chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Boluk, Y.; Jost, R. [Alberta Research Council, Edmonton, AB (Canada)

    2009-07-01

    Raw material is the basis of the chemical industry. This presentation discussed the chemical conversion of hemicellulose coproducts from forest biorefineries to polymers and chemicals. Biorefining pretreatment processes open up the biomass structure, release hemicelluloses and overcome the resistance to enzymatic hydrolysis. Although hemicellulose is the second most abundant carbohydrate, it does not have many industrial applications. The state of released hemicellulose whether polymeric, oligomeric or monosaccharides depends primarily on the pretreatment process conditions. Physical pretreatment methods include high-pressure steaming and steam explosion; milling and grinding; extrusion; and high-energy radiation. The chemical pretreatment methods involve the use of alkali, acid, gas and oxidizing agents as well as solvents. The biological pretreatment methods involve the use of lignin consuming fungi and cellulose consuming fungi. A profitable use of C5 sugars in monomeric, oligomeric and polymeric forms is necessary for a viable wood to bioethanol process. Hemicellulose composition varies depending on the biomass source. It usually has a lower molecular weight than cellulose, contains branching, and is comprised of several different monosaccharides. The existing commercial chemical products include xylitol, mannitol, and furfural. The hemicellulose coproducts from a lignocellulosic biorefinery have the potential to become a feasible replacement for their fossil-based equivalents. tabs., figs.

  2. Effect of atomic parameters on determination of aluminium abundance in atmospheres of late-type stars

    Science.gov (United States)

    Menzhevitski, V. S.; Shimanskaya, N. N.; Shimansky, V. V.; Kudryavtsev, D. O.

    2014-04-01

    We study the effect of the photoionization cross sections for the ground state of Al I on the inferred aluminium abundance in stellar atmospheres. We match the theoretical and observed line profiles of the resonance λλ 3944.01, 3961.52 Å and subordinate λλ 6696.03, 6698.68 Å doublets in high-resolution spectra of the metal-poor solar-type stars HD22879 and HD201889. We determine the parameters of these stars from their photometric and spectroscopic data. Our computations show that the profiles can be matched and a single aluminium abundance inferred simultaneously from both groups of spectral lines only with low photoionization cross sections (about 10-12 Mb). Larger cross sections (about 58-65 Mb) make such fits impossible. We therefore conclude that small photoionization cross sections should be preferred for the determination of aluminium abundances in metal-poor stars. We redetermine the aluminium abundances in the atmospheres of halo stars. The resulting abundances prove to be lower by 0.1-0.15 dex than our earlier determinations which does not affect the conclusions based on our earlier estimates. In particular, the NLTE [Al/Fe]-[Fe/H] dependence, on the whole, agrees only qualitatively with the results of theoretical predictions. Therefore further refinement of the theory of nuclear synthesis of aluminium in the process of the chemical evolution of the Galaxy remains a task of current importance.

  3. Bringing abundance into environmental politics: Constructing a Zionist network of water abundance, immigration, and colonization.

    Science.gov (United States)

    Alatout, Samer

    2009-06-01

    For more than five decades, resource scarcity has been the lead story in debates over environmental politics. More importantly, and whenever environmental politics implies conflict, resource scarcity is constructed as the culprit. Abundance of resources, if at all visited in the literature, holds less importance. Resource abundance is seen, at best, as the other side of scarcity--maybe the successful conclusion of multiple interventions that may turn scarcity into abundance. This paper reinstates abundance as a politico-environmental category in its own right. Rather than relegating abundance to a second-order environmental actor that matters only on occasion, this paper foregrounds it as a crucial element in modern environmental politics. On the substantive level, and using insights from science and technology studies, especially a slightly modified actor-network framework, I describe the emergence and consolidation of a Zionist network of abundance, immigration, and colonization in Palestine between 1918 and 1948. The essential argument here is that water abundance was constructed as fact, and became a political rallying point around which a techno-political network emerged that included a great number of elements. To name just a few, the following were enrolled in the service of such a network: geologists, geophysicists, Zionist settlement experts, Zionist organizations, political and technical categories of all sorts, Palestinians as the negated others, Palestinian revolts in search of political rights, the British Mandate authorities, the hydrological system of Palestine, and the absorptive capacity of Palestine, among others. The point was to successfully articulate these disparate elements into a network that seeks opening Palestine for Jewish immigration, redefining Palestinian geography and history through Judeo-Christian Biblical narratives, and, in the process, de-legitimizing political Palestinian presence in historic Palestine.

  4. Recovery of microbial diversity and activity during bioremediation following chemical oxidation of diesel contaminated soils.

    Science.gov (United States)

    Sutton, Nora B; Langenhoff, Alette A M; Lasso, Daniel Hidalgo; van der Zaan, Bas; van Gaans, Pauline; Maphosa, Farai; Smidt, Hauke; Grotenhuis, Tim; Rijnaarts, Huub H M

    2014-03-01

    To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1-2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.

  5. Abundances in galaxies

    International Nuclear Information System (INIS)

    Pagel, B.E.J.

    1991-01-01

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7 Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9 Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  6. The chemical composition of the Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Willis, A.J.

    1982-01-01

    This review summarises current knowledge of the chemical composition of PopI WR stars, concentrating on work carried out in this area since the last IAU, No. 49, symposium devoted to this stellar class (Bappu and Sahade 1973). Section 2 deals with an assessment of the atmospheric H/He ratio in both WN and WC stars: a parameter of fundamental importance in addressing their evolutionary status, as well as providing a base species with which to compare other derived chemical abundances. Section 3 briefly deals with the models generally employed and gives recent results for He, C and N abundances derived from both visible and UV line analyses. Section 4 summarises recent results from stellar evolutionary theory and in Section 5 these are compared with those derived from observation, assessing the significance of these new results and their implications for the evolutionary status of the WR stars. Some areas for further advancement are identified. (Auth.)

  7. Crystal-Chemical Analysis Martian Minerals in Gale Crater

    Science.gov (United States)

    Morrison, S. M.; Downs, R. T.; Blake, D. F.; Bish, D. L.; Ming, D. W.; Morris, R. V.; Yen, A. S.; Chipera, S. J.; Treiman, A. H.; Vaniman, D. T.; hide

    2015-01-01

    The CheMin instrument on the Mars Science Laboratory rover Curiosity performed X-ray diffraction analyses on scooped soil at Rocknest and on drilled rock fines at Yellowknife Bay (John Klein and Cumberland samples), The Kimberley (Windjana sample), and Pahrump (Confidence Hills sample) in Gale crater, Mars. Samples were analyzed with the Rietveld method to determine the unit-cell parameters and abundance of each observed crystalline phase. Unit-cell parameters were used to estimate compositions of the major crystalline phases using crystal-chemical techniques. These phases include olivine, plagioclase and clinopyroxene minerals. Comparison of the CheMin sample unit-cell parameters with those in the literature provides an estimate of the chemical compositions of the major crystalline phases. Preliminary unit-cell parameters, abundances and compositions of crystalline phases found in Rocknest and Yellowknife Bay samples were reported in. Further instrument calibration, development of 2D-to- 1D pattern conversion corrections, and refinement of corrected data allows presentation of improved compositions for the above samples.

  8. Evolution of the Radial Abundance Gradient and Cold Gas along the Milky Way Disk

    Science.gov (United States)

    Chen, Q. S.; Chang, R. X.; Yin, J.

    2014-03-01

    We have constructed a phenomenological model of the chemical evolution of the Milky Way disk, and treated the molecular and atomic gas separately. Using this model, we explore the radial profiles of oxygen abundance, the surface density of cold gas, and their time evolutions. It is shown that the model predictions are very sensitive to the adopted infall time-scale. By comparing the model predictions with the observations, we find that the model adopting the star formation law based on H_2 can properly predict the observed radial distributions of cold gas and oxygen abundance gradient along the disk. We also compare the model results with the predictions of the model which adopts the instantaneous recycling approximation (IRA), and find that the IRA assumption has little influence on the model results, especially in the low-density gas region.

  9. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    2018-04-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local thermodynamic equilibrium (LTE) spectroscopic analysis of Fe I and Fe II lines gives discrepant results in terms of derived Fe abundance, which we ascribe to non-LTE effects and systematic errors on the stellar parameters. We also determine C, N, and O abundances by simultaneously fitting CH, OH, NH, and CN molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen abundance than from molecular lines (+0.46 dex in 3D and +0.15 dex in 1D). We rule out important OH photodissociation effects as possible explanation for the discrepancy and note that lowering the surface gravity would reduce the oxygen abundance difference between molecular and atomic indicators.

  10. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    International Nuclear Information System (INIS)

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D.; Sneden, Christopher

    2014-01-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  11. Energy abundance and economic progress

    International Nuclear Information System (INIS)

    Schurr, S.H.

    1983-01-01

    A discussion is presented on the benefits of energy abundance and on the links between energy supply, economic growth and human welfare in the United States. It is argued that the restoration of energy abundance with dependable sources of supply should be a major national objective. (U.K.)

  12. Dependence of the red edge of the RR Lyrae gap on helium abundance

    International Nuclear Information System (INIS)

    Deupree, R.G.

    1976-01-01

    Calculations have been performed to determine the position of the red edge of the RR Lyrae gap with the chemical compositions (X,Z) = (0.7, 0.001) and (0.8, 0.001). The calculations are composed of the time integration of the conservation equations of mass, momentum, and energy in two spatial dimensions. The calculations allow time-dependent convection to be followed without either arbitrary assumptions regarding time dependence or the application of any theory of convection. The primary assumptions are the restriction to two spatial dimensions and that an ''eddy viscosity'' is employed to mimic the process of turbulent cascade and the conversion of convective kinetic energy into heat. The ability of time dependent convection to stabilize pulsation is shown, and the process by which this is achieved is discussed. The time dependence of convection is found to play a crucial role in the stabilization process. The dependence of the position of the red edge on helium abundance is examined. The results indicate that the color difference between the red and blue edges is a sensitive indicator of helium abundance. Comparison is made with certain globular cluster color differences which indicate that the helium abundance is close to 0.3 by weight

  13. Chinook Abundance - Point Features [ds180

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  14. Steelhead Abundance - Linear Features [ds185

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  15. Steelhead Abundance - Point Features [ds184

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  16. Coho Abundance - Linear Features [ds183

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  17. Coho Abundance - Point Features [ds182

    Data.gov (United States)

    California Natural Resource Agency — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  18. Chemical study of the metal-rich globular cluster NGC 5927

    Science.gov (United States)

    Mura-Guzmán, A.; Villanova, S.; Muñoz, C.; Tang, B.

    2018-03-01

    Globular clusters (GCs) are natural laboratories where stellar and chemical evolution can be studied in detail. In addition, their chemical patterns and kinematics can tell us to which Galactic structure (disc, bulge, halo or extragalactic) the cluster belongs to. NGC 5927 is one of most metal-rich GCs in the Galaxy and its kinematics links it to the thick disc. We present abundance analysis based on high-resolution spectra of seven giant stars. The data were obtained using Fibre Large Array Multi Element Spectrograph/Ultraviolet Echelle Spectrograph (UVES) spectrograph mounted on UT2 telescope of the European Southern Observatory. The principal objective of this work is to perform a wide and detailed chemical abundance analysis of the cluster and look for possible Multiple Populations (MPs). We determined stellar parameters and measured 22 elements corresponding to light (Na, Al), alpha (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and heavy elements (Y, Zr, Ba, Ce, Nd, Eu). We found a mean iron content of [Fe/H] = -0.47 ± 0.02 (error on the mean). We confirm the existence of MPs in this GC with an O-Na anti-correlation, and moderate spread in Al abundances. We estimate a mean [α/Fe] = 0.25 ± 0.08. Iron-peak elements show no significant spread. The [Ba/Eu] ratios indicate a predominant contribution from SNeII for the formation of the cluster.

  19. The chemical composition of a regular halo globular cluster: NGC 5897

    Science.gov (United States)

    Koch, Andreas; McWilliam, Andrew

    2014-05-01

    We report for the first time on the chemical composition of the halo cluster NGC 5897 (R⊙ = 12.5 kpc), based on chemical abundance ratios for 27 α-, iron-peak, and neutron-capture elements in seven red giants. From our high-resolution, high signal-to-noise spectra obtained with the Magellan/MIKE spectrograph, we find a mean iron abundance from the neutral species of [Fe/H] = - 2.04 ± 0.01 (stat.) ± 0.15 (sys.), which is more metal-poor than implied by previous photometric and low-resolution spectroscopic studies. The cluster NGC 5897 is α-enhanced (to 0.34 ± 0.01 dex) and shows Fe-peak element ratios typical of other (metal-poor) halo globular clusters (GCs) with no overall, significant abundance spreads in iron or in any other heavy element. Like other GCs, NGC 5897 shows a clear Na-O anti-correlation, where we find a prominent primordial population of stars with enhanced O abundances and approximately solar Na/Fe ratios, while two stars are Na-rich, providing chemical proof of the presence of multiple populations in this cluster. Comparison of the heavy element abundances with the solar-scaled values and the metal-poor GC M15 from the literature confirms that NGC 5897 has experienced little contribution from s-process nucleosynthesis. One star of the first generation stands out in that it shows very low La and Eu abundances. Overall, NGC 5897 is a well behaved GC showing archetypical correlations and element-patterns, with little room for surprises in our data. We suggest that its lower metallicity could explain the unusually long periods of RR Lyr that were found in NGC 5897. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Table 5 is available in electronic form at http://www.aanda.orgFull Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/565/A23

  20. Magnetic Doppler imaging considering atmospheric structure modifications due to local abundances: a luxury or a necessity?

    Science.gov (United States)

    Kochukhov, O.; Wade, G. A.; Shulyak, D.

    2012-04-01

    Magnetic Doppler imaging is currently the most powerful method of interpreting high-resolution spectropolarimetric observations of stars. This technique has provided the very first maps of stellar magnetic field topologies reconstructed from time series of full Stokes vector spectra, revealing the presence of small-scale magnetic fields on the surfaces of Ap stars. These studies were recently criticised by Stift et al., who claimed that magnetic inversions are not robust and are seriously undermined by neglecting a feedback on the Stokes line profiles from the local atmospheric structure in the regions of enhanced metal abundance. We show that Stift et al. misinterpreted published magnetic Doppler imaging results and consistently neglected some of the most fundamental principles behind magnetic mapping. Using state-of-the-art opacity sampling model atmosphere and polarized radiative transfer codes, we demonstrate that the variation of atmospheric structure across the surface of a star with chemical spots affects the local continuum intensity but is negligible for the normalized local Stokes profiles except for the rare situation of a very strong line in an extremely Fe-rich atmosphere. For the disc-integrated spectra of an Ap star with extreme abundance variations, we find that the assumption of a mean model atmosphere leads to moderate errors in Stokes I but is negligible for the circular and linear polarization spectra. Employing a new magnetic inversion code, which incorporates the horizontal variation of atmospheric structure induced by chemical spots, we reconstructed new maps of magnetic field and Fe abundance for the bright Ap star α2 CVn. The resulting distribution of chemical spots changes insignificantly compared to the previous modelling based on a single model atmosphere, while the magnetic field geometry does not change at all. This shows that the assertions by Stift et al. are exaggerated as a consequence of unreasonable assumptions and

  1. ELEMENTAL ABUNDANCE DIFFERENCES IN THE 16 CYGNI BINARY SYSTEM: A SIGNATURE OF GAS GIANT PLANET FORMATION?

    International Nuclear Information System (INIS)

    RamIrez, I.; Roederer, I. U.; Fish, J. R.; Melendez, J.; Cornejo, D.

    2011-01-01

    The atmospheric parameters of the components of the 16 Cygni binary system, in which the secondary has a gas giant planet detected, are measured accurately using high-quality observational data. Abundances relative to solar are obtained for 25 elements with a mean error of σ([X/H]) = 0.023 dex. The fact that 16 Cyg A has about four times more lithium than 16 Cyg B is normal considering the slightly different masses of the stars. The abundance patterns of 16 Cyg A and B, relative to iron, are typical of that observed in most of the so-called solar twin stars, with the exception of the heavy elements (Z > 30), which can, however, be explained by Galactic chemical evolution. Differential (A-B) abundances are measured with even higher precision (σ(Δ[X/H]) = 0.018 dex, on average). We find that 16 Cyg A is more metal-rich than 16 Cyg B by Δ[M/H] = +0.041 ± 0.007 dex. On an element-to-element basis, no correlation between the A-B abundance differences and dust condensation temperature (T C ) is detected. Based on these results, we conclude that if the process of planet formation around 16 Cyg B is responsible for the observed abundance pattern, the formation of gas giants produces a constant downward shift in the photospheric abundance of metals, without a T C correlation. The latter would be produced by the formation of terrestrial planets instead, as suggested by other recent works on precise elemental abundances. Nevertheless, a scenario consistent with these observations requires the convective envelopes of ≅ 1 M sun stars to reach their present-day sizes about three times quicker than predicted by standard stellar evolution models.

  2. The origin of the chemical elements

    International Nuclear Information System (INIS)

    Tayler, R.J.

    1984-01-01

    The subject is discussed in relation to the composition of initially created matter and changes which have occurred during the life history of the universe, with particular reference to our galaxy and nearby galaxies. Headings are: observations of element abundances (stars, gas clouds in our own and nearby galaxies, hot gas in galaxy clusters, the solar system); the originally created matter (Big Bang theory and early nuclear reactions); processes changing observed composition (galactic evolution; nuclear fusion reactions in stellar interiors; chemical composition of a highly evolved massive star); supernovae (production of heavy elements); chemical evolution of the galaxy; production of very heavy elements (s process, r process). (U.K.)

  3. Imidacloprid seed treatments affect individual ant behavior and community structure but not egg predation, pest abundance or soybean yield.

    Science.gov (United States)

    Penn, Hannah J; Dale, Andrew M

    2017-08-01

    Neonicotinoid seed treatments are under scrutiny because of their variable efficacy against crop pests and for their potential negative impacts on non-target organisms. Ants provide important biocontrol services in agroecosystems and can be indicators of ecosystem health. This study tested for effects of exposure to imidacloprid plus fungicide or fungicide-treated seeds on individual ant survival, locomotion and foraging capabilities and on field ant community structure, pest abundance, ant predation and yield. Cohorts of ants exposed to either type of treated seed had impaired locomotion and a higher incidence of morbidity and mortality but no loss of foraging capacity. In the field, we saw no difference in ant species richness, regardless of seed treatment. Blocks with imidacloprid did have higher species evenness and diversity, probably owing to variable effects of the insecticide on different ant species, particularly Tetramorium caespitum. Ant predation on sentinel eggs, pest abundance and soybean growth and yield were similar in the two treatments. Both seed treatments had lethal and sublethal effects on ant individuals, and the influence of imidacloprid seed coating in the field was manifested in altered ant community composition. Those effects, however, were not strong enough to affect egg predation, pest abundance or soybean yield in field blocks. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  4. Effects of reclaimed water irrigation and nitrogen fertilization on the chemical properties and microbial community of soil

    DEFF Research Database (Denmark)

    Guo, Wei; Andersen, Mathias Neumann; Qi, Xue-bin

    2017-01-01

    microbes and the chemical properties of the soil, which indicated that nitrate N (NO3−-N) and total phosphorus (TP) had significant impact on abundance of Verrucomicrobia and Gemmatimonadetes, meanwhile the pH and organic matter (OM) had impact on abundance of Firmicutes and Actinobacteria significantly...

  5. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2009-01-01

    noticeably strong CO 2 absorption in one data set is significantly weaker in another. We must, therefore, acknowledge the strong possibility that the atmosphere is variable, both in its energy redistribution state and in the chemical abundances.

  6. Predicting the sensitivity of populations from individual exposure to chemicals: the role of ecological interactions.

    Science.gov (United States)

    Gabsi, Faten; Schäffer, Andreas; Preuss, Thomas G

    2014-07-01

    Population responses to chemical stress exposure are influenced by nonchemical, environmental processes such as species interactions. A realistic quantification of chemical toxicity to populations calls for the use of methodologies that integrate these multiple stress effects. The authors used an individual-based model for Daphnia magna as a virtual laboratory to determine the influence of ecological interactions on population sensitivity to chemicals with different modes of action on individuals. In the model, hypothetical chemical toxicity targeted different vital individual-level processes: reproduction, survival, feeding rate, or somatic growth rate. As for species interactions, predatory and competition effects on daphnid populations were implemented following a worst-case approach. The population abundance was simulated at different food levels and exposure scenarios, assuming exposure to chemical stress solely or in combination with either competition or predation. The chemical always targeted one vital endpoint. Equal toxicity-inhibition levels differently affected the population abundance with and without species interactions. In addition, population responses to chemicals were highly sensitive to the environmental stressor (predator or competitor) and to the food level. Results show that population resilience cannot be attributed to chemical stress only. Accounting for the relevant ecological interactions would reduce uncertainties when extrapolating effects of chemicals from individuals to the population level. Validated population models should be used for a more realistic risk assessment of chemicals. © 2014 SETAC.

  7. An MCMC determination of the primordial helium abundance

    Science.gov (United States)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-04-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, & Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Yp = 0.2534 ± 0.0083, in broad agreement

  8. An MCMC determination of the primordial helium abundance

    International Nuclear Information System (INIS)

    Aver, Erik; Olive, Keith A.; Skillman, Evan D.

    2012-01-01

    Spectroscopic observations of the chemical abundances in metal-poor H II regions provide an independent method for estimating the primordial helium abundance. H II regions are described by several physical parameters such as electron density, electron temperature, and reddening, in addition to y, the ratio of helium to hydrogen. It had been customary to estimate or determine self-consistently these parameters to calculate y. Frequentist analyses of the parameter space have been shown to be successful in these parameter determinations, and Markov Chain Monte Carlo (MCMC) techniques have proven to be very efficient in sampling this parameter space. Nevertheless, accurate determination of the primordial helium abundance from observations of H II regions is constrained by both systematic and statistical uncertainties. In an attempt to better reduce the latter, and continue to better characterize the former, we apply MCMC methods to the large dataset recently compiled by Izotov, Thuan, and Stasińska (2007). To improve the reliability of the determination, a high quality dataset is needed. In pursuit of this, a variety of cuts are explored. The efficacy of the He I λ4026 emission line as a constraint on the solutions is first examined, revealing the introduction of systematic bias through its absence. As a clear measure of the quality of the physical solution, a χ 2 analysis proves instrumental in the selection of data compatible with the theoretical model. Nearly two-thirds of the observations fall outside a standard 95% confidence level cut, which highlights the care necessary in selecting systems and warrants further investigation into potential deficiencies of the model or data. In addition, the method also allows us to exclude systems for which parameter estimations are statistical outliers. As a result, the final selected dataset gains in reliability and exhibits improved consistency. Regression to zero metallicity yields Y p = 0.2534 ± 0.0083, in broad

  9. Confirmation of Element Abundance Inhomogeneity in Interstellar Matter from a Study of the O-type Supergiants HDE 226868 (Cyg X-1) and α Cam

    Science.gov (United States)

    Karitskaya, E. A.; Bochkarev, N. G.; Shimansky, V. V.; Galazutdinov, G. A.

    2011-09-01

    Chemical abundances derived for two O-type supergiants with similar parameters confirm the inhomogeneity of heavy-element distribution on a scale of 2 kpc and a lifetime of ISM superclouds exceeding 1 Gyr.

  10. ON THE RELATIVE ABUNDANCE OF LiH AND LiH+ MOLECULES IN THE EARLY UNIVERSE: NEW RESULTS FROM QUANTUM REACTIONS

    International Nuclear Information System (INIS)

    Bovino, Stefano; Tacconi, Mario; Gianturco, Franco A.; Galli, Daniele; Palla, Francesco

    2011-01-01

    The relative efficiencies of the chemical pathways that can lead to the destruction of LiH and LiH + molecules, conjectured to be present in the primordial gas and to control molecular cooling processes in the gravitational collapse of the post-recombination era, are revisited by using accurate quantum calculations for the several reactions involved. The new rates are employed to survey the behavior of the relative abundance of these molecules at redshifts of interest for early universe conditions. We find significant differences with respect to previous calculations, the present ones yielding LiH abundances higher than LiH + at all redshifts.

  11. The raison d'être of chemical ecology.

    Science.gov (United States)

    Raguso, Robert A; Agrawal, Anurag A; Douglas, Angela E; Jander, Georg; Kessler, André; Poveda, Katja; Thaler, Jennifer S

    2015-03-01

    Chemical ecology is a mechanistic approach to understanding the causes and consequences of species interactions, distribution, abundance, and diversity. The promise of chemical ecology stems from its potential to provide causal mechanisms that further our understanding of ecological interactions and allow us to more effectively manipulate managed systems. Founded on the notion that all organisms use endogenous hormones and chemical compounds that mediate interactions, chemical ecology has flourished over the past 50 years since its origin. In this essay we highlight the breadth of chemical ecology, from its historical focus on pheromonal communication, plant-insect interactions, and coevolution to frontier themes including community and ecosystem effects of chemically mediated species interactions. Emerging approaches including the -omics, phylogenetic ecology, the form and function of microbiomes, and network analysis, as well as emerging challenges (e.g., sustainable agriculture and public health) are guiding current growth of this field. Nonetheless, the directions and approaches we advocate for the future are grounded in classic ecological theories and hypotheses that continue to motivate our broader discipline.

  12. Abundance patterns of evolved stars with Hipparcos parallaxes and ages based on the APOGEE data base

    Science.gov (United States)

    Jia, Y. P.; Chen, Y. Q.; Zhao, G.; Bari, M. A.; Zhao, J. K.; Tan, K. F.

    2018-01-01

    We investigate the abundance patterns for four groups of stars at evolutionary phases from sub-giant to red clump (RC) and trace the chemical evolution of the disc by taking 21 individual elemental abundances from APOGEE and ages from evolutionary models with the aid of Hipparcos distances. We find that the abundances of six elements (Si, S, K, Ca, Mn and Ni) are similar from the sub-giant phase to the RC phase. In particular, we find that a group of stars with low [C/N] ratios, mainly from the second sequence of RC stars, show that there is a difference in the transfer efficiency of the C-N-O cycle between the main and the secondary RC sequences. We also compare the abundance patterns of C-N, Mg-Al and Na-O with giant stars in globular clusters from APOGEE and find that field stars follow similar patterns as M107, a metal-rich globular cluster with [M/H] ∼- 1.0, which shows that the self-enrichment mechanism represented by strong C-N, Mg-Al and Na-O anti-correlations may not be important as the metallicity reaches [M/H] > -1.0 dex. Based on the abundances of above-mentioned six elements and [Fe/H], we investigate age versus abundance relations and find some old super-metal-rich stars in our sample. Their properties of old age and being rich in metal are evidence for stellar migration. The age versus metallicity relations in low-[α/M] bins show unexpectedly positive slopes. We propose that the fresh metal-poor gas infalling on to the Galactic disc may be the precursor for this unexpected finding.

  13. Chemical characterization of exopolysaccharides from the marine fouling diatom Amphore coffeaeformis

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.; Sawant, S.S.; Garg, A.; Wagh, A.B.; Evans, L.V.

    NaOH or 1.5 M NaCl treatment removed most exopolysaccharides. Glucose (81%) was the most abundant monosaccharide in the exopolysaccharides. The chemical composition data suggest that the exopolymers were acidic sulphate polysaccharides containing high...

  14. Rock-colonizing plants: abundance of the endemic cactus Mammillaria fraileana related to rock type in the southern Sonoran Desert

    Science.gov (United States)

    Blanca R. Lopez; Yoav Bashan; Macario Bacilio; Gustavo. De la Cruz-Aguero

    2009-01-01

    Establishment, colonization, and permanence of plants affect biogenic and physical processes leading to development of soil. Rockiness, temperature, and humidity are accepted explanations to the influence and the presence of rock-dwelling plants, but the relationship between mineral and chemical composition of rocks with plant abundance is unknown in some regions. This...

