WorldWideScience

Sample records for abt-737-induced mitochondrial membrane

  1. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy.

    Science.gov (United States)

    Pedro, Jose Manuel Bravo-San; Wei, Yongjie; Sica, Valentina; Maiuri, Maria Chiara; Zou, Zhongju; Kroemer, Guido; Levine, Beth

    2015-01-01

    Disruption of the complex of BECN1 with BCL2 or BCL2L1/BCL-XL is an essential switch that turns on cellular autophagy in response to environmental stress or treatment with BH3 peptidomimetics. Recently, it has been proposed that BCL2 and BCL2L1/BCL-XL may inhibit autophagy indirectly through a mechanism dependent on the proapoptotic BCL2 family members, BAX and BAK1. Here we report that the BH3 mimetic, ABT-737, induces autophagy in parallel with disruption of BCL2-BECN1 binding in 2 different apoptosis-deficient cell types lacking BAX and BAK1, namely in mouse embryonic fibroblasts cells and in human colon cancer HCT116 cells. We conclude that the BH3 mimetic ABT-737 induces autophagy through a BAX and BAK1-independent mechanism that likely involves disruption of BECN1 binding to antiapoptotic BCL2 family members.

  2. Methylseleninic acid potentiates multiple types of cancer cells to ABT-737-induced apoptosis by targeting Mcl-1 and Bad

    DEFF Research Database (Denmark)

    Yin, Shutao; Dong, Yinhui; Li, Jinghua;

    2012-01-01

    -737, as evidenced by greater than additive enhancement of Annexin V/FITC positive (apoptotic) cells and activation of multiple caspases and PARP cleavage. Mechanistic investigation demonstrated that MSeA significantly decreased basal Mcl-1 expression and ABT-737-induced Mcl-1 expression. Knocking down...... of Mcl-1 with RNAi approach supported the functional significance of this molecular target. More importantly, we identified inactivation of Bad by phosphorylation on ser-136 and ser-112 as a novel mechanism involved in ABT-737 resistance, which can be overcome by combining with MSeA. In addition, we...

  3. Formation and Regulation of Mitochondrial Membranes

    Directory of Open Access Journals (Sweden)

    Laila Cigana Schenkel

    2014-01-01

    Full Text Available Mitochondrial membrane phospholipids are essential for the mitochondrial architecture, the activity of respiratory proteins, and the transport of proteins into the mitochondria. The accumulation of phospholipids within mitochondria depends on a coordinate synthesis, degradation, and trafficking of phospholipids between the endoplasmic reticulum (ER and mitochondria as well as intramitochondrial lipid trafficking. Several studies highlight the contribution of dietary fatty acids to the remodeling of phospholipids and mitochondrial membrane homeostasis. Understanding the role of phospholipids in the mitochondrial membrane and their metabolism will shed light on the molecular mechanisms involved in the regulation of mitochondrial function and in the mitochondrial-related diseases.

  4. Platelet mitochondrial membrane potential in Parkinson's disease

    OpenAIRE

    Antony, P.M.; Boyd, O.; Trefois, C.; Ammerlaan, W; Ostaszewski, M.; Baumuratov, A.S.; Longhino, L.; Antunes, L; Koopman, W.J.H.; Balling, R; Diederich, N.J.

    2014-01-01

    OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced conflicting data. We considered the electron transport chain as a complex system with mitochondrial membrane potential as an integrative indicator for mitochondrial fitness. METHODS: Twenty-five IPD pati...

  5. Reconstitutions of mitochondrial inner membrane remodeling.

    Science.gov (United States)

    Barbot, Mariam; Meinecke, Michael

    2016-10-01

    Biological membranes exhibit function-related shapes, leading to a plethora of complex and beautiful cell and cell organellar morphologies. Most if not all of these structures have evolved for a particular physiological reason. The shapes of these structures are formed by physical forces that operate on membranes. To create particular shaped cells and cell organelles, membranes must undergo deformations which are determined by the structure and elasticity of the membrane and this process is most probable driven by proteins, lipids and/or interplay of both Zimmerberg and Kozlov (2006). Therefore, an important question of current cell biology in conjunction with physics and mathematics is to elucidate the functional cause for these different membrane morphologies as well as how they are formed. One of the most peculiar membrane shapes is observed in mitochondria. These organelles are surrounded by two membranes and especially the convoluted inner membrane displays a complex ultra-structure. A molecular understanding of how this membrane is shaped is missing to a large extent. Unlike membrane remodeling in classical curvature-dependent processes like clathrin-mediated endocytosis, mitochondria are most likely shaped by integral membrane proteins. Following, we will review the current knowledge of inner mitochondrial membrane architecture and discuss recent findings and advances in understanding the factors that shape this membrane. We will address pending questions especially with regard to the experimentally challenging nature of investigating membrane bending by hydrophobic integral membrane proteins. PMID:27456366

  6. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology

    Directory of Open Access Journals (Sweden)

    Michelle T. Burstein

    2014-01-01

    Full Text Available A recent study revealed a mechanism of delaying aging in yeast by a natural compound which specifically impacts mitochondrial redox processes. In this mechanism, exogenously added lithocholic bile acid enters yeast cells, accumulates mainly in the inner mitochondrial membrane, and elicits an age-related remodeling of phospholipid synthesis and movement within both mitochondrial membranes. Such remodeling of mitochondrial phospholipid dynamics progresses with the chronological age of a yeast cell and ultimately causes significant changes in mitochondrial membrane lipidome. These changes in the composition of membrane phospholipids alter mitochondrial abundance and morphology, thereby triggering changes in the age-related chronology of such longevity-defining redox processes as mitochondrial respiration, the maintenance of mitochondrial membrane potential, the preservation of cellular homeostasis of mitochondrially produced reactive oxygen species, and the coupling of electron transport to ATP synthesis.

  7. Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation

    OpenAIRE

    Mishra, Prashant; Carelli, Valerio; Manfredi, Giovanni; Chan, David C.

    2014-01-01

    Mitochondrial fusion is essential for maintenance of mitochondrial function. The mitofusin GTPases control mitochondrial outer membrane fusion, whereas the dynamin-related GTPase Opa1 mediates inner membrane fusion. We show that mitochondrial inner membrane fusion is tuned by the level of oxidative phosphorylation (OXPHOS), whereas outer membrane fusion is insensitive. Consequently, cells from patients with pathogenic mtDNA mutations show a selective defect in mitochondrial inner membrane fus...

  8. Mitochondrial DNA mutations provoke dominant inhibition of mitochondrial inner membrane fusion.

    Directory of Open Access Journals (Sweden)

    Cécile Sauvanet

    Full Text Available Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA. We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP or to maternally inherited Leigh Syndrome (MILS in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from

  9. Dysfunction of Rice Mitochondrial Membrane Induced by Yb3+.

    Science.gov (United States)

    Gao, Jia-Ling; Wu, Man; Liu, Wen; Feng, Zhi-Jiang; Zhang, Ye-Zhong; Jiang, Feng-Lei; Liu, Yi; Dai, Jie

    2015-12-01

    Ytterbium (Yb), a widely used rare earth element, is treated as highly toxic to human being and adverseness to plant. Mitochondria play a significant role in plant growth and development, and are proposed as a potential target for ytterbium toxicity. In this paper, the biological effect of Yb(3+) on isolated rice mitochondria was investigated. We found that Yb(3+) with high concentrations (200 ~ 600 μM) not only induced mitochondrial membrane permeability transition (mtMPT), but also disturbed the mitochondrial ultrastructure. Moreover, Yb(3+) caused the respiratory chain damage, ROS formation, membrane potential decrease, and mitochondrial complex II activity reverse. The results above suggested that Yb(3+) with high concentrations could induce mitochondrial membrane dysfunction. These findings will support some valuable information to the safe application of Yb-based agents. PMID:26305923

  10. Platelet mitochondrial membrane potential in Parkinson's disease

    NARCIS (Netherlands)

    Antony, P.M.; Boyd, O.; Trefois, C.; Ammerlaan, W.; Ostaszewski, M.; Baumuratov, A.S.; Longhino, L.; Antunes, L.; Koopman, W.J.H.; Balling, R.; Diederich, N.J.

    2015-01-01

    OBJECTIVE: Mitochondrial dysfunction is a hallmark of idiopathic Parkinson's disease (IPD), which has been reported not to be restricted to striatal neurons. However, studies that analyzed mitochondrial function at the level of selected enzymatic activities in peripheral tissues have produced confli

  11. Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization.

    LENUS (Irish Health Repository)

    Gupta, Sanjeev

    2010-01-01

    During apoptosis, the process of mitochondrial outer membrane permeabilization (MOMP) represents a point-of-no-return as it commits the cell to death. Here we have assessed the role of caspases, Bcl-2 family members and the mitochondrial permeability transition pore on ER stress-induced MOMP and subsequent cell death. Induction of ER stress leads to upregulation of several genes such as Grp78, Edem1, Erp72, Atf4, Wars, Herp, p58ipk, and ERdj4 and leads to caspase activation, release of mitochondrial intermembrane proteins and dissipation of mitochondrial transmembrane potential (DeltaPsim). Mouse embryonic fibroblasts (MEFs) from caspase-9, -2 and, -3 knock-out mice were resistant to ER stress-induced apoptosis which correlated with decreased processing of pro-caspase-3 and -9. Furthermore, pretreatment of cells with caspase inhibitors (Boc-D.fmk and DEVD.fmk) attenuated ER stress-induced loss of DeltaPsim. However, only deficiency of caspase-9 and -2 could prevent ER stress-mediated loss of DeltaPsim. Bcl-2 overexpression or pretreatment of cells with the cell permeable BH4 domain (BH4-Tat) or the mitochondrial permeability transition pore inhibitors, bongkrekic acid or cyclosporine A, attenuated the ER stress-induced loss of DeltaPsim. These data suggest a role for caspase-9 and -2, Bcl-2 family members and the mitochondrial permeability transition pore in loss of mitochondrial membrane potential during ER stress-induced apoptosis.

  12. Regulation of glycolytic oscillations by mitochondrial and plasma membrane H+-ATPases

    DEFF Research Database (Denmark)

    Olsen, Lars Folke; Andersen, Ann Zahle; Lunding, Anita;

    2009-01-01

    We investigated the coupling between glycolytic and mitochondrial membrane potential oscillations in Saccharomyces cerevisiae under semianaerobic conditions. Glycolysis was measured as NADH autofluorescence, and mitochondrial membrane potential was measured using the fluorescent dye 3,3'-diethylo...

  13. Mitochondrial Swelling and Incipient Outer Membrane Rupture in Preapoptotic and Apoptotic Cells

    OpenAIRE

    Sesso, A.; Belizário, JE; Marques, MM; Higuchi, ML; Schumacher, RI; Colquhoun, A; Ito, E.; Kawakami, J.

    2012-01-01

    Outer mitochondrial membrane (OMM) rupture was first noted in isolated mitochondria in which the inner mitochondrial membrane (IMM) had lost its selective permeability. This phenomenon referred to as mitochondrial permeability transition (MPT) refers to a permeabilized inner membrane that originates a large swelling in the mitochondrial matrix, which distends the outer membrane until it ruptures. Here, we have expanded previous electron microscopic observations that in apoptotic cells, OMM ru...

  14. Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity

    DEFF Research Database (Denmark)

    Larsen, Anna Karina; Malinska, Dominika; Koszela-Piotrowska, Izabela;

    2012-01-01

    The 25 kDa branched polyethylenimine (PEI) is a highly efficient synthetic polycation used in transfection protocols, but also triggers mitochondrial-mediated apoptotic cell death processes where the mechanistic issues are poorly understood. We now demonstrate that PEI in a concentration- and time......-dependent manner can affect functions (membrane potential, swelling and respiration) and ultrastructural integrity of freshly isolated rat liver mitochondria. The threshold concentration for detection of PEI-mediated impairment of rat liver mitochondrial functions is 3 µg/mL, however, lower PEI levels still exert...... some effects on mitochondrial morphology and respiration, and these may be related to the inherent membrane perturbing properties of this polycation. The PEI-mediated mitochondrial swelling phase is biphasic, with a fast decaying initial period (most prominent from 4 µg/mL PEI) followed by a slower...

  15. Mitochondrial outer-membrane permeabilization and remodelling in apoptosis

    OpenAIRE

    Jourdain, Alexis; Martinou, Jean-Claude

    2009-01-01

    Many human pathologies are associated with defects in mitochondria such as diabetes, neurodegenerative diseases or cancer. This tiny organelle is involved in a plethora of processes in mammalian cells, including energy production, lipid metabolism and cell death. In the so-called intrinsic apoptotic pathway, the outer mitochondrial membrane (MOM) is premeabilized by the pro-apoptotic Bcl-2 members Bax and Bak, allowing the release of apoptogenic factors such as cytochrome c from the inter-mem...

  16. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players

    Science.gov (United States)

    Carraretto, Luca; Checchetto, Vanessa; De Bortoli, Sara; Formentin, Elide; Costa, Alex; Szabó, Ildikó; Teardo, Enrico

    2016-01-01

    Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca2+ transients which are further transduced by Ca2+ sensor proteins into a transcriptional and metabolic response. Most of the research on Ca2+ signaling in plants has been focused on the transport mechanisms for Ca2+ across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca2+ signals, but how intracellular organelles such as mitochondria are involved in the process of Ca2+ signaling is just emerging. The combination of the molecular players and the elicitors of Ca2+ signaling in mitochondria together with newly generated detection systems for measuring organellar Ca2+ concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca2+ across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca2+ homeostasis for ensuring optimal bioenergetic performance of this organelle. PMID:27065186

  17. Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI

    DEFF Research Database (Denmark)

    Reveles Jensen, Kristian; Rekling, Jens C

    2010-01-01

    Mitochondrial dysfunction is a hallmark of several diseases and may also result from drugs with unwanted side effects on mitochondrial biochemistry. The mitochondrial membrane potential is a good indicator of mitochondrial function. Here, the authors have developed a no-wash mitochondrial membrane......-handling stability, and thus is suitable for large-scale screening efforts. In summary, the DASPEI assay is simple and rapid and may be of use in toxicological testing, drug target discovery, and mechanistic models of diseases involving mitochondrial dysfunction....... potential assay using 2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide (DASPEI), a rarely used mitochondrial potentiometric probe, in a 96-well format using a fluorescent plate reader. The assay was validated using 2 protonophores (CCCP, DNP), which are known uncouplers, and the neuroleptic thioridazine...

  18. p53's mitochondrial translocation and MOMP action is independent of Puma and Bax and severely disrupts mitochondrial membrane integrity

    Institute of Scientific and Technical Information of China (English)

    Sonja Wolff; Susan Erster; Gustavo Palacios; Ute M Moll

    2008-01-01

    p53's apoptotic program consists of transcription-dependent and transcription-independent pathways. In the latter, physical interactions between mitochondrial p53 and anti-and pro-apoptotic members of the Bcl2 family of mitochondrial permeability regulators are central. Using isogenic cell systems with defined deficiencies, we characterize in detail how mitochondrial p53 contributes to mitochondrial permeabilization, to what extent its action depends on other key Bcl2 family members and define its release activity. We show that mitochondrial p53 is highly efficient in inducing the release of soluble and insoluble apoptogenic factors by severely disrupting outer and inner mitochondrial membrane integrity. This action is associated with wild-type p53-induced oligomerization of Bax, Bak and VDAC and the formation of a stress-induced endogenous complex between p53 and cyclophilin D, normally located at the inner membrane. Tumor-derived p53 mutants are deficient in activating the Bax/Bak lipid pore. These actions are independent of Puma and Bax. Importantly, the latter distinguishes the mitochondrial from the cytosolic p53 death pathway.

  19. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yasuzaki, Yukari; Yamada, Yuma [Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan); Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we provide a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.

  20. Replication factors transiently associate with mtDNA at the mitochondrial inner membrane to facilitate replication

    NARCIS (Netherlands)

    Rajala, N.; Gerhold, J.M.; Martinsson, P.; Klymov, A.; Spelbrink, H.

    2014-01-01

    Mitochondrial DNA (mtDNA) is organized in discrete protein-DNA complexes, nucleoids, that are usually considered to be mitochondrial-inner-membrane associated. Here we addressed the association of replication factors with nucleoids and show that endogenous mtDNA helicase Twinkle and single-stranded

  1. Mitochondrial membrane studies using impedance spectroscopy with parallel pH monitoring.

    Directory of Open Access Journals (Sweden)

    Divya Padmaraj

    Full Text Available A biological microelectromechanical system (BioMEMS device was designed to study complementary mitochondrial parameters important in mitochondrial dysfunction studies. Mitochondrial dysfunction has been linked to many diseases, including diabetes, obesity, heart failure and aging, as these organelles play a critical role in energy generation, cell signaling and apoptosis. The synthesis of ATP is driven by the electrical potential across the inner mitochondrial membrane and by the pH difference due to proton flux across it. We have developed a tool to study the ionic activity of the mitochondria in parallel with dielectric measurements (impedance spectroscopy to gain a better understanding of the properties of the mitochondrial membrane. This BioMEMS chip includes: 1 electrodes for impedance studies of mitochondria designed as two- and four-probe structures for optimized operation over a wide frequency range and 2 ion-sensitive field effect transistors for proton studies of the electron transport chain and for possible monitoring other ions such as sodium, potassium and calcium. We have used uncouplers to depolarize the mitochondrial membrane and disrupt the ionic balance. Dielectric spectroscopy responded with a corresponding increase in impedance values pointing at changes in mitochondrial membrane potential. An electrical model was used to describe mitochondrial sample's complex impedance frequency dependencies and the contribution of the membrane to overall impedance changes. The results prove that dielectric spectroscopy can be used as a tool for membrane potential studies. It can be concluded that studies of the electrochemical parameters associated with mitochondrial bioenergetics may render significant information on various abnormalities attributable to these organelles.

  2. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  3. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Science.gov (United States)

    Korenić, Andrej; Boltze, Johannes; Deten, Alexander; Peters, Myriam; Andjus, Pavle; Radenović, Lidija

    2014-01-01

    Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m)) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m), visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m) during reperfusion, whereas GD caused a robust Δψ(m) negativation. In case no Δψ(m) negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m) hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψ(m) during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury. PMID:24587410

  4. Interaction of ADP, atractyloside, and gummiferin on the ADP translocase of the inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Vignais, P.V.; Vignais, P.M.; Defaye, G.; Lauquin, G.; Doussiere, J.; Chabert, J.; Brandolin, G.

    1972-05-01

    From international conference on mechanism in bioenergetica; Bari, Italy (1 May 1972). Two specific inhibitors of the adenine nucleotide translocation, gummiferin (GUM), identified to 4-carboxyatractyloside and atractyloside (ATR), were labeled with /sup 35/S and their binding properties to whole mitochondria and inner mitochondrial membrane vesicles used to monitor changes of membrane conformation induced by ADP. (auth)

  5. Lipid unsaturation per se does not explain the physical state of mitochondrial membranes in Mytilus galloprovincialis.

    Science.gov (United States)

    Fiorini, Rosamaria; Pagliarani, Alessandra; Nesci, Salvatore; Trombetti, Fabiana; Pirini, Maurizio; Fabbri, Micaela; Ventrella, Vittoria

    2016-01-01

    Through a multiple approach, the present study on the mitochondrial membranes from mussel gills and swine heart combines some biochemical information on fatty acid composition, sterol pattern, and temperature dependence of the F1FO-ATPase activity (EC 3.6.3.14.) with fluorescence data on mitochondrial membranes and on liposomes obtained from lipid extracts of mitochondria. The physical state of mussel gills and swine heart was investigated by Laurdan steady state fluorescence. Quite surprisingly, the similar temperature dependence of the F1FO complex, illustrated as Arrhenius plot which in both mitochondria exhibits the same discontinuity at approximately 21°C and overlapping activation energies above and below the discontinuity, is apparently compatible with a different composition and physical state of mitochondrial membranes. Accordingly, mussel membranes contain highly unsaturated fatty acids, abundant sterols, including phytosterols, while mammalian membranes only contain cholesterol and in prevalence shorter and less unsaturated fatty acids, leading to a lower membrane unsaturation with respect to mussel mitochondria. As suggested by fluorescence data, the likely formation of peculiar microdomains interacting with the membrane-bound enzyme complex in mussel mitochondria could produce an environment which somehow approaches the physical state of mammalian mitochondrial membranes. Thus, as an adaptive strategy, the interaction between sterols, highly unsaturated phospholipids and proteins in mussel gill mitochondria could allow the F1FO-ATPase activity to maintain the same activation energy as the mammalian enzyme.

  6. Integrity of the plasma membrane, the acrosomal membrane, and the mitochondrial membrane potential of sperm in Nelore bulls from puberty to sexual maturity

    Directory of Open Access Journals (Sweden)

    L.S.L.S. Reis

    2016-06-01

    Full Text Available ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion, scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot and evaluated over 280 days. Semen samples, collected every 56 days by electroejaculation, were evaluated soon after collection for motility, vigor and wave motion under an optical microscope. Sperm membrane integrity, acrosomal integrity, and mitochondrial activity were evaluated under a fluorescent microscope using probe association (FITC-PSA, PI, JC-1, H342. The sperm were classified into eight integrity categories depending on whether they exhibited intact or damaged membranes, an intact or damaged acrosomal membrane, and high or low mitochondrial potential. The results show that bulls have a low amount of sperm with intact membranes at puberty, and the sperm show low motility, vigor, and wave motion; however, in bulls at early sexual maturity, the integrity of the sperm membrane increased significantly. The rate of sperm membrane damage was negatively correlated with motility, vigor, wave motion, and testosterone in the bulls, and a positive correlation existed between sperm plasma membrane integrity and scrotal circumference. The integrity of the acrosomal membrane was not influenced by puberty. During puberty and into early sexual maturity, bulls show low sperm mitochondrial potential, but when bulls reached sexual maturity, high membrane integrity with high mitochondrial potential was evident.

  7. Separate fusion of outer and inner mitochondrial membranes

    OpenAIRE

    Malka, Florence; Guillery, Olwenn; Cifuentes-Diaz, Carmen; Guillou, Emmanuelle; Belenguer, Pascale; Lombès, Anne; Rojo, Manuel

    2005-01-01

    Mitochondria are enveloped by two closely apposed boundary membranes with different properties and functions. It is known that they undergo fusion and fission, but it has remained unclear whether outer and inner membranes fuse simultaneously, coordinately or separately. We set up assays for the study of inner and outer membrane fusion in living human cells. Inner membrane fusion was more sensitive than outer membrane fusion to inhibition of glycolysis. Fusion of the inner membrane, but not of...

  8. Protein complexes in bacterial and yeast mitochondrial membranes differ in their sensitivity towards dissociation by SDS.

    Science.gov (United States)

    Gubbens, Jacob; Slijper, Monique; de Kruijff, Ben; de Kroon, Anton I P M

    2008-12-01

    Previously, a 2D gel electrophoresis approach was developed for the Escherichia coli inner membrane, which detects membrane protein complexes that are stable in sodium dodecyl sulfate (SDS) at room temperature, and dissociate under the influence of trifluoroethanol [R. E. Spelbrink et al., J. Biol. Chem. 280 (2005), 28742-8]. Here, the method was applied to the evolutionarily related mitochondrial inner membrane that was isolated from the yeast Saccharomyces cerevisiae. Surprisingly, only very few proteins were found to be dissociated by trifluoroethanol of which Lpd1p, a component of multiple protein complexes localized in the mitochondrial matrix, is the most prominent. Usage of either milder or more stringent conditions did not yield any additional proteins that were released by fluorinated alcohols. This strongly suggests that membrane protein complexes in yeast are less stable in SDS solution than their E. coli counterparts, which might be due to the overall reduced hydrophobicity of mitochondrial transmembrane proteins. PMID:18817900

  9. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    International Nuclear Information System (INIS)

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solution containing 1 μM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dtmax of 105 ± 8 mN/s in control hearts vs. 49 ± 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 ± 0.2 in control hearts vs. 2.2 ± 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 ± 1 μM cytochrome c/min/mg in control hearts vs. 14 ± 3 μM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.

  10. Biophysical significance of the inner mitochondrial membrane structure on the electrochemical potential of mitochondria

    Science.gov (United States)

    Song, Dong Hoon; Park, Jonghyun; Maurer, Laura L.; Lu, Wei; Philbert, Martin A.; Sastry, Ann Marie

    2013-12-01

    The available literature supports the hypothesis that the morphology of the inner mitochondrial membrane is regulated by different energy states, that the three-dimensional morphology of cristae is dynamic, and that both are related to biochemical function. Examination of the correlation between the inner mitochondrial membrane (IMM) structure and mitochondrial energetic function is critical to an understanding of the links between mesoscale morphology and function in progressive mitochondrial dysfunction such as aging, neurodegeneration, and disease. To investigate this relationship, we develop a model to examine the effects of three-dimensional IMM morphology on the electrochemical potential of mitochondria. The two-dimensional axisymmetric finite element method is used to simulate mitochondrial electric potential and proton concentration distribution. This simulation model demonstrates that the proton motive force (Δp) produced on the membranes of cristae can be higher than that on the inner boundary membrane. The model also shows that high proton concentration in cristae can be induced by the morphology-dependent electric potential gradient along the outer side of the IMM. Furthermore, simulation results show that a high Δp is induced by the large surface-to-volume ratio of an individual crista, whereas a high capacity for ATP synthesis can primarily be achieved by increasing the surface area of an individual crista. The mathematical model presented here provides compelling support for the idea that morphology at the mesoscale is a significant driver of mitochondrial function.

  11. Translocation of chicken heart apocytochrome c and its mutants (C17S, H18D) across mitochondrial membrane

    Institute of Scientific and Technical Information of China (English)

    朱勇; 韩学海; 杨福愉

    1999-01-01

    Cytochrome c is a component of mitochondrial respiratory chain, located at the outer side of mitochondrial inner membrane. Its precursor, apocytochrome c, is encoded by a nuclear gene, synthesized on cytoplasmic ribosomes, and posttranslationally imported into mitochondria, but apocytochrome c is unique in the translocation compared with most mitochondrial proteins. It does not carry a cleavable amino terminal targeting sequence; no proteinous receptor on the mitochondrial outer membrane is identified for its import and its translocation does not compete with other preproteins for translocation machinery in the outer membrane. Besides, neither ATP nor membrane potential is required for its translocation across mitochonctria.

  12. Knockdown of cytosolic glutaredoxin 1 leads to loss of mitochondrial membrane potential: implication in neurodegenerative diseases.

    Directory of Open Access Journals (Sweden)

    Uzma Saeed

    Full Text Available Mitochondrial dysfunction including that caused by oxidative stress has been implicated in the pathogenesis of neurodegenerative diseases. Glutaredoxin 1 (Grx1, a cytosolic thiol disulfide oxido-reductase, reduces glutathionylated proteins to protein thiols and helps maintain redox status of proteins during oxidative stress. Grx1 downregulation aggravates mitochondrial dysfunction in animal models of neurodegenerative diseases, such as Parkinson's and motor neuron disease. We examined the mechanism underlying the regulation of mitochondrial function by Grx1. Downregulation of Grx1 by shRNA results in loss of mitochondrial membrane potential (MMP, which is prevented by the thiol antioxidant, alpha-lipoic acid, or by cyclosporine A, an inhibitor of mitochondrial permeability transition. The thiol groups of voltage dependent anion channel (VDAC, an outer membrane protein in mitochondria but not adenosine nucleotide translocase (ANT, an inner membrane protein, are oxidized when Grx1 is downregulated. We then examined the effect of beta-N-oxalyl amino-L-alanine (L-BOAA, an excitatory amino acid implicated in neurolathyrism (a type of motor neuron disease, that causes mitochondrial dysfunction. Exposure of cells to L-BOAA resulted in loss of MMP, which was prevented by overexpression of Grx1. Grx1 expression is regulated by estrogen in the CNS and treatment of SH-SY5Y cells with estrogen upregulated Grx1 and protected from L-BOAA mediated MMP loss. Our studies demonstrate that Grx1, a cytosolic oxido-reductase, helps maintain mitochondrial integrity and prevents MMP loss caused by oxidative insult. Further, downregulation of Grx1 leads to mitochondrial dysfunction through oxidative modification of the outer membrane protein, VDAC, providing support for the critical role of Grx1 in maintenance of MMP.

  13. Integrity of the plasma membrane, the acrosomal membrane, and the mitochondrial membrane potential of sperm in Nelore bulls from puberty to sexual maturity

    OpenAIRE

    L. S. L. S. Reis; A.A. Ramos; A.S. Camargos; E. Oba

    2016-01-01

    ABSTRACT This study evaluated the plasma membrane integrity, acrosomal membrane integrity, and mitochondrial membrane potential of Nelore bull sperm from early puberty to early sexual maturity and their associations with sperm motility and vigor, the mass motility of the spermatozoa (wave motion), scrotal circumference, and testosterone. Sixty Nelore bulls aged 18 to 19 months were divided into four lots (n=15 bulls/lot) and evaluated over 280 days. Semen samples, collected every 56 days by e...

  14. Protective role of mitochondrial K-ATP channel and mitochondrial membrane transport pore in rat kidney ischemic postconditioning

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-liang; ZHAO Yan-li; LIU Xiao-ming; CHEN Jing; ZHANG Dong

    2011-01-01

    Background Previous studies suggested that mechanical intervention during early reperfusion, or ischemia postconditioning (Ipo), could protect kidneys against renal ischemia reperfusion injury (RIRI). However, the mechanisms responsible for this protection remain unclear. This study therefore investigated the protection afforded by Ipo in rat kidneys in vivo, and the roles of mitochondrial KATP channels (mitOKATP) and mitochondrial permeability transition pores (MPTPs), by inhibiting mitOKATP with 5-hydroxydecanoate (5-HD), and by directly detecting open MPTPs using calcein-AM and CoCl2.Methods Thirty-five male Sprague-Dawley rats were randomly assigned to sham-operation (S), ischemia-reperfusion (I/R),Ipo, ischemia reperfusion with 5-HD (I/R+5-HD), or Ipo with 5-HD (Ipo +5-HD) groups. Rats in each group were sacrificed after 6 hours of reperfusion by heart exsanguination or cervical dislocation under anesthesia. RIRI was assessed by determination of creatinine and blood urea nitrogen (BUN), and by examination of histologic sections. The roles of mitoKATP and MPTP were investigated by analyzing fluorescence intensities of mitochondria, mitochondrial membrane potential,intracellular reactive oxygen species (ROS) and intracellular calcium, using appropriate fluorescent markers. The relationship between apoptosis and RIRI was assessed by determining the apoptotic index (Al) of kidney tubular epithelial cells.Results The RIRI model was shown to be successful. Significantly higher levels of creatinine and BUN, and abnormal pathology of histologic sections, were observed in group I/R, compared with group S. 5-HD eliminated the renoprotective effects of Ipo. Mitochondrial and mitochondrial membrane potential fluorescence intensities increased, and intracellular calcium, ROS fluorescence intensities and AI decreased in group Ipo, compared with group I/R. However, mitochondrial and mitochondrial membrane potential fluorescence intensities decreased, and intracellular

  15. Mitochondrial DNA damage associated with lipid peroxidation of the mitochondrial membrane induced by Fe2+-citrate

    Directory of Open Access Journals (Sweden)

    Andréa M. Almeida

    2006-09-01

    Full Text Available Iron imbalance/accumulation has been implicated in oxidative injury associated with many degenerative diseases such as hereditary hemochromatosis, beta-thalassemia, and Friedreich's ataxia. Mitochondria are particularly sensitive to iron-induced oxidative stress - high loads of iron cause extensive lipid peroxidation and membrane permeabilization in isolated mitochondria. Here we detected and characterized mitochondrial DNA damage in isolated rat liver mitochondria exposed to a Fe2+-citrate complex, a small molecular weight complex. Intense DNA fragmentation was induced after the incubation of mitochondria with the iron complex. The detection of 3' phosphoglycolate ends at the mtDNA strand breaks by a 32P-postlabeling assay, suggested the involvement of hydroxyl radical in the DNA fragmentation induced by Fe2+-citrate. Increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine also suggested that Fe2+-citrate-induced oxidative stress causes mitochondrial DNA damage. In conclusion, our results show that iron-mediated lipid peroxidation was associated with intense mtDNA damage derived from the direct attack of reactive oxygen species.Desequilíbrio/acúmulo de ferro tem sido implicado em injúria oxidativa associada a diversas doenças degenerativas tais como, hemocromatose hereditária, beta-talassemia e ataxia de Friedreich. As mitocôndrias são particularmente sensíveis a estresse oxidativo induzido por ferro - um carregamento alto de ferro em mitocôndrias isoladas pode causar uma extensiva peroxidação lipídica e a permeabilização de membrana. Nesse estudo, nós detectamos e caracterizamos danos do DNA mitocondrial em mitocôndrias isoladas de fígado de rato, expostas ao complexo Fe2+-citrato, um dos complexos de baixo peso molecular. A intensa fragmentação do DNA foi induzida após a incubação das mitocôndrias com o complexo de ferro. A detecção de finais 3' de fosfoglicolato nas quebras de fitas de DNA mitocondrial pelo ensaio 32

  16. Formation of Mitochondrial Outer Membrane Derived Protrusions and Vesicles in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Akihiro Yamashita

    Full Text Available Mitochondria are dynamic organelles that have inner and outer membranes. In plants, the inner membrane has been well studied but relatively little is known about the outer membrane. Here we report that Arabidopsis cells have mitochondrial outer membrane-derived structures, some of which protrude from the main body of mitochondria (mitochondrial outer-membrane protrusions; MOPs, while others form vesicle-like structures without a matrix marker. The latter vesicle-like structures are similar to some mammalian MDVs (mitochondrial-derived vesicles. Live imaging demonstrated that a plant MDV budded off from the tip of a MOP. MDVs were also observed in the drp3a drp3b double mutant, indicating that they could be formed without the mitochondrial fission factors DRP3A and DRP3B. Double staining studies showed that the MDVs were not peroxisomes, endosomes, Golgi apparatus or trans-Golgi network (TGN. The numbers of MDVs and MOPs increased in senescent leaves and after dark treatment. Together, these results suggest that MDVs and MOPs are related to leaf senescence.

  17. Localization of HPV-18 E2 at Mitochondrial Membranes Induces ROS Release and Modulates Host Cell Metabolism

    OpenAIRE

    Deborah Lai; Chye Ling Tan; Jayantha Gunaratne; Ling Shih Quek; Wenlong Nei; Françoise Thierry; Sophie Bellanger

    2013-01-01

    Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk) HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when an...

  18. Yeast Mitochondrial Interactosome Model: Metabolon Membrane Proteins Complex Involved in the Channeling of ADP/ATP

    Directory of Open Access Journals (Sweden)

    Benjamin Clémençon

    2012-02-01

    Full Text Available The existence of a mitochondrial interactosome (MI has been currently well established in mammalian cells but the exact composition of this super-complex is not precisely known, and its organization seems to be different from that in yeast. One major difference is the absence of mitochondrial creatine kinase (MtCK in yeast, unlike that described in the organization model of MI, especially in cardiac, skeletal muscle and brain cells. The aim of this review is to provide a detailed description of different partner proteins involved in the synergistic ADP/ATP transport across the mitochondrial membranes in the yeast Saccharomyces cerevisiae and to propose a new mitochondrial interactosome model. The ADP/ATP (Aacp and inorganic phosphate (PiC carriers as well as the VDAC (or mitochondrial porin catalyze the import and export of ADP, ATP and Pi across the mitochondrial membranes. Aacp and PiC, which appear to be associated with the ATP synthase, consist of two nanomotors (F0, F1 under specific conditions and form ATP synthasome. Identification and characterization of such a complex were described for the first time by Pedersen and co-workers in 2003.

  19. Heinrich Wieland--prize lecture. Transport of proteins across mitochondrial membranes.

    Science.gov (United States)

    Neupert, W

    1994-03-01

    The vast majority of proteins comprising the mitochondrion are encoded by nuclear genes, synthesized on ribosomes in the cytosol, and translocated into the various mitochondrial subcompartments. During this process proteins must cross the lipid membranes of the mitochondrion without interfering with the integrity or functions of the organelle. In recent years an approach combining biochemical, molecular, genetic, and morphological methodology has provided insights into various aspects of this complex process of intracellular protein sorting. In particular, a greater understanding of the molecular specificity and mechanism of targeting of mitochondrial preproteins has been reached, as a protein complex of the outer membrane which facilitates recognition and initial membrane insertion has been identified and characterized. Furthermore, pathways and components involved in the translocation of pre-proteins across the two mitochondrial membranes are being dissected and defined. The energetics of translocation and the processes of unfolding and folding of proteins during transmembrane transfer are closely linked to the function of a host of proteins known as heat-shock proteins or molecular chaperones, present both outside and inside the mitochondrion. In addition, the analysis of the process of folding of polypeptides in the mitochondrial matrix has allowed novel and unexpected insights into general pathways of protein folding assisted by folding factors. Pathways of sorting of proteins to the four different mitochondrial subcompartments--the outer membrane (OM), intermembrane space, inner membrane (IM) and matrix--are only partly understood and reveal an amazing complexity and variation. Many additional protein factors are involved in these latter processes, a few of which have been analyzed, such as cytochrome c heme lyase and cytochrome c1 heme lyase, enzymes that catalyze the covalent addition of the heme group to cytochrome c and c1 preproteins, and the

  20. Role of cardiolipins in the inner mitochondrial membrane: insight gained through atom-scale simulations

    DEFF Research Database (Denmark)

    Róg, Tomasz; Martinez-Seara, Hector; Munck, Nana;

    2009-01-01

    , the exceptional nature of cardiolipins is characterized by their small charged head group connected to typically four hydrocarbon chains. In this work, we present atomic-scale molecular dynamics simulations of the inner mitochondrial membrane modeled as a mixture of cardiolipins (CLs), phosphatidylcholines (PCs...

  1. Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis

    Institute of Scientific and Technical Information of China (English)

    Flora Tomasello; Angela Messina; Lydia Lartigue; Laura Schembri; Chantal Medina; Simona Reina; Didier Thorava; Marc Crouzet; Francois Ichas; Vito De Pinto; Francesca De Giorgi

    2009-01-01

    Voltage-dependent anion channel (VDAC)l is the main channel of the mitochondrial outer membrane (MOM) and it has been proposed to be part of the permeability transition pore (PTP), a putative multiprotein complex candidate agent of the mitochondrial permeability transition (MPT). Working at the single live cell level, we found that over-expression of VDAC1 triggers MPT at the mitochondrial inner membrane (MIM). Conversely, silencing VDAC1 ex-pression results in the inhibition of MPT caused by selenite-induced oxidative stress. This MOM-M1M crosstalk was modulated by Cyclosporin A and mitochondrial Cyclophilin D, but not by Bcl-2 and Bcl-XL, indicative of PTP opera-tion. VDAC1-dependent MPT engages a positive feedback loop involving reactive oxygen species and p38-MAPK, and secondarily triggers a canonical apoptotic response including Bax activation, cytochrome c release and caspase 3 activation. Our data thus support a model of the PTP complex involving VDAC1 at the MOM, and indicate that VDAC1-dependent MPT is an upstream mechanism playing a causal role in oxidative stress-induced apoptosis.

  2. Bacterial porin disrupts mitochondrial membrane potential and sensitizes host cells to apoptosis.

    Directory of Open Access Journals (Sweden)

    Vera Kozjak-Pavlovic

    2009-10-01

    Full Text Available The bacterial PorB porin, an ATP-binding beta-barrel protein of pathogenic Neisseria gonorrhoeae, triggers host cell apoptosis by an unknown mechanism. PorB is targeted to and imported by host cell mitochondria, causing the breakdown of the mitochondrial membrane potential (DeltaPsi(m. Here, we show that PorB induces the condensation of the mitochondrial matrix and the loss of cristae structures, sensitizing cells to the induction of apoptosis via signaling pathways activated by BH3-only proteins. PorB is imported into mitochondria through the general translocase TOM but, unexpectedly, is not recognized by the SAM sorting machinery, usually required for the assembly of beta-barrel proteins in the mitochondrial outer membrane. PorB integrates into the mitochondrial inner membrane, leading to the breakdown of DeltaPsi(m. The PorB channel is regulated by nucleotides and an isogenic PorB mutant defective in ATP-binding failed to induce DeltaPsi(m loss and apoptosis, demonstrating that dissipation of DeltaPsi(m is a requirement for cell death caused by neisserial infection.

  3. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-β: A Protective Role of Melatonin

    Science.gov (United States)

    Rosales-Corral, Sergio A.; Lopez-Armas, Gabriela; Cruz-Ramos, Jose; Melnikov, Valery G.; Tan, Dun-Xian; Manchester, Lucien C.; Munoz, Ruben; Reiter, Russel J.

    2012-01-01

    Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-β (Aβ) generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-β (Aβ). The purpose was to determine how Aβ may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aβ in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid β was injected, favoring an endogenous anti-inflammatory pathway. PMID:22666620

  4. Simultaneous monitoring of ionophore- and inhibitor-mediated plasma and mitochondrial membrane potential changes in cultured neurons.

    Science.gov (United States)

    Nicholls, David G

    2006-05-26

    Although natural and synthetic ionophores are widely exploited in cell studies, for example, to influence cytoplasmic free calcium concentrations and to depolarize in situ mitochondria, their inherent lack of membrane selectivity means that they affect the ion permeability of both plasma and mitochondrial membranes. A similar ambiguity affects the interpretation of signals from fluorescent membrane-permeant cations (usually termed "mitochondrial membrane potential indicators"), because the accumulation of these probes is influenced by both plasma and mitochondrial membrane potentials. To resolve some of these problems a technique is developed to allow simultaneous monitoring of plasma and mitochondrial membrane potentials at single-cell resolution using a cationic and anionic fluorescent probe. A computer program is described that transforms the fluorescence changes into dynamic estimates of changes in plasma and mitochondrial potentials. Exploiting this technique, primary cultures of rat cerebellar granule neurons display a concentration-dependent response to ionomycin: low concentrations mimic nigericin by hyperpolarizing the mitochondria while slowly depolarizing the plasma membrane and maintaining a stable elevated cytoplasmic calcium. Higher ionomycin concentrations induce a stochastic failure of calcium homeostasis that precedes both mitochondrial depolarization and an enhanced rate of plasma membrane depolarization. In addition, the protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone only selectively depolarizes mitochondria at submicromolar concentrations. ATP synthase reversal following respiratory chain inhibition depolarizes the mitochondria by 26 mV. PMID:16551630

  5. Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin

    Directory of Open Access Journals (Sweden)

    Sergio A. Rosales-Corral

    2012-01-01

    Full Text Available Alzheimer pathogenesis involves mitochondrial dysfunction, which is closely related to amyloid-ß (Aß generation, abnormal tau phosphorylation, oxidative stress, and apoptosis. Alterations in membranal components, including cholesterol and fatty acids, their characteristics, disposition, and distribution along the membranes, have been studied as evidence of cell membrane alterations in AD brain. The majority of these studies have been focused on the cytoplasmic membrane; meanwhile the mitochondrial membranes have been less explored. In this work, we studied lipids and mitochondrial membranes in vivo, following intracerebral injection of fibrillar amyloid-ß (Aß. The purpose was to determine how Aß may be responsible for beginning of a vicious cycle where oxidative stress and alterations in cholesterol, lipids and fatty acids, feed back on each other to cause mitochondrial dysfunction. We observed changes in mitochondrial membrane lipids, and fatty acids, following intracerebral injection of fibrillar Aß in aged Wistar rats. Melatonin, a well-known antioxidant and neuroimmunomodulator indoleamine, reversed some of these alterations and protected mitochondrial membranes from obvious damage. Additionally, melatonin increased the levels of linolenic and n-3 eicosapentaenoic acid, in the same site where amyloid ß was injected, favoring an endogenous anti-inflammatory pathway.

  6. Improved glycaemic control decreases inner mitochondrial membrane leak in type 2 diabetes

    DEFF Research Database (Denmark)

    Rabøl, R; Højberg, P M V; Almdal, T;

    2009-01-01

    AIM: Several mechanisms have been targeted as culprits of weight gain during antihyperglycaemic treatment in type 2 diabetes (T2DM). These include reductions in glucosuria, increased food intake from fear of hypoglycaemia, the anabolic effect of insulin, decreased metabolic rate and increased...... efficiency in fuel usage. The purpose of the study was to test the hypothesis that mitochondrial efficiency increases as a result of insulin treatment in patients with type 2 diabetes. METHODS: We included ten patients with T2DM (eight males) on oral antidiabetic treatment, median age: 51.5 years (range: 39...... reductions in inner mitochondrial membrane leak and increased efficiency of mitochondria. This change in mitochondrial physiology could contribute to the weight gain seen with antihyperglycaemic treatment....

  7. Outer mitochondrial membrane localization of apoptosis-inducing factor: mechanistic implications for release

    Directory of Open Access Journals (Sweden)

    Seong‑Woon Yu

    2009-11-01

    Full Text Available Poly(ADP-ribose polymerase-1-dependent cell death (known as parthanatos plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor, but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses. Approx. 30% of AIF loosely associates with the outer mitochondrial membrane on the cytosolic side, in addition to its main localization in the mitochondrial intermembrane space attached to the inner membrane. Immunogold electron microscopic analysis of mouse brain further supports AIF association with the outer, as well as the inner, mitochondrial membrane in vivo. In line with these observations, approx. 20% of uncleaved AIF rapidly translocates to the nucleus and functionally causes neuronal death upon NMDA (N-methyl-d-aspartate treatment. In the present study we show for the first time a second pool of AIF in brain mitochondria and demonstrate that this pool does not require cleavage and that it contributes to the rapid release of AIF. Moreover, these results suggest that this outer mitochondrial pool of AIF is sufficient to cause cell death during parthanatos. Interfering with the release of this outer mitochondrial pool of AIF during cell injury paradigms that use parthanatos hold particular promise for novel therapies to treat neurological disorders.

  8. Evidence for several cysteine transport mechanisms in the mitochondrial membranes of Arabidopsis thaliana.

    Science.gov (United States)

    Lee, Chun Pong; Wirtz, Markus; Hell, Rüdiger

    2014-01-01

    Cysteine is essential for many mitochondrial processes in plants, including translation, iron-sulfur cluster biogenesis and cyanide detoxification. Its biosynthesis is carried out by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) which can be found in the cytosol, plastids and mitochondria. Mutants lacking one compartment-specific OAS-TL isoform show viable phenotypes, leading to the hypothesis that the organellar membranes are permeable to substrates and products of the cysteine biosynthetic pathway. In this report, we show that exogenouslly supplied [(35)S]cysteine accumulates in the mitochondrial fraction and is taken up into isolated mitochondria for in organello protein synthesis. Analysis of cysteine uptake by isolated mitochondria and mitoplasts indicates that cysteine is transported by multiple facilitated mechanisms that operate in a concentration gradient-dependent manner. In addition, cysteine uptake is dependent mainly on the ΔpH across the inner membrane. The rates of mitochondrial cysteine transport can be mildly altered by specific metabolites in the cyanide detoxification-linked sulfide oxidation, but not by most substrates and products of the cysteine biosynthetic pathway. Based on these results, we propose that the transport of cysteine plays a pivotal role in regulating cellular cysteine biosynthesis as well as modulating the availability of sulfur for mitochondrial metabolism.

  9. Mitochondrial OXA Translocase Plays a Major Role in Biogenesis of Inner-Membrane Proteins.

    Science.gov (United States)

    Stiller, Sebastian B; Höpker, Jan; Oeljeklaus, Silke; Schütze, Conny; Schrempp, Sandra G; Vent-Schmidt, Jens; Horvath, Susanne E; Frazier, Ann E; Gebert, Natalia; van der Laan, Martin; Bohnert, Maria; Warscheid, Bettina; Pfanner, Nikolaus; Wiedemann, Nils

    2016-05-10

    The mitochondrial inner membrane harbors three protein translocases. Presequence translocase and carrier translocase are essential for importing nuclear-encoded proteins. The oxidase assembly (OXA) translocase is required for exporting mitochondrial-encoded proteins; however, different views exist about its relevance for nuclear-encoded proteins. We report that OXA plays a dual role in the biogenesis of nuclear-encoded mitochondrial proteins. First, a systematic analysis of OXA-deficient mitochondria led to an unexpected expansion of the spectrum of OXA substrates imported via the presequence pathway. Second, biogenesis of numerous metabolite carriers depends on OXA, although they are not imported by the presequence pathway. We show that OXA is crucial for the biogenesis of the Tim18-Sdh3 module of the carrier translocase. The export translocase OXA is thus required for the import of metabolite carriers by promoting assembly of the carrier translocase. We conclude that OXA is of central importance for the biogenesis of the mitochondrial inner membrane.

  10. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

    International Nuclear Information System (INIS)

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 μM) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca2+ efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP+ transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: → We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. → GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. → These actions could be

  11. Feline immunodeficiency virus decreases cell-cell communication and mitochondrial membrane potential.

    OpenAIRE

    Danave, I R; Tiffany-Castiglioni, E; Zenger, E; Barhoumi, R.; Burghardt, R C; Collisson, E W

    1994-01-01

    The in vitro effects of viral replication on mitochondrial membrane potential (MMP) and gap junctional intercellular communication (GJIC) were evaluated as two parameters of potential cellular injury. Two distinct cell types were infected with the Petaluma strain of feline immunodeficiency virus (FIV). Primary astroglia supported acute FIV infection, resulting in syncytia within 3 days of infection, whereas immortalized Crandell feline kidney (CRFK) cells of epithelial origin supported persis...

  12. Apricot melanoidins prevent oxidative endothelial cell death by counteracting mitochondrial oxidation and membrane depolarization.

    Directory of Open Access Journals (Sweden)

    Annalisa Cossu

    Full Text Available The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs is the key step for the onset and progression of cardiovascular diseases (CVD, therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP, while the mitochondrial membrane potential (MMP was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress.

  13. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria.

    Science.gov (United States)

    Hoppins, Suzanne; Collins, Sean R; Cassidy-Stone, Ann; Hummel, Eric; Devay, Rachel M; Lackner, Laura L; Westermann, Benedikt; Schuldiner, Maya; Weissman, Jonathan S; Nunnari, Jodi

    2011-10-17

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane-associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria.

  14. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    Science.gov (United States)

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. PMID:24412217

  15. Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host cell metabolism.

    Directory of Open Access Journals (Sweden)

    Deborah Lai

    Full Text Available Papillomavirus E2 proteins are predominantly retained in the nuclei of infected cells, but oncogenic (high-risk HPV-18 and 16 E2 can shuttle between the host nucleus and cytoplasm. We show here that cytoplasmic HPV-18 E2 localizes to mitochondrial membranes, and independent mass spectrometry analyses of the E2 interactome revealed association to the inner mitochondrial membrane including components of the respiratory chain. Mitochondrial E2 association modifies the cristae morphology when analyzed by electron microscopy and increases production of mitochondrial ROS. This ROS release does not induce apoptosis, but instead correlates with stabilization of HIF-1α and increased glycolysis. These mitochondrial functions are not shared by the non-oncogenic (low-risk HPV-6 E2 protein, suggesting that modification of cellular metabolism by high-risk HPV E2 proteins could play a role in carcinogenesis by inducing the Warburg effect.

  16. The oxidized phospholipid PazePC promotes permeabilization of mitochondrial membranes by Bax.

    Science.gov (United States)

    Lidman, Martin; Pokorná, Šárka; Dingeldein, Artur P G; Sparrman, Tobias; Wallgren, Marcus; Šachl, Radek; Hof, Martin; Gröbner, Gerhard

    2016-06-01

    Mitochondria play a crucial role in programmed cell death via the intrinsic apoptotic pathway, which is tightly regulated by the B-cell CLL/lymphoma-2 (Bcl-2) protein family. Intracellular oxidative stress causes the translocation of Bax, a pro-apoptotic family member, to the mitochondrial outer membrane (MOM) where it induces membrane permeabilization. Oxidized phospholipids (OxPls) generated in the MOM during oxidative stress directly affect the onset and progression of mitochondria-mediated apoptosis. Here we use MOM-mimicking lipid vesicles doped with varying concentrations of 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), an OxPl species known to significantly enhance Bax-membrane association, to investigate three key aspects of Bax's action at the MOM: 1) induction of Bax pores in membranes without additional mediator proteins, 2) existence of a threshold OxPl concentration required for Bax-membrane action and 3) mechanism by which PazePC disturbs membrane organization to facilitate Bax penetration. Fluorescence leakage studies revealed that Bax-induced leakage, especially its rate, increased with the vesicles' PazePC content without any detectable threshold neither for OxPl nor Bax. Moreover, the leakage rate correlated with the Bax to lipid ratio and the PazePC content. Solid state NMR studies and calorimetric experiments on the lipid vesicles confirmed that OxPl incorporation disrupted the membrane's organization, enabling Bax to penetrate into the membrane. In addition, 15N cross polarization (CP) and insensitive nuclei enhanced by polarization transfer (INEPT) MAS NMR experiments using uniformly (15)N-labeled Bax revealed dynamically restricted helical segments of Bax embedded in the membrane, while highly flexible protein segments were located outside or at the membrane surface. PMID:26947183

  17. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1

    Directory of Open Access Journals (Sweden)

    Elena A. Matveeva

    2015-10-01

    Full Text Available In this study we show that binding of mitochondria to vimentin intermediate filaments (VIF is regulated by GTPase Rac1. The activation of Rac1 leads to a redoubling of mitochondrial motility in murine fibroblasts. Using double-mutants Rac1(G12V, F37L and Rac1(G12V, Y40H that are capable to activate different effectors of Rac1, we show that mitochondrial movements are regulated through PAK1 kinase. The involvement of PAK1 kinase is also confirmed by the fact that expression of its auto inhibitory domain (PID blocks the effect of activated Rac1 on mitochondrial motility. The observed effect of Rac1 and PAK1 kinase on mitochondria depends on phosphorylation of the Ser-55 of vimentin. Besides the effect on motility Rac1 activation also decreases the mitochondrial membrane potential (MMP which is detected by ∼20% drop of the fluorescence intensity of mitochondria stained with the potential sensitive dye TMRM. One of important consequences of the discovered regulation of MMP by Rac1 and PAK1 is a spatial differentiation of mitochondria in polarized fibroblasts: at the front of the cell they are less energized (by ∼25% than at the rear part.

  18. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    OpenAIRE

    Sutapa Mukherjee; Luna Samanta; Anita Roy; Shravani Bhanja; Chainy, Gagan B. N.

    2014-01-01

    Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP) and altered antioxidant defenses in ...

  19. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells

    OpenAIRE

    Premkumar, Daniel R.; Jane, Esther P.; Pollack, Ian F.

    2014-01-01

    Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited c...

  20. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    Science.gov (United States)

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification.

  1. Lipid, membrane, and mitochondrial characteristics of Ustilago maydis following exposure to ergosterol biosynthesis inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Waterfield, W.F. III

    1986-01-01

    Pencoazole at 0.5 ..mu..g/ml inhibited ergosterol biosynthesis in U. maydis. Polar lipids of sporidia grown with 0.5 ..mu..g/ml penconazole for 7.5 or 22 hr or 1.0 ..mu..g/ml fenarimol for 7.5 hr contained more 18:2 than 18:1 fatty acids. There was usually more 18:1 than 18:2 fatty acids in polar lipids of untreated sporidia but this ratio was influenced by culture cell density. The high 18:2 to 18:1 ratio in the polar lipids from penconazole grown cells was unaffected by cell density. There was an increase in free fatty acids and these were enriched with 18:2 members in cells grown with 0.5 ..mu..g/ml penconazole for 22 hr. Unsaturation of triglycerides fatty acids did not differ appreciably from that of untreated sporidia. Untreated WT U. maydis protoplasts lysed more slowly in 0.3 M sorbitol than those prepared from WT sporidia grown for 16 hr with 1.0 ..mu..g/ml penconazole or 2.0 ..mu..g/ml fenarimol or from untreated erg-40 sporidia. Protoplasts were more permeable to crystal violet than were those from untreated WT sporidia. Mitochondria from untreated WT sporidia oxidizing pyruvate plus malate or succinate yielded higher ADP/O rations than mitochondria from erg-40 or penconazole grown WT sporidia. The mitochondrial ATPase of control cells had a Km of 0.8 mM ATP whereas the mitochondrial ATPase of penconazole grown WT and erg-40 had a Km value of 3.7 and 3.2 mM ATP, respectively. When the mitochondrial catalytic subunit of the ATPase from these mitochondria were solubilized, the Km did not differ. These studies suggest that changes in sterols and membrane fatty acids resulting from treatments with EBI fungicides cause increased membrane fluidity which affects membrane stability, permeability and activity of the mitochondrial ATPase.

  2. Calpeptin, not calpain, directly inhibits an ion channel of the inner mitochondrial membrane.

    Science.gov (United States)

    Derksen, Maria; Vorwerk, Christian; Siemen, Detlef

    2016-05-01

    The permeability transition pore (PTP) of inner mitochondrial membranes is a large conductance pathway for ions up to 1500 Da which opening is responsible for ion equilibration and loss of membrane potential in apoptosis and thus in several neurodegenerative diseases. The PTP can be regulated by the Ca(2+)-activated mitochondrial K channel (BK). Calpains are Ca(2+)-activated cystein proteases; calpeptin is an inhibitor of calpains. We wondered whether calpain or calpeptin can modulate activity of PTP or BK. Patch clamp experiments were performed on mitoplasts of rat liver (PTP) and of an astrocytoma cell line (BK). Channel-independent open probability (P o) was determined (PTP) and, taking into account the number of open levels, NPo by single channel analysis (BK). We find that PTP in the presence of Ca(2+) (200 μM) is uninfluenced by calpain (13 nM) and shows insignificant decrease by the calpain inhibitor calpeptin (1 μM). The NPo of the BK is insensitive to calpain (54 nM), too. However, it is significantly and reversibly inhibited by the calpain inhibitor calpeptin (IC50 = 42 μM). The results agree with calpeptin-induced activation of the PTP via inhibition of the BK. Screening experiments with respirometry show calpeptin effects, fitting to inhibition of the BK by calpeptin, and strong inhibition of state 3 respiration. PMID:26108743

  3. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    Science.gov (United States)

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa. PMID:17719569

  4. Changes of proton transportation across the inner mitochondrial membrane and H+-ATPase in endotoxic shock rats

    Institute of Scientific and Technical Information of China (English)

    LU Song-min 陆松敏; SONG Shuang-ming 宋双明; LIU Jian-cang 刘建仓; YANG He-ming 杨鹤鸣; LI Ping 李萍; WANG Zheng-guo 王正国

    2003-01-01

    Objective: To investigate the changes of proton transportation across the inner mitochondrial membrane (IMM) and H+-ATPase of hepatocytes in endotoxic shock rats.Methods: Endotoxin from E.Coil of 5.0 mg/kg or saline of 1 ml/kg was injected into the femoral vein.The rats were sacrificed pre-injection and 1, 3, 5, 8 hours after injection, and plasma and liver tissue samples were collected respectively.The liver tissue samples were used for preparation of mitochondria and submitochondrial particles (SMPs).The proton-translocation of SMPs and H+-ATPase, phospholipase A2 (PLA2) activities and malondialdehyde (MDA) content, membrane fluidities of different level of mitochondria membrane and plasma MDA content were assayed.Results: (1) Five hours after E.Coli.O111B4 injection, the maximum fluorescence quenching ACMA after adding ATP, nicotinamide adenin dinucleoacid hydrogen (NADH), and the succinate were significantly decreased (P<0.05).The time of maximum fluorescent quenching and the half time of fluorescent quenching were significantly prolonged (P<0.01), especially when NADH was used as a substrate.(2) The mitochondrial H+-ATPase activity was significantly increased at early stage of endotoxic shock (P<0.05), and significantly decreased at late stage of endotoxic shock (P<0.01).(3) The mitochondrial membrane bound PLA2 activity, plasmal and mitochondrial MDA content were significantly increased and succinate dehydrogenase (SDH) activity of mitochondria decreased markedly in endotoxic shock rats (P<0.05).(4) The mitochondrial membrane fluidity of different lipid regions was decreased, especially in the head of phospholipid.Conclusions: Proton transportation across IMM and mitochondrial H+-ATPase activity are significantly decreased in endotoxic shock.

  5. Supplementation of T3 Recovers Hypothyroid Rat Liver Cells from Oxidatively Damaged Inner Mitochondrial Membrane Leading to Apoptosis

    Directory of Open Access Journals (Sweden)

    Sutapa Mukherjee

    2014-01-01

    Full Text Available Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation.

  6. Therapeutic Modulation of Apoptosis: Targeting the BCL-2 Family at the Interface of the Mitochondrial Membrane

    Science.gov (United States)

    Nemec, Kathleen N.

    2008-01-01

    A vast portion of human disease results when the process of apoptosis is defective. Disorders resulting from inappropriate cell death range from autoimmune and neurodegenerative conditions to heart disease. Conversely, prevention of apoptosis is the hallmark of cancer and confounds the efficacy of cancer therapeutics. In the search for optimal targets that would enable the control of apoptosis, members of the BCL-2 family of anti- and pro-apoptotic factors have figured prominently. Development of BCL-2 antisense approaches, small molecules, and BH3 peptidomimetics has met with both success and failure. Success-because BCL-2 proteins play essential roles in apoptosis. Failure-because single targets for drug development have limited scope. By examining the activity of the BCL-2 proteins in relation to the mitochondrial landscape and drawing attention to the significant mitochondrial membrane alterations that ensue during apoptosis, we demonstrate the need for a broader based multi-disciplinary approach for the design of novel apoptosis-modulating compounds in the treatment of human disease. PMID:18972587

  7. Steady-state coupling of four membrane systems in mitochondrial oxidative phosphorylation.

    Science.gov (United States)

    Hill, T L

    1979-05-01

    According to Alexandre, Reynafarje, and Lehninger, four different membrane systems are involved, with definite stoichiometry, in the mitochondrial synthesis of ATP by electron transport, via proton transport. We adopt this model and pursue some of its thermodynamic consequences. At steady state, each of the four systems must have the same flux J through the membrane and the overall thermodynamic force X for oxidative phosphorylation is the sum of the four separate forces. From these properties, using an empirical linear flux-force relation for each system, it is easy to obtain J as a function of X. In turn, X depends on the inside [NAD+]/[NADH] and the outside [ATP]/[ADP][Pi] quotients (and on the pH inside). Thus, J is related to these quotients. The relationship we derive is similar to that described by Erecińska and Wilson, as deduced from a quite different model of oxidative phosphorylation. Proton transport is involved explicitly in three of the four systems of the present model. However, because of the steady-state stoichiometric coupling of the four systems, proton transport does not appear in the overall reaction. On the other hand, Erecińska and Wilson use, in their model, a direct connection between electron transport and ATP synthesis. The present paper demonstrates that J can be related to the quotients mentioned above without this direct connection. PMID:287064

  8. Mitochondrial Ca(2+) uniporter (MCU)-dependent and MCU-independent Ca(2+) channels coexist in the inner mitochondrial membrane.

    Science.gov (United States)

    Bondarenko, Alexander I; Jean-Quartier, Claire; Parichatikanond, Warisara; Alam, Muhammad Rizwan; Waldeck-Weiermair, Markus; Malli, Roland; Graier, Wolfgang F

    2014-07-01

    A protein referred to as CCDC109A and then renamed to mitochondrial calcium uniporter (MCU) has recently been shown to accomplish mitochondrial Ca(2+) uptake in different cell types. In this study, we investigated whole-mitoplast inward cation currents and single Ca(2+) channel activities in mitoplasts prepared from stable MCU knockdown HeLa cells using the patch-clamp technique. In whole-mitoplast configuration, diminution of MCU considerably reduced inward Ca(2+) and Na(+) currents. This was accompanied by a decrease in occurrence of single channel activity of the intermediate conductance mitochondrial Ca(2+) current (i-MCC). However, ablation of MCU yielded a compensatory 2.3-fold elevation in the occurrence of the extra large conductance mitochondrial Ca(2+) current (xl-MCC), while the occurrence of bursting currents (b-MCC) remained unaltered. These data reveal i-MCC as MCU-dependent current while xl-MCC and b-MCC seem to be rather MCU-independent, thus, pointing to the engagement of at least two molecularly distinct mitochondrial Ca(2+) channels.

  9. Cockayne syndrome group B protein promotes mitochondrial DNA stability by supporting the DNA repair association with the mitochondrial membrane

    DEFF Research Database (Denmark)

    Aamann, Maria Diget; Sorensen, Martin M; Hvitby, Christina Poulsen;

    2010-01-01

    Cockayne syndrome (CS) is a human premature aging disorder associated with severe developmental deficiencies and neurodegeneration, and phenotypically it resembles some mitochondrial DNA (mtDNA) diseases. Most patients belong to complementation group B, and the CS group B (CSB) protein plays a role...

  10. The Novel Tail-anchored Membrane Protein Mff Controls Mitochondrial and Peroxisomal Fission in Mammalian Cells

    OpenAIRE

    Gandre-Babbe, Shilpa; van der Bliek, Alexander M.

    2008-01-01

    Few components of the mitochondrial fission machinery are known, even though mitochondrial fission is a complex process of vital importance for cell growth and survival. Here, we describe a novel protein that controls mitochondrial fission. This protein was identified in a small interfering RNA (siRNA) screen using Drosophila cells. The human homologue of this protein was named Mitochondrial fission factor (Mff). Mitochondria of cells transfected with Mff siRNA form a closed network similar t...

  11. Inner-membrane proteins PMI/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways

    OpenAIRE

    Rival, Thomas; Macchi, Marc; Arnauné-Pelloquin, Laetitia; Poidevin, Mickael; Maillet, Frédéric; Richard, Fabrice; Fatmi, Ahmed; Belenguer, Pascale; Royet, Julien

    2011-01-01

    This report identifies Drosophila PMI and its human ortholog TMEM11 as novel regulators of mitochondrial morphogenesis. PMI and TMEM11 are inner membrane proteins that control mitochondria dynamics independently of the DRP-1/MFN-1 pathways.

  12. A method of determining electrical potential gradient across mitochondrial membrane in perfused rat hearts.

    Science.gov (United States)

    Wan, B; Doumen, C; Duszynski, J; Salama, G; LaNoue, K F

    1993-08-01

    The electrical potential gradient across the mitochondrial membrane (delta psi m) in perfused rat hearts was estimated by calculating the equilibrium distribution of the lipophilic cation tetraphenylphosphonium (TPP+), using measured kinetic constants of uptake and release of TPP+. First-order rate constants of TPP+ uptake were measured during 30-min perfusions of intact rat hearts with tracer amounts (5.0 nM) of tritium-labeled TPP+ ([3H]TPP+) in the perfusate. This was followed by a 30-min washout, during which the first-order rate constant of efflux was estimated. Values of [3H]TPP+ outside the heart and total [3H]TPP+ inside the heart at equilibrium were calculated. From this information and separately estimated time-averaged plasma membrane potentials (delta psi c) it was possible to calculate free cytosolic [3H]TPP+ at equilibrium. It was also possible to calculate free intramitochondrial [3H]TPP+ at equilibrium as the difference between total tissue [3H]TPP+ minus free cytosolic TPP+ and the sum of all the bound [3H]TPP+. Bound [3H]TPP+ was determined from [3H]TPP+ binding constants measured in separate experiments, using both isolated mitochondria and isolated cardiac myocytes under conditions where both delta psi m and delta psi c were zero. Delta psi m was calculated from the intramitochondrial and cytosolic free TPP+ concentrations using the Nernst equation. Values of delta psi m were 144.9 +/- 2.0 mV in hearts perfused with 5 mM pyruvate and 118.2 +/- 1.4 mV in hearts perfused with 11 mM glucose, in good agreement with delta psi m obtained from isolated rat heart mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368347

  13. Binding of fluorescent lanthanides to rat liver mitochondrial membranes and calcium ion-binding proteins.

    Science.gov (United States)

    Mikkelsen, R B; Wallach, D F

    1976-05-21

    (1) Tb3+ binding to mitochondrial membranes can be monitored by enhanced ion fluorescence at 545 nm with excitation at 285 nm. At low protein concentrations (less than 30 mug/ml) no inner filter effects are observed. (2) This binding is localized at the external surface of the inner membrane and is unaffected by inhibitors of respiration or oxidative phosphorylation. (3) A soluble Ca2+ binding protein isolated according to Lehninger, A.L. ((1971) Biochem. Biophys. Res. Commun. 42, 312-317) also binds Tb3+ with enhanced ion fluorescence upon excitation at 285 nm. The excitation spectrum of the isolated protein and of the intact mitochondria are indicative of an aromatic amino acid at the cation binding site. (4) Further characterization of the Tb3+-protein interaction revealed that there is more than one binding site per protein molecule and that these sites are clustered (less than 20 A). Neuraminidase treatment or organic solvent extraction of the protein did not affect fluorescent Tb3+ binding. (5) pH dependency studies of Tb3+ binding to the isolated protein or intact mitochondria demonstrated the importance of an ionizable group of pK greater than 6. At pH less than 7.5 the amount of Tb3+ bound to the isolated protein decreased with increase in pH as monitored by Tb3+ fluorescence. With intact mitochondria the opposite occurred with a large increase in Tb3+ fluorescence at higher pH. This increase was not observed when the mitochondria were preincubated with antimycin A and rotenone. PMID:6061

  14. Targeting of a Tail-anchored Protein to Endoplasmic Reticulum and Mitochondrial Outer Membrane by Independent but Competing Pathways

    OpenAIRE

    Borgese, Nica; Gazzoni, Ilaria; Barberi, Massimo; Colombo, Sara; Pedrazzini, Emanuela

    2001-01-01

    Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b5, a TA protein existing in two, MOM or ER localized, versions. Substi...

  15. Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMP-dependent biogenesis pathway.

    Science.gov (United States)

    Sinzel, Monika; Tan, Tao; Wendling, Philipp; Kalbacher, Hubert; Özbalci, Cagakan; Chelius, Xenia; Westermann, Benedikt; Brügger, Britta; Rapaport, Doron; Dimmer, Kai Stefan

    2016-07-01

    Mitochondria are separated from the remainder of the eukaryotic cell by the mitochondrial outer membrane (MOM). The MOM plays an important role in different transport processes like lipid trafficking and protein import. In yeast, the ER-mitochondria encounter structure (ERMES) has a central, but poorly defined role in both activities. To understand the functions of the ERMES, we searched for suppressors of the deficiency of one of its components, Mdm10, and identified a novel mitochondrial protein that we named Mdm10 complementing protein 3 (Mcp3). Mcp3 partially rescues a variety of ERMES-related phenotypes. We further demonstrate that Mcp3 is an integral protein of the MOM that follows a unique import pathway. It is recognized initially by the import receptor Tom70 and then crosses the MOM via the translocase of the outer membrane. Mcp3 is next relayed to the TIM23 translocase at the inner membrane, gets processed by the inner membrane peptidase (IMP) and finally integrates into the MOM. Hence, Mcp3 follows a novel biogenesis route where a MOM protein is processed by a peptidase of the inner membrane. PMID:27226123

  16. Effect of Qingkailing injection on rat embryonic neuronal apoptosis and mitochondrial membrane potential

    Institute of Scientific and Technical Information of China (English)

    He Pang; Lingqun Zhu; Shuoren Wang; Fuing Niu; Wei Cui

    2006-01-01

    BACKGROUND:The decrease of mitochondrial membrane potential(MMP)is an irreversible marker of neuronal apoptosis during ischemla/reperfusion(I/R)injury of brain tissue.Qingkaiing injection is proved to have protective effect on neuronal ischemic injury.Whether inhibiting the decrease of MMP can inhibit apoptosis when I/R injury of brain tissue occurs is unclear.OBJECTIVE:To observe the effect of Qingkaiing injection on rat embryonic hippocampal neuronal apoptosis,MMP and mitochondroal activity after hypoxia/hypoglycamia and reoxygenation,and make a comparison of therapeutic effect on I/R injury between Oingkaiing injection and nimodipine.DESIGN:Observation and controlled trial.SETTING:Peropheral Vascular Center,Dongzhimen Hospital, Beijing University of Chinese Medicine;the Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing Key Laboratory.Dongzhimen Hospital,Beijing University of Chinese Medicine.MATERIALS:Eight Wistar rats at embryonic 18 days,provided by Breeding Farm of Experimental Animals,Chinese Academy of Medical Sciences(Permission No.SCXK-11-00-0006) were employed in this trial.Qingkaiing injection (Pharmaceutical Factory of Beijing University of Chinese Medicine,Batch No.213710A,10 Ml each,baicalin 50 g and total nitrogen 25 mg included)and nimodipine(ICN company,USA)were also used.METHODS:This experiment was carried out in the Key Laboratory of Chinese Internal Medicine of Ministry of Education,Dongzhimen Hospital,Beijing University of Chinese Medicine and Beijing Key Laboratory from January 2003 to December 2005.①The pregnant rats were anesthetized and fetal rats were isolated for culturong fetal rat hippocampal neurons.The neurons cultured for 10 days were used for expedment.The neurons were divided into 5 groups:model group,control group,nimodipine group.Qingkailing high-dose group and Oingkailing low-dose group.Hypoxia/hypoglycemia and reoxygenation models served as model group,and they were used to simulate reperfusion

  17. Fibrates inhibit the apoptosis of Batten disease lymphoblast cells via autophagy recovery and regulation of mitochondrial membrane potential.

    Science.gov (United States)

    Hong, Minho; Song, Ki Duk; Lee, Hak-Kyo; Yi, SunShin; Lee, Yong Seok; Heo, Tae-Hwe; Jun, Hyun Sik; Kim, Sung-Jo

    2016-03-01

    Batten disease (BD; also known as juvenile neuronal ceroid lipofuscinosis) is a genetic disorder inherited as an autosomal recessive trait and is characterized by blindness, seizures, cognitive decline, and early death resulting from the inherited mutation of the CLN3 gene. Mitochondrial oxidative stress, endoplasmic reticulum (ER) stress, disrupted autophagy, and enhanced apoptosis have been suggested to play a role in BD pathogenesis. Fibrates, a class of lipid-lowering drugs that induce peroxisome proliferator-activated receptor-α (PPAR-α) activation, are the most commonly used PPAR agonists. Assuming that fibrates have a neuroprotective effect, we studied the effects of fibrates, fenofibrate, bezafibrate, and gemfibrozil on apoptosis, depolarization of mitochondrial membrane, and defective autophagy in BD lymphoblast cells. The viability of fibrate-treated BD lymphoblast cells increased to levels of normal lymphoblast cells. In addition, treatment with fibrates inhibited depolarization of mitochondrial membrane potential in BD lymphoblast cells. Defective autophagy in BD lymphoblast cells was normalized when treated with fibrates as indicated by increased acridine orange staining. The recovery of autophagy in BD lymphoblast cells is most likely attributed to the upregulation of autophagy proteins, lysosomal-associated membrane protein 1 (LAMP1), and LC3 I/II, after treatment with fibrates. This study therefore suggests that fibrates may have a therapeutic potential against BD. PMID:26659390

  18. Inhibition of mitochondrial permeability transition by low pH is associated with less extensive membrane protein thiol oxidation.

    Science.gov (United States)

    Teixeira, B M; Kowaltowski, A J; Castilho, R F; Vercesi, A E

    1999-12-01

    Ca2+ and inorganic phosphate-induced mitochondrial swelling and membrane protein thiol oxidation, which are associated with mitochondrial permeability transition, are inhibited by progressively decreasing the incubation medium pH between 7.2 and 6.0. Nevertheless, the detection of mitochondrial H2O2 production under these conditions is increased. Permeability transition induced by phenylarsine oxide, which promotes membrane protein thiol cross-linkage in a process independent of Ca2+ or reactive oxygen species, is also strongly inhibited in acidic incubation media. In addition, we observed that the decreased protein thiol reactivity with phenylarsine oxide or phenylarsine oxide-induced swelling at pH 6.0 is reversed by diethyl pyrocarbonate, in a hydroxylamine-sensitive manner. These results provide evidence that the inhibition of mitrochondrial permeability transition observed at lower incubation medium pH is mediated by a decrease in membrane protein thiol reactivity, related to the protonation of protein histidyl residues. PMID:10841269

  19. Differential effects of insecticides on mitochondrial membrane lfuidity and ATPase activity between the wolf spider and the rice stem borer

    Institute of Scientific and Technical Information of China (English)

    LI Hai-ping; CHANG Jing; FENG Tao; GAO Xi-wu

    2015-01-01

    Differential effects of methamidophos and three pyrethroids on ATPase activity and membrane lfuidity of mitochondria were investigated between the wolf spider (Pirata subpiraticus(Boes. et Str.)) and the rice stem borer (Chilo suppressalis (Walker)). Based on a comparison of LD50values, the toxicities of the tested insecticides were higher to the wolf spider than to the rice stem borer. Cyhalothrin at 1×10–4 mmol L–1 caused inhibition of the mitochondrial Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities, and it’s inhibitions on Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities were signiifcantly higher in the wolf spider (44 and 28%) than in the rice stem borer (19 and 11%). Methamidophos at 1×10–4 mmol L–1 decreased Ca2+-Mg2+-ATPase activity by 16 and 27% in the wolf spider and the rice stem borer, respectively, but no signiifcant effect on the speciifc activity of Na+-K+-ATPase was observed. The DPH (1,6-diphenyl-1,3,5-hexatriene) lfuorescence polarization values of mitochondrial membranes were not signiifcantly affected by methamidophos in either species. However, cyhalothrin and alpha-cyperme-thrin induced the values of DPH polarization of mitochondrial membrane increasing with the concentration of cyhalothrin and alpha-cypermethrin from 20 to 100 µmol L–1 in the rice stem borer and the wolf spider. Effect of ethofenprox on lfuidity of the wolf spider and the rice stem borer was contrary. These results suggest that both inhibition of membrane ATPase and changes of membrane lfuidity could be appended to the action mechanisms of pyrethroid insecticides.

  20. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.

    Science.gov (United States)

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul

    2016-01-01

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances. PMID:26647379

  1. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry

    Science.gov (United States)

    Logan, Angela; Pell, Victoria R.; Shaffer, Karl J.; Evans, Cameron; Stanley, Nathan J.; Robb, Ellen L.; Prime, Tracy A.; Chouchani, Edward T.; Cochemé, Helena M.; Fearnley, Ian M.; Vidoni, Sara; James, Andrew M.; Porteous, Carolyn M.; Partridge, Linda; Krieg, Thomas; Smith, Robin A.J.; Murphy, Michael P.

    2016-01-01

    Summary The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by “click” chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo. PMID:26712463

  2. Assessing the Mitochondrial Membrane Potential in Cells and In Vivo using Targeted Click Chemistry and Mass Spectrometry.

    Science.gov (United States)

    Logan, Angela; Pell, Victoria R; Shaffer, Karl J; Evans, Cameron; Stanley, Nathan J; Robb, Ellen L; Prime, Tracy A; Chouchani, Edward T; Cochemé, Helena M; Fearnley, Ian M; Vidoni, Sara; James, Andrew M; Porteous, Carolyn M; Partridge, Linda; Krieg, Thomas; Smith, Robin A J; Murphy, Michael P

    2016-02-01

    The mitochondrial membrane potential (Δψm) is a major determinant and indicator of cell fate, but it is not possible to assess small changes in Δψm within cells or in vivo. To overcome this, we developed an approach that utilizes two mitochondria-targeted probes each containing a triphenylphosphonium (TPP) lipophilic cation that drives their accumulation in response to Δψm and the plasma membrane potential (Δψp). One probe contains an azido moiety and the other a cyclooctyne, which react together in a concentration-dependent manner by "click" chemistry to form MitoClick. As the mitochondrial accumulation of both probes depends exponentially on Δψm and Δψp, the rate of MitoClick formation is exquisitely sensitive to small changes in these potentials. MitoClick accumulation can then be quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach enables assessment of subtle changes in membrane potentials within cells and in the mouse heart in vivo.

  3. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    Science.gov (United States)

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX. PMID:24173598

  4. Ionomycin-induced Ca2+ overload is not accompanied by mitochondrial membrane potential dissipation in murine pro-B cells

    OpenAIRE

    Gabriela Ildiko Zonda; Ancuta Goriuc; Marcel Costuleanu

    2010-01-01

    There are extremely few data concerning the involvement of Ca2+ fluxes in the apoptosis of the pro-B cell type Ba/F3. Thus, we aimed the characterization of ionomycin-induced effects on Ba/F3 cells in vitro. Our obtained data show that cytosolic Ca2+ increased in Ba/F3 cells by 1 μM ionomycin in the presence of 1 mM Ca2+ for 24 hours did not induced significant effects on the mitochondrial membrane potential as compared with control cells. The same effects were also associated by ...

  5. Mitochondrial membrane potential is a suitable candidate for assessing pollution toxicity in fish

    International Nuclear Information System (INIS)

    Fish inhabiting polluted estuaries are highly exposed to severe stress characterized by an oxidant-antioxidant imbalance. The aim of the study was to explore the use of stress parameters such as adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio, mitochondrial membrane potential (Δψm) and total protein expression patterns as biomarkers against oxidant exposures in hepatocytes of Mugil cephalus living in either a contaminated (Test; Ennore) or uncontaminated (Control; Kovalam) estuary. Earlier, the pollutant stress impact was determined through light and electron microscopy studies. The ATP/ADP ratio was measured using high performance liquid chromatography; Δψm by fluorescent probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethyl benzimidazolcarbocyanine iodide (JC-1) dye and total protein expression patterns by protein profiling. The preponderance of stress impact was confirmed through microscopy studies that featured cytological alterations, disturbances in the surface morphology and in the cell organelles at the ultrastructural levels. Hepatocytes of test fish demonstrated a decrease in ATP and an increase in ADP and thereby alteration in ATP/ADP ratio (p < 0.05; 20.75%). A significant disturbance (p < 0.05; 26.57%) in Δψm with a ratio of J-aggregates/JC-1 monomer of 1 was observed for test fish hepatocytes compared to control group with a J-aggregates/JC-1 monomer ratio of 1.5. Quantitative assessment of protein expression levels also revealed enhanced induction of both low and high molecular weight proteins in test fish hepatocytes. The findings highlight the use of these parameters as the highly sensitive biomarkers in response to contaminant exposure compared to the routinely used antioxidant and oxidant stress parameters in biomonitoring programs. Among the measured parameters, the determination of Δψm may be suggested as a novel candidate as a biomarker because of its greater specificity and rapid quantitative risk assessment of pollutant

  6. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids

    OpenAIRE

    Rogers, Carlyle; Davis, Barbara; Neufer, P. Darrell; Murphy, Michael P.; Anderson, Ethan J.; Robidoux, Jacques

    2013-01-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused reduction in MIM potential (ΔΨM),...

  7. Correlation between fluidising effects on phospholipid membranes and mitochondrial respiration of propofol and p-nitrosophenol homologues.

    Science.gov (United States)

    Momo, Federico; Fabris, Sabrina; Wisniewska, Anna; Fiore, Cristina; Bindoli, Alberto; Scutari, Guido; Stevanato, Roberto

    2003-03-25

    Nitrosopropofol (2-6-diisopropyl-4-nitrosophenol) has dramatic consequences for respiration, ATP synthesis and the transmembrane potential of isolated rat liver mitochondria at concentrations at which propofol (2-6-diisopropylphenol) does not cause any apparent effects. These results correlate well with the observation that nitrosopropofol is also a stronger perturbing agent of phospholipid membranes. In this paper we verify the possible biological activity of different phenols and nitrosophenols on mitochondrial respiration. We then discuss their interactions with phospholipid liposomes, studied with differential scanning calorimetry, spin labelling techniques and UV-Vis spectrophotometry, in order to obtain information on drug distribution and the modifications they impose on lipid bilayer. The results of the experiments performed on mitochondria and model membranes prove an interesting correlation between the effects of the molecules on both systems.

  8. Photoactive mitochondria: in vivo transfer of a light-driven proton pump into the inner mitochondrial membrane of Schizosaccharomyces pombe.

    Science.gov (United States)

    Hoffmann, A; Hildebrandt, V; Heberle, J; Büldt, G

    1994-09-27

    The light-driven proton pump bacteriorhodopsin (bR) from Halobacterium salinarium has been genetically transferred into the inner mitochondrial membrane (IM) of the eukaryotic cell Schizosaccharomyces pombe, where the archaebacterial proton pump replaces or increases the proton gradient usually formed by the respiratory chain. For targeting and integration, as well as for the correct orientation of bR in the IM, the bacterioopsin gene (bop) was fused to signal sequences of IM proteins. Northern and Western blot analysis proved that all hybrid gene constructs containing the bop gene and a mitochondrial signal sequence were expressed and processed to mature bR. Fast transient absorption spectroscopy showed photocycle activity of bR integrated in the IM by formation of the M intermediate. Experiments with the pH-sensitive fluorescence dye 2',7'-bis(2-carboxyethyl)-5 (and -6)-carboxyfluorescein revealed bR-mediated proton pumping from the mitochondrial matrix into the intermembrane space. Glucose uptake measurements under anaerobic conditions showed that yeast cells containing photoactive mitochondria need less sugar under illumination. In summary, our experiments demonstrate the functional genetic transfer of a light energy converter to a naturally nonphotoactive eukaryotic organism. PMID:7937771

  9. A model of mitochondrial creatine kinase binding to membranes: adsorption constants, essential amino acids and the effect of ionic strength

    DEFF Research Database (Denmark)

    Fedosov, Sergey; Belousova, Lubov; Plesner, Igor

    1993-01-01

    of mitCK adsorption capacity by another method at pH 7.4, when the enzyme is almost protonated, gave View the MathML source. The effect of ionic strength on mitCK adsorption may be described in terms of Debye-Hückel's theory for activity coefficients assuming the charges of the interacting species......The quantitative aspects of mitochondrial creatinekinase (mitCK) binding to mitochondrial membranes were investigated. A simple adsorption and binding model was used for data fitting, taking into account the influence of protein concentration, pH, ionic strength and substrate concentration...... on the enzyme adsorption. An analysis of our own data as well as of the data from the literature is consistent with the adsorption site of the octameric mitCK being composed of 4 amino acid residues with pK = 8.8 in the free enzyme. The pK value changes to 9.8 upon binding of the protein to the membrane. Lysine...

  10. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    International Nuclear Information System (INIS)

    The hepatic plasma membrane fatty acid-binding protein (h-FABPPM) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABPPM have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABPPM reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of [3H]oleate but not that of [35S]sulfobromophthalein or [14C]taurocholate. The inhibition of oleate uptake produced by anti-h-FABPPM can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABPPM and mGOT are closely related

  11. Plasma membrane fatty acid-binding protein and mitochondrial glutamic-oxaloacetic transaminase of rat liver are related

    Energy Technology Data Exchange (ETDEWEB)

    Berk, P.D.; Potter, B.J.; Sorrentino, D.; Zhou, S.L.; Isola, L.M.; Stump, D.; Kiang, C.L.; Thung, S. (Mount Sinai School of Medicine, New York, NY (USA)); Wada, H.; Horio, Y. (Univ. of Osaka (Japan))

    1990-05-01

    The hepatic plasma membrane fatty acid-binding protein (h-FABP{sub PM}) and the mitochondrial isoenzyme of glutamic-oxaloacetic transaminase (mGOT) of rat liver have similar amino acid compositions and identical amino acid sequences for residues 3-24. Both proteins migrate with an apparent molecular mass of 43 kDa on SDS/polyacrylamide gel electrophoresis, have a similar pattern of basic charge isomers on isoelectric focusing, are eluted similarly from four different high-performance liquid chromatographic columns, have absorption maxima at 435 nm under acid conditions and 354 nm at pH 8.3, and bind oleate. Sinusoidally enriched liver plasma membranes and purified h-FABP{sub PM} have GOT enzymatic activity. Monospecific rabbit antiserum against h-FABP{sub PM} reacts on Western blotting with mGOT, and vice versa. Antisera against both proteins produce plasma membrane immunofluorescence in rat hepatocytes and selectively inhibit the hepatocellular uptake of ({sup 3}H)oleate but not that of ({sup 35}S)sulfobromophthalein or ({sup 14}C)taurocholate. The inhibition of oleate uptake produced by anti-h-FABP{sub PM} can be eliminated by preincubation of the antiserum with mGOT; similarly, the plasma membrane immunofluorescence produced by either antiserum can be eliminated by preincubation with the other antigen. These data suggest that h-FABP{sub PM} and mGOT are closely related.

  12. Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission.

    Directory of Open Access Journals (Sweden)

    Stanley C Henry

    Full Text Available The Immunity-Related GTPases (IRG are a family of large GTPases that mediate innate immune responses. Irgm1 is particularly critical for immunity to bacteria and protozoa, and for inflammatory homeostasis in the intestine. Although precise functions for Irgm1 have not been identified, prior studies have suggested roles in autophagy/mitophagy, phagosome remodeling, cell motility, and regulating the activity of other IRG proteins. These functions ostensibly hinge on the ability of Irgm1 to localize to intracellular membranes, such as those of the Golgi apparatus and mitochondria. Previously, it has been shown that an amphipathic helix, the αK helix, in the C-terminal portion of the protein partially mediates membrane binding. However, in absence of αK, there is still substantial binding of Irgm1 to cellular membranes, suggesting the presence of other membrane binding motifs. In the current work, an additional membrane localization motif was found in the form of palmitoylation at a cluster of cysteines near the αK. An Irgm1 mutant possessing alanine to cysteine substitutions at these amino acids demonstrated little residual palmitoylation, yet it displayed only a small decrease in localization to the Golgi and mitochondria. In contrast, a mutant containing the palmitoylation mutations in combination with mutations disrupting the amphipathic character of the αK displayed a complete loss of apparent localization to the Golgi and mitochondria, as well as an overall loss of association with cellular membranes in general. Additionally, Irgm1 was found to promote mitochondrial fission, and this function was undermined in Irgm1 mutants lacking the palmitoylation domain, and to a greater extent in those lacking the αK, or the αK and palmitoylation domains combined. Our data suggest that palmitoylation together with the αK helix firmly anchor Irgm1 in the Golgi and mitochondria, thus facilitating function of the protein.

  13. A Splice-Isoform of Vesicle-associated Membrane Protein-1 (VAMP-1) Contains a Mitochondrial Targeting Signal

    Science.gov (United States)

    Isenmann, Sandra; Khew-Goodall, Yeesim; Gamble, Jennifer; Vadas, Mathew; Wattenberg, Binks W.

    1998-01-01

    Screening of a library derived from primary human endothelial cells revealed a novel human isoform of vesicle-associated membrane protein-1 (VAMP-1), a protein involved in the targeting and/or fusion of transport vesicles to their target membrane. We have termed this novel isoform VAMP-1B and designated the previously described isoform VAMP-1A. VAMP-1B appears to be an alternatively spliced form of VAMP-1. A similar rat splice variant of VAMP-1 (also termed VAMP-1B) has recently been reported. Five different cultured cell lines, from different lineages, all contained VAMP-1B but little or no detectable VAMP-1A mRNA, as assessed by PCR. In contrast, brain mRNA contained VAMP-1A but no VAMP-1B. The VAMP-1B sequence encodes a protein identical to VAMP-1A except for the carboxy-terminal five amino acids. VAMP-1 is anchored in the vesicle membrane by a carboxy-terminal hydrophobic sequence. In VAMP-1A the hydrophobic anchor is followed by a single threonine, which is the carboxy-terminal amino acid. In VAMP-1B the predicted hydrophobic membrane anchor is shortened by four amino acids, and the hydrophobic sequence is immediately followed by three charged amino acids, arginine-arginine-aspartic acid. Transfection of human endothelial cells with epitope-tagged VAMP-1B demonstrated that VAMP-1B was targeted to mitochondria whereas VAMP-1A was localized to the plasma membrane and endosome-like structures. Analysis of C-terminal mutations of VAMP-1B demonstrated that mitochondrial targeting depends both on the addition of positive charge at the C terminus and a shortened hydrophobic membrane anchor. These data suggest that mitochondria may be integrated, at least at a mechanistic level, to the vesicular trafficking pathways that govern protein movement between other organelles of the cell. PMID:9658161

  14. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Musarrat, Javed

    2012-12-01

    Butachlor is a systemic herbicide widely applied on rice, tea, wheat, beans and other crops; however, it concurrently exerts toxic effects on beneficial organisms like earthworms, aquatic invertebrates and other non-target animals including humans. Owing to the associated risk to humans, this chloroacetanilide class of herbicide was investigated with the aim to assess its potential for the (i) interaction with DNA, (ii) mitochondria membrane damage and DNA strand breaks and (iii) cell cycle arrest and necrosis in butachlor treated human peripheral blood mononuclear (PBMN) cells. Fluorescence quenching data revealed the binding constant (Ka=1.2×10(4)M(-1)) and binding capacity (n=1.02) of butachlor with ctDNA. The oxidative potential of butachlor was ascertained based on its capacity of inducing reactive oxygen species (ROS) and substantial amounts of promutagenic 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) adducts in DNA. Also, the discernible butachlor dose-dependent reduction in fluorescence intensity of a cationic dye rhodamine (Rh-123) and increased fluorescence intensity of 2',7'-dichlorodihydro fluorescein diacetate (DCFH-DA) in treated cells signifies decreased mitochondrial membrane potential (ΔΨm) due to intracellular ROS generation. The comet data revealed significantly greater Olive tail moment (OTM) values in butachlor treated PBMN cells vs untreated and DMSO controls. Treatment of cultured PBMN cells for 24h resulted in significantly increased number of binucleated micronucleated (BNMN) cells with a dose dependent reduction in the nuclear division index (NDI). The flow cytometry analysis of annexin V(-)/7-AAD(+) stained cells demonstrated substantial reduction in live population due to complete loss of cell membrane integrity. Overall the data suggested the formation of butachlor-DNA complex, as an initiating event in butachlor-induced DNA damage. The results elucidated the oxidative role of butachlor in intracellular ROS production, and

  15. Assessing the efficacy of vesicle fusion with planar membrane arrays using a mitochondrial porin as reporter

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna; Hansen, Jesper S.; Stibius, Karin B.;

    2011-01-01

    Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We...... reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR)=50 more than 105 FomA proteins could be incorporated...

  16. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-only Protein Bid during TRAIL-induced Apoptosis.

    Science.gov (United States)

    Huang, Kai; Zhang, Jingjing; O'Neill, Katelyn L; Gurumurthy, Channabasavaiah B; Quadros, Rolen M; Tu, Yaping; Luo, Xu

    2016-05-27

    The BH3-only protein Bid is known as a critical mediator of the mitochondrial pathway of apoptosis following death receptor activation. However, since full-length Bid possesses potent apoptotic activity, the role of a caspase-mediated Bid cleavage is not established in vivo In addition, due to the fact that multiple caspases cleave Bid at the same site in vitro, the identity of the Bid-cleaving caspase during death receptor signaling remains uncertain. Moreover, as Bid maintains its overall structure following its cleavage by caspase 8, it remains unclear how Bid is activated upon cleavage. Here, Bid-deficient (Bid KO) colon cancer cells were generated by gene editing, and were reconstituted with wild-type or mutants of Bid. While the loss of Bid blocked apoptosis following treatment by TNF-related apoptosis inducing ligand (TRAIL), this blockade was relieved by re-introduction of the wild-type Bid. In contrast, the caspase-resistant mutant Bid(D60E) and a BH3 defective mutant Bid(G94E) failed to restore TRAIL-induced apoptosis. By generating Bid/Bax/Bak-deficient (TKO) cells, we demonstrated that Bid is primarily cleaved by caspase 8, not by effector caspases, to give rise to truncated Bid (tBid) upon TRAIL treatment. Importantly, despite the presence of an intact BH3 domain, a tBid mutant lacking the mitochondrial targeting helices (α6 and α7) showed diminished apoptotic activity. Together, these results for the first time establish that cleavage by caspase 8 and the subsequent association with the outer mitochondrial membrane are two critical events that activate Bid during death receptor-mediated apoptosis. PMID:27053107

  17. Megaconial muscular dystrophy caused by mitochondrial membrane homeostasis defect, new insights from skeletal and heart muscle analyses.

    Science.gov (United States)

    Vanlander, Arnaud V; Muiño Mosquera, Laura; Panzer, Joseph; Deconinck, Tine; Smet, Joél; Seneca, Sara; Van Dorpe, Jo; Ferdinande, Liesbeth; Ceuterick-de Groote, Chantal; De Jonghe, Peter; Van Coster, Rudy; Baets, Jonathan

    2016-03-01

    Megaconial congenital muscular dystrophy is a disease caused by pathogenic mutations in the gene encoding choline kinase beta (CHKB). Microscopically, the disease is hallmarked by the presence of enlarged mitochondria at the periphery of skeletal muscle fibres leaving the centre devoid of mitochondria. Clinical characteristics are delayed motor development, intellectual disability and dilated cardiomyopathy in half of reported cases. This study describes a patient presenting with the cardinal clinical features, in whom a homozygous nonsense mutation (c.248_249insT; p.Arg84Profs*209) was identified in CHKB and who was treated by heart transplantation. Microscopic evaluation of skeletal and heart muscles typically showed enlarged mitochondria. Spectrophotometric evaluation in both tissues revealed a mild decrease of all OXPHOS complexes. Using BN-PAGE analysis followed by activity staining subcomplexes of complex V were detected in both tissues, indicating incomplete complex V assembly. Mitochondrial DNA content was not depleted in analysed tissues. This is the first report describing the microscopic and biochemical abnormalities in the heart from an affected patient. A likely hypothesis is that the biochemical findings are caused by an abnormal lipid profile in the inner mitochondrial membrane resulting from a defective choline kinase B activity.

  18. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation.

    Directory of Open Access Journals (Sweden)

    Bram J van Raam

    Full Text Available BACKGROUND: Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Deltapsi(m, which is usually generated by the respiratory chain complexes. We investigated the source of Deltapsi(m in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this Deltapsi(m for the generation of ATP. METHODS AND PRINCIPAL FINDINGS: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but Deltapsi(m was still decreased by inhibition of complex III, confirming the role of the respiratory chain in maintaining Deltapsi(m. Complex V did not maintain Deltapsi(m by consumption of ATP, as has previously been suggested for eosinophils. We show that complex III in neutrophil mitochondria can receive electrons from glycolysis via the glycerol-3-phosphate shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were lacking in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercomplex organisation while gaining increased aerobic glycolysis, just like neutrophils. CONCLUSIONS: We show that neutrophils can maintain Deltapsi(m via the glycerol-3-phosphate shuttle, whereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors.

  19. Megaconial muscular dystrophy caused by mitochondrial membrane homeostasis defect, new insights from skeletal and heart muscle analyses.

    Science.gov (United States)

    Vanlander, Arnaud V; Muiño Mosquera, Laura; Panzer, Joseph; Deconinck, Tine; Smet, Joél; Seneca, Sara; Van Dorpe, Jo; Ferdinande, Liesbeth; Ceuterick-de Groote, Chantal; De Jonghe, Peter; Van Coster, Rudy; Baets, Jonathan

    2016-03-01

    Megaconial congenital muscular dystrophy is a disease caused by pathogenic mutations in the gene encoding choline kinase beta (CHKB). Microscopically, the disease is hallmarked by the presence of enlarged mitochondria at the periphery of skeletal muscle fibres leaving the centre devoid of mitochondria. Clinical characteristics are delayed motor development, intellectual disability and dilated cardiomyopathy in half of reported cases. This study describes a patient presenting with the cardinal clinical features, in whom a homozygous nonsense mutation (c.248_249insT; p.Arg84Profs*209) was identified in CHKB and who was treated by heart transplantation. Microscopic evaluation of skeletal and heart muscles typically showed enlarged mitochondria. Spectrophotometric evaluation in both tissues revealed a mild decrease of all OXPHOS complexes. Using BN-PAGE analysis followed by activity staining subcomplexes of complex V were detected in both tissues, indicating incomplete complex V assembly. Mitochondrial DNA content was not depleted in analysed tissues. This is the first report describing the microscopic and biochemical abnormalities in the heart from an affected patient. A likely hypothesis is that the biochemical findings are caused by an abnormal lipid profile in the inner mitochondrial membrane resulting from a defective choline kinase B activity. PMID:26855408

  20. Isolation and characterization of a Ca/sup 2 +/ carrier candidate from calf heart inner mitochondrial membrane

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, A.Y.

    1979-01-01

    A protein was isolated from calf heart inner mitochondrial membrane with the aid of an electron paramagnetic resonance assay based on the relative binding properties of Ca/sup 2 +/, Mn/sup 2 +/, and Mg/sup 2 +/ to the protein. Partial delipidation of the protein was performed by using either the organic solvent extraction procedure or the silicic acid column chromatography. Control experiments indicated that the Ca/sup 2 +/ transport properties of the isolated protein were not due to the contaminating phospholipids. A complete delipidation procedure was developd by using Sephadex LH-20 column chromatography. Further characterization of the physical and chemical properties of the delipidated protein showed that delipidated protein becomes more hydrophobic in the presence of Ca/sup 2 +/ and alkaline pH in the organic solvent extraction experiments. Two possible models of calciphorin-mediated Ca/sup 2 +/ transport in mitochondria are proposed. (PCS)

  1. Effects of transmembrane potential and pH gradient on the cytochrome c-promoted fusion of mitochondrial mimetic membranes.

    Science.gov (United States)

    Kawai, Cintia; Pessoto, Felipe S; Graves, Catharine V; Carmona-Ribeiro, Ana Maria; Nantes, Iseli L

    2013-08-01

    The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pH(out)) of PCPECL liposomes, with an internal pH (pH(in)) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK(a) ~ 6.9). Conversely, ΔpH generated by enhanced pH(in) of PCPECL at a pH(out) of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pH(in) at a pH(out) of 8.0. At bulk acidic pH, ΔΨ generated by Na⁺ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pH(out), the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨ(M) blocks inner mitochondrial membrane fusion during apoptosis.

  2. Three-dimensional organization of the endoplasmic reticulum membrane around the mitochondrial constriction site in mammalian cells revealed by using focused-ion beam tomography.