  15. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Brett H. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A., E-mail: andrewsb@pitt.edu [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States)

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  16. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    International Nuclear Information System (INIS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-01-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  17. Hydrogeological and geochemical investigations of elevated arsenic (As) abundances in groundwater in Ireland

    International Nuclear Information System (INIS)

    Gilligan, M.; Feely, M.; Morrison, L.; Henry, T.; Higgins, T.M.; Zhang, C.

    2009-01-01

    Full text: This study will use hydrogeology, geochemistry and chemical speciation studies to investigate the presence of elevated arsenic (As) abundances in groundwater in Ireland. Comparative studies of groundwater, bedrock and mineral chemistry will be linked to hydrogeology, GIS and statistical studies. This approach will facilitate characterization of the temporal and spatial distribution of As as a function of groundwater and bedrock geology using the pressures, pathways and receptors approach. Arsenic speciation studies will determine As toxicity, bioavailability and potential for migration in this environment thus addressing human health issues. (author)

  18. Supergiants and the Galactic metallicity gradient. II. Spectroscopic abundances for 64 distant F- to M-type supergiants

    International Nuclear Information System (INIS)

    Luck, R.E.; Bond, H.E.

    1989-01-01

    The metallicity gradient in the Galactic disk from in situ stars with visual magnitude ranging from 6 to 10 is analyzed. Atmospheric parameters and detailed chemical abundances for 64 Population I supergiants of spectral types F through M and luminosity classes Ia through II have been determined. The derived Fe/H ratios ranging from -0.5 to + 0.7 show a mean value of +0.13 with an estimated uncertainty of + or - 0.2. A subset of 25 supergiants fainter than 7th magnitude lying in the direction of the Galactic center shows a Fe/H mean of +0.18 + or - 0.04, while a similar sample of 15 faint supergiants lying in the direction of the Galactic anticenter shows a lower Fe/H mean of +0.07 + or - 0.06. For a sample of bright supergiants analyzed by Luck and Lambert (1985), the mean abundance pattern for all 64 stars showed the following: deficient C and O along with enhancement of N, indicating mixing of CNO-cycled material to the stellar surfaces; an apparent Sr enhancement attributed to departures from LTE; and an essentially solar pattern of other chemical elements. 50 refs

  19. Orion A helium abundance

    International Nuclear Information System (INIS)

    Tsivilev, A.P.; Ershov, A.A.; Smirnov, G.T.; Sorochenko, R.L.

    1986-01-01

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  20. Abundances in the Galactic bulge

    Energy Technology Data Exchange (ETDEWEB)

    Barbuy, B; Alves-Brito, A [Universidade de Sao Paulo, IAG, Rua do Matao 1226, Sao Paulo 05508-900 (Brazil); Ortolani, S; Zoccali, M [Dipartimento di Astronomia, Universita di Padova, Vicolo dell' Osservatorio 2, I-35122 Padova (Italy); Hill, V; Gomez, A [Observatoire de Paris-Meudon, 92195 Meudon Cedex (France); Melendez, J [Centro de AstrofIsica da Universidade de Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Asplund, M [Max Planck Institute for Astrophysics, Postfach 1317, 85741 Garching (Germany); Bica, E [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, CP 15051, Porto Alegre 91501-970 (Brazil); Renzini, A [Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Minniti, D [Department of Astronomy and Astrophysics, Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile)], E-mail: barbuy@astro.iag.usp.br

    2008-12-15

    The metallicity distribution and abundance ratios of the Galactic bulge are reviewed. Issues raised by recent work of different groups, in particular the high metallicity end, the overabundance of {alpha}-elements in the bulge relative to the thick disc and the measurement of giants versus dwarfs, are discussed. Abundances in the old moderately metal-poor bulge globular clusters are described.

  1. Stellar pulsation and the abundance of helium

    International Nuclear Information System (INIS)

    Schmidt, E.G.

    1978-01-01

    It has been suggested that the appearance of nonvariable stars within the Cepheid strip could be explained by a range in the helium abundance of Population I stars. In order to study this possibility, spectra were obtained of the main-sequence B stars in the galactic cluster NGC 129, which contains a nonvariable Cepheid-strip star, and M25, which contains a relatively hot Cepheid. Unfortunately, several of the stars in these clusters turn out to be helium-weak stars. In NGC 129 two stars which appear normal give a normal abundance, while in M25 all of the observed stars have abnormally low abundances. The significance of the low abundance in M25 is not clear. The abundance in NGC 129 is not low enough to support the above suggestion. 4 figures, 2 tables

  2. Photometric analyses of abundances in dwarf spheroidal galaxies and globular clusters

    International Nuclear Information System (INIS)

    Light, R.M.

    1988-01-01

    This study investigated the abundance characteristics of several dwarf spheroidal galaxies. The chemical properties of stars in these galaxies are tracers of the origin and evolution of their stellar populations, and thus can provide constraints on the theories of their formation. To derive this abundance information, photometric observations of stars in a sample of globular clusters, covering a large range in metallicity, were analyzed. Parameters describing the position of the red giant branch were found to correlate very well with cluster metallicity over a large range in abundance. These measurements, made in the Thuan-Gunn photometry system, provide ranking schemes which are, with accurate photometry, more sensitive to changes in metallicity than similar broadband BV parameters. The relations were used to derive an improved estimate of the metallicity of cluster NGC 5053. These metallicity relations were used to analyze the Thuan-Gunn system photometry produced for the Sculptor, Ursa Minor, and Carina galaxies. The excellent agreement between their metallicities and those from other previous studies indicates that globular cluster red giant branch parameters are very useful in ranking dwarf spheroidal populations by metallicity. Together with other galaxian data, strong correlations can be seen between the mean metallicities and dispersions in metallicity and the luminosities of the dwarf spheroidal galaxies. These trends also seem to apply to members of the dwarf elliptical class of galaxies. The ramifications that these correlations and the existence of a metallicity gradient in Sculptor have on the formation of the dwarf spheroidals are discussed

  3. Chemical Characterization and Behavior of Respirable Fractions of Indoor Dusts Collected Near a Landfill Facility

    Directory of Open Access Journals (Sweden)

    Rheo B. Lamorena-Lim

    2016-06-01

    Full Text Available The study aims to determine the inorganic and organic phases in airborne particulate matter (PM collected near a landf ill facility. The establishments within the vicinity of the landfill considered in the study were a junk shop, a school, and a money changer shop. From the elemental analysis using inductively-coupled plasma mass spectrometry (ICP-MS, lead and cadmium were discovered to be more abundant in the total suspended particulate (TSP fraction, whereas copper was more abundant in the smaller PM2.5. Manganese, arsenic, strontium, cadmium, and lead were more abundant in the PM10 fraction than in PM2.5. The results of the chemical characterization were compiled and evaluated in a geochemical modelling code (PHREEQC to determine the potential speciation of these chemical constituents. Solution complexes of As, Pb, Cd and phthalates, and metal species, such as H2AsO3- , Cd2OH3+, Pb(OH3-, were predicted to form by the PHREEQC simulation runs once the endmember components interact with water. The results contribute to the background information on the potential impacts from exposure to airborne PM at workplaces around landfill facilities. Moreover, the data gathered provide a baseline for the chemical characterization and behavior of chemical constituents of PM possibly present in this specific type of environment.

  4. Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements

    Science.gov (United States)

    Cassen, Patrick; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) tinder equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by the composition of Cl meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou (Meteoritics 9, 69-94, 1974, and Wasson and co-authors in subsequent papers) suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce the observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed, The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the

  5. Abundance variations in solar active regions

    Science.gov (United States)

    Strong, K. T.; Lemen, J. R.; Linford, G. A.

    1991-01-01

    The diversity in the published values of coronal abundances is unsettling, especially as the range of results seems to be beyond the quoted uncertainties. Measurements of the relative abundance of iron and neon derived from soft X-ray spectra of active regions are presented. From a data base of over 200 spectra taken by the Solar Maximum Mission Flat Crystal Spectrometer, it is found that the relative abundance can vary by as much as a factor of about 7 and can change on timescales of less than 1 h.

  6. Interstellar Abundances Toward X Per, Revisited

    Science.gov (United States)

    Valencic, Lynne A.; Smith, Randall K.

    2014-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.

  7. Abundance estimation and Conservation Biology

    Directory of Open Access Journals (Sweden)

    Nichols, J. D.

    2004-06-01

    Full Text Available Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001. The initial capture–recapture models developed for partially (Darroch, 1959 and completely (Jolly, 1965; Seber, 1965 open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992, and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993. However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001. The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004 is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004 emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004 also suggest that

  8. Abundance estimation and conservation biology

    Science.gov (United States)

    Nichols, J.D.; MacKenzie, D.I.

    2004-01-01

    Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001). The initial capture–recapture models developed for partially (Darroch, 1959) and completely (Jolly, 1965; Seber, 1965) open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992), and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993). However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001). The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004) is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004) emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004) also suggest that our attention

  9. Taxonomic and chemical assessment of exceptionally abundant rock mine biofilm

    Directory of Open Access Journals (Sweden)

    Karolina Tomczyk-Żak

    2017-08-01

    Full Text Available Background An exceptionally thick biofilm covers walls of ancient gold and arsenic Złoty Stok mine (Poland in the apparent absence of organic sources of energy. Methods and Results We have characterized this microbial community using culture-dependent and independent methods. We sequenced amplicons of the 16S rRNA gene obtained using generic primers and additional primers targeted at Archaea and Actinobacteria separately. Also, we have cultured numerous isolates from the biofilm on different media under aerobic and anaerobic conditions. We discovered very high biodiversity, and no single taxonomic group was dominant. The majority of almost 4,000 OTUs were classified above genus level indicating presence of novel species. Elemental analysis, performed using SEM-EDS and X-ray, of biofilm samples showed that carbon, sulphur and oxygen were not evenly distributed in the biofilm and that their presence is highly correlated. However, the distribution of arsenic and iron was more flat, and numerous intrusions of elemental silver and platinum were noted, indicating that microorganisms play a key role in releasing these elements from the rock. Conclusions Altogether, the picture obtained throughout this study shows a very rich, complex and interdependent system of rock biofilm. The chemical heterogeneity of biofilm is a likely explanation as to why this oligotrophic environment is capable of supporting such high microbial diversity.

  10. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W.; Hentschel, Ute T E; Ravasi, Timothy; Schmitt, Susanne

    2012-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated

  11. Does the chemical signature of TYC 8442-1036-1 originate from a rotating massive star that died in a faint explosion?

    Science.gov (United States)

    Cescutti, G.; Valentini, M.; François, P.; Chiappini, C.; Depagne, E.; Christlieb, N.; Cortés, C.

    2016-11-01

    Context. We have recently investigated the origin of chemical signatures observed in Galactic halo stars by means of a stochastic chemical evolution model. We found that rotating massive stars are a promising way to explain several signatures observed in these fossil stars. Aims: We discuss how the extremely metal-poor halo star TYC 8442-1036-1, for which we have now obtained detailed abundances from VLT-UVES spectra, fits into the framework of our previous work. Methods: We applied a standard one-dimensional (1D) LTE analysis to the spectrum of this star. We measured the abundances of 14 chemical elements; we computed the abundances for Na, Mg, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, and Zn using equivalent widths; we obtained the abundances for C, Sr, and Ba by means of synthetic spectra generated by MOOG. Results: We find an abundance of [Fe/H] = -3.5 ±0.13 dex based on our high-resolution spectrum; this points to an iron content that is lower by a factor of three (0.5 dex) compared to that obtained by a low-resolution spectrum. The star has a [C/Fe] = 0.4 dex, and it is not carbon enhanced like most of the stars at this metallicity. Moreover, this star lies in the plane [Ba/Fe] versus [Fe/H] in a relatively unusual position, shared by a few other Galactic halo stars, which is only marginally explained by our past results. Conclusions: The comparison of the model results with the chemical abundance characteristics of this group of stars can be improved if we consider in our model the presence of faint supernovae coupled with rotating massive stars. These results seem to imply that rotating massive stars and faint supernovae scenarios are complementary to each other, and are both required in order to match the observed chemistry of the earliest phases of the chemical enrichment of the Universe. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (ID 094.B-0781(A); P.I. G. Cescutti).

  12. The UCSD HIRES/Keck I Damped Lyα Abundance Database. II. The Implications

    Science.gov (United States)

    Prochaska, Jason X.; Wolfe, Arthur M.

    2002-02-01

    We present a comprehensive analysis of the damped Lyα (DLA) abundance database presented in the first paper of this series. This database provides a homogeneous set of abundance measurements for many elements including Si, Cr, Ni, Zn, Fe, Al, S, Co, O, and Ar from 38 DLA systems with zabs>1.5. With little exception, these DLA systems exhibit very similar relative abundances. There is no significant correlation in X/Fe with [Fe/H] metallicity, and the dispersion in X/Fe is small at all metallicity. We search the database for trends indicative of dust depletion and in a few cases find strong evidence. Specifically, we identify a correlation between [Si/Ti] and [Zn/Fe] which is unambiguous evidence for depletion. Following Hou and colleagues, we present [X/Si] abundances against [Si/H]+logN(HI) and note trends of decreasing X/Si with increasing [Si/H]+logN(HI) which argue for dust depletion. Similarly, comparisons of [Si/Fe] and [Si/Cr] against [Si/H] indicate significant depletion at [Si/H]>-1 but suggest essentially dust-free damped systems at [Si/H]0.25 dex as [Zn/Fe]-->0 and that the [Si/Fe] values exhibit a plateau of ~0.3 dex at [Si/H]good agreement with our previous work, but we emphasize two differences: (1) the unweighted and N(H I)-weighted [Fe/H] mean metallicities now have similar values at all epochs except z>3.5, where small number statistics dominate the N(H I)-weighted mean; and (2) there is no evolution in the mean [Fe/H] metallicity from z=1.7 to 3.5 but possibly a marked drop at higher redshift. We conclude with a general discussion on the physical nature of the DLA systems. We stress the uniformity of the DLA chemical abundances which indicates that the protogalaxies identified with DLA systems have very similar enrichment histories, i.e., a nearly constant relative contribution from Type Ia and Type II supernovae. The DLA systems also show constant relative abundances within a given system, which places strict constraints on the mixing timescales

  13. CHEMICAL EVOLUTION OF RED MSX SOURCES IN THE SOUTHERN SKY

    International Nuclear Information System (INIS)

    Yu, Naiping; Xu, Jinlong

    2016-01-01

    Red Midcourse Space Experiment ( MSX ) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H ii regions. Combined with the MALT90 data, we calculated the column densities of N 2 H + , C 2 H, HC 3 N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N 2 H + and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N 2 H + , C 2 H, and HC 3 N seem to decrease as a function of their Lyman continuum fluxes (N L ), indicating that these molecules could be destroyed by UV photons when H ii regions have formed inside. We also find that the C 2 H abundance decreases faster than HC 3 N with respect to N L . The abundance of HNC has a tight correlation with that of N 2 H + , indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  14. Chemical Evolution of Red MSX Sources in the Southern Sky

    Science.gov (United States)

    Yu, Naiping; Xu, Jinlong

    2016-12-01

    Red Midcourse Space Experiment (MSX) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H II regions. Combined with the MALT90 data, we calculated the column densities of N2H+, C2H, HC3N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N2H+ and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N2H+, C2H, and HC3N seem to decrease as a function of their Lyman continuum fluxes (N L ), indicating that these molecules could be destroyed by UV photons when H II regions have formed inside. We also find that the C2H abundance decreases faster than HC3N with respect to N L . The abundance of HNC has a tight correlation with that of N2H+, indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  15. CHEMICAL EVOLUTION OF RED MSX SOURCES IN THE SOUTHERN SKY

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Naiping; Xu, Jinlong [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2016-12-20

    Red Midcourse Space Experiment ( MSX ) Sources (RMSs) are regarded as excellent candidates of massive star-forming regions. In order to characterize the chemical properties of massive star formation, we made a systematic study of 87 RMSs in the southern sky, using archival data taken from the Atacama Pathfinder Experiment Telescope Large Area Survey of the Galaxy (ATLASGAL), the Australia Telescope Compact Array, and the Millimetre Astronomy Legacy Team Survey at 90 GHz (MALT90). According to previous multiwavelength observations, our sample could be divided into two groups: massive young stellar objects and H ii regions. Combined with the MALT90 data, we calculated the column densities of N{sub 2}H{sup +}, C{sub 2}H, HC{sub 3}N, and HNC and found that they are not much different from previous studies made in other massive star-forming regions. However, their abundances are relatively low compared to infrared dark clouds (IRDCs). The abundances of N{sub 2}H{sup +} and HNC in our sample are at least 1 mag lower than those found in IRDCs, indicating chemical depletions in the relatively hot gas. Besides, the fractional abundances of N{sub 2}H{sup +}, C{sub 2}H, and HC{sub 3}N seem to decrease as a function of their Lyman continuum fluxes (N {sub L}), indicating that these molecules could be destroyed by UV photons when H ii regions have formed inside. We also find that the C{sub 2}H abundance decreases faster than HC{sub 3}N with respect to N{sub L}. The abundance of HNC has a tight correlation with that of N{sub 2}H{sup +}, indicating that it may be also preferentially formed in cold gas. We regard our RMSs as being in a relatively late evolutionary stage of massive star formation.

  16. Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus. Non-LTE abundance analysis of CO, SiO, and HCN

    Science.gov (United States)

    Van de Sande, M.; Decin, L.; Lombaert, R.; Khouri, T.; de Koter, A.; Wyrowski, F.; De Nutte, R.; Homan, W.

    2018-01-01

    Context. The stellar outflows of low- to intermediate-mass stars are characterised by a rich chemistry. Condensation of molecular gas species into dust grains is a key component in a chain of physical processes that leads to the onset of a stellar wind. In order to improve our understanding of the coupling between the micro-scale chemistry and macro-scale dynamics, we need to retrieve the abundance of molecules throughout the outflow. Aims: Our aim is to determine the radial abundance profile of SiO and HCN throughout the stellar outflow of R Dor, an oxygen-rich AGB star with a low mass-loss rate. SiO is thought to play an essential role in the dust-formation process of oxygen-rich AGB stars. The presence of HCN in an oxygen-rich environment is thought to be due to non-equilibrium chemistry in the inner wind. Methods: We analysed molecular transitions of CO, SiO, and HCN measured with the APEX telescope and all three instruments on the Herschel Space Observatory, together with data available in the literature. Photometric data and the infrared spectrum measured by ISO-SWS were used to constrain the dust component of the outflow. Using both continuum and line radiative transfer methods, a physical envelope model of both gas and dust was established. We performed an analysis of the SiO and HCN molecular transitions in order to calculate their abundances. Results: We have obtained an envelope model that describes the dust and the gas in the outflow, and determined the abundance of SiO and HCN throughout the region of the stellar outflow probed by our molecular data. For SiO, we find that the initial abundance lies between 5.5 × 10-5 and 6.0 × 10-5 with respect to H2. The abundance profile is constant up to 60 ± 10 R∗, after which it declines following a Gaussian profile with an e-folding radius of 3.5 ± 0.5 × 1013 cm or 1.4 ± 0.2 R∗. For HCN, we find an initial abundance of 5.0 × 10-7 with respect to H2. The Gaussian profile that describes the decline

  17. INTERSTELLAR ABUNDANCES TOWARD X Per, REVISITED

    International Nuclear Information System (INIS)

    Valencic, Lynne A.; Smith, Randall K.

    2013-01-01

    The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to examine dust grain types and measure elemental abundances in the local interstellar medium (ISM). The absorption features of O, Fe, Mg, and Si along this line of sight were measured using spectra from the Chandra X-Ray Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments, and the Spex software package. The spectra were fit with dust analogs measured in the laboratory. The O, Mg, and Si abundances were compared to those from standard references, and the O abundance was compared to that along lines of sight toward other X-ray binaries. The results are as follows. First, it was found that a combination of MgSiO 3 (enstatite) and Mg 1.6 Fe 0.4 SiO 4 (olivine) provided the best fit to the O K edge, with N(MgSiO 3 )/N(Mg 1.6 Fe 0.4 SiO 4 ) = 3.4. Second, the Fe L edge could be fit with models that included metallic iron, but it was not well described by the laboratory spectra currently available. Third, the total abundances of O, Mg, and Si were in very good agreement with that of recently re-analyzed B stars, suggesting that they are good indicators of abundances in the local ISM, and the depletions were also in agreement with expected values for the diffuse ISM. Finally, the O abundances found from X-ray binary absorption spectra show a similar correlation with Galactocentric distances as seen in other objects.

  18. THE PHYSICAL MECHANISM BEHIND M DWARF METALLICITY INDICATORS AND THE ROLE OF C AND O ABUNDANCES

    Energy Technology Data Exchange (ETDEWEB)

    Veyette, Mark J.; Muirhead, Philip S. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Mann, Andrew W. [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Allard, France [Centre de Recherche Astrophysique de Lyon, UMR 5574, Université de Lyon, ENS de Lyon, Université Lyon 1, CNRS, F-69007, Lyon (France)

    2016-09-10

    We present near-infrared (NIR) synthetic spectra based on PHOENIX stellar atmosphere models of typical early and mid-M dwarfs with varied C and O abundances. We apply multiple recently published methods for determining M dwarf metallicity to our models to determine the effects of C and O abundances on metallicity indicators. We find that the pseudo-continuum level is very sensitive to C/O and that all metallicity indicators show a dependence on C and O abundances, especially in lower T {sub eff} models. In some cases, the inferred metallicity ranges over a full order of magnitude (>1 dex) when [C/Fe] and [O/Fe] are varied independently by ±0.2. We also find that [(O−C)/Fe], the difference in O and C abundances, is a better tracer of the pseudo-continuum level than C/O. Models of mid-M dwarfs with [C/Fe], [O/Fe], and [M/H] that are realistic in the context of galactic chemical evolution suggest that variation in [(O−C)/Fe] is the primary physical mechanism behind the M dwarf metallicity tracers investigated here. Empirically calibrated metallicity indicators are still valid for most nearby M dwarfs due to the tight correlation between [(O−C)/Fe] and [Fe/H] evident in spectroscopic surveys of solar neighborhood FGK stars. Variations in C and O abundances also affect the spectral energy distribution of M dwarfs. Allowing [O/Fe] to be a free parameter provides better agreement between the synthetic spectra and observed spectra of metal-rich M dwarfs. We suggest that flux-calibrated, low-resolution, NIR spectra can provide a path toward measuring C and O abundances in M dwarfs and breaking the degeneracy between C/O and [Fe/H] present in M dwarf metallicity indicators.

  19. Diversity and abundance of ammonia-oxidizing

    NARCIS (Netherlands)

    Cardoso, J.F.M.F.; van Bleijswijk, J.D.L.; Witte, H.; van Duyl, F.C.

    2013-01-01

    We analysed the diversity and abundance of ammonia-oxidizing Archaea (AOA) and Bacteria (AOB) in the shallow warm-water sponge Halisarca caerulea and the deep cold-water sponges Higginsia thielei and Nodastrella nodastrella. The abundance of AOA and AOB was analysed using catalyzed reporter

  20. LITHIUM ABUNDANCES OF EXTREMELY METAL-POOR TURNOFF STARS

    International Nuclear Information System (INIS)

    Aoki, Wako; Inoue, Susumu; Barklem, Paul S.; Beers, Timothy C.; Christlieb, Norbert; Perez, Ana E. GarcIa; Norris, John E.; Carollo, Daniela

    2009-01-01

    We have determined Li abundances for eleven metal-poor turnoff stars, among which eight have [Fe/H] <-3, based on LTE analyses of high-resolution spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope. The Li abundances for four of these eight stars are determined for the first time by this study. Effective temperatures are determined by a profile analysis of Hα and Hβ. While seven stars have Li abundances as high as the Spite Plateau value, the remaining four objects with [Fe/H] <-3 have A(Li) =log (Li/H)+ 12 ∼< 2.0, confirming the existence of extremely metal-poor (EMP) turnoff stars having low Li abundances, as reported by previous work. The average of the Li abundances for stars with [Fe/H]<-3 is lower by 0.2 dex than that of the stars with higher metallicity. No clear constraint on the metallicity dependence or scatter of the Li abundances is derived from our measurements for the stars with [Fe/H]<-3. Correlations of the Li abundance with effective temperatures, with abundances of Na, Mg, and Sr, and with the kinematical properties are investigated, but no clear correlation is seen in the EMP star sample.

  1. Beryllium abundances in Hg-Mn stars

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Heacox, W.D.; Wolff, S.C.; Borsenberger, J.; Praderie, F.

    1982-01-01

    The Hg-Mn stars show anomalous line strengths of many chemical elements including Be. We have observed the Be ii resonance doublet at lambdalambda 3130, 3131 at 6.7 A mm -1 in 43 Hg-Mn stars and 10 normal stars in the same temperature range with the coude spectrograph of the 2.24 m University of Hawaii telescope at Mauna Kea. Measured equivalent widths of the two lines and/or the blend of the doublet have been compared with predictions from (1) LTE model atmospheres and (2) non-LTE line formation on non-LTE model atmospheres. (For strong Be ii lines, the LTE calculations result in more Be by factors of 2 to 4 than do the non-LTE calculations.) Overabundances of factors of 20--2 x 10 4 relative to solar have been found for 75% of the Hg-Mn stars. The 25% with little or no Be are typically among the cooler Hg-Mn stars, but for the stars with Be excesses, there is only marginal evidence for a correlationi of the size of the overabundance and temperature. It is suggested that diffusion driven by radiation pressure is responsible for the observed Be abundance anomalies

  2. Chemical Evolution of a Protoplanetary Disk

    Science.gov (United States)

    Semenov, Dmitry A.

    2011-12-01

    In this paper we review recent progress in our understanding of the chemical evolution of protoplanetary disks. Current observational constraints and theoretical modeling on the chemical composition of gas and dust in these systems are presented. Strong variations of temperature, density, high-energy radiation intensities in these disks, both radially and vertically, result in a peculiar disk chemical structure, where a variety of processes are active. In hot, dilute and heavily irradiated atmosphere only the most photostable simple radicals and atoms and atomic ions exist, formed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich ion-molecule and radical-radical chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex polyatomic (organic) species are synthesized. Dynamical processes affect disk chemical composition by enriching it in abundances of complex species produced via slow surface processes, which will become detectable with ALMA.

  3. Primordial and Stellar Nucleosynthesis Chemical Evolution of Galaxies

    International Nuclear Information System (INIS)

    Chiosi, Cesare

    2010-01-01

    Following a brief introduction to early Universe cosmology, we present in some detail the results of primordial nucleosynthesis. Then we summarize the basic theory of nuclear reactions in stars and sketch the general rules of stellar evolution. We shortly review the subject of supernova explosions both by core collapse in massive stars (Type II) and carbon-deflagration in binary systems when one of the components is a White Dwarf accreting mass from the companion (Type Ia). We conclude the part dedicated to nucleosynthesis with elementary notions on the s- and r-process. Finally, we shortly address the topic of galactic chemical evolution and highlight some simple solutions aimed at understanding the main observational data on abundances and abundance ratios.

  4. A Chemical Study of 47 Tucanae (NGC 104)

    Science.gov (United States)

    Cordero, Maria J.; Pilachowski, C. A.; Johnson, C. I.; Simmerer, J. A.