    Science.gov (United States)

    Ohta, Keisuke; Okayama, Satoko; Togo, Akinobu; Nakamura, Kei-Ichiro

    2014-11-01

    The endoplasmic reticulum (ER) and mitochondria associate at multiple contact sites to form specific domains known as mitochondria-ER associated membranes (MAMs) that play a role in the regulation of various cellular processes such as Ca2+ transfer, autophagy, and inflammation. Recently, it has been suggested that MAMs are also involved in mitochondrial dynamics, especially fission events. Cytological analysis showed that ER tubules were frequently located close to each other in mitochondrial fission sites that accumulate fission-related proteins. Three-dimensional (3D) imaging of ER-mitochondrial contacts in yeast mitochondria by using cryo-electron tomography also showed that ER tubules were attached near the constriction site, which is considered to be a fission site1). MAMs have been suggested to play a role in the initiation of mitochondrial fission, although the molecular relationships between MAMs and the mitochondrial fission process have not been established. Although an ER-mitochondrial membrane association has also been observed at the fission site in mammalian mitochondria, the detailed organization of MAMs around mammalian mitochondria remains to be established. To visualize the 3D distribution of the ER-mitochondrial contacts around the mitochondria, especially around the constriction site in mammalian cells, we attempted 3D structural analysis of the mammalian cytoplasm using high-resolution focused ion-beam scanning electron microscopy (FIB-SEM) tomography, and observed the distribution pattern of ER contacts around the mammalian mitochondrial constriction site.Rat hepatocytes and HeLa cells were used. Liver tissue was obtained from male rats (Wistar, 6W) fixed by transcardial perfusion of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) under deep anesthesia. HeLa cells were fixed with the same fixative. The specimens were then stained en bloc to enhance membrane contrast and embedded in epoxy resin2). The surface of

  3. Interventional effect of phycocyanin on mitochondrial membrane potential and activity of PC12 cells after hypoxia/reoxygenation

    Institute of Scientific and Technical Information of China (English)

    Nan Jiang; Yunliang Guo; Hongbing Chen

    2006-01-01

    BACKGROUND: Phycocyanin can relieve decrease of mitochondrial membrane potential through reducing production of active oxygen so as to protect neurons after hypoxia/reoxygenation.OBJECTIVE: To observe the effect of phycocyanin on activity of PC12 cells and mitochondrial membrane potential after hypoxia/reoxygenation.DESIGN: Randomized controlled study.SETTING: Cerebrovascular Disease Institute of Affiliated Hospital, Medical College of Qingdao University.MATERIALS: The experiment was carried out at the Key Laboratory of Prevention and Cure for cerebropathia in Shandong Province from October to December 2005. PC12 cells, rat chromaffin tumor cells,were provided by Storage Center of Wuhan University; phycocyanin was provided by Ocean Institute of Academia Sinica; Thiazoyl blue tetrazolium bromide (MTT) and rhodamine 123 were purchased from Sigma Company, USA; RPMI-1640 medium, fetal bovine serum and equine serum were purchased from Gibco Company, USA.METHODS: ① Culture of PC12 cells: PC12 cells were put into RPMI-1640 medium which contained 100 g/L heat inactivation equine serum and 0.05 volume fraction of fetal bovine serum and incubated in CO2 incubator at 37 ℃. Number of cells was regulated to 4 × 105 L-1, and cells were inoculated at 96-well culture plate.The final volume was 100 μL. ② Model establishing and grouping: Cultured PC12 cells were randomly divided into three groups: phycocyanin group, model control group and non-hypoxia group. At 24 hours before hypoxia, culture solution in phycocyanin group was added with phycocyanin so as to make sure the final concentration of 3 g/L, but cells in model control group did not add with phycocyanin. Cells in non-hypoxia group were also randomly divided into adding phycocyanin group (the final concentration of 3 g/L) and non-adding phycocyanin group. Cells in model control group and phycocyanin group were cultured with hypoxia for 1 hour and reoxygenation for 1, 2 and 3 hours; meanwhile, cells in non

  4. Effect of inorganic phosphate concentration on the nature of inner mitochondrial membrane alterations mediated by Ca2+ ions. A proposed model for phosphate-stimulated lipid peroxidation.

    Science.gov (United States)

    Kowaltowski, A J; Castilho, R F; Grijalba, M T; Bechara, E J; Vercesi, A E

    1996-02-01

    Addition of high concentrations (>1 mm) of inorganic phosphate (Pi) or arsenate to Ca2+-loaded mitochondria was followed by increased rates of H2O2 production, membrane lipid peroxidation, and swelling. Mitochondrial swelling was only partially prevented either by butylhydroxytoluene, an inhibitor of lipid peroxidation, or cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. This swelling was totally prevented by the simultaneous presence of these compounds. At lower Pi concentrations (1 mm), mitochondrial swelling is reversible and prevented by cyclosporin A, but not by butylhydroxytoluene. In any case (low or high phosphate concentration) exogenous catalase prevented mitochondrial swelling, suggesting that reactive oxygen species (ROS) participate in these mechanisms. Altogether, the data suggest that, at low Pi concentrations, membrane permeabilization is reversible and mediated by opening of the mitochondrial permeability transition pore, whereas at high Pi concentrations, membrane permeabilization is irreversible because lipid peroxidation also takes place. Under these conditions, lipid peroxidation is strongly inhibited by sorbate, a putative quencher of triplet carbonyl species. This suggests that high Pi or arsenate concentrations stimulate propagation of the peroxidative reactions initiated by mitochondrial-generated ROS because these anions are able to catalyze Cn-aldehyde tautomerization producing enols, which can be oxidized by hemeproteins to yield the lower Cn - 1-aldehyde in the triplet state. This proposition was also supported by experiments using a model system consisting of phosphatidylcholine/dicethylphosphate liposomes and the triplet acetone-generating system isobutanal/horseradish peroxidase, where phosphate and Ca2+ cooperate to increase the yield of thiobarbituric acid-reactive substances. PMID:8621682

  5. A Mitochondrial Membrane Exopolyphosphatase Is Modulated by, and Plays a Role in, the Energy Metabolism of Hard Tick Rhipicephalus (Boophilus microplus Embryos

    Directory of Open Access Journals (Sweden)

    Carlos Logullo

    2011-06-01

    Full Text Available The physiological roles of polyphosphates (polyP recently found in arthropod mitochondria remain obscure. Here, the relationship between the mitochondrial membrane exopolyphosphatase (PPX and the energy metabolism of hard tick Rhipicephalus microplus embryos are investigated. Mitochondrial respiration was activated by adenosine diphosphate using polyP as the only source of inorganic phosphate (Pi and this activation was much greater using polyP3 than polyP15. After mitochondrial subfractionation, most of the PPX activity was recovered in the membrane fraction and its kinetic analysis revealed that the affinity for polyP3 was 10 times stronger than that for polyP15. Membrane PPX activity was also increased in the presence of the respiratory substrate pyruvic acid and after addition of the protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. Furthermore, these stimulatory effects disappeared upon addition of the cytochrome oxidase inhibitor potassium cyanide and the activity was completely inhibited by 20 µg/mL heparin. The activity was either increased or decreased by 50% upon addition of dithiothreitol or hydrogen peroxide, respectively, suggesting redox regulation. These results indicate a PPX activity that is regulated during mitochondrial respiration and that plays a role in adenosine-5’-triphosphate synthesis in hard tick embryos.

  6. On-line measurements of oscillating mitochondrial membrane potential in glucose-fermenting Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Poulsen, Allan K; Olsen, Lars Folke;

    2007-01-01

    We employed the fluorescent cyanine dye DiOC(2)(3) to measure membrane potential in semi-anaerobic yeast cells under conditions where glycolysis was oscillating. Oscillations in glycolysis were studied by means of the naturally abundant nicotinamide adenine dinucleotide (NADH). We found that the ......We employed the fluorescent cyanine dye DiOC(2)(3) to measure membrane potential in semi-anaerobic yeast cells under conditions where glycolysis was oscillating. Oscillations in glycolysis were studied by means of the naturally abundant nicotinamide adenine dinucleotide (NADH). We found...

  7. Elevated mRNA-levels of distinct mitochondrial and plasma membrane Ca2+ transporters in individual hypoglossal motor neurons of endstage SOD1 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Tobias eMühling

    2014-11-01

    Full Text Available Disturbances in Ca2+ homeostasis and mitochondrial dysfunction have emerged as major pathogenic features in familial and sporadic forms of Amyotrophic Lateral Sclerosis (ALS, a fatal degenerative motor neuron disease. However, the distinct molecular ALS-pathology remains unclear. Recently, an activity-dependent Ca2+ homeostasis deficit, selectively in highly vulnerable cholinergic motor neurons in the hypoglossal nucleus (hMNs from a common ALS mouse model, endstage superoxide dismutase SOD1G93A transgenic mice, was described. This functional deficit was defined by a reduced hMN mitochondrial Ca2+ uptake capacity and elevated Ca2+ extrusion across the plasma membrane. To address the underlying molecular mechanisms, here we quantified mRNA-levels of respective potential mitochondrial and plasma membrane Ca2+ transporters in individual, choline-acetyltransferase (ChAT positive hMNs from wildtype (WT and endstage SOD1G93A mice, by combining UV laser microdissection with RT-qPCR techniques, and specific data normalization. As ChAT cDNA levels as well as cDNA and genomic DNA levels of the mitochondrially encoded NADH dehydrogenase ND1 were not different between hMNs from WT and endstage SOD1G93A mice, these genes were used to normalize hMN-specific mRNA-levels of plasma membrane and mitochondrial Ca2+ transporters, respectively. We detected about 2-fold higher levels of the mitochondrial Ca2+ transporters MCU/MICU1, Letm1 and UCP2 in remaining hMNs from endstage SOD1G93A mice. These higher expression-levels of mitochondrial Ca2+ transporters in individual hMNs were not associated with a respective increase in number of mitochondrial genomes, as evident from hMN specific ND1 DNA quantification. Normalized mRNA-levels for the plasma membrane Na2+/Ca2+exchanger NCX1 was also about 2-fold higher in hMNs from SOD1G93A mice. Thus, pharmacological stimulation of Ca2+ transporters in highly vulnerable hMNs might offer a novel neuroprotective strategy for ALS.

  8. New proteomic approaches to study the organization of yeast mitochondrial membranes

    NARCIS (Netherlands)

    Gubbens, J.

    2008-01-01

    Despite their importance, membrane proteins have traditionally been underrepresented in proteomics studies due to their incompatibility with common methods used in this field. Therefore, new methods have to be developed for studying this class of proteins. In this thesis, new approaches are describe

  9. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization

    Energy Technology Data Exchange (ETDEWEB)

    Files, Matthew D.; Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Des Rosiers, Christine; Isern, Nancy G.; Portman, Michael A.

    2014-03-20

    Extracorporeal membrane oxygenation (ECMO) provides a bridge to recovery after myocardial injury in infants and children, yet morbidity and mortality remain high. Weaning from the circuit requires adequate cardiac contractile function, which can be impaired by metabolic disturbances induced either by ischemia-reperfusion and / or by ECMO.

  10. Osmotic stress and cryoinjury of koala sperm: an integrative study of the plasma membrane, chromatin stability and mitochondrial function.

    Science.gov (United States)

    Johnston, S D; Satake, N; Zee, Y; López-Fernández, C; Holt, W V; Gosálvez, J

    2012-06-01

    This study investigated whether cryopreservation-induced injury to koala spermatozoa could be explained using an experimental model that mimics the structural and physiological effects of osmotic flux. DNA labelling after in situ nick translation of thawed cryopreserved spermatozoa revealed a positive correlation (r=0.573; Pkoala spermatozoa revealed that injury induced by exposure to osmotic flux, essentially imitated the results found following cryopreservation. Plasma membrane integrity, chromatin relaxation and SDF appeared particularly susceptible to extreme hypotonic environments. Mitochondrial membrane potential (MMP), while susceptible to extreme hypo- and hypertonic environments, showed an ability to rebound from hypertonic stress when returned to isotonic conditions. Koala spermatozoa exposed to 64 mOsm/kg media showed an equivalent, or more severe, degree of structural and physiological injury to that of frozen-thawed spermatozoa, supporting the hypothesis that cryoinjury is principally associated with a hypo-osmotic effect. A direct comparison of SDF of thawed cryopreserved spermatozoa and those exposed to a 64 mOsm/kg excursion showed a significant correlation (r=0.878; Pkoala SDF, the mechanisms resulting in relaxed chromatin require further study. A lack of correlation between the percentage of sperm with relaxed chromatin and SDF suggests that the timing of these pathologies are asynchronous. We propose an integrative model of cryo-induced osmotic injury that involves a combination of structural damage (rupture of membrane) and oxidative stress that first leads to the reduction of MMP and the relaxation of chromatin, which is then ultimately followed by an increase in DNA fragmentation.

  11. Quantum squeezed light for probing mitochondrial membranes and study of neuroprotectants.

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K. (University of California, San Diego, CA)

    2005-01-01

    We report a new nanolaser technique for measuring characteristics of human mitochondria. Because mitochondria are so small, it has been difficult to study large populations using standard light microscope or flow cytometry techniques. We recently discovered a nano-optical transduction method for high-speed analysis of submicron organelles that is well suited to mitochondrial studies. This ultrasensitive detection technique uses nano-squeezing of light into photon modes imposed by the ultrasmall organelle dimensions in a semiconductor biocavity laser. In this paper, we use the method to study the lasing spectra of normal and diseased mitochondria. We find that the diseased mitochondria exhibit larger physical diameter and standard deviation. This morphological differences are also revealed in the lasing spectra. The diseased specimens have a larger spectral linewidth than the normal, and have more variability in their statistical distributions.

  12. Apaf-1-deficient fog mouse cell apoptosis involves hypopolarization of the mitochondrial inner membrane,ATP depletion and citrate accumulation

    Institute of Scientific and Technical Information of China (English)

    Iyoko Katoh; Shingo Sato; Nahoko Fukunishi; Hiroki Yoshida; Takasuke Imai; Shun-ichi Kurata

    2008-01-01

    To explore how the intrinsic apoptosis pathway is controlled in the spontaneous fog (forebrain overgrowth) mutant mice with an Apaf1 splicing deficiency,we examined spleen and bone marrow cells from Apaf1+/+(+/+) and Apaf1fog/fog (fog/fog) mice for initiator caspase-9 activation by cellular stresses.When the mitochondrial inner membrane potential (△Ψm) was disrupted by staurosporine,+/+ cells but not fog/fog cells activated caspase-9 to cause apoptosis,indicating the lack of apoptosomc (apoptosis protease activating factor 1 (Apaf-1)/cytochrome c/(d)ATP/procaspase-9) function in fog/fog cells.However,when a marginal (~20%) decrease in △Ψm was caused by hydrogen peroxide (0.1 mM),peroxynitrite donor 3-morpholinosydnonimine (0.1 mM) and UV-C irradiation (20 J/m2),both +/+ and fog/fog cells triggeredprocaspase-9 auto-processing and its downstream cascade activation.Supporting our previous results,procaspase-9 pre-existing in the mitochondria induced its auto-processing before the cytosolic caspase activation regardless of the geuotypes.Cellular ATP concentration significantly decreased under the hypoactive AΨm condition.Furthermore,we detected accumulation of citrate,a kosmotrope known to facilitate procaspase-9 dimerization,probably due to a feedback control of the Krebs cycle by the electron transfer system.Thus,mitochondrial in situ caspase-9 activation may be caused by the major metabolic reactions in response to physiological stresses,which may represent a mode of Apaf-1-independent apoptosis hypothesized from recent genetic studies.

  13. [Effect of ethylmaleimide on the transport of Ca+ and K+ ions across mitochondrial membranes].

    Science.gov (United States)

    Lofrumento, N E; Zanotti, F; Pavone, A

    1979-04-30

    As already reported, it has been found that the gradient of protons, set up across the inner membrane during the Ca2+ uptake by rat liver mitochondria, can be completely reversed by the addition of NEM. Identical results have been obtained by following the energy dependent K+ uptake. In these last conditions, the rate of H+ efflux supported by succinate oxidation is greatly enhanced only when NEM is added after rotenone. It is proposed that the increased rate other than to the inhibition of Pi uptake, as suggested by Reynafarje and Lehninger, could also be ascribed to a further decrease in the energetic level of the membrane as well as to an increased rate of succinate-Pi exchange diffusion reaction induced by NEM. A possible direct effect of NEM on succinate oxidation has been also considered to account for the inhibition observed when it is added before rotenone. PMID:554640

  14. Quantifying mitochondrial and plasma membrane potentials in intact pulmonary arterial endothelial cells based on extracellular disposition of rhodamine dyes.

    Science.gov (United States)

    Gan, Zhuohui; Audi, Said H; Bongard, Robert D; Gauthier, Kathryn M; Merker, Marilyn P

    2011-05-01

    Our goal was to quantify mitochondrial and plasma potential (Δψ(m) and Δψ(p)) based on the disposition of rhodamine 123 (R123) or tetramethylrhodamine ethyl ester (TMRE) in the medium surrounding pulmonary endothelial cells. Dyes were added to the medium, and their concentrations in extracellular medium ([R(e)]) were measured over time. R123 [R(e)] fell from 10 nM to 6.6 ± 0.1 (SE) nM over 120 min. TMRE [R(e)] fell from 20 nM to a steady state of 4.9 ± 0.4 nM after ∼30 min. Protonophore or high K(+) concentration ([K(+)]), used to manipulate contributions of membrane potentials, attenuated decreases in [R(e)], and P-glycoprotein (Pgp) inhibition had the opposite effect, demonstrating the qualitative impact of these processes on [R(e)]. A kinetic model incorporating a modified Goldman-Hodgkin-Katz model was fit to [R(e)] vs. time data for R123 and TMRE, respectively, under various conditions to obtain (means ± 95% confidence intervals) Δψ(m) (-130 ± 7 and -133 ± 4 mV), Δψ(p) (-36 ± 4 and -49 ± 4 mV), and a Pgp activity parameter (K(Pgp), 25 ± 5 and 51 ± 11 μl/min). The higher membrane permeability of TMRE also allowed application of steady-state analysis to obtain Δψ(m) (-124 ± 6 mV). The consistency of kinetic parameter values obtained from R123 and TMRE data demonstrates the utility of this experimental and theoretical approach for quantifying intact cell Δψ(m) and Δψ(p.) Finally, steady-state analysis revealed that although room air- and hyperoxia-exposed (95% O(2) for 48 h) cells have equivalent resting Δψ(m), hyperoxic cell Δψ(m) was more sensitive to depolarization with protonophore, consistent with previous observations of pulmonary endothelial hyperoxia-induced mitochondrial dysfunction.

  15. Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics

    DEFF Research Database (Denmark)

    Pöyry, Sanja; Róg, Tomasz; Karttunen, Mikko;

    2009-01-01

    membrane electrostatic potential. The changes induced by salt are more prominent in dynamical properties related to ion binding and formation of ion-lipid complexes and lipid aggregates, as rotational diffusion of lipids is slowed down by ions, especially in the case of CaCl(2). In the same spirit, lateral...... diffusion of lipids is slowed down rather considerably for increasing concentration of CaCl(2). Both findings for dynamic properties can be traced to the binding of ions with lipid head groups and the related changes in interaction patterns in the headgroup region, where the binding of Na(+) and Ca(2+) ions...

  16. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    Science.gov (United States)

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions.

  17. Rapid detection of an ABT-737-sensitive primed for death state in cells using microplate-based respirometry.

    Directory of Open Access Journals (Sweden)

    Pascaline Clerc

    Full Text Available Cells that exhibit an absolute dependence on the anti-apoptotic BCL-2 protein for survival are termed "primed for death" and are killed by the BCL-2 antagonist ABT-737. Many cancers exhibit a primed phenotype, including some that are resistant to conventional chemotherapy due to high BCL-2 expression. We show here that 1 stable BCL-2 overexpression alone can induce a primed for death state and 2 that an ABT-737-induced loss of functional cytochrome c from the electron transport chain causes a reduction in maximal respiration that is readily detectable by microplate-based respirometry. Stable BCL-2 overexpression sensitized non-tumorigenic MCF10A mammary epithelial cells to ABT-737-induced caspase-dependent apoptosis. Mitochondria within permeabilized BCL-2 overexpressing cells were selectively vulnerable to ABT-737-induced cytochrome c release compared to those from control-transfected cells, consistent with a primed state. ABT-737 treatment caused a dose-dependent impairment of maximal O(2 consumption in MCF10A BCL-2 overexpressing cells but not in control-transfected cells or in immortalized mouse embryonic fibroblasts lacking both BAX and BAK. This impairment was rescued by delivering exogenous cytochrome c to mitochondria via saponin-mediated plasma membrane permeabilization. An ABT-737-induced reduction in maximal O(2 consumption was also detectable in SP53, JeKo-1, and WEHI-231 B-cell lymphoma cell lines, with sensitivity correlating with BCL-2:MCL-1 ratio and with susceptibility (SP53 and JeKo-1 or resistance (WEHI-231 to ABT-737-induced apoptosis. Multiplexing respirometry assays to ELISA-based determination of cytochrome c redistribution confirmed that respiratory inhibition was associated with cytochrome c release. In summary, cell-based respiration assays were able to rapidly identify a primed for death state in cells with either artificially overexpressed or high endogenous BCL-2. Rapid detection of a primed for death state in

  18. Crystallization of Mitochondrial Respiratory Complex II fromChicken Heart: A Membrane-Protein Complex Diffracting to 2.0Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward A.

    2004-12-17

    Procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Angstrom with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites.

  19. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles.

    Science.gov (United States)

    Torrano, Adriano A; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ∼50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ∼150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine. PMID:27341699

  20. MitoNEET Is a Uniquely Folded 2Fe-2S Outer Mitochondrial Membrane Protein Stabilized By Pioglitazone

    Energy Technology Data Exchange (ETDEWEB)

    Paddock, M.L.; Wiley, S.E.; Axelrod, H.L.; Cohen, A.E.; Roy, M.; Abresch, E.C.; Capraro, D.; Murphy, A.N.; Nechushtai, R.; Dixon, J.E.; Jennings, P.A.; /UC, San Diego /SLAC, SSRL /Hebrew U.

    2007-10-19

    Iron-sulfur (Fe-S) proteins are key players in vital processes involving energy homeostasis and metabolism from the simplest to most complex organisms. We report a 1.5 Angstrom x-ray crystal structure of the first identified outer mitochondrial membrane Fe-S protein, mitoNEET. Two protomers intertwine to form a unique dimeric structure that constitutes a new fold to not only the {approx}650 reported Fe-S protein structures but also to all known proteins. We name this motif the NEET fold. The protomers form a two-domain structure: a {beta}-cap domain and a cluster-binding domain that coordinates two acid-labile 2Fe-2S clusters. Binding of pioglitazone, an insulin-sensitizing thiazolidinedione used in the treatment of type 2 diabetes, stabilizes the protein against 2Fe-2S cluster release. The biophysical properties of mitoNEET suggest that it may participate in a redox-sensitive signaling and/or in Fe-S cluster transfer.

  1. Cell membrane penetration and mitochondrial targeting by platinum-decorated ceria nanoparticles

    Science.gov (United States)

    Torrano, Adriano A.; Herrmann, Rudolf; Strobel, Claudia; Rennhak, Markus; Engelke, Hanna; Reller, Armin; Hilger, Ingrid; Wixforth, Achim; Bräuchle, Christoph

    2016-07-01

    In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and focus on their fast uptake and association with mitochondria, the cell's powerhouse. Using live-cell imaging and electron microscopy we clearly show that 46 nm platinum-decorated ceria nanoparticles can rapidly penetrate cell membranes and reach the cytosol. Moreover, if suitably targeted, these particles are able to selectively attach to mitochondria. These results are complemented by cytotoxicity assays, thus providing insights into the biological effects of these particles on cells. Interestingly, no permanent membrane disruption or any other significant adverse effects on cells were observed. The unusual uptake behavior observed for 46 nm nanoparticles was not observed for equivalent but larger 143 nm and 285 nm platinum-decorated particles. Our results demonstrate a remarkable particle size effect in which particles smaller than ~50-100 nm escape the usual endocytic pathway and translocate directly into the cytosol, while particles larger than ~150 nm are internalized by conventional endocytosis. Since the small particles are able to bypass endocytosis they could be explored as drug and gene delivery vehicles. Platinum-decorated nanoparticles are therefore highly interesting in the fields of nanotoxicology and nanomedicine.In this work we investigate the interaction between endothelial cells and nanoparticles emitted by catalytic converters. Although catalyst-derived particles are recognized as growing burden added to environmental pollution, very little is known about their health impact. We use platinum-decorated ceria nanoparticles as model compounds for the actual emitted particles and

  2. Effect of narcotics on membrane-bound mitochondrial processes in fish

    DEFF Research Database (Denmark)

    Vergauwen, Lucia; Nørgaard Schmidt, Stine; Michiels, Ellen;

    research has been mostly limited to the development of quantitative structure activity relations (QSARs) to predict toxicity, resulting in insufficient understanding of the exact mechanisms involved. In this study we investigate specific aspects of the mechanism of narcosis in fish using both alternative...... in vivo (zebrafish embryo) and in vitro tests. We applied a passive dosing method to expose zebrafish embryos up to 5 days post fertilization to linear dilution series of a set of non-polar narcotics (phenanthrene and three chlorobenzene structure analogues). In addition to increasing mortality, we...... membrane-bound process and is therefore a potential target. We found that in zebrafish embryos ETC activity was increased at low exposure concentrations, suggesting a compensatory response, while it decreased when exposure concentrations reached levels causing reduced motility, heart rate and eventually...

  3. A transient increase in lipid peroxidation primes preadipocytes for delayed mitochondrial inner membrane permeabilization and ATP depletion during prolonged exposure to fatty acids.

    Science.gov (United States)

    Rogers, Carlyle; Davis, Barbara; Neufer, P Darrell; Murphy, Michael P; Anderson, Ethan J; Robidoux, Jacques

    2014-02-01

    Preadipocytes are periodically subjected to fatty acid (FA) concentrations that are potentially cytotoxic. We tested the hypothesis that prolonged exposure of preadipocytes of human origin to a physiologically relevant mix of FAs leads to mitochondrial inner membrane (MIM) permeabilization and ultimately to mitochondrial crisis. We found that exposure of preadipocytes to FAs led to progressive cyclosporin A-sensitive MIM permeabilization, which in turn caused a reduction in MIM potential, oxygen consumption, and ATP synthetic capacity and, ultimately, death. Additionally, we showed that FAs induce a transient increase in intramitochondrial reactive oxygen species (ROS) and lipid peroxide production, lasting roughly 30 and 120min for the ROS and lipid peroxides, respectively. MIM permeabilization and its deleterious consequences including mitochondrial crisis and cell death were prevented by treating the cells with the mitochondrial FA uptake inhibitor etomoxir, the mitochondrion-selective superoxide and lipid peroxide antioxidants MitoTempo and MitoQ, or the lipid peroxide and reactive carbonyl scavenger l-carnosine. FAs also promoted a delayed oxidative stress phase. However, the beneficial effects of etomoxir, MitoTempo, and l-carnosine were lost by delaying the treatment by 2h, suggesting that the initial phase was sufficient to prime the cells for the delayed MIM permeabilization and mitochondrial crisis. It also suggested that the second ROS production phase is a consequence of this loss in mitochondrial health. Altogether, our data suggest that approaches designed to diminish intramitochondrial ROS or lipid peroxide accumulation, as well as MIM permeabilization, are valid mechanism-based therapeutic avenues to prevent the loss in preadipocyte metabolic fitness associated with prolonged exposure to elevated FA levels. PMID:24269897

  4. Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5.

    Science.gov (United States)

    Rivera, M; Barillas-Mury, C; Christensen, K A; Little, J W; Wells, M A; Walker, F A

    1992-12-01

    The gene coding for the water-soluble domain of the outer mitochondrial membrane cytochrome b5 (OM cytochrome b5) from rat liver has been synthetized and expressed in Escherichia coli. The DNA sequence was obtained by back-translating the known amino acid sequence [Lederer, F., Ghrir, R., Guiard, B., Cortial, S., & Ito, A. (1983) Eur. J. Biochem. 132, 95-102]. The recombinant OM cytochrome b5 was characterized by UV-visible, EPR, and 1H NMR spectroscopy. The UV-visible and EPR spectra of the OM cytochrome b5 are almost identical to the ones obtained from the overexpressed rat microsomal cytochrome b5 [Bodman, S. B. V., Schyler, M. A., Jollie, D. R., & Sligar, S. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9443-9447]. The one-dimensional 1H NMR spectrum of the OM cytochrome b5 indicates that the rhombic perturbation of the ferric center is essentially identical to that in the microsomal beef, rabbit, chicken, and rat cytochromes b5. Two-dimensional 1H NMR spectroscopy (NOESY) and one-dimensional NOE difference spectroscopy were used to assign the contact-shifted resonances that correspond to each of the two isomers that result from the rotation of the heme around its alpha-gamma-meso axis. The assignment of the resonances allowed the determination of the heme orientation ratio in the OM cytochrome b5, which was found to be 1.0 +/- 0.1. It is noteworthy that the two cytochromes b5 that have similar populations of the two heme isomers (large heme disorder) originate from the rat liver. PMID:1333795

  5. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM.

    Directory of Open Access Journals (Sweden)

    Daniel O Frank

    Full Text Available The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM. In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20 by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  6. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    Science.gov (United States)

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions. PMID:27404273

  7. The assembly of mitochondrial complex I : a product of nuclear-mitochondrial synergy

    NARCIS (Netherlands)

    Vogel, Rutger Oscar

    2007-01-01

    Mitochondria are essential to cellular energy production. Embedded in the mitochondrial inner membrane, the engine of the mitochondrial powerhouse is formed by the five enzymatic complexes of the oxidative phosphorylation (OXPHOS) system. Dysfunction of this system results in mitochondrial disease,

  8. 氟康唑对热带念珠菌活性氧和%Effect of fluconazole on reactive oxygen species and mitochondrial membrane potential of Candida tropicalis

    Institute of Scientific and Technical Information of China (English)

    邱莲女; 周永列; 胡庆丰; 朱永泽; 郭伟; 吕火烊

    2011-01-01

    To explore fluconazole's effect mechanism, we investigated the changes of viability rate, reactive oxygen species (ROS), mitochondrial membrane potential (△Ψm) and cell cycle of Candida tropicalis after treatment with fluconazole. The minimum inhibitory concentration (MIC) of the clinical isolates Candida tropicalis to fluconazole were tested by NCCLS M27-A microdilution method. After treatment wth different concentration of fluconazole, viability rate, the intracellular accumulation of ROS, the loss of mitochondrial membrane potential △Ψm and cell cycle of Candida tropicalis were detected with flow cytometry, respectively. After treatment with fluconazole, there were no significant variation among viability rate, ROS, mitochondrial membrane potential △Ψm and cell cycle in fluconazole-resistant strains, but a decrease of mitochondrial membrane potential △Ψm and viability rate,an increase of ROS accumulation were detected in a time-dose-dependent manner in fluconazole-susceptibile strains. A majority of Candida tropicalis were arrested in G2/M phase and apoptosis peak was seen. Free radicals scavenger glutathione inhibited ROS production, prevented G2/M arrest and decreased apoptosis in fluconazole-susceptibile strains. According to it, fluconazole maybe induce intracellular accumulation of ROS and decrease of mitochondrial membrane potential △Ψm, which could result in apoptosis of Candida tropicalis.%为了探讨氟康唑作用机制,观察它对热带念珠菌作用后存活率、活性氧(Reactive oxygenspecies,ROS)、线粒体膜电位(Mitochondrial membrane potential,,△Ψm)和细胞周期的变化.参照NCCLS M27-A 方案的微量稀释法测定氟康唑对热带念珠菌的最低抑菌浓度(MIC); 热带念珠菌与不同浓度氟康唑共同培养后用流式细胞术(Flow cytometry,FCM)分析热带念珠菌存活率、ROS、线粒体膜电位△Ψm 和细胞周期的变化.结果表明,氟康唑作用后,热带念珠菌氟康唑耐药株的

  9. Methyl glycol, methanol and DMSO effects on post-thaw motility, velocities, membrane integrity and mitochondrial function of Brycon orbignyanus and Prochilodus lineatus (Characiformes) sperm.

    Science.gov (United States)

    Viveiros, Ana T M; Nascimento, Ariane F; Leal, Marcelo C; Gonçalves, Antônio C S; Orfão, Laura H; Cosson, Jacky

    2015-02-01

    The aim of this study was to use more accurate techniques to investigate the effects of cryoprotectants (CPAs) and extenders on post-thaw sperm quality of Brycon orbignyanus and Prochilodus lineatus. Six freezing media comprising the combination of three CPAs (DMSO, methanol and methyl glycol) and two extenders (BTS and glucose) were used. Sperm was diluted in each medium, loaded into 0.5-mL straws, frozen in a nitrogen vapor vessel (dry-shipper), and stored in liquid nitrogen at -196 °C. Post-thaw sperm motility rate and velocities (curvilinear = VCL; straight line = VSL; average path = VAP) were evaluated using a computer-assisted sperm analyzer. Membrane integrity and mitochondrial function were determined using fluorochromes. Post-thaw quality was considered high when samples presented the following minimum values: 60 % motile sperm, 140 µm/s of VCL, 50 % intact sperm membrane and 50 % mitochondrial function integrity. High post-thaw quality was observed in B. orbignyanus sperm frozen in BTS-methyl glycol and in P. lineatus sperm frozen in BTS-methyl glycol, glucose-methyl glycol and glucose-methanol. All samples frozen in DMSO yielded low quality. The presence of ions in the BTS extender affected post-thaw sperm quality positively in B. orbignyanus and negatively in P. lineatus. Methyl glycol was the most suitable CPA for both fish species, leading to a good protection of cell membrane, mitochondrial function and motility apparatus during the cryopreservation process. For an improved protection, B. orbignyanus sperm should be frozen in an ionic freezing medium. PMID:25433690

  10. Overexpression of human SOD1 in VDAC1-less yeast restores mitochondrial functionality modulating beta-barrel outer membrane protein genes.

    Science.gov (United States)

    Magrì, Andrea; Di Rosa, Maria Carmela; Tomasello, Marianna Flora; Guarino, Francesca; Reina, Simona; Messina, Angela; De Pinto, Vito

    2016-06-01

    Cu/Zn Superoxide Dismutase (SOD1), the most important antioxidant defense against ROS in eukaryotic cells, localizes in cytosol and intermembrane space of mitochondria (IMS). Several evidences show a SOD1 intersection with both fermentative and respiratory metabolism. The Voltage Dependent Anion Channel (VDAC) is the main pore-forming protein in the mitochondrial outer membrane (MOM), and is considered the gatekeeper of mitochondrial metabolism. Saccharomyces cerevisiae lacking VDAC1 (Δpor1) is a very convenient model system, since it shows an impaired growth rate on non-fermentable carbon source. Transformation of Δpor1 yeast with human SOD1 completely restores the cell growth deficit in non-fermentative conditions and re-establishes the physiological levels of ROS, as well as the mitochondrial membrane potential. No similar result was found upon yeast SOD1 overexpression. A previous report highlighted the action of SOD1 as a transcription factor. Quantitative Real-Time PCR showed that β-barrel outer-membrane encoding-genes por2, tom40, sam50 are induced by hSOD1, but the same effect was not obtained in Δpor1Δpor2 yeast, indicating a crucial function for yVDAC2. Since the lack of VDAC1 in yeast can be considered a stress factor for the cell, hSOD1 could relieve it stimulating the expression of genes bringing to the recovery of the MOM function. Our results suggest a direct influence of SOD1 on VDAC. PMID:26947057

  11. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    Energy Technology Data Exchange (ETDEWEB)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana; Hrubik, Jelena; Glisic, Branka; Kovacevic, Radmila; Andric, Nebojsa, E-mail: nebojsa.andric@dbe.uns.ac.rs

    2015-01-01

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATP level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in Leydig

  12. Two Trichothecene Mycotoxins from Myrothecium roridum Induce Apoptosis of HepG-2 Cells via Caspase Activation and Disruption of Mitochondrial Membrane Potential.

    Science.gov (United States)

    Ye, Wei; Chen, Yuchan; Li, Haohua; Zhang, Weimin; Liu, Hongxin; Sun, Zhanghua; Liu, Taomei; Li, Saini

    2016-01-01

    Trichothecene mycotoxins are a type of sesquiterpenoid produced by various kinds of plantpathogenic fungi. In this study, two trichothecene toxins, namely, a novel cytotoxic epiroridin acid and a known trichothecene, mytoxin B, were isolated from the endophytic fungus Myrothecium roridum derived from the medicinal plant Pogostemon cablin. The two trichothecene mytoxins were confirmed to induce the apoptosis of HepG-2 cells by cytomorphology inspection, DNA fragmentation detection, and flow cytometry assay. The cytotoxic mechanisms of the two mycotoxins were investigated by quantitative real time polymerase chain reaction, western blot, and detection of mitochondrial membrane potential. The results showed that the two trichothecene mycotoxins induced the apoptosis of cancer cell HepG-2 via activation of caspase-9 and caspase-3, up-regulation of bax gene expression, down-regulation of bcl-2 gene expression, and disruption of the mitochondrial membrane potential of the HepG-2 cell. This study is the first to report on the cytotoxic mechanism of trichothecene mycotoxins from M. roridum. This study provides new clues for the development of attenuated trichothecene toxins in future treatment of liver cancer. PMID:27322225

  13. Phenethyl isothiocyanate-induced apoptosis in PC-3 human prostate cancer cells is mediated by reactive oxygen species-dependent disruption of the mitochondrial membrane potential.

    Science.gov (United States)

    Xiao, Dong; Lew, Karen L; Zeng, Yan; Xiao, Hui; Marynowski, Stanley W; Dhir, Rajiv; Singh, Shivendra V

    2006-11-01

    The present study was undertaken to gain insights into the molecular mechanism of apoptosis induction by phenethyl isothiocyanate (PEITC), which is a cancer chemopreventive constituent of cruciferous vegetables, using PC-3 human prostate cancer cells as a model. The PEITC-induced cell death in PC-3 cells was associated with disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria to the cytosol and generation of reactive oxygen species (ROS), which were blocked in the presence of a combined mimetic of superoxide dismutase and catalase (Euk134). Ectopic expression of Bcl-xL, whose protein level is reduced markedly on treatment of PC-3 cells with PEITC, conferred partial protection against PEITC-induced apoptosis only at higher drug concentrations (>10 microM). Administration of 12 micromol PEITC/day (Monday through Friday) by oral gavage significantly retarded growth of PC-3 xenografts in athymic mice. For instance, 31 days after the initiation of PEITC administration, the average tumor volume in control mice (721 +/- 153 mm3) was approximately 2-fold higher compared with mice receiving 12 micromol PEITC/day. The PEITC-mediated inhibition of PC-3 xenograft growth was associated with induction of Bax and Bid proteins. In conclusion, the present study indicates that the PEITC-induced apoptosis in PC-3 cells is mediated by ROS-dependent disruption of the mitochondrial membrane potential and regulated by Bax and Bid. PMID:16774948

  14. Kaempferol ameliorates aflatoxin B1 (AFB1) induced hepatocellular carcinoma through modifying metabolizing enzymes, membrane bound ATPases and mitochondrial TCA cycle enzymes

    Institute of Scientific and Technical Information of China (English)

    Kulanthaivel Langeswaran; Rajendran Revathy; Subbaraj Gowtham Kumar; Shanmugam Vijayaprakash

    2012-01-01

    Objective: The present study was aimed to scrutinize the anticancer consequence of kaempferol against aflatoxin B1 induced hepatocarcinogenesis. Epidemiological studies of the incidence of liver cancer in the population, where dietary aflatoxin exposure is high, have provided much circumstantial evidence for the development of aflatoxin B1 induced primary liver cancer in humans. Methods:In the present investigation, aflatoxin B1 (2 mg/kg body weight i.p) was used as a hepatocarcinogen to induce hepatocellular carcinoma in experimental animals. Results: In the present analysis, on treatment with bioflavonoid kaempferol (100 mg/kg body weight p.o) the nucleic acids levels were brought back to normal and also the altered levels of biological enzymes such as membrane bound ATPase, carbohydrate metabolizing enzymes and mitochondrial TCA cycle enzymes levels (P<0.01).Conclusions:Membrane bound ATPase, carbohydrate metabolizing enzymes and mitochondrial TCA cycle enzymes were modulated by kaempferol evaluated on aflatoxin B1 induced primary liver carcinogenesis.

  15. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.

    Directory of Open Access Journals (Sweden)

    Amy Botta

    Full Text Available PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα and systemic (circulating chemokines and cytokines inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.

  16. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  17. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    Science.gov (United States)

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  18. Alteration of mitochondrial membrane potential (DELTA_PSI_m and phosphatidylserine translocation as early indicators of heavy metal-induced apoptosis in the earthworm Eisenia hortensis

    Directory of Open Access Journals (Sweden)

    FM Bearoff

    2011-06-01

    Full Text Available The effects of the heavy metals cadmium and copper (50-500 ìM on the apoptotic events involving changes in mitochondrial membrane potential (ÄØm and phosphatidylserine (PS translocation were investigated in the immune cells (celomocytes of the earthworm Eisenia hortensis. Using the fluorescent probe JC-1, loss of membrane potential due to depolarization was detected in a greater proportion of cases when induced by cadmium compared to copper (58.7 % vs. 37 % and at a lower concentration (50 ìM vs. 125ìM. With the use of the general caspase inhibitor Z-VAD-fmk, PS translocation detected by annexin V-FITC was found to be caspase-dependent when induced by cadmium at 125-250 ìM but not at 50 ìM or 500 ìM; a high proportion of earthworms (60 % exhibited inhibitory effects. Additionally, the collapse in membrane potential and PS translocation were found to strongly correlate (r > 0.5 in 89 % of cases when induced by cadmium and copper. Thus, heavy metals appear to induce death in celomocytes of E. hortensis through apoptosis by means of caspase dependent pathways

  19. The role of nitric oxide signaling in food intake; insights from the inner mitochondrial membrane peptidase 2 mutant mice

    OpenAIRE

    Changjie Han; Qingguo Zhao; Baisong Lu

    2013-01-01

    Reactive oxygen species have been implicated in feeding control through involvement in brain lipid sensing, and regulating NPY/AgRP and pro-opiomelanocortin (POMC) neurons, although the underlying mechanisms are unclear. Nitric oxide is a signaling molecule in neurons and it stimulates feeding in many species. Whether reactive oxygen species affect feeding through interaction with nitric oxide is unclear. We previously reported that Immp2l mutation in mice causes excessive mitochondrial super...

  20. Fluctuating vs. continuous exposure to H₂O₂: the effects on mitochondrial membrane potential, intracellular calcium, and NF-κB in astroglia.

    Directory of Open Access Journals (Sweden)

    Aleksandar Bajić

    Full Text Available The effects of H2O2 are widely studied in cell cultures and other in vitro systems. However, such investigations are performed with the assumption that H2O2 concentration is constant, which may not properly reflect in vivo settings, particularly in redox-turbulent microenvironments such as mitochondria. Here we introduced and tested a novel concept of fluctuating oxidative stress. We treated C6 astroglial cells and primary astrocytes with H2O2, using three regimes of exposure - continuous, as well as fluctuating at low or high rate, and evaluated mitochondrial membrane potential and other parameters of mitochondrial activity - respiration, reducing capacity, and superoxide production, as well as intracellular ATP, intracellular calcium, and NF-κB activation. When compared to continuous exposure, fluctuating H2O2 induced a pronounced hyperpolarization in mitochondria, whereas the activity of electron transport chain appears not to be significantly affected. H2O2 provoked a decrease of ATP level and an increase of intracellular calcium concentration, independently of the regime of treatment. However, fluctuating H2O2 induced a specific pattern of large-amplitude fluctuations of calcium concentration. An impact on NF-κB activation was observed for high rate fluctuations, whereas continuous and low rate fluctuating oxidative stress did not provoke significant effects. Presented results outline the (pathophysiological relevance of redox fluctuations.

  1. Adverse Effect of H2O2 Change on Morphology, Mitochondrial Membrane Permeability and Antioxidant Enzyme in Root of Dianthus Chinensis L. under Salt Stress

    Directory of Open Access Journals (Sweden)

    Xue-qin He

    2013-04-01

    Full Text Available Dianthus Chinensis L. is a salt-tolerant ornamental plant. Root is the first and critical part of plant to encounter soli salinity. In order to elucidate H2O2 impact on root morphology and mitochondrial permeability transition as well as activities of antioxidant enzymes in root ofDianthus Chinensis L., we treated seedling with H2O2 and DMTU under NaCl. The results revealed that change of H2O2 level under NaCl would negatively influence the root growth, as well as lower the value of mitochodrial membrane absorbance at 540 nm and the ratio of Cyt c/a. Meanwhile, SOD and POD under NaCl plus H2O2 and NaCl plus DMTU were far lower than those under NaCl alone.

  2. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    Science.gov (United States)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  3. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis.

    Directory of Open Access Journals (Sweden)

    Akhand Pratap Singh

    Full Text Available BACKGROUND: The Ayurvedic medicinal system claims Mucuna pruriens (MP to possess pro-male fertility, aphrodisiac and adaptogenic properties. Some scientific evidence also supports its pro-male fertility properties; however, the mechanism of its action is not yet clear. The present study aimed at demonstrating spermatogenic restorative efficacy of MP and its major constituent L-DOPA (LD, and finding the possible mechanism of action thereof in a rat model. METHODOLOGY/FINDINGS: Ethinyl estradiol (EE was administered at a rate of 3 mg/kg body weight (BW/day for a period of 14 days to generate a rat model with compromised spermatogenesis. MP and LD were administered in two separate groups of these animals starting 15(th day for a period of 56 days, and the results were compared with an auto-recovery (AR group. Sperm count and motility, testis histo-architecture, level of reactive oxygen species (ROS, mitochondrial membrane potential (MMP, apoptosis, peripheral hormone levels and testicular germ cell populations were analysed, in all experimental groups. We observed efficient and quick recovery of spermatogenesis in MP and LD groups in comparison to the auto-recovery group. The treatment regulated ROS level, apoptosis, and mitochondrial membrane potential (MMP, recovered the hypothalamic-pituitary-gonadal axis and the number of testicular germ cells, ultimately leading to increased sperm count and motility. CONCLUSION/SIGNIFICANCE: M. pruriens efficiently recovers the spermatogenic loss induced due to EE administration. The recovery is mediated by reduction in ROS level, restoration of MMP, regulation of apoptosis and eventual increase in the number of germ cells and regulation of apoptosis. The present study simplified the complexity of mechanism involved and provided meaningful insights into MP/LD mediated correction of spermatogenic impairment caused by estrogens exposure. This is the first study demonstrating that L-DOPA largely accounts for pro

  4. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    Directory of Open Access Journals (Sweden)

    Martins Rafael M

    2011-07-01

    Full Text Available Abstract Background Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd2 [S(-C2, N-dmpa]2 (μ-dppeCl2} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. Methods B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Results Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human

  5. A cyclopalladated complex interacts with mitochondrial membrane thiol-groups and induces the apoptotic intrinsic pathway in murine and cisplatin-resistant human tumor cells

    International Nuclear Information System (INIS)

    Systemic therapy for cancer metastatic lesions is difficult and generally renders a poor clinical response. Structural analogs of cisplatin, the most widely used synthetic metal complexes, show toxic side-effects and tumor cell resistance. Recently, palladium complexes with increased stability are being investigated to circumvent these limitations, and a biphosphinic cyclopalladated complex {Pd2 [S(-)C2, N-dmpa]2 (μ-dppe)Cl2} named C7a efficiently controls the subcutaneous development of B16F10-Nex2 murine melanoma in syngeneic mice. Presently, we investigated the melanoma cell killing mechanism induced by C7a, and extended preclinical studies. B16F10-Nex2 cells were treated in vitro with C7a in the presence/absence of DTT, and several parameters related to apoptosis induction were evaluated. Preclinical studies were performed, and mice were endovenously inoculated with B16F10-Nex2 cells, intraperitoneally treated with C7a, and lung metastatic nodules were counted. The cytotoxic effects and the respiratory metabolism were also determined in human tumor cell lines treated in vitro with C7a. Cyclopalladated complex interacts with thiol groups on the mitochondrial membrane proteins, causes dissipation of the mitochondrial membrane potential, and induces Bax translocation from the cytosol to mitochondria, colocalizing with a mitochondrial tracker. C7a also induced an increase in cytosolic calcium concentration, mainly from intracellular compartments, and a significant decrease in the ATP levels. Activation of effector caspases, chromatin condensation and DNA degradation, suggested that C7a activates the apoptotic intrinsic pathway in murine melanoma cells. In the preclinical studies, the C7a complex protected against murine metastatic melanoma and induced death in several human tumor cell lineages in vitro, including cisplatin-resistant ones. The mitochondria-dependent cell death was also induced by C7a in human tumor cells. The cyclopalladated C7a complex is an

  6. Functional Diversity of Human Mitochondrial J-proteins Is Independent of Their Association with the Inner Membrane Presequence Translocase.

    Science.gov (United States)

    Sinha, Devanjan; Srivastava, Shubhi; D'Silva, Patrick

    2016-08-12

    Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel.

  7. Functional Diversity of Human Mitochondrial J-proteins Is Independent of Their Association with the Inner Membrane Presequence Translocase.

    Science.gov (United States)

    Sinha, Devanjan; Srivastava, Shubhi; D'Silva, Patrick

    2016-08-12

    Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel. PMID:27330077

  8. Inhibition of N-Methyl-D-aspartate-induced Retinal Neuronal Death by Polyarginine Peptides Is Linked to the Attenuation of Stress-induced Hyperpolarization of the Inner Mitochondrial Membrane Potential.

    Science.gov (United States)

    Marshall, John; Wong, Kwoon Y; Rupasinghe, Chamila N; Tiwari, Rakesh; Zhao, Xiwu; Berberoglu, Eren D; Sinkler, Christopher; Liu, Jenney; Lee, Icksoo; Parang, Keykavous; Spaller, Mark R; Hüttemann, Maik; Goebel, Dennis J

    2015-09-01

    It is widely accepted that overactivation of NMDA receptors, resulting in calcium overload and consequent mitochondrial dysfunction in retinal ganglion neurons, plays a significant role in promoting neurodegenerative disorders such as glaucoma. Calcium has been shown to initiate a transient hyperpolarization of the mitochondrial membrane potential triggering a burst of reactive oxygen species leading to apoptosis. Strategies that enhance cell survival signaling pathways aimed at preventing this adverse hyperpolarization of the mitochondrial membrane potential may provide a novel therapeutic intervention in retinal disease. In the retina, brain-derived neurotrophic factor has been shown to be neuroprotective, and our group previously reported a PSD-95/PDZ-binding cyclic peptide (CN2097) that augments brain-derived neurotrophic factor-induced pro-survival signaling. Here, we examined the neuroprotective properties of CN2097 using an established retinal in vivo NMDA toxicity model. CN2097 completely attenuated NMDA-induced caspase 3-dependent and -independent cell death and PARP-1 activation pathways, blocked necrosis, and fully prevented the loss of long term ganglion cell viability. Although neuroprotection was partially dependent upon CN2097 binding to the PDZ domain of PSD-95, our results show that the polyarginine-rich transport moiety C-R(7), linked to the PDZ-PSD-95-binding cyclic peptide, was sufficient to mediate short and long term protection via a mitochondrial targeting mechanism. C-R(7) localized to mitochondria and was found to reduce mitochondrial respiration, mitochondrial membrane hyperpolarization, and the generation of reactive oxygen species, promoting survival of retinal neurons.

  9. The role of nitric oxide signaling in food intake; insights from the inner mitochondrial membrane peptidase 2 mutant mice

    Directory of Open Access Journals (Sweden)

    Changjie Han

    2013-01-01

    Full Text Available Reactive oxygen species have been implicated in feeding control through involvement in brain lipid sensing, and regulating NPY/AgRP and pro-opiomelanocortin (POMC neurons, although the underlying mechanisms are unclear. Nitric oxide is a signaling molecule in neurons and it stimulates feeding in many species. Whether reactive oxygen species affect feeding through interaction with nitric oxide is unclear. We previously reported that Immp2l mutation in mice causes excessive mitochondrial superoxide generation, which causes infertility and early signs of aging. In our present study, reduced food intake in mutant mice resulted in significantly reduced body weight and fat composition while energy expenditure remained unchanged. Lysate from mutant brain showed a significant decrease in cGMP levels, suggesting insufficient nitric oxide signaling. Thus, our data suggests that reactive oxygen species may regulate food intake through modulating the bioavailability of nitric oxide.

  10. Reduced Mitochondrial Membrane Potential Is a Late Adaptation of Trypanosoma brucei brucei to Isometamidium Preceded by Mutations in the γ Subunit of the F1Fo-ATPase

    Science.gov (United States)

    Munday, Jane C.; Tagoe, Daniel N. A.; Stelmanis, Valters; Schnaufer, Achim

    2016-01-01

    Background Isometamidium is the main prophylactic drug used to prevent the infection of livestock with trypanosomes that cause Animal African Trypanosomiasis. As well as the animal infective trypanosome species, livestock can also harbor the closely related human infective subspecies T. b. gambiense and T. b. rhodesiense. Resistance to isometamidium is a growing concern, as is cross-resistance to the diamidine drugs diminazene and pentamidine. Methodology/Principal Findings Two isometamidium resistant Trypanosoma brucei clones were generated (ISMR1 and ISMR15), being 7270- and 16,000-fold resistant to isometamidium, respectively, which retained their ability to grow in vitro and establish an infection in mice. Considerable cross-resistance was shown to ethidium bromide and diminazene, with minor cross-resistance to pentamidine. The mitochondrial membrane potentials of both resistant cell lines were significantly reduced compared to the wild type. The net uptake rate of isometamidium was reduced 2-3-fold but isometamidium efflux was similar in wild-type and resistant lines. Fluorescence microscopy and PCR analysis revealed that ISMR1 and ISMR15 had completely lost their kinetoplast DNA (kDNA) and both lines carried a mutation in the nuclearly encoded γ subunit gene of F1 ATPase, truncating the protein by 22 amino acids. The mutation compensated for the loss of the kinetoplast in bloodstream forms, allowing near-normal growth, and conferred considerable resistance to isometamidium and ethidium as well as significant resistance to diminazene and pentamidine, when expressed in wild type trypanosomes. Subsequent exposure to either isometamidium or ethidium led to rapid loss of kDNA and a further increase in isometamidium resistance. Conclusions/Significance Sub-lethal exposure to isometamidium gives rise to viable but highly resistant trypanosomes that, depending on sub-species, are infective to humans and cross-resistant to at least some diamidine drugs. The crucial

  11. Cytotoxic effects induced by interferon-ω gene lipofection through ROS generation and mitochondrial membrane potential disruption in feline mammary carcinoma cells.

    Science.gov (United States)

    Villaverde, Marcela Solange; Targovnik, Alexandra Marisa; Miranda, María Victoria; Finocchiaro, Liliana María Elena; Glikin, Gerardo Claudio

    2016-08-01

    Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferon-ω gene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy. PMID:27236354

  12. Mitochondrial Ion Channels

    Science.gov (United States)

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  13. Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    OpenAIRE

    Pavel Dolezal; Margareta Aili; Janette Tong; Jhih-Hang Jiang; Marobbio, Carlo M.T.; Sau Fung Lee; Ralf Schuelein; Simon Belluzzo; Eva Binova; Aurelie Mousnier; Gad Frankel; Giulia Giannuzzi; Ferdinando Palmieri; Kipros Gabriel; Thomas Naderer

    2012-01-01

    Author Summary Mitochondrial carrier proteins evolved during endosymbiosis to transport substrates across the mitochondrial inner membrane. As such the proteins are associated exclusively with eukaryotic organisms. Despite this, we identified putative mitochondrial carrier proteins in the genomes of different intracellular bacterial pathogens, including Legionella pneumophila, the causative agent of Legionnaire's disease. We named the mitochondrial carrier protein from L. pneumophila LncP and...

  14. Sulforaphene-Carboplatin Combination Synergistically Enhances Apoptosis by Disruption of Mitochondrial Membrane Potential and Cell Cycle Arrest in Human Non-Small Cell Lung Carcinoma.

    Science.gov (United States)

    Chatterjee, Saswata; Rhee, Yun-Hee; Ahn, Jin-Chul

    2016-09-01

    Worldwide non-small cell lung cancer (NSCLC) causes substantial morbidity and mortality among human populations. Due to the severe side effects and low survival rate of patients with the conventional drugs, implementation of new combination therapies is much needed. The aim of this study was to evaluate the efficacy of a combination therapy with a conventional drug and a natural medicine. We compared the combination of chemotherapy drug carboplatin and the radish-derived isothiocyanate compound sulforaphene, which synergistically induces higher apoptosis and growth inhibition in A549, to the drug alone in human NSCLC cells. We found that this combination group significantly induced higher depolarization of mitochondrial membrane potential (MMP) and intracellular reactive oxygen species generation than the single drug dose, followed by cell cycle arrest at the G0/G1 phase after 24 h of incubation. In addition to that, the Western blot assays showed that combination treatment inhibited the expression of Bcl-2 and successively upregulated the expression of Bax, cytochrome C, apoptosis-inducing factor, caspase-9 and -3, and cleaved poly ADP ribose polymerase. It also modulated the expression of PI3K, p-extracellular signal-regulated kinase (1/2), and p-c-Jun N-terminal kinase indicating the involvement of antiproliferative properties. Further pretreatment with pan-caspase inhibitor Z-VAD-fmk was carried out to confirm the effect of caspases in the combination therapy-induced apoptosis. To summarize, this is the first report that sulforaphene-carboplatin combination treatment synergistically promotes enhanced apoptosis and antiproliferative effect over single drug treatment against A549, human NSCLC cells through caspase activation, MMP disruption, and cell cycle arrest. This study demonstrates that the duel character of this combination therapy may be an effective replacement for conventional therapy alone against NSCLC. PMID:27467015

  15. Removal of spermatozoa with externalized phosphatidylserine from sperm preparation in human assisted medical procreation: effects on viability, motility and mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    de Agostini Ariane

    2009-01-01

    Full Text Available Abstract Background Externalization of phosphatidylserine (EPS occurs in apoptotic-like spermatozoa and could be used to remove them from sperm preparations to enhance sperm quality for assisted medical procreation. We first characterized EPS in sperms from infertile patients in terms of frequency of EPS spermatozoa as well as localization of phosphatidylserine (PS on spermatozoa. Subsequently, we determined the impact of depleting EPS spermatozoa on sperm quality. Methods EPS were visualized by fluorescently-labeled annexin V binding assay. Double staining with annexin V and Hoechst differentiates apoptotic from necrotic spermatozoa. We used magnetic-activated cell sorting using annexin V-conjugated microbeads (MACS-ANMB technique to remove EPS spermatozoa from sperm prepared by density gradient centrifugation (DGC. The impact of this technique on sperm quality was evaluated by measuring progressive motility, viability, and the integrity of the mitochondrial membrane potential (MMP by Rhodamine 123. Results Mean percentages of EPS spermatozoa were 14% in DGC sperm. Four subpopulations of spermatozoa were identified: 70% alive, 3% early apoptotic, 16% necrotic and 11% late apoptotic or necrotic. PS were localized on head and/or midpiece or on the whole spermatozoa. MACS efficiently eliminates EPS spermatozoa. MACS combined with DGC allows a mean reduction of 70% in EPS and of 60% in MMP-disrupted spermatozoa with a mean increase of 50% in sperm survival at 24 h. Conclusion Human ejaculates contain EPS spermatozoa which can mostly be eliminated by DGC plus MACS resulting in improved sperm long term viability, motility and MMP integrity. EPS may be used as an indicator of sperm quality and removal of EPS spermatozoa may enhance fertility potential in assisted medical procreation.

  16. Sclareol, a plant diterpene, exhibits potent antiproliferative effects via the induction of apoptosis and mitochondrial membrane potential loss in osteosarcoma cancer cells.

    Science.gov (United States)

    Wang, Lin; He, Hong-Sheng; Yu, Hua-Long; Zeng, Yun; Han, Heng; He, Ning; Liu, Zhi-Gang; Wang, Zhi-Yong; Xu, Shou-Jia; Xiong, Min

    2015-06-01

    The objective of the current study was to evaluate the antiproliferative activity of sclareol against MG63 osteosarcoma cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide assay was used to evaluate the cell viability of cells following treatment with sclareol. The extent of cell death induced by sclareol was evaluated using a lactate dehydrogenase (LDH) assay. The effect of sclareol on cell cycle progression and mitochondrial membrane potential (ΛΨm) was evaluated with flow cytometry using the DNA‑binding fluorescent dyes propidium iodide and rhodamine‑123, respectively. Fluorescence microscopy was used to detect the morphological changes in the MG63 osteosarcoma cancer cells and the appearance of apoptotic bodies following sclareol treatment. The results revealed that sclareol induced dose‑ and time‑dependent growth inhibition of MG63 cancer cells with an IC50 value of 65.2 µM following a 12‑h incubation. Furthermore, sclareol induced a significant increase in the release of LDH from MG63 cell cultures, which was much more pronounced at higher doses. Fluorescence microscopy revealed that sclareol induced characteristic morphological features of apoptosis and the appearance of apoptotic bodies. Flow cytometry revealed that sclareol induced G1‑phase cell cycle arrest, which showed significant dose‑dependence. Additionally, sclareol induced a progressive and dose‑dependent reduction in the ΛΨm. In summary, sclareol inhibits the growth of osteosarcoma cancer cells via the induction of apoptosis, which is accompanied by G1‑phase cell cycle arrest and loss of ΛΨm.

  17. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G;

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  18. Mitochondrial Diseases

    Science.gov (United States)

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  19. Hsp90 inhibition decreases mitochondrial protein turnover.

    Directory of Open Access Journals (Sweden)

    Daciana H Margineantu

    Full Text Available BACKGROUND: Cells treated with hsp90 inhibitors exhibit pleiotropic changes, including an expansion of the mitochondrial compartment, accompanied by mitochondrial fragmentation and condensed mitochondrial morphology, with ultimate compromise of mitochondrial integrity and apoptosis. FINDINGS: We identified several mitochondrial oxidative phosphorylation complex subunits, including several encoded by mtDNA, that are upregulated by hsp90 inhibitors, without corresponding changes in mRNA abundance. Post-transcriptional accumulation of mitochondrial proteins observed with hsp90 inhibitors is also seen in cells treated with proteasome inhibitors. Detailed studies of the OSCP subunit of mitochondrial F1F0-ATPase revealed the presence of mono- and polyubiquitinated OSCP in mitochondrial fractions. We demonstrate that processed OSCP undergoes retrotranslocation to a trypsin-sensitive form associated with the outer mitochondrial membrane. Inhibition of proteasome or hsp90 function results in accumulation of both correctly targeted and retrotranslocated mitochondrial OSCP. CONCLUSIONS: Cytosolic turnover of mitochondrial proteins demonstrates a novel connection between mitochondrial and cytosolic compartments through the ubiquitin-proteasome system. Analogous to defective protein folding in the endoplasmic reticulum, a mitochondrial unfolded protein response may play a role in the apoptotic effects of hsp90 and proteasome inhibitors.

  20. Effects of nicorandil on cardiac plasma membrane and cardiac mitochondrial membrane potential of guinea-pig%尼可地尔对豚鼠心肌细胞膜及线粒体膜电位的影响

    Institute of Scientific and Technical Information of China (English)

    冯力; 刘伊丽; 刘杰; 金春华

    2001-01-01

    研究KATP通道开放剂尼可地尔(Nic)对豚鼠心肌细胞膜和线粒体膜电位的影响.用激光共聚焦显微镜和特异性荧光探针,观察不同剂量的Nic及KATP通道阻滞剂格列本脲(Gli)引起急性分离的豚鼠心肌细胞膜电位,线粒体膜电位荧光值的变化.Nic1mmol.L-1引起细胞膜电位在1min内迅速超极化〔膜电位荧光值减少(75±12)%〕,Gli3μmol.L-1可阻断其变化;0.1和1mmol.L-1Nic可使线粒体膜电位去极化和膜电位荧光值在1,2,5min分别增加(12±3)%和(32±8)%,(25±6)%和(39±9)%,(34±6)%和(45±12)%;3μmol.L-1Gli可抑制其变化.结果说明低浓度Nic只引起线粒体膜电位去极化,高浓度Nic还可使细胞膜电位发生超极化,引起KATP通道开放.%With digital imaging techniques of advanced laser confocalmicroscope, effects of KATP channel opener nicorandil(Nic) on cardiac plasma membrane(CPM) and cardiac mitochondrial membrane(CMM) potential of guinea-pig were studied. It was found that Nic 1 mmol.L-1 caused the potential of CPM more negative (hyperpolarization), fluorescence intensity(FI) decreased by (75±12)% of baseline within 1 min, but no effect at 0.1 mmol.L-1. CMM was depolarized by 0.1 mmol.L-1 Nic〔FI increased by (12±3)%, (25±6)%, (34±6)% of baseline within 1, 2, 5 min〕, and by 1 mmol.L-1 Nic〔FI remarkably increased by (32±8)%, (39±9)%, (45±12)% of baseline〕. KATP channel blocker glibenclamide 3 μmol.L-1 itself caused no effect on potential of CPM and CMM, but blocked the above effect on potential of CPM and CMM induced by Nic. The results suggest that KATP channel of CMM is activated by low dose of Nic, and the high dose of Nic activate both KATP channels of CPM and CMM.

  1. Mitochondrial Myopathy

    Science.gov (United States)

    ... NINDS supports research focused on effective treatments and cures for mitochondrial myopathies and other mitochondrial diseases. Scientists are investigating the possible benefits of exercise programs and nutritional supplements, primarily natural and synthetic versions of CoQ10. While CoQ10 has ...

  2. Mitochondrial cytopathies.

    Science.gov (United States)

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  3. Cancer: Mitochondrial Origins.

    Science.gov (United States)

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  4. ERp57 modulates mitochondrial calcium uptake through the MCU.

    Science.gov (United States)

    He, Jingquan; Shi, Weikang; Guo, Yu; Chai, Zhen

    2014-06-01

    ERp57 participates in the regulation of calcium homeostasis. Although ERp57 modulates calcium flux across the plasma membrane and the endoplasmic reticulum membrane, its functions on mitochondria are largely unknown. Here, we found that ERp57 can regulate the expression of the mitochondrial calcium uniporter (MCU) and modulate mitochondrial calcium uptake. In ERp57-silenced HeLa cells, MCU was downregulated, and the mitochondrial calcium uptake was inhibited, consistent with the effect of MCU knockdown. When MCU was re-expressed in the ERp57 knockdown cells, mitochondrial calcium uptake was restored. Thus, ERp57 is a potent regulator of mitochondrial calcium homeostasis.

  5. Mitochondrial Cristae: Where Beauty Meets Functionality.

    Science.gov (United States)

    Cogliati, Sara; Enriquez, Jose A; Scorrano, Luca

    2016-03-01

    Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism.

  6. Mitochondrial Cristae: Where Beauty Meets Functionality.

    Science.gov (United States)

    Cogliati, Sara; Enriquez, Jose A; Scorrano, Luca

    2016-03-01

    Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism. PMID:26857402

  7. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics

    Science.gov (United States)

    Lo, Camden Yeung-Wah; Chen, Sijie; Creed, Sarah Jayne; Kang, Miaomiao; Zhao, Na; Tang, Ben Zhong; Elgass, Kirstin Diana

    2016-01-01

    Mitochondria and mitochondrial dynamics play vital roles in health and disease. With the intricate nanometer-scale structure and rapid dynamics of mitochondria, super-resolution microscopy techniques possess great un-tapped potential to significantly contribute to understanding mitochondrial biology and kinetics. Here we present a novel mitochondrial probe (MitoRed AIE) suitable for live mitochondrial dynamics imaging and single particle tracking (SPT), together with a multi-dimensional data analysis approach to assess local mitochondrial (membrane) fluidity. The MitoRed AIE probe localizes primarily to mitochondrial membranes, with 95 ms fluorophore on-time delivering 106 photons/ms, characteristics which we exploit to demonstrate live cell 100 fps 3D time-lapse tracking of mitochondria. Combining our experimental and analytical approaches, we uncover mitochondrial dynamics at unprecedented time scales. This approach opens up a new regime into high spatio-temporal resolution dynamics in many areas of mitochondrial biology. PMID:27492961

  8. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

    NARCIS (Netherlands)

    Y.S. Ju (Young Seok); J.M.C. Tubio (Jose M.); W. Mifsud (William); B. Fu (Beiyuan); H. Davies (Helen); M. Ramakrishna (Manasa); Y. Li (Yilong); L.R. Yates (Lucy); G. Gundem (Gunes); P.S. Tarpey (Patrick); S. Behjati (Sam); E. Papaemmanuil (Elli); S. Martin; A. Fullam (Anthony); M. Gerstung (Moritz); J. Nangalia (Jyoti); A.R. Green (Anthony R.); C. Caldas (Carlos); Å. Borg (Åke); A. Tutt (Andrew); M.T. Michael Lee (Ming Ta); L.J. van 't Veer (Laura); B.K.T. Tan (Benita K.T.); S.A.J.R. Aparicio (Samuel A. J.); P.N. Span (Paul); J.W.M. Martens (John W. M.); S. Knappskog (Stian); A. Vincent-Salomon (Anne); A.-L. Borresen-Dale (Anne-Lise); J. Eyfjord; A.M. Flanagan (Adrienne); C.S. Foster; D. Neal (David); C. Cooper (Colin); R. Eeles (Rosalind); S. Lakhani (Sunil); C. Desmedt (Christine); G. Thomas (Gilles); A.L. Richardson (Andrea); C.A. Purdie (Colin A.); A.M. Thompson (Alastair M.); U. McDermott (Ultan); F. Yang (Fengtang); S. Nik-Zainal (Serena); P.J. Campbell (Peter); M.R. Stratton (Michael)

    2015-01-01

    textabstractMitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequ

  9. Oxidative stress, mitochondrial damage and neurodegenerative diseases****

    Institute of Scientific and Technical Information of China (English)

    Chunyan Guo; Li Sun; Xueping Chen; Danshen Zhang

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. Al these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive thera-peutic interventions for the treatment of various neurodegenerative diseases.

  10. Determination of intracellular reactive oxygen species and high mitochondrial membrane potential in Percoll-treated viable boar sperm using fluorescence-activated flow cytometry.

    Science.gov (United States)

    Guthrie, H D; Welch, G R

    2006-08-01

    The use of frozen semen in the swine industry is limited by problems with viability and fertility compared with liquid semen. Part of the reduction in sperm motility and fertility associated with cryopreservation may be due to oxidative damage from excessive or inappropriate formation of reactive oxygen species (ROS). Chemiluminescence measurements of ROS are not possible in live cells and are problematic because of poor specificity. An alternative approach, flow cytometry, was developed to identify viable boar sperm containing ROS utilizing the dyes hydroethidine and 2', 7'-dichlorodihydrofluorescein diacetate as oxidizable substrates and impermeant DNA dyes to exclude dead sperm. The percentage of sperm with high mitochondrial transmembrane potential was determined by flow cytometry using the mitochondrial probe 5, 5', 6, 6'-tetrachloro-1, 1', 3, 3'-tetraethylbenzimidazolylcarbocyanine iodide with propidium iodide staining to exclude nonviable cells. Sperm were incubated with and without ROS generators and free radical scavengers. Basal ROS formation was low (less than 4%) and did not differ (P = 0.26) between viable fresh and frozen-thawed boar sperm. In addition, fresh and frozen-thawed viable sperm were equally susceptible (P = 0.20) to intracellular formation of ROS produced by xanthine/xanthine oxidase (94.4 and 87.9% of sperm, respectively). Menadione increased (P boar sperm, both were quite susceptible to external sources of hydrogen peroxide. PMID:16864869

  11. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    OpenAIRE

    Thomas F. Rau; Qing Lu; Shruti Sharma; Xutong Sun; Gregory Leary; Beckman, Matthew L.; Yali Hou; Wainwright, Mark S; Michael Kavanaugh; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neurop...

  12. Experimental study on mitochondrial membrane potential and ultrastructure injuries of kidney in septic rats%脓毒症大鼠肾脏线粒体膜电位变化和超微结构损伤的研究

    Institute of Scientific and Technical Information of China (English)

    陈飞燕; 曾其毅; 赵明奇; 杨文敏; 连广琬

    2008-01-01

    Objective To study the mitochondrial membrane potential and ultrastructure injuries of kidney in septic rats. Methods Thirty SD rats were randomly divided into three groups: Saline control group, 6 h LPS group and 24 h LPS group. The rats in LPS groups received 10 mg/kg lipopolysaccharide by intraperitonesl injection. The levels of serum Cr and BUN were detected. The swelling (FSC/SSC) and the membrane potential (FL2/FL1) of isolated renal mitochondrion were tested by flow cytometry. The morphologic change of mitochondria in kidney was observed by electronic microscopy. Results Compared with control group, serum Cr and BUN increased in septic rats. Compared with control group, swelling of the mirochondrion significantly increased in 24 h LPS group ( Control: 0.55 ± 0.10; 6 h LPS: 0.58 ± 0.10; 24 h LPS: 0.66 ± 0.12, P<0.05). Renal mitochondrial membrane potential significantly decreased in 6 h LPS group and 24 h LPS group (Control:0.77 ± 0.26; 6 h LPS: 0.32 ± 0.19;24 h LPS: 0.30 ± 0.17, P < 0.01). The mitochondrial membrane potential in kidney were inversely correlated with serum Cr level( r = -0.510, P = 0.004). The injuries of mitochondrial ultrastructure increased in 24 h LPS group. Conclusion The injury of the renal mitochondrial membrane potential has occurred in early stage of sepsis before obvious ultrastructure damage of the renal mitochondrion in septic rats.%目的 探讨脓毒症时大鼠肾脏线粒体的损伤情况.方法 采用腹腔注射内毒素(LPS)建立脓毒症大鼠模型.30只SD大鼠随机分为对照组、6 h脓毒症组和24 h脓毒症组.分别检测各组大鼠血清肌酐(Cr)、尿素氮(BUN)水平;电镜观察肾脏线粒体形态学变化;运用流式细胞术检测分离肾脏线粒体的肿胀程度和线粒体膜电位,用前向角与侧向角的平均荧光强度比值(FSC/SSC)反映线粒体肿胀程度,用二通道和一通道平均荧光强度比值(FL2/FL1)确定线粒体膜电位.结果 脓毒症大鼠的血清Cr、BUN

  13. Mitochondrial dysfunction in Parkinson's disease.

    Science.gov (United States)

    Hu, Qingsong; Wang, Guanghui

    2016-01-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by loss of dopaminergic (DA) neurons in the substantia nigra pars compacta and the formation of Lewy bodies and Lewy neurites in surviving DA neurons in most cases. Although the cause of PD is still unclear, the remarkable advances have been made in understanding the possible causative mechanisms of PD pathogenesis. Numerous studies showed that dysfunction of mitochondria may play key roles in DA neuronal loss. Both genetic and environmental factors that are associated with PD contribute to mitochondrial dysfunction and PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provides direct evidence linking mitochondrial dysfunction to PD. Decrease of mitochondrial complex I activity is present in PD brain and in neurotoxin- or genetic factor-induced PD cellular and animal models. Moreover, PINK1 and parkin, two autosomal recessive PD gene products, have important roles in mitophagy, a cellular process to clear damaged mitochondria. PINK1 activates parkin to ubiquitinate outer mitochondrial membrane proteins to induce a selective degradation of damaged mitochondria by autophagy. In this review, we summarize the factors associated with PD and recent advances in understanding mitochondrial dysfunction in PD. PMID:27453777

  14. A mechanistic view of mitochondrial death decision pores

    OpenAIRE

    Belizário, J E; Alves, J.; J.M. Occhiucci; M. Garay-Malpartida; Sesso, A.

    2007-01-01

    Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes whe...

  15. Pyr3, a TRPC3 channel blocker, potentiates dexamethasone sensitivity and apoptosis in acute lymphoblastic leukemia cells by disturbing Ca(2+) signaling, mitochondrial membrane potential changes and reactive oxygen species production.

    Science.gov (United States)

    Abdoul-Azize, Souleymane; Buquet, Catherine; Vannier, Jean-Pierre; Dubus, Isabelle

    2016-08-01

    Dexamethasone (Dex) is used as a chemotherapeutic drug in the treatment of acute lymphoblastic leukemia (ALL) because of its capacity to induce apoptosis. However, some ALL patients acquire resistance to glucocorticoids (GC). Thus, it is important to explore new agents to overcome GC resistance. The aim of the present work was to assess the ability of Pyr3, a selective inhibitor of transient receptor potential canonical 3 (TRPC3), to sensitize human ALL cells to Dex. We show here, for the first time, that Pyr3 enhances Dex sensitivity through the distraction of Dex-mediated Ca(2+) signaling in ALL cells (in vitro) and primary blasts (ex vivo) associated with mitochondrial-mediated reactive oxygen species production in ALL cells. Pyr3 alone induced Ca(2+) signaling via only endoplasmic reticulum-released Ca(2+) and exerted inhibitory effect on store-operated Ca(2+) entry in dose-dependent manner in ALL cell lines. Pre-incubation of cells with Pyr3 significantly curtailed the thapsigargin- and Dex-evoked Ca(2+) signaling in ALL cell lines. Pyr3 synergistically potentiated Dex lethality, as shown by the induction of cell mortality, G2/M cell cycle arrest and apoptosis in ALL cell lines. Moreover, Pyr3 disrupted Dex-mediated Ca(2+) signaling and increased the sensitivity of Dex-induced cell death in primary blasts from ALL patients. Additional analysis showed that co-treatment with Dex and Pyr3 results in mitochondrial membrane potential depolarization and reactive oxygen species production in ALL cells. Together, Pyr3 exhibited potential therapeutic benefit in combination with Dex to inverse glucocorticoid resistance in human ALL and probably in other lymphoid malignancies. PMID:27179991

  16. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  17. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  18. Mitochondrial dysfunction and organophosphorus compounds

    Energy Technology Data Exchange (ETDEWEB)

    Karami-Mohajeri, Somayyeh [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Kerman University of Medical Sciences, Kerman (Iran, Islamic Republic of); Abdollahi, Mohammad, E-mail: Mohammad.Abdollahi@UToronto.Ca [Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2013-07-01

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP.

  19. Mitochondrial dysfunction and organophosphorus compounds

    International Nuclear Information System (INIS)

    Organophosphorous (OPs) pesticides are the most widely used pesticides in the agriculture and home. However, many acute or chronic poisoning reports about OPs have been published in the recent years. Mitochondria as a site of cellular oxygen consumption and energy production can be a target for OPs poisoning as a non-cholinergic mechanism of toxicity of OPs. In the present review, we have reviewed and criticized all the evidences about the mitochondrial dysfunctions as a mechanism of toxicity of OPs. For this purpose, all biochemical, molecular, and morphological data were retrieved from various studies. Some toxicities of OPs are arisen from dysfunction of mitochondrial oxidative phosphorylation through alteration of complexes I, II, III, IV and V activities and disruption of mitochondrial membrane. Reductions of adenosine triphosphate (ATP) synthesis or induction of its hydrolysis can impair the cellular energy. The OPs disrupt cellular and mitochondrial antioxidant defense, reactive oxygen species generation, and calcium uptake and promote oxidative and genotoxic damage triggering cell death via cytochrome C released from mitochondria and consequent activation of caspases. The mitochondrial dysfunction induced by OPs can be restored by use of antioxidants such as vitamin E and C, alpha-tocopherol, electron donors, and through increasing the cytosolic ATP level. However, to elucidate many aspect of mitochondrial toxicity of Ops, further studies should be performed. - Highlights: • As a non-cholinergic mechanism of toxicity, mitochondria is a target for OPs. • OPs affect action of complexes I, II, III, IV and V in the mitochondria. • OPs reduce mitochondrial ATP. • OPs promote oxidative and genotoxic damage via release of cytochrome C from mitochondria. • OP-induced mitochondrial dysfunction can be restored by increasing the cytosolic ATP

  20. Aqueous Cinnamon Extract (ACE-c from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa through loss of mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Samit

    2010-05-01

    Full Text Available Abstract Background Chemoprevention, which includes the use of synthetic or natural agents (alone or in combination to block the development of cancer in human beings, is an extremely promising strategy for cancer prevention. Cinnamon is one of the most widely used herbal medicines with diverse biological activities including anti-tumor activity. In the present study, we have reported the anti-neoplastic activity of cinnamon in cervical cancer cell line, SiHa. Methods The aqueous cinnamon extract (ACE-c was analyzed for its cinnamaldehyde content by HPTLC analysis. The polyphenol content of ACE-c was measured by Folin-Ciocalteau method. Cytotoxicity analysis was performed by MTT assay. We studied the effect of cinnamon on growth kinetics by performing growth curve, colony formation and soft agar assays. The cells treated with ACE-c were analyzed for wound healing assay as well as for matrix metalloproteinase-2 (MMP-2 expression at mRNA and protein level by RT-PCR and zymography, respectively. Her-2 protein expression was analyzed in the control and ACE-c treated samples by immunoblotting as well as confocal microscopy. Apoptosis studies and calcium signaling assays were analyzed by FACS. Loss of mitochondrial membrane potential (Δψm in cinnamon treated cells was studied by JC-1 staining and analyzed by confocal microscopy as well as FACS. Results Cinnamon alters the growth kinetics of SiHa cells in a dose-dependent manner. Cells treated with ACE-c exhibited reduced number of colonies compared to the control cells. The treated cells exhibited reduced migration potential that could be explained due to downregulation of MMP-2 expression. Interestingly, the expression of Her-2 oncoprotein was significantly reduced in the presence of ACE-c. Cinnamon extract induced apoptosis in the cervical cancer cells through increase in intracellular calcium signaling as well as loss of mitochondrial membrane potential. Conclusion Cinnamon could be used as a

  1. Mitochondrial Fusion in Yeast Requires the Transmembrane GTPase Fzo1p

    OpenAIRE

    Hermann, Greg J.; Thatcher, John W.; Mills, John P.; Hales, Karen G.; Fuller, Margaret T.; Nunnari, Jodi; Shaw, Janet M.

    1998-01-01

    Membrane fusion is required to establish the morphology and cellular distribution of the mitochondrial compartment. In Drosophila, mutations in the fuzzy onions (fzo) GTPase block a developmentally regulated mitochondrial fusion event during spermatogenesis. Here we report that the yeast orthologue of fuzzy onions, Fzo1p, plays a direct and conserved role in mitochondrial fusion. A conditional fzo1 mutation causes the mitochondrial reticulum to fragment and blocks mitochondrial fusion during ...

  2. Torilis japonica extract-generated intracellular ROS induces apoptosis by reducing the mitochondrial membrane potential via regulation of the AMPK-p38 MAPK signaling pathway in HCT116 colon cancer.

    Science.gov (United States)

    Kim, Guen Tae; Lee, Se Hee; Kim, Young Min

    2016-09-01

    Torilis japonica extract (TJE) has been reported to possess diverse medicinal properties including anti‑inflammatory and antibacterial activities. However, the precise mechanism of its anticancer effect is not understood. Thus, we evaluated the apoptotic effects of TJE and examined its underlying molecular mechanisms in HCT116 colorectal cancer cells. Our results show that TJE induces apoptosis through the generation of intracellular reactive oxygen species (ROS), and that it regulates the mitochondrial outer membrane potential via the AMPK/p38 MAPK signaling pathway. Importantly, ~50% of cancer cells have p53 mutations. Thus, the ability to induce apoptosis in a p53-independent manner would be of great value in cancer treatment. Our results show that not only does TJE regulate the AMPK/p38 signaling pathway, but it induces apoptosis in cells in which p53 has been knocked down using siRNA. Moreover, as in in vitro studies, TJE induced apoptosis and regulated apoptosis related-proteins in an HCT 116 xenograft model. Taken together, our results demonstrate that TJE, a natural compound that may provide a substitute for chemotherapeutic drugs, has potential as an anticancer agent. PMID:27314881

  3. L-Galactono-1,4-lactone dehydrogenase is an assembly factor of the membrane arm of mitochondrial complex I in Arabidopsis.

    Science.gov (United States)

    Schimmeyer, Joram; Bock, Ralph; Meyer, Etienne H

    2016-01-01

    L-Galactono-1,4-lactone dehydrogenase (GLDH) catalyses the last enzymatic step of the ascorbate biosynthetic pathway in plants. GLDH is localised to mitochondria and several reports have shown that GLDH is associated with complex I of the respiratory chain. In a gldh knock-out mutant, complex I is not detectable, suggesting that GLDH is essential for complex I assembly or stability. GLDH has not been identified as a genuine complex I subunit, instead, it is present in a smaller, lowly abundant version of complex I called complex I*. In addition, GLDH activity has also been detected in smaller protein complexes within mitochondria membranes. Here, we investigated the role of GLDH during complex I assembly. We identified GLDH in complexes co-localising with some complex I assembly intermediates. Using a mutant that accumulates complex I assembly intermediates, we confirmed that GLDH is associated with the complex I assembly intermediates of 400 and 450 kDa. In addition, we detected accumulation of the 200 kDa complex I assembly intermediate in the gldh mutant. Taken together, our data suggest that GLDH is an assembly factor of the membrane arm of complex I. This function appears to be independent of the role of GLDH in ascorbate synthesis, as evidenced by the ascorbate-deficient mutant vtc2-1 accumulating wild-type levels of complex I. Therefore, we propose that GLDH is a dual-function protein that has a second, non-enzymatic function in complex I assembly as a plant-specific assembly factor. We propose an updated model for complex I assembly that includes complex I* as an assembly intermediate.

  4. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  5. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.

    Science.gov (United States)

    Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L J; Lee, Eui-Seung; Harry, Brian L; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S; Kang, Byung-Ho; Xue, Ding

    2016-07-22

    Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development.

  6. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    OpenAIRE

    Gonçalves, Renata L. S.; Oliveira, Jose Henrique M.; Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Pedro L Oliveira; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses ...

  7. A mitochondrial import receptor for the ADP/ATP carrier

    OpenAIRE

    Söllner, Thomas; Griffiths, Gareth; Pfanner, Nikolaus; Neupert, Walter

    1990-01-01

    We have identified a mitochondrial outer membrane protein of 72 kd (MOM72) that exhibits the properties of an import receptor for the ADP/ATP carrier (AAC), the most abundant mitochondrial protein. Monospecific antibodies and Fab fragments against MOM72 selectively inhibit import of AAC at the level of specific binding to the mitochondria. AAC bound to the mitochondrial surface is coprecipitated with antibodies against MOM72 after lysis of mitochondria with detergent. MOM72 thus has a complem...

  8. Parkin suppresses Drp1-independent mitochondrial division.

    Science.gov (United States)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division.

  9. Parkin suppresses Drp1-independent mitochondrial division.

    Science.gov (United States)

    Roy, Madhuparna; Itoh, Kie; Iijima, Miho; Sesaki, Hiromi

    2016-07-01

    The cycle of mitochondrial division and fusion disconnect and reconnect individual mitochondria in cells to remodel this energy-producing organelle. Although dynamin-related protein 1 (Drp1) plays a major role in mitochondrial division in cells, a reduced level of mitochondrial division still persists even in the absence of Drp1. It is unknown how much Drp1-mediated mitochondrial division accounts for the connectivity of mitochondria. The role of a Parkinson's disease-associated protein-parkin, which biochemically and genetically interacts with Drp1-in mitochondrial connectivity also remains poorly understood. Here, we quantified the number and connectivity of mitochondria using mitochondria-targeted photoactivatable GFP in cells. We show that the loss of Drp1 increases the connectivity of mitochondria by 15-fold in mouse embryonic fibroblasts (MEFs). While a single loss of parkin does not affect the connectivity of mitochondria, the connectivity of mitochondria significantly decreased compared with a single loss of Drp1 when parkin was lost in the absence of Drp1. Furthermore, the loss of parkin decreased the frequency of depolarization of the mitochondrial inner membrane that is caused by increased mitochondrial connectivity in Drp1-knockout MEFs. Therefore, our data suggest that parkin negatively regulates Drp1-indendent mitochondrial division. PMID:27181353

  10. The plant mitochondrial carrier family: functional and evolutionary aspects

    OpenAIRE

    Ilka eHaferkamp; Stephan eSchmitz-Esser

    2012-01-01

    Mitochondria play a key role in respiration and energy production and are involved in multiple eukaryotic but also in several plant specific metabolic pathways. Solute carriers in the inner mitochondrial membrane connect the internal metabolism with that of the surrounding cell. Because of their common basic structure, these transport proteins affiliate to the mitochondrial carrier family (MCF). Generally, MCF proteins consist of six membrane-spanning helices, exhibit typical conserved domain...

  11. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP.

    Science.gov (United States)

    Mantena, Sudheer K; Sharma, Som D; Katiyar, Santosh K

    2006-10-01

    Chemotherapeutic approach using non-toxic botanicals may be one of the strategies for the management of the skin cancers. Here we report that in vitro treatment of human epidermoid carcinoma A431 cells with berberine, a naturally occurring isoquinoline alkaloid, decreased cell viability (3-77%, P berberine-induced G(1) cell cycle arrest was mediated through the increased expression of Cdki proteins (Cip1/p21 and Kip1/p27), a simultaneous decrease in Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and enhanced binding of Cdki-Cdk. In additional studies, treatment of A431 cells with berberine (15-75 microM) for 72 h resulted in a significant dose-dependent increase in apoptosis (31-60%, P berberine-treated control (11.7%), which was associated with an increased expression of pro-apoptotic protein Bax, decreased expression of anti-apoptotic proteins Bcl-2 and Bcl-xl, disruption of mitochondrial membrane potential, and activation of caspases 9, 3 and poly (ADP-ribose) polymerase. Pretreatment of A431 cells with the pan-caspase inhibitor (z-VAD-fmk) significantly blocked the berberine-induced apoptosis in A431 cells confirmed that berberine-induced apoptosis is mediated through activation of caspase 3-dependent pathway. Together, this study for the first time identified berberine as a chemotherapeutic agent against human epidermoid carcinoma A431 cells in vitro, further in vivo studies are required to determine whether berberine could be an effective chemotherapeutic agent for the management of non-melanoma skin cancers.

  12. Grape seed proanthocyanidins promote apoptosis in human epidermoid carcinoma A431 cells through alterations in Cdki-Cdk-cyclin cascade, and caspase-3 activation via loss of mitochondrial membrane potential.

    Science.gov (United States)

    Meeran, Syed M; Katiyar, Santosh K

    2007-05-01

    Dietary grape seed proanthocyanidins (GSPs) prevent photocarcinogenesis in mice. Here, we report that in vitro treatment of human epidermoid carcinoma A431 cells with GSPs inhibited cellular proliferation (13-89%) and induced cell death (1-48%) in a dose (5-100 mug/ml)- and time (24, 48 and 72 h)-dependent manner. GSP-induced inhibition of cell proliferation was associated with an increase in G1-phase arrest at 24 h, which was mediated through the inhibition of cyclin-dependent kinases (Cdk) Cdk2, Cdk4, Cdk6 and cyclins D1, D2 and E and simultaneous increase in protein expression of cyclin-dependent kinase inhibitors (Cdki), Cip1/p21 and Kip1/p27, and enhanced binding of Cdki-Cdk. The treatment of A431 cells with GSPs (20-80 mug/ml) resulted in a dose-dependent increase in apoptotic cell death (26-58%), which was associated with an increased protein expression of proapoptotic Bax, decreased expression of antiapoptotic Bcl-2 and Bcl-xl, loss of mitochondrial membrane potential, and cleavage of caspase-9, caspase-3 and PARP. Pretreatment with the pan-caspase inhibitor (z-VAD-fmk) blocked the GSP-induced apoptosis in A431 cells suggesting that GSP-induced apoptosis is associated primarily with the caspase-3-dependent pathway. Together, our study suggests that GSPs possess chemotherapeutic potential against human epidermoid carcinoma cells in vitro, further in vivo mechanistic studies are required to verify the chemotherapeutic effect of GSPs in skin cancers. PMID:17437483

  13. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    Science.gov (United States)

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  14. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus;

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  15. cAMP signalling meets mitochondrial compartments.

    Science.gov (United States)

    Lefkimmiatis, Konstantinos

    2014-04-01

    Mitochondria are highly dynamic organelles comprising at least three distinct areas, the OMM (outer mitochondrial membrane), the IMS (intermembrane space) and the mitochondrial matrix. Physical compartmentalization allows these organelles to host different functional domains and therefore participate in a variety of important cellular actions such as ATP synthesis and programmed cell death. In a surprising homology, it is now widely accepted that the ubiquitous second messenger cAMP uses the same stratagem, compartmentalization, in order to achieve the characteristic functional pleiotropy of its pathway. Accumulating evidence suggests that all the main mitochondrial compartments contain segregated cAMP cascades; however, the regulatory properties and functional significance of such domains are not fully understood and often remain controversial issues. The present mini-review discusses our current knowledge of how the marriage between mitochondrial and cAMP compartmentalization is achieved and its effects on the biology of the cell. PMID:24646228

  16. Evidence of mitochondrial dysfunction in obese adolescents

    DEFF Research Database (Denmark)

    Wilms, L; Larsen, J; Pedersen, P L;

    2010-01-01

    Abstract Aim: Although obesity and weight gain generally are anticipated to be caused by an imbalance between energy intake and energy expenditure, the significance of thyroid hormones (TH) remains unclear. Examination of mitochondrial function may reflect intracellular thyroid hormone effect...... and mitochondrial function in peripheral blood monocytes was determined by flow cytometry. Results: Significant increase in TSH (3.06 +/- 1.56 mU/L vs. 2.33 +/- 0.91 mU/L, p ... compared with lean adolescents. Flow cytometry analysis demonstrated a lower mitochondrial mass (6385 +/- 1962 a.u. vs. 7608 +/- 2328 a.u., p mitochondrial membrane potential (11426 +/- 3861 a.u. vs. 14017 +/- 5536 a.u., p

  17. Melatonin in Mitochondrial Dysfunction and Related Disorders

    Directory of Open Access Journals (Sweden)

    Venkatramanujam Srinivasan

    2011-01-01

    Full Text Available Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R, septic shock, and neurodegenerative disorders like Parkinson's disease (PD, Alzheimer's disease (AD, and Huntington's disease (HD. Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R.

  18. NEW EMBO MEMBER’S REVIEW: Viral and bacterial proteins regulating apoptosis at the mitochondrial level

    OpenAIRE

    Boya, Patricia; Roques, Bernard,; Kroemer, Guido

    2001-01-01

    Mitochondrial membrane permeabilization (MMP) is a critical step of several apoptotic pathways. Some infectious intracellular pathogens can regulate (induce or inhibit) apoptosis of their host cells at the mitochondrial level, by targeting proteins to mitochondrial membranes that either induce or inhibit MMP. Pathogen-encoded mitochondrion-targeted proteins may or may not show amino acid sequence homology to Bcl-2-like proteins. Among the Bcl-2-unrelated, mitochondrion-targeted proteins, seve...

  19. Betaine is a positive regulator of mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro. Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.

  20. Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice

    OpenAIRE

    Bugger, Heiko; Dong CHEN; Riehle, Christian; Soto, Jamie; Theobald, Heather A.; Hu, Xiao X; Ganesan, Balasubramanian; Bart C Weimer; Abel, E. Dale

    2009-01-01

    OBJECTIVE To elucidate the molecular basis for mitochondrial dysfunction, which has been implicated in the pathogenesis of diabetes complications. RESEARCH DESIGN AND METHODS Mitochondrial matrix and membrane fractions were generated from liver, brain, heart, and kidney of wild-type and type 1 diabetic Akita mice. Comparative proteomics was performed using label-free proteome expression analysis. Mitochondrial state 3 respirations and ATP synthesis were measured, and mitochondrial morphology ...

  1. A mechanistic view of mitochondrial death decision pores

    Directory of Open Access Journals (Sweden)

    J.E. Belizário

    2007-08-01

    Full Text Available Mitochondria increase their outer and inner membrane permeability to solutes, protons and metabolites in response to a variety of extrinsic and intrinsic signaling events. The maintenance of cellular and intraorganelle ionic homeostasis, particularly for Ca2+, can determine cell survival or death. Mitochondrial death decision is centered on two processes: inner membrane permeabilization, such as that promoted by the mitochondrial permeability transition pore, formed across inner membranes when Ca2+ reaches a critical threshold, and mitochondrial outer membrane permeabilization, in which the pro-apoptotic proteins BID, BAX, and BAK play active roles. Membrane permeabilization leads to the release of apoptogenic proteins: cytochrome c, apoptosis-inducing factor, Smac/Diablo, HtrA2/Omi, and endonuclease G. Cytochrome c initiates the proteolytic activation of caspases, which in turn cleave hundreds of proteins to produce the morphological and biochemical changes of apoptosis. Voltage-dependent anion channel, cyclophilin D, adenine nucleotide translocase, and the pro-apoptotic proteins BID, BAX, and BAK may be part of the molecular composition of membrane pores leading to mitochondrial permeabilization, but this remains a central question to be resolved. Other transporting pores and channels, including the ceramide channel, the mitochondrial apoptosis-induced channel, as well as a non-specific outer membrane rupture may also be potential release pathways for these apoptogenic factors. In this review, we discuss the mechanistic models by which reactive oxygen species and caspases, via structural and conformational changes of membrane lipids and proteins, promote conditions for inner/outer membrane permeabilization, which may be followed by either opening of pores or a rupture of the outer mitochondrial membrane.

  2. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tomoyuki [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Saotome, Masao, E-mail: msaotome@hama-med.ac.jp [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan); Funaki, Makoto [Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503 (Japan); Hayashi, Hideharu [Internal Medicine III, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192 (Japan)

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  3. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    Science.gov (United States)

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-01

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases. PMID:25634573

  4. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    Science.gov (United States)

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  5. Pivotal role of AKAP121 in mitochondrial physiology.

    Science.gov (United States)

    Czachor, Alexander; Failla, Athena; Lockey, Richard; Kolliputi, Narasaiah

    2016-04-15

    In this Perspective, we discuss some recent developments in the study of the mitochondrial scaffolding protein AKAP121 (also known as AKAP1, or AKAP149 as the human homolog), with an emphasis on its role in mitochondrial physiology. AKAP121 has been identified to function as a key regulatory molecule in several mitochondrial events including oxidative phosphorylation, the control of membrane potential, fission-induced apoptosis, maintenance of mitochondrial Ca(2+)homeostasis, and the phosphorylation of various mitochondrial respiratory chain substrate molecules. Furthermore, we discuss the role of hypoxia in prompting cellular stress and damage, which has been demonstrated to mediate the proteosomal degradation of AKAP121, leading to an increase in reactive oxgyen species production, mitochondrial dysfunction, and ultimately cell death. PMID:26825124

  6. The Plant Mitochondrial Transportome: Balancing Metabolic Demands with Energetic Constraints.

    Science.gov (United States)

    Lee, Chun Pong; Millar, A Harvey

    2016-08-01

    In plants, mitochondrial function is associated with hundreds of metabolic reactions. To facilitate these reactions, charged substrates and cofactors move across the charge-impermeable inner mitochondrial membrane via specialized transporters and must work cooperatively with the electrochemical gradient which is essential for mitochondrial function. The regulatory framework for mitochondrial metabolite transport is expected to be more complex in plants than in mammals owing to the close metabolic association between mitochondrial, plastids, and peroxisome metabolism, as well as to the major diurnal fluctuations in plant metabolic function. We propose here how recent advances can be integrated towards defining the mitochondrial transportome in plants. We also discuss what this reveals about sustaining cooperativity between bioenergetics, metabolism, and transport in typical and challenging environments. PMID:27162080

  7. Control mechanisms in mitochondrial oxidative phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Jana Hroudová; Zdeněk Fi(s)ar

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  8. Almacenamiento en frío de espermatozoides de trucha arcoiris (Oncorhynchus mykiss: Efectos en la motilidad, superóxido intracelular, integridad de la membrana plasmática y potencial de membrana mitocondrial Cold storage of sperm of rainbow trout (oncorhynchus mykiss: Effect on motility, intracellular superoxide, plasma membrane integrity and mitochondrial membrane potential

    Directory of Open Access Journals (Sweden)

    O Berríos

    2010-01-01

    Full Text Available A diferencia de lo que ocurre en mamíferos, en teleósteos la mayoría de los estudios que evalúan la calidad del semen almacenado están orientados a la exposición de los espermatozoides a algunas especies reactivas de oxígeno (ROS, a la incorporación de antioxidantes en la dieta o a la aplicación de éstos en el plasma seminal. No se encuentran trabajos disponibles que traten la presencia del radical superóxido (O2._, ni la función que éste cumple al interior del espermatozoide cuando se encuentran almacenados. En la presente investigación se evaluó el efecto del almacenamiento en el O2._, motilidad, integridad de la membrana plasmática y potencial de membrana mitocondrial (ΔΨMit en espermatozoides de trucha arcoiris (oncorhynchus mykiss. Para ello se extrajo el semen, el cual fue almacenado durante 12 días a 4 ºC. Cada 4 días se evaluó motilidad, ΔΨMit, integridad de la membrana plasmática y se detectó O2._ intracelular en los espermatozoides. Se encontró un 82,59% de células con tinción positiva para O2._ el día de extracción de la muestra, mientras que la motilidad, ΔΨMit y la integridad de la membrana plasmática, solo mostraron deterioro después del octavo día de almacenamiento. Únicamente el ΔΨMit se correlaciona negativamente con O2._ a partir del octavo día de almacenamiento (r = -0,56 P In teleostei, as opposed to what happens in mammals, most of the studies that evaluate the quality storages of semen are oriented toward the exposure of spermatozoa to some reactive oxygen species (ROS, the utilization of antioxidants in the diet, or the incorporation of these in seminal plasma. There is no available the literature covering the presence of superoxide ions (O2._, or the function of these on the interior of the spermatozoa that have been stored. In this study, we evaluated the effect of storage on intracellular O2._, motility, plasmatic membrane integrity, and mitochondrial membrane potential (

  9. Mitochondrial involvement in drug-induced liver injury.

    Science.gov (United States)

    Pessayre, Dominique; Mansouri, Abdellah; Berson, Alain; Fromenty, Bernard

    2010-01-01

    Mitochondrial dysfunction is a major mechanism of liver injury. A parent drug or its reactive metabolite can trigger outer mitochondrial membrane permeabilization or rupture due to mitochondrial permeability transition. The latter can severely deplete ATP and cause liver cell necrosis, or it can instead lead to apoptosis by releasing cytochrome c, which activates caspases in the cytosol. Necrosis and apoptosis can trigger cytolytic hepatitis resulting in lethal fulminant hepatitis in some patients. Other drugs severely inhibit mitochondrial function and trigger extensive microvesicular steatosis, hypoglycaemia, coma, and death. Milder and more prolonged forms of drug-induced mitochondrial dysfunction can also cause macrovacuolar steatosis. Although this is a benign liver lesion in the short-term, it can progress to steatohepatitis and then to cirrhosis. Patient susceptibility to drug-induced mitochondrial dysfunction and liver injury can sometimes be explained by genetic or acquired variations in drug metabolism and/or elimination that increase the concentration of the toxic species (parent drug or metabolite). Susceptibility may also be increased by the presence of another condition, which also impairs mitochondrial function, such as an inborn mitochondrial cytopathy, beta-oxidation defect, certain viral infections, pregnancy, or the obesity-associated metabolic syndrome. Liver injury due to mitochondrial dysfunction can have important consequences for pharmaceutical companies. It has led to the interruption of clinical trials, the recall of several drugs after marketing, or the introduction of severe black box warnings by drug agencies. Pharmaceutical companies should systematically investigate mitochondrial effects during lead selection or preclinical safety studies. PMID:20020267

  10. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression.

    Science.gov (United States)

    Jourdain, Alexis A; Boehm, Erik; Maundrell, Kinsey; Martinou, Jean-Claude

    2016-03-14

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized "mitochondrial RNA granules," mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  11. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    Directory of Open Access Journals (Sweden)

    Mario de la Mata

    2016-10-01

    Full Text Available Lysosomal storage diseases (LSDs describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS, where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm, diminished ATP production and increased generation of reactive oxygen species (ROS. Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD, the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase. Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer and glucosylsphingosine (GlcSph in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs.

  12. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson’s Disease Patients

    Directory of Open Access Journals (Sweden)

    William Haylett

    2016-01-01

    Full Text Available Mutations in the parkin gene are the most common cause of early-onset Parkinson’s disease (PD. Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093, while exhibiting more fragmented mitochondrial networks (p=0.0304. Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p=0.0001. These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.