    2013-01-01

    47 Tuc (NGC 104) is a nearby, metal-rich globular cluster often used as a benchmark when studying dwarf spheroidal galaxies. We present chemical abundances for a sample of nearly 100 red giants whose spectra were obtained with the moderate resolution Blanco 4M telescope and Hydra multifiber specrograph, using two wavelength regions, 6140-6350 Å and 6500-6750 Å, with signal-to-noise (S/N) ranging from 70-120. Abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu have been determined using either equivalent width measurements or spectrum synthesis together with the LTE line analysis code MOOG and ATLAS 9 model atmospheres. We found [Fe/H]=-0.68 ± 0.06, which is consistent with previous studies. Additionally, we found a star-to-star variation in Na, Al, and O abundances and a first-to-second generation ratio of 36/64. Furthermore, alpha-elements (Si, Ca, and Ti) are overabundant with respect to Fe, and Ni presents a solar value.

  5. Chemical composition of late-type supergiants. IV. Homogeneous abundances and galactic metallicity trends

    International Nuclear Information System (INIS)

    Luck, R.E.

    1982-01-01

    In a recent series of papers by Luck and by Luck and Bond on the chemical composition of G and K lb supergiants, [Fe/H] ratios were determined from high-dispersion spectroscopic data for 54 stars. The main results were: (1) that supergiants in the solar neighborhood have about twice the iron content of the Sun ( = +0.3); and (2) that supergiants between 7.7 and 10.2 kpc from the galactic center show a steep radial metallicity gradient, d[Fe/H]/dR = -0.24 kpc -1

  6. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene.

    Science.gov (United States)

    Kim, Young Hwan; Kim, Sunghwan

    2010-03-01

    Positive-ion atmospheric pressure chemical ionization (APCI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses of petroleum sample were performed with higher sensitivity by switching the solvent composition from toluene and methanol or acetonitrile to a one-component system consisting only of toluene. In solvent blends, molecular ions were more abundant than were protonated ions with increasing percentages of toluene. In 100% toluene, the double-bond equivalence (DBE) distributions of molecular ions obtained by APCI MS for each compound class were very similar to those obtained in dopant assisted atmospheric pressure photo ionization (APPI) MS analyses. Therefore, it was concluded that charge-transfer reaction, which is important in toluene-doped APPI processes, also plays a major role in positive-ion APCI. In the DBE distributions of S(1), S(2), and SO heteroatom classes, a larger enhancement in the relative abundance of molecular ions at fairly specific DBE values was observed as the solvent was progressively switched to toluene. This enhanced abundance of molecular ions was likely dependent on molecular structure. Copyright 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  7. Phytoplankton abundance, dominance and coexistence in an eutrophic reservoir in the state of Pernambuco, Northeast Brazil.

    Science.gov (United States)

    Lira, Giulliari A S T; Araújo, Elcida L; Bittencourt-Oliveira, Maria Do Carmo; Moura, Ariadne N

    2011-12-01

    The present study reports the phytoplankton abundance, dominance and co-existence relationships in the eutrophic Carpina reservoir, Pernambuco, Brazil. Sampling was carried out at six different depths bimonthly at a single reservoir spanning two climatic periods: dry season (January, September, and November 2006) and rainy season (March, May, and July 2006). Density, abundance, dominance, specific diversity and equitability of the community were determined, along with chlorophyll a, and physical and chemical variables of the environment. Eight species were considered abundant, and their densities corresponded to more than 90% of the total phytoplankton community quantified. Cyanobacteria represented more than 80% of this density. Cylindrospermopsis raciborskii was the only dominant taxon in the dry season, and was co-dominant in the rainy season. C. raciborskii, Planktothrix agardhii and Geitlerinema amphibium had the greatest densities and lowest vertical variation coefficients. The statistical analysis indicated relationships with vertical and seasonal variations in the phytoplankton community and the following variables: total dissolved solids, water temperature, electrical conductivity and pH. The changes in the environmental variables were discrete and regulated by the establishment of precipitation however, they were able to promote vertical and seasonal instability in the structure of the phytoplankton community.

  8. Iron abundance evolution in spiral and elliptical galaxies

    International Nuclear Information System (INIS)

    Matteucci, F.

    1987-01-01

    Chemical evolution models for the Galaxy and ellipticals, which take into account the most recent developments on theories of nucleosynthesis and supernova progenitors, are presented. The evolution of the abundance of iron in these systems, under the assumption that this element is mainly produced by type I SNe, originating from white dwarfs in binary systems, has been computed and the results have been compared with the observations. Overabundances of O, Si, Ne and Mg with respect to iron have been predicted for halo stars in their Galaxy. The existence of an Fe - total mass relation with a slope steeper than the corresponding relations for Mg and O has been predicted for ellipticals. The masses of Fe ejected by ellipticals of various masses into the intergalactic medium have also been computed in detail. The general agreement obtained between these theoretical models and the observations for galaxies of different morphological type supports the assumptions made about the origin of iron

  9. Abundance Tomography of Type Ia Supernovae

    International Nuclear Information System (INIS)

    Stehle, M.; Mazzali, P.A.; Hillebrandt, W.

    2005-01-01

    An analysis of early time spectra of Type Ia Supernovae is presented. A new method to derive a detailed abundance distribution of the SN ejecta through comparison with synthetic spectra, called 'Abundance Tomography' is introduced and applied to the normal SN Ia 2002bo. Conclusions regarding the explosion mechanism are drawn

  10. The evoluation of the galactic globular clusters; I Metal abundance calibrations

    International Nuclear Information System (INIS)

    Lee, S.W.; Park, N.K.

    1984-01-01

    Five different calibrations of metal abundances of globular clusters are examined and these are compared with metallicity ranking parameters such as (Sp)sub(c), , Q39 and IR-indices. Except for the calibration *(Fe/H*)sub(H) by the high dispersion echelle analysis, the other calibration scales are correlated with the morphological parameters of red giant branch. In the *(Fe/H*)sub(Hsup(-))scale, the clusters later than approx.F8 have nearly a constant metal abundance, *(Fe/H*)sub(H)approx.-1.05, regardless of morphological characteristics of horizontal branch and red giant branch. By the two fundamental calibration scales of *(Fe/H*)sub(L) (derived by the low dispersion analysis), and *(Fe/H*)sub(delta S) (derived by the spectral analysis of RR Lyrae stars), the globular clusters are divided into the halo clusters with *(Fe/H*)<-1.0 and the disk clusters confined within the galactocentric distance rsub(G)=10 kpc and galactic plane distance absolute z=3 kpc. In this case the abundance gradient is given by d*(Fe/H*)/drsub(G)approx.-0.05kpcsup(-1) and d*(Fe/H*)/d absolute z approx. -0.08 kpcsup(-1) within rsub(G)=20 kpc and absolute z=10 kpc, respectively. According to these characteristics of the spatial distribution of globular clusters, the chemical evolution of the galactic globular clusters can be accounted for by the two-zone (disk-halo) slow collapse model when the *(Fe/H*)sub(Lsup(-)) or *(Fe/H*)sub(DELTA Ssup(-))scale is applied. In the case of *(Fe/H*)sub(Hsup(-))scale, the one-zone fast collapse model is preferred for the evolution of globular clusters. (Author)

  11. THE CHEMICAL EVOLUTION OF THE MONOCEROS RING/GALACTIC ANTICENTER STELLAR STRUCTURE

    International Nuclear Information System (INIS)

    Chou Meiyin; Majewski, Steven R.; Patterson, Richard J.; Cunha, Katia; Smith, Verne V.; MartInez-Delgado, David

    2010-01-01

    The origin of the Galactic Anticenter Stellar Structure (GASS) or 'Monoceros Ring' - a low-latitude overdensity at the edge of the Galactic disk spanning at least the second and third Galactic quadrants-remains controversial. Models for the origin of GASS generally fall into scenarios where either it is a part (e.g., warp) of the Galactic disk or it represents tidal debris from the disruption of a Milky Way (MW) satellite galaxy. To further constrain models for the origin of GASS, we derive chemical abundance patterns from high-resolution spectra for 21 M giants spatially and kinematically identified with it. The abundances of the (mostly) α-element, titanium, and s-process elements, yttrium and lanthanum, for these GASS stars are found to be lower at the same [Fe/H] than those for MW stars, but similar to those of stars in the Sagittarius stream, other dwarf spheroidal galaxies, and the Large Magellanic Cloud. This demonstrates that GASS stars have a chemical enrichment history typical of dwarf galaxies-and unlike those of typical MW stars (at least MW stars near the Sun). Nevertheless, these abundance results cannot definitively rule out the possibility that GASS was dynamically created out of a previously formed, outer MW disk because ΛCDM-based structure formation models show that galactic disks grow outward by accretion of dwarf galaxies. On the other hand, the chemical patterns seen in GASS stars do provide striking verification that accretion of dwarf galaxies has indeed happened at the edge of the MW disk.

  12. Atypical Mg-poor Milky Way Field Stars with Globular Cluster Second-generation-like Chemical Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Trincado, J. G.; Geisler, D.; Tang, B.; Villanova, S.; Mennickent, R. E. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Zamora, O.; García-Hernández, D. A.; Dell’Agli, F.; Prieto, Carlos Allende [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Souto, Diogo; Cunha, Katia [Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ—20921-400 (Brazil); Schiavon, R. P. [Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Hasselquist, Sten [New Mexico State University, Las Cruces, NM 88003 (United States); Shetrone, M. [University of Texas at Austin, McDonald Observatory, Fort Davis, TX 79734 (United States); Vieira, K. [Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Zasowski, G. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Sobeck, J.; Hayes, C. R.; Majewski, S. R. [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Placco, V. M., E-mail: jfernandezt@astro-udec.cl, E-mail: jfernandezt87@gmail.com [Department of Physics and JINA Center for the Evolution of the Elements, University of Notre Dame, Notre Dame, IN 46556 (United States); and others

    2017-09-01

    We report the peculiar chemical abundance patterns of 11 atypical Milky Way (MW) field red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These atypical giants exhibit strong Al and N enhancements accompanied by C and Mg depletions, strikingly similar to those observed in the so-called second-generation (SG) stars of globular clusters (GCs). Remarkably, we find low Mg abundances ([Mg/Fe] < 0.0) together with strong Al and N overabundances in the majority (5/7) of the metal-rich ([Fe/H] ≳ −1.0) sample stars, which is at odds with actual observations of SG stars in Galactic GCs of similar metallicities. This chemical pattern is unique and unprecedented among MW stars, posing urgent questions about its origin. These atypical stars could be former SG stars of dissolved GCs formed with intrinsically lower abundances of Mg and enriched Al (subsequently self-polluted by massive AGB stars) or the result of exotic binary systems. We speculate that the stars Mg-deficiency as well as the orbital properties suggest that they could have an extragalactic origin. This discovery should guide future dedicated spectroscopic searches of atypical stellar chemical patterns in our Galaxy, a fundamental step forward to understanding the Galactic formation and evolution.

  13. Composition, Abundance and Distribution of Brachyuran Larvae in ...

    African Journals Online (AJOL)

    ... Ocypodidae, Grapsidae and Xanthidae. Abundance of brachyuran larvae was significantly positively correlated with total zooplankton abundance (r2 = 0.8) and salinity (r2 = 0.71). Keywords: Brachyuran larvae, abundance, composition, Mida creek, Kenya West Indian Ocean Journal of Marine Science Vol. 3 (2) 2004: pp.

  14. Abundance of plankton population densities in relation to bottom soil textural types in aquaculture ponds

    Directory of Open Access Journals (Sweden)

    F. Siddika

    2012-06-01

    Full Text Available Plankton is an important food item of fishes and indicator for the productivity of a water body. The present study was conducted to evaluate the effects of bottom soil textural conditions on abundance of plankton in aquaculture pond. The experiment was carried out using three treatments, i.e., ponds bottom with sandy loam (T1, with loam (T2 and with clay loam (T3. The ranges of water quality parameters analyzed were suitable for the growth of plankton during the experimental period. Similarly, chemical properties of soil were also within suitable ranges and every parameter showed higher ranges in T2. A total 20 genera of phytoplankton were recorded belonged to Chlorophyceae (7, Cyanophyceae (5, Bacillariophyceae (5, Euglenophyceae (2 and Dinophyceae (1. On the other hand, total 13 genera of zooplankton were recorded belonged to Crustacea (7 and Rotifera (6. The highest ranges of phytoplankton and zooplankton densities were found in T2 where low to medium-type bloom was observed during the study period. Consequently, the mean abundance of plankton (phytoplankton and zooplankton density was significantly highest in T2. The highest abundance of plankton in the T2 indicated that pond bottom with loamy soil is suitable for the growth and production of plankton in aquaculture ponds.

  15. Ages and Heavy Element Abundances from Very Metal-poor Stars in the Sagittarius Dwarf Galaxy

    Science.gov (United States)

    Hansen, Camilla Juul; El-Souri, Mariam; Monaco, Lorenzo; Villanova, Sandro; Bonifacio, Piercarlo; Caffau, Elisabetta; Sbordone, Luca

    2018-03-01

    Sagittarius (Sgr) is a massive disrupted dwarf spheroidal galaxy in the Milky Way halo that has undergone several stripping events. Previous chemical studies were restricted mainly to a few, metal-rich ([Fe/H] \\gtrapprox -1) stars that suggested a top-light initial mass function (IMF). Here we present the first high-resolution, very metal-poor ([Fe/H] =‑1 to ‑3) sample of 13 giant stars in the main body of Sgr. We derive abundances of 13 elements, namely C, Ca, Co, Fe, Sr, Ba, La, Ce, Nd, Eu, Dy, Pb, and Th, that challenge the interpretation based on previous studies. Our abundances from Sgr mimic those of the metal-poor halo, and our most metal-poor star ([Fe/H] ∼ -3) indicates a pure r-process pollution. Abundances of Sr, Pb, and Th are presented for the first time in Sgr, allowing for age determination using nuclear cosmochronology. We calculate ages of 9+/- 2.5 {Gyr}. Most of the sample stars have been enriched by a range of asymptotic giant branch (AGB) stars with masses between 1.3 and 5 M ⊙. Sgr J190651.47–320147.23 shows a large overabundance of Pb (2.05 dex) and a peculiar abundance pattern best fit by a 3 M ⊙ AGB star. Based on star-to-star scatter and observed abundance patterns, a mixture of low- and high-mass AGB stars and supernovae (15–25 M ⊙) is necessary to explain these patterns. The high level (0.29 ± 0.05 dex) of Ca indicates that massive supernovae must have existed and polluted the early ISM of Sgr before it lost its gas. This result is in contrast with a top-light IMF with no massive stars polluting Sgr. Based on data obtained UVES/VLT ID: 083.B-0774, 075.B-0127.

  16. High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age

    Science.gov (United States)

    Nissen, P. E.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Collet, R.; Grundahl, F.; Slumstrup, D.

    2017-12-01

    Context. A previous study of solar twin stars has revealed the existence of correlations between some abundance ratios and stellar age providing new knowledge about nucleosynthesis and Galactic chemical evolution. Aims: High-precision abundances of elements are determined for stars with asteroseismic ages in order to test the solar twin relations. Methods: HARPS-N spectra with signal-to-noise ratios S/N ≳ 250 and MARCS model atmospheres were used to derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B) selected to have metallicities in the range - 0.15 LTE iron abundances derived from Fe I and Fe II lines. Available non-LTE corrections were also applied when deriving abundances of the other elements. Results: The abundances of the Kepler stars support the [X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and [Zn/Fe] decrease by 0.1 dex over the lifetime of the Galactic thin disk due to delayed contribution of iron from Type Ia supernovae relative to prompt production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the other hand, increase by 0.3 dex, which can be explained by an increasing contribution of s-process elements from low-mass AGB stars as time goes on. The trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio between refractory and volatile elements among stars of similar age. Two stars with about the same age as the Sun show very different trends of [X/H] as a function of elemental condensation temperature Tc and for 16 Cyg, the two components have an abundance difference, which increases with Tc. These anomalies may be connected to planet-star interactions. Based on spectra obtained with HARPS-N@TNG under programme A33TAC_1.Tables 1 and 2 are also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http

  17. Diversity, composition and abundance of macroinvertebrates ...

    African Journals Online (AJOL)

    user

    these genera were found at all sampling stations as shown in Table 2. Out of the orders sampled, Hemiptera, Pulmonata and. Coleoptera had the highest number of genera with 5, 4 and 4, respectively. In terms of relative abundance, dipterans and Pulmonata were the most abundant while. Hydracarina (water mites) were ...

  18. Detecting novel low-abundant transcripts in Drosophila

    DEFF Research Database (Denmark)

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts...... in the Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  19. Nucleosynthesis and the Inhomogeneous Chemical Evolution of the Carina Dwarf Galaxy

    NARCIS (Netherlands)

    Venn, Kim A.; Shetrone, Matthew D.; Irwin, Mike J.; Hill, Vanessa; Jablonka, Pascale; Tolstoy, Eline; Lemasle, Bertrand; Divell, Mike; Starkenburg, Else; Letarte, Bruno; Baldner, Charles; Battaglia, Giuseppina; Helmi, Amina; Kaufer, Andreas; Primas, Francesca

    2012-01-01

    The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using

  20. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    International Nuclear Information System (INIS)

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.; Chakrabarti, Sonali

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds. Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules. So far these have been used to study the abundances of these molecules in space. However, in order to obtain more accurate final compositions in these media, we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star. We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radical-molecular reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud. We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models. Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions. The presence of grains strongly affects the abundances of the gas phase species. We also carry out a comparative study between different pathways available for the synthesis of adenine, alanine, glycine and other molecules considered in our network. Despite the huge abundances of the neutral reactive species, production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways

  1. A new species of Trichoderma hypoxylon harbours abundant secondary metabolites.

    Science.gov (United States)

    Sun, Jingzu; Pei, Yunfei; Li, Erwei; Li, Wei; Hyde, Kevin D; Yin, Wen-Bing; Liu, Xingzhong

    2016-11-21

    Some species of Trichoderma are fungicolous on fungi and have been extensively studied and commercialized as biocontrol agents. Multigene analyses coupled with morphology, resulted in the discovery of T. hypoxylon sp. nov., which was isolated from surface of the stroma of Hypoxylon anthochroum. The new taxon produces Trichoderma- to Verticillium-like conidiophores and hyaline conidia. Phylogenetic analyses based on combined ITS, TEF1-α and RPB2 sequence data indicated that T. hypoxylon is a well-distinguished species with strong bootstrap support in the polysporum group. Chemical assessment of this species reveals a richness of secondary metabolites with trichothecenes and epipolythiodiketopiperazines as the major compounds. The fungicolous life style of T. hypoxylon and the production of abundant metabolites are indicative of the important ecological roles of this species in nature.

  2. Antimicrobial Chemicals Are Associated with Elevated Antibiotic Resistance Genes in the Indoor Dust Microbiome.

    Science.gov (United States)

    Hartmann, Erica M; Hickey, Roxana; Hsu, Tiffany; Betancourt Román, Clarisse M; Chen, Jing; Schwager, Randall; Kline, Jeff; Brown, G Z; Halden, Rolf U; Huttenhower, Curtis; Green, Jessica L

    2016-09-20

    Antibiotic resistance is increasingly widespread, largely due to human influence. Here, we explore the relationship between antibiotic resistance genes and the antimicrobial chemicals triclosan, triclocarban, and methyl-, ethyl-, propyl-, and butylparaben in the dust microbiome. Dust samples from a mixed-use athletic and educational facility were subjected to microbial and chemical analyses using a combination of 16S rRNA amplicon sequencing, shotgun metagenome sequencing, and liquid chromatography tandem mass spectrometry. The dust resistome was characterized by identifying antibiotic resistance genes annotated in the Comprehensive Antibiotic Resistance Database (CARD) from the metagenomes of each sample using the Short, Better Representative Extract Data set (ShortBRED). The three most highly abundant antibiotic resistance genes were tet(W), blaSRT-1, and erm(B). The complete dust resistome was then compared against the measured concentrations of antimicrobial chemicals, which for triclosan ranged from 0.5 to 1970 ng/g dust. We observed six significant positive associations between the concentration of an antimicrobial chemical and the relative abundance of an antibiotic resistance gene, including one between the ubiquitous antimicrobial triclosan and erm(X), a 23S rRNA methyltransferase implicated in resistance to several antibiotics. This study is the first to look for an association between antibiotic resistance genes and antimicrobial chemicals in dust.

  3. Subdwarf ultraviolet excesses and metal abundances

    International Nuclear Information System (INIS)

    Carney, B.W.

    1979-01-01

    The relation between stellar ultraviolet excesses and abundances is reexamined with the aid of new data, and an investigation is made of the accuracy of previous abundance analyses. A high-resolution echellogram of the subdwarf HD 201891 is analyzed to illustrate some of the problems. Generally, the earliest and latest analytical techniques yield consistent results for dwarfs. New UBV data yield normalized ultraviolet excesses, delta (U-B)/sub 0.6/, which are compared to abundances to produce a graphical relation that may be used to estimate [Fe/H] to +- 0.2 dex, given UBV colors accurate to +- 0.01 mag. The relation suggests a possible discontinuity between the halo and old-disk stars

  4. Chemical composition and anti-bacterial activity of essential oil from ...

    African Journals Online (AJOL)

    This work assesses the chemical compositions and in vitro anti-bacterial activities of seed essential oil from Cedrela sinesis (A. Juss.) Roem. seed. which has abundant mineral elements such as K, Ca, Fe. The fatty acid profiles of seed essential oil are characterized by considerable unsaturated fatty acids (90.39%) ...

  5. Origin of Stellar Abundances in the early Galaxy

    International Nuclear Information System (INIS)

    Montes, F.; Beers, T. C.; Cowan, J.; Elliot, T.; Schatz, H.; Farouqi, K.; Gallino, R.; Heil, M.; Kratz, K.-L.; Pfeiffer, B.; Pignatari, M.

    2007-01-01

    Observations of metal-poor stars in the last decade have revealed an abundance pattern that have recently been explained as the result of two nucleosynthesis processes, a strong r-process that creates most of the Z≥56 and some 38≤Z≤47 abundances and a light element primary process (LEPP) responsible for creating the remaining 38≤Z≤47 abundances and some small contribution to heavier elements. We review some of the current literature on the LEPP and show a derived abundance pattern as a function of mass number

  6. [Influences of long-term application of organic and inorganic fertilizers on the composition and abundance of nirS-type denitrifiers in black soil].

    Science.gov (United States)

    Yin, Chang; Fan, Fen-Liang; Li, Zhao-Jun; Song, A-Lin; Zhu, Ping; Peng, Chang; Liang, Yong-Chao

    2012-11-01

    The objectives of this study were to explore the effects of long-term organic and inorganic fertilizations on the composition and abundance of nirS-type denitrifiers in black soil. Soil samples were collected from 4 treatments (i. e. no fertilizer treatment, CK; organic manure treatment, OM; chemical fertilizer treatment (NPK) and combination of organic and chemical fertilizers treatment (MNPK)) in Gongzhuling Long-term Fertilization Experiment Station. Composition and abundance of nirS-type denitrifiers were analyzed with terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR (Q-PCR), respectively. Denitrification enzyme activity (DEA) and soil properties were also measured. Application of organic fertilizers (OM and MNPK) significantly increased the DEAs of black soil, with the DEAs in OM and MNPK being 5.92 and 6.03 times higher than that in CK treatment, respectively, whereas there was no significant difference between NPK and CK. OM and MNPK treatments increased the abundances of nirS-type denitrifiers by 2.73 and 3.83 times relative to that of CK treatment, respectively. The abundance of nirS-type denitrifiers in NPK treatment was not significantly different from that of CK. The T-RFLP analysis of nirS genes showed significant differences in community composition between organic and inorganic treatments, with the emergence of a 79 bp T-RF, a significant decrease in relative abundance of the 84 bp T-RF and a loss of the 99 bp T-RF in all organic treatments. Phylogenetic analysis indicated that the airS-type denitrifiers in the black soil were mainly composed of alpha, beta and gamma-Proteobacteria. The 79 bp-type denitrifiers inhabiting exclusively in organic treatments (OM and MNPK) were affiliated to Pseudomonadaceae in gamma-Proteobacteria and Burkholderiales in beta-Proteobacteria. The 84 bp-types were related to Burkholderiales and Rhodocyclales. Correlation analysis indicated that pH, concentrations of total nitrogen

  7. Good abundances from bad spectra - I. Techniques

    Science.gov (United States)

    Jones, J. Bryn; Gilmore, Gerard; Wyse, Rosemary F. G.

    1996-01-01

    Stellar spectra derived from multiple-object fibre-fed spectroscopic radial-velocity surveys, of the type feasible with, among other examples, AUTOFIB, 2dF, HYDRA, NESSIE, and the Sloan survey, differ significantly from those traditionally used for determination of stellar abundances. The spectra tend to be of moderate resolution (around 1A) and signal-to-noise ratio (around 10-20 per resolution element), and cannot usually have reliable continuum shapes determined over wavelength ranges in excess of a few tens of Angstroms. None the less, with care and a calibration of stellar effective temperature from photometry, independent of the spectroscopy, reliable iron abundances can be derived. We have developed techniques to extract true iron abundances and surface gravities from low-signal-to-noise ratio, intermediate-resolution spectra of G-type stars in the 4000-5000A wavelength region. Spectroscopic indices sensitive to iron abundance and gravity are defined from a set of narrow (few-several A wide) wavelength intervals. The indices are calibrated theoretically using synthetic spectra. Given adequate data and a photometrically determined effective temperature, one can derive estimates of the stellar iron abundance and surface gravity. We have also defined a single abundance indicator for the analysis of very low-signal-to-noise ratio spectra; with the further assumption of a value for the stellar surface gravity, this is able to provide useful iron abundance information from spectra having signal-to-noise ratios as low as 10 (1-A elements). The theoretical basis and calibration using synthetic spectra are described in this paper. The empirical calibration of these techniques by application to observational data is described in a separate paper (Jones, Wyse & Gilmore). The technique provides precise iron abundances, with zero-point correct to ~0.1 dex, and is reliable, with typical uncertainties being <~0.2 dex. A derivation of the in situ thick disc metallicity

  8. Abundances in very metal-poor stars

    Science.gov (United States)

    Johnson, Jennifer Anne

    We measured the abundances of 35 elements in 22 field red giants and a red giant in the globular cluster M92. We found the [Zn/Fe] ratio increases with decreasing [Fe/H], reaching ~0.3 at [Fe/H] = -3.0. While this is a larger [Zn/Fe] than found by previous investigators, it is not sufficient to account for the [Zn/Fe] observed in the damped Lyα systems. We test different models for the production of the s-process elements by comparing our [Y/Zr] values, which have been produced by the r- process, to predictions of what the s-process does not produce. We find that the models of Arlandini et al. (1999), which calculate s-process production in a model AGB star, agree the best. We then look at the r-process abundances across a wide range in mass. The [Y/Ba] values for most of our stars cluster around -0.30, but there are three outliers with [Y/Ba] values up to 1 dex higher. Thus the heavy element abundances do not show the same pattern from Z = 39 to Z = 56. However, our abundances ratios from Pd (Z = 46) to Yb (Z = 70) are consistent with a scaled solar system r- process pattern, arguing that at least the heavy r- process elements are made in a universal pattern. If we assume that this same pattern hold through thorium, we can determine the ages of our stars from the present abundance of radioactive thorium and an initial thorium abundance based on the abundance of stable heavy elements. Our results for five stars are consistent with those stars being the same age. Our mean age is 10.8 +/- 2 Gyr. However that result depends critically on the assumed Th/stable ratio, which we adopt from models of the r-process. For an average age of 15 Gyrs, the initial Th/Eu ratio we would need is 0.590. Finally, the [element/Fe] ratios for elements in the iron group and lower do not show any dispersion, unlike for the r- process elements such as Y and Ba. Therefore the individual contributions of supernovae have been erased for the lighter elements.