  13. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    Science.gov (United States)

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  14. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    Science.gov (United States)

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  15. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    Science.gov (United States)

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.

  16. Exercise alters liver mitochondria phospholipidomic profile and mitochondrial activity in non-alcoholic steatohepatitis

    OpenAIRE

    Gonçalves, Inês O; Maciel, Elisabete; Passos, Emanuel; Torrella, Joan R.; Rizo, David; Viscor, Ginés; Rocha-Rodrigues, Silvia; Santos-Alves, Estela; Domingues, Maria R.; Oliveira, Paulo J; Ascensão, António; Magalhães, José

    2014-01-01

    Mitochondrial membrane lipid composition is a critical factor in non-alcoholic steatohepatitis (NASH). Exercise is the most prescribed therapeutic strategy against NASH and a potential modulator of lipid membrane. Thus, we aimed to analyze whether physical exercise exerted preventive (voluntary physical activity – VPA) and therapeutic (endurance training – ET) effect on NASH-induced mitochondrial membrane changes. Sprague-Dawley rats (n = 36) were divided into standard-diet sedentary (SS, n =...

  17. Uncoupling Mitochondrial Respiration for Diabesity.

    Science.gov (United States)

    Larrick, James W; Larrick, Jasmine W; Mendelsohn, Andrew R

    2016-08-01

    Until recently, the mechanism of adaptive thermogenesis was ascribed to the expression of uncoupling protein 1 (UCP1) in brown and beige adipocytes. UCP1 is known to catalyze a proton leak of the inner mitochondrial membrane, resulting in uncoupled oxidative metabolism with no production of adenosine triphosphate and increased energy expenditure. Thus increasing brown and beige adipose tissue with augmented UCP1 expression is a viable target for obesity-related disorders. Recent work demonstrates an UCP1-independent pathway to uncouple mitochondrial respiration. A secreted enzyme, PM20D1, enriched in UCP1+ adipocytes, exhibits catalytic and hydrolytic activity to reversibly form N-acyl amino acids. N-acyl amino acids act as endogenous uncouplers of mitochondrial respiration at physiological concentrations. Administration of PM20D1 or its products, N-acyl amino acids, to diet-induced obese mice improves glucose tolerance by increasing energy expenditure. In short-term studies, treated animals exhibit no toxicity while experiencing 10% weight loss primarily of adipose tissue. Further study of this metabolic pathway may identify novel therapies for diabesity, the disease state associated with diabetes and obesity. PMID:27378359

  18. Mitochondrial mutagenesis induced by tumor-specific radiation bystander effects.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The radiation bystander effect is a cellular process whereby cells not directly exposed to radiation display cellular alterations similar to directly irradiated cells. Cellular targets including mitochondria have been postulated to play a significant role in this process. In this study, we utilized the Random Mutation Capture assay to quantify the levels of random mutations and deletions in the mitochondrial genome of bystander cells. A significant increase in the frequency of random mitochondrial mutations was found at 24 h in bystander cells exposed to conditioned media from irradiated tumor explants (p = 0.018). CG:TA mutations were the most abundant lesion induced. A transient increase in the frequency of random mitochondrial deletions was also detected in bystander cells exposed to conditioned media from tumor but not normal tissue at 24 h (p = 0.028). The increase in both point mutations and deletions was transient and not detected at 72 h. To further investigate mitochondrial dysfunction, mitochondrial membrane potential and reactive oxygen species were assessed in these bystander cells. There was a significant reduction in mitochondrial membrane potential and this was positively associated with the frequency of random point mutation and deletions in bystander cells treated with conditioned media from tumor tissue (r = 0.71, p = 0.02). This study has shown that mitochondrial genome alterations are an acute consequence of the radiation bystander effect secondary to mitochondrial dysfunction and suggests that this cannot be solely attributable to changes in ROS levels alone.

  19. The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria.

    Science.gov (United States)

    Wiechmann, Katja; Müller, Hans; Fischer, Dagmar; Jauch, Johann; Werz, Oliver

    2015-11-01

    The acylphloroglucinols hyperforin (Hypf) and myrtucommulone A (MC A) induce death of cancer cells by triggering the intrinsic/mitochondrial pathway of apoptosis, accompanied by a loss of the mitochondrial membrane potential and release of cytochrome c. However, the upstream targets and mechanisms leading to these mitochondrial events in cancer cells remain elusive. Here we show that Hypf and MC A directly act on mitochondria derived from human leukemic HL-60 cells and thus, disrupt mitochondrial functions. In isolated mitochondria, Hypf and MC A efficiently impaired mitochondrial viability (EC50 = 0.2 and 0.9 µM, respectively), caused loss of the mitochondrial membrane potential (at 0.03 and 0.1 µM, respectively), and suppressed mitochondrial ATP synthesis (IC50 = 0.2 and 0.5 µM, respectively). Consequently, the compounds activated the adenosine monophosphate-activated protein kinase (AMPK) in HL-60 cells, a cellular energy sensor involved in apoptosis of cancer cells. Side by side comparison with the protonophore CCCP and the ATP synthase inhibitor oligomycin suggest that Hypf and MC A act as protonophores that primarily dissipate the mitochondrial membrane potential by direct interaction with the mitochondrial membrane. Together, Hypf and MC A abolish the mitochondrial proton motive force that on one hand impairs mitochondrial viability and on the other cause activation of AMPK due to lowered ATP levels which may further facilitate the intrinsic mitochondrial pathway of apoptosis.

  20. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    International Nuclear Information System (INIS)

    Highlights: ► We report first time that ionizing radiation induces mitochondrial dynamic changes. ► Radiation-induced mitochondrial fission was caused by Drp1 localization. ► We found that radiation causes delayed ROS from mitochondria. ► Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O2·- production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O2·-. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  1. Strokes in mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    N V Pizova

    2012-01-01

    Full Text Available It is suggested that mitochondrial diseases might be identified in 22—33% of cryptogenic stroke cases in young subjects. The incidence of mitochondrial disorders in patients with stroke is unknown; it is 0.8 to 7.2% according to the data of some authors. The paper gives data on the prevalence, pathogenesis, and clinical manifestations of mitochondrial diseases, such as mitochondrial encephalopathy, lactic acidosis, and stroke-like syndrome (MELAS and insulin-like episodes; myoclonic epilepsy and ragged-red fibers (MERRF syndrome, and Kearns-Sayre syndrome (sporadic multisystem mitochondrial pathology.

  2. Altered Mitochondrial Dynamics and TBI Pathophysiology

    Directory of Open Access Journals (Sweden)

    Tara Diane Fischer

    2016-03-01

    Full Text Available Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS, and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1, which translocates to the mitochondrial outer membrane to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 hours post-injury, followed by a significant decrease in length at 72 hours. Post-TBI administration of Mdivi-1, a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the hippocampus and improved

  3. 信息动态%Evaluation of Mitochondrial Damage of lsletβCells by Mitochondrial Permeability Transition Pore

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Objective To evaluate the mitochondrial damage of islet β cells under glucolipotoxicity by investigating the mitochondrial permeability transition pore (mPTP). Methods Pancreatic β cell lines INS-1 cells were treated with 0. 4 mmol/L palmitic acid and different concentrations of glucose (5.6 mmol/L or 25 mmol/L). The mitochondrial membrane potential, mPTP and reactive oxygen species (ROS) were measured by flow cytometry and fluorescence staining technique to assess the mitochon drial damage. Cell proliferation was measured by 5-bromodeoxyuridine incorporation and cell apoptosis was detected by Annexin V method. Results Compared with the low glucose concentration, the high glucose concentration resulted in decreased mPTP activity (P<0.05), increased mitochondrial membrane potential (P<0.05) and increased cell proliferation rate (P<0.05). There was no significant change in ROS generation. When cells were exposed to high glucose concentration and palmitic acid, both mPTP activity and mitochonhdrial membrane potential reduced (P<0.05), with increased cell apoptosis rate (P <0.05) and increased ROS generation. Conclusion The high glucose concentration decreases mPTP and increases mitochondrial membrane potential, suggesting that cells may remain in an unstable high metabolic state. Evaluation of mPTP may contribute to a more comprehensive understanding of mitochondrial dysfunction under glucotoxictiy.

  4. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Rajan, Sudarsan; Hoffman, Nicholas E; Zhang, Xueqian; Guo, Shuchi; Kolesar, Jill E; Hines, Kevin J; Ragheb, Jonathan; Jog, Neelakshi R; Caricchio, Roberto; Baba, Yoshihiro; Zhou, Yandong; Kaufman, Brett A; Cheung, Joseph Y; Kurosaki, Tomohiro; Gill, Donald L; Madesh, Muniswamy

    2015-03-03

    Cytosolic Ca2+ signals, generated through the coordinated translocation of Ca2+ across the plasma membrane (PM) and endoplasmic reticulum (ER) membrane, mediate diverse cellular responses. Mitochondrial Ca2+ is important for mitochondrial function, and when cytosolic Ca2+ concentration becomes too high, mitochondria function as cellular Ca2+ sinks. By measuring mitochondrial Ca2+ currents, we found that mitochondrial Ca2+ uptake was reduced in chicken DT40 B lymphocytes lacking either the ER-localized inositol trisphosphate receptor (IP3R), which releases Ca2+ from the ER, or Orai1 or STIM1, components of the PM-localized Ca2+ -permeable channel complex that mediates store-operated calcium entry (SOCE) in response to depletion of ER Ca2+ stores. The abundance of MCU, the pore-forming subunit of the mitochondrial Ca2+ uniporter, was reduced in cells deficient in IP3R, STIM1, or Orai1. Chromatin immunoprecipitation and promoter reporter analyses revealed that the Ca2+ -regulated transcription factor CREB (cyclic adenosine monophosphate response element-binding protein) directly bound the MCU promoter and stimulated expression. Lymphocytes deficient in IP3R, STIM1, or Orai1 exhibited altered mitochondrial metabolism, indicating that Ca2+ released from the ER and SOCE-mediated signals modulates mitochondrial function. Thus, our results showed that a transcriptional regulatory circuit involving Ca2+ -dependent activation of CREB controls the Ca2+ uptake capability of mitochondria and hence regulates mitochondrial metabolism.

  5. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    Directory of Open Access Journals (Sweden)

    Ya-Wen eLu

    2015-02-01

    Full Text Available The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step towards delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: 1 oxidative phosphorylation (subunits and assembly factors; 2 mitochondrial DNA maintenance and expression; 3 mitochondrial protein import and assembly; 4 mitochondrial quality control (chaperones and proteases; 5 iron-sulfur cluster homeostasis; and 6 mitochondrial dynamics (fission and fusion. Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.

  6. 肥胖男性不育患者精子线粒体膜电位、游离脂肪酸、活性氧的关系%Relationship of Free Fatty Acid,Reactive Oxygen Species and Sperm Mitochondrial Membrane Potential in Obese Male Infertility Patients

    Institute of Scientific and Technical Information of China (English)

    白双勇; 王剑松; 赵庆华

    2015-01-01

    Objective To investigate the change of sperm mitochondrial membrane potential in obese male infertility patients,and to explore the re⁃lationship of sperm mitochondrial membrane potential with the reactive oxygen species and free fatty acids in seminal plasma. Methods According to the research conditions,samples were randomly selected by cluster sampling from outpatient,and divided into normal body mass index fertile men as control group(n=51),normal body mass index infertile group(n=36),overweight infertile group(n=44),and obesity infertile group(n=45). Semen routine analysis was performed. Free fatty acid and reactive oxygen species in the seminal plasma was determined by ELSA method,sperm mitochondrial membrane potential was determined by flow cytometry. Results The rate of normal sperm mitochondrial membrane potential in nor⁃mal weight infertility(27.34%±13.38%),overweight infertility(28.26%±9.76%),obesity infertility group(25.27%±7.51%)were lower than the control group(35.12%±15.90%),the difference was statistically significant(P<0.05). Although obesity infertility group normal rate of mitochon⁃drial membrane potential were lower than normal weight infertility group and the overweight infertility group,but there was no statistically significant difference. The rate of sperm normal mitochondrial membrane potential was positively correlated with the rate of sperm progressive motility(r=0.29, P<0.01). Free fatty acid was positively correlated with reactive oxygen species in seminal plasma(r=0.30,P<0.01),reactive oxygen species in seminal plasma was negatively correlated with sperm normal mitochondrial membrane potential(r=-0.24,P<0.01). Conclusion Free fatty acid was elevated in the seminal plasma of overweight and obese patients with male infertility,which causes increased reactive oxygen species,reduced mitochondrial membrane potential,and eventually lead to the decline of sperm movement ability. Patients undergoing the treatment should be ad

  7. A role of taurine in mitochondrial function

    DEFF Research Database (Denmark)

    Hansen, Svend Høime; Andersen, Mogens Larsen; Cornett, Claus;

    2010-01-01

    The mitochondrial pH gradient across the inner-membrane is stabilised by buffering of the matrix. A low-molecular mass buffer compound has to be localised in the matrix to maintain its alkaline pH value. Taurine is found ubiquitously in animal cells with concentrations in the millimolar range...... and its pKa value is determined to 9.0 (25 degrees C) and 8.6 (37 degrees C), respectively. Localisation of such a low-molecular buffer in the mitochondrial matrix, transforms the matrix into a biochemical reaction chamber for the important matrix-localised enzyme systems. Three acyl-CoA dehydrogenase...... enzymes, which are pivotal for beta-oxidation of fatty acids, are demonstrated to have optimal activity in a taurine buffer. By application of the model presented, taurine depletion caused by hyperglycemia could provide a link between mitochondrial dysfunction and diabetes....

  8. Involvement of the mitochondrial compartment in human NCL fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Pezzini, Francesco; Gismondi, Floriana [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Tessa, Alessandra [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Tonin, Paola [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy); Carrozzo, Rosalba [IRCCS Bambino Gesu Hospital-Molecular Medicine Unit, Roma (Italy); Mole, Sara E. [MRC Laboratory for Molecular Cell Biology, Molecular Medicines Unit, UCL Institute of Child Health and Department of Genetics, Evolution and Environment, University College London (United Kingdom); Santorelli, Filippo M. [IRCCS Fondazione Stella Maris-Molecular Medicine Unit, Pisa (Italy); Simonati, Alessandro, E-mail: alessandro.simonati@univr.it [Department of Neurological, Psychological, Morphological and Motor Sciences, Divisions of Neurology (Child Neurology) and Neuropathology, University of Verona Medical School, Verona (Italy)

    2011-12-09

    Highlights: Black-Right-Pointing-Pointer Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. Black-Right-Pointing-Pointer Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. Black-Right-Pointing-Pointer Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  9. Mitochondrial reactive oxygen species modulate mosquito susceptibility to Plasmodium infection.

    Directory of Open Access Journals (Sweden)

    Renata L S Gonçalves

    Full Text Available BACKGROUND: Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS that modulate redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1, is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. CONCLUSION: We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.

  10. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    Science.gov (United States)

    Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection. PMID:22815925

  11. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    Science.gov (United States)

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  12. Connexin 43 impacts on mitochondrial potassium uptake

    Directory of Open Access Journals (Sweden)

    Kerstin eBoengler

    2013-06-01

    Full Text Available In cardiomyocytes, connexin 43 (Cx43 forms gap junctions and unopposed hemichannels at the plasma membrane, but the protein is also present at the inner membrane of subsarcolemmal mitochondria. Both inhibition and genetic ablation of Cx43 reduce ADP-stimulated complex 1 respiration. Since mitochondrial potassium influx impacts on oxygen consumption, we investigated whether or not inhibition or ablation of mitochondrial Cx43 alters mitochondrial potassium uptake.Subsarcolemmal mitochondria were isolated from rat left ventricular (LV myocardium and loaded with the potassium-sensitive dye PBFI. Intramitochondrial potassium was replaced by TEA (tetraethylammonium. Mitochondria were incubated under control conditions or treated with 250 µM Gap19, a peptide that specifically inhibits Cx43-dependent hemichannels at plasma membranes. Subsequently, 140 mM KCl was added and the slope of the increase in PBFI fluorescence over time was calculated. The slope of the PBFI fluorescence of the control mitochondria was set to 100%. In the presence of Gap19, the mitochondrial potassium influx was reduced from 100±11.6 % in control mitochondria to 65.5±10.7 % (n=6, p<0.05. In addition to the pharmacological inhibition of Cx43, potassium influx was studied in mitochondria isolated from conditional Cx43 knockout mice. Here, the ablation of Cx43 was achieved by the injection of 4-hydroxytamoxifen (Cx43Cre-ER(T/fl + 4-OHT. The mitochondria of the Cx43Cre-ER(T/fl + 4-OHT mice contained 3±1% Cx43 (n=6 of that in control mitochondria (100±11%, n=8, p<0.05. The ablation of Cx43 (n=5 reduced the velocity of the potassium influx from 100±11.2 % in control mitochondria (n=9 to 66.6±5.5 % (p<0.05.Taken together, our data indicate that both pharmacological inhibition and genetic ablation of Cx43 reduce mitochondrial potassium influx.

  13. Mitochondrial Dysfunction and Chronic Disease: Treatment With Natural Supplements

    OpenAIRE

    Nicolson, Garth L.

    2014-01-01

    Loss of function in mitochondria, the key organelle responsible for cellular energy production, can result in the excess fatigue and other symptoms that are common complaints in almost every chronic disease. At the molecular level, a reduction in mitochondrial function occurs as a result of the following changes: (1) a loss of maintenance of the electrical and chemical transmembrane potential of the inner mitochondrial membrane, (2) alterations in the function of the electron transport chain,...

  14. Yeast PPR proteins, watchdogs of mitochondrial gene expression

    OpenAIRE

    Herbert, Christopher J.; Golik, Pawel; Bonnefoy, Nathalie

    2013-01-01

    PPR proteins are a family of ubiquitous RNA-binding factors, found in all the Eukaryotic lineages, and are particularly numerous in higher plants. According to recent bioinformatic analyses, yeast genomes encode from 10 (in S. pombe) to 15 (in S. cerevisiae) PPR proteins. All of these proteins are mitochondrial and very often interact with the mitochondrial membrane. Apart from the general factors, RNA polymerase and RNase P, most yeast PPR proteins are involved in the stability and/or transl...

  15. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans

    Science.gov (United States)

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  16. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-09-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME.

  17. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  18. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    International Nuclear Information System (INIS)

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H2O2 across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H2O2 release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p 2O2 release, assessed by Amplex Red, was reduced by about 45% (p 2O2 release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H2O2 release and increases ROS. ► Aquaporin-8 knockdown causes ROS-induced mitochondrial depolarization and cell death. ► Mitochondrial permeability transition blockage prevents depolarization and cell death.

  19. Impaired expression of the mitochondrial calcium uniporter suppresses mast cell degranulation.

    Science.gov (United States)

    Furuno, Tadahide; Shinkai, Narumi; Inoh, Yoshikazu; Nakanishi, Mamoru

    2015-12-01

    Calcium ion (Ca(2+)) uptake into the mitochondrial matrix influences ATP production, Ca(2+) homeostasis, and apoptosis regulation. Ca(2+) uptake across the ion-impermeable inner mitochondrial membrane is mediated by the mitochondrial Ca(2+) uniporter (MCU) complex. The MCU complex forms a pore structure composed of several proteins. MCU is a Ca(2+)-selective channel in the inner-mitochondrial membrane that allows electrophoretic Ca(2+) entry into the matrix. Mitochondrial Ca(2+) uptake 1 (MICU1) functions as a Ca(2+)-sensing regulator of the MCU complex. Previously, by microscopic analysis at the single-cell level, we found that during mast cell activation, mitochondria capture cytosolic Ca(2+) in two steps. Consequently, mitochondrial Ca(2+) uptake likely plays a role in cellular function through cytosolic Ca(2+) buffering. Here, we investigate the role of MCU and MICU1 in mitochondrial Ca(2+) uptake and mast cell degranulation using MCU- and MICU1-knockdown (KD) mast cells. Whereas MCU- and MICU1-KD mast cells show normal proliferation rates and mitochondrial membrane potential, they exhibit slow and reduced cytosolic and mitochondrial Ca(2+) elevation after antigen stimulation. Moreover, β-hexosaminidase release induced by antigen was significantly suppressed in MCU-KD cells but not MICU1-KD cells. This suggests that both MCU and MICU1 are involved in mitochondrial Ca(2+) uptake in mast cells, while MCU plays a role in mast cell degranulation.

  20. Effects of the Czech Propolis on Sperm Mitochondrial Function

    Science.gov (United States)

    Cedikova, Miroslava; Miklikova, Michaela; Stachova, Lenka; Grundmanova, Martina; Tuma, Zdenek; Vetvicka, Vaclav; Zech, Nicolas; Kralickova, Milena; Kuncova, Jitka

    2014-01-01

    Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential. Semen samples from 10 normozoospermic donors were processed according to the World Health Organization criteria. Propolis effects on the sperm motility and mitochondrial activity parameters were tested in the fresh ejaculate and purified spermatozoa. Propolis preserved progressive motility of spermatozoa in the native semen samples. Oxygen consumption determined in purified permeabilized spermatozoa by high-resolution respirometry in the presence of adenosine diphosphate and substrates of complex I and complex II (state OXPHOSI+II) was significantly increased in the propolis-treated samples. Propolis also increased uncoupled respiration in the presence of rotenone (state ETSII) and complex IV activity, but it did not influence state LEAK induced by oligomycin. Mitochondrial membrane potential was not affected by propolis. This study demonstrates that propolis maintains sperm motility in the native ejaculates and increases activities of mitochondrial respiratory complexes II and IV without affecting mitochondrial membrane potential. The data suggest that propolis improves the total mitochondrial respiratory efficiency in the human spermatozoa in vitro thereby having potential to improve sperm motility. PMID:25104965

  1. Mitochondrial DNA repair and association with aging--an update

    DEFF Research Database (Denmark)

    Diaz, Ricardo Gredilla; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2010-01-01

    Mitochondrial DNA is constantly exposed to oxidative injury. Due to its location close to the main site of reactive oxygen species, the inner mitochondrial membrane, mtDNA is more susceptible than nuclear DNA to oxidative damage. The accumulation of DNA damage is thought to play a critical role...... proteins and novel DNA repair pathways, thought to be exclusively present in the nucleus, have recently been described also to be present in mitochondria. Here we review the main mitochondrial DNA repair pathways and their association with the aging process....

  2. The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles.

    Science.gov (United States)

    Patron, Maria; Raffaello, Anna; Granatiero, Veronica; Tosatto, Anna; Merli, Giulia; De Stefani, Diego; Wright, Lauren; Pallafacchina, Giorgia; Terrin, Anna; Mammucari, Cristina; Rizzuto, Rosario

    2013-04-12

    The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.

  3. Deceleration of fusion-fission cycles improves mitochondrial quality control during aging.

    Directory of Open Access Journals (Sweden)

    Marc Thilo Figge

    Full Text Available Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the 'mitochondrial infectious damage adaptation' (MIDA model according to which a deceleration of fusion-fission cycles reflects a systemic adaptation increasing life span.

  4. MAVS maintains mitochondrial homeostasis via autophagy

    Science.gov (United States)

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif ‘YxxI’, suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  5. Characteristics of Mitochondrial Transformation into Human Cells

    Science.gov (United States)

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  6. Mitochondrial functions on oocytes and preimplantation embryos

    Institute of Scientific and Technical Information of China (English)

    Li-ya WANG; Da-hui WANG; Xiang-yang ZOU; Chen-ming XU

    2009-01-01

    Oocyte quality has long been considered as a main limiting factor for in vitro fertilization (IVF). In the past decade,extensive observations demonstrated that the mitochondrion plays a vital role in the oocyte cytoplasm, for it can provide adenosine triphosphate (ATP) for fertilization and preimplantation embryo development and also act as stores of intracellular calcium and proapoptotic factors. During the oocyte maturation, mitochondria are characterized by distinct changes of their distribution pattern from being homogeneous to heterogeneous, which is correlated with the cumulus apoptosis. Oocyte quality decreases with the increasing maternal age. Recent studies have shown that low quality oocytes have some age-related dysfunctions, which include the decrease in mitochondrial membrane potential, increase of mitochondrial DNA (mtDNA) damages, chromosomal aneuploidies,the incidence of apoptosis, and changes in mitochondrial gene expression. All these dysfunctions may cause a high level of developmental retardation and arrest of preimplantation embryos. It has been suggested that these mitochondrial changes may arise from excessive reactive oxygen species (ROS) that is closely associated with the oxidative energy production or calcium overload,which may trigger permeability transition pore opening and subsequent apoptosis. Therefore, mitochondria can be seen as signs for oocyte quality evaluation, and it is possible that the oocyte quality can be improved by enhancing the physical function of mitochondria. Here we reviewed recent advances in mitochondrial functions on oocytes.

  7. Characteristics of Mitochondrial Transformation into Human Cells.

    Science.gov (United States)

    Kesner, E E; Saada-Reich, A; Lorberboum-Galski, H

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process.

  8. MAVS maintains mitochondrial homeostasis via autophagy.

    Science.gov (United States)

    Sun, Xiaofeng; Sun, Liwei; Zhao, Yuanyuan; Li, Ying; Lin, Wei; Chen, Dahua; Sun, Qinmiao

    2016-01-01

    Mitochondrial antiviral signalling protein (MAVS) acts as a critical adaptor protein to transduce antiviral signalling by physically interacting with activated RIG-I and MDA5 receptors. MAVS executes its functions at the outer membrane of mitochondria to regulate downstream antiviral signalling, indicating that the mitochondria provides a functional platform for innate antiviral signalling transduction. However, little is known about whether and how MAVS-mediated antiviral signalling contributes to mitochondrial homeostasis. Here we show that the activation of MAVS is sufficient to induce autophagic signalling, which may mediate the turnover of the damaged mitochondria. Importantly, we find MAVS directly interacts with LC3 through its LC3-binding motif 'YxxI', suggesting that MAVS might act as an autophagy receptor to mediate mitochondrial turnover upon excessive activation of RLR signalling. Furthermore, we provide evidence that both MAVS self-aggregation and its interaction with TRAF2/6 proteins are important for MAVS-mediated mitochondrial turnover. Collectively, our findings suggest that MAVS acts as a potential receptor for mitochondria-associated autophagic signalling to maintain mitochondrial homeostasis. PMID:27551434

  9. Scoliosis in Mitochondrial Myopathy

    OpenAIRE

    Li, Zheng; Shen, Jianxiong; Liang, Jinqian

    2015-01-01

    Abstract The mitochondrial myopathies include a diverse group of disorders characterized by morphological abnormalities of muscle mitochondria. Little is reported about spinal deformity associated with this syndrome. This study presents a case of scoliosis occurring in the setting of mitochondrial myopathies and explores the possible mechanisms between the 2 diseases. A previously unreported scoliosis in mitochondrial myopathies is described. The patient was a 16-year-old Chinese adolescent b...

  10. Keshan disease and mitochondrial cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    YANG; Fuyu

    2006-01-01

    Keshan disease (KD) is a potentially fatal form of cardiomyopathy (disease of the heart muscle) endemic in certain areas of China. From 1984 to 1986, a national comprehensive scientific investigation on KD in Chuxiong region of Yunnan Province in the southwest China was conducted. The investigation team was composed of epidemiologists, clinic doctors, pathologists, biochemists, biophysicists and specialists in ecological environment. Results of pathological, biochemical and biophysical as well as clinical studies showed: an obvious increase of enlarged and swollen mitochondria with distended crista membranes in myocardium from patients with KD; significant reductions in the activity of oxidative phosphorylation (succinate dehydrogenase, cytochrome oxidase, succinate oxidase, H+-ATPase) of affected mitochondria; decrease in CoQ, cardiolipin, Se and GSHPx activity, while obvious increase in the Ca2+ content. So, it was suggested that mitochondria are the predominant target of the pathogenic factors of KD. Before Chuxiong KD survey only a few cases of mitochondrial cardiomyopathy were studied. During the multidisciplinary scientific investigation on KD in Chuxiong a large amount of samples from KD cases and the positive controls were examined. On the basis of the results obtained it was suggested that KD might be classified as a "Mitochondrial Cardiomyopathy" endemic in China. This is one of the achievements in the three years' survey in Chuxiong and is valuable not only to the deeper understanding of pathogenic mechanism of KD but also to the study of mitochondrial cardiomyopathy in general.Keshan disease is not a genetic disease, but is closely related to the malnutrition (especially microelement Se deficiency). KD occurs along a low Se belt, and Se supplementation has been effective in prevention of such disease. The incidence of KD has sharply decreased along with the steady raise of living standard and realization of preventive measures. At present, patients of

  11. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  12. Neurodegenerative and Fatiguing Illnesses, Infections and Mitochondrial Dysfunction: Use of Natural Supplements to Improve Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Garth L. Nicolson

    2014-01-01

    Full Text Available Background: Many chronic diseases and illnesses are associated with one or more chronic infections, dysfunction of mitochondria and reduced production of ATP. This results in fatigue and other symptoms that occur in most if not all chronic conditions and diseases. Methods: This is a review of the published literature on chronic infections in neurodegenerative diseases and fatiguing illnesses that are also typified by mitochondrial dysfunction. This contribution also reviews the use of natural supplements to enhance mitochondrial function and reduce the effects of chronic infections to improve overall function in various chronic illnesses. Results: Mitochondrial function can be enhanced by the use of various natural supplements, notably Lipid Replacement Therapy (LRT using glyerolphospholipids and other mitochondrial supplements. In various chronic illnesses that are characterized by the presence of chronic infections, such as intracellular bacteria (Mycoplasma, Borrelia, Chlamydia and other infections and viruses, LRT has proven useful in multiple clinical trials. For example, in clinical studies on chronic fatigue syndrome, fibromyalgia syndrome and other chronic fatiguing illnesses where a large majority of patients have chronic infections, LRT significantly reduced fatigue by 35-43% in different clinical trials and increased mitochondrial function. In clinical trials on patients with multiple intracellular bacterial infections and intractable fatigue LRT plus other mitochondrial supplements significantly decreased fatigue and improved mood and cognition. Conclusions: LRT formulations designed to improve mitochondrial function appear to be useful as non-toxic dietary supplements for reducing fatigue and restoring mitochondrial and other cellular membrane functions in patients with chronic illnesses and multiple chronic infections.

  13. Phenyl-α-tert-Butyl Nitrone Reverses Mitochondrial Decay in Acute Chagas’ Disease

    OpenAIRE

    Wen, Jian-jun; Bhatia, Vandanajay; Popov, Vsevolod L.; Garg, Nisha Jain

    2006-01-01

    In this study, we investigated the mechanism(s) of mitochondrial functional decline in acute Chagas’ disease. Our data show a substantial decline in respiratory complex activities (39 to 58%) and ATP (38%) content in Trypanosoma cruzi-infected murine hearts compared with normal controls. These metabolic alterations were associated with an approximately fivefold increase in mitochondrial reactive oxygen species production rate, substantial oxidative insult of mitochondrial membranes and respir...

  14. MICU1 motifs define mitochondrial calcium uniporter binding and activity.

    Science.gov (United States)

    Hoffman, Nicholas E; Chandramoorthy, Harish C; Shamugapriya, Santhanam; Zhang, Xueqian; Rajan, Sudarsan; Mallilankaraman, Karthik; Gandhirajan, Rajesh Kumar; Vagnozzi, Ronald J; Ferrer, Lucas M; Sreekrishnanilayam, Krishnalatha; Natarajaseenivasan, Kalimuthusamy; Vallem, Sandhya; Force, Thomas; Choi, Eric T; Cheung, Joseph Y; Madesh, Muniswamy

    2013-12-26

    Resting mitochondrial matrix Ca(2+) is maintained through a mitochondrial calcium uptake 1 (MICU1)-established threshold inhibition of mitochondrial calcium uniporter (MCU) activity. It is not known how MICU1 interacts with MCU to establish this Ca(2+) threshold for mitochondrial Ca(2+) uptake and MCU activity. Here, we show that MICU1 localizes to the mitochondrial matrix side of the inner mitochondrial membrane and MICU1/MCU binding is determined by a MICU1 N-terminal polybasic domain and two interacting coiled-coil domains of MCU. Further investigation reveals that MICU1 forms homo-oligomers, and this oligomerization is independent of the polybasic region. However, the polybasic region confers MICU1 oligomeric binding to MCU and controls mitochondrial Ca(2+) current (IMCU). Moreover, MICU1 EF hands regulate MCU channel activity, but do not determine MCU binding. Loss of MICU1 promotes MCU activation leading to oxidative burden and a halt to cell migration. These studies establish a molecular mechanism for MICU1 control of MCU-mediated mitochondrial Ca(2+) accumulation, and dysregulation of this mechanism probably enhances vascular dysfunction.

  15. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    Energy Technology Data Exchange (ETDEWEB)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester; Marinelli, Raúl Alberto, E-mail: rmarinel@unr.edu.ar

    2012-10-15

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessed by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS. ► Aquaporin

  16. Mitochondrial Dynamics in Diabetes

    OpenAIRE

    Yoon, Yisang; Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emergin...

  17. Defects of mitochondrial DNA replication.

    Science.gov (United States)

    Copeland, William C

    2014-09-01

    Mitochondrial DNA is replicated by DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single-stranded DNA binding protein, topoisomerase, and initiating factors. Defects in mitochondrial DNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mitochondrial DNA deletions, point mutations, or depletion, which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mitochondrial DNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mitochondrial DNA deletion disorders, such as progressive external ophthalmoplegia, ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy. This review focuses on our current knowledge of genetic defects of mitochondrial DNA replication (POLG, POLG2, C10orf2, and MGME1) that cause instability of mitochondrial DNA and mitochondrial disease.

  18. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Omar Ortiz-Avila

    2015-01-01

    Full Text Available Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats. Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential ΔΨm, besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  19. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  20. Is cell aging caused by respiration-dependent injury to the mitochondrial genome

    Science.gov (United States)

    Fleming, J. E.; Yengoyan, L. S.; Miquel, J.; Cottrell, S. F.; Economos, A. C.

    1982-01-01

    Though intrinsic mitochondrial aging has been considered before as a possible cause of cellular senescence, the mechanisms of such mitochondrial aging have remained obscure. In this article, the hypothesis of free-radical-induced inhibition of mitochondrial replenishment in fixed postmitotic cells is expanded. It is maintained that the respiration-dependent production of superoxide and hydroxyl radicals may not be fully counteracted, leading to a continuous production of lipoperoxides and malonaldehyde in actively respiring mitochondria. These compounds, in turn, can easily react with the mitochondrial DNA which is in close spatial relationship with the inner mitochondrial membrane, producing an injury that the mitochondria may be unable to counteract because of their apparent lack of adequate repair mechanisms. Mitochondrial division may thus be inhibited leading to age-related reduction of mitochondrial numbers, a deficit in energy production with a concomitant decrease in protein synthesis, deterioration of physiological performance, and, therefore, of organismic performance.

  1. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    Science.gov (United States)

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  2. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.

    Science.gov (United States)

    Wei, An-Chi; Liu, Ting; O'Rourke, Brian

    2015-06-26

    The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca(2+) uptake, these include activation of countertransporters (Na(+)/Ca(2+) exchanger and Na(+)/H(+) exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca(2+) binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca(2+) uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca(2+) dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca(2+) and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca(2+) flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca(2+) uptake proceeded slowly in the absence of Pi but matrix free Ca(2+) ([Ca(2+)]mito) still rose to ~50 μm. Pi (0.001-1 mm) accelerated Ca(2+) uptake but decreased [Ca(2+)]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca(2+) were blocked by inhibiting the phosphate carrier. Mitochondrial Ca(2+) uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca(2+) buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca(2+) uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca(2+) uptake and modifies the [Ca(2+)]mito response in a complex manner. PMID:25963147

  3. A crucial role of the mitochondrial protein import receptor MOM19 for the biogenesis of mitochondria

    OpenAIRE

    Harkness, Troy A. A.; Nargang, Frank E.; van der Klei, Ida; Neupert, Walter; Lill, Roland

    1994-01-01

    The novel genetic method of "sheltered RIP" (repeat induced point mutation) was used to generate a Neurospora crassa mutant in which MOM19, a component of the protein import machinery of the mitochondrial outer membrane, can be depleted. Deficiency in MOM19 resulted in a severe growth defect, but the cells remained viable. The number of mitochondrial profiles was not grossly changed, but mutant mitochondria were highly deficient in cristae membranes, cytochromes, and protein synthesis activit...

  4. MOM22 is a receptor for mitochondrial targeting sequences and cooperates with MOM19.

    OpenAIRE

    Mayer, A.; Nargang, F E; Neupert, W; Lill, R

    1995-01-01

    Recognition of targeting signals is a crucial step in protein sorting within the cell. So far, only a few components capable of deciphering targeting signals have been identified, and insights into the chemical nature of the interaction between the signals and their receptors are scarce. Using highly purified mitochondrial outer membrane vesicles, we demonstrate that MOM22 and MOM19, components of the protein import complex of the outer membrane, bind preproteins at the mitochondrial surface ...

  5. Effect of Anthocyanin Extract of Mulberry Fruit on the Apoptosis and the Mitochondrial Membrane Potential of Breast Cancer Cells%桑葚花色苷提取物对乳腺癌细胞凋亡及线粒体膜电位的影响

    Institute of Scientific and Technical Information of China (English)

    常徽; 王湛; 袁丽佳; 付钰洁; 糜漫天

    2012-01-01

    目的:观察桑葚花色苷提取物对人乳腺癌细胞株MDA-MB-453、MDA-MB-231和MCF-7细胞凋亡及线粒体膜电位的影响.方法:利用超声辅助乙醇萃取法提取桑葚花色苷,pH示差法测定提取物花色苷总含量,以50、100和150 mg/mL桑葚花色苷提取物作用三种乳腺癌细胞MDA-MB-231、MDA-MB-453和MCF-7 24h,采用Annexin V/PI双染流式细胞分析法检测细胞凋亡水平变化,JC-1探针染色激光共聚焦扫描显微镜观察MDA-MB-453细胞线粒体膜电位水平变化.结果:凋亡分析结果表明,桑葚花色苷提取物作用后三种乳腺癌细胞凋亡率均升高,显示出促凋亡效应,且具有剂量-效应关系,100和150 mg/mL组凋亡率显著升高(P<0.05).激光共聚焦扫描显微镜检测结果显示,桑葚花色苷提取物作用24h,可使MDA-MB-453细胞线粒体膜电位显著下降,表现为红色/绿色荧光的比值显著降低(P<0.05).结论:桑葚花色苷提取物可显著降低乳腺癌细胞线粒体膜电位,并促发细胞凋亡.%Objective: To study the effect of anthocyanin extract of mulberry fruit on the apoptosis and the mitochondrial membrane potential of breast cancer cells MDA-MB-453, MDA-MB-231 and MCF-7. Methods: Preparation of anthocyanin-rich extract from mulberry fruits was carried out by ultrasonic extraction with acidified-ethanol. The breast cancer cells MDA-MB-453, MDA-MB-231 and MCF-7 were reated with 50, 100 or 150 mg/mL of the anthocyanin-rich extract for 24h; the cells apoptosis were analyzed by Annexin V/PI dyeing and flow cytometric assay. To characterize the upstream factors involved in the intrinsic apoptosis pathway, the mitochondrial permeability of MDA-MB-453 cells were measured by JC-1 staining and the laser confocal scanning microscopy. Results: The apoptosis analysis results indicated that the anthocyanin-rich mulberry fruit extract treated for 24 h, the apoptosis rate of these three breast cells in 100 and 150 mg/mL treated groups markedly

  6. Mitochondrial toxicity of depleted uranium: protection by Beta-glucan.

    Science.gov (United States)

    Shaki, Fatemeh; Pourahmad, Jalal

    2013-01-01

    Considerable evidence suggests that mitochondrial dysfunction contributes to the toxicity of uranyl acetate (UA), a soluble salt of depleted uranium (DU). We examined the ability of the two antioxidants, beta-glucan and butylated hydroxyl toluene (BHT), to prevent UA-induced mitochondrial dysfunction using rat-isolated kidney mitochondria. Beta-glucan (150 nM) and BHT (20 nM) attenuated UA-induced mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and glutathione oxidation. Beta-glucan and BHT also prevented the loss of mitochondrial membrane potential (MMP) and mitochondrial swelling following the UA treatment in isolated mitochondria. Our results show that beta-glucan and BHT prevented UA-induced mitochondrial outer membrane damage as well as release of cytochrome c from mitochondria. UA also decreased the ATP production in isolated mitochondria significantly inhibited with beta-glucan and BHT pre-treatment. Our results showed that beta-glucan may be mitochondria-targeted antioxidant and suggested this compound as a possible drug candidate for prophylaxis and treatment against DU-induced nephrotoxicity. PMID:24250581

  7. Inhibition of NAPDH Oxidase 2 (NOX2 Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Leroy C Joseph

    Full Text Available Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  8. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mukhin, A.G.; Papadopoulos, V.; Costa, E.; Krueger, K.E. (Georgetown Univ. School of Medicine, Washington, DC (USA))

    1989-12-01

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4{prime}-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit {sup 3}H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations.

  9. Mitochondrial benzodiazepine receptors regulate steroid biosynthesis

    International Nuclear Information System (INIS)

    Recent observations on the steroid synthetic capability within the brain open the possibility that benzodiazepines may influence steroid synthesis in nervous tissue through interactions with peripheral-type benzodiazepine recognition sites, which are highly expressed in steroidogenic cells and associated with the outer mitochondrial membrane. To examine this possibility nine molecules that exhibit a greater than 10,000-fold difference in their affinities for peripheral-type benzodiazepine binding sites were tested for their effects on a well-established steroidogenic model system, the Y-1 mouse adrenal tumor cell line. 4'-Chlorodiazepam, PK 11195, and PK 14067 stimulated steroid production by 2-fold in Y-1 cells, whereas diazepam, flunitrazepam, zolpidem, and PK 14068 displayed a lower (1.2- to 1.5-fold) maximal stimulation. In contrast, clonazepam and flumazenil did not stimulate steroid synthesis. The potencies of these compounds to inhibit 3H-labeled PK 11195 binding to peripheral-type benzodiazepine recognition sites correlated with their potencies to stimulate steroid production. Similar findings were observed in bovine and rat adrenocortical cell preparations. These results suggest that ligands of the peripheral-type benzodiazepine recognition site acting on this mitochondrial receptor can enhance steroid production. This action may contribute specificity to the pharmacological profile of drugs preferentially acting on the benzodiazepine recognition site associated with the outer membrane of certain mitochondrial populations

  10. Probing glycolytic and membrane potential oscillations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Poulsen, Allan K.; Andersen, Ann Zahle; Brasen, Jens Christian;

    2008-01-01

    We have investigated glycolytic oscillations under semi-anaerobic conditions in Saccharomyces cerevisiae by means of NADH fluorescence, measurements of intracellular glucose concentration, and mitochondrial membrane potential. The glucose concentration was measured using an optical nanosensor, wh...

  11. Mitochondrial biogenesis: pharmacological approaches.

    Science.gov (United States)

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  12. Mitochondrial Ca2+ uptake in skeletal muscle health and disease

    CERN Document Server

    Zhou, Jingsong; Yi, Jianxun

    2016-01-01

    Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as min...

  13. United Mitochondrial Disease Foundation

    Science.gov (United States)

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  14. Mitochondrial dysfunction induced by different concentrations of gadolinium ion.

    Science.gov (United States)

    Zhao, Jie; Zhou, Zhi-Qiang; Jin, Jian-Cheng; Yuan, Lian; He, Huan; Jiang, Feng-Lei; Yang, Xiao-Gang; Dai, Jie; Liu, Yi

    2014-04-01

    Gadolinium-based compounds are the most widely used paramagnetic contrast agents in magnetic resonance imaging on the world. But the tricationic gadolinium ion (Gd(3+)) could induce cell apoptosis probably because of its effects on mitochondria. Until now, the mechanism about how Gd(3+) interacts with mitochondria is not well elucidated. In this work, mitochondrial swelling, collapsed transmembrane potential and decreased membrane fluidity were observed to be important factors for mitochondrial permeability transition pore (mtPTP) opening induced by Gd(3+). The protection effect of CsA (Cyclosporin A) could confirm high concentration of Gd(3+) (500 μM) would trigger mtPTP opening. Moreover, mitochondrial outer membrane breakdown and volume expansion observed clearly by transmission electron microscopy and the release of Cyt c (Cytochrome c) could explain the mtPTP opening from another aspect. In addition, MBM(+) (monobromobimane(+)) and DTT (dithiothreitol) could protect thiol (-SH) groups from oxidation so that the toxicity of Gd(3+) might be resulted from the chelation of -SH of membrane proteins by free Gd(3+). Gd(3+) could inhibit the initiation of mitochondrial membrane lipid peroxidation, so it might interact with anionic lipids too. These findings will highly contribute to the safe applications of Gd-based agents.

  15. Mechanistic insight from the crystal structure of mitochondrial complex I

    NARCIS (Netherlands)

    Zickermann, V.; Wirth, C.; Nasiri, H.; Siegmund, K.; Schwalbe, H.; Hunte, C.; Brandt, U.

    2015-01-01

    Proton-pumping complex I of the mitochondrial respiratory chain is among the largest and most complicated membrane protein complexes. The enzyme contributes substantially to oxidative energy conversion in eukaryotic cells. Its malfunctions are implicated in many hereditary and degenerative disorders

  16. The causes and functions of mitochondrial proton leak.

    Science.gov (United States)

    Brand, M D; Chien, L F; Ainscow, E K; Rolfe, D F; Porter, R K

    1994-08-30

    The non-linear relationship between respiration rate and protonmotive force in isolated mitochondria is explained entirely by delta p-dependent changes in the proton conductance of the mitochondrial inner membrane and is not caused by redox slip in the proton pumps. Mitochondrial proton leak occurs in intact cells and tissues: the futile cycle of proton pumping and proton leak accounts for 26% +/- 7% of the total oxygen consumption rate or 33% +/- 7% of the mitochondrial respiration rate of isolated hepatocytes (mean +/- S.D. for 43 rats); 52% of the oxygen consumption rate of resting perfused muscle and up to 38% of the basal metabolic rate of a rat, suggesting that heat production may be an important function in the proton leak in homeotherms. Together with non-mitochondrial oxygen consumption, it lowers the effective P/O ratio in cells from maximum possible values of 2.33 (palmitate oxidation) or 2.58 (glucose oxidation) to as low as 1.1 in liver or 0.8 in muscle. The effective P/O ratio increases in response to ATP demand; the ability to allow rapid switching of flux from leak to ATP turnover may be an even more important function of the leak reaction than heat production. The mitochondrial proton conductance in isolated mitochondria and in hepatocytes is greatly modulated by thyroid hormones, by phylogeny and by body mass. Usually the reactions of ATP turnover change in parallel so that the coupling ratio is not greatly affected. Changes in proton leak in tissues are brought about in the short term by changes in mitochondrial protonmotive force and in the longer term by changes in the surface area and proton permeability of the mitochondrial inner membrane. Permeability changes are probably caused by changes in the fatty acid composition of the membrane phospholipids.

  17. Multiple Targets for Drug-Induced Mitochondrial Toxicity.

    Science.gov (United States)

    Wallace, Kendall B

    2015-01-01

    Mitochondrial toxicity is rapidly gaining the interest of researchers and practitioners as a prominent liability in drug discovery and development, accounting for a growing proportion of preclinical drug attrition and post-market withdrawals or black box warnings by the U.S. FDA. To date, the focus of registries of drugs that elicit mitochondrial toxicity has been largely restricted to those that either inhibit the mitochondrial electron transport chain (ETC) or uncouple mitochondrial oxidative phosphorylation. Less appreciated are the toxicities that are secondary to the drug affecting either the molecular regulation, assembly or incorporation of the ETC into the inner mitochondrial membrane or those that limit substrate availability. The current article describes the complexities of molecular events and biochemical pathways required to sustain mitochondrial fidelity and substrate homeostasis with examples of drugs that interfere which the various pathways. The principal objective of this review is to shed light on the broader scope of drug-induced mitochondrial toxicities and how these secondary targets may account for a large portion of drug failures. PMID:25973981

  18. Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.

    Science.gov (United States)

    Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard; Chakrabarti, Lisa

    2016-07-01

    Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (pbrains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease. PMID:27181046

  19. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    Science.gov (United States)

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'. PMID:27396122

  20. Membrane dynamics

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    Current topics include membrane-protein interactions with regard to membrane deformation or curvature sensing by BAR domains. Also, we study the dynamics of membrane tubes of both cells and simple model membrane tubes. Finally, we study membrane phase behavior which has important implications for...

  1. The plant mitochondrial proteome

    DEFF Research Database (Denmark)

    Millar, A.H.; Heazlewood, J.L.; Kristensen, B.K.;

    2005-01-01

    The plant mitochondrial proteome might contain as many as 2000-3000 different gene products, each of which might undergo post-translational modification. Recent studies using analytical methods, such as one-, two- and three-dimensional gel electrophoresis and one- and two-dimensional liquid...... context to be defined for them. There are indications that some of these proteins add novel activities to mitochondrial protein complexes in plants....

  2. Mitochondrial metabolism and diabetes

    OpenAIRE

    Kwak, Soo Heon; Park, Kyong Soo; Lee, Ki‐Up; Lee, Hong Kyu

    2010-01-01

    Abstract The oversupply of calories and sedentary lifestyle has resulted in a rapid increase of diabetes prevalence worldwide. During the past two decades, lines of evidence suggest that mitochondrial dysfunction plays a key role in the pathophysiology of diabetes. Mitochondria are vital to most of the eukaryotic cells as they provide energy in the form of adenosine triphosphate by oxidative phosphorylation. In addition, mitochondrial function is an integral part of glucose‐stimulated insulin...

  3. Mitochondrial dynamics and apoptosis

    OpenAIRE

    Suen, Der-Fen; Norris, Kristi L.; Youle, Richard J.

    2008-01-01

    In healthy cells, mitochondria continually divide and fuse to form a dynamic interconnecting network. The molecular machinery that mediates this organelle fission and fusion is necessary to maintain mitochondrial integrity, perhaps by facilitating DNA or protein quality control. This network disintegrates during apoptosis at the time of cytochrome c release and prior to caspase activation, yielding more numerous and smaller mitochondria. Recent work shows that proteins involved in mitochondri...

  4. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using yeast models of OXPHOS deficiencies.

    Science.gov (United States)

    Fontanesi, Flavia; Diaz, Francisca; Barrientos, Antoni

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. Several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, this unit describes the creation and study of yeast models of mitochondrial OXPHOS deficiencies.

  5. Time representation of mitochondrial morphology and function after acute spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Zhi-qiang Jia; Gang Li; Zhen-yu Zhang; Hao-tian Li; Ji-quan Wang; Zhong-kai Fan; Gang Lv

    2016-01-01

    Changes in mitochondrial morphology and function play an important role in secondary damage after acute spinal cord injury. We re-corded the time representation of mitochondrial morphology and function in rats with acute spinal cord injury. Results showed that mitochondria had an irregular shape, and increased in size. Mitochondrial cristae were disordered and mitochondrial membrane rupture was visible at 2–24 hours after injury. Fusion protein mitofusin 1 expression gradually increased, peaked at 8 hours after injury, and then decreased to its lowest level at 24 hours. Expression of dynamin-related protein 1, amitochondrial ifssion protein, showed the opposite kinetics. At 2–24 hours after acute spinal cord injury, malondialdehyde content, cytochrome c levels and caspase-3 expression were in-creased, but glutathione content, adenosine triphosphate content, Na+-K+-ATPase activity and mitochondrial membrane potential were gradually reduced. Furthermore, mitochondrial morphology altered during the acute stage of spinal cord injury. Fusion was important within the ifrst 8 hours, but ifssion played a key role at 24 hours. Oxidative stress was inhibited, biological productivity was diminished, and mitochondrial membrane potential and permeability were reduced in the acute stage of injury. In summary, mitochondrial apoptosis is activated when the time of spinal cord injury is prolonged.

  6. Phosphodiesterase-3 inhibitor (cilostazol) attenuates oxidative stress-induced mitochondrial dysfunction in the heart

    Institute of Scientific and Technical Information of China (English)

    Siriporn C.Chattipakorn; Savitree Thummasorn; Jantira Sanit; Nipon Chattipakorn

    2014-01-01

    Background Cilostazol is a type 3 phosphodiesterase inhibitor which has been previously demonstrated to prevent the occurrence of tachyarrhythmia and improve defibrillation efficacy. However, the mechanism for this beneficial effect is still unclear. Since cardiac mito-chondria have been shown to play a crucial role in fatal cardiac arrhythmias and that oxidative stress is one of the main contributors to arr-hythmia generation, we tested the effects of cilostazol on cardiac mitochondria under severe oxidative stress. Methods Mitochondria were isolated from rat hearts and treated with H2O2 to induce oxidative stress. Cilostazol, at various concentrations, was used to study its protective effects. Pharmacological interventions, including a mitochondrial permeability transition pore (mPTP) blocker, cyclosporine A (CsA), and an inner membrane anion channel (IMAC) blocker, 4’-chlorodiazepam (CDP), were used to investigate the mechanistic role of cilostazol on cardiac mitochondria. Cardiac mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential change and mi-tochondrial swelling were determined as indicators of cardiac mitochondrial function. Results Cilostazol preserved cardiac mitochondrial function when exposed to oxidative stress by preventing mitochondrial depolarization, mitochondrial swelling, and decreasing ROS produc-tion. Conclusions Our findings suggest that cardioprotective effects of cilostazol reported previously could be due to its prevention of car-diac mitochondrial dysfunction caused by severe oxidative stress.

  7. The role of myeloid differentiation factor 88 on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis

    Science.gov (United States)

    Zou, Lin; Chen, Dunjin; Chao, Wei

    2016-01-01

    Objective To investigate the role of myeloid differentiation factor 88 (MyD88) on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. Material and methods Polymicrobial peritonitis, a clinically relevant mouse model of sepsis, was generated by cecum ligation and puncture (CLP) in both male C57BL/6J wild-type (WT) and MyD88 knockout (MyD88–/–) mice. Twenty-four hours after surgeries, peritoneal leukocytes were collected and four parameters of mitochondrial function, including total intracellular and mitochondrial ROS burst, mitochondrial membrane depolarization and ATP depletion, were measured by flow cytometry or ATP assay, and then compared. Results Polymicrobial sepsis led to a marked mitochondrial dysfunction of peritoneal leukocytes with total intracellular and mitochondrial ROS overproduction, decreased mitochondrial membrane potential and reduced intracellular ATP production. In comparison, there was no significant difference in the extent of mitochondrial dysfunction of peritoneal leukocytes between WT and MyD88–/– septic mice. Conclusions MyD88 may be not sufficient to regulate mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. PMID:27536200

  8. Mitochondria-associated membranes as hubs for neurodegeneration

    OpenAIRE

    Krols, Michiel; Van Isterdael, Gert; Asselbergh, Bob; Kremer, Anna; Lippens, Saskia; Timmerman, Vincent; Janssens, Sophie

    2016-01-01

    There is a growing appreciation that membrane-bound organelles in eukaryotic cells communicate directly with one another through direct membrane contact sites. Mitochondria-associated membranes are specialized subdomains of the endoplasmic reticulum that function as membrane contact sites between the endoplasmic reticulum and mitochondria. These sites have emerged as major players in lipid metabolism and calcium signaling. More recently also autophagy and mitochondrial dynamics have been foun...

  9. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp [Hokkaido University, Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences (Japan)

    2012-08-15

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  10. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. PMID:27444386

  11. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    Science.gov (United States)

    Hu, Hongtao; Li, Mo

    2016-09-01

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD.

  12. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells].

    Science.gov (United States)

    Pérez de Hornedo, J; de Arriba, G; Calvino, M; Benito, S; Parra, T

    2007-01-01

    Reactive oxygen species (ROS) have been implicated in cyclosporin A (CsA) nephrotoxicity. As mitochondria are one of the main sources of ROS in cells, we evaluated the role of CsA in mitochondrial structure and function in LLC-PK1 cells. We incubated cells with CsA 1 microM for 24 hours and studies were performed with flow citometry and confocal microscopy. We studied mitochondrial NAD(P)H content, superoxide anion (O2.-) production (MitoSOX Red), oxidation of cardiolipin of inner mitochondrial membrane (NAO) and mitochondrial membrane potential (DIOC2(3)). Also we analyzed the intracellular ROS synthesis (H2DCF-DA) and reduced glutation (GSH) of cells. Our results showed that CsA decreased NAD(P)H and membrane potential, and increased O2.- in mitochondria. CsA also provoked oxidation of cardiolipin. Furthermore, CsA increased intracellular ROS production and decreased GSH content. These results suggest that CsA has crucial effects in mitochondria. CsA modified mitochondrial physiology through the decrease of antioxidant mitochondrial compounds as NAD(P)H and the dissipation of mitochondrial membrane potential and increase of oxidants as O2.-. Also, CsA alters lipidic structure of inner mitochondrial membrane through the oxidation of cardiolipin. These effects trigger a chain of events that favour intracellular synthesis of ROS and depletion of GSH that can compromise cellular viability. Nephrotoxic cellular effects of CsA can be explained, at least in part, through its influence on mitochondrial functionalism.

  13. Cultured senescent myoblasts derived from human vastus lateralis exhibit normal mitochondrial ATP synthesis capacities with correlating concomitant ROS production while whole cell ATP production is decreased

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2012-01-01

    satellite cells at early and late passage numbers. We show that cultured muscle satellite cells undergoing senescence express a reduced mitochondrial mass, decreased whole cell ATP level, normal to increased mitochondrial ATP production under ATP utilization, increased mitochondrial membrane potential......The free radical theory of aging says that increased oxidative stress and mitochondrial dysfunction are associated with old age. In the present study we have investigated the effects of cellular senescence on muscle energetic by comparing mitochondrial content and function in cultured muscle...... and increased superoxide/mitochondrial mass and hydrogen peroxide/mitochondrial mass ratios. Moreover, the increased ROS production correlates with the corresponding mitochondrial ATP production. Thus, myotubes differentiated from human myoblasts undergoing senescence have a reduced mitochondrial content...

  14. Calpastatin overexpression reduces oxidative stress-induced mitochondrial impairment and cell death in human neuroblastoma SH-SY5Y cells by decreasing calpain and calcineurin activation, induction of mitochondrial fission and destruction of mitochondrial fusion.

    Science.gov (United States)

    Tangmansakulchai, Kulvadee; Abubakar, Zuroida; Kitiyanant, Narisorn; Suwanjang, Wilasinee; Leepiyasakulchai, Chaniya; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-09-01

    Calpain is an intracellular Ca(2+)-dependent protease, and the activation of calpain has been implicated in neurodegenerative diseases. Calpain activity can be regulated by calpastatin, an endogenous specific calpain inhibitor. Several lines of evidence have demonstrated a potential role of calpastatin in preventing calpain-mediated pathogenesis. Additionally, several studies have revealed that calpain activation and mitochondrial damage are involved in the cell death process; however, recent evidence has not clearly indicated a neuroprotective mechanism of calpastatin against calpain-dependent mitochondrial impairment in the process of neuronal cell death. Therefore, the purpose of this study was to investigate the potential ability of calpastatin to inhibit calpain activation and mitochondrial impairment in oxidative stress-induced neuron degeneration. Calpastatin was stably overexpressed in human neuroblastoma SH-SY5Y cells. In non-calpastatin overexpressing SH-SY5Y cells, hydrogen peroxide significantly decreased cell viability, superoxide dismutase activity, mitochondrial membrane potential, ATP production and mitochondrial fusion protein (Opa1) levels in the mitochondrial fraction but increased reactive oxygen species formation, calpain and calcineurin activation, mitochondrial fission protein (Fis1 and Drp1) levels in the mitochondrial fraction and apoptotic cells. Nevertheless, these toxic effects were abolished in hydrogen peroxide-treated calpastatin-overexpressing SH-SY5Y cells. The results of the present study demonstrate the potential ability of calpastatin to diminish calpain and calcineurin activation and mitochondrial impairment in neurons that are affected by oxidative damage. PMID:27453331

  15. The morphological changes of cardiomyocytes and mitochondrial dysfunction in spontaneous hypertensive rats with experimental diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Kolesnyk M.Yu.

    2013-01-01

    Full Text Available The conception of energetic deficiency in the pathogenesis of arterial hypertension and diabetes mellitus presents new perspectives in the understanding of molecular and biochemical mechanisms of these diseases. It was performed the comparison between morphological changes and mitochondrial dysfunction in spontaneous hypertensive rats with experimental diabetes mellitus. The mitochondrial state was assessed by investigation of the permeability of the giant mitochondrial pore. It was found that the permeability of mitochondrial pore is increased in spontaneous hypertensive rats. It was registrated the significant increasing of mitochondrial membrane permeability in case of diabetes. It was observed the increased area of cardiomyocytes’ nuclei and decreased nuclear cytoplasmic ratio in diabetic animals. It was demonstrated that nucleic and cytoplasmic RNA concentration is decreased in comparison with the intact spontaneous hypertensive rats. The RNA biosynthesis abnormalities are associated with the degree of mitochondrial dysfunction in the myocardium of spontaneous hypertensive rats with experimental diabetes mellitus.

  16. Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter.

    Science.gov (United States)

    Holmström, Kira M; Pan, Xin; Liu, Julia C; Menazza, Sara; Liu, Jie; Nguyen, Tiffany T; Pan, Haihui; Parks, Randi J; Anderson, Stasia; Noguchi, Audrey; Springer, Danielle; Murphy, Elizabeth; Finkel, Toren

    2015-08-01

    Mitochondrial calcium is thought to play an important role in the regulation of cardiac bioenergetics and function. The entry of calcium into the mitochondrial matrix requires that the divalent cation pass through the inner mitochondrial membrane via a specialized pore known as the mitochondrial calcium uniporter (MCU). Here, we use mice deficient of MCU expression to rigorously assess the role of mitochondrial calcium in cardiac function. Mitochondria isolated from MCU(-/-) mice have reduced matrix calcium levels, impaired calcium uptake and a defect in calcium-stimulated respiration. Nonetheless, we find that the absence of MCU expression does not affect basal cardiac function at either 12 or 20months of age. Moreover, the physiological response of MCU(-/-) mice to isoproterenol challenge or transverse aortic constriction appears similar to control mice. Thus, while mitochondria derived from MCU(-/-) mice have markedly impaired mitochondrial calcium handling, the hearts of these animals surprisingly appear to function relatively normally under basal conditions and during stress.

  17. Progress in surface and membrane science

    CERN Document Server

    Cadenhead, D A; Rosenberg, M D

    1974-01-01

    Progress in Surface and Membrane Science, Volume 8 covers the developments in the study of surface and membrane science. The book discusses the applications of statistical mechanics to physical adsorption; the impact of electron spectroscopy and cognate techniques on the study of solid surfaces; and the ellipsometric studies of thin films. The text also describes the interfacial photochemistry of bilayer lipid membranes; cell junctions and their development; and the composition and function of the inner mitochondrial membrane. The role of the cell surface in contact inhibition of cell division

  18. Neurological mitochondrial cytopathies.

    Directory of Open Access Journals (Sweden)

    Mehndiratta M

    2002-04-01

    Full Text Available The mitochondrial cytopathies are genetically and phenotypically heterogeneous group of disorders caused by structural and functional abnormalities in mitochondria. To the best of our knowledge, there are very few studies published from India till date. Selected and confirmed fourteen cases of neurological mitochondrial cytopathies with different clinical syndromes admitted between 1997 and 2000 are being reported. There were 8 male and 6 female patients. The mean age was 24.42+/-11.18 years (range 4-40 years. Twelve patients could be categorized into well-defined syndromes, while two belonged to undefined group. In the defined syndrome categories, three patients had MELAS (mitochondrial encephalopathy, lactic acidosis and stroke like episodes, three had MERRF (myoclonic epilepsy and ragged red fibre myopathy, three cases had KSS (Kearns-Sayre Syndrome and three were diagnosed to be suffering from mitochondrial myopathy. In the uncategorized group, one case presented with paroxysmal kinesogenic dystonia and the other manifested with generalized chorea alone. Serum lactic acid level was significantly increased in all the patients (fasting 28.96+/-4.59 mg%, post exercise 41.02+/-4.93 mg%. Muscle biopsy was done in all cases. Succinic dehydrogenase staining of muscle tissue showed subsarcolemmal accumulation of mitochondria in 12 cases. Mitochondrial DNA study could be performed in one case only and it did not reveal any mutation at nucleotides 3243 and 8344. MRI brain showed multiple infarcts in MELAS, hyperintensities in putaminal areas in chorea and bilateral cerebellar atrophy in MERRF.

  19. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    Directory of Open Access Journals (Sweden)

    Victor M Victor

    Full Text Available CONTEXT: Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. OBJECTIVE: The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. DESIGN AND SETTING: A multi-centre, cross-sectional case-control study was performed. PATIENTS: Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. MAIN OUTCOME MEASURES: Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. RESULTS: Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05, mitochondrial membrane potential (P<0.01 and GSH levels (P<0.05, and an increase in ROS production (P<0.05 with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05, while the activity of mitochondrial complex I (P<0.001, but not that of complex III, was found to be inhibited in the same population. CONCLUSIONS: Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  20. Mitochondrial fusion and inheritance of the mitochondrial genome.

    Science.gov (United States)

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  1. Impaired Transport of Mitochondrial Transcription Factor and the Metabolic Memory Phenomenon Associated with the Progression of Diabetic Retinopathy

    OpenAIRE

    Santos, Julia M.; Kowluru, Renu A.

    2013-01-01

    Diabetes damages retinal mitochondrial DNA (mtDNA), and compromises the mtDNA transcription. In the transcription and replication of mtDNA, nuclear-encoded transcription factor A (TFAM) is considered as a key activator, and we have shown that in diabetes while retinal TFAM gene expression is increased, its mitochondrial levels are decreased. This study investigates the role of mitochondrial outer and inner membrane transport systems in the transfer of TFAM into the mitochondria in diabetes, a...

  2. Fine-Tuning of Drp1/Fis1 Availability by AKAP121/Siah2 Regulates Mitochondrial Adaptation to Hypoxia

    OpenAIRE

    Kim, Hyungsoo; Scimia, Maria C.; Wilkinson, Deepti; Trelles, Ramon D.; Wood, Malcolm R.; Bowtell, David; Dillin, Andrew; Mercola, Mark; Ronai, Ze’ev A.

    2011-01-01

    Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction. Reduced availability o...

  3. Membrane fusion

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At Stanford University, Boxer lab, I worked on membrane fusion of small unilamellar lipid vesicles to flat membranes tethered to glass surfaces. This geometry closely resembles biological systems in which liposomes fuse to plasma membranes. The fusion mechanism was studied using DNA zippering...... between complementary strands linked to the two apposing membranes closely mimicking the zippering mechanism of SNARE fusion complexes....

  4. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Kristin Kathleen; Uittenbogaard, Martine [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States); Chiaramello, Anne, E-mail: achiaram@gwu.edu [Department of Anatomy and Regenerative Biology, George Washington University Medical Center, Washington, DC (United States)

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  5. Adult-onset mitochondrial myopathy.

    Science.gov (United States)

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  6. Pig Brain Mitochondria as a Biological Model for Study of Mitochondrial Respiration.

    Science.gov (United States)

    Fišar, Z; Hroudová, J

    2016-01-01

    Oxidative phosphorylation is a key process of intracellular energy transfer by which mitochondria produce ATP. Isolated mitochondria serve as a biological model for understanding the mitochondrial respiration control, effects of various biologically active substances, and pathophysiology of mitochondrial diseases. The aim of our study was to evaluate pig brain mitochondria as a proper biological model for investigation of activity of the mitochondrial electron transport chain. Oxygen consumption rates of isolated pig brain mitochondria were measured using high-resolution respirometry. Mitochondrial respiration of crude mitochondrial fraction, mitochondria purified in sucrose gradient, and mitochondria purified in Percoll gradient were assayed as a function of storage time. Oxygen flux and various mitochondrial respiratory control ratios were not changed within two days of mitochondria storage on ice. Leak respiration was found higher and Complex I-linked respiration lower in purified mitochondria compared to the crude mitochondrial fraction. Damage to both outer and inner mitochondrial membrane caused by the isolation procedure was the greatest after purification in a sucrose gradient. We confirmed that pig brain mitochondria can serve as a biological model for investigation of mitochondrial respiration. The advantage of this biological model is the stability of respiratory parameters for more than 48 h and the possibility to isolate large amounts of mitochondria from specific brain areas without the need to kill laboratory animals. We suggest the use of high-resolution respirometry of pig brain mitochondria for research of the neuroprotective effects and/or mitochondrial toxicity of new medical drugs.

  7. Reduced calcium-dependent mitochondrial damage underlies the reduced vulnerability of excitotoxicity-tolerant hippocampal neurons.

    Science.gov (United States)

    Pivovarova, Natalia B; Stanika, Ruslan I; Watts, Charlotte A; Brantner, Christine A; Smith, Carolyn L; Andrews, S Brian

    2008-03-01

    In central neurons, over-stimulation of NMDA receptors leads to excessive mitochondrial calcium accumulation and damage, which is a critical step in excitotoxic death. This raises the possibility that low susceptibility to calcium overload-induced mitochondrial damage might characterize excitotoxicity-resistant neurons. In this study, we have exploited two complementary models of preconditioning-induced excitotoxicity resistance to demonstrate reduced calcium-dependent mitochondrial damage in NMDA-tolerant hippocampal neurons. We have further identified adaptations in mitochondrial calcium handling that account for enhanced mitochondrial integrity. In both models, enhanced tolerance was associated with improved preservation of mitochondrial membrane potential and structure. In the first model, which exhibited modest neuroprotection, mitochondria-dependent calcium deregulation was delayed, even though cytosolic and mitochondrial calcium loads were quantitatively unchanged, indicating that enhanced mitochondrial calcium capacity accounts for reduced injury. In contrast, the second model, which exhibited strong neuroprotection, displayed further delayed calcium deregulation and reduced mitochondrial damage because downregulation of NMDA receptor surface expression depressed calcium loading. Reducing calcium entry also modified the chemical composition of the calcium-buffering precipitates that form in calcium-loaded mitochondria. It thus appears that reduced mitochondrial calcium loading is a major factor underlying the robust neuroprotection seen in highly tolerant cells. PMID:18036152

  8. Mitochondrial calcium uptake.

    Science.gov (United States)

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  9. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions.

    Science.gov (United States)

    Wu, Wenxian; Lin, Chunxia; Wu, Keng; Jiang, Lei; Wang, Xiaojing; Li, Wen; Zhuang, Haixia; Zhang, Xingliang; Chen, Hao; Li, Shupeng; Yang, Yue; Lu, Yue; Wang, Jingjing; Zhu, Runzhi; Zhang, Liangqing; Sui, Senfang; Tan, Ning; Zhao, Bin; Zhang, Jingjing; Li, Longxuan; Feng, Du

    2016-07-01

    In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER-mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells. PMID:27145933

  10. Mitochondrial Dysfunction and Psychiatric Disorders

    OpenAIRE

    Shaw-Hwa Jou; Nan-Yin Chiu; Chin-San Liu

    2009-01-01

    Mitochondria are intracellular organelles crucial in the production of cellular energy.Mitochondrial diseases may result from malfunctions in this biochemical cascade. Severalinvestigators have proposed that mitochondrial dysfunction is related to the pathophysiologyof bipolar disorder (BD), major depressive disorder (MDD) and schizophrenia (SZ). Theauthors reviewed recent study findings and tried to delineate the current understanding of thecorrelation between mitochondrial dysfunction and p...

  11. Pore dynamics in lipid membranes

    Science.gov (United States)

    Gozen, I.; Dommersnes, P.

    2014-09-01

    Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

  12. Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility

    Directory of Open Access Journals (Sweden)

    Jose C. E. Serrano

    2016-03-01

    Full Text Available Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, etc. An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, etc., in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases. This review is focused in three well-recognized food bioactive compounds that modulate insulin sensitivity, polyphenols, ω-3 fatty acids and dietary fiber, by several mechanism of action, like caloric restriction properties and inflammatory environment modulation, both closely related to mitochondrial function and dynamics.

  13. Mitochondrial cereblon functions as a Lon-type protease

    Science.gov (United States)

    Kataoka, Kosuke; Nakamura, China; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    Lon protease plays a major role in the protein quality control system in mammalian cell mitochondria. It is present in the mitochondrial matrix, and degrades oxidized and misfolded proteins, thereby protecting the cell from various extracellular stresses, including oxidative stress. The intellectual disability-associated and thalidomide-binding protein cereblon (CRBN) contains a large, highly conserved Lon domain. However, whether CRBN has Lon protease-like function remains unknown. Here, we determined if CRBN has a protective function against oxidative stress, similar to Lon protease. We report that CRBN partially distributes in mitochondria, suggesting it has a mitochondrial function. To specify the mitochondrial role of CRBN, we mitochondrially expressed CRBN in human neuroblastoma SH-SY5Y cells. The resulting stable SH-SY5Y cell line showed no apparent effect on the mitochondrial functions of fusion, fission, and membrane potential. However, mitochondrially expressed CRBN exhibited protease activity, and was induced by oxidative stress. In addition, stably expressed cells exhibited suppressed neuronal cell death induced by hydrogen peroxide. These results suggest that CRBN functions specifically as a Lon-type protease in mitochondria. PMID:27417535

  14. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease.

    Science.gov (United States)

    Zhou, Jingsong; Dhakal, Kamal; Yi, Jianxun

    2016-08-01

    Muscle uses Ca(2+) as a messenger to control contraction and relies on ATP to maintain the intracellular Ca(2+) homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca(2+) from their surroundings, a process called mitochondrial Ca(2+) uptake. Under physiological conditions, Ca(2+) uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca(2+) overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca(2+) uptake could shape spatio-temporal patterns of intracellular Ca(2+) signaling. Malfunction of mitochondrial Ca(2+) uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca(2+) levels. Besides the sudden elevation of Ca(2+) level induced by action potentials, Ca(2+) transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca(2+) uptake is fast and big enough to shape intracellular Ca(2+) signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca(2+) inside mitochondria. This review focuses on characterization of mitochondrial Ca(2+) uptake in skeletal muscle and its role in muscle physiology and diseases. PMID:27430885

  15. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Jianxin Lu; Lokendra Kumar Sharma; Yidong Bai

    2009-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed.

  16. Regulation of Mitochondrial Function by Voltage Dependent Anion Channels in Ethanol Metabolism and the Warburg Effect

    Science.gov (United States)

    Lemasters, John J.; Holmuhamedov, Ekhson L.; Czerny, Christoph; Zhong, Zhi; Maldonado, Eduardo N.

    2012-01-01

    Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. PMID:22172804

  17. Condurango (Gonolobus condurango Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro CE-treatment on HeLa: a ROS-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Kausik Bishayee

    2015-09-01

    Full Text Available Objectives: Condurango (Gonolobus condurango extract is used by complementary and alternative medicine (CAM practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa as our model, the molecular events behind condurango extract’s (CE’s anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR. Other included cell types were prostate cancer cells (PC3, transformed liver cells (WRL-68, and peripheral blood mononuclear cells (PBMCs. Results: Condurango extract (CE was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC, a scavenger of reactive oxygen species (ROS, suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA damage at the G zero/Growth 1 (G0/G1 stage. Further, CE increased the tumor necrosis factor alpha (TNF-α and the fas receptor (FasR levels both at the ribonucleic acid (RNA and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2, and caused an opening of the mitochondrial membrane’s permeability transition (MPT pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

  18. Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle.

    Science.gov (United States)

    Fajardo, Val Andrew; McMeekin, Lauren; Saint, Caitlin; LeBlanc, Paul J

    2015-04-01

    Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.

  19. Dietary ω-3 Fatty Acids Alter Cardiac Mitochondrial Phospholipid Composition and Delay Ca2+-Induced Permeability Transition

    OpenAIRE

    O’Shea, Karen M.; Khairallah, Ramzi J.; Sparagna, Genevieve C.; Xu, Wenhong; Hecker, Peter A; Robillard-Frayne, Isabelle; Des Rosiers, Christine; Kristian, Tibor; Robert C. Murphy; Fiskum, Gary; Stanley, William C.

    2009-01-01

    Consumption of ω-3 fatty acids from fish oil, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), decreases risk for heart failure and attenuates pathologic cardiac remodeling in response to pressure overload. Dietary supplementation with EPA+DHA may also impact cardiac mitochondrial function and energetics through alteration of membrane phospholipids. We assessed the role of EPA+DHA supplementation on left ventricular (LV) function, cardiac mitochondrial membrane phospho...

  20. Mitochondrial Dysfunction in Cancer

    Directory of Open Access Journals (Sweden)

    Michelle L Boland

    2013-12-01

    Full Text Available A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability and other more conventional aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the sigificance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis and spatial dynamics and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knockon effects for cell proliferation and growth. Scientifically, there is also scope for defining what mitochondria dysfunction is and here we address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.

  1. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatments we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.

  2. Legionella pneumophila secretes a mitochondrial carrier protein during infection.

    Directory of Open Access Journals (Sweden)

    Pavel Dolezal

    2012-01-01

    Full Text Available The Mitochondrial Carrier Family (MCF is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP, encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.

  3. Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Yanru Wang; Tingting Hou; Huiliang Zhang; Aijuan Qu; Xianhua Wang

    2011-01-01

    Mitochondrial calcium plays a crucial role in mitochondriai metabolism,cell calcium handling,and cell death.However,some mechanisms concerning mitochondrial calcium regulation are still unknown,especially how mitochondrial calcium couples with cytosolic calcium.In this work,we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation.Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester,a mitochondrial membrane potential indicator.The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2.The apparent Kd of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes.Furthermore,we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria.In HeLa cells,we found that mitochondrial calcium ([Ca2+]mito)responded to the changes of cytosolic calcium ([Ca2+]cyto)induced by histamine or thapasigargin.Moreover,external Ca2+ (100 μmol/L) directly induced an increase of [Ca2+]mito in permeabilized HeLa cells.However,in rat cardiomyocytes [Ca2+]mito did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine.In permeabilized cardiomyocytes,600 nmol/L free Ca2+ repeatedly increased the fluorescent signals of mito-GCaMP2,which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria.These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.

  4. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    International Nuclear Information System (INIS)

    Research highlights: → Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. → Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. → Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. → Loss of mitochondrial tubular rigidity and disorganization of cristae. → Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy Δ12,14 prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.

  5. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.

    Science.gov (United States)

    Sun, Fei; Zhou, Qiangjun; Pang, Xiaoyun; Xu, Yingzhi; Rao, Zihe

    2013-08-01

    Cellular respiration is the process that releases energy from food and supplies energy for life processes. The mitochondrial respiratory chain is the final and most important step for cellular respiration and is located on the inner membrane of mitochondrion and comprises four large trans-membrane protein complexes (respiratory chain Complexes I, II, III and IV) as well as ubiquinone between Complexes I/II and III and cytochrome c between Complexes III and IV. The function of mitochondrial respiratory chain is biological oxidation by transferring electrons from NADH and succinate to oxygen and then generating proton gradient across the inner membrane. Such proton gradient is utilized by ATP synthase (ATPase, also called as Complex V) to produce energy molecules ATP. Structural studies of mitochondrial respiratory membrane protein complexes are important to understand the mechanism of electron transfer and the redox-coupled proton translocation across the inner membrane. Here, according to the time line, we reviewed the great achievements on structural studies of mitochondrial respiratory complexes in the past twenty years as well as the recent research progresses on the structures of mitochondrial respiratory supra-complexes.

  6. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Philippe A Parone

    Full Text Available Mitochondria form a highly dynamic tubular network, the morphology of which is regulated by frequent fission and fusion events. However, the role of mitochondrial fission in homeostasis of the organelle is still unknown. Here we report that preventing mitochondrial fission, by down-regulating expression of Drp1 in mammalian cells leads to a loss of mitochondrial DNA and a decrease of mitochondrial respiration coupled to an increase in the levels of cellular reactive oxygen species (ROS. At the cellular level, mitochondrial dysfunction resulting from the lack of fission leads to a drop in the levels of cellular ATP, an inhibition of cell proliferation and an increase in autophagy. In conclusion, we propose that mitochondrial fission is required for preservation of mitochondrial function and thereby for maintenance of cellular homeostasis.

  7. Oxidative phosphorylation differences between mitochondrial DNA haplogroups modify the risk of Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Gómez-Durán, Aurora; Pacheu-Grau, David; Martínez-Romero, Iñigo; López-Gallardo, Ester; López-Pérez, Manuel J; Montoya, Julio; Ruiz-Pesini, Eduardo

    2012-08-01

    Leber's hereditary optic neuropathy is a maternally inherited optic atrophy caused by mitochondrial DNA point mutations. Previous epidemiological studies have shown that individuals from mitochondrial genetic backgrounds (haplogroups) J/Uk and H have a higher and a lower risk, respectively, of suffering this disorder. To analyze the bases of these associations at cellular and molecular levels, functional studies with cybrids provide high quality evidence. Cybrids from haplogroup J contain less mitochondrial deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and synthesize a smaller amount of mitochondrial DNA-encoded polypeptides than those from haplogroup H. Haplogroup J cybrids also display lower oxygen consumption, mitochondrial inner membrane potential and total adenosine-5'-triphosphate (ATP) levels. Moreover, mitochondrial DNA levels correlate with many parameters of the oxidative phosphorylation system. These results suggest that the mitochondrial DNA amount determines oxidative phosphorylation capacity and, along with other recently published observations, support the possibility that mitochondrial DNA levels may be responsible for the bias of the disorder toward males, for the incomplete penetrance of mutations causing Leber's hereditary optic neuropathy and for the association of the disease with particular mitochondrial DNA haplogroups.

  8. The mitochondrial Ca2+ uniporter: regulation by auxiliary subunits and signal transduction pathways.

    Science.gov (United States)

    Jhun, Bong Sook; Mishra, Jyotsna; Monaco, Sarah; Fu, Deming; Jiang, Wenmin; Sheu, Shey-Shing; O-Uchi, Jin

    2016-07-01

    Mitochondrial Ca(2+) homeostasis, the Ca(2+) influx-efflux balance, is responsible for the control of numerous cellular functions, including energy metabolism, generation of reactive oxygen species, spatiotemporal dynamics of Ca(2+) signaling, and cell growth and death. Recent discovery of the molecular identity of the mitochondrial Ca(2+) uniporter (MCU) provides new possibilities for application of genetic approaches to study the mitochondrial Ca(2+) influx mechanism in various cell types and tissues. In addition, the subsequent discovery of various auxiliary subunits associated with MCU suggests that mitochondrial Ca(2+) uptake is not solely regulated by a single protein (MCU), but likely by a macromolecular protein complex, referred to as the MCU-protein complex (mtCUC). Moreover, recent reports have shown the potential role of MCU posttranslational modifications in the regulation of mitochondrial Ca(2+) uptake through mtCUC. These observations indicate that mtCUCs form a local signaling complex at the inner mitochondrial membrane that could significantly regulate mitochondrial Ca(2+) handling, as well as numerous mitochondrial and cellular functions. In this review we discuss the current literature on mitochondrial Ca(2+) uptake mechanisms, with a particular focus on the structure and function of mtCUC, as well as its regulation by signal transduction pathways, highlighting current controversies and discrepancies.

  9. Mitochondrial calcium uniporter Mcu controls excitotoxicity and is transcriptionally repressed by neuroprotective nuclear calcium signals.

    Science.gov (United States)

    Qiu, Jing; Tan, Yan-Wei; Hagenston, Anna M; Martel, Marc-Andre; Kneisel, Niclas; Skehel, Paul A; Wyllie, David J A; Bading, Hilmar; Hardingham, Giles E

    2013-01-01

    The recent identification of the mitochondrial Ca(2+) uniporter gene (Mcu/Ccdc109a) has enabled us to address its role, and that of mitochondrial Ca(2+) uptake, in neuronal excitotoxicity. Here we show that exogenously expressed Mcu is mitochondrially localized and increases mitochondrial Ca(2+) levels following NMDA receptor activation, leading to increased mitochondrial membrane depolarization and excitotoxic cell death. Knockdown of endogenous Mcu expression reduces NMDA-induced increases in mitochondrial Ca(2+), resulting in lower levels of mitochondrial depolarization and resistance to excitotoxicity. Mcu is subject to dynamic regulation as part of an activity-dependent adaptive mechanism that limits mitochondrial Ca(2+) overload when cytoplasmic Ca(2+) levels are high. Specifically, synaptic activity transcriptionally represses Mcu, via a mechanism involving the nuclear Ca(2+) and CaM kinase-mediated induction of Npas4, resulting in the inhibition of NMDA receptor-induced mitochondrial Ca(2+) uptake and preventing excitotoxic death. This establishes Mcu and the pathways regulating its expression as important determinants of excitotoxicity, which may represent therapeutic targets for excitotoxic disorders.

  10. Mechanism of mitochondrial respiratory control in caspase-3 induced positive feed back loop in apoptosis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Caspase-3 plays a central role in the execution of apoptosis. Besides many substrates of caspase-3, mitochondria seem to be one of the candidate targets in the apoptotic process. We evaluated the effects of caspase-3 on the isolated mitochondria in detail, and especially focused on the mechanism involved in mitochondrial functions, which were not fully assessed till now. Our results showed that recombinant caspase-3 induced the increase of superoxide production, the dissipation of mitochondrial membrane potential and rate increasing of mitochondrial state 4 respiration. Caspases inhibitor, z-VAD-fmk can inhibit these effects of caspase-3 on mitochondria. Bcl-xL and cyclosporin A were also shown to be able to inhibit these changes. These results suggested a possible mechanism in caspase-3 induced disruption of mitochondrial membrane barrier which formed a positive feedback loop in apoptosis.

  11. The mitochondrial function was impaired in APP knockout mouse embryo fibroblast cells

    Institute of Scientific and Technical Information of China (English)

    SHENG BaiYang; NIU Ying; ZHOU Hui; YAN JiaXin; ZHAO NanMing; ZHANG XiuFang; GONG YanDao

    2009-01-01

    The amyloid precursor protein (APP) is recognized as the source of Aβ, which plays an important role in Alzheimer's disease. However, the biological function of APP is obscure. Previous studies showed that mitochondria could be a target of APP. In this work, APP knockout mouse embryo fibroblast (MEF) cells were used to test if APP plays any role in maintaining the mitochondrial function. As the result, APP knockout MEF cells (APP-/- cells) showed the abnormal mitochondrial function, including slower cell proliferation, lower mitochondrial membrane potential, lower intracellular ROS, higher mitochon-drial membrane fluidity and lower cytochrome c oxidase activity than their wild-type counterparts. However, no change was found in the amount of mitochondria in MEF APP-/- cells.

  12. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment.

    Science.gov (United States)

    Pereira, Lílian Cristina; de Souza, Alecsandra Oliveira; Dorta, Daniel Junqueira

    2013-06-01

    Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE-100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy-producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE-100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE-100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate-stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N-ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE-100. These results show the key role of mitochondria in the cytotoxicity induced by BDE-100. PMID:23302053

  13. Polybrominated diphenyl ether congener (BDE-100) induces mitochondrial impairment.

    Science.gov (United States)

    Pereira, Lílian Cristina; de Souza, Alecsandra Oliveira; Dorta, Daniel Junqueira

    2013-06-01

    Brominated flame retardants are used in various consumer products to increase their resistance to fire and/or high temperatures. Polybrominated diphenyl ethers (PBDEs) are representatives of this class and among the most widely used congeners, and BDE-100 is produced on a large scale. There is a lack of toxicological data about these compounds, which has recently become a matter of concern to the scientific community. The mitochondria are recognized as the main energy-producing organelles, as well as playing a vital role in the maintenance of many cell functions. Therefore, mitochondria were used in the present work as an experimental model to evaluate the effects of the BDE-100 congeners at concentrations ranging from 0.1 μM to 50 μM. The results showed that high concentrations of BDE-100 were able to induce mitochondrial alterations. It was observed that the substance had an affinity for the hydrophilic portion of the mitochondrial membrane, as monitored by ANS, inhibiting the glutamate + malate-stimulated mitochondrial respiration and also inducing dissipation of the mitochondrial membrane potential, deregulation of calcium homoeostasis and mitochondrial swelling, the latter being insensitive to cyclosporin A (CsA) but partially inhibited by Ruthenium Red and N-ethyl maleimide. In addition, a significant reduction in mitochondrial ATP content was found, but on the other hand, no oxidative stress was observed after exposure of the mitochondria to BDE-100. These results show the key role of mitochondria in the cytotoxicity induced by BDE-100.

  14. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts.

    Directory of Open Access Journals (Sweden)

    Anne Grünewald

    Full Text Available BACKGROUND: Mutations in Parkin are the most common cause of autosomal recessive Parkinson disease (PD. The mitochondrially localized E3 ubiquitin-protein ligase Parkin has been reported to be involved in respiratory chain function and mitochondrial dynamics. More recent publications also described a link between Parkin and mitophagy. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we investigated the impact of Parkin mutations on mitochondrial function and morphology in a human cellular model. Fibroblasts were obtained from three members of an Italian PD family with two mutations in Parkin (homozygous c.1072delT, homozygous delEx7, compound-heterozygous c.1072delT/delEx7, as well as from two relatives without mutations. Furthermore, three unrelated compound-heterozygous patients (delEx3-4/duplEx7-12, delEx4/c.924C>T and delEx1/c.924C>T and three unrelated age-matched controls were included. Fibroblasts were cultured under basal or paraquat-induced oxidative stress conditions. ATP synthesis rates and cellular levels were detected luminometrically. Activities of complexes I-IV and citrate synthase were measured spectrophotometrically in mitochondrial preparations or cell lysates. The mitochondrial membrane potential was measured with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolylcarbocyanine iodide. Oxidative stress levels were investigated with the OxyBlot technique. The mitochondrial network was investigated immunocytochemically and the degree of branching was determined with image processing methods. We observed a decrease in the production and overall concentration of ATP coinciding with increased mitochondrial mass in Parkin-mutant fibroblasts. After an oxidative insult, the membrane potential decreased in patient cells but not in controls. We further determined higher levels of oxidized proteins in the mutants both under basal and stress conditions. The degree of mitochondrial network branching was comparable in mutants and

  15. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    Directory of Open Access Journals (Sweden)

    Guo Luo

    Full Text Available Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A harboring a superoxide dismutase mutation (SOD1(G93A. Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A model muscle. A specific mitochondrial fission inhibitor (Mdivi-1 reversed the SOD1(G93A action on mitochondrial dynamics, indicating SOD1(G93A likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and

  16. Membrane Biophysics

    CERN Document Server

    Ashrafuzzaman, Mohammad

    2013-01-01

    Physics, mathematics and chemistry all play a vital role in understanding the true nature and functioning of biological membranes, key elements of living processes. Besides simple spectroscopic observations and electrical measurements of membranes we address in this book the phenomena of coexistence and independent existence of different membrane components using various theoretical approaches. This treatment will be helpful for readers who want to understand biological processes by applying both simple observations and fundamental scientific analysis. It provides a deep understanding of the causes and effects of processes inside membranes, and will thus eventually open new doors for high-level pharmaceutical approaches towards fighting membrane- and cell-related diseases.

  17. Sealing the Mitochondrial Respirasome

    OpenAIRE

    Winge, Dennis R.

    2012-01-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our underst...

  18. PROTECTIVE EFFECT OF SALVIFOLIN ON LIVER MITOCHONDRIAL FUNCTION IN RATS WITH EXPERIMENTAL DIABETES

    OpenAIRE

    POZILOV MAMURJON KOMILJONOVICH; ASRAROV MUZAFFAR ISLAMOVICH; URMANOVA GULBAKHOR URUNBOEVNA; ESHBAKOVA KOMILA ALIBEKOVNA

    2015-01-01

    The influence of diterpenoid salvifolin on mitochondrial function was investigated. It was shown that in streptozotocin-induced diabetes damaged functional systems of rat liver mitochondria: respiration and oxidative phosphorylation, mitochondrial permeability transition pore and ATP -dependent potassium channel. Pharmacotherapy with salvifolin (intraperitoneally in dose of 3,5 mg/kg body weight) for 8 days has a protective effect on mitochondria in experimental diabetes, correction membrane ...

  19. Mitochondrial calcium-activated potassium channel:another potential target for neuroprotection?

    Institute of Scientific and Technical Information of China (English)

    FangSHEN; Li-pingWU; QianSHEN; QiangXIA

    2004-01-01

    AIM: It has recently been reported that large-conductance Ca2+activated potassium channel is present in the inner mitochondrial membrane (mitoKCa) of the neuron cell, which has been reported to have cardioprotective effect similar to that of mitochondrial ATP-sensitive K+ channel (mitoKATP). Hence the aim of this study was to clarify if mitoKCa is neuroprotective and compare thisnotantial affect with that of mitoK METHODS: Male

  20. Serendipity and the discovery of novel compounds that restore mitochondrial plasticity.

    Science.gov (United States)

    Szeto, H H; Birk, A V

    2014-12-01

    The mitochondrial electron transport chain (ETC) plays a central role in energy generation in the cell. Mitochondrial dysfunctions diminish adenosine triphosphate (ATP) production and result in insufficient energy to maintain cell function. As energy output declines, the most energetic tissues are preferentially affected. To satisfy cellular energy demands, the mitochondrial ETC needs to be able to elevate its capacity to produce ATP at times of increased metabolic demand or decreased fuel supply. This mitochondrial plasticity is reduced in many age-associated diseases. In this review, we describe the serendipitous discovery of a novel class of compounds that selectively target cardiolipin on the inner mitochondrial membrane to optimize efficiency of the ETC and thereby restore cellular bioenergetics in aging and diverse disease models, without any effect on the normal healthy organism. The first of these compounds, SS-31, is currently in multiple clinical trials. PMID:25188726

  1. Curcumin, mitochondrial biogenesis, and mitophagy: Exploring recent data and indicating future needs.

    Science.gov (United States)

    de Oliveira, Marcos Roberto; Jardim, Fernanda Rafaela; Setzer, William N; Nabavi, Seyed Mohammad; Nabavi, Seyed Fazel

    2016-01-01

    Mitochondria are dynamic double-membrane bound organelles which have key roles in a variety of cellular functions such as energy producing, regulation of calcium flux, cellular stress responses including autophagy and apoptosis. A growing body of evidence indicates that mitochondrial dysfunction is the main culprit in a myriad of diseases such as neurodegenerative disease. This fact opens a new therapeutic window based on targeting mitochondrial dysfunction for treatment of these diseases. Recently an abundance of evidence shows the promising role of polyphenolic compounds on mitochondrial structure and function. Curcumin, a well-known polyphenolic compound, is an abundant component of turmeric. The promising roles of curcumin against different diseases are highly publicized. The aim of the present work is to critically review the scientific evidence to provide a clear view of how curcumin improves mitochondrial dynamics regarding mitochondrial biogenesis and mitophagy. We also present curcumin biosynthesis, source, bioavailability and metabolism in order to give an overview of this compound. PMID:27143655

  2. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  3. Reconstitution of the mitochondrial calcium uniporter in yeast.

    Science.gov (United States)

    Kovács-Bogdán, Erika; Sancak, Yasemin; Kamer, Kimberli J; Plovanich, Molly; Jambhekar, Ashwini; Huber, Robert J; Myre, Michael A; Blower, Michael D; Mootha, Vamsi K

    2014-06-17

    The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery. PMID:24889638

  4. Changes in liver mitochondrial plasticity induced by brain tumor

    Directory of Open Access Journals (Sweden)

    Debien Emilie

    2006-10-01

    Full Text Available Abstract Background Accumulating data suggest that liver is a major target organ of systemic effects observed in the presence of a cancer. In this study, we investigated the consequences of the presence of chemically induced brain tumors in rats on biophysical parameters accounting for the dynamics of water in liver mitochondria. Methods Tumors of the central nervous system were induced by intraveinous administration of ethylnitrosourea (ENU to pregnant females on the 19th day of gestation. The mitochondrial crude fraction was isolated from the liver of each animal and the dynamic parameters of total water and its macromolecule-associated fraction (structured water, H2Ost were calculated from Nuclear Magnetic Resonance (NMR measurements. Results The presence of a malignant brain tumor induced a loss of water structural order that implicated changes in the physical properties of the hydration shells of liver mitochondria macromolecules. This feature was linked to an increase in the membrane cholesterol content, a way to limit water penetration into the bilayer and then to reduce membrane permeability. As expected, these alterations in mitochondrial plasticity affected ionic exchanges and led to abnormal features of mitochondrial biogenesis and caspase activation. Conclusion This study enlightens the sensitivity of the structured water phase in the liver mitochondria machinery to external conditions such as tumor development at a distant site. The profound metabolic and functional changes led to abnormal features of ion transport, mitochondrial biogenesis and caspase activation.

  5. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency.

    Science.gov (United States)

    Ehinger, Johannes K; Piel, Sarah; Ford, Rhonan; Karlsson, Michael; Sjövall, Fredrik; Frostner, Eleonor Åsander; Morota, Saori; Taylor, Robert W; Turnbull, Doug M; Cornell, Clive; Moss, Steven J; Metzsch, Carsten; Hansson, Magnus J; Fliri, Hans; Elmér, Eskil

    2016-01-01

    Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction. PMID:27502960

  6. The uniqueness of the plant mitochondrial potassium channel

    Directory of Open Access Journals (Sweden)

    Donato Pastore

    2013-08-01

    Full Text Available The ATP-inhibited Plant Mitochondrial K+ Channel (PmitoKATPwas discovered about fifteen years ago in Durum WheatMitochondria (DWM. PmitoKATP catalyses the electrophoreticK+ uniport through the inner mitochondrial membrane;moreover, the co-operation between PmitoKATP and K+/H+antiporter allows such a great operation of a K+ cycle tocollapse mitochondrial membrane potential (ΔΨ and ΔpH, thusimpairing protonmotive force (Δp. A possible physiological roleof such ΔΨ control is the restriction of harmful reactive oxygenspecies (ROS production under environmental/oxidative stressconditions. Interestingly, DWM lacking Δp were found to benevertheless fully coupled and able to regularly accomplish ATPsynthesis; this unexpected behaviour makes necessary to recastin some way the classical chemiosmotic model. In the whole,PmitoKATP may oppose to large scale ROS production bylowering ΔΨ under environmental/oxidative stress, but, whenstress is moderate, this occurs without impairing ATP synthesisin a crucial moment for cell and mitochondrial bioenergetics.[BMB Reports 2013; 46(8: 391-397

  7. Reconstitution of the mitochondrial calcium uniporter in yeast.

    Science.gov (United States)

    Kovács-Bogdán, Erika; Sancak, Yasemin; Kamer, Kimberli J; Plovanich, Molly; Jambhekar, Ashwini; Huber, Robert J; Myre, Michael A; Blower, Michael D; Mootha, Vamsi K

    2014-06-17

    The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.

  8. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology

    Science.gov (United States)

    Gong, Guohua; Wang, Xianhua; Wei-LaPierre, Lan; Cheng, Heping; Dirksen, Robert

    2016-01-01

    Abstract Significance: Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of “mitochondrial flash” activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. Recent Advances: The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. Critical Issues: We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. Future Directions: Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534–549. PMID:27245241

  9. Abnormal mitochondrial L-arginine transport contributes to the pathogenesis of heart failure and rexoygenation injury.

    Directory of Open Access Journals (Sweden)

    David Williams

    Full Text Available BACKGROUND: Impaired mitochondrial function is fundamental feature of heart failure (HF and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. METHODS AND RESULTS: In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01 compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05. The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1 exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. CONCLUSION: These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury.

  10. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    Science.gov (United States)

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  11. Characteristics of the rat cardiac sphingolipid pool in two mitochondrial subpopulations.

    Science.gov (United States)

    Monette, Jeffrey S; Gómez, Luis A; Moreau, Régis F; Bemer, Brett A; Taylor, Alan W; Hagen, Tory M

    2010-07-23

    Mitochondrial sphingolipids play a diverse role in normal cardiac function and diseases, yet a precise quantification of cardiac mitochondrial sphingolipids has never been performed. Therefore, rat heart interfibrillary mitochondria (IFM) and subsarcolemmal mitochondria (SSM) were isolated, lipids extracted, and sphingolipids quantified by LC-tandem mass spectrometry. Results showed that sphingomyelin (approximately 10,000 pmol/mg protein) was the predominant sphingolipid regardless of mitochondrial subpopulation, and measurable amounts of ceramide (approximately 70 pmol/mg protein) sphingosine, and sphinganine were also found in IFM and SSM. Both mitochondrial populations contained similar quantities of sphingolipids except for ceramide which was much higher in SSM. Analysis of sphingolipid isoforms revealed ten different sphingomyelins and six ceramides that differed from 16- to 24-carbon units in their acyl side chains. Sub-fractionation experiments further showed that sphingolipids are a constituent part of the inner mitochondrial membrane. Furthermore, inner membrane ceramide levels were 32% lower versus whole mitochondria (45 pmol/mg protein). Three ceramide isotypes (C20-, C22-, and C24-ceramide) accounted for the lower amounts. The concentrations of the ceramides present in the inner membranes of SSM and IFM differed greatly. Overall, mitochondrial sphingolipid content reflected levels seen in cardiac tissue, but the specific ceramide distribution distinguished IFM and SSM from each other.

  12. Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using polarography and spectrophotometric enzyme assays.

    Science.gov (United States)

    Barrientos, Antoni; Fontanesi, Flavia; Díaz, Francisca

    2009-10-01

    The oxidative phosphorylation (OXPHOS) system consists of five multimeric complexes embedded in the mitochondrial inner membrane. They work in concert to drive the aerobic synthesis of ATP. Mitochondrial and nuclear DNA mutations affecting the accumulation and function of these enzymes are the most common cause of mitochondrial diseases and have also been associated with neurodegeneration and aging. For this reason, several approaches for the assessment of the OXPHOS system enzymes have been developed. Based on the methods described elsewhere, the assays describe methods that form a biochemical characterization of the OXPHOS system in cells and mitochondria isolated from cultured cells or tissues.

  13. Effects of uric acid on mitochondrial oxidative damage and apoptosis in human renal tubular epithelial cells

    Institute of Scientific and Technical Information of China (English)

    张涛

    2014-01-01

    Objective To observe the effects of uric acid(UA)on mitochondrial oxidative damage and apoptosis in renal tubular epithelial cells(HK-2),and investigate the possible mechanism.Methods HK-2 cells were exposed to UA(480μmol/L,720μmol/L)for different time(0 h,24 h,48 h)in vitro.The mitochondrial ROS production was detected by Mito SOX staining.The mitochondrial membrane potential was measured by JC-1 staining.The expressions of prohibitin and AIF were examined by Western blotting and immunofluorescence cytochemistry.

  14. TMEM14C is required for erythroid mitochondrial heme metabolism

    OpenAIRE

    Yien, Yvette Yee; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel Evan; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric Adam; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non

    2014-01-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in ...

  15. Protein kinase B (PKB/AKT1) formed signaling complexes with mitochondrial proteins and prevented glycolytic energy dysfunction in cultured cardiomyocytes during ischemia-reperfusion injury.