  9. Clonal growth and plant species abundance.

    Science.gov (United States)

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-08-01

    Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden

  10. Heteronuclear three-dimensional NMR spectroscopy. Natural abundance 13C chemical shift editing of 1H-1H COSY spectra

    International Nuclear Information System (INIS)

    Fesik, S.W.; Gampe, R.T. Jr.; Zuiderweg, E.R.P.

    1989-01-01

    It has been demonstrated that heteronuclear 3D NMR spectroscopy can be effectively applied to small molecules with 13 C at natural abundance. A 78mM solution of the aminoglycoside, kanamycin A was used for this experiment. The heteronuclear 3D NMR spectroscopy is shown to be a useful method for resolving spectral overlap in all frequency domains. 10 refs., 2 figs

  11. Recreating the chemical evolution of the Sagittarius dwarf spheroidal from its tidal debris

    Science.gov (United States)

    Carlin, Jeffrey L.; Sheffield, Allyson; Cunha, Katia M. L.; Smith, Verne V.

    2018-06-01

    We present a detailed chemical analysis of the Sagittarius (Sgr) tidal stream based on high-resolution Gemini+GRACES spectra of 42 members of the highest surface brightness portions of both the trailing and leading arms of the Sgr stream. We select Sgr tidal stream candidates using a 2MASS+WISE color-color selection, combined with LAMOST radial velocities, allowing us to efficiently select Sgr stream members with little contamination from field stars. Sgr is a recently infallen, currently disrupting dwarf spheroidal galaxy, with roughly 70% of the luminosity of the Sgr system residing in the tidal streams. With this study, we provide a link between the (known) chemical properties in the intact Sgr core and the significant portion of the Sgr system's luminosity that is estimated to currently reside in the streams. In this talk, we focus on abundances of alpha-elements, but we will also analyze neutron-capture (both r- and s-process) and iron-peak species. We compare our chemical abundances to the few existing measurements in the stream as well as the numerous results in the Sgr core.

  12. DETAILED ABUNDANCES OF RED GIANTS IN THE GLOBULAR CLUSTER NGC 1851: C+N+O AND THE ORIGIN OF MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Villanova, S.; Geisler, D.; Piotto, G.

    2010-01-01

    We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the globular cluster NGC 1851 distributed along the two RGBs of the (v, v-y) color-magnitude diagram. We determined abundances for C+N+O, Na, α, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N, O, Na) and s-element content. On the other hand, they do not show any significant difference in their α and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origins of the two RGBs and the two subgiant branches of the cluster are related to different content of either α (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by Type II supernovae.

  13. Chemical composition of extremely metal-poor stars in the Sextans dwarf spheroidal galaxy

    OpenAIRE

    Aoki, W.; Arimoto, N.; Sadakane, K.; Tolstoy, E.; Battaglia, G.; Jablonka, P.; Shetrone, M.; Letarte, B.; Irwin, M.; Hill, V.; Francois, P.; Venn, K.; Primas, F.; Helmi, A.; Kaufer, A.

    2009-01-01

    Context. Individual stars in dwarf spheroidal galaxies around the Milky Way Galaxy have been studied both photometrically and spectroscopically. Extremely metal-poor stars among them are very valuable because they should record the early enrichment in the Local Group. However, our understanding of these stars is very limited because detailed chemical abundance measurements are needed from high resolution spectroscopy. Aims. To constrain the formation and chemical evolution of dwarf galaxi...

  14. Heterogeneity in physical, chemical and plankton-community structures in Lake Tanganyika

    NARCIS (Netherlands)

    Langenberg, V.T.; Tumba, J.M.; Tshibangu, K.; Lukwesa, C.; Chitamwebwa, D.; Bwebwa, D.; Makasa, L.; Roijackers, R.M.M.

    2008-01-01

    From 28 August to 6 September 1995, we monitored the lake-wide physical, chemical and biological properties of the pelagic waters in Lake Tanganyika. The aim of this study was to examine the spatial environmental variability and its relation to fluctuations in plankton abundance and community

  15. Abundance of birds in Fukushima as judged from Chernobyl

    International Nuclear Information System (INIS)

    Møller, Anders Pape; Hagiwara, Atsushi; Matsui, Shin; Kasahara, Satoe; Kawatsu, Kencho; Nishiumi, Isao; Suzuki, Hiroyuki; Ueda, Keisuke; Mousseau, Timothy A.

    2012-01-01

    The effects of radiation on abundance of common birds in Fukushima can be assessed from the effects of radiation in Chernobyl. Abundance of birds was negatively related to radiation, with a significant difference between Fukushima and Chernobyl. Analysis of 14 species common to the two areas revealed a negative effect of radiation on abundance, differing between areas and species. The relationship between abundance and radiation was more strongly negative in Fukushima than in Chernobyl for the same 14 species, demonstrating a negative consequence of radiation for birds immediately after the accident on 11 March 2011 during the main breeding season in March–July, when individuals work close to their maximum sustainable level. - Highlights: ► Abundance of birds was negatively related to radiation in Chernobyl and Fukushima. ► Effects of radiation on abundance differed between Chernobyl and Fukushima and among species. ► For 14 species common to the two areas the effects of radiation on abundance were stronger in Fukushima than in Chernobyl. - The negative effect of radiation on abundance of birds in Fukushima exceeded that for the same species in Chernobyl.

  16. Chemical Variations in a Granitic Pluton and Its Surrounding Rocks.

    Science.gov (United States)

    Baird, A K; McIntyre, D B; Welday, E E; Madlem, K W

    1964-10-09

    New techniques of x-ray fluorescence spectrography have provided, for the first time, abundant data regarding chemical variability of granitic rocks on different scales. The results suggest that current designs of sampling plans for trend surface analysis should be modified; in particular several specimens, preferably drillcores, may be required at each locality.

  17. Using the Seismology of Non-magnetic Chemically Peculiar Stars as ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Chemical composition is a good tracer of the hydrodynamical processes that occur in stars as they often lead to mixing and particle transport. By comparing abundances predicted by models and those observed in stars we can infer some constraints on those mixing processes. As pulsations in the stars are ...

  18. Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars

    OpenAIRE

    Bensby, T.; Johnson, J. A.; Cohen, J.; Feltzing, S.; Udalski, A.; Gould, A.; Huang, W.; Thompson, I.; Simmerer, J.; Adén, D.

    2009-01-01

    Aims. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We then aim to use microlensed dwarf and subgiant stars to investigate the abundance structure and chemical evolution of the Milky Way Bulge. Contrary to the cool giant stars, with their extremely crowded spectra, the dwarf stars are hotter, their spe...

  19. Composition and abundance of tree regeneration

    Science.gov (United States)

    Todd F. Hutchinson; Elaine Kennedy Sutherland; Charles T. Scott

    2003-01-01

    The composition and abundance of tree seedlings and saplings in the four study areas in southern Ohio were related to soil moisture via a GIS-derived integrated moisture index and to soil texture and fertility. For seedlings, the total abundance of small stems (less than 30 cm tall) was significantly greater on xeric plots (81,987/ha) than on intermediate (54,531/ha)...

  20. Chemical enrichment in halo planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Peimbert, S; Rayo, J F; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Inst. de Astronomia

    1981-01-01

    Photoelectric spectrophotometry of emission lines in the 3400-7400 A region is presented for the planetary nebulae 108-76/sup 0/1(BB1). From these observations the relative abundances of H, He, C, N, O and Ne are derived. The abundances of the halo PN (BB1, H4-1 and K648) are compared to those predicted by stellar evolution theory under the assumption that the envelope has the chemical composition of the matter located between the H burning shell and the surface. The observed He/H and C/O values are higher than predicted which implies that halo PN contain matter from deeper layers than the H burning shell. Furthermore, the O/Ar, N/Ar and Ne/Ar values in halo PN are higher than in the solar neighbourhood, at least part of this enrichment is produced by the PN progenitors.

  1. Bracken: estimating species abundance in metagenomics data

    Directory of Open Access Journals (Sweden)

    Jennifer Lu

    2017-01-01

    Full Text Available Metagenomic experiments attempt to characterize microbial communities using high-throughput DNA sequencing. Identification of the microorganisms in a sample provides information about the genetic profile, population structure, and role of microorganisms within an environment. Until recently, most metagenomics studies focused on high-level characterization at the level of phyla, or alternatively sequenced the 16S ribosomal RNA gene that is present in bacterial species. As the cost of sequencing has fallen, though, metagenomics experiments have increasingly used unbiased shotgun sequencing to capture all the organisms in a sample. This approach requires a method for estimating abundance directly from the raw read data. Here we describe a fast, accurate new method that computes the abundance at the species level using the reads collected in a metagenomics experiment. Bracken (Bayesian Reestimation of Abundance after Classification with KrakEN uses the taxonomic assignments made by Kraken, a very fast read-level classifier, along with information about the genomes themselves to estimate abundance at the species level, the genus level, or above. We demonstrate that Bracken can produce accurate species- and genus-level abundance estimates even when a sample contains multiple near-identical species.

  2. Abundance analyses of thirty cool carbon stars

    International Nuclear Information System (INIS)

    Utsumi, Kazuhiko

    1985-01-01

    The results were previously obtained by use of the absolute gf-values and the cosmic abundance as a standard. These gf-values were found to contain large systematic errors, and as a result, the solar photospheric abundances were revised. Our previous results, therefore, must be revised by using new gf-values, and abundance analyses are extended for as many carbon stars as possible. In conclusion, in normal cool carbon stars heavy metals are overabundant by factors of 10 - 100 and rare-earth elements are overabundant by a factor of about 10, and in J-type cool carbon stars, C 12 /C 13 ratio is smaller, C 2 and CN bands and Li 6708 are stronger than in normal cool carbon stars, and the abundances of s-process elements with respect to Fe are nearly normal. (Mori, K.)

  3. Ammonia abundances in comets

    Science.gov (United States)

    Wyckoff, S.; Tegler, S.; Engel, L.

    The emission band strengths of the NH2 bands of Comets Halley, Hartley-Good, Thiele, and Borrelly were measured to determine the NH2 column densities for the comets. Production rates obtained using the Haser and vectorial models are in agreement within the observational errors, suggesting that a simple two-step decay model may be used to approximate the NH2 distribution in a comet's coma. Ammonia-to-water abundance ratios from 0.01 to 0.4 percent were found for the four comets. The ratio in Comet Halley is found to be Q(NH3)/Q(H2O) = 0.002 + or - 0.001. No significant difference in the ammonia abundance was found before or after perihelion in Comet Halley.

  4. Detailed abundance analysis of globular clusters in the Local Group. NGC 147, NGC 6822, and Messier 33

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Wasserman, A.; Strader, J.

    2018-06-01

    Context. Globular clusters (GCs) are emerging as powerful tracers of the chemical composition of extragalactic stellar populations. Aims: We present new abundance measurements for 11 GCs in the Local Group galaxies NGC 147, NGC 6822, and Messier 33. These are combined with previously published observations of four GCs in the Fornax and Wolf-Lundmark-Melotte (WLM) galaxies. Methods: The abundances were determined from analyses of integrated-light spectra obtained with the HIRES spectrograph on the Keck I telescope and with UVES on the Very Large Telescope (VLT). We used our analysis technique that was developed for this purpose and tested on Milky Way GCs. Results: We find that the clusters with [Fe/H] -1.5, the GCs in M33 are also α-enhanced, while the GCs that belong to dwarfs (NGC 6822 SC7 and Fornax 4) have closer to solar-scaled α-element abundances. The abundance patterns in SC7 are remarkably similar to those in the Galactic GC Ruprecht 106, including significantly subsolar [Na/Fe] and [Ni/Fe] ratios. In NGC 147, the GCs with [Fe/H] account for about 6% of the total luminosity of stars in the same metallicity range, a lower fraction than those previously found in the Fornax and WLM galaxies, but substantially higher than in the Milky Way halo. Conclusions: At low metallicities, the abundance patterns suggest that GCs in the Milky Way, dwarf galaxies, and M33 experienced similar enrichment histories and/or processes. At higher metallicities, the lower levels of α-enhancement in the GCs found in dwarf galaxies resemble the abundance patterns observed in field stars in nearby dwarfs. Constraining the presence of multiple populations in these GCs is complicated by lack of information about detailed abundances in field stars of the corresponding metallicities. We suggest that correlations such as [Na/Fe] versus [Ni/Fe] may prove useful for this purpose if an accuracy of 0.1 dex or better can be reached for integrated-light measurements. Tables A.1-A.15

  5. Resource Abundance and Resource Dependence in China

    NARCIS (Netherlands)

    Ji, K.; Magnus, J.R.; Wang, W.

    2010-01-01

    This paper reconsiders the ‘curse of resources’ hypothesis for the case of China, and distinguishes between resource abundance, resource rents, and resource dependence. Resource abundance and resource rents are shown to be approximately equivalent, and their association with resource dependence

  6. Natural control in cabbage root fly populations and influence of chemicals

    NARCIS (Netherlands)

    Abu Yaman, I.K.

    1960-01-01

    To facilitate studies on the natural and chemical control of Hylemya (Erioischia) brassicae (Bch.) in Holland, the bionomics and abundance of the Anthomyiid were investigated in 1959-9 in fields in which cauliflower was grown. The numbers of eggs and larvae were estimated by scrutiny of

  7. Pregalactic helium abundance and abundance gradients across our galaxy from planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    D' Odorico, S; Peimbert, M [Universidad Nacional Autonoma de Mexico, Mexico City. Instituto de Astronomia; Sabbadin, F [Padua Univ. (Italy). Istituto di Astronomia

    1976-03-01

    From the observations of planetary nebulae by Peimbert and Torres-Peimbert we have studied the radial gradients across our galaxy of the helium, oxygen and nitrogen abundance relative to hydrogen. The increase of the oxygen to hydrogen abundance ratio from a radial distance to the galactic center of 14 to 8 kpc is about a factor of 3 while that of the nitrogen to hydrogen ratio is about twice as large. By adopting oxygen as representative of the heavy elements it is found that the helium enrichment is coupled to the heavy metal enrichment by ..delta..Y/..delta..Zapproximately2.9 in close agreement with the value derived from H II regions. The pregalactic N(He)/N(H) value derived from planetary nebulae is 0.073+-0.008 also in agreement with the value derived from H II regions.

  8. Diversity and abundance of ammonia oxidizing archaea in tropical compost systems.

    Science.gov (United States)

    de Gannes, Vidya; Eudoxie, Gaius; Dyer, David H; Hickey, William J

    2012-01-01

    Composting is widely used to transform waste materials into valuable agricultural products. In the tropics, large quantities of agricultural wastes could be potentially useful in agriculture after composting. However, while microbiological processes of composts in general are well established, relatively little is known about microbial communities that may be unique to these in tropical systems, particularly nitrifiers. The recent discovery of ammonia oxidizing archaea (AOA) has changed the paradigm of nitrification being initiated solely by ammonia oxidizing bacteria. In the present study, AOA abundance and diversity was examined in composts produced from combinations of plant waste materials common in tropical agriculture (rice straw, sugar cane bagasse, and coffee hulls), which were mixed with either cow- or sheep-manure. The objective was to determine how AOA abundance and diversity varied as a function of compost system and time, the latter being a contrast between the start of the compost process (mesophilic phase) and the finished product (mature phase). The results showed that AOA were relatively abundant in composts of tropical agricultural wastes, and significantly more so than were the ammonia-oxidizing bacteria. Furthermore, while the AOA communities in the composts were predominatly group I.1b, the communities were diverse and exhibited structures that diverged between compost types and phases. These patterns could be taken as indicators of the ecophysiological diversity in the soil AOA (group I.1b), in that significantly different AOA communties developed when exposed to varying physico-chemical environments. Nitrification patterns and levels differed in the composts which, for the mature material, could have significant effects on its performance as a plant growth medium. Thus, it will also be important to determine the association of AOA (and diversity in their communities) with nitrification in these systems.

  9. Elemental abundance analyses with coadded DAO spectrograms: Pt. 5

    International Nuclear Information System (INIS)

    Adelman, S.J.

    1988-01-01

    Elemental abundance analyses of three mercury-manganese stars were performed in a manner consistent with previous analyses of this series. A few correlations are found between the derived abundances and with the effective temperature in accordance with the expectations of radiative diffusion explanations of the derived abundances. The helium abundances are smaller than the value required to sustain the superficial helium convection zone in the atmospheres of these stars. (author)

  10. Latin American protected areas: Protected from chemical pollution?

    Science.gov (United States)

    Rodríguez-Jorquera, Ignacio A; Siroski, Pablo; Espejo, Winfred; Nimptsch, Jorge; Choueri, Paloma Gusso; Choueri, Rodrigo Brasil; Moraga, Claudio A; Mora, Miguel; Toor, Gurpal S

    2017-03-01

    Protected areas (PAs) are critically important means to preserve species and maintain natural ecosystems. However, the potential impacts of chemical pollution on PAs are seldom mentioned in the scientific literature. Research on the extent of the occurrence of chemical pollution inside PAs and in-depth assessments of how chemical contaminants may adversely affect the maintenance of species abundance, species survival, and ecosystem functions are scarce to nonexistent. We investigated 1) the occurrence of chemical contaminants inside 119 PAs in Latin America from publically available databases, and 2) reviewed case studies of chemical contaminants and pollution in 4 Latin American PAs. Cases of chemical pollution and contamination inside Latin American PAs mostly originated from sources such as mining, oil, and gas extraction. To date, the focus of the research on chemical pollution research inside Latin American PAs has been primarily on the detection of contamination, typically limited to trace metals. Where management actions have occurred, they have been reactive rather than proactive. Protected areas established in wetlands are the most affected by chemical pollution. Based on the information from the pollution and/or contamination occurrence and the case studies analyzed, Latin American PAs are not well safeguarded from chemical pollution, resulting in both challenges and opportunities to conserve biodiversity and ecosystems. Integr Environ Assess Manag 2017;13:360-370. © 2016 SETAC. © 2016 SETAC.

  11. Abiotic and biotic factors influencing nanoflagellate abundance and distribution in three different seasons in PRE, South China Sea

    Science.gov (United States)

    Zhang, Xia; Shi, Zhen; Huang, Xiaoping; Li, Xiangfu

    2017-07-01

    Spatial distribution characteristics of two nanoflagellate groups, together with physico-chemical and biological factors, were studied in three seasons in the Pearl River Estuary (PRE), South China Sea. Nanoflagellates were more abundant in warm periods than that in winter. The average abundance in the three observations (spring, summer and winter) was as follow: 1.28 ± 1.17, 0.88 ± 1.02 and 0.28 ± 0.23 × 103 cells ml-1 of heterotrophic nanoflagellate (HNF), and 1.26 ± 0.85, 0.89 ± 0.77 and 0.65 ± 0.52 × 103 cells ml-1 of pigmented nanoflagellate (PNF). In our three studied seasons, NF density was generally higher in the inner estuary and decreasing to the lowest in the outer estuary. Our results suggested that PNF classes were more sensitive than HNF groups to freshwater discharge. The proportion of PNF gradually increased from spring (49.7%) to winter (67.7%), with the river flow was accordingly decreasing. Moreover, spatial distribution pattern in three seasons showed the response of PNF populations to freshwater input was similar to phytoplankton assemblages in the PRE. Total bacterial and live bacterial abundance (measured by LIVE/DEAD kit) were associated with both two NF components, which implied that NF was a potential predator controlling the bulk abundance of bacteria and proportion of active cells. These results revealed the seasonal and spatial variations of NF abundance in diverse conditions in the PRE and how their response to different ecological processes.

  12. THE DETAILED CHEMICAL PROPERTIES OF M31 STAR CLUSTERS. I. Fe, ALPHA AND LIGHT ELEMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Colucci, Janet E.; Bernstein, Rebecca A. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Cohen, Judith G., E-mail: jcolucci@obs.carnegiescience.edu [Palomar Observatory, Mail Stop 105-24, California Institute of Technology, Pasadena, CA 91125 (United States)

    2014-12-20

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc < R {sub M31} < 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ∼ – 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope.

  13. Heavy element abundances of Nova Cygni 1975

    International Nuclear Information System (INIS)

    Ferland, G.J.; Shields, G.A.

    1978-01-01

    McDonald observations of the nebular phase of the outburst of Nova Cygni 1975 are analyzed to measure the abundances of several heavy elements. A new analytical procedure is used to derive the electron density and temperature from the emission line intensities of [O III], [Ne III], and He I observed between days 40 and 120. These physical conditions are used to derive the abundances. We find that Fe has approximately a solar abundance, whereas C, N, O, and Ne are enhanced by factors approx.20 to 100. The enhanced abundance of neon was theoretically unexpected.The derived physical conditions and line intensities are compared with predictions of an equilibrium photoionization model. The model successfully predicts the intensities of He I, [O III], and [Ne III]; but it underestimates the strength of [Ne V] and [Fe VII], which may originate in a mechanically heated ''subcoronal'' line region

  14. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. III. THE LARGE MAGELLANIC CLOUD: Fe AND AGES

    International Nuclear Information System (INIS)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cameron, Scott A.; McWilliam, Andrew

    2011-01-01

    In this paper, we refine our method for the abundance analysis of high-resolution spectroscopy of the integrated light of unresolved globular clusters (GCs). This method was previously demonstrated for the analysis of old (>10 Gyr) Milky Way (MW) GCs. Here, we extend the technique to young clusters using a training set of nine GCs in the Large Magellanic Cloud. Depending on the signal-to-noise ratio of the data, we use 20-100 Fe lines per cluster to successfully constrain the ages of old clusters to within a ∼5 Gyr range, the ages of ∼2 Gyr clusters to a 1-2 Gyr range, and the ages of the youngest clusters (0.05-1 Gyr) to a ∼200 Myr range. We also demonstrate that we can measure [Fe/H] in clusters with any age less than 12 Gyr with similar or only slightly larger uncertainties (0.1-0.25 dex) than those obtained for old MW GCs (0.1 dex); the slightly larger uncertainties are due to the rapid evolution in stellar populations at these ages. In this paper, we present only Fe abundances and ages. In the next paper in this series, we present our complete analysis of ∼20 elements for which we are able to measure abundances. For several of the clusters in this sample, there are no high-resolution abundances in the literature from individual member stars; our results are the first detailed chemical abundances available. The spectra used in this paper were obtained at Las Campanas with the echelle on the du Pont Telescope and with the MIKE spectrograph on the Magellan Clay Telescope.

  15. Lignin biomass conversion into chemicals and fuels

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra

    Second-generation biomass or lignocellulosic biomass, which is mainly composed of cellulose, hemicellulose and lignin, is a very important and promising feedstock for the renewable production of fuels and chemicals of the future. Lignin is the second most abundant natural polymer, representing 30...... and show similar, although simplified, characteristics to the natural biopolymer. Among them, the most abundant structural unit is the β-O-4, representing approximately 60% of the bonds in hardwood and 45-50% of those in softwood. Oxidative depolymerization is one of the most viable methods for lignin...... valorization. It involves the cleavage of ether bonds, such as β-O-4 and other linkages present in lignin and its model compounds, giving aldehydes or carboxylic acids as products, depending on the reaction conditions used. In Chapter 2 of this thesis, the preparation, characterization and catalytic...

  16. Differential growth responses of soil bacterial taxa to carbon substrates of varying chemical recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, K.C.; Karaoz, U.; Hanson, C.A.; Santee, C.A.; Bradford, M.A.; Treseder, K.K.; Wallenstein, M.D.; Brodie, E.L.

    2011-04-18

    Soils are immensely diverse microbial habitats with thousands of co-existing bacterial, archaeal, and fungal species. Across broad spatial scales, factors such as pH and soil moisture appear to determine the diversity and structure of soil bacterial communities. Within any one site however, bacterial taxon diversity is high and factors maintaining this diversity are poorly resolved. Candidate factors include organic substrate availability and chemical recalcitrance, and given that they appear to structure bacterial communities at the phylum level, we examine whether these factors might structure bacterial communities at finer levels of taxonomic resolution. Analyzing 16S rRNA gene composition of nucleotide analog-labeled DNA by PhyloChip microarrays, we compare relative growth rates on organic substrates of increasing chemical recalcitrance of >2,200 bacterial taxa across 43 divisions/phyla. Taxa that increase in relative abundance with labile organic substrates (i.e., glycine, sucrose) are numerous (>500), phylogenetically clustered, and occur predominantly in two phyla (Proteobacteria and Actinobacteria) including orders Actinomycetales, Enterobacteriales, Burkholderiales, Rhodocyclales, Alteromonadales, and Pseudomonadales. Taxa increasing in relative abundance with more chemically recalcitrant substrates (i.e., cellulose, lignin, or tannin-protein) are fewer (168) but more phylogenetically dispersed, occurring across eight phyla and including Clostridiales, Sphingomonadalaes, Desulfovibrionales. Just over 6% of detected taxa, including many Burkholderiales increase in relative abundance with both labile and chemically recalcitrant substrates. Estimates of median rRNA copy number per genome of responding taxa demonstrate that these patterns are broadly consistent with bacterial growth strategies. Taken together, these data suggest that changes in availability of intrinsically labile substrates may result in predictable shifts in soil bacterial composition.

  17. The chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A⋆⋆

    Science.gov (United States)

    Koumpia, E.; Semenov, D. A.; van der Tak, F. F. S.; Boogert, A. C. A.; Caux, E.