    Science.gov (United States)

    Deng, Wu; Leu, Hsin-Bang; Chen, Yumay; Chen, Yu-Han; Epperson, Christine M; Juang, Charity; Wang, Ping H

    2014-05-01

    Our previous studies showed that insulin stimulated AKT1 translocation into mitochondria and modulated oxidative phosphorylation complex V in cardiac muscle. This raised the possibility that mitochondrial AKT1 may regulate glycolytic oxidative phosphorylation and mitochondrial function in cardiac muscle cells. The aims of this project were to study the effects of mitochondrial AKT1 signaling on cell survival in stressed cardiomyocytes, to define the effect of mitochondrial AKT1 signaling on glycolytic bioenergetics, and to identify mitochondrial targets of AKT1 signaling in cardiomyocytes. Mitochondrial AKT1 signaling played a protective role against apoptosis and necrosis during ischemia-reperfusion stress, suppressed mitochondrial calcium overload, and alleviated mitochondrial membrane depolarization. Activation of AKT1 signaling in mitochondria increased glucose uptake, enhanced respiration efficiency, reduced superoxide generation, and increased ATP production in the cardiomyocytes. Inhibition of mitochondrial AKT attenuated insulin response, indicating that insulin regulation of ATP production required mitochondrial AKT1 signaling. A proteomic approach was used to reveal 15 novel targets of AKT1 signaling in mitochondria, including pyruvate dehydrogenase complex (PDC). We have confirmed and characterized the association of AKT1 and PDC subunits and verified a stimulatory effect of mitochondrial AKT1 on the enzymatic activity of PDC. These findings suggested that AKT1 formed protein complexes with multiple mitochondrial proteins and improved mitochondrial function in stressed cardiomyocytes. The novel AKT1 signaling targets in mitochondria may become a resource for future metabolism research.

  16. Structure and function of the mitochondrial calcium uniporter complex.

    Science.gov (United States)

    De Stefani, Diego; Patron, Maria; Rizzuto, Rosario

    2015-09-01

    The mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane mediating the electrophoretic Ca²⁺ uptake into the matrix. It plays a fundamental role in the shaping of global calcium signaling and in the control of aerobic metabolism as well as apoptosis. Two features of mitochondrial calcium signaling have been known for a long time: i) mitochondrial Ca²⁺ uptake widely varies among cells and tissues, and ii) channel opening strongly relies on the extramitochondrial Ca²⁺ concentration, with low activity at resting [Ca²⁺] and high capacity as soon as calcium signaling is activated. Such complexity requires a specialized molecular machinery, with several primary components can be variably gathered together in order to match energy demands and protect from toxic stimuli. In line with this, MCU is now recognized to be part of a macromolecular complex known as the MCU complex. Our understanding of the structure and function of the MCU complex is now growing promptly, revealing an unexpected complexity that highlights the pleiotropic role of mitochondrial Ca²⁺ signals. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.

  17. Oestrogens ameliorate mitochondrial dysfunction in Leber's hereditary optic neuropathy.

    Science.gov (United States)

    Giordano, Carla; Montopoli, Monica; Perli, Elena; Orlandi, Maurizia; Fantin, Marianna; Ross-Cisneros, Fred N; Caparrotta, Laura; Martinuzzi, Andrea; Ragazzi, Eugenio; Ghelli, Anna; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio

    2011-01-01

    Leber's hereditary optic neuropathy, the most frequent mitochondrial disease due to mitochondrial DNA point mutations in complex I, is characterized by the selective degeneration of retinal ganglion cells, leading to optic atrophy and loss of central vision prevalently in young males. The current study investigated the reasons for the higher prevalence of Leber's hereditary optic neuropathy in males, exploring the potential compensatory effects of oestrogens on mutant cell metabolism. Control and Leber's hereditary optic neuropathy osteosarcoma-derived cybrids (11778/ND4, 3460/ND1 and 14484/ND6) were grown in glucose or glucose-free, galactose-supplemented medium. After having shown the nuclear and mitochondrial localization of oestrogen receptors in cybrids, experiments were carried out by adding 100 nM of 17β-oestradiol. In a set of experiments, cells were pre-incubated with the oestrogen receptor antagonist ICI 182780. Leber's hereditary optic neuropathy cybrids in galactose medium presented overproduction of reactive oxygen species, which led to decrease in mitochondrial membrane potential, increased apoptotic rate, loss of cell viability and hyper-fragmented mitochondrial morphology compared with control cybrids. Treatment with 17β-oestradiol significantly rescued these pathological features and led to the activation of the antioxidant enzyme superoxide dismutase 2. In addition, 17β-oestradiol induced a general activation of mitochondrial biogenesis and a small although significant improvement in energetic competence. All these effects were oestrogen receptor mediated. Finally, we showed that the oestrogen receptor β localizes to the mitochondrial network of human retinal ganglion cells. Our results strongly support a metabolic basis for the unexplained male prevalence in Leber's hereditary optic neuropathy and hold promises for a therapeutic use for oestrogen-like molecules.

  18. Mitochondrial structure, function and dynamics are temporally controlled by c-Myc.

    Directory of Open Access Journals (Sweden)

    J Anthony Graves

    Full Text Available Although the c-Myc (Myc oncoprotein controls mitochondrial biogenesis and multiple enzymes involved in oxidative phosphorylation (OXPHOS, the coordination of these events and the mechanistic underpinnings of their regulation remain largely unexplored. We show here that re-expression of Myc in myc-/- fibroblasts is accompanied by a gradual accumulation of mitochondrial biomass and by increases in membrane polarization and mitochondrial fusion. A correction of OXPHOS deficiency is also seen, although structural abnormalities in electron transport chain complexes (ETC are not entirely normalized. Conversely, the down-regulation of Myc leads to a gradual decrease in mitochondrial mass and a more rapid loss of fusion and membrane potential. Increases in the levels of proteins specifically involved in mitochondrial fission and fusion support the idea that Myc affects mitochondrial mass by influencing both of these processes, albeit favoring the latter. The ETC defects that persist following Myc restoration may represent metabolic adaptations, as mitochondrial function is re-directed away from producing ATP to providing a source of metabolic precursors demanded by the transformed cell.

  19. Mitochondrial Dysfunction and β-Cell Failure in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Zhongmin Alex Ma

    2012-01-01

    Full Text Available Type 2 diabetes mellitus (T2DM is the most common human endocrine disease and is characterized by peripheral insulin resistance and pancreatic islet β-cell failure. Accumulating evidence indicates that mitochondrial dysfunction is a central contributor to β-cell failure in the evolution of T2DM. As reviewed elsewhere, reactive oxygen species (ROS produced by β-cell mitochondria as a result of metabolic stress activate several stress-response pathways. This paper focuses on mechanisms whereby ROS affect mitochondrial structure and function and lead to β-cell failure. ROS activate UCP2, which results in proton leak across the mitochondrial inner membrane, and this leads to reduced β-cell ATP synthesis and content, which is a critical parameter in regulating glucose-stimulated insulin secretion. In addition, ROS oxidize polyunsaturated fatty acids in mitochondrial cardiolipin and other phospholipids, and this impairs membrane integrity and leads to cytochrome c release into cytosol and apoptosis. Group VIA phospholipase A2 (iPLA2β appears to be a component of a mechanism for repairing mitochondrial phospholipids that contain oxidized fatty acid substituents, and genetic or acquired iPLA2β-deficiency increases β-cell mitochondrial susceptibility to injury from ROS and predisposes to developing T2DM. Interventions that attenuate ROS effects on β-cell mitochondrial phospholipids might prevent or retard development of T2DM.

  20. The status of mitochondrial apparatus in rat atrial contractive cardiomyocites under the acute myocardial ischemia.

    Directory of Open Access Journals (Sweden)

    Dunaev A.V.

    2007-01-01

    Full Text Available The purpose of the study was to analyze morphological reactions of mitochondrial apparatus of atrial contractive cardiomyocites in rats on the acute myocardial ischemia. Modeling of the acute myocardial ischemia in rats was realized by daily introduction of vasopressin intraperitoneum in dosage 1 Ed of rat weight. Morphological research comprised both light and electronic microscopy of myocardium of right and left atria, right and left auricles, and also interatrial septum. Stereological estimation of several indexes was carried out: the compactness of mitochondria, numeral compactness of mitohondria, surface area of external mitochondrial membrane, compactness of mitochondrial cristae, number of mitochon-drial cristae, surface area of internal mitochondrial membrane, degree of cristae orientation, coefficient of mitochondrial sphericity, volume of mitochondrium, quantitative correlation of types of mitochondria. It was shown that the reaction of different types of mitochondria on development of acute myocardial ischemia in atrial contractive cardiomyocites depends on the structural-metabolic type of mitochondria. Under the acute myocardial ischemia the moderate diffuse reduction of mitochondrial apparatus of contractive cardiomyocites takes place that is accompanied by the prolonged renewal of high-energy mitochondria and causes energetical limitation of contractive function of atrial myocardium.

  1. Intervention effect of Zibupiyin method on mitochondrial membrane potential and ROS level in the prefrontal cortex of diabetic en-cephalopathy rats%滋补脾阴法对糖尿病脑病大鼠皮质线粒体膜电位和活性氧的影响

    Institute of Scientific and Technical Information of China (English)

    孙铮; 战丽彬; 姜如娇; 隋华; 梁丽娜; 李照

    2016-01-01

    Objective To investigate the protection of Zibupiyin Recipe( ZBPYR) on the prefrontal cortex of deficiency diabetic en-cephalopathy rats and its mitochondrial mechanism.Methods SD rats were randomly divided into five groups( n=5 each group):the control (Con),the diabetes(DM),the Zibupiyin(ZBPYR),the Jianpiyiqi(BZYQ)and Zibushenyin(LWDH)groups.Spatial learning and memory performance were assessed using the Morris water maze.JC-1 and DCFH labeling were used to test the mitochondria membrane potential (ΔΨm) and ROS level in prefrontal cortex of SD rats.Results The latency of the ZBPYR group was significantly shorter compared with that of the DM group(P<0.01).TheΔΨm levels of ZBPYR group was increased than that of DM group(P<0.05),while the ROS level of ZB-PYR group was decreased(P<0.05).There were no significant differences in the latency,level ofΔΨm and ROS between BZYQ and LWDH groups.Conclusions ZBPYR plays a vital role in the protection of DM in rat cerebral cortex and the mechanism of it may be associated with improvement of mitochondrial membrane potential and inhibition of ROS.%目的:研究滋补脾阴法改善大鼠糖尿病脑病及其线粒体相关机制。方法 SD大鼠分为对照组,糖尿病脑病组( DM组),滋补脾阴组(ZBPYR组),健脾益气组(BZYQ组)和滋补肾阴组(LWDH组)。水迷宫评价学习记忆能力,JC-1和 DCFH标记法检测线粒体膜电位(△Ψm)高低、活性氧(ROS)含量。结果 ZBPYR组水迷宫潜伏期低于DM 组(P<0.01),BZYQ和 LWDH 组与DM 组无统计学差异 ZBPYR组△Ψm高于 DM组(P<0.05),BZYQ和LWDH组△Ψm较DM组无统计学意义;DM组 ROS高于 ZBPYR组(P<0.05),与 BZYQ和LWDH组相比无统计学意义。结论 ZBPYR提高△Ψm,降低ROS改善糖尿病脑病大鼠皮质线粒体功能,提高认知能力。

  2. Mitochondrial ATP synthases cluster as discrete domains that reorganize with the cellular demand for oxidative phosphorylation.

    Science.gov (United States)

    Jimenez, Laure; Laporte, Damien; Duvezin-Caubet, Stephane; Courtout, Fabien; Sagot, Isabelle

    2014-02-15

    Mitochondria are double membrane-bounded organelles that form a dynamic tubular network. Mitochondria energetic functions depend on a complex internal architecture. Cristae, inner membrane invaginations that fold into the matrix space, are proposed to be the site of oxidative phosphorylation, reactions by which ATP synthase produces ATP. ATP synthase is also thought to have a role in crista morphogenesis. To date, the exploration of the processes regulating mitochondrial internal compartmentalization have been mostly limited to electron microscopy. Here, we describe ATP synthase localization in living yeast cells and show that it clusters as discrete inner membrane domains. These domains are dynamic within the mitochondrial network. They are impaired in mutants defective in crista morphology and partially overlap with the crista-associated MICOS-MINOS-MITOS complex. Finally, ATP synthase occupancy increases with the cellular demand for OXPHOS. Overall our data suggest that domains in which ATP synthases are clustered correspond to mitochondrial cristae. Being able to follow mitochondrial sub-compartments in living yeast cells opens new avenues to explore the mechanisms involved in inner membrane remodeling, an architectural feature crucial for mitochondrial activities.

  3. Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile.

    Science.gov (United States)

    Brand, M D; Couture, P; Else, P L; Withers, K W; Hulbert, A J

    1991-04-01

    Standard metabolic rate is 7-fold greater in the rat (a typical mammal) than in the bearded dragon, Amphibolurus vitticeps (a reptile with the same body mass and temperature). Rat hepatocytes respire 4-fold faster than do hepatocytes from the lizard. The inner membrane of isolated rat liver mitochondrial has a proton permeability that is 4-5-fold greater than the proton permeability of the lizard liver mitochondrial membrane per mg of mitochondrial protein. The greater permeability of rat mitochondria is not caused by differences in the surface area of the mitochondrial inner membrane, but differences in the fatty acid composition of the mitochondrial phospholipids may be involved in the permeability differences. Greater proton permeability of the mitochondrial inner membrane may contribute to the greater standard metabolic rate of mammals. PMID:1850242

  4. Membrane Processes.

    Science.gov (United States)

    Pellegrin, Marie-Laure; Sadler, Mary E; Greiner, Anthony D; Aguinaldo, Jorge; Min, Kyungnan; Zhang, Kai; Arabi, Sara; Burbano, Marie S; Kent, Fraser; Shoaf, Robert

    2015-10-01

    This review, for literature published in 2014, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, fixed film and anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:26420079

  5. Membrane Processes.

    Science.gov (United States)

    Pellegrin, Marie-Laure; Burbano, Marie S; Sadler, Mary E; Diamond, Jason; Baker, Simon; Greiner, Anthony D; Arabi, Sara; Wong, Joseph; Doody, Alexandra; Padhye, Lokesh P; Sears, Keith; Kistenmacher, Peter; Kent, Fraser; Tootchi, Leila; Aguinaldo, Jorge; Saddredini, Sara; Schilling, Bill; Min, Kyungnan; McCandless, Robert; Danker, Bryce; Gamage, Neranga P; Wang, Sunny; Aerts, Peter

    2016-10-01

    This review, for literature published in 2015, contains information related to membrane processes for municipal and industrial applications. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following topics: pretreatment, membrane bioreactor (MBR) configuration, design, nutrient removal, operation, industrial treatment, anaerobic membrane systems, reuse, microconstituents removal, membrane technology advances, membrane fouling, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include: Biological Fixed-Film Systems, Activated Sludge and Other Aerobic Suspended Culture Processes, Anaerobic Processes, Water Reclamation and Reuse. The following sections might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants. PMID:27620084

  6. Multicomponent membranes

    Science.gov (United States)

    Kulprathipanja, Santi; Kulkarni, Sudhir S.; Funk, Edward W.

    1988-01-01

    A multicomponent membrane which may be used for separating various components which are present in a fluid feed mixture comprises a mixture of a plasticizer such as a glycol and an organic polymer cast upon a porous organic polymer support. The membrane may be prepared by casting an emulsion or a solution of the plasticizer and polymer on the porous support, evaporating the solvent and recovering the membrane after curing.

  7. Mitochondrial ribosomal proteins and human mitochondrial diseases%线粒体核糖体蛋白与人类线粒体疾病

    Institute of Scientific and Technical Information of China (English)

    赵一婷

    2013-01-01

    Mammalian mitochondrial ribosomes (mitoribosome) have experienced a series of structure recombination during the long period of evolution.Mammalian mitochondrial ribosomes lack several major RNA stem structures of bacterial ribosomes but they are rich in mitochondrial ribosomal proteins (MRPs).All MRPs are synthesized in cytoplasm and imported into the mitochondrial matrix,where they assemble with the two mtDNA-encoded rRNAs.In addition to tRNA and rRNA,mitochondrial DNA also encodes 13 proteins for the inner mitochondrial membrane respiratory chain complex.The mitoribosome is responsible for the synthesis of these 13 proteins.Thus,mutations or defects of MRPs or other translation tools can cause mitochondrial diseases.%哺乳动物线粒体核糖体(mitochondrial ribosome,mitoribosome)在漫长的进化阶段经过一系列的结构重组,rRNA比例降低,新增了部分线粒体核糖体蛋白(mitochondrial ribosomal proteins,MRPs),成为蛋白含量最丰富的核糖体.所有MRPs均为核基因编码,在细胞质中合成,再转运到线粒体,与线粒体基因(mitochondrial DNA,mtDNA)编码的两种rRNA结合.mtDNA除编码tRNA和rRNA外,还编码组成线粒体呼吸链复合体的13种蛋白质.由于线粒体核糖体负责翻译这13种蛋白,MRPs和其他翻译工具的突变和缺陷可造成线粒体的相关疾病.

  8. CARBON MONOXIDE: ITS ROLE IN MITOCHONDRIAL PATHWAY OF APOPTOSIS INDUCTION IN JURKAT CANCER CELLS

    Directory of Open Access Journals (Sweden)

    E. G. Starikova

    2012-01-01

    Full Text Available  Abstract. This study demonstrates ability of carbon monoxide to trigger mitochondrial pathway of apoptosis induction of Jurcat cells. We have shown that proapoptotic action of carbon monoxide is coupled to permeabilization of cellular mitochondrial membranes. Imbalance in Bcl-2 family of regulatory proteins may be considered among possible reasons of the membrane pore formation. We have shown downregulated cl-2 and Bcl-xl mRNA expression and decreased levels of antiapoptotic proteins, along wih decreased mRNA expression and increase of Bad proapototic protein level in Jurkat cells following incubation with 50 μm of CORM-2, a carbon monoxide donor.

  9. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  10. Sealing the mitochondrial respirasome.

    Science.gov (United States)

    Winge, Dennis R

    2012-07-01

    The mitochondrial respiratory chain is organized within an array of supercomplexes that function to minimize the generation of reactive oxygen species (ROS) during electron transfer reactions. Structural models of supercomplexes are now known. Another recent advance is the discovery of non-OXPHOS complex proteins that appear to adhere to and seal the individual respiratory complexes to form stable assemblages that prevent electron leakage. This review highlights recent advances in our understanding of the structures of supercomplexes and the factors that mediate their stability.

  11. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species.

    Science.gov (United States)

    Kowaltowski, A J; Castilho, R F; Vercesi, A E

    1996-01-01

    In this study, we show that mitochondrial membrane permeability transition in Ca(2+)-loaded mitochondria treated with carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP) or inorganic phosphate (P(i)) is preceded by enhanced production of H2O2. This production is inhibited either by ethylene glycobis(b-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) or Mg2+, but not by cyclosporin A. Permeability transition is prevented either by EGTA, catalase or dithiothreitol, suggesting the involvement of Ca2+, H2O2 and oxidation of membrane protein thiols in this mechanism. When mitochondria are incubated under anaerobiosis, no permeabilization or H2O2 production occurs. Based on these results we conclude that mitochondrial permeability transition induced by P(i) or FCCP-uncoupling is dependent on mitochondrial-generated reactive oxygen species. PMID:8549822

  12. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    Science.gov (United States)

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. PMID:23138103

  13. Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene.

    Science.gov (United States)

    Rai, Mamta; Katti, Prasanna; Nongthomba, Upendra

    2014-01-01

    Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

  14. Biochemical diagnosis of mitochondrial disorders

    NARCIS (Netherlands)

    Rodenburg, R.J.T.

    2011-01-01

    Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patie

  15. Muscle regeneration in mitochondrial myopathies

    DEFF Research Database (Denmark)

    Krag, T O; Hauerslev, S; Jeppesen, T D;

    2013-01-01

    Mitochondrial myopathies cover a diverse group of disorders in which ragged red and COX-negative fibers are common findings on muscle morphology. In contrast, muscle degeneration and regeneration, typically found in muscular dystrophies, are not considered characteristic features of mitochondrial...

  16. Assembly factors for the membrane arm of human complex I

    Science.gov (United States)

    Andrews, Byron; Carroll, Joe; Ding, Shujing; Fearnley, Ian M.; Walker, John E.

    2013-01-01

    Mitochondrial respiratory complex I is a product of both the nuclear and mitochondrial genomes. The integration of seven subunits encoded in mitochondrial DNA into the inner membrane, their association with 14 nuclear-encoded membrane subunits, the construction of the extrinsic arm from 23 additional nuclear-encoded proteins, iron–sulfur clusters, and flavin mononucleotide cofactor require the participation of assembly factors. Some are intrinsic to the complex, whereas others participate transiently. The suppression of the expression of the NDUFA11 subunit of complex I disrupted the assembly of the complex, and subcomplexes with masses of 550 and 815 kDa accumulated. Eight of the known extrinsic assembly factors plus a hydrophobic protein, C3orf1, were associated with the subcomplexes. The characteristics of C3orf1, of another assembly factor, TMEM126B, and of NDUFA11 suggest that they all participate in constructing the membrane arm of complex I. PMID:24191001

  17. Mitochondrial complex I-linked disease.

    Science.gov (United States)

    Rodenburg, Richard J

    2016-07-01

    Complex I deficiency is the most frequently encountered single mitochondrial single enzyme deficiency in patients with a mitochondrial disorder. Although specific genotype-phenotype correlations are very difficult to identify, the majority of patients present with symptoms caused by leukodystrophy. The poor genotype-phenotype correlations can make establishing a diagnosis a challenge. The classical way to establish a complex I deficiency in patients is by performing spectrophotometric measurements of the enzyme in a muscle biopsy or other patient-derived material (liver or heart biopsy, cultured skin fibroblasts). Complex I is encoded by both the mtDNA and nuclear DNA and pathogenic mutations have been identified in the majority of the 44 genes encoding the structural subunits of complex I. In recent years, the increasing possibilities for diagnostic molecular genetic tests of large gene panels, exomes, and even entire genomes has led to the identification of many novel genetic defects causing complex I deficiency. Complex I mutations not only result in a reduced enzyme activity but also induce secondary effects at the cellular level, such as elevated reactive oxygen species production, altered membrane potential and mitochondrial morphology. At this moment there is no cure for complex I deficiency and the treatment options for complex I patients are restricted to symptomatic treatment. Recent developments, amongst others based on the treatment of the secondary effects of complex I deficiency, have shown to be promising as new therapeutic strategies in vitro and have entered clinical trials. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  18. Mitochondrial ribosome assembly in health and disease.

    Science.gov (United States)

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  19. Protective effects of myricetin on acute hypoxia-induced exercise intolerance and mitochondrial impairments in rats.

    Directory of Open Access Journals (Sweden)

    Dan Zou

    Full Text Available Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro.Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM. The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA. mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence.Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regulators, in addition, AMP-activated protein kinase(AMPK plays a crucial role in this process.Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis.

  20. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yuki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Eguchi, Takahiro [The Institute of Medical Science, The University of Tokyo, Minato, Tokyo 108-8639 (Japan); Kawahara, Kazuko [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Hasegawa, Nanami [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Nakamura, Kazuaki [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Funakoshi-Tago, Megumi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Tanoue, Akito [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Tamura, Hiroomi [Faculty of Pharmacy, Keio University, Minato, Tokyo 105-8512 (Japan); Yamauchi, Junji, E-mail: yamauchi-j@ncchd.go.jp [Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535 (Japan); Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo, Tokyo 113-8510 (Japan)

    2015-07-03

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  1. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy

    Science.gov (United States)

    Ripolone, Michela; Ronchi, Dario; Violano, Raffaella; Vallejo, Dionis; Fagiolari, Gigliola; Barca, Emanuele; Lucchini, Valeria; Colombo, Irene; Villa, Luisa; Berardinelli, Angela; Balottin, Umberto; Morandi, Lucia; Mora, Marina; Bordoni, Andreina; Fortunato, Francesco; Corti, Stefania; Parisi, Daniela; Toscano, Antonio; Sciacco, Monica; DiMauro, Salvatore; Comi, Giacomo P.; Moggio, Maurizio

    2016-01-01

    , implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors—muscle-specificmyogenic factor 5, myoblast determination 1, and myogenin—were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes. PMID:25844556

  2. Peptides that influence membrane topology

    Science.gov (United States)

    Wong, Gerard C. L.

    2014-03-01

    We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)

  3. The mitochondrial Na+/Ca2+ exchanger upregulates glucose dependent Ca2+ signalling linked to insulin secretion.

    Directory of Open Access Journals (Sweden)

    Iulia I Nita

    Full Text Available Mitochondria mediate dual metabolic and Ca(2+ shuttling activities. While the former is required for Ca(2+ signalling linked to insulin secretion, the role of the latter in β cell function has not been well understood, primarily because the molecular identity of the mitochondrial Ca(2+ transporters were elusive and the selectivity of their inhibitors was questionable. This study focuses on NCLX, the recently discovered mitochondrial Na(+/Ca(2+ exchanger that is linked to Ca(2+ signalling in MIN6 and primary β cells. Suppression either of NCLX expression, using a siRNA construct (siNCLX or of its activity, by a dominant negative construct (dnNCLX, enhanced mitochondrial Ca(2+ influx and blocked efflux induced by glucose or by cell depolarization. In addition, NCLX regulated basal, but not glucose-dependent changes, in metabolic rate, mitochondrial membrane potential and mitochondrial resting Ca(2+. Importantly, NCLX controlled the rate and amplitude of cytosolic Ca(2+ changes induced by depolarization or high glucose, indicating that NCLX is a critical and rate limiting component in the cross talk between mitochondrial and plasma membrane Ca(2+ signalling. Finally, knockdown of NCLX expression was followed by a delay in glucose-dependent insulin secretion. These findings suggest that the mitochondrial Na(+/Ca(2+ exchanger, NCLX, shapes glucose-dependent mitochondrial and cytosolic Ca(2+ signals thereby regulating the temporal pattern of insulin secretion in β cells.

  4. Continuous Modeling of Calcium Transport Through Biological Membranes

    Science.gov (United States)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  5. Disrupted yeast mitochondria can import precursor proteins directly through their inner membrane

    OpenAIRE

    1989-01-01

    Import of precursor proteins into the yeast mitochondrial matrix can occur directly across the inner membrane. First, disruption of the outer membrane restores protein import to mitochondria whose normal import sites have been blocked by an antibody against the outer membrane or by a chimeric, incompletely translocated precursor protein. Second, a potential- and ATP-dependent import of authentic or artificial precursor proteins is observed with purified inner membrane vesicles virtually free ...

  6. In EXOG-depleted cardiomyocytes cell death is marked by a decreased mitochondrial reserve capacity of the electron transport chain.

    Science.gov (United States)

    Tigchelaar, Wardit; De Jong, Anne Margreet; van Gilst, Wiek H; De Boer, Rudolf A; Silljé, Herman H W

    2016-07-01

    Depletion of mitochondrial endo/exonuclease G-like (EXOG) in cultured neonatal cardiomyocytes stimulates mitochondrial oxygen consumption rate (OCR) and induces hypertrophy via reactive oxygen species (ROS). Here, we show that neurohormonal stress triggers cell death in endo/exonuclease G-like-depleted cells, and this is marked by a decrease in mitochondrial reserve capacity. Neurohormonal stimulation with phenylephrine (PE) did not have an additive effect on the hypertrophic response induced by endo/exonuclease G-like depletion. Interestingly, PE-induced atrial natriuretic peptide (ANP) gene expression was completely abolished in endo/exonuclease G-like-depleted cells, suggesting a reverse signaling function of endo/exonuclease G-like. Endo/exonuclease G-like depletion initially resulted in increased mitochondrial OCR, but this declined upon PE stimulation. In particular, the reserve capacity of the mitochondrial respiratory chain and maximal respiration were the first indicators of perturbations in mitochondrial respiration, and these marked the subsequent decline in mitochondrial function. Although pathological stimulation accelerated these processes, prolonged EXOG depletion also resulted in a decline in mitochondrial function. At early stages of endo/exonuclease G-like depletion, mitochondrial ROS production was increased, but this did not affect mitochondrial DNA (mtDNA) integrity. After prolonged depletion, ROS levels returned to control values, despite hyperpolarization of the mitochondrial membrane. The mitochondrial dysfunction finally resulted in cell death, which appears to be mainly a form of necrosis. In conclusion, endo/exonuclease G-like plays an essential role in cardiomyocyte physiology. Loss of endo/exonuclease G-like results in diminished adaptation to pathological stress. The decline in maximal respiration and reserve capacity is the first sign of mitochondrial dysfunction that determines subsequent cell death. PMID:27417117

  7. Mitochondrial dysfunction in heart failure.

    Science.gov (United States)

    Rosca, Mariana G; Hoppel, Charles L

    2013-09-01

    Heart failure (HF) is a complex chronic clinical syndrome. Energy deficit is considered to be a key contributor to the development of both cardiac and skeletal myopathy. In HF, several components of cardiac and skeletal muscle bioenergetics are altered, such as oxygen availability, substrate oxidation, mitochondrial ATP production, and ATP transfer to the contractile apparatus via the creatine kinase shuttle. This review focuses on alterations in mitochondrial biogenesis and respirasome organization, substrate oxidation coupled with ATP synthesis in the context of their contribution to the chronic energy deficit, and mechanical dysfunction of the cardiac and skeletal muscle in HF. We conclude that HF is associated with decreased mitochondrial biogenesis and function in both heart and skeletal muscle, supporting the concept of a systemic mitochondrial cytopathy. The sites of mitochondrial defects are located within the electron transport and phosphorylation apparatus and differ with the etiology and progression of HF in the two mitochondrial populations (subsarcolemmal and interfibrillar) of cardiac and skeletal muscle. The roles of adrenergic stimulation, the renin-angiotensin system, and cytokines are evaluated as factors responsible for the systemic energy deficit. We propose a cyclic AMP-mediated mechanism by which increased adrenergic stimulation contributes to the mitochondrial dysfunction.

  8. Mitochondrial protection by low doses of insulin-like growth factor- Ⅰ in experimental cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Raquel Pérez; María García-Fernández; Matías Díaz-Sánchez; Juan E Puche; Gloria Delgado; Marian Conchillo; Jordi Muntané; Inma Castilla-Cortázar

    2008-01-01

    AIM:To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor- I (IGF-I) therapy (4 wk) is able to in-duce beneficial effects on damaged mitochondria leading to cellular protection.METHODS:Wistar rats were divided into three groups:Control group,untreated cirrhotic rats and cirrhotic rats treated with IGF-I treatment (2 μg/100 g bw/d).Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria,caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups.RESULTS:Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3);an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity.IGF-Ⅰ therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production.Activity of the electron transport complexes Ⅰ and Ⅲ was increased in both cirrhotic groups.In addition,untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis.IGF- Ⅰ therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis.CONCLUSION:These results show that IGF- Ⅰ exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.

  9. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    Science.gov (United States)

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  10. Role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Jian-Ming Li; Hong Zhou; Qian Cai; Guang-Xia Xiao

    2003-01-01

    AIM: To study the role of mitochondrial dysfunction in hydrogen peroxide-induced apoptosis of intestinal epithelial cells.METHODS: Hydrogen peroxide-induced apoptosis of human intestinal epithelial cell line SW-480 was established. Cell apoptosis was determined by Annexin-V and PI doublestained flow cytometry and DNA gel electrophoresis.Morphological changes were examined with light and electron microscopy. For other observations, mitochondrial function,cytochrome c release, mitochondrial translocation and membrane potential were determined simultaneously.RESULTS: Percentage of apoptotic cells induced with 400μ mol/L hydrogen peroxide increased significantly at I h or 3h after stimulation and recovered rapidly. Meanwhile percentage of apoptotic cells induced with 4 mmol/L hydrogen peroxide increased with time. In accordance with these changes, we observed decreased mitochondrial function in 400 μmol/L H2O2-stimualted cells at 1 h or 3 h and in 4 mmol/L H2O2-stimualted cells at times examined.Correspondingly, swelling cristae and vacuole-like mitochondria were noted. Release of cytochrome c,decreased mitochondrial membrane potential and mitochondrial translocation were also found to be the early signs of apoptosis.CONCLUSION: Dysfunctional mitochondria play a role in the apoptosis of SW-480 cell line induced by hydrogen peroxide.

  11. Polychlorinated Biphenyls Induce Mitochondrial Dysfunction in SH-SY5Y Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Stefania Cocco

    Full Text Available Chronic exposure to polychlorinated biphenyls (PCBs, ubiquitous environmental contaminants, can adversely affect the development and function of the nervous system. Here we evaluated the effect of PCB exposure on mitochondrial function using the PCB mixture Aroclor-1254 (A1254 in SH-SY5Y neuroblastoma cells. A 6-hour exposure to A1254 (5 μg/ml reduced cellular ATP production by 45%±7, and mitochondrial membrane potential, detected by TMRE, by 49%±7. Consistently, A1254 significantly decreased oxidative phosphorylation and aerobic glycolysis measured by extracellular flux analyzer. Furthermore, the activity of mitochondrial protein complexes I, II, and IV, but not V (ATPase, measured by BN-PAGE technique, was significantly reduced after 6-hour exposure to A1254. The addition of pyruvic acid during exposure to A1254 significantly prevent A1254-induced cell injury, restoring resting mitochondrial membrane potential, ATP levels, oxidative phosphorylation and aerobic glycolysis. Furthermore, pyruvic acid significantly preserved the activity of mitochondrial complexes I, II and IV and increased basal activity of complex V. Collectively, the present results indicate that the neurotoxicity of A1254 depends on the impairment of oxidative phosphorylation, aerobic glycolysis, and mitochondrial complexes I, II, and IV activity and it was counteracted by pyruvic acid.

  12. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  13. Respiratory active mitochondrial supercomplexes.

    Science.gov (United States)

    Acín-Pérez, Rebeca; Fernández-Silva, Patricio; Peleato, Maria Luisa; Pérez-Martos, Acisclo; Enriquez, Jose Antonio

    2008-11-21

    The structural organization of the mitochondrial respiratory complexes as four big independently moving entities connected by the mobile carriers CoQ and cytochrome c has been challenged recently. Blue native gel electrophoresis reveals the presence of high-molecular-weight bands containing several respiratory complexes and suggesting an in vivo assembly status of these structures (respirasomes). However, no functional evidence of the activity of supercomplexes as true respirasomes has been provided yet. We have observed that (1) supercomplexes are not formed when one of their component complexes is absent; (2) there is a temporal gap between the formation of the individual complexes and that of the supercomplexes; (3) some putative respirasomes contain CoQ and cytochrome c; (4) isolated respirasomes can transfer electrons from NADH to O(2), that is, they respire. Therefore, we have demonstrated the existence of a functional respirasome and propose a structural organization model that accommodates these findings.

  14. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter.

    Science.gov (United States)

    Baughman, Joshua M; Perocchi, Fabiana; Girgis, Hany S; Plovanich, Molly; Belcher-Timme, Casey A; Sancak, Yasemin; Bao, X Robert; Strittmatter, Laura; Goldberger, Olga; Bogorad, Roman L; Koteliansky, Victor; Mootha, Vamsi K

    2011-06-19

    Mitochondria from diverse organisms are capable of transporting large amounts of Ca(2+) via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter. Although the uniporter's biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter. Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call 'mitochondrial calcium uniporter' (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca(2+) uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca(2+) uniporter.

  15. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    Science.gov (United States)

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events.

  16. The mitochondrial receptor complex: Mom22 is essential for cell viability and directly interacts with preproteins.

    OpenAIRE

    Hönlinger, A; Kübrich, M; Moczko, M; Gärtner, F.; Mallet, L.; Bussereau, F.; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Jacquet, M.

    1995-01-01

    A multisubunit complex in the mitochondrial outer membrane is responsible for targeting and membrane translocation of nuclear-encoded preproteins. This receptor complex contains two import receptors, a general insertion pore and the protein Mom22. It was unknown if Mom22 directly interacts with preproteins, and two views existed about the possible functions of Mom22: a central role in transfer of preproteins from both receptors to the general insertion pore or a more limited function dependen...

  17. Hypoxia induces mitochondrial mutagenesis and dysfunction in inflammatory arthritis.

    LENUS (Irish Health Repository)

    Biniecka, Monika

    2012-02-01

    OBJECTIVE: To assess the levels and spectrum of mitochondrial DNA (mtDNA) point mutations in synovial tissue from patients with inflammatory arthritis in relation to in vivo hypoxia and oxidative stress levels. METHODS: Random Mutation Capture assay was used to quantitatively evaluate alterations of the synovial mitochondrial genome. In vivo tissue oxygen levels (tPO(2)) were measured at arthroscopy using a Licox probe. Synovial expression of lipid peroxidation (4-hydroxynonenal [4-HNE]) and mitochondrial cytochrome c oxidase subunit II (CytcO II) deficiency were assessed by immunohistochemistry. In vitro levels of mtDNA point mutations, reactive oxygen species (ROS), mitochondrial membrane potential, and markers of oxidative DNA damage (8-oxo-7,8-dihydro-2\\'-deoxyguanine [8-oxodG]) and lipid peroxidation (4-HNE) were determined in human synoviocytes under normoxia and hypoxia (1%) in the presence or absence of superoxide dismutase (SOD) or N-acetylcysteine (NAC) or a hydroxylase inhibitor (dimethyloxalylglycine [DMOG]). Patients were categorized according to their in vivo tPO(2) level (<20 mm Hg or >20 mm Hg), and mtDNA point mutations, immunochemistry features, and stress markers were compared between groups. RESULTS: The median tPO(2) level in synovial tissue indicated significant hypoxia (25.47 mm Hg). Higher frequency of mtDNA mutations was associated with reduced in vivo oxygen tension (P = 0.05) and with higher synovial 4-HNE cytoplasmic expression (P = 0.04). Synovial expression of CytcO II correlated with in vivo tPO(2) levels (P = 0.03), and levels were lower in patients with tPO(2) <20 mm Hg (P < 0.05). In vitro levels of mtDNA mutations, ROS, mitochondrial membrane potential, 8-oxo-dG, and 4-HNE were higher in synoviocytes exposed to 1% hypoxia (P < 0.05); all of these increased levels were rescued by SOD and DMOG and, with the exception of ROS, by NAC. CONCLUSION: These findings demonstrate that hypoxia-induced mitochondrial dysfunction drives

  18. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper;

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  19. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Muhsain, Siti Nur Fadzilah, E-mail: sitinurfadzilah077@ppinang.uitm.edu.my [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Faculty of Pharmacy, University Teknologi Mara (Malaysia); Lang, Matti A., E-mail: m.lang@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia); Abu-Bakar, A' edah, E-mail: a.abubakar@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 4072 Brisbane, Queensland (Australia)

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  20. Mitochondrial Stress: A Bridge between Mitochondrial Dysfunction and Metabolic Diseases?

    OpenAIRE

    Hu, Fang; Liu, Feng

    2011-01-01

    Under pathophysiological conditions such as obesity, excessive oxidation of nutrients may induce mitochondrial stress, leading to mitochondrial unfolded protein response (UPRmt) and initiation of a retrograde stress signaling pathway. Defects in the UPRmt and the retrograde signaling pathways may disrupt the integrity and homeostasis of the mitochondria, resulting endoplasmic reticulum stress and insulin resistance. Improving the capacity of mitochondria to reduce stress may be an effective a...

  1. Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division.

    Science.gov (United States)

    Adachi, Yoshihiro; Itoh, Kie; Yamada, Tatsuya; Cerveny, Kara L; Suzuki, Takamichi L; Macdonald, Patrick; Frohman, Michael A; Ramachandran, Rajesh; Iijima, Miho; Sesaki, Hiromi

    2016-09-15

    Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.

  2. The Mitochondrial Translocator Protein and Arrhythmogenesis in Ischemic Heart Disease

    Directory of Open Access Journals (Sweden)

    Lukas J. Motloch

    2015-01-01

    Full Text Available Mitochondrial dysfunction is a hallmark of multiple cardiovascular disorders, including ischemic heart disease. Although mitochondria are well recognized for their role in energy production and cell death, mechanisms by which they control excitation-contraction coupling, excitability, and arrhythmias are less clear. The translocator protein (TSPO is an outer mitochondrial membrane protein that is expressed in multiple organ systems. The abundant expression of TSPO in macrophages has been leveraged to image the immune response of the heart to inflammatory processes. More recently, the recognition of TSPO as a regulator of energy-dissipating mitochondrial pathways has extended its utility from a diagnostic marker of inflammation to a therapeutic target influencing diverse pathophysiological processes. Here, we provide an overview of the emerging role of TSPO in ischemic heart disease. We highlight the importance of TSPO in the regenerative process of reactive oxygen species (ROS induced ROS release through its effects on the inner membrane anion channel (IMAC and the permeability transition pore (PTP. We discuss evidence implicating TSPO in arrhythmogenesis in the settings of acute ischemia-reperfusion injury and myocardial infarction.

  3. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  4. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    Science.gov (United States)

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  5. Sphingolipids and mitochondrial function, lessons learned from yeast

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-06-01

    Full Text Available Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, but also of cancer, diabetes and rare diseases such as Wilson’s disease (WD and Niemann Pick type C1 (NPC. Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells.

  6. PARK2 patient neuroprogenitors show increased mitochondrial sensitivity to copper.

    Science.gov (United States)

    Aboud, Asad A; Tidball, Andrew M; Kumar, Kevin K; Neely, M Diana; Han, Bingying; Ess, Kevin C; Hong, Charles C; Erikson, Keith M; Hedera, Peter; Bowman, Aaron B

    2015-01-01

    Poorly-defined interactions between environmental and genetic risk factors underlie Parkinson's disease (PD) etiology. Here we tested the hypothesis that human stem cell derived forebrain neuroprogenitors from patients with known familial risk for early onset PD will exhibit enhanced sensitivity to PD environmental risk factors compared to healthy control subjects without a family history of PD. Two male siblings (SM and PM) with biallelic loss-of-function mutations in PARK2 were identified. Human induced pluripotent stem cells (hiPSCs) from SM, PM, and four control subjects with no known family histories of PD or related neurodegenerative diseases were utilized. We tested the hypothesis that hiPSC-derived neuroprogenitors from patients with PARK2 mutations would show heightened cell death, mitochondrial dysfunction, and reactive oxygen species generation compared to control cells as a result of exposure to heavy metals (PD environmental risk factors). We report that PARK2 mutant neuroprogenitors showed increased cytotoxicity with copper (Cu) and cadmium (Cd) exposure but not manganese (Mn) or methyl mercury (MeHg) relative to control neuroprogenitors. PARK2 mutant neuroprogenitors also showed a substantial increase in mitochondrial fragmentation, initial ROS generation, and loss of mitochondrial membrane potential following Cu exposure. Our data substantiate Cu exposure as an environmental risk factor for PD. Furthermore, we report a shift in the lowest observable effect level (LOEL) for greater sensitivity to Cu-dependent mitochondrial dysfunction in patients SM and PM relative to controls, correlating with their increased genetic risk for PD. PMID:25315681

  7. Antagonistic Regulation of Parvalbumin Expression and Mitochondrial Calcium Handling Capacity in Renal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Thomas Henzi

    Full Text Available Parvalbumin (PV is a cytosolic Ca2+-binding protein acting as a slow-onset Ca2+ buffer modulating the shape of Ca2+ transients in fast-twitch muscles and a subpopulation of neurons. PV is also expressed in non-excitable cells including distal convoluted tubule (DCT cells of the kidney, where it might act as an intracellular Ca2+ shuttle facilitating transcellular Ca2+ resorption. In excitable cells, upregulation of mitochondria in "PV-ergic" cells in PV-/- mice appears to be a general hallmark, evidenced in fast-twitch muscles and cerebellar Purkinje cells. Using Gene Chip Arrays and qRT-PCR, we identified differentially expressed genes in the DCT of PV-/- mice. With a focus on genes implicated in mitochondrial Ca2+ transport and membrane potential, uncoupling protein 2 (Ucp2, mitocalcin (Efhd1, mitochondrial calcium uptake 1 (Micu1, mitochondrial calcium uniporter (Mcu, mitochondrial calcium uniporter regulator 1 (Mcur1, cytochrome c oxidase subunit 1 (COX1, and ATP synthase subunit β (Atp5b were found to be up-upregulated. At the protein level, COX1 was increased by 31 ± 7%, while ATP-synthase subunit β was unchanged. This suggested that these mitochondria were better suited to uphold the electrochemical potential across the mitochondrial membrane, necessary for mitochondrial Ca2+ uptake. Ectopic expression of PV in PV-negative Madin-Darby canine kidney (MDCK cells decreased COX1 and concomitantly mitochondrial volume, while ATP synthase subunit β levels remained unaffected. Suppression of PV by shRNA in PV-expressing MDCK cells led subsequently to an increase in COX1 expression. The collapsing of the mitochondrial membrane potential by the uncoupler CCCP occurred at lower concentrations in PV-expressing MDCK cells than in control cells. In support, a reduction of the relative mitochondrial mass was observed in PV-expressing MDCK cells. Deregulation of the cytoplasmic Ca2+ buffer PV in kidney cells was counterbalanced in vivo and in vitro

  8. Mechanisms of p53-mediated mitochondrial membrane permeabilization

    Institute of Scientific and Technical Information of China (English)

    Eugenia Morselli; Lorenzo Galluzzi; Guido Kroemer

    2008-01-01

    @@ The p53 protein is mutated or inactivated in more than 50% of human cancers, underscoring its cardinal importance as an oncosuppressor, p53 is expressed in all nucleated cells and can be activated by a plethora of post-transcriptional modifications (in particular by the phosphorylation of critical serine residues), as well as by the inhibition of its degradation (mainly mediated by the E3 ubiquitin ligase MDM2).

  9. Crystal Structure of Mitochondrial Respiratory Membrane Protein Complex Ⅱ Determined

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Scientists at the CAS Institute of Biophysics (IBP) and Tsinghua University have gained new insights into the mechanism of mitochondria, the subcellular structures which generate energy for living cells.

  10. Mitochondrial localization of the low level p53 protein in proliferative cells

    International Nuclear Information System (INIS)

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  11. Mitochondrial localization of the low level p53 protein in proliferative cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferecatu, Ioana; Bergeaud, Marie; Rodriguez-Enfedaque, Aida; Le Floch, Nathalie [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Oliver, Lisa [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Rincheval, Vincent; Renaud, Flore [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vallette, Francois M. [INSERM U601, Universite de Nantes, Faculte de Medecine, Nantes Cedex (France); Mignotte, Bernard [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France); Vayssiere, Jean-Luc, E-mail: jean-luc.vayssiere@uvsq.fr [Laboratoire de Genetique et Biologie Cellulaire - CNRS UMR 8159, Universite de Versailles Saint-Quentin-en-Yvelines, Versailles, France and Laboratoire de Genetique Moleculaire et Physiologique, Ecole Pratique des Hautes Etudes, Versailles (France)

    2009-10-02

    p53 protein plays a central role in suppressing tumorigenesis by inducing cell cycle arrest or apoptosis through transcription-dependent and -independent mechanisms. Emerging publications suggest that following stress, a fraction of p53 translocates to mitochondria to induce cytochrome c release and apoptosis. However, the localization of p53 under unstressed conditions remains largely unexplored. Here we show that p53 is localized at mitochondria in absence of apoptotic stimuli, when cells are proliferating, localization observed in various cell types (rodent and human). This is also supported by acellular assays in which p53 bind strongly to mitochondria isolated from rat liver. Furthermore, the mitochondria subfractionation study and the alkaline treatment of the mitochondrial p53 revealed that the majority of mitochondrial p53 is present in the membranous compartments. Finally, we identified VDAC, a protein of the mitochondrial outer-membrane, as a putative partner of p53 in unstressed/proliferative cells.

  12. Pathological mitochondrial copper overload in livers of Wilson's disease patients and related animal models.

    Science.gov (United States)

    Zischka, Hans; Lichtmannegger, Josef

    2014-05-01

    In Wilson's disease (WD) and related animal models, liver mitochondria are confronted with an increasing copper burden. Physiologically, the mitochondrial matrix may act as a dynamic copper buffer that efficiently distributes the metal to its copper-dependent enzymes. Mitochondria are the first responders in the event of an imbalanced copper homeostasis, as typical changes of their structure are among the earliest observable pathological features in WD. These changes are due to accumulating copper in the mitochondrial membranes and can be reversed by copper-chelating therapies. At the early stage, copper-dependent oxidative stress does not seem to occur. On the contrary, however, when copper is massively deposited in mitochondria, severe structural and respiratory impairments are observed upon disease progression. This provokes reactive oxygen species and consequently causes the mitochondrial membranes to disintegrate, which triggers hepatocyte death. Thus, in WD mitochondria are prime targets for copper, and the excessive copper burden causes their destruction, subsequently provoking tissue failure and death.

  13. EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter.

    Science.gov (United States)

    Vais, Horia; Mallilankaraman, Karthik; Mak, Don-On Daniel; Hoff, Henry; Payne, Riley; Tanis, Jessica E; Foskett, J Kevin

    2016-01-26

    The mitochondrial uniporter (MCU) is an ion channel that mediates Ca(2+) uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca(2+) signaling. Matrix Ca(2+) concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca(2+) overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca(2+) concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca(2+) inhibition of MCU Ca(2+) currents, resulting in MCU channel activation, enhanced mitochondrial Ca(2+) uptake, and constitutively elevated matrix Ca(2+) concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca(2+). Thus, mitochondria are protected from Ca(2+) depletion and Ca(2+) overload by a unique molecular complex that involves Ca(2+) sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.

  14. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    Science.gov (United States)

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR.

  15. Frontal cortical mitochondrial dysfunction and mitochondria-related β-amyloid accumulation by chronic sleep restriction in mice.

    Science.gov (United States)

    Zhao, Hongyi; Wu, Huijuan; He, Jialin; Zhuang, Jianhua; Liu, Zhenyu; Yang, Yang; Huang, Liuqing; Zhao, Zhongxin

    2016-08-17

    Mitochondrial dysfunction induced by mitochondria-related β-amyloid (Aβ) accumulation is increasingly being considered a novel risk factor for sporadic Alzheimer's disease pathophysiology. The close relationship between chronic sleep restriction (CSR) and cortical Aβ elevation was confirmed recently. By assessing frontal cortical mitochondrial function (electron microscopy manifestation, cytochrome C oxidase concentration, ATP level, and mitochondrial membrane potential) and the levels of mitochondria-related Aβ in 9-month-old adult male C57BL/6J mice subjected to CSR and as an environmental control (CO) group, we aimed to evaluate the association of CSR with mitochondrial dysfunction and mitochondria-related Aβ accumulation. In this study, frontal cortical mitochondrial dysfunction was significantly more severe in CSR mice compared with CO animals. Furthermore, CSR mice showed higher mitochondria-associated Aβ, total Aβ, and mitochondria-related β-amyloid protein precursor (AβPP) levels compared with CO mice. In the CSR model, mouse frontal cortical mitochondrial dysfunction was correlated with mitochondria-associated Aβ and mitochondria-related AβPP levels. However, frontal cortical mitochondria-associated Aβ levels showed no significant association with cortical total Aβ and mitochondrial AβPP concentrations. These findings indicated that CSR-induced frontal cortical mitochondrial dysfunction and mitochondria-related Aβ accumulation, which was closely related to mitochondrial dysfunction under CSR. PMID:27341212

  16. Genetic counseling in mitochondrial disease.

    Science.gov (United States)

    Vento, Jodie M; Pappa, Belen

    2013-04-01

    Mitochondrial diseases are a genetically and clinically diverse group of disorders that arise as a result of dysfunction of the mitochondria. Mitochondrial disorders can be caused by alterations in nuclear DNA and/or mitochondrial DNA. Although some mitochondrial syndromes have been described clearly in the literature many others present as challenging clinical cases with multisystemic involvement at variable ages of onset. Given the clinical variability and genetic heterogeneity of these conditions, patients and their families often experience a lengthy and complicated diagnostic process. The diagnostic journey may be characterized by heightened levels of uncertainty due to the delayed diagnosis and the absence of a clear prognosis, among other factors. Uncertainty surrounding issues of family planning and genetic testing may also affect the patient. The role of the genetic counselor is particularly important to help explain these complexities and support the patient and family's ability to achieve effective coping strategies in dealing with increased levels of uncertainty.