    2017-07-01

    Context. It is not well known what drives the chemistry of a protostellar envelope, in particular the role of the stellar mass and the protostellar outflows on the chemical enrichment of such environments. Aims: We study the chemical structure of the Class 0 protostellar envelope NGC 1333 IRAS 4A in order to (I) investigate the influence of the outflows on the chemistry; (II) constrain the age of our studied object; (III) compare it with a typical high-mass protostellar envelope. Methods: In our analysis we use JCMT line mapping (360-373 GHz) and HIFI pointed spectra (626.01-721.48 GHz). To study the influence of the outflow on the degree of deuteration, we compare JCMT maps of HCO+ and DCO+ with non-LTE (RADEX) models in a region that spatially covers the outflow activity of IRAS 4A. To study the envelope chemistry, we derive empirical molecular abundance profiles for the observed species using the Monte Carlo radiative transfer code (RATRAN) and adopting a 1D dust density/temperature profile from the literature. We use a combination of constant abundance profiles and abundance profiles that include jumps at two radii (T 100 K or T 30 K) to fit our observations. We compare our best-fit observed abundance profiles with the predictions from the time dependent gas grain chemical code (ALCHEMIC). Results: We detect CO, 13CO, C18O, CS, HCN, HCO+, N2H+, H2CO, CH3OH, H2O, H2S, DCO+, HDCO, D2CO, SO, SO2, SiO, HNC, CN, C2H and OCS. We divide the detected lines in three groups based on their line profiles: a) broad emission (FWHM = 4-11 km s-1), b) narrow emission (FWHMtime-dependent gas-grain chemical model for the outer envelope, with the exceptions of HCN, HNC, CN. These species along with the CO abundance require an enhanced UV field which points towards an outflow cavity. The abundances with respect to H2 are 1 to 2 orders of magnitude lower than those observed in the high mass protostellar envelope (AFGL 2591), while they are found to be similar within factors of a

  18. Chemical genomic guided engineering of gamma-valerolactone tolerant yeast.

    Science.gov (United States)

    Bottoms, Scott; Dickinson, Quinn; McGee, Mick; Hinchman, Li; Higbee, Alan; Hebert, Alex; Serate, Jose; Xie, Dan; Zhang, Yaoping; Coon, Joshua J; Myers, Chad L; Landick, Robert; Piotrowski, Jeff S

    2018-01-12

    Gamma valerolactone (GVL) treatment of lignocellulosic bomass is a promising technology for degradation of biomass for biofuel production; however, GVL is toxic to fermentative microbes. Using a combination of chemical genomics with the yeast (Saccharomyces cerevisiae) deletion collection to identify sensitive and resistant mutants, and chemical proteomics to monitor protein abundance in the presence of GVL, we sought to understand the mechanism toxicity and resistance to GVL with the goal of engineering a GVL-tolerant, xylose-fermenting yeast. Chemical genomic profiling of GVL predicted that this chemical affects membranes and membrane-bound processes. We show that GVL causes rapid, dose-dependent cell permeability, and is synergistic with ethanol. Chemical genomic profiling of GVL revealed that deletion of the functionally related enzymes Pad1p and Fdc1p, which act together to decarboxylate cinnamic acid and its derivatives to vinyl forms, increases yeast tolerance to GVL. Further, overexpression of Pad1p sensitizes cells to GVL toxicity. To improve GVL tolerance, we deleted PAD1 and FDC1 in a xylose-fermenting yeast strain. The modified strain exhibited increased anaerobic growth, sugar utilization, and ethanol production in synthetic hydrolysate with 1.5% GVL, and under other conditions. Chemical proteomic profiling of the engineered strain revealed that enzymes involved in ergosterol biosynthesis were more abundant in the presence of GVL compared to the background strain. The engineered GVL strain contained greater amounts of ergosterol than the background strain. We found that GVL exerts toxicity to yeast by compromising cellular membranes, and that this toxicity is synergistic with ethanol. Deletion of PAD1 and FDC1 conferred GVL resistance to a xylose-fermenting yeast strain by increasing ergosterol accumulation in aerobically grown cells. The GVL-tolerant strain fermented sugars in the presence of GVL levels that were inhibitory to the unmodified strain

  19. Probing the chemical environments of early star formation: A multidisciplinary approach

    Science.gov (United States)

    Hardegree-Ullman, Emily Elizabeth

    Chemical compositions of prestellar and protostellar environments in the dense interstellar medium are best quantified using a multidisciplinary approach. For my dissertation, I completed two projects to measure molecular abundances during the earliest phases of star formation. The first project investigates gas phase CO depletion in molecular cloud cores, the progenitors of star systems, using infrared photometry and molecular line spectroscopy at radio wavelengths. Hydrogenation of CO depleted onto dust is an important first step toward building complex organic molecules. The second project constrains polycyclic aromatic hydrocarbon (PAH) abundances toward young stellar objects (YSO). Band strengths measured from laboratory spectroscopy of pyrene/water ice mixtures were applied to estimate abundances from features attributed to PAHs in observational YSO spectra. PAHs represent a distinct but important component of interstellar organic material that is widely observed but not well quantified in star-forming regions.

  20. Abundance of sea kraits correlates with precipitation.

    Directory of Open Access Journals (Sweden)

    Harvey B Lillywhite

    Full Text Available Recent studies have shown that sea kraits (Laticauda spp.--amphibious sea snakes--dehydrate without a source of fresh water, drink only fresh water or very dilute brackish water, and have a spatial distribution of abundance that correlates with freshwater sites in Taiwan. The spatial distribution correlates with sites where there is a source of fresh water in addition to local precipitation. Here we report six years of longitudinal data on the abundance of sea kraits related to precipitation at sites where these snakes are normally abundant in the coastal waters of Lanyu (Orchid Island, Taiwan. The number of observed sea kraits varies from year-to-year and correlates positively with previous 6-mo cumulative rainfall, which serves as an inverse index of drought. Grouped data for snake counts indicate that mean abundance in wet years is nearly 3-fold greater than in dry years, and this difference is significant. These data corroborate previous findings and suggest that freshwater dependence influences the abundance or activity of sea kraits on both spatial and temporal scales. The increasing evidence for freshwater dependence in these and other marine species have important implications for the possible impact of climate change on sea snake distributions.

  1. Detailed abundances from integrated-light spectroscopy: Milky Way globular clusters

    Science.gov (United States)

    Larsen, S. S.; Brodie, J. P.; Strader, J.

    2017-05-01

    Context. Integrated-light spectroscopy at high spectral resolution is rapidly maturing as a powerful way to measure detailed chemical abundances for extragalactic globular clusters (GCs). Aims: We test the performance of our analysis technique for integrated-light spectra by applying it to seven well-studied Galactic GCs that span a wide range of metallicities. Methods: Integrated-light spectra were obtained by scanning the slit of the UVES spectrograph on the ESO Very Large Telescope across the half-light diameters of the clusters. We modelled the spectra using resolved Hubble Space Telescope colour-magnitude diagrams (CMDs), as well as theoretical isochrones, in combination with standard stellar atmosphere and spectral synthesis codes. The abundances of Fe, Na, Mg, Ca, Ti, Cr, and Ba were compared with literature data for individual stars in the clusters. Results: The typical differences between iron abundances derived from our integrated-light spectra and those compiled from the literature are less than 0.1 dex. A larger difference is found for one cluster (NGC 6752), and is most likely caused primarily by stochastic fluctuations in the numbers of bright red giants within the scanned area. As expected, the α-elements (Ca, Ti) are enhanced by about 0.3 dex compared to the Solar-scaled composition, while the [Cr/Fe] ratios are close to Solar. When using up-to-date line lists, our [Mg/Fe] ratios also agree well with literature data. Our [Na/Fe] ratios are, on average, 0.08-0.14 dex lower than average values quoted in the literature, and our [Ba/Fe] ratios may be overestimated by 0.20-0.35 dex at the lowest metallicities. We find that analyses based on theoretical isochrones give very similar results to those based on resolved CMDs. Conclusions: Overall, the agreement between our integrated-light abundance measurements and the literature data is satisfactory. Refinements of the modelling procedure, such as corrections for stellar evolutionary and non-LTE effects

  2. Molecular size-dependent abundance and composition of dissolved organic matter in river, lake and sea waters.

    Science.gov (United States)

    Xu, Huacheng; Guo, Laodong

    2017-06-15

    Dissolved organic matter (DOM) is ubiquitous in natural waters. The ecological role and environmental fate of DOM are highly related to the chemical composition and size distribution. To evaluate size-dependent DOM quantity and quality, water samples were collected from river, lake, and coastal marine environments and size fractionated through a series of micro- and ultra-filtrations with different membranes having different pore-sizes/cutoffs, including 0.7, 0.4, and 0.2 μm and 100, 10, 3, and 1 kDa. Abundance of dissolved organic carbon, total carbohydrates, chromophoric and fluorescent components in the filtrates decreased consistently with decreasing filter/membrane cutoffs, but with a rapid decline when the filter cutoff reached 3 kDa, showing an evident size-dependent DOM abundance and composition. About 70% of carbohydrates and 90% of humic- and protein-like components were measured in the definition of DOM and its size continuum in quantity and quality in aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    DEFF Research Database (Denmark)

    Collet, R.; Nordlund, Ã.; Asplund, M.

    2018-01-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D...... simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local...... molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen...

  4. Challenges of transferring models of fish abundance between coral reefs.

    Science.gov (United States)

    Sequeira, Ana M M; Mellin, Camille; Lozano-Montes, Hector M; Meeuwig, Jessica J; Vanderklift, Mathew A; Haywood, Michael D E; Babcock, Russell C; Caley, M Julian

    2018-01-01

    Reliable abundance estimates for species are fundamental in ecology, fisheries, and conservation. Consequently, predictive models able to provide reliable estimates for un- or poorly-surveyed locations would prove a valuable tool for management. Based on commonly used environmental and physical predictors, we developed predictive models of total fish abundance and of abundance by fish family for ten representative taxonomic families for the Great Barrier Reef (GBR) using multiple temporal scenarios. We then tested if models developed for the GBR (reference system) could predict fish abundances at Ningaloo Reef (NR; target system), i.e., if these GBR models could be successfully transferred to NR. Models of abundance by fish family resulted in improved performance (e.g., 44.1% fish abundance (9% fish species richness from the GBR to NR, transferability for these fish abundance models was poor. When compared with observations of fish abundance collected in NR, our transferability results had low validation scores ( R 2   0.05). High spatio-temporal variability of patterns in fish abundance at the family and population levels in both reef systems likely affected the transferability of these models. Inclusion of additional predictors with potential direct effects on abundance, such as local fishing effort or topographic complexity, may improve transferability of fish abundance models. However, observations of these local-scale predictors are often not available, and might thereby hinder studies on model transferability and its usefulness for conservation planning and management.

  5. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model.

    Science.gov (United States)

    Hu, Jianzhong; Raikhel, Vincent; Gopalakrishnan, Kalpana; Fernandez-Hernandez, Heriberto; Lambertini, Luca; Manservisi, Fabiana; Falcioni, Laura; Bua, Luciano; Belpoggi, Fiorella; L Teitelbaum, Susan; Chen, Jia

    2016-06-14

    This proof-of-principle study examines whether postnatal, low-dose exposure to environmental chemicals modifies the composition of gut microbiome. Three chemicals that are widely used in personal care products-diethyl phthalate (DEP), methylparaben (MPB), triclosan (TCS)-and their mixture (MIX) were administered at doses comparable to human exposure to Sprague-Dawley rats from birth through adulthood. Fecal samples were collected at two time points: postnatal day (PND) 62 (adolescence) and PND 181 (adulthood). The gut microbiome was profiled by 16S ribosomal RNA gene sequencing, taxonomically assigned and assessed for diversity. Metagenomic profiling revealed that the low-dose chemical exposure resulted in significant changes in the overall bacterial composition, but in adolescent rats only. Specifically, the individual taxon relative abundance for Bacteroidetes (Prevotella) was increased while the relative abundance of Firmicutes (Bacilli) was reduced in all treated rats compared to controls. Increased abundance was observed for Elusimicrobia in DEP and MPB groups, Betaproteobacteria in MPB and MIX groups, and Deltaproteobacteria in TCS group. Surprisingly, these differences diminished by adulthood (PND 181) despite continuous exposure, suggesting that exposure to the environmental chemicals produced a more profound effect on the gut microbiome in adolescents. We also observed a small but consistent reduction in the bodyweight of exposed rats in adolescence, especially with DEP and MPB treatment (p gut microbiota in adolescent rats; whether these changes lead to downstream health effects requires further investigation.

  6. Distribution and abundance of fish populations in the Middle Wabash River

    International Nuclear Information System (INIS)

    Teppen, T.C.; Gammon, J.R.

    1976-01-01

    A field investigation was made of the distribution and abundance of fish within a 161-km portion of the Wabash River to determine effects of heated effluents as well as changes in water quality on ichthyofaunal communities within the river. Twenty-six sampling stations were electrofished, sequentially, four times in 1974 with extended sampling efforts made in the vicinity of two power-generating stations studied since 1967 and 1968. During August an overall rise in river temperature of 4 0 C was observed from upstream to downstream, with several chemical factors also showing slight increases. Although the majority of species populations were influenced either negatively or positively by the gradient of river conditions available to them, the only statistically significant parameters found in the analysis of community structure involved a lower diversity by weight below Terre Haute and a greater abundance of fish above the Cayuga generating station. Decreases occurred downstream in populations of redhorse (Moxostoma sp.), sauger (Stizostedion canadense), longear sunfish (Lepomis megalotis), and gizzard shad (Dorosoma cepedianum), with increases downstream observed in flathead catfish (Pylodictis olivaris), shortnose gar (Lepisosteus platostomus), longnose gar (E. osseus), and bowfin (Amia calva) populations. Carp (Cyprinus carpio) were present in large numbers throughout the study area with a tremendous population increase evident in recent years. Although species associations were variable among the segments, overall community parameters remained relatively unaffected

  7. Chemical Evolution and the Formation of Dwarf Galaxies in the Early Universe

    Science.gov (United States)

    Cote, Benoit; JINA-CEE, NuGrid, ChETEC

    2018-06-01

    Stellar abundances in local dwarf galaxies offer a unique window into the nature and nucleosynthesis of the first stars. They also contain clues regarding how galaxies formed and assembled in the early stages of the universe. In this talk, I will present our effort to connect nuclear astrophysics with the field of galaxy formation in order to define what can be learned about galaxy evolution using stellar abundances. In particular, I will describe the current state of our numerical chemical evolution pipeline which accounts for the mass assembly history of galaxies, present how we use high-redshift cosmological hydrodynamic simulations to calibrate our models and to learn about the formation of dwarf galaxies, and address the challenge of identifying the dominant r-process site(s) using stellar abundances.

  8. Determinants of distribution, abundance and reproductive success ...

    African Journals Online (AJOL)

    ... while local vegetation structure determines the abundance of locally established populations. The abundance of trees affects nest site availability and breeding success, based on observations at two oases. Blackbird nests were usually situated on pomegranate trees and olive trees. The Common Blackbird is a successful ...

  9. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    Science.gov (United States)

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  10. On the Chemical Mixing Induced by Internal Gravity Waves

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T. M. [School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne (United Kingdom); McElwaine, J. N. [Planetary Science Institute, Tucson, AZ 85721 (United States)

    2017-10-10

    Detailed modeling of stellar evolution requires a better understanding of the (magneto)hydrodynamic processes that mix chemical elements and transport angular momentum. Understanding these processes is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements, and asteroseismic data. Here, we use two-dimensional hydrodynamic simulations of the generation and propagation of internal gravity waves in an intermediate-mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parameterization for this diffusion, which can be incorporated into stellar evolution codes and tested against observations.

  11. Understanding Galactic planetary nebulae with precise/reliable nebular abundances

    Science.gov (United States)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; di Criscienzo, M.; Yagüe, A.

    2017-10-01

    We compare recent precise/reliable nebular abundances - as derived from high-quality optical spectra and the most recent ICFs - in a sample of Galactic planetary nebulae (PNe) with nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) ATON models in the metallicity range Z ⊙/4 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios can be obtained. Two DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6 M⊙). Their actual C/O ratios, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  12. Chemical evolution of galaxies

    International Nuclear Information System (INIS)

    Vigroux, Laurent

    1979-01-01

    This research thesis addresses theories on the chemical evolution of galaxies which aim at explaining abundances of different elements in galaxies, and more particularly aims at improving the model by modifying hypotheses. After a description of the simple model and of its uncertainties, the author shows how it is possible to understand the evolution of the main elements. Predictions obtained with this model are then compared with the present knowledge on galaxies by considering them according to an increasing complexity: Sun's neighbourhood, our galaxy, other spiral galaxies, elliptical galaxies, and finally galaxy clusters. A specific attention is given to irregular galaxies which are the simplest systems [fr

  13. Pathogenic Streptomyces spp. abundance affected by potato cultivars.

    Science.gov (United States)

    Nahar, Kamrun; Goyer, Claudia; Zebarth, Bernie J; Burton, David L; Whitney, Sean

    2018-04-16

    Potato cultivars vary in their tolerance to common scab (CS), however how they affect CS-causing Streptomyces spp. populations over time is poorly understood. This study investigated the effects of potato cultivar on pathogenic Streptomyces spp. abundance, measured using quantitative PCR, in three spatial locations in a CS-infested field: 1) soil close to the plant (SCP); 2) rhizosphere (RS); and 3) geocaulosphere (GS) soils. Two tolerant (Gold Rush, Hindenburg) and two susceptible cultivars (Green Mountain, Agria) were tested. The abundance of pathogenic Streptomyces spp. significantly increased in late August compared with other dates in RS of susceptible cultivars in both years. Abundance of pathogenic Streptomyces spp., when averaged over locations and time, was significantly greater in susceptible cultivars compared with tolerant cultivars in 2014. Principal coordinates analysis showed that SCP and RS soil properties (pH, organic carbon and nitrogen concentrations) explained 68% and 76% of total variation in Streptomyces spp. abundance among cultivars in 2013, respectively, suggesting that cultivars influenced CS pathogen growth conditions. The results suggested that the genetic background of potato cultivars influenced the abundance of pathogenic Streptomyces spp., with 5 to 6 times more abundant Streptomyces spp. in RS of susceptible cultivars compared with tolerant cultivars, which would result in substantially more inoculum left in the field after harvest.  .

  14. The Populations of Carina. II. Chemical Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Norris, John E.; Yong, David; Casagrande, Luca; Dotter, Aaron [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Venn, Kim A. [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 1A1 (Canada); Gilmore, Gerard, E-mail: jen@mso.anu.edu.au, E-mail: yong@mso.anu.edu.au, E-mail: luca@mso.anu.edu.au, E-mail: aaron.dotter@gmail.com, E-mail: kvenn@uvic.ca, E-mail: gil@ast.cam.ac.uk [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2017-06-01

    Chemical abundances are presented for 19 elements in a sample of 63 red giants in the Carina dwarf spheroidal galaxy (dSph), based on homogeneous 1D/LTE model atmosphere analyses of our own observations (32 stars) and data available in the literature (a further 31 independent stars). The (Fe) metallicity and [ α /Fe] distribution functions have mean values and dispersions of −1.59 and 0.33 dex ([Fe/H] range: −2.68 to −0.64) and 0.07 and 0.13 dex ([ α /Fe] range: −0.27 to 0.25), respectively. We confirm the finding of Venn et al. that a small percentage (some 10% in the present investigation) of the sample shows clear evidence for significant enrichment by Type Ia supernova (SN Ia) ejecta. Calcium, with the most accurately determined abundance of the α -elements, shows an asymmetric distribution toward smaller values of [Ca/Fe] at all [Fe/H], most significantly over −2.0 < [Fe/H] < −1.0, suggestive of incomplete mixing of the ejecta of SNe Ia with the ambient medium of each of Carina’s generations. Approximate color–magnitude diagram age estimates are presented for the sample, and together with our chemical abundances, compared with the results of our previous synthetic color–magnitude diagram analysis, which reported the details of Carina’s four well-defined populations. We searched for the Na–O anticorrelation universally reported in the Galaxy’s globular clusters and confirm that this phenomenon does not exist in Carina. We also found that one of the 32 stars in our sample has an extremely enhanced lithium abundance— A (Li){sub NLTE} = +3.36, consistent with membership of the ∼1% group of Li-rich stars in dSph described by Kirby et al.

  15. Stellar abundances in the solar neighborhood: The Hypatia Catalog

    Energy Technology Data Exchange (ETDEWEB)

    Hinkel, Natalie R.; Timmes, F.X.; Young, Patrick A.; Pagano, Michael D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Turnbull, Margaret C. [Global Science Institute, P.O. Box 252, Antigo, WI 54409 (United States)

    2014-09-01

    We compile spectroscopic abundance data from 84 literature sources for 50 elements across 3058 stars in the solar neighborhood, within 150 pc of the Sun, to produce the Hypatia Catalog. We evaluate the variability of the spread in abundance measurements reported for the same star by different surveys. We also explore the likely association of the star within the Galactic disk, the corresponding observation and abundance determination methods for all catalogs in Hypatia, the influence of specific catalogs on the overall abundance trends, and the effect of normalizing all abundances to the same solar scale. The resulting stellar abundance determinations in the Hypatia Catalog are analyzed only for thin-disk stars with observations that are consistent between literature sources. As a result of our large data set, we find that the stars in the solar neighborhood may reveal an asymmetric abundance distribution, such that a [Fe/H]-rich group near the midplane is deficient in Mg, Si, S, Ca, Sc II, Cr II, and Ni as compared to stars farther from the plane. The Hypatia Catalog has a wide number of applications, including exoplanet hosts, thick- and thin-disk stars, and stars with different kinematic properties.

  16. Spatio-temporal Variations of Abundance, Biomass, and ...

    African Journals Online (AJOL)

    The spatio-seasonal variations of Pseudodiaptomus hessei abundance, biomass and reproductive parameters were investigated in the Grand-Lahou lagoon at five stations during the dry and wet (or rainy) seasons from September 2005 to August 2006. In all sampling stations, abundance and biomass of P. hessei in the dry ...

  17. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  18. How ants drop out: ant abundance on tropical mountains.

    Science.gov (United States)

    Longino, John T; Branstetter, Michael G; Colwell, Robert K

    2014-01-01

    In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica) and examined the impact of elevation (as a proxy for temperature) and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops.

  19. How ants drop out: ant abundance on tropical mountains.

    Directory of Open Access Journals (Sweden)

    John T Longino

    Full Text Available In tropical wet forests, ants are a large proportion of the animal biomass, but the factors determining abundance are not well understood. We characterized ant abundance in the litter layer of 41 mature wet forest sites spread throughout Central America (Chiapas, Guatemala, Honduras, Nicaragua, and Costa Rica and examined the impact of elevation (as a proxy for temperature and community species richness. Sites were intentionally chosen to minimize variation in precipitation and seasonality. From sea level to 1500 m ant abundance very gradually declined, community richness declined more rapidly than abundance, and the local frequency of the locally most common species increased. These results suggest that within this elevational zone, density compensation is acting, maintaining high ant abundance as richness declines. In contrast, in sites above 1500 m, ant abundance dropped abruptly to much lower levels. Among these high montane sites, community richness explained much more of the variation in abundance than elevation, and there was no evidence of density compensation. The relative stability of abundance below 1500 m may be caused by opposing effects of temperature on productivity and metabolism. Lower temperatures may decrease productivity and thus the amount of food available for consumers, but slower metabolisms of consumers may allow maintenance of higher biomass at lower resource supply rates. Ant communities at these lower elevations may be highly interactive, the result of continuous habitat presence over geological time. High montane sites may be ephemeral in geological time, resulting in non-interactive communities dominated by historical and stochastic processes. Abundance in these sites may be determined by the number of species that manage to colonize and/or avoid extinction on mountaintops.

  20. The dimensionality of stellar chemical space using spectra from the Apache Point Observatory Galactic Evolution Experiment

    Science.gov (United States)

    Price-Jones, Natalie; Bovy, Jo

    2018-03-01

    Chemical tagging of stars based on their similar compositions can offer new insights about the star formation and dynamical history of the Milky Way. We investigate the feasibility of identifying groups of stars in chemical space by forgoing the use of model derived abundances in favour of direct analysis of spectra. This facilitates the propagation of measurement uncertainties and does not pre-suppose knowledge of which elements are important for distinguishing stars in chemical space. We use ˜16 000 red giant and red clump H-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) and perform polynomial fits to remove trends not due to abundance-ratio variations. Using expectation maximized principal component analysis, we find principal components with high signal in the wavelength regions most important for distinguishing between stars. Different subsamples of red giant and red clump stars are all consistent with needing about 10 principal components to accurately model the spectra above the level of the measurement uncertainties. The dimensionality of stellar chemical space that can be investigated in the H band is therefore ≲10. For APOGEE observations with typical signal-to-noise ratios of 100, the number of chemical space cells within which stars cannot be distinguished is approximately 1010±2 × (5 ± 2)n - 10 with n the number of principal components. This high dimensionality and the fine-grained sampling of chemical space are a promising first step towards chemical tagging based on spectra alone.

  1. Fluorine Abundances in AGB Carbon Stars: New Results?

    Science.gov (United States)

    Abia, C.; de Laverny, P.; Recio-Blanco, A.; Domínguez, I.; Cristallo, S.; Straniero, O.

    2009-09-01

    A recent reanalysis of the fluorine abundance in three Galactic Asymptotic Giant Branch (AGB) carbon stars (TX Psc, AQ Sgr and R Scl) by Abia et al. (2009) results in estimates of fluorine abundances systematically lower by ~0.8 dex on average, with respect to the sole previous estimates by Jorissen, Smith & Lambert (1992). The new F abundances are in better agreement with the predictions of full-network stellar models of low-mass (<3 Msolar) AGB stars.

  2. The Paradox of Water Abundance in Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Christopher Schulz

    2017-10-01

    Full Text Available While much effort has gone into studying the causes and consequences of water scarcity, the concept of water abundance has received considerably less attention in academic literature. Here, we aim to address this gap by providing a case study on the perceptions and political implications of water abundance in the Brazilian state of Mato Grosso. Combining a political ecology perspective on contemporary water governance (empirically based on stakeholder interviews with members of the state’s water sector with an overview of the environmental history of this hydrosocial territory, we argue, first, that water abundance has become a foundational element of Mato Grosso’s identity, situated in the wider context of natural resource abundance more generally and second, that water abundance today is a contested concept witnessing discursive struggles around its political implications and meaning. More specifically, there is a clash between the dominant conceptualisation of water abundance as a foundation for rich economic, ecological, social, and cultural values and benefits, often espoused by members of the political and economic elite, e.g., for marketing purposes, and a more critical but less widespread conceptualisation of water abundance as a source of carelessness, lack of awareness, and poor water governance, typically put forth by more informed technical staff of the public sector and civil society activists. By providing a distinct treatment and discussion of the concept of water abundance, our research has relevance for other water-rich regions beyond the immediate regional context.

  3. An Integrated Photoelectrochemical-Chemical Loop for Solar-Driven Overall Splitting of Hydrogen Sulfide

    DEFF Research Database (Denmark)

    Zong, Xu; Han, Jingfeng; Seger, Brian

    2014-01-01

    Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...... simulated solar light. This new conceptual design will not only provide a possible route for using solar energy to convert H2S into valuable resources, but also sheds light on some challenging photochemical reactions such as CH4 activation and CO2 reduction.......Abundant and toxic hydrogen sulfide (H2S) from industry and nature has been traditionally considered a liability. However, it represents a potential resource if valuable H-2 and elemental sulfur can be simultaneously extracted through a H2S splitting reaction. Herein a photochemical-chemical loop...... linked by redox couples such as Fe2+/Fe3+ and I-/I-3(-) for photoelectrochemical H-2 production and H2S chemical absorption redox reactions are reported. Using functionalized Si as photoelectrodes, H2S was successfully split into elemental sulfur and H-2 with high stability and selectivity under...

  4. The origin of the chemical profiles of fungal symbionts and their significance for nestmate recognition in Acromyrmex leaf-cutting ants

    DEFF Research Database (Denmark)

    Richard, Freddie-Jeanne; Poulsen, Michael; Hefetz, Abraham

    2007-01-01

    with less aggression when they are later introduced into that colony. It appears, therefore, that fungus gardens are an independent and significant source of chemical compounds, potentially contributing a richer and more abundant blend of recognition cues to the colony ¿gestalt¿ than the innate chemical...

  5. Discovery of a ternary pseudobrookite phase in the earth-abundant Ti-Zn-O system.

    Science.gov (United States)

    Perry, Nicola H; Stevanovic, Vladan; Lim, Linda Y; Mason, Thomas O

    2016-01-28

    We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-δ. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi3-xO5-δ composition with x ≈ 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magnéli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically.

  6. The chemical composition of two supergiants in the dwarf irregular galaxy WLM

    NARCIS (Netherlands)

    Venn, K. A.; Tolstoy, E.; Kaufer, A.; Skillman, E. D.; Clarkson, S. M.; Smartt, S. J.; Lennon, D. J.; Kudritzki, R. P.

    The chemical composition of two stars in WLM has been determined from high-quality Ultraviolet-Visual Echelle Spectrograph (UVES) data obtained at the VLT-UT2. The model atmospheres analysis shows that they have the same metallicity, [Fe/H] = - 0.38 +/- 0.20 (+/- 0.29). Reliable magnesium abundances

  7. XMM-Newton high-resolution spectroscopy reveals the chemical evolution of M 87

    NARCIS (Netherlands)

    Werner, N.; Boehringer, H.; Kaastra, J.S.; de Plaa, J.; Simionescu, D.; Vink, J.

    2006-01-01

    We present a study of chemical abundances in the giant elliptical galaxy M 87 using high-resolution spectra obtained with the Reflection Grating Spectrometers during two deep XMM-Newton observations. While we confirm the two-temperature structure of the inter-stellar medium (ISM) in M 87, we also

  8. Sacrificial amphiphiles: Eco-friendly chemical herders as oil spill mitigation chemicals.

    Science.gov (United States)

    Gupta, Deeksha; Sarker, Bivas; Thadikaran, Keith; John, Vijay; Maldarelli, Charles; John, George

    2015-06-01

    Crude oil spills are a major threat to marine biota and the environment. When light crude oil spills on water, it forms a thin layer that is difficult to clean by any methods of oil spill response. Under these circumstances, a special type of amphiphile termed as "chemical herder" is sprayed onto the water surrounding the spilled oil. The amphiphile forms a monomolecular layer on the water surface, reducing the air-sea surface tension and causing the oil slick to retract into a thick mass that can be burnt in situ. The current best-known chemical herders are chemically stable and nonbiodegradable, and hence remain in the marine ecosystem for years. We architect an eco-friendly, sacrificial, and effective green herder derived from the plant-based small-molecule phytol, which is abundant in the marine environment, as an alternative to the current chemical herders. Phytol consists of a regularly branched chain of isoprene units that form the hydrophobe of the amphiphile; the chain is esterified to cationic groups to form the polar group. The ester linkage is proximal to an allyl bond in phytol, which facilitates the hydrolysis of the amphiphile after adsorption to the sea surface into the phytol hydrophobic tail, which along with the unhydrolyzed herder, remains on the surface to maintain herding action, and the cationic group, which dissolves into the water column. Eventual degradation of the phytol tail and dilution of the cation make these sacrificial amphiphiles eco-friendly. The herding behavior of phytol-based amphiphiles is evaluated as a function of time, temperature, and water salinity to examine their versatility under different conditions, ranging from ice-cold water to hot water. The green chemical herder retracted oil slicks by up to ~500, 700, and 2500% at 5°, 20°, and 35°C, respectively, during the first 10 min of the experiment, which is on a par with the current best chemical herders in practice.

  9. The C-12/C-13 abundance ratio in Comet Halley

    International Nuclear Information System (INIS)

    Wyckoff, S.; Lindholm, E.; Wehinger, P.A.; Peterson, B.A.; Zucconi, J.M.

    1989-01-01

    The individual (C-13)N rotational lines in Comet Halley are resolved using high-resolution spectra of the CN B2Sigma(+)-X2Sigma(+) (0,0) band. The observe C-12/C-13 abundance ratio excludes a site of origin for the comet near Uranus and Neptune and suggests a condensation environment quite distinct from other solar system bodies. Two theories are presented for the origin of Comet Halley. One theory suggest that the comet originated 4.5 Gyr ago in an inner Oort cloud at a heliocentric distance greater than 100 AU where chemical fractionation led to the C-13 enrichment in the CN parent molecule prior to condensation of the comet nucleus. According to the other, more plausible theory, the comet nucleus condensed relatively recently from the interstellar medium which has become enriches in C-13 and was subsequently gravitationally captured by the solar system. 107 refs

  10. Chemical composition of ground water and the locations of permeable zones in the Yucca Mountain area, Nevada

    International Nuclear Information System (INIS)

    Benson, L.V.; Robison, J.H.; Blankennagel, R.K.; Ogard, A.E.

    1983-01-01

    Ten wells in the Yucca Mountain area of southern Nevada have been sampled for chemical analysis. Samples were obtained during pumping of water from the entire well bore (composite sample) and in one instance by pumping water from a single isolated interval in well UE-25b number 1. Sodium is the most abundant cation and bicarbonate the most abundant anion in all water samples. Although the general chemical compositions of individual samples are similar, there are significant differences in uncorrected carbon-14 age and in inorganic and stable-isotope composition. Flow surveys of seven wells performed using iodine-131 as a tracer indicate that ground-water production is usually from one or more discrete zones of permeability. 7 references, 12 figures, 1 table

  11. Evolving coma abundances and detection of hypervolatiles in Jupiter-family comet 45P/Honda-Mrkos-Pajdusakova

    Science.gov (United States)

    Dello Russo, Neil; DiSanti, Michael A.; Kawakita, Hideyo; Shinnaka, Yoshiharu; Vervack, Ronald J.; Bonev, Boncho P.; Gibb, Erika L.; Roth, Nathan; McKay, Adam J.; Weaver, Harold A.; Cochran, Anita L.

    2017-10-01

    Two major shortcomings in chemically classifying comets at infrared wavelengths are a lack of hypervolatile (CO and CH4) detections in Jupiter-family comets and incomplete temporal coverage of comet chemistry, particularly at small heliocentric distances (Rh). We report post-perihelion volatile abundances in comet 45P/Honda-Mrkos-Pajdusakova with the high-resolution infrared spectrometer iSHELL at the NASA/IRTF on UT 6 - 8 January when Rh = 0.55 AU (DiSanti et al. 2017, Astron. J., in press), and with NIRSPEC at the Keck Observatory on UT 13 and 19 February when Rh = 1.0 and 1.1 AU, respectively. Favorable comet geocentric velocities enabled the detection of CO and CH4 in early January and 19 February. The relative abundance of CO is severely depleted whereas CH4 is typical to enriched in 45P when compared to comets from the Oort cloud. Significant differences are seen in relative abundances of species between January and February, notably in the ratio of C2H2/HCN. We explore whether the heliocentric distances of the measurements or seasonal changes primarily cause these differences by comparing to observations of C/2012 S1 ISON obtained over a similar range of heliocentric distances. NASA and NSF research grants support this work. We also acknowledge the expert support of the IRTF and Keck support staffs during these observations.

  12. Relation between grade and abundance of manganese nodules

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, M.

    Data from more than 1000 locations in the Central Indian Ocean Basin (CIOB) where both bulk nodule chemistry and abundance were determined and utilized to study the relationship between grade and abundance of manganese nodule deposits. Grade...

  13. CHEMICAL AND KINEMATICAL PROPERTIES OF BLUE STRAGGLER STARS AND HORIZONTAL BRANCH STARS IN NGC 6397

    International Nuclear Information System (INIS)

    Lovisi, L.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Contreras Ramos, R.; Gratton, R.

    2012-01-01

    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 blue straggler stars (BSSs), and 86 main-sequence (MS) turnoff (TO) and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O, and Mg abundances. All of the unevolved stars in our sample have low rotational velocites (vsin i –1 ), while the HB stars and BSSs show a broad distribution, with values ranging from 0 to ∼70 km s –1 . For HB stars with T 8200 K and T > 10,500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H] = –2.12). While similar chemical patterns have already been observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interpret these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes.

  14. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas

    2012-12-01

    Full Text Available Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011 from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids.

  15. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Science.gov (United States)

    Dutcher, James D.; Karar, Haider; Abbas, Ghulam

    2012-01-01

    Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011) from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids. PMID:26466738

  16. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-01

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (~110,700 S m-1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  17. DETERMINING THE INITIAL HELIUM ABUNDANCE OF THE SUN

    International Nuclear Information System (INIS)

    Serenelli, Aldo M.; Basu, Sarbani

    2010-01-01

    We determine the dependence of the initial helium abundance and the present-day helium abundance in the convective envelope of solar models (Y ini and Y surf , respectively) on the parameters that are used to construct the models. We do so by using reference standard solar models (SSMs) to compute the power-law coefficients of the dependence of Y ini and Y surf on the input parameters. We use these dependencies to determine the correlation between Y ini and Y surf and use this correlation to eliminate uncertainties in Y ini from all solar model input parameters except the microscopic diffusion rate. We find an expression for Y ini that depends only on Y surf and the diffusion rate. By adopting the helioseismic determination of solar surface helium abundance, Y surf sun = 0.2485 ± 0.0035, and an uncertainty of 20% for the diffusion rate, we find that the initial solar helium abundance, Y ini sun , is 0.278 ± 0.006 independently of the reference SSMs (and particularly on the adopted solar abundances) used in the derivation of the correlation between Y ini and Y surf . When non-SSMs with extra mixing are used, then we derive Y ini sun = 0.273 ± 0.006. In both cases, the derived Y ini sun value is higher than that directly derived from solar model calibrations when the low-metallicity solar abundances (e.g., by Asplund et al.) are adopted in the models.

  18. Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution.

    Science.gov (United States)

    Dueri, Sibylle; Bopp, Laurent; Maury, Olivier

    2014-03-01

    Climate-induced changes in the physical, chemical, and biological environment are expected to increasingly stress marine ecosystems, with important consequences for fisheries exploitation. Here, we use the APECOSM-E numerical model (Apex Predator ECOSystem Model - Estimation) to evaluate the future impacts of climate change on the physiology, spatial distribution, and abundance of skipjack tuna, the worldwide most fished species of tropical tuna. The main novelties of our approach lie in the mechanistic link between environmental factors, metabolic rates, and behavioral responses and in the fully three dimensional representation of habitat and population abundance. Physical and biogeochemical fields used to force the model are provided by the last generation of the IPSL-CM5 Earth System Model run from 1990 to 2100 under a 'business-as-usual' scenario (RCP8.5). Our simulations show significant changes in the spatial distribution of skipjack tuna suitable habitat, as well as in their population abundance. The model projects deterioration of skipjack habitat in most tropical waters and an improvement of habitat at higher latitudes. The primary driver of habitat changes is ocean warming, followed by food density changes. Our projections show an increase of global skipjack biomass between 2010 and 2050 followed by a marked decrease between 2050 and 2095. Spawning rates are consistent with population trends, showing that spawning depends primarily on the adult biomass. On the other hand, growth rates display very smooth temporal changes, suggesting that the ability of skipjack to keep high metabolic rates in the changing environment is generally effective. Uncertainties related to our model spatial resolution, to the lack or simplification of key processes and to the climate forcings are discussed. © 2013 John Wiley & Sons Ltd.

  19. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    Science.gov (United States)

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  20. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Science.gov (United States)

    J. Firn; J.L. Moore; A.S. MacDougall; E.T. Borer; E.W. Seabloom; J. HilleRisLambers; S. Harpole; E.E. Cleland; C.S. Brown; J.M.H. Knops; S.M. Prober; D.A. Pyke; K.A. Farrell; J.D. Bakker; L.R. O’Halloran; P.B. Adler; S.L. Collins; C.M. D’Antonio; M.J. Crawley; E.M. Wolkovich; K.J. La Pierre; B.A. Melbourne; Y. Hautier; J.W. Morgan; A.D.B. Leakey; A.D. Kay; R.L. McCulley; K.F. Davies; C.J. Stevens; C.J. Chu

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at...

  1. Origin of the solar system s-process abundances

    International Nuclear Information System (INIS)

    Malaney, R.A.; Boothroyd, A.I.

    1987-01-01

    In the search for the origin of the solar system s-process abundances much attention has been focused on the intershell zones of thermally pulsing asymptotic giant branch (AGB) stars. It has recently been suggested that, relative to the poor fits obtained from intermediate-mass AGB models, low-mass AGB models may result in much better fits to the observed solar system abundances. This suggestion was motivated by the high intershell base temperatures indicated by recent low-mass AGB calculations. Using new data, presented for the peak intershell base temperature in such stars, the s-process enhancements occurring in the intershell zones of low-mass AGB stars are calculated. A nonsolar distribution of s-process abundances is reported for all realistic AGB models studied. Other possible astrophysical sites for the origin of the solar system s-process abundances are discussed. 35 references

  2. Why abundant tropical tree species are phylogenetically old.

    Science.gov (United States)

    Wang, Shaopeng; Chen, Anping; Fang, Jingyun; Pacala, Stephen W

    2013-10-01

    Neutral models of species diversity predict patterns of abundance for communities in which all individuals are ecologically equivalent. These models were originally developed for Panamanian trees and successfully reproduce observed distributions of abundance. Neutral models also make macroevolutionary predictions that have rarely been evaluated or tested. Here we show that neutral models predict a humped or flat relationship between species age and population size. In contrast, ages and abundances of tree species in the Panamanian Canal watershed are found to be positively correlated, which falsifies the models. Speciation rates vary among phylogenetic lineages and are partially heritable from mother to daughter species. Variable speciation rates in an otherwise neutral model lead to a demographic advantage for species with low speciation rate. This demographic advantage results in a positive correlation between species age and abundance, as found in the Panamanian tropical forest community.

  3. Protein abundance profiling of the Escherichia coli cytosol

    DEFF Research Database (Denmark)

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI...... approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal...

  4. Stone crayfish in the Czech Republic: how does its population density depend on basic chemical and physical properties of water?

    Directory of Open Access Journals (Sweden)

    Vlach P.

    2013-03-01

    Full Text Available The stone crayfish (Austropotamobius torrentium Schrank is one of the two native crayfish species in the Czech Republic. The populations as well as physical and chemical parameters of water (pH, conductivity, dissolved oxygen, undissolved particles, NH3, NH4+, NO2−, NO3−, phosphorus, Ca2+ and SO42 −  of 33 streams were examined to find the ecological plasticity of this crayfish and some relations between these parameters and population densities. The mentioned parameters often significantly varied at the sites. Two approaches were applied to find relations between these parameters and observed abundance. At first, the observed streams were compared using RDA (streams  ×  physical-chemical parameters. No significance was found while testing relationship between the streams grouped along the 1st axis of model and the observed abundances of stone crayfish. However, some correlations between abundance and conductivity, calcium, nitrates and sulphates were found using polynomial regression. These relationships are explicable in terms of mutual correlations, underlying geology and other factors which affect abundances. In conclusion, A. torrentium is able to inhabit waters with a large range of physical and chemical parameters of the water without any fundamental influence on population densities. Water properties play an indisputable role as limiting ecological factors at uncommon concentrations, but population densities are probably influenced much more by the types of habitats, habitat features, predation and other ecological factors.

  5. Abundance determinations in HII regions and planetary nebulae

    OpenAIRE

    Stasinska, Grazyna

    2002-01-01

    The methods of abundance determinations in HII regions and planetary nebulae are described, with emphasis on the underlying assumptions and inherent problems. Recent results on abundances in Galactic HII regions and in Galactic and extragalactic Planetary Nebulae are reviewed.

  6. A Kine-chemical Investigation of the AB Dor Moving Group "Stream"

    Science.gov (United States)

    Barenfeld, Scott A.; Bubar, Eric J.; Mamajek, Eric E.; Young, Patrick A.

    2013-03-01

    The AB Dor Moving Group consists of a "nucleus" of ~10 stars at d ~= 20 pc, along with dozens of purported "stream" members distributed across the sky. We perform a chemical and kinematic analysis of a subsample of AB Dor stream stars to test whether they constitute a physical stellar group. We use the NEMO Galactic kinematic code to investigate the orbits of the stream members, and perform a chemical abundance analysis using high resolution spectra taken with the Magellan Clay 6.5 m telescope. Using a χ2 test with the measured abundances for 10 different elements, we find that only half of the purported AB Dor stream members could possibly constitute a statistically chemically homogeneous sample. Some stream members with three-dimensional velocities were hundreds of parsecs from the AB Dor nucleus ~108 yr ago, and hence were unlikely to share a common origin. We conclude that the published lists of AB Dor moving group stream members are unlikely to represent the dispersed remnant of a single star formation episode. A subsample of the stream stars appears to be both statistically chemically homogeneous and in the vicinity of the AB Dor nucleus at birth. Their mean metallicity is [Fe/H] = 0.02 ± 0.02 dex, which we consider representative for the AB Dor group. Finally, we report a strong lower limit on the age of the AB Dor nucleus of >110 Myr based on the pre-main sequence contraction times for K-type members which have reached the main sequence.

  7. Chemical fingerprints of He-sdO stars

    Directory of Open Access Journals (Sweden)

    Schindewolf Markus

    2018-02-01

    Full Text Available The chemical composition of helium-rich hot subluminous O stars plays an important role to understand and model their formation history. We present a spectroscopic analysis of four He-sdO stars,CD-31° 4800, [CW83] 0904- 02, LSS 1274 and LS IV +10° 9. The analysis is based on archival optical and UV high-resolution spectra. We used Tlusty200/Synspec48 to compute line blanketed non-LTE model atmospheres and their corresponding synthetic spectra and derive the atmospheric parameters as well as the abundances of the most prominent elements. All stars have helium-dominated atmospheres with hardly any hydrogen and temperatures between 42000 K and 47000 K while their surface gravity spans between log g = 5.4 and 5.7. CD-31° 4800 shows an enrichment of nitrogen and the characteristic pattern of hydrogen burning via the CNO-cycle, while the rest of the elements have about the solar abundance. This points to the slow merger of two helium white dwarfs as the most likely origin for this system. The other three stars are enriched in carbon, nitrogen and neon while their intermediate mass element’s abundance scatters around the solar value. They were possibly formed in the deep mixing late hot flasher scenario.

  8. Chemical fingerprints of He-sdO stars

    Science.gov (United States)

    Schindewolf, Markus; Németh, Peter; Heber, Ulrich; Battich, Tiara; Miller Bertolami, Marcelo M.; Latour, Marilyn

    2018-02-01

    The chemical composition of helium-rich hot subluminous O stars plays an important role to understand and model their formation history. We present a spectroscopic analysis of four He-sdO stars,CD-31° 4800, [CW83] 0904- 02, LSS 1274 and LS IV +10° 9. The analysis is based on archival optical and UV high-resolution spectra. We used Tlusty200/Synspec48 to compute line blanketed non-LTE model atmospheres and their corresponding synthetic spectra and derive the atmospheric parameters as well as the abundances of the most prominent elements. All stars have helium-dominated atmospheres with hardly any hydrogen and temperatures between 42000 K and 47000 K while their surface gravity spans between log g = 5.4 and 5.7. CD-31° 4800 shows an enrichment of nitrogen and the characteristic pattern of hydrogen burning via the CNO-cycle, while the rest of the elements have about the solar abundance. This points to the slow merger of two helium white dwarfs as the most likely origin for this system. The other three stars are enriched in carbon, nitrogen and neon while their intermediate mass element's abundance scatters around the solar value. They were possibly formed in the deep mixing late hot flasher scenario.

  9. Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies

    KAUST Repository

    Logan, B. E.

    2012-08-09

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  10. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies.

    Science.gov (United States)

    Logan, Bruce E; Rabaey, Korneel

    2012-08-10

    Waste biomass is a cheap and relatively abundant source of electrons for microbes capable of producing electrical current outside the cell. Rapidly developing microbial electrochemical technologies, such as microbial fuel cells, are part of a diverse platform of future sustainable energy and chemical production technologies. We review the key advances that will enable the use of exoelectrogenic microorganisms to generate biofuels, hydrogen gas, methane, and other valuable inorganic and organic chemicals. Moreover, we examine the key challenges for implementing these systems and compare them to similar renewable energy technologies. Although commercial development is already underway in several different applications, ranging from wastewater treatment to industrial chemical production, further research is needed regarding efficiency, scalability, system lifetimes, and reliability.

  11. How Does Abundance Affect the Strength of UV Emission in Elliptical Galaxies?

    Science.gov (United States)

    Sonneborn, George (Technical Monitor); Brown, Thomas

    2005-01-01

    This program used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe elliptical galaxies with the intention of measuring the chemical abundances in their hot stellar populations. It was designed to complement an earlier FUSE program that observed elliptical galaxies with strong UV emission. The current program originally planned observations of two ellipticals with weak UV emission (M32 and M49). Once FUSE encountered pointing control problems in certain regions of the sky (particularly Virgo, which is very unfortunate for the study of ellipticals in general), M49 was replaced with the bulge of M31, which has a similar UV-to-optical flux ratio as the center of M49. As the closest elliptical galaxy and the one with the weakest UV-to-optical flux ratio, M32 was an obvious choice of target, but M49 was the ideal complementary target, because it has a very low reddening (unlike M32). With the inability of FUSE to point at Virgo, nearly all of the best elliptical galaxies (bright galaxies with low foreground extinction) were also lost, and this severely hampered three FUSE programs of the PI, all focused on the hot stellar populations of ellipticals. M31 was the best replacement for M49, but like M32, it suffers from significant foreground reddening. Strong Galactic ISM lines heavily contaminate the FUSE spectra of M31 and M32. These ISM lines are coincident with the photospheric lines from the stellar populations (whereas M49, with little foreground ISM and significant redshift, would not have suffered from this problem). We have reduced the faint (and thus difficult) data for M31 and M32, producing final co-added spectra representing all of the exposures, but we have not yet finished our analysis, due to the complication of the contaminating ISM. The silver lining here is the set of CHI lines at 1175 Angstroms, which are not significantly contaminated by the ISM. A comparison of the M31 spectrum with other galaxies observed by FEE showed a surprising result

  12. Using the seismology of non-magnetic chemically peculiar stars as a probe of dynamical processes in stellar interiors

    OpenAIRE

    Turcotte, S.

    2005-01-01

    Chemical composition is a good tracer of hydrodynamical processes that occur in stars as they often lead to mixing and particle transport. By comparing abundances predicted by models and those observed in stars we can infer some constraints on those mixing processes. As pulsations in stars are often very sensitive to chemical composition, we can use asteroseismology to probe the internal chemical composition of stars where no direct observations are possible. In this paper I focus on main seq...

  13. The Diversity of Chemical Composition: The Impact of Stellar Abundances on the Evolution of Stars and Habitable Zones

    Science.gov (United States)

    Truitt, Amanda R.; Young, Patrick A.

    2018-01-01

    I have investigated how stars of different mass and composition evolve, and how stellar evolution impacts the location of the habitable zone around a star. Current research into habitability of exoplanets focuses mostly on the concept of a “classical” HZ, the range of distances from a star over which liquid water could exist on a planet's surface. This is determined by the host star's luminosity and spectral characteristics; in order to gauge the habitability potential of a given system, both the evolutionary history and the detailed chemical characterization of the host star must be considered. With the ever-accelerating discovery of new exoplanets, it is imperative to develop a better understanding of what factors play a role in creating “habitable” conditions of a planet. I will discuss how stellar evolution is integral to how we define the HZ, and how this work will apply to the search for Earth-like planets in the future.I have developed a catalog of stellar evolution models for Sun-like stars with variable compositions; masses range from 0.1-1.2 Msol (spectral types M4-F4) at scaled metallicities (Z) of 0.1-1.5 Zsol, and O/Fe, C/Fe, and Mg/Fe values of 0.44-2.28, 0.58-1.72, and 0.54-1.84, respectively. I use a spread in abundance values based on observations of variability in nearby stars. It is important to understand how specific elements, not just total Z, impacts stellar lifetime. Time-dependent HZ boundaries are calculated for each track. I have also created a grid of M-dwarfs, and I am currently working to estimate stellar activity vs. age for each model.This catalog is meant to characterize potential host stars of interest. I have explored how to use existing observational data (i.e. Hypatia Catalog) for a more robust comparison to my grid of theoretical models, and I will discuss a new statistical analysis of the catalog to further refine our definition of “continuous” habitability. This work is an important step to assess whether a planet

  14. CHEMICAL COMPOSITION OF INTERMEDIATE-MASS STAR MEMBERS OF THE M6 (NGC 6405) OPEN CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Kılıçoğlu, T.; Albayrak, B. [Ankara University, Faculty of Science, Department of Astronomy and Space Sciences, 06100, Tandoğan, Ankara (Turkey); Monier, R. [LESIA, UMR 8109, Observatoire de Paris Meudon, Place J. Janssen, Meudon (France); Richer, J. [Département de physique, Université de Montréal, 2900, Boulevard Edouard-Montpetit, Montréal QC, H3C 3J7 (Canada); Fossati, L., E-mail: tkilicoglu@ankara.edu.tr, E-mail: balbayrak@ankara.edu.tr, E-mail: Richard.Monier@obspm.fr, E-mail: Jacques.Richer@umontreal.ca, E-mail: lfossati@astro.uni-bonn.de [Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, D-53121, Bonn (Germany)

    2016-03-15

    We present here the first abundance analysis of 44 late B-, A-, and F-type members of the young open cluster M6 (NGC 6405, age about 75 Myr). Low- and medium-resolution spectra, covering the 4500–5840 Å wavelength range, were obtained using the FLAMES/GIRAFFE spectrograph attached to the ESO Very Large Telescopes. We determined the atmospheric parameters using calibrations of the Geneva photometry and by adjusting the H{sub β} profiles to synthetic ones. The abundances of up to 20 chemical elements, from helium to mercury, were derived for 19 late B, 16 A, and 9 F stars by iteratively adjusting synthetic spectra to the observations. We also derived a mean cluster metallicity of [Fe/H] = 0.07 ± 0.03 dex from the iron abundances of the F-type stars. We find that for most chemical elements, the normal late B- and A-type stars exhibit larger star-to-star abundance variations than the F-type stars probably because of the faster rotation of the B and A stars. The abundances of C, O, Mg, Si, and Sc appear to be anticorrelated with that of Fe, while the opposite holds for the abundances of Ca, Ti, Cr, Mn, Ni, Y, and Ba as expected if radiative diffusion is efficient in the envelopes of these stars. In the course of this analysis, we discovered five new peculiar stars: one mild Am, one Am, and one Fm star (HD 318091, CD-32 13109, GSC 07380-01211, CP1), one HgMn star (HD 318126, CP3), and one He-weak P-rich (HD 318101, CP4) star. We also discovered a new spectroscopic binary, most likely a SB2. We performed a detailed modeling of HD 318101, the new He-weak P-rich CP star, using the Montréal stellar evolution code XEVOL which self-consistently treats all particle transport processes. Although the overall abundance pattern of this star is properly reproduced, we find that detailed abundances (in particular the high P excess) resisted modeling attempts even when a range of turbulence profiles and mass-loss rates were considered. Solutions are proposed which are

  15. Modeling the Chemical Complexity in Titan's Atmosphere

    Science.gov (United States)

    Vuitton, Veronique; Yelle, Roger; Klippenstein, Stephen J.; Horst, Sarah; Lavvas, Panayotis

    2018-06-01

    Titan's atmospheric chemistry is extremely complicated because of the multiplicity of chemical as well as physical processes involved. Chemical processes begin with the dissociation and ionization of the most abundant species, N2 and CH4, by a variety of energy sources, i.e. solar UV and X-ray photons, suprathermal electrons (reactions involving radicals as well as positive and negative ions, all possibly in some excited electronic and vibrational state. Heterogeneous chemistry at the surface of the aerosols could also play a significant role. The efficiency and outcome of these reactions depends strongly on the physical characteristics of the atmosphere, namely pressure and temperature, ranging from 1.5×103 to 10-10 mbar and from 70 to 200 K, respectively. Moreover, the distribution of the species is affected by molecular diffusion and winds as well as escape from the top of the atmosphere and condensation in the lower stratosphere.Photochemical and microphysical models are the keystones of our understanding of Titan's atmospheric chemistry. Their main objective is to compute the distribution and nature of minor chemical species (typically containing up to 6 carbon atoms) and haze particles, respectively. Density profiles are compared to the available observations, allowing to identify important processes and to highlight those that remain to be constrained in the laboratory, experimentally and/or theoretically. We argue that positive ion chemistry is at the origin of complex organic molecules, such as benzene, ammonia and hydrogen isocyanide while neutral-neutral radiative association reactions are a significant source of alkanes. We find that negatively charged macromolecules (m/z ~100) attract the abundant positive ions, which ultimately leads to the formation of the aerosols. We also discuss the possibility that an incoming flux of oxygen from Enceladus, another Saturn's satellite, is responsible for the presence of oxygen-bearing species in Titan's reductive

  16. Determination of the isotopic abundance of 235U in rocks in search for an Oklo phenomenon in Brazil by activation analysis

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Armelin, M.J.A.; Lima, F.W. de; Fulfaro, R.

    1981-09-01

    Isotopic analyses of uranium are generally carried out by mass spectrometry, with a precision better than 1%. In nuclear laboratories it is often necessary to perform rapid determinations of 235 U isotopic abundances. Thermal neutron activation analysis by delayed neutron counting or by high resolution gamma-ray spectrometry can be applied for this purpose, although with less precision than by mass spectrometry. In this work, delayed neutron counting and gamma-ray spectrometry are used for the determination of the isotopic abundance of 235 U in rocks from the Northeastern region of Brazil. In the case of the application of delayed neutron counting, the rocks are analyzed non-destructively. When high resolution gamma-ray spectrometry is applied, a pre-irradiation chemical separation had to be performed, by extraction of uranium with tributylphosphate. By both methods employed the results for the isotopic abundance of 235 U can be considered as equal to the natural value of 0.702%, for the rocks under study. The precision attained by gamma-ray spectrometry is better than that by delayed neutron couting. (Author) [pt

  17. Inferring recent historic abundance from current genetic diversity

    NARCIS (Netherlands)

    Palsboll, Per J.; Peery, M. Zachariah; Olsen, Morten T.; Beissinger, Steven R.; Berube, Martine

    Recent historic abundance is an elusive parameter of great importance for conserving endangered species and understanding the pre-anthropogenic state of the biosphere. The number of studies that have used population genetic theory to estimate recent historic abundance from contemporary levels of

  18. Disposal of mixed radioactive and chemical waste

    International Nuclear Information System (INIS)

    Moghissi, A.A.

    1986-01-01

    The treatment of waste by dilution was practiced as long as nature provided sufficient unpolluted air, water, and land. The necessity for treatment, including containment and disposal of wastes is, however, relatively new. Initially, waste products from manufacturing processes were looked upon as a potential resource. The industries of Western Europe, short of raw materials, tried to recover as many chemical compounds as possible from industrial waste. However, the availability of abundant and cheap petroleum during the fifties changes this practice, at least for a short period

  19. THE UNIQUE Na:O ABUNDANCE DISTRIBUTION IN NGC 6791: THE FIRST OPEN(?) CLUSTER WITH MULTIPLE POPULATIONS

    International Nuclear Information System (INIS)

    Geisler, D.; Villanova, S.; Cummings, J.; Carraro, G.; Pilachowski, C.; Johnson, C. I.; Bresolin, F.

    2012-01-01

    Almost all globular clusters investigated exhibit a spread in their light element abundances, the most studied being an Na:O anticorrelation. In contrast, open clusters show a homogeneous composition and are still regarded as Simple Stellar Populations. The most probable reason for this difference is that globulars had an initial mass high enough to retain primordial gas and ejecta from the first stellar generation and thus formed a second generation with a distinct composition, an initial mass exceeding that of open clusters. NGC 6791 is a massive open cluster and warrants a detailed search for chemical inhomogeneities. We collected high-resolution, high signal-to-noise spectra of 21 members covering a wide range of evolutionary status and measured their Na, O, and Fe content. We found [Fe/H] = +0.42 ± 0.01, in good agreement with previous values, and no evidence for a spread. However, the Na:O distribution is completely unprecedented. It becomes the first open cluster to show intrinsic abundance variations that cannot be explained by mixing, and thus the first discovered to host multiple populations. It is also the first star cluster to exhibit two subpopulations in the Na:O diagram with one being chemically homogeneous while the second has an intrinsic spread that follows the anticorrelation so far displayed only by globular clusters. NGC 6791 is unique in many aspects, displaying certain characteristics typical of open clusters, others more reminiscent of globulars, and yet others, in particular its Na:O behavior investigated here, that are totally unprecedented. It clearly had a complex and fascinating history.

  20. The Unique Na:O Abundance Distribution in NGC 6791: The First Open(?) Cluster with Multiple Populations

    Science.gov (United States)

    Geisler, D.; Villanova, S.; Carraro, G.; Pilachowski, C.; Cummings, J.; Johnson, C. I.; Bresolin, F.

    2012-09-01

    Almost all globular clusters investigated exhibit a spread in their light element abundances, the most studied being an Na:O anticorrelation. In contrast, open clusters show a homogeneous composition and are still regarded as Simple Stellar Populations. The most probable reason for this difference is that globulars had an initial mass high enough to retain primordial gas and ejecta from the first stellar generation and thus formed a second generation with a distinct composition, an initial mass exceeding that of open clusters. NGC 6791 is a massive open cluster and warrants a detailed search for chemical inhomogeneities. We collected high-resolution, high signal-to-noise spectra of 21 members covering a wide range of evolutionary status and measured their Na, O, and Fe content. We found [Fe/H] = +0.42 ± 0.01, in good agreement with previous values, and no evidence for a spread. However, the Na:O distribution is completely unprecedented. It becomes the first open cluster to show intrinsic abundance variations that cannot be explained by mixing, and thus the first discovered to host multiple populations. It is also the first star cluster to exhibit two subpopulations in the Na:O diagram with one being chemically homogeneous while the second has an intrinsic spread that follows the anticorrelation so far displayed only by globular clusters. NGC 6791 is unique in many aspects, displaying certain characteristics typical of open clusters, others more reminiscent of globulars, and yet others, in particular its Na:O behavior investigated here, that are totally unprecedented. It clearly had a complex and fascinating history.

  1. Abundant Solar Nebula Solids in Comets

    Science.gov (United States)

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  2. SILICON AND OXYGEN ABUNDANCES IN PLANET-HOST STARS

    International Nuclear Information System (INIS)

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxygen abundances of a set of 76 planet hosts and a control sample of 80 metal-rich stars without any known giant planets. Our new, independent analysis was conducted using high resolution, high signal-to-noise data obtained at McDonald Observatory. Because we do not wish to simply reproduce the known planet-metallicity correlation, we have devised a statistical method for matching the underlying [Fe/H] distributions of our two sets of stars. We find a 99% probability that planet detection rate depends on the silicon abundance of the host star, over and above the observed planet-metallicity correlation. We do not detect any such correlation for oxygen. Our results would thus seem to suggest that grain nucleation, rather than subsequent icy mantle growth, is the important limiting factor in forming giant planets via core accretion. Based on our results and interpretation, we predict that planet detection should correlate with host star abundance for refractory elements responsible for grain nucleation and that no such trends should exist for the most abundant volatile elements responsible for icy mantle growth.

  3. 18 Sco: A solar twin rich in refractory and neutron-capture elements. Implications for chemical tagging

    Energy Technology Data Exchange (ETDEWEB)

    Meléndez, Jorge; Monroe, TalaWanda R.; Tucci Maia, Marcelo; Freitas, Fabrício C. [Departamento de Astronomia do IAG/USP, Universidade de São Paulo, Rua do Matão 1226, 05508-900 São Paulo, SP (Brazil); Ramírez, Iván [McDonald Observatory and Department of Astronomy, University of Texas at Austin (United States); Karakas, Amanda I.; Yong, David; Asplund, Martin [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bergemann, Maria [Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge (United Kingdom); Do Nascimento, José-Dias Jr.; Castro, Matthieu [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Alves-Brito, Alan, E-mail: jorge.melendez@iag.usp.br [Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS (Brazil)

    2014-08-10

    We study with unprecedented detail the chemical composition and stellar parameters of the solar twin 18 Sco in a strictly differential sense relative to the Sun. Our study is mainly based on high-resolution (R ∼ 110,000), high signal-to-noise ratio (800-1,000) Very Large Telescope UVES spectra, which allow us to achieve a precision of about 0.005 dex in differential abundances. The effective temperature and surface gravity of 18 Sco are T{sub eff} = 5823 ± 6 K and log g = 4.45 ± 0.02 dex, i.e., 18 Sco is 46 ± 6 K hotter than the Sun and log g is 0.01 ± 0.02 dex higher. Its metallicity is [Fe/H] = 0.054 ± 0.005 dex, and its microturbulence velocity is +0.02 ± 0.01 km s{sup –1} higher than solar. Our precise stellar parameters and differential isochrone analysis show that 18 Sco has a mass of 1.04 ± 0.02 M{sub ☉} and that it is ∼1.6 Gyr younger than the Sun. We use precise High Accuracy Radial velocity Planet Searcher (HARPS) radial velocities to search for planets, but none are detected. The chemical abundance pattern of 18 Sco displays a clear trend with condensation temperature, thus showing higher abundances of refractories in 18 Sco than in the Sun. Intriguingly, there are enhancements in the neutron-capture elements relative to the Sun. Despite the small element-to-element abundance differences among nearby n-capture elements (∼0.02 dex), we successfully reproduce the r-process pattern in the Solar System. This is independent evidence for the universality of the r process. Our results have important implications for chemical tagging in our Galaxy and nucleosynthesis in general.

  4. Incorporating breeding abundance into spatial assignments on continuous surfaces.

    Science.gov (United States)

    Rushing, Clark S; Marra, Peter P; Studds, Colin E

    2017-06-01

    Determining the geographic connections between breeding and nonbreeding populations, termed migratory connectivity, is critical to advancing our understanding of the ecology and conservation of migratory species. Assignment models based on stable isotopes historically have been an important tool for studying migratory connectivity of small-bodied species, but the low resolution of these assignments has generated interest into combining isotopes with other sources in information. Abundance is one of the most appealing data sources to include in isotope-based assignments, but there are currently no statistical methods or guidelines for optimizing the contribution of stable isotopes and abundance for inferring migratory connectivity. Using known-origin stable-hydrogen isotope samples of six Neotropical migratory bird species, we rigorously assessed the performance of assignment models that differentially weight the contribution of the isotope and abundance data. For two species with adequate sample sizes, we used Pareto optimality to determine the set of models that simultaneously minimized both assignment error rate and assignment area. We then assessed the ability of the top models from these two species to improve assignments of the remaining four species compared to assignments based on isotopes alone. We show that the increased precision of models that include abundance is often offset by a large increase in assignment error. However, models that optimally weigh the abundance data relative to the isotope data can result in higher precision and, in some cases, lower error than models based on isotopes alone. The top models, however, depended on the distribution of relative breeding abundance, with patchier distributions requiring stronger downweighting of abundance, and we present general guidelines for future studies. These results confirm that breeding abundance can be an important source of information for studies investigating broad-scale movements of

  5. Dust formation in a galaxy with primitive abundances.

    Science.gov (United States)

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe.

  6. High-precision atmospheric parameter and abundance determination of massive stars, and consequences for stellar and Galactic evolution

    International Nuclear Information System (INIS)

    Nieva, Maria-Fernanda; Przybilla, Norbert; Irrgang, Andreas

    2011-01-01

    The derivation of high precision/accuracy parameters and chemical abundances of massive stars is of utmost importance to the fields of stellar evolution and Galactic chemical evolution. We concentrate on the study of OB-type stars near the main sequence and their evolved progeny, the BA-type supergiants, covering masses of ∼6 to 25 solar masses and a range in effective temperature from ∼8000 to 35 000 K. The minimization of the main sources of systematic errors in the atmospheric model computation, the observed spectra and the quantitative spectral analysis play a critical role in the final results. Our self-consistent spectrum analysis technique employing a robust non-LTE line formation allows precise atmospheric parameters of massive stars to be derived, achieving 1σ-uncertainties as low as 1% in effective temperature and ∼0.05–0.10 dex in surface gravity. Consequences on the behaviour of the chemical elements carbon, nitrogen and oxygen are discussed here in the context of massive star evolution and Galactic chemical evolution, showing tight relations covered in previous work by too large statistical and systematic uncertainties. The spectral analysis of larger star samples, like from the upcoming Gaia-ESO survey, may benefit from these findings.

  7. Studies on physico – chemical properties of pond water in relation to ...

    African Journals Online (AJOL)

    The results showed that the mean of physico-chemical properties obtained were for the littoral zone of the twelve ponds (P1 – P12) studied and that these properties exhibited spatial and temporal variations. The mean abundance of zooplankton ranged from 3 to 78 orgs/Litre. There were more than seven genera of ...

  8. DIRECT EVALUATION OF THE HELIUM ABUNDANCES IN OMEGA CENTAURI

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Avrett, E. H., E-mail: dupree@cfa.harvard.edu, E-mail: eavrett@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-08-20

    A direct measure of the helium abundances from the near-infrared transition of He I at 1.08 {mu}m is obtained for two nearly identical red giant stars in the globular cluster Omega Centauri. One star exhibits the He I line; the line is weak or absent in the other star. Detailed non-local thermal equilibrium semi-empirical models including expansion in spherical geometry are developed to match the chromospheric H{alpha}, H{beta}, and Ca II K lines, in order to predict the helium profile and derive a helium abundance. The red giant spectra suggest a helium abundance of Y {<=} 0.22 (LEID 54064) and Y = 0.39-0.44 (LEID 54084) corresponding to a difference in the abundance {Delta}Y {>=} 0.17. Helium is enhanced in the giant star (LEID 54084) that also contains enhanced aluminum and magnesium. This direct evaluation of the helium abundances gives observational support to the theoretical conjecture that multiple populations harbor enhanced helium in addition to light elements that are products of high-temperature hydrogen burning. We demonstrate that the 1.08 {mu}m He I line can yield a helium abundance in cool stars when constraints on the semi-empirical chromospheric model are provided by other spectroscopic features.

  9. Spatial and temporal patterns of phytoplankton abundance and ...

    African Journals Online (AJOL)

    Bacillariophyta was the most abundant group (48.17% of total phytoplankton) and was uniformly distributed in all waters, followed by Cyanobacteria (33.33%), which decreased with distance offshore. Chlorophyta, the third highest in abundance (15.5%), increased with distance offshore. A total of 92 phytoplankton species ...

  10. Chemical composition of the horizontal-branch stars of globular clusters in the galactic field

    International Nuclear Information System (INIS)

    Klochkova, V.G.; Panchuk, V.E.

    1987-01-01

    Chemical abundance is calculated for 6 field stars: HD 2857, 64488, 93329, 105262, HDE 281679, BD+20 deg 5009, using 12 spectra with a reciprocal dispersion of 9 A/mm, obtained on the 6-m telescope. Fundamental characteristics for 7 stars of the horizontal branch are found

  11. Mechanisms driving postfire abundance of a generalist mammal

    Science.gov (United States)

    R. Zwolak; D. E. Pearson; Y. K. Ortega; E. E. Crone

    2012-01-01

    Changes in vertebrate abundance following disturbance are commonly attributed to shifts in food resources or predation pressure, but underlying mechanisms have rarely been tested. We examined four hypotheses for the commonly reported increase in abundance of deer mouse (Peromyscus maniculatus (Wagner, 1845)) following forest fires: source-sink dynamics, decreased...

  12. Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    NARCIS (Netherlands)

    Marigo, P; Bernard-Salas, J; Pottasch, S. R.; Tielens, A. G. G. M.; Wesselius, P. R.

    2003-01-01

    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. The accuracy on the observed abundances is essential in order to make a reliable comparison with the models.

  13. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    Science.gov (United States)

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  14. Floral abundance, richness, and spatial distribution drive urban garden bee communities.

    Science.gov (United States)

    Plascencia, M; Philpott, S M

    2017-10-01

    In urban landscapes, gardens provide refuges for bee diversity, but conservation potential may depend on local and landscape features. Foraging and population persistence of bee species, as well as overall pollinator community structure, may be supported by the abundance, richness, and spatial distribution of floral resources. Floral resources strongly differ in urban gardens. Using hand netting and pan traps to survey bees, we examined whether abundance, richness, and spatial distribution of floral resources, as well as ground cover and garden landscape surroundings influence bee abundance, species richness, and diversity on the central coast of California. Differences in floral abundance and spatial distribution, as well as urban cover in the landscape, predicted different bee community variables. Abundance of all bees and of honeybees (Apis mellifera) was lower in sites with more urban land cover surrounding the gardens. Honeybee abundance was higher in sites with patchy floral resources, whereas bee species richness and bee diversity was higher in sites with more clustered floral resources. Surprisingly, bee species richness and bee diversity was lower in sites with very high floral abundance, possibly due to interactions with honeybees. Other studies have documented the importance of floral abundance and landscape surroundings for bees in urban gardens, but this study is the first to document that the spatial arrangement of flowers strongly predicts bee abundance and richness. Based on these findings, it is likely that garden managers may promote bee conservation by managing for floral connectivity and abundance within these ubiquitous urban habitats.

  15. Abundances and Excitation of H2, H3+ & CO in Star-Forming Regions

    Science.gov (United States)

    Kulesa, Craig A.

    Although most of the 123 reported interstellar molecules to date have been detected through millimeter-wave emission-line spectroscopy, this technique is inapplicable to non-polar molecules like H2 and H3+, which are central to our understanding of interstellar chemistry. Thus high resolution infrared absorption-line spectroscopy bears an important role in interstellar studies: chemically important non-polar molecules can be observed, and their abundances and excitation conditions can be referred to the same ``pencil beam'' absorbing column. In particular, through a weak quadrupole absorption line spectrum at near-infrared wavelengths, the abundance of cold H2 in dark molecular clouds and star forming regions can now be accurately measured and compared along the same ``pencil beam'' line of sight with the abundance of its most commonly cited surrogate, CO, and its rare isotopomers. Also detected via infrared line absorption is the pivotal molecular ion H3+, whose abundance provides the most direct measurement of the cosmic ray ionization rate in dark molecular clouds, a process that initiates the formation of many other observed molecules there. Our growing sample of H2 and CO detections now includes detailed multi-beam studies of the ρ Ophiuchi molecular cloud and NGC 2024 in Orion. We explore the excitation and degree of ortho- and para-H2 thermalization in dark clouds, variation of the CO abundance over a cloud, and the relation of H2 column density to infrared extinction mapping, far-infrared/submillimeter dust continuum emission, and large scale submillimeter CO, [C I] and HCO+ line emission -- all commonly invoked to indirectly trace H2 during the past 30+ years. For each of the distinct velocity components seen toward some embedded young stellar objects, we are also able to determine the temperature, density, and a CO/H2 abundance ratio, thus unraveling some of the internal structure of a star-forming cloud. H2 and H3+ continue to surprise and delight us

  16. Tissue chemical analysis with muonic X-rays

    International Nuclear Information System (INIS)

    Hutson, R.L.; Reidy, J.J.; Springer, K.; Daniel, H.; Knowles, H.B.

    1976-01-01

    The stopped muon channel at the Clinton P. Anderson Meson Physics Facility (LAMPF) was used as a source of muons for studying the elemental composition of tissue with muonic X rays. The X ray spectra from several types of tissue were used to determine the amounts of carbon, nitrogen, and oxygen present. These determinations agree with the results of more conventional chemical analysis. The results show that muonic X rays offer a non-invasive technique for determining the amounts of the more abundant elements present in selected regions of the body. (orig.) [de

  17. Estimating Lion Abundance using N-mixture Models for Social Species.

    Science.gov (United States)

    Belant, Jerrold L; Bled, Florent; Wilton, Clay M; Fyumagwa, Robert; Mwampeta, Stanslaus B; Beyer, Dean E

    2016-10-27

    Declining populations of large carnivores worldwide, and the complexities of managing human-carnivore conflicts, require accurate population estimates of large carnivores to promote their long-term persistence through well-informed management We used N-mixture models to estimate lion (Panthera leo) abundance from call-in and track surveys in southeastern Serengeti National Park, Tanzania. Because of potential habituation to broadcasted calls and social behavior, we developed a hierarchical observation process within the N-mixture model conditioning lion detectability on their group response to call-ins and individual detection probabilities. We estimated 270 lions (95% credible interval = 170-551) using call-ins but were unable to estimate lion abundance from track data. We found a weak negative relationship between predicted track density and predicted lion abundance from the call-in surveys. Luminosity was negatively correlated with individual detection probability during call-in surveys. Lion abundance and track density were influenced by landcover, but direction of the corresponding effects were undetermined. N-mixture models allowed us to incorporate multiple parameters (e.g., landcover, luminosity, observer effect) influencing lion abundance and probability of detection directly into abundance estimates. We suggest that N-mixture models employing a hierarchical observation process can be used to estimate abundance of other social, herding, and grouping species.

  18. Inferring invasive species abundance using removal data from management actions

    Science.gov (United States)

    Davis, Amy J.; Hooten, Mevin B.; Miller, Ryan S.; Farnsworth, Matthew L.; Lewis, Jesse S.; Moxcey, Michael; Pepin, Kim M.

    2016-01-01

    Evaluation of the progress of management programs for invasive species is crucial for demonstrating impacts to stakeholders and strategic planning of resource allocation. Estimates of abundance before and after management activities can serve as a useful metric of population management programs. However, many methods of estimating population size are too labor intensive and costly to implement, posing restrictive levels of burden on operational programs. Removal models are a reliable method for estimating abundance before and after management using data from the removal activities exclusively, thus requiring no work in addition to management. We developed a Bayesian hierarchical model to estimate abundance from removal data accounting for varying levels of effort, and used simulations to assess the conditions under which reliable population estimates are obtained. We applied this model to estimate site-specific abundance of an invasive species, feral swine (Sus scrofa), using removal data from aerial gunning in 59 site/time-frame combinations (480–19,600 acres) throughout Oklahoma and Texas, USA. Simulations showed that abundance estimates were generally accurate when effective removal rates (removal rate accounting for total effort) were above 0.40. However, when abundances were small (<50) the effective removal rate needed to accurately estimates abundances was considerably higher (0.70). Based on our post-validation method, 78% of our site/time frame estimates were accurate. To use this modeling framework it is important to have multiple removals (more than three) within a time frame during which demographic changes are minimized (i.e., a closed population; ≤3 months for feral swine). Our results show that the probability of accurately estimating abundance from this model improves with increased sampling effort (8+ flight hours across the 3-month window is best) and increased removal rate. Based on the inverse relationship between inaccurate abundances and

  19. Inferring invasive species abundance using removal data from management actions.

    Science.gov (United States)

    Davis, Amy J; Hooten, Mevin B; Miller, Ryan S; Farnsworth, Matthew L; Lewis, Jesse; Moxcey, Michael; Pepin, Kim M

    2016-10-01

    Evaluation of the progress of management programs for invasive species is crucial for demonstrating impacts to stakeholders and strategic planning of resource allocation. Estimates of abundance before and after management activities can serve as a useful metric of population management programs. However, many methods of estimating population size are too labor intensive and costly to implement, posing restrictive levels of burden on operational programs. Removal models are a reliable method for estimating abundance before and after management using data from the removal activities exclusively, thus requiring no work in addition to management. We developed a Bayesian hierarchical model to estimate abundance from removal data accounting for varying levels of effort, and used simulations to assess the conditions under which reliable population estimates are obtained. We applied this model to estimate site-specific abundance of an invasive species, feral swine (Sus scrofa), using removal data from aerial gunning in 59 site/time-frame combinations (480-19,600 acres) throughout Oklahoma and Texas, USA. Simulations showed that abundance estimates were generally accurate when effective removal rates (removal rate accounting for total effort) were above 0.40. However, when abundances were small (removal rate needed to accurately estimates abundances was considerably higher (0.70). Based on our post-validation method, 78% of our site/time frame estimates were accurate. To use this modeling framework it is important to have multiple removals (more than three) within a time frame during which demographic changes are minimized (i.e., a closed population; ≤3 months for feral swine). Our results show that the probability of accurately estimating abundance from this model improves with increased sampling effort (8+ flight hours across the 3-month window is best) and increased removal rate. Based on the inverse relationship between inaccurate abundances and inaccurate removal

  20. VULCAN: An Open-source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shang-Min; Grosheintz, Luc; Kitzmann, Daniel; Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Lyons, James R. [Arizona State University, School of Earth and Space Exploration, Bateman Physical Sciences, Tempe, AZ 85287-1404 (United States); Rimmer, Paul B., E-mail: shang-min.tsai@space.unibe.ch, E-mail: kevin.heng@csh.unibe.ch, E-mail: jimlyons@asu.edu [University of St. Andrews, School of Physics and Astronomy, St. Andrews, KY16 9SS (United Kingdom)

    2017-02-01

    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K, using a reduced C–H–O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer and Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. We also use VULCAN to examine the theoretical trends produced when the temperature–pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching approximation and find that it is accurate for methane but breaks down for acetylene, because the disequilibrium abundance of acetylene is not directly determined by transport-induced quenching, but is rather indirectly controlled by the disequilibrium abundance of methane. Therefore we suggest that the quenching approximation should be used with caution and must always be checked against a chemical kinetics calculation. A one-dimensional model atmosphere with 100 layers, computed using VULCAN, typically takes several minutes to complete. VULCAN is part of the Exoclimes Simulation Platform (ESP; exoclime.net) and publicly available at https://github.com/exoclime/VULCAN.

  1. Modeling the relationship between water level, wild rice abundance, and waterfowl abundance at a central North American wetland

    Science.gov (United States)

    Aagaard, Kevin; Eash, Josh D.; Ford, Walt; Heglund, Patricia J.; McDowell, Michelle; Thogmartin, Wayne E.

    2018-01-01

    Recent evidence suggests wild rice (Zizania palustris), an important resource for migrating waterfowl, is declining in parts of central North America, providing motivation to rigorously quantify the relationship between waterfowl and wild rice. A hierarchical mixed-effects model was applied to data on waterfowl abundance for 16 species, wild rice stem density, and two measures of water depth (true water depth at vegetation sampling locations and water surface elevation). Results provide evidence for an effect of true water depth (TWD) on wild rice abundance (posterior mean estimate for TWD coefficient, β TWD = 0.92, 95% confidence interval = 0.11—1.74), but not for an effect of wild rice stem density or water surface elevation on local waterfowl abundance (posterior mean values for relevant parameters overlapped 0). Refined protocols for sampling design and more consistent sampling frequency to increase data quality should be pursued to overcome issues that may have obfuscated relationships evaluated here.

  2. NEFSC Survey Indices of Abundance

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Northeast Fisheries Survey Bottom trawl survey indices of abundance such as stratified mean number per tow or mean weight per tow by species stock. Includes indices...

  3. AN IN-DEPTH STUDY OF THE ABUNDANCE PATTERN IN THE HOT INTERSTELLAR MEDIUM IN NGC 4649

    International Nuclear Information System (INIS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady-state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernova (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649, we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern toward low α/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an Appendix, we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  4. Nature's starships. I. Observed abundances and relative frequencies of amino acids in meteorites

    International Nuclear Information System (INIS)

    Cobb, Alyssa K.; Pudritz, Ralph E.

    2014-01-01

    The class of meteorites called carbonaceous chondrites are examples of material from the solar system which have been relatively unchanged from the time of their initial formation. These meteorites have been classified according to the temperatures and physical conditions of their parent planetesimals. We collate available data on amino acid abundance in these meteorites and plot the concentrations of different amino acids for each meteorite within various meteorite subclasses. We plot average concentrations for various amino acids across meteorites separated by subclass and petrologic type. We see a predominance in the abundance and variety of amino acids in CM2 and CR2 meteorites. The range in temperature corresponding to these subclasses indicates high degrees of aqueous alteration, suggesting aqueous synthesis of amino acids. Within the CM2 and CR2 subclasses, we identify trends in relative frequencies of amino acids to investigate how common amino acids are as a function of their chemical complexity. These two trends (total abundance and relative frequencies) can be used to constrain formation parameters of amino acids within planetesimals. Our organization of the data supports an onion shell model for the temperature structure of planetesimals. The least altered meteorites (type 3) and their amino acids originated near cooler surface regions. The most active amino acid synthesis likely took place at intermediate depths (type 2). The most altered materials (type 1) originated furthest toward parent body cores. This region is likely too hot to either favor amino acid synthesis or for amino acids to be retained after synthesis.

  5. Urban warming drives insect pest abundance on street trees.

    Directory of Open Access Journals (Sweden)

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  6. Natural abundance 15N NMR assignments delineate structural differences between intact and reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III.

    Science.gov (United States)

    Krishnamoorthi, R; Nemmers, S; Tobias, B

    1992-06-15

    15N NMR assignments were made to the backbone amide nitrogen atoms at natural isotopic abundance of intact and reactive-site (Arg5-Ile6) hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III and CMTI-III*, respectively) by means of 2D proton-detected heteronuclear single bond chemical shift correlation (HSBC) spectroscopy, utilizing the previously made sequence-specific 1H NMR assignments (Krishnamoorthi et al. (1992) Biochemistry 31, 898-904). Comparison of the 15N chemical shifts of the two forms of the inhibitor molecule revealed significant changes not only for residues located near the reactive-site region, but also for those distantly located. Residues Cys3, Arg5, Leu7, Met8, Cys10, Cys16, Glu19, His25, Tyr27, Cys28 and Gly29 showed significant chemical shift changes ranging from 0.3 to 6.1 ppm, thus indicating structural perturbations that were transmitted throughout the molecule. These findings confirm the earlier conclusions based on 1H NMR investigations.

  7. DAWN GRAND MAP VESTA HYDROGEN ABUNDANCE V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — A global map of the abundance of hydrogen in micrograms/g within the regolith of asteroid 4 Vesta is provided for two-degree equal-angle pixels. Hydrogen abundances...

  8. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  9. The Detailed Chemical Properties of M31 Star Clusters. I. Fe, Alpha and Light Elements

    Science.gov (United States)

    Colucci, Janet E.; Bernstein, Rebecca A.; Cohen, Judith G.

    2014-12-01

    We present ages, [Fe/H] and abundances of the α elements Ca I, Si I, Ti I, Ti II, and light elements Mg I, Na I, and Al I for 31 globular clusters (GCs) in M31, which were obtained from high-resolution, high signal-to-noise ratio >60 echelle spectra of their integrated light (IL). All abundances and ages are obtained using our original technique for high-resolution IL abundance analysis of GCs. This sample provides a never before seen picture of the chemical history of M31. The GCs are dispersed throughout the inner and outer halo, from 2.5 kpc < R M31 < 117 kpc. We find a range of [Fe/H] within 20 kpc of the center of M31, and a constant [Fe/H] ~ - 1.6 for the outer halo clusters. We find evidence for at least one massive GC in M31 with an age between 1 and 5 Gyr. The α-element ratios are generally similar to the Milky Way GC and field star ratios. We also find chemical evidence for a late-time accretion origin for at least one cluster, which has a different abundance pattern than other clusters at similar metallicity. We find evidence for star-to-star abundance variations in Mg, Na, and Al in the GCs in our sample, and find correlations of Ca, Mg, Na, and possibly Al abundance ratios with cluster luminosity and velocity dispersion, which can potentially be used to constrain GC self-enrichment scenarios. Data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. Abundance of lithium in Pleiades F stars

    International Nuclear Information System (INIS)

    Pilachowski, C.A.; Booth, J.; Hobbs, L.M.

    1987-01-01

    The abundance of lithium has been determined for 18 stars in the Pleiades cluster with spectral types from A7V to G0V. The pronounced dip in the lithium abundance among the mid-F stars which has been reported for other, older star clusters is not present in the Pleiades. The removal of lithium from the surfaces of middle-F dwarfs therefore occurs principally after about 100 Myr on the main sequence. 25 references

  11. One Percent Determination of the Primordial Deuterium Abundance

    Science.gov (United States)

    Cooke, Ryan J.; Pettini, Max; Steidel, Charles C.

    2018-03-01

    We report a reanalysis of a near-pristine absorption system, located at a redshift {z}abs}=2.52564 toward the quasar Q1243+307, based on the combination of archival and new data obtained with the HIRES echelle spectrograph on the Keck telescope. This absorption system, which has an oxygen abundance [O/H] = ‑2.769 ± 0.028 (≃1/600 of the solar abundance), is among the lowest metallicity systems currently known where a precise measurement of the deuterium abundance is afforded. Our detailed analysis of this system concludes, on the basis of eight D I absorption lines, that the deuterium abundance of this gas cloud is {log}}10({{D}}/{{H}})=-4.622+/- 0.015, which is in very good agreement with the results previously reported by Kirkman et al., but with an improvement on the precision of this single measurement by a factor of ∼3.5. Combining this new estimate with our previous sample of six high precision and homogeneously analyzed D/H measurements, we deduce that the primordial deuterium abundance is {log}}10{({{D}}/{{H}})}{{P}}=-4.5974+/- 0.0052 or, expressed as a linear quantity, {10}5{({{D}}/{{H}})}{{P}}=2.527+/- 0.030; this value corresponds to a one percent determination of the primordial deuterium abundance. Combining our result with a big bang nucleosynthesis (BBN) calculation that uses the latest nuclear physics input, we find that the baryon density derived from BBN agrees to within 2σ of the latest results from the Planck cosmic microwave background data. Based on observations collected at the W.M. Keck Observatory which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  12. Predicting small mammal and flea abundance using landform and soil properties in a plague endemic area in Lushoto District, Tanzania.

    Science.gov (United States)

    Meliyo, Joel L; Kimaro, Didas N; Msanya, Balthazar M; Mulungu, Loth S; Hieronimo, Proches; Kihupi, Nganga I; Gulinck, Hubert; Deckers, Jozef A

    2014-07-01

    Small mammals particularly rodents, are considered the primary natural hosts of plague. Literature suggests that plague persistence in natural foci has a root cause in soils. The objective of this study was to investigate the relationship between on the one hand landforms and associated soil properties, and on the other hand small mammals and fleas in West Usambara Mountains in Tanzania, a plague endemic area. Standard field survey methods coupled with Geographical Information System (GIS) technique were used to examine landform and soils characteristics. Soil samples were analysed in the laboratory for physico-chemical properties. Small mammals were trapped on pre-established landform positions and identified to genus/species level. Fleas were removed from the trapped small mammals and counted. Exploration of landform and soil data was done using ArcGIS Toolbox functions and descriptive statistical analysis. The relationships between landforms, soils, small mammals and fleas were established by generalised linear regression model (GLM) operated in R statistics software. Results show that landforms and soils influence the abundance of small mammals and fleas and their spatial distribution. The abundance of small mammals and fleas increased with increase in elevation. Small mammal species richness also increases with elevation. A landform-soil model shows that available phosphorus, slope aspect and elevation were statistically significant predictors explaining richness and abundance of small mammals. Fleas' abundance and spatial distribution were influenced by hill-shade, available phosphorus and base saturation. The study suggests that landforms and soils have a strong influence on the richness and evenness of small mammals and their fleas' abundance hence could be used to explain plague dynamics in the area.

  13. 2015-2016 Palila abundance estimates

    Science.gov (United States)

    Camp, Richard J.; Brinck, Kevin W.; Banko, Paul C.

    2016-01-01

    The palila (Loxioides bailleui) population was surveyed annually during 1998−2016 on Mauna Kea Volcano to determine abundance, population trend, and spatial distribution. In the latest surveys, the 2015 population was estimated at 852−1,406 birds (point estimate: 1,116) and the 2016 population was estimated at 1,494−2,385 (point estimate: 1,934). Similar numbers of palila were detected during the first and subsequent counts within each year during 2012−2016; the proportion of the total annual detections in each count ranged from 46% to 56%; and there was no difference in the detection probability due to count sequence. Furthermore, conducting repeat counts improved the abundance estimates by reducing the width of the confidence intervals between 9% and 32% annually. This suggests that multiple counts do not affect bird or observer behavior and can be continued in the future to improve the precision of abundance estimates. Five palila were detected on supplemental survey stations in the Ka‘ohe restoration area, outside the core survey area but still within Palila Critical Habitat (one in 2015 and four in 2016), suggesting that palila are present in habitat that is recovering from cattle grazing on the southwest slope. The average rate of decline during 1998−2016 was 150 birds per year. Over the 18-year monitoring period, the estimated rate of change equated to a 58% decline in the population.

  14. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  15. Mars atmospheric water vapor abundance: 1996-1997

    Science.gov (United States)

    Sprague, A. L.; Hunten, D. M.; Doose, L. R.; Hill, R. E.

    2003-05-01

    Measurements of martian atmospheric water vapor made throughout Ls = 18.0°-146.4° (October 3, 1996-July 12, 1997) show changes in Mars humidity on hourly, daily, and seasonal time scales. Because our observing program during the 1996-1997 Mars apparition did not include concomitant measurement of nearby CO 2 bands, high northern latitude data were corrected for dust and aerosol extinction assuming an optical depth of 0.8, consistent with ground-based and HST imaging of northern dust storms. All other measurements with airmass greater than 3.5 were corrected using a total optical depth of 0.5. Three dominant results from this data set are as follows: (1) pre- and post-opposition measurements made with the slit crossing many hours of local time on Mars' Earth-facing disk show a distinct diurnal pattern with highest abundances around and slightly after noon with low abundances in the late afternoon, (2) measurements of water vapor over the Mars Pathfinder landing site (Carl Sagan Memorial Station) on July 12, 1997, found 21 ppt μm in the spatial sector centered near 19° latitude, 36° longitude while abundances around the site varied from as low as 6 to as high as 28 ppt μm, and (3) water vapor abundance is patchy on hourly and daily time scales but follows the usual seasonal trends.

  16. The Abundance of Large Arcs From CLASH

    Science.gov (United States)

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  17. Growing three-dimensional biomorphic graphene powders using naturally abundant diatomite templates towards high solution processability.

    Science.gov (United States)

    Chen, Ke; Li, Cong; Shi, Liurong; Gao, Teng; Song, Xiuju; Bachmatiuk, Alicja; Zou, Zhiyu; Deng, Bing; Ji, Qingqing; Ma, Donglin; Peng, Hailin; Du, Zuliang; Rümmeli, Mark Hermann; Zhang, Yanfeng; Liu, Zhongfan

    2016-11-07

    Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m -1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

  18. Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris

    Science.gov (United States)

    Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.

    2007-06-01

    The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.

  19. Use of abundance of one species as a surrogate for abundance of others

    Science.gov (United States)

    Samuel A. Cushman; Kevin S. McKelvey; Barry R. Noon; Kevin McGarigal

    2010-01-01

    Indicator species concepts have a long history in conservation biology. Arguments in favor of these approaches generally stress expediency and assume efficacy. We tested the premise that the abundance patterns of one species can be used to infer those of other species. Our data consisted of 72,495 bird observations on 55 species across 1046 plots distributed across 30...

  20. Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields

    Science.gov (United States)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalbán, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-04-01

    A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaigns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars. Based on observations collected at La Silla Observatory, ESO (Chile) with the FEROS and HARPS spectrograph at the 2.2 and 3.6-m telescopes under programs LP178.D-0361, LP182.D-0356, and LP185.D-0056.Appendix A is available in electronic form at http://www.aanda.orgTables A.2 to A.6 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A119

  1. Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea Hydrothermal Gradient Ecosystem

    Science.gov (United States)

    Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.

    2010-12-01

    The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature

  2. Modelling tick abundance using machine learning techniques and satellite imagery

    DEFF Research Database (Denmark)

    Kjær, Lene Jung; Korslund, L.; Kjelland, V.

    satellite images to run Boosted Regression Tree machine learning algorithms to predict overall distribution (presence/absence of ticks) and relative tick abundance of nymphs and larvae in southern Scandinavia. For nymphs, the predicted abundance had a positive correlation with observed abundance...... the predicted distribution of larvae was mostly even throughout Denmark, it was primarily around the coastlines in Norway and Sweden. Abundance was fairly low overall except in some fragmented patches corresponding to forested habitats in the region. Machine learning techniques allow us to predict for larger...... the collected ticks for pathogens and using the same machine learning techniques to develop prevalence maps of the ScandTick region....

  3. Industrial perspectives on earth abundant, multinary thin film photovoltaics

    Science.gov (United States)

    Haight, Richard; Gershon, Talia; Gunawan, Oki; Antunez, Priscilla; Bishop, Douglas; Seog Lee, Yun; Gokmen, Tayfun; Sardashti, Kasra; Chagarov, Evgueni; Kummel, Andrew

    2017-03-01

    The most efficient earth abundant, non-toxic thin film multelemental PV devices are fabricated from Cu, Zn, Sn, S and Se, with the chemical formula of Cu2ZnSn(S x Se1-x )4 (CZTS,Se). This material has enjoyed relatively rapid increases in efficiency from its inception to its present-day power conversion efficiency of 12.6%. But further increases in efficiency have been hampered by the inability to substantially increase Voc, the open circuit voltage. In this review article we will discuss the fundamentals of this important kesterite material including methods of film growth, post growth processing and device fabrication. Detailed studies of the properties of CZTS,Se including chemical, structural and electronic as well as full device electrical characterization have been performed in an effort to coax out the critical issues that limit performance. These experimental studies, enhanced by density functional theory calculations have pointed to fundamental bulk point defects, such as Cu-Zn antisites, and clusters of defects, as the primary culprits in limiting Voc increases. Improvements in device performance through grain boundary passivation and interface modifications are described. Exfoliation of functioning solar cells to expose the back surface along with engineering of new back contacts designed to impose electrostatic fields that drive electron-hole separation and increase Voc are discussed. A parallel route to increasing device performance by alloying Ag with CZTS,Se in order to inhibit Cu-Zn antisite defect formation has shown significant improvement in material properties. Finally, applications of high S (and hence higher Voc) CZTS,Se based devices to energy harvesting for ‘Internet-of-Things’ devices is discussed.

  4. High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring

    OpenAIRE

    Park, Youngja H.; Lee, Kichun; Soltow, Quinlyn A.; Strobel, Frederick H.; Brigham, Kenneth L.; Parker, Richard E.; Wilson, Mark E.; Sutliff, Roy L.; Mansfield, Keith G.; Wachtman, Lynn M.; Ziegler, Thomas R.; Jones, Dean P.

    2012-01-01

    High-performance metabolic profiling (HPMP) by Fourier-transform mass spectrometry coupled to liquid chromatography gives relative quantification of thousands of chemicals in biologic samples but has had little development for use in toxicology research. In principle, the approach could be useful to detect complex metabolic response patterns to toxicologic exposures and to detect unusual abundances or patterns of potentially toxic chemicals. As an initial study to develop these possible uses,...

  5. Geographical range and local abundance of tree species in China.

    Directory of Open Access Journals (Sweden)

    Haibao Ren

    Full Text Available Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1 whether locally abundant species tend to be geographically widespread; 2 whether species are more abundant towards their range-centers; and 3 how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2, and >90% of 651 species had ranges >10(5 km(2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  6. THE CHEMICAL COMPOSITION OF PRAESEPE (M44)

    Energy Technology Data Exchange (ETDEWEB)

    Boesgaard, Ann Merchant; Roper, Brian W.; Lum, Michael G., E-mail: boes@ifa.hawaii.edu, E-mail: brianwroper@gmail.com, E-mail: mikelum@ifa.hawaii.edu [Visiting astronomer, W. M. Keck Observatory jointly operated by the California Institute of Technology and the University of California. (United States)

    2013-09-20

    Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise (S/N), high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe I and Fe II lines and find [Fe/H] = +0.12 ±0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron capture element [Y/Fe] is found to be solar, but [Ba/Fe] is enhanced relative to solar and to the field stars. Three Praesepe giants were studied by Carrera and Pancino; they are apparently enhanced in Na, Mg, and Ba relative to the Praesepe dwarfs. The Na enhancement may indicate proton-capture nucleosynthesis in the Ne → Na cycling with dredge-up into the atmospheres of the red giants.

  7. The HIFI spectral survey of AFGL 2591 (CHESS). III. Chemical structure of the protostellar envelope

    NARCIS (Netherlands)

    Kaźmierczak-Barthel, M.; Semenov, D. A.; van der Tak, F. F. S.; Chavarría, L.; van der Wiel, M. H. D.

    Aims: The aim of this work is to understand the richness of chemical species observed in the isolated high-mass envelope of AFGL 2591, a prototypical object for studying massive star formation. Methods: Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar

  8. Impacts of macro - and microplastic on macrozoobenthos abundance in intertidal zone

    Science.gov (United States)

    Bangun, A. P.; Wahyuningsih, H.; Muhtadi, A.

    2018-02-01

    Plastics pollution in coastal areas is one of the topics that have received more attention over the past few years. The intertidal zone is a waters area that is directly affected by contamination of plastic waste from land and sea. The purpose of this study was to analyze the types and abundance of plastic waste in the intertidal zone and its impact on macrozoobenthos abundance. This research was conducted at Pesisir Desa Jaring Halus in February-April 2017. Macrozoobenthos and macro - micro plastic were collected by using quadratic transect. Sediments were collected with a core, to a depth of 30 cm. Microplastic and macroplastic abundances were analyzed using separation of sediment density and hand sorting. The dominant micro plastic types were film (52.30%), fiber (24.88%), fragments (22.74%), followed by pellets (0.1%). The total number of microplastics were 326,33 items and macro plastic were 308 items. Macroplastic abundance is positively correlated with microplastic (0.765). The abundance of macrozoobenthos is negatively correlated with microplastic abundance (-0.368) and with macro plastic abundance (-0.633). The management strategies were suggested clean up marine debris, decrease plastic using and built up the station of debris processing.

  9. ABUNDANCES IN THE LOCAL REGION. I. G AND K GIANTS

    Energy Technology Data Exchange (ETDEWEB)

    Luck, R. Earle, E-mail: rel2@case.edu [Department of Astronomy, Case Western Reserve University 10900 Euclid Avenue, Cleveland, OH 44106-7215 (United States)

    2015-09-15

    Parameters and abundances for 1133 stars of spectral types F, G, and K of luminosity class III have been derived. In terms of stellar parameters, the primary point of interest is the disagreement between gravities derived with masses determined from isochrones, and gravities determined from an ionization balance. This is not a new result per se, but the size of this sample emphasizes the severity of the problem. A variety of arguments led to the selection of the ionization-balance gravity as the working value. The derived abundances indicate that the giants in the solar region have Sun-like total abundances and abundance ratios. Stellar evolution indicators have also been investigated with the Li abundances and the [C/Fe] and C/O ratios, indicating that standard processing has been operating in these stars. The more salient result for stellar evolution is that the [C/Fe] data across the red-giant clump indicates the presence of mass-dependent mixing in accord with standard stellar evolution predictions.

  10. A SOLAR SPECTROSCOPIC ABSOLUTE ABUNDANCE OF ARGON FROM RESIK

    International Nuclear Information System (INIS)

    Sylwester, J.; Sylwester, B.; Phillips, K. J. H.; Kuznetsov, V. D.

    2010-01-01

    Observations of He-like and H-like Ar (Ar XVII and Ar XVIII) lines at 3.949 A and 3.733 A, respectively, with the RESIK X-ray spectrometer on the CORONAS-F spacecraft, together with temperatures and emission measures from the two channels of GOES, have been analyzed to obtain the abundance of Ar in flare plasmas in the solar corona. The line fluxes per unit emission measure show a temperature dependence like that predicted from theory and lead to spectroscopically determined values for the absolute Ar abundance, A(Ar) = 6.44 ± 0.07 (Ar XVII) and 6.49 ± 0.16 (Ar XVIII), which are in agreement to within uncertainties. The weighted mean is 6.45 ± 0.06, which is between two recent compilations of the solar Ar abundance and suggests that the photospheric and coronal abundances of Ar are very similar.

  11. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants.

    Science.gov (United States)

    Reinmuth-Selzle, Kathrin; Kampf, Christopher J; Lucas, Kurt; Lang-Yona, Naama; Fröhlich-Nowoisky, Janine; Shiraiwa, Manabu; Lakey, Pascale S J; Lai, Senchao; Liu, Fobang; Kunert, Anna T; Ziegler, Kira; Shen, Fangxia; Sgarbanti, Rossella; Weber, Bettina; Bellinghausen, Iris; Saloga, Joachim; Weller, Michael G; Duschl, Albert; Schuppan, Detlef; Pöschl, Ulrich

    2017-04-18

    Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.

  12. Terrestrial salamander abundance on reclaimed mountaintop removal mines

    Science.gov (United States)

    Wood, Petra Bohall; Williams, Jennifer M.

    2013-01-01

    Mountaintop removal mining, a large-scale disturbance affecting vegetation, soil structure, and topography, converts landscapes from mature forests to extensive grassland and shrubland habitats. We sampled salamanders using drift-fence arrays and coverboard transects on and near mountaintop removal mines in southern West Virginia, USA, during 2000–2002. We compared terrestrial salamander relative abundance and species richness of un-mined, intact forest with habitats on reclaimed mountaintop removal mines (reclaimed grassland, reclaimed shrubland, and fragmented forest). Salamanders within forests increased in relative abundance with increasing distance from reclaimed mine edge. Reclaimed grassland and shrubland habitats had lower relative abundance and species richness than forests. Characteristics of reclaimed habitats that likely contributed to lower salamander abundance included poor soils (dry, compacted, little organic matter, high rock content), reduced vertical structure of vegetation and little tree cover, and low litter and woody debris cover. Past research has shown that salamander populations reduced by clearcutting may rebound in 15–24 years. Time since disturbance was 7–28 years in reclaimed habitats on our study areas and salamander populations had not reached levels found in adjacent mature forests.

  13. Measuring β-diversity with species abundance data.

    Science.gov (United States)

    Barwell, Louise J; Isaac, Nick J B; Kunin, William E

    2015-07-01

    In 2003, 24 presence-absence β-diversity metrics were reviewed and a number of trade-offs and redundancies identified. We present a parallel investigation into the performance of abundance-based metrics of β-diversity. β-diversity is a multi-faceted concept, central to spatial ecology. There are multiple metrics available to quantify it: the choice of metric is an important decision. We test 16 conceptual properties and two sampling properties of a β-diversity metric: metrics should be 1) independent of α-diversity and 2) cumulative along a gradient of species turnover. Similarity should be 3) probabilistic when assemblages are independently and identically distributed. Metrics should have 4) a minimum of zero and increase monotonically with the degree of 5) species turnover, 6) decoupling of species ranks and 7) evenness differences. However, complete species turnover should always generate greater values of β than extreme 8) rank shifts or 9) evenness differences. Metrics should 10) have a fixed upper limit, 11) symmetry (βA,B  = βB,A ), 12) double-zero asymmetry for double absences and double presences and 13) not decrease in a series of nested assemblages. Additionally, metrics should be independent of 14) species replication 15) the units of abundance and 16) differences in total abundance between sampling units. When samples are used to infer β-diversity, metrics should be 1) independent of sample sizes and 2) independent of unequal sample sizes. We test 29 metrics for these properties and five 'personality' properties. Thirteen metrics were outperformed or equalled across all conceptual and sampling properties. Differences in sensitivity to species' abundance lead to a performance trade-off between sample size bias and the ability to detect turnover among rare species. In general, abundance-based metrics are substantially less biased in the face of undersampling, although the presence-absence metric, βsim , performed well overall. Only

  14. LITERATURE SURVEY ON ISOTOPIC ABUNDANCE RATIO MEASUREMENTS - 2001-2005

    International Nuclear Information System (INIS)

    HOLDEN, N.E.

    2005-01-01

    Along with my usual weekly review of the published literature for new nuclear data, I also search for new candidates for best measurements of isotopic abundances from a single source. Most of the published articles, that I previously had found in the Research Library at the Brookhaven Lab, have already been sent to the members of the Atomic Weights Commission, by either Michael Berglund or Thomas Walczyk. In the last few days, I checked the published literature for any other articles in the areas of natural variations in isotopic abundance ratios, measurements of isotopic abundance ratios on samples of extra-terrestrial material and isotopic abundance ratio measurements performed using ICPMS instruments. Hopefully this information will be of interest to members of the Commission, the sub-committee on isotopic abundance measurements (SIAM), members of the former sub-committee on natural isotopic fractionation (SNIF), the sub-committee on extra-terrestrial isotope ratios (SETIR), the RTCE Task Group and the Guidelines Task Group, who are dealing with ICPMS and TIMS comparisons. In the following report, I categorize the publications in one of four areas. Measurements performed using either positive or negative ions with Thermal Ionization Mass Spectrometer, TIMS, instruments; measurements performed on Inductively Coupled Plasma Mass Spectrometer, ICPMS, instruments; measurements of natural variations of the isotopic abundance ratios; and finally measurements on extra-terrestrial samples with instrumentation of either type. There is overlap in these areas. I selected out variations and ET results first and then categorized the rest of the papers by TIMS and ICPMS

  15. Relative abundance of desert tortoises on the Nevada Test Site

    International Nuclear Information System (INIS)

    Rautenstrauch, K.R.; O'Farrell, T.P.

    1993-01-01

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin

  16. Carbon and oxygen abundances of field RR Lyrae stars. I. Carbon abundances

    International Nuclear Information System (INIS)

    Butler, D.; Manduca, A.; Deming, D.; Bell, R.A.

    1982-01-01

    From an analysis of KPNO 4-m echelle plates and simultaneous uvbyβ photometry, we have determined carbon abundances and carbon-to-iron ratios for a large number of field RR Lyrae stars having [Fe/H]> or approx. =-1.2. It is found that these field RR Lyrae stars: stars which are known to be in an advanced evolutionary state: have carbon-to-iron ratios which are similar to those of unevolved stars

  17. Variability in chemical composition and abundance of the rare tertiary relict Pinus heldreichii in Serbia.

    Science.gov (United States)

    Bojović, Srdjan; Nikolić, Biljana; Ristić, Mihailo; Orlović, Saša; Veselinović, Milorad; Rakonjac, Ljubinko; Dražić, Dragana

    2011-09-01

    The particular significance of the whitebark pine (Pinus heldreichii Christ.) stems from the fact that it is a tertiary relict and Balkanic subendemite covering a very narrow and intermittent area in Serbia. A representative pool of 48 adult trees originating from three populations, one recently discovered natural (Population I) and two planted populations (Populations II and III) was investigated in order to evaluate the intra- and interpopulation variability of the essential oil of the complete fund of P. heldreichii in Serbia. In the pine-needle-terpene profile, 104 compounds were detected, 84 of which could be identified. Among the essential-oil constituents, monoterpenes and sesquiterpenes dominated, comprising ca. 90% of the essential oil. The terpenic profile of Population I was characterized by a predominance of monoterpenes (e.g., limonene (1), α-pinene, and Δ(3) -carene (4)), while sesquiterpenes (e.g., germacrene D (2) and β-caryophyllene (3)) obviously preponderated in the profile of Populations II and III. This study also demonstrated that the abundance of whitebark pines in Serbia had significantly changed over the last few decades. The number of individuals in the natural population had increased, while the number of individuals in the planted populations had decreased. Today, the whitebark pine fund in Serbia comprises less than 250 trees. 2011 Verlag Helvetica Chimica Acta AG, Zürich.

  18. Energetic-particle abundances in impulsive solar flares

    Science.gov (United States)

    Reames, D. V.; Cane, H. V.; Von Rosenvinge, T. T.

    1990-01-01

    The abundances of elements and of He-3 in 90 solar electron events have been examined. It is found that the events fall into two distinct groups based upon their F/C ratio. Events in the F-rich group frequently have high He-3/He-4 ratios and are associated with type III and type V radio bursts in the parent flare. The F-poor events are associated with type IV bursts. These results on individual events support the conclusions of earlier work done with daily-averaged abundances.

  19. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  20. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina; Moitinho-Silva, Lucas; Brü mmer, Franz; Cannistraci, Carlo V.; Ravasi, Timothy; Hentschel, Ute

    2015-01-01

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.