  17. Bioenergetic roles of mitochondrial fusion.

    Science.gov (United States)

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  18. Mitochondrial function and reactive oxygen species action in relation to boar motility

    Science.gov (United States)

    Flow cytometric assays were developed for reactive oxygen species (ROS) formation (ROS-induced oxidization of hydroethidine to ethidium), membrane lipid peroxidation (C11-BODIPY-581/591 oxidation), and mitochondrial transmembrane potential (MMP) (MMP-induced JC-1 aggregation, red fluorescence) in vi...

  19. Detailed analysis of the human mitochondrial contact site complex indicate a hierarchy of subunits.

    Directory of Open Access Journals (Sweden)

    Christine Ott

    Full Text Available Mitochondrial inner membrane folds into cristae, which significantly increase its surface and are important for mitochondrial function. The stability of cristae depends on the mitochondrial contact site (MICOS complex. In human mitochondria, the inner membrane MICOS complex interacts with the outer membrane sorting and assembly machinery (SAM complex, to form the mitochondrial intermembrane space bridging complex (MIB. We have created knockdown cell lines of most of the MICOS and MIB components and have used them to study the importance of the individual subunits for the cristae formation and complex stability. We show that the most important subunits of the MIB complex in human mitochondria are Mic60/Mitofilin, Mic19/CHCHD3 and an outer membrane component Sam50. We provide additional proof that ApoO indeed is a subunit of the MICOS and MIB complexes and propose the name Mic23 for this protein. According to our results, Mic25/CHCHD6, Mic27/ApoOL and Mic23/ApoO appear to be periphery subunits of the MICOS complex, because their depletion does not affect cristae morphology or stability of other components.

  20. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation

    NARCIS (Netherlands)

    Drose, S.; Brandt, U.; Wittig, I.

    2014-01-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evid

  1. The higher level of organization of the oxidative phosphorylation system : mitochondrial supercomplexes

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Sunderhaus, Stephanie; Boekema, Egbert J.; Braun, Hans-Peter

    2008-01-01

    The organization of the oxidative phosphorylation (OXPHOS) system within the inner mitochondrial membrane appears to be far more complicated than previously thought. In particular, the individual protein complexes of the OXPHOS system (complexes I to V) were found to specifically interact forming de

  2. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  3. Requirement for the Mitochondrial Pyruvate Carrier in Mammalian Development Revealed by a Hypomorphic Allelic Series.

    Science.gov (United States)

    Bowman, Caitlyn E; Zhao, Liang; Hartung, Thomas; Wolfgang, Michael J

    2016-08-01

    Glucose and oxygen are two of the most important molecules transferred from mother to fetus during eutherian pregnancy, and the metabolic fates of these nutrients converge at the transport and metabolism of pyruvate in mitochondria. Pyruvate enters the mitochondrial matrix through the mitochondrial pyruvate carrier (MPC), a complex in the inner mitochondrial membrane that consists of two essential components, MPC1 and MPC2. Here, we define the requirement for mitochondrial pyruvate metabolism during development with a progressive allelic series of Mpc1 deficiency in mouse. Mpc1 deletion was homozygous lethal in midgestation, but Mpc1 hypomorphs and tissue-specific deletion of Mpc1 presented as early perinatal lethality. The allelic series demonstrated that graded suppression of MPC resulted in dose-dependent metabolic and transcriptional changes. Steady-state metabolomics analysis of brain and liver from Mpc1 hypomorphic embryos identified compensatory changes in amino acid and lipid metabolism. Flux assays in Mpc1-deficient embryonic fibroblasts also reflected these changes, including a dramatic increase in mitochondrial alanine utilization. The mitochondrial alanine transaminase GPT2 was found to be necessary and sufficient for increased alanine flux upon MPC inhibition. These data show that impaired mitochondrial pyruvate transport results in biosynthetic deficiencies that can be mitigated in part by alternative anaplerotic substrates in utero. PMID:27215380

  4. Melatonin improves age-induced fertility decline and attenuates ovarian mitochondrial oxidative stress in mice

    Science.gov (United States)

    Song, Chao; Peng, Wei; Yin, Songna; Zhao, Jiamin; Fu, Beibei; Zhang, Jingcheng; Mao, Tingchao; Wu, Haibo; Zhang, Yong

    2016-01-01

    Increasing evidence shows that melatonin protected against age-related mitochondrial oxidative damage. However, the protective effects of melatonin against ovarian aging has not been explored. Young Kunming females (aged 2–3 months) were fed with melatonin added to drinking water for 6 or 12 months (mo). We found that long-term (12 mo) melatonin treatment significantly reduced ovarian aging, as indicated by substantial increases in litter size, pool of follicles, and telomere length as well as oocyte quantity and quality. Melatonin treatment suppressed ovarian mitochondrial oxidative damage by decreasing mitochondrial reactive oxygen species (mROS) generation, inhibiting apoptosis, repressing collapse of mitochondrial membrane potential and preserving respiratory chain complex activities. Female mice fed with melatonin had enhanced mitochondrial antioxidant activities, thus reducing the risk of mitochondrial oxidative damage cause by free radicals. Notably, melatonin treatment enhanced SIRT3 activity but not the protein expression level, and increased the binding affinity of FoxO3a to the promoters of both superoxide dismutase 2 (SOD2) and catalase (CAT). In conclusion, melatonin exerted protection against aging-induced fertility decline and maintenance of mitochondrial redox balance. PMID:27731402

  5. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast.

    Science.gov (United States)

    Grossmann, Guido; Opekarová, Miroslava; Malinsky, Jan; Weig-Meckl, Ina; Tanner, Widmar

    2007-01-10

    The plasma membrane potential is mainly considered as the driving force for ion and nutrient translocation. Using the yeast Saccharomyces cerevisiae as a model organism, we have discovered a novel role of the membrane potential in the organization of the plasma membrane. Within the yeast plasma membrane, two non-overlapping sub-compartments can be visualized. The first one, represented by a network-like structure, is occupied by the proton ATPase, Pma1, and the second one, forming 300-nm patches, houses a number of proton symporters (Can1, Fur4, Tat2 and HUP1) and Sur7, a component of the recently described eisosomes. Evidence is presented that sterols, the main lipid constituent of the plasma membrane, also accumulate within the patchy compartment. It is documented that this compartmentation is highly dependent on the energization of the membrane. Plasma membrane depolarization causes reversible dispersion of the H(+)-symporters, not however of the Sur7 protein. Mitochondrial mutants, affected in plasma membrane energization, show a significantly lower degree of membrane protein segregation. In accordance with these observations, depolarized membranes also considerably change their physical properties (detergent sensitivity).

  6. Mitochondrial transplantation for therapeutic use

    OpenAIRE

    McCully, James Donald; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas Burr

    2016-01-01

    Mitochondria play a key role in the homeostasis of the vast majority of the body’s cells. In the myocardium where mitochondria constitute 30 % of the total myocardial cell volume, temporary attenuation or obstruction of blood flow and as a result oxygen delivery to myocardial cells (ischemia) severely alters mitochondrial structure and function. These alterations in mitochondrial structure and function occur during ischemia and continue after blood flow and oxygen delivery to the myocardium i...

  7. Mitochondrial Dysfunction in Neurodegenerative Diseases

    OpenAIRE

    Johri, Ashu; Beal, M. Flint

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyo...

  8. Interactions of copper and thermal stress on mitochondrial bioenergetics in rainbow trout, Oncorhynchus mykiss

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); MacDonald, Nicole [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Fast, Mark [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Stevens, Don [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Kibenge, Fred [Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Siah, Ahmed [British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC V9W 2C2 (Canada); Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada)

    2014-12-15

    Highlights: • Interacting effects of Cu and temperature were investigated in rainbow trout liver mitochondria. • Mitochondrial functional indices are highly sensitive to temperature change. • High and low temperatures sensitize mitochondria to adverse effects of Cu. • Cu induces a highly temperature-sensitive mitochondrial permeability transition pore. • Cu-imposed mitochondrial membrane potential dissipation is mediated by reactive oxygen species. - Abstract: Thermal stress may influence how organisms respond to concurrent or subsequent chemical, physical and biotic stressors. To unveil the potential mechanisms via which thermal stress modulates metals-induced bioenergetic disturbances, the interacting effects of temperature and copper (Cu) were investigated in vitro. Mitochondria isolated from rainbow trout livers were exposed to a range of Cu concentrations at three temperatures (5, 15 and 25 °C) with measurement of mitochondrial complex I (mtCI)-driven respiratory flux indices and uncoupler-stimulated respiration. Additional studies assessed effects of temperature and Cu on mtCI enzyme activity, induction of mitochondrial permeability transition pore (MPTP), swelling kinetics and mitochondrial membrane potential (MMP). Maximal and basal respiration rates, as well as the proton leak, increased with temperature with the Q{sub 10} effects being higher at lower temperatures. The effect of Cu depended on the mitochondrial functional state in that the maximal respiration was monotonically inhibited by Cu exposure while low and high Cu concentrations stimulated and inhibited the basal respiration/proton leak, respectively. Importantly, temperature exacerbated the effects of Cu by lowering the concentration of the metal required for toxicity and causing loss of thermal dependence of mitochondrial respiration. Mitochondrial complex I activity was inhibited by Cu but was not affected by incubation temperature. Compared with the calcium (Ca) positive control

  9. New therapeutic approach: diphenyl diselenide reduces mitochondrial dysfunction in acetaminophen-induced acute liver failure.

    Directory of Open Access Journals (Sweden)

    Nélson R Carvalho

    Full Text Available The acute liver failure (ALF induced by acetaminophen (APAP is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe2 to the N-acetylcysteine (NAC during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg, (PhSe2 (15.6 mg/kg, NAC (1200 mg/kg, APAP+(PhSe2 or APAP+NAC, where the (PhSe2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe2. The effectiveness of (PhSe2 was similar at a lower dose than NAC. In summary, (PhSe2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.

  10. [Exercise training in hypoxia prevents hypoxia induced mitochondrial DNA oxidative damage in skeletal muscle].

    Science.gov (United States)

    Bo, Hai; Li, Ling; Duan, Fu-Qiang; Zhu, Jiang

    2014-10-25

    This study was undertaken to investigate the effect of exercise training on mitochondrial DNA (mtDNA) oxidative damage and 8-oxoguanine DNA glycosylase-1 (OGG1) expression in skeletal muscle of rats under continuous exposure to hypoxia. Male Sprague-Dawley rats were randomly divided into 4 groups (n = 8): normoxia control group (NC), normoxia training group (NT), hypoxia control group (HC), and hypoxia training group (HT). The hypoxia-treated animals were housed in normobaric hypoxic tent containing 11.3% oxygen for consecutive 4 weeks. The exercise-trained animals were exercised on a motor-driven rodent treadmill at a speed of 15 m/min, 5% grade for 60 min/day, 5 days per week for 4 weeks. The results showed that, compared with NC group, hypoxia attenuated complex I, II, IV and ATP synthase activities of the electron transport chain, and the level of mitochondrial membrane potential in HC group (P hypoxia decreased mitochondrial OGG1, MnSOD, and GPx activities (P hypoxia attenuated muscle and mitochondrial [NAD⁺]/ [NADH] ratio, and SIRT3 protein expression (P exercise training in hypoxia elevated complex I, II, IV and ATP synthase activities, and the level of mitochondrial membrane potential in HT group (P exercise training in hypoxia increased MnSOD and GPx activities and mitochondrial OGG1 level (P exercise training in hypoxia increased muscle and mitochondrial [NAD⁺]/[NADH] ratio, as well as SIRT3 protein expression (P exercise training in hypoxia can decrease hypoxia-induced mtDNA oxidative damage in the skeletal muscle through up-regulating exercise-induced mitochondrial OGG1 and antioxidant enzymes. Exercise training in hypoxia may improve hypoxia tolerance in skeletal muscle mitochondria via elevating [NAD⁺]/[NADH] ratio and SIRT3 expression. PMID:25332006

  11. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Siamak Djafarzadeh

    Full Text Available During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α. Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB. The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis. Our data suggest that

  12. Mitochondrial efficiency and insulin resistance.

    Science.gov (United States)

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  13. Mitochondrial Metabolism in Aging Heart.

    Science.gov (United States)

    Lesnefsky, Edward J; Chen, Qun; Hoppel, Charles L

    2016-05-13

    Altered mitochondrial metabolism is the underlying basis for the increased sensitivity in the aged heart to stress. The aged heart exhibits impaired metabolic flexibility, with a decreased capacity to oxidize fatty acids and enhanced dependence on glucose metabolism. Aging impairs mitochondrial oxidative phosphorylation, with a greater role played by the mitochondria located between the myofibrils, the interfibrillar mitochondria. With aging, there is a decrease in activity of complexes III and IV, which account for the decrease in respiration. Furthermore, aging decreases mitochondrial content among the myofibrils. The end result is that in the interfibrillar area, there is ≈50% decrease in mitochondrial function, affecting all substrates. The defective mitochondria persist in the aged heart, leading to enhanced oxidant production and oxidative injury and the activation of oxidant signaling for cell death. Aging defects in mitochondria represent new therapeutic targets, whether by manipulation of the mitochondrial proteome, modulation of electron transport, activation of biogenesis or mitophagy, or the regulation of mitochondrial fission and fusion. These mechanisms provide new ways to attenuate cardiac disease in elders by preemptive treatment of age-related defects, in contrast to the treatment of disease-induced dysfunction. PMID:27174952

  14. Mitochondrial Epigenetics and Environmental Exposure.

    Science.gov (United States)

    Lambertini, Luca; Byun, Hyang-Min

    2016-09-01

    The rising toll of chronic and debilitating diseases brought about by the exposure to an ever expanding number of environmental pollutants and socio-economic factors is calling for action. The understanding of the molecular mechanisms behind the effects of environmental exposures can lead to the development of biomarkers that can support the public health fields of both early diagnosis and intervention to limit the burden of environmental diseases. The study of mitochondrial epigenetics carries high hopes to provide important biomarkers of exposure and disease. Mitochondria are in fact on the frontline of the cellular response to the environment. Modifications of the epigenetic factors regulating the mitochondrial activity are emerging as informative tools that can effectively report on the effects of the environment on the phenotype. Here, we will discuss the emerging field of mitochondrial epigenetics. This review describes the main epigenetic phenomena that modify the activity of the mitochondrial DNA including DNA methylation, long and short non-coding RNAs. We will discuss the unique pattern of mitochondrial DNA methylation, describe the challenges of correctly measuring it, and report on the existing studies that have analysed the correlation between environmental exposures and mitochondrial DNA methylation. Finally, we provide a brief account of the therapeutic approaches targeting mitochondria currently under consideration. PMID:27344144

  15. CFTR activity and mitochondrial function

    Directory of Open Access Journals (Sweden)

    Angel Gabriel Valdivieso

    2013-01-01

    Full Text Available Cystic Fibrosis (CF is a frequent and lethal autosomal recessive disease, caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR. Before the discovery of the CFTR gene, several hypotheses attempted to explain the etiology of this disease, including the possible role of a chloride channel, diverse alterations in mitochondrial functions, the overexpression of the lysosomal enzyme α-glucosidase and a deficiency in the cytosolic enzyme glucose 6-phosphate dehydrogenase. Because of the diverse mitochondrial changes found, some authors proposed that the affected gene should codify for a mitochondrial protein. Later, the CFTR cloning and the demonstration of its chloride channel activity turned the mitochondrial, lysosomal and cytosolic hypotheses obsolete. However, in recent years, using new approaches, several investigators reported similar or new alterations of mitochondrial functions in Cystic Fibrosis, thus rediscovering a possible role of mitochondria in this disease. Here, we review these CFTR-driven mitochondrial defects, including differential gene expression, alterations in oxidative phosphorylation, calcium homeostasis, oxidative stress, apoptosis and innate immune response, which might explain some characteristics of the complex CF phenotype and reveals potential new targets for therapy.

  16. MOLECULAR NEUROGENETICS OF MITOCHONDRIAL DISEASES

    Directory of Open Access Journals (Sweden)

    E. Cardaioli

    2012-01-01

    Full Text Available Mitochondrial diseases are an expanding group of clinically heterogeneous disorders associated with mitochondrial DNA (mtDNA mutations or nuclear gene defects. Whatever the mechanism, the final common step in mitochondrial disorders is a defect of energy production resulting from respiratory chain impairment. The complexity of the biochemical and genetic features of the respiratory chain accounts for the extraordinarily wide range of clinical presentations of mitochondrial disorders. In general, organs with high aerobic demand, such as skeletal muscle, brain and heart, are the most affected. However, virtually any organ or tissue in the body may be affected and the disorders can be multisystemic (mitochondrial encephalomyopathiesor confined to a single tissue. Moreover, mitochondrial diseases can be sporadic or transmitted by mendelian (nuclear genes or maternal inheritance (mutations in mtDNA. Precise diagnosis is often a challenge; we go through the traditional steps of the diagnostic process, starting with study of inheritance in the family, clinical manifestations in the individual,electrophysiology and imaging techniques at organ level, down to biochemistry, pathology and molecular genetics at tissue, cell and DNA level, respectively. In fact the ultimate goal is to reach, whenever possible, a definitive molecular diagnosis, which can permit rational therapeutic approach and a genetic counseling.

  17. Oxygen glucose deprivation in rat hippocampal slice cultures results in alterations in carnitine homeostasis and mitochondrial dysfunction.

    Directory of Open Access Journals (Sweden)

    Thomas F Rau

    Full Text Available Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD decreased the levels of free carnitines (FC and increased the acylcarnitine (AC: FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD.

  18. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.

    Science.gov (United States)

    Janer, Alexandre; Prudent, Julien; Paupe, Vincent; Fahiminiya, Somayyeh; Majewski, Jacek; Sgarioto, Nicolas; Des Rosiers, Christine; Forest, Anik; Lin, Zhen-Yuan; Gingras, Anne-Claude; Mitchell, Grant; McBride, Heidi M; Shoubridge, Eric A

    2016-01-01

    Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions. PMID:27390132

  19. Tongluo Xingnao Effervescent Tablet preserves mitochondrial energy metabolism and attenuates cognition deficits in APPswe/PS1De9 mice.

    Science.gov (United States)

    Dai, Yuan; Ma, Tao; Ren, Xiangyi; Wei, Jiangping; Fu, Wenjun; Ma, Yuntong; Xu, Shijun; Zhang, Zhanjun

    2016-09-01

    Tongluo Xingnao Effervescent Tablet (TXET), a traditional Chinese herbal formula composed of Ligusticum chuanxiong hor, Scutellaria baicalensis Georgi and Angelica sinensis, has been widely used to treat Alzheimer's disease (AD) and related dementias for decades in China. In the present study, we investigated the effects of TXET on mitochondrial function, energy metabolism and cognitive amelioration in the APPswe/PS1De9 transgenetic mouse model of AD. The energy charge and phosphocreatine, activity of the mitochondrial electron transport chain complexes, mitochondrial membrane potential, activity of Na(+)-K(+) ATPase and the expression levels of Bcl-2 and Bax in the brains were measured, respectively. TXET exhibits significant protection on mitochondrial function and energy supply in addition to ameliorating cognitive decline in APPswe/PS1De9 mice. TXET rescues mitochondrial function by increasing the mitochondrial membrane potential, energy charge levels, activity of respiratory chain complexes and Na(+)-K(+) ATPase activity. These findings suggest that TXET may attenuate cognition impairment through the restoration of mitochondrial function and energy metabolism in the brains in APPswe/PS1De9 mice. PMID:27461792

  20. Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation

    Directory of Open Access Journals (Sweden)

    Carla Busquets-Cortés

    2016-01-01

    Full Text Available Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA supplementation (1.14 g/day on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs from sportsmen. Subjects were assigned to an intervention (N=9 or placebo groups (N=7 in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1, and mitochondrial transcription factor A (Tfam were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation.

  1. Protective effects of rilmenidine and AGN 192403 on oxidative cytotoxicity and mitochondrial inhibitor-induced cytotoxicity in astrocytes.

    Science.gov (United States)

    Choi, Dong-Hee; Kim, Dong-Hoon; Park, Yun-Gyu; Chun, Boe-Gwun; Choi, Sang-Hyun

    2002-11-15

    Oxidative stress and mitochondrial dysfunction are important aspects of pathogenesis, particularly in the brain, which is highly dependent on oxygen, and the protection of astrocytes is essential for neuroprotection. In this context, imidazoline drugs have been reported to be neuroprotective. Our recent study showed that imidazoline drugs, including guanabenz, inhibit the naphthazarin-induced oxidative cytotoxicity associated with lysosomal destabilization. We now report on a study into the protective effects of rilmenidine and AGN 192403, which have affinity for imidazoline-1 receptors, on the cytotoxicity induced by naphthazarin and inhibitors of mitochondrial respiration in astrocytes. Cytotoxicity was measured grossly by LDH release and by measuring changes in lysosomal membrane stability and features of mitochondrial membrane permeabilization. Naphthazarin-induced cytotoxicity was evidenced by the ordered development of lysosomal acridine orange relocation, decrease in mitochondrial potential, cytochrome c release, and caspase-9 activation, and was inhibited by guanabenz, rilmenidine, and AGN 192403. Antimycin A and rotenone induced mitochondrial dysfunction primarily, and their cytotoxicities were inhibited only by AGN 192403. Rilmenidine and guanabenz may have a lysosomal stabilizing effect, which underlies their protective effects. AGN 192403 might affect the mitochondrial cell death cascades, and had a novel protective effect on the cytotoxicity associated with mitochondrial dysfunction.

  2. Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation

    Science.gov (United States)

    Busquets-Cortés, Carla; Capó, Xavier; Tur, Josep A.; Sureda, Antoni

    2016-01-01

    Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA) supplementation (1.14 g/day) on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs) from sportsmen. Subjects were assigned to an intervention (N = 9) or placebo groups (N = 7) in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1), and mitochondrial transcription factor A (Tfam) were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV) activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation. PMID:27698953

  3. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate.

    Science.gov (United States)

    Wang, X; Li, H; Zheng, A; Yang, L; Liu, J; Chen, C; Tang, Y; Zou, X; Li, Y; Long, J; Liu, J; Zhang, Y; Feng, Z

    2014-01-01

    Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both

  4. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells.

    Science.gov (United States)

    Buckler, Keith J; Turner, Philip J

    2013-07-15

    The mechanism of oxygen sensing in arterial chemoreceptors is unknown but has often been linked to mitochondrial function. A common criticism of this hypothesis is that mitochondrial function is insensitive to physiological levels of hypoxia. Here we investigate the effects of hypoxia (down to 0.5% O2) on mitochondrial function in neonatal rat type-1 cells. The oxygen sensitivity of mitochondrial [NADH] was assessed by monitoring autofluorescence and increased in hypoxia with a P50 of 15 mm Hg (1 mm Hg = 133.3 Pa) in normal Tyrode or 46 mm Hg in Ca(2+)-free Tyrode. Hypoxia also depolarised mitochondrial membrane potential (m, measured using rhodamine 123) with a P50 of 3.1, 3.3 and 2.8 mm Hg in normal Tyrode, Ca(2+)-free Tyrode and Tyrode containing the Ca(2+) channel antagonist Ni(2+), respectively. In the presence of oligomycin and low carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 75 nm) m is maintained by electron transport working against an artificial proton leak. Under these conditions hypoxia depolarised m/inhibited electron transport with a P50 of 5.4 mm Hg. The effects of hypoxia upon cytochrome oxidase activity were investigated using rotenone, myxothiazol, antimycin A, oligomycin, ascorbate and the electron donor tetramethyl-p-phenylenediamine. Under these conditions m is maintained by complex IV activity alone. Hypoxia inhibited cytochrome oxidase activity (depolarised m) with a P50 of 2.6 mm Hg. In contrast hypoxia had little or no effect upon NADH (P50 = 0.3 mm Hg), electron transport or cytochrome oxidase activity in sympathetic neurons. In summary, type-1 cell mitochondria display extraordinary oxygen sensitivity commensurate with a role in oxygen sensing. The reasons for this highly unusual behaviour are as yet unexplained.

  5. Efficient Mitochondrial Genome Editing by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Areum Jo

    2015-01-01

    Full Text Available The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9 system has been widely used for nuclear DNA editing to generate mutations or correct specific disease alleles. Despite its flexible application, it has not been determined if CRISPR/Cas9, originally identified as a bacterial defense system against virus, can be targeted to mitochondria for mtDNA editing. Here, we show that regular FLAG-Cas9 can localize to mitochondria to edit mitochondrial DNA with sgRNAs targeting specific loci of the mitochondrial genome. Expression of FLAG-Cas9 together with gRNA targeting Cox1 and Cox3 leads to cleavage of the specific mtDNA loci. In addition, we observed disruption of mitochondrial protein homeostasis following mtDNA truncation or cleavage by CRISPR/Cas9. To overcome nonspecific distribution of FLAG-Cas9, we also created a mitochondria-targeted Cas9 (mitoCas9. This new version of Cas9 localizes only to mitochondria; together with expression of gRNA targeting mtDNA, there is specific cleavage of mtDNA. MitoCas9-induced reduction of mtDNA and its transcription leads to mitochondrial membrane potential disruption and cell growth inhibition. This mitoCas9 could be applied to edit mtDNA together with gRNA expression vectors without affecting genomic DNA. In this brief study, we demonstrate that mtDNA editing is possible using CRISPR/Cas9. Moreover, our development of mitoCas9 with specific localization to the mitochondria should facilitate its application for mitochondrial genome editing.

  6. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    International Nuclear Information System (INIS)

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  7. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    Energy Technology Data Exchange (ETDEWEB)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C. [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Wolburg, Hartwig [Institute of Pathology, University of Tuebingen, 72076 Tuebingen (Germany); Ziviani, Elena; Whitworth, Alexander J. [Medical Research Council Centre for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN (United Kingdom); Martins, L. Miguel [Cell Death Regulation Laboratory, MRC Toxicology Unit, Leicester LE1 9HN (United Kingdom); Kahle, Philipp J., E-mail: philipp.kahle@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany); Krueger, Rejko, E-mail: rejko.krueger@uni-tuebingen.de [Center of Neurology and Hertie Institute for Clinical Brain Research, 72076 Tuebingen (Germany)

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  8. Basic Amino Acid Transport in Plasma Membrane Vesicles of Penicillium chrysogenum

    NARCIS (Netherlands)

    Hillenga, Dirk J.; Versantvoort, Hanneke J.M.; Driessen, Arnold J.M.; Konings, Wil N.

    1996-01-01

    The characteristics of the basic amino acid permease (system VI) of the filamentous fungus Penicillium chrysogenum were studied in plasma membranes fused with liposomes containing the beef heart mitochondrial cytochrome c oxidase. In the presence of reduced cytochrome c, the hybrid membranes accumul

  9. Mitochondrial drug targets in neurodegenerative diseases.

    Science.gov (United States)

    Lee, Jiyoun

    2016-02-01

    Growing evidence suggests that mitochondrial dysfunction is the main culprit in neurodegenerative diseases. Given the fact that mitochondria participate in diverse cellular processes, including energetics, metabolism, and death, the consequences of mitochondrial dysfunction in neuronal cells are inevitable. In fact, new strategies targeting mitochondrial dysfunction are emerging as potential alternatives to current treatment options for neurodegenerative diseases. In this review, we focus on mitochondrial proteins that are directly associated with mitochondrial dysfunction. We also examine recently identified small molecule modulators of these mitochondrial targets and assess their potential in research and therapeutic applications.

  10. α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart.

    Science.gov (United States)

    Stotland, Aleksandr; Gottlieb, Roberta A

    2016-01-01

    In order to maintain an efficient, energy-producing network in the heart, dysfunctional mitochondria are cleared through the mechanism of autophagy, which is closely linked with mitochondrial biogenesis; these, together with fusion and fission comprise a crucial process known as mitochondrial turnover. Until recently, the lack of molecular tools and methods available to researchers has impeded in vivo investigations of turnover. To investigate the process at the level of a single mitochondrion, our laboratory has developed the MitoTimer protein. Timer is a mutant of DsRed fluorescent protein characterized by transition from green fluorescence to a more stable red conformation over 48 h, and its rate of maturation is stable under physiological conditions. We fused the Timer cDNA with the inner mitochondrial membrane signal sequence and placed it under the control of a cardiac-restricted promoter. This construct was used to create the alpha-MHC-MitoTimer mice. Surprisingly, initial analysis of the hearts from these mice demonstrated a high degree of heterogeneity in the ratio of red-to-green fluorescence of MitoTimer in cardiac tissue. Further, scattered solitary mitochondria within cardiomyocytes display a much higher red-to-green fluorescence (red-shifted) relative to other mitochondria in the cell, implying a block in import of newly synthesized MitoTimer likely due to lower membrane potential. These red-shifted mitochondria may represent older, senescent mitochondria. Concurrently, the cardiomyocytes also contain a subpopulation of mitochondria that display a lower red-to-green fluorescence (green-shifted) relative to other mitochondria, indicative of germinal mitochondria that are actively engaged in import of newly-synthesized mito-targeted proteins. These mitochondria can be isolated and sorted from the heart by flow cytometry for further analysis. Initial studies suggest that these mice represent an elegant tool for the investigation of mitochondrial turnover

  11. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiang [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Zhang, Ting [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China); Wang, Jixian [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhang, Zhijun [Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Zhai, Yu [Department of Neurology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 (China); Yang, Guo-Yuan, E-mail: gyyang0626@gmail.com [Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Sun, Xiaojiang, E-mail: sunxj19@gmail.com [Department of Neurology, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200233 (China)

    2014-02-07

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy.

  12. Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke

    International Nuclear Information System (INIS)

    Highlights: • Rapamycin enhances mitophagy via increasing p62 translocation to the mitochondria. • Rapamycin attenuates brain ischemic damage and improves mitochondrial function. • The protection of rapamycin to mitochondrial is linked to enhanced mitophagy. - Abstract: Rapamycin has been demonstrated to exhibit neuroprotective functions via the activation of autophagy in a cerebral ischemia model. However, the involvement of mitophagy in this process and its contribution to the protection of mitochondrial function remains unknown. The present study explored the characteristics of mitophagy after cerebral ischemia and the effect of rapamycin on mitochondrial function. Male Sprague–Dawley rats underwent transient middle cerebral artery occlusion (tMCAO). Neurological deficits scores; infarct volumes; mitophagy morphology; and the levels of malondialdehyde (MDA), adenosine triphosphate (ATP) and mitochondrial membrane potentials (Δψm) were examined. The expression of LC3, Beclin-1 and p62 in the mitochondrial fraction combined with transmission electronic microscopy were used to explore mitophagic activity after ischemia. We also blocked autophagosome formation using 3-methyladenine (3-MA) to check the linkage between the mitochondrial protective effect of rapamycin and enhanced mitophagy. We observed that rapamycin significantly enhanced mitophagy, as evidenced by the increase in LC3-II and Beclin-1 expression in the mitochondria and p62 translocation to the mitochondria. Rapamycin reduced infarct volume, improved neurological outcomes and inhibited mitochondrial dysfunction compared with the control animals (p < 0.05). However, these protective effects were reversed by 3-methyladenine treatment after rapamycin. The present study indicates that rapamycin treatment attenuates mitochondrial dysfunction following cerebral ischemia, which is linked to enhanced mitophagy

  13. Non-cytotoxic copper overload boosts mitochondrial energy metabolism to modulate cell proliferation and differentiation in the human erythroleukemic cell line K562.

    Science.gov (United States)

    Ruiz, Lina M; Jensen, Erik L; Rossel, Yancing; Puas, German I; Gonzalez-Ibanez, Alvaro M; Bustos, Rodrigo I; Ferrick, David A; Elorza, Alvaro A

    2016-07-01

    Copper is integral to the mitochondrial respiratory complex IV and contributes to proliferation and differentiation, metabolic reprogramming and mitochondrial function. The K562 cell line was exposed to a non-cytotoxic copper overload to evaluate mitochondrial dynamics, function and cell fate. This induced higher rates of mitochondrial turnover given by an increase in mitochondrial fusion and fission events and in the autophagic flux. The appearance of smaller and condensed mitochondria was also observed. Bioenergetics activity included more respiratory complexes, higher oxygen consumption rate, superoxide production and ATP synthesis, with no decrease in membrane potential. Increased cell proliferation and inhibited differentiation also occurred. Non-cytotoxic copper levels can modify mitochondrial metabolism and cell fate, which could be used in cancer biology and regenerative medicine. PMID:27094959

  14. Overview of mitochondrial bioenergetics.

    Science.gov (United States)

    Madeira, Vitor M C

    2012-01-01

    Bioenergetic Science started in seventh century with the pioneer works by Joseph Priestley and Antoine Lavoisier on photosynthesis and respiration, respectively. New developments were implemented by Pasteur in 1860s with the description of fermentations associated to microorganisms, further documented by Buchner brothers who discovered that fermentations also occurred in cell extracts in the absence of living cells. In the beginning of twentieth century, Harden and Young demonstrated that orthophosphate and other heat-resistant compounds (cozymase), later identified as NAD, ADP, and metal ions, were mandatory in the fermentation of glucose. The full glycolysis pathway has been detailed in 1940s with the contributions of Embden, Meyeroff, Parnas, Warburg, among others. Studies on the citric acid cycle started in 1910 (Thunberg) and were elucidated by Krebs et al. in the 1940s. Mitochondrial bioenergetics gained emphasis in the late 1940s and 1950s with the works of Lenhinger, Racker, Chance, Boyer, Ernster, and Slater, among others. The prevalent "chemical coupling hypothesis" of energy conservation in oxidative phosphorylation was challenged and replaced by the "chemiosmotic hypothesis" originally formulated in 1960s by Mitchell and later substantiated and extended to energy conservation in bacteria and chloroplasts, besides mitochondria, with clear-cut identification of molecular proton pumps. After identification of most reactive mechanisms, emphasis has been directed to structure resolution of molecular complex clusters, e.g., cytochrome c oxidase, complex III, complex II, ATP synthase, photosystem I, photosynthetic water splitting center, and energy collecting antennæ of several photosynthetic systems. Modern trends concern to the reactivity of radical and other active species in association with bioenergetic activities. A promising trend concentrates on the cell redox status quantified in terms of redox potentials. In spite of significant development and

  15. Robotic membranes

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette

    2008-01-01

    , Vivisection and Strange Metabolisms, were developed at the Centre for Information Technology and Architecture (CITA) at the Royal Danish Academy of Fine Arts in Copenhagen as a means of engaging intangible digital data with tactile physical material. As robotic membranes, they are a dual examination...

  16. Identification of the mitochondrial receptor complex in Saccharomyces cerevisiae

    OpenAIRE

    Moczko, Martin; Dietmeier, Klaus A.; Söllner, Thomas; Segui-Real, Bartolome; Steger, Heinrich F.; Neupert, Walter; Pfanner, Nikolaus

    1992-01-01

    Mitochondrial protein import involves the recognition of preproteins by receptors and their subsequent translocation across the outer membrane. In Neurospora crassa, the two import receptors, MOM19 and MOM72, were found in a complex with the general insertion protein, GIP (formed by MOM7, MOM8, MOM30 and MOM38) and MOM22. We isolated a complex out of S. cerevisiae mitochondria consisting of MOM38/ISP42, the receptor MOM72, and five new yeast proteins, the putative equivalents of N. crassa MOM...

  17. The evolutionary history of mitochondrial porins

    Directory of Open Access Journals (Sweden)

    Hausner Georg

    2007-02-01

    Full Text Available Abstract Background Mitochondrial porins, or voltage-dependent anion-selective channels (VDAC allow the passage of small molecules across the mitochondrial outer membrane, and are involved in complex interactions regulating organellar and cellular metabolism. Numerous organisms possess multiple porin isoforms, and initial studies indicated an intriguing evolutionary history for these proteins and the genes that encode them. Results In this work, the wealth of recent sequence information was used to perform a comprehensive analysis of the evolutionary history of mitochondrial porins. Fungal porin sequences were well represented, and newly-released sequences from stramenopiles, alveolates, and seed and flowering plants were analyzed. A combination of Neighbour-Joining and Bayesian methods was used to determine phylogenetic relationships among the proteins. The aligned sequences were also used to reassess the validity of previously described eukaryotic porin motifs and to search for signature sequences characteristic of VDACs from plants, animals and fungi. Secondary structure predictions were performed on the aligned VDAC primary sequences and were used to evaluate the sites of intron insertion in a representative set of the corresponding VDAC genes. Conclusion Our phylogenetic analysis clearly shows that paralogs have appeared several times during the evolution of VDACs from the plants, metazoans, and even the fungi, suggesting that there are no "ancient" paralogs within the gene family. Sequence motifs characteristic of the members of the crown groups of organisms were identified. Secondary structure predictions suggest a common 16 β-strand framework for the transmembrane arrangement of all porin isoforms. The GLK (and homologous or analogous motifs and the eukaryotic porin motifs in the four representative Chordates tend to be in exons that appear to have changed little during the evolution of these metazoans. In fact there is phase

  18. Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration

    Directory of Open Access Journals (Sweden)

    Kira M. Holmström

    2013-06-01

    Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection.

  19. Mitochondrial DNA and Cancer Epidemiology Workshop

    Science.gov (United States)

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  20. Uncoupling protein-4 (UCP4 increases ATP supply by interacting with mitochondrial Complex II in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Philip Wing-Lok Ho

    Full Text Available Mitochondrial uncoupling protein-4 (UCP4 protects against Complex I deficiency as induced by 1-methyl-4-phenylpyridinium (MPP(+, but how UCP4 affects mitochondrial function is unclear. Here we investigated how UCP4 affects mitochondrial bioenergetics in SH-SY5Y cells. Cells stably overexpressing UCP4 exhibited higher oxygen consumption (10.1%, p<0.01, with 20% greater proton leak than vector controls (p<0.01. Increased ATP supply was observed in UCP4-overexpressing cells compared to controls (p<0.05. Although state 4 and state 3 respiration rates of UCP4-overexpressing and control cells were similar, Complex II activity in UCP4-overexpressing cells was 30% higher (p<0.05, associated with protein binding between UCP4 and Complex II, but not that of either Complex I or IV. Mitochondrial ADP consumption by succinate-induced respiration was 26% higher in UCP4-overexpressing cells, with 20% higher ADP:O ratio (p<0.05. ADP/ATP exchange rate was not altered by UCP4 overexpression, as shown by unchanged mitochondrial ADP uptake activity. UCP4 overexpression retained normal mitochondrial morphology in situ, with similar mitochondrial membrane potential compared to controls. Our findings elucidate how UCP4 overexpression increases ATP synthesis by specifically interacting with Complex II. This highlights a unique role of UCP4 as a potential regulatory target to modulate mitochondrial Complex II and ATP output in preserving existing neurons against energy crisis.

  1. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.

    Directory of Open Access Journals (Sweden)

    Guido Krebiehl

    Full Text Available BACKGROUND: Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD. Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Using DJ-1 loss of function cellular models from knockout (KO mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2. CONCLUSIONS/SIGNIFICANCE: We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease.

  2. Nanodelivery System for Mitochondrial Targeting

    Science.gov (United States)

    Yoong, Sia Lee; Pastorin, Giorgia

    2014-02-01

    Mitochondria are indispensable in cellular functions such as energy production and death execution. They are emerging as intriguing therapeutic target as their dysregulation was found to be monumental in diseases such as neurodegenerative disease, obesity, and cancer etc. Despite tremendous interest being focused on therapeutically intervening mitochondrial function, few mito-active drugs were successfully developed, particularly due to challenges in delivering active compound to this organelle. In this review, effort in utilizing nanotechnology for targeted mitochondrial delivery of compound is expounded based on the nature of the nanomaterial used. The advantage and potential offered are discussed alongside the limitation. Finally the review is concluded with perspectives of the application of nanocarrier in mitochondrial medicine, given the unresolved concern on potential complications.

  3. 14,15-EET promotes mitochondrial biogenesis and protects cortical neurons against oxygen/glucose deprivation-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lai; Chen, Man; Yuan, Lin; Xiang, Yuting [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zheng, Ruimao, E-mail: rmzheng@pku.edu.cn [Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China); Zhu, Shigong, E-mail: sgzhu@bjmu.edu.cn [Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing (China)

    2014-07-18

    Highlights: • 14,15-EET inhibits OGD-induced apoptosis in cortical neurons. • Mitochondrial biogenesis of cortical neurons is promoted by 14,15-EET. • 14,15-EET preserves mitochondrial function of cortical neurons under OGD. • CREB mediates effect of 14,15-EET on mitochondrial biogenesis and function. - Abstract: 14,15-Epoxyeicosatrienoic acid (14,15-EET), a metabolite of arachidonic acid, is enriched in the brain cortex and exerts protective effect against neuronal apoptosis induced by ischemia/reperfusion. Although apoptosis has been well recognized to be closely associated with mitochondrial biogenesis and function, it is still unclear whether the neuroprotective effect of 14,15-EET is mediated by promotion of mitochondrial biogenesis and function in cortical neurons under the condition of oxygen–glucose deprivation (OGD). In this study, we found that 14,15-EET improved cell viability and inhibited apoptosis of cortical neurons. 14,15-EET significantly increased the mitochondrial mass and the ratio of mitochondrial DNA to nuclear DNA. Key makers of mitochondrial biogenesis, peroxisome proliferator activator receptor gamma-coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), were elevated at both mRNA and protein levels in the cortical neurons treated with 14,15-EET. Moreover, 14,15-EET markedly attenuated the decline of mitochondrial membrane potential, reduced ROS, while increased ATP synthesis. Knockdown of cAMP-response element binding protein (CREB) by siRNA blunted the up-regulation of PGC-1α and NRF-1 stimulated by 14,15-EET, and consequently abolished the neuroprotective effect of 14,15-EET. Our results indicate that 14,15-EET protects neurons from OGD-induced apoptosis by promoting mitochondrial biogenesis and function through CREB mediated activation of PGC-1α and NRF-1.

  4. Putative Structural and Functional Coupling of the Mitochondrial BKCa Channel to the Respiratory Chain.

    Directory of Open Access Journals (Sweden)

    Piotr Bednarczyk

    Full Text Available Potassium channels have been found in the inner mitochondrial membranes of various cells. These channels regulate the mitochondrial membrane potential, the matrix volume and respiration. The activation of these channels is cytoprotective. In our study, the single-channel activity of a large-conductance Ca(2+-regulated potassium channel (mitoBKCa channel was measured by patch-clamping mitoplasts isolated from the human astrocytoma (glioblastoma U-87 MG cell line. A potassium-selective current was recorded with a mean conductance of 290 pS in symmetrical 150 mM KCl solution. The channel was activated by Ca(2+ at micromolar concentrations and by the potassium channel opener NS1619. The channel was inhibited by paxilline and iberiotoxin, known inhibitors of BKCa channels. Western blot analysis, immuno-gold electron microscopy, high-resolution immunofluorescence assays and polymerase chain reaction demonstrated the presence of the BKCa channel β4 subunit in the inner mitochondrial membrane of the human astrocytoma cells. We showed that substrates of the respiratory chain, such as NADH, succinate, and glutamate/malate, decrease the activity of the channel at positive voltages. This effect was abolished by rotenone, antimycin and cyanide, inhibitors of the respiratory chain. The putative interaction of the β4 subunit of mitoBKCa with cytochrome c oxidase was demonstrated using blue native electrophoresis. Our findings indicate possible structural and functional coupling of the mitoBKCa channel with the mitochondrial respiratory chain in human astrocytoma U-87 MG cells.

  5. Matrix metalloproteinase-2 in the development of diabetic retinopathy and mitochondrial dysfunction.

    Science.gov (United States)

    Mohammad, Ghulam; Kowluru, Renu A

    2010-09-01

    In the pathogenesis of diabetic retinopathy, retinal mitochondria become dysfunctional resulting in accelerated apoptosis of its capillary cells. Matrix metalloproteinase-2 (MMP2) is considered critical in cell integrity and cell survival, and diabetes activates MMP2 in the retina and its capillary cells. This study aims at elucidating the mechanism by which MMP2 contributes to the development of diabetic retinopathy. Using isolated bovine retinal endothelial cells, the effect of regulation of MMP2 (by its siRNA and pharmacological inhibitor) on superoxide accumulation and mitochondrial dysfunction was evaluated. The effect of inhibiting diabetes-induced retinal superoxide accumulation on MMP2 and its regulators was investigated in diabetic mice overexpressing mitochondrial superoxide dismutase (MnSOD). Inhibition of MMP2 ameliorated glucose-induced increase in mitochondrial superoxide and membrane permeability, prevented cytochrome c leakage from the mitochondria, and inhibited capillary cell apoptosis. Overexpression of MnSOD protected the retina from diabetes-induced increase in MMP2 and its membrane activator (MT1-MMP), and decrease in its tissue inhibitor (TIMP-2). These results implicate that, in diabetes, MMP2 activates apoptosis of retinal capillary cells by mitochondrial dysfunction increasing their membrane permeability. Understanding the role of MMP2 in the pathogenesis of diabetic retinopathy should help lay ground for MMP2-targeted therapy to retard the development of retinopathy in diabetic patients.

  6. High fat diet-induced changes in mouse muscle mitochondrial phospholipids do not impair mitochondrial respiration despite insulin resistance.

    Directory of Open Access Journals (Sweden)

    Joris Hoeks

    Full Text Available BACKGROUND: Type 2 diabetes mellitus and muscle insulin resistance have been associated with reduced capacity of skeletal muscle mitochondria, possibly as a result of increased intake of dietary fat. Here, we examined the hypothesis that a prolonged high-fat diet consumption (HFD increases the saturation of muscle mitochondrial membrane phospholipids causing impaired mitochondrial oxidative capacity and possibly insulin resistance. METHODOLOGY: C57BL/6J mice were fed an 8-week or 20-week low fat diet (10 kcal%; LFD or HFD (45 kcal%. Skeletal muscle mitochondria were isolated and fatty acid (FA composition of skeletal muscle mitochondrial phospholipids was analyzed by thin-layer chromatography followed by GC. High-resolution respirometry was used to assess oxidation of pyruvate and fatty acids by mitochondria. Insulin sensitivity was estimated by HOMA-IR. PRINCIPAL FINDINGS: At 8 weeks, mono-unsaturated FA (16∶1n7, 18∶1n7 and 18∶1n9 were decreased (-4.0%, p<0.001, whereas saturated FA (16∶0 were increased (+3.2%, p<0.001 in phospholipids of HFD vs. LFD mitochondria. Interestingly, 20 weeks of HFD descreased mono-unsaturated FA while n-6 poly-unsaturated FA (18∶2n6, 20∶4n6, 22∶5n6 showed a pronounced increase (+4.0%, p<0.001. Despite increased saturation of muscle mitochondrial phospholipids after the 8-week HFD, mitochondrial oxidation of both pyruvate and fatty acids were similar between LFD and HFD mice. After 20 weeks of HFD, the increase in n-6 poly-unsaturated FA was accompanied by enhanced maximal capacity of the electron transport chain (+49%, p = 0.002 and a tendency for increased ADP-stimulated respiration, but only when fuelled by a lipid-derived substrate. Insulin sensitivity in HFD mice was reduced at both 8 and 20 weeks. CONCLUSIONS/INTERPRETATION: Our findings do not support the concept that prolonged HF feeding leads to increased saturation of skeletal muscle mitochondrial phospholipids resulting in a decrease in

  7. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψm) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  8. Alcohol hangover induces mitochondrial dysfunction and free radical production in mouse cerebellum.

    Science.gov (United States)

    Karadayian, A G; Bustamante, J; Czerniczyniec, A; Lombardi, P; Cutrera, R A; Lores-Arnaiz, S

    2015-09-24

    Alcohol hangover (AH) is defined as the temporary state after alcohol binge-like drinking, starting when ethanol (EtOH) is absent in plasma. Previous data indicate that AH induces mitochondrial dysfunction and free radical production in mouse brain cortex. The aim of this work was to study mitochondrial function and reactive oxygen species production in mouse cerebellum at the onset of AH. Male mice received a single i.p. injection of EtOH (3.8g/kg BW) or saline solution. Mitochondrial function was evaluated 6h after injection (AH onset). At the onset of AH, malate-glutamate and succinate-supported state 4 oxygen uptake was 2.3 and 1.9-fold increased leading to a reduction in respiratory control of 55% and 48% respectively, as compared with controls. Decreases of 38% and 16% were found in Complex I-III and IV activities. Complex II-III activity was not affected by AH. Mitochondrial membrane potential and mitochondrial permeability changes were evaluated by flow cytometry. Mitochondrial membrane potential and permeability were decreased by AH in cerebellum mitochondria. Together with this, AH induced a 25% increase in superoxide anion and a 92% increase in hydrogen peroxide production in cerebellum mitochondria. Related to nitric oxide (NO) metabolism, neuronal nitric oxide synthase (nNOS) protein expression was 52% decreased by the hangover condition compared with control group. No differences were found in cerebellum NO production between control and treated mice. The present work demonstrates that the physiopathological state of AH involves mitochondrial dysfunction in mouse cerebellum showing the long-lasting effects of acute EtOH exposure in the central nervous system. PMID:26192095

  9. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Viitanen, Matti [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Department of Geriatrics, Turku City Hospital and University of Turku, Turku (Finland); Sundström, Erik [Division of Neurodegeneration, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Baumann, Marc [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Poyhonen, Minna [Department of Clinical Genetics, Helsinki University Hospital, HUSLAB, Helsinki (Finland); Tikka, Saara [Protein Chemistry Unit, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki (Finland); Behbahani, Homira, E-mail: homira.behbahani@ki.se [Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden); Karolinska Institutet Alzheimer' s Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm (Sweden)

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  10. Unexplained gastrointestinal symptoms: Think mitochondrial disease

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  11. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic. We describe the clinical, histopatho...

  12. Unexplained gastrointestinal symptoms: think mitochondrial disease.

    OpenAIRE

    Chapman, TP; Hadley, G.; Fratter, C; Cullen, SN; Bax, BE; Bain, MD; Sapsford, RA; Poulton, J; Travis, SP

    2014-01-01

    Defects in mitochondrial function are increasingly recognised as central to the pathogenesis of many diseases, both inherited and acquired. Many of these mitochondrial defects arise from abnormalities in mitochondrial DNA and can result in multisystem disease, with gastrointestinal involvement common. Moreover, mitochondrial disease may present with a range of non-specific symptoms, and thus can be easily misdiagnosed, or even considered to be non-organic.We describe the clinical, histopathol...

  13. Ethics of mitochondrial therapy for deafness.

    Science.gov (United States)

    Legge, Michael; Fitzgerald, Ruth P

    2014-11-07

    Mitochondrial therapy may provide the relief to many families with inherited mitochondrial diseases. However, it also has the potential for use in non-fatal disorders such as inherited mitochondrial deafness, providing an option for correction of the deafness using assisted reproductive technology. In this paper we discuss the potential for use in correcting mitochondrial deafness and consider some of the issues for the deaf community.

  14. Mitochondrial Cardiomyopathy: Pathophysiology, Diagnosis, and Management

    OpenAIRE

    Meyers, Deborah E.; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specifi...

  15. Mitochondrial myopathy and myoclonic epilepsy

    Directory of Open Access Journals (Sweden)

    Walter O. Arruda

    1990-03-01

    Full Text Available The authors describe a family (mother, son and two daughters with mitochondrial myopathy. The mother was asymptomatic. Two daughters had lactic acidosis and myoclonic epilepsy, mild dementia, ataxia, weakness and sensory neuropathy. The son suffered one acute hemiplegic episode due to an ischemic infarct in the right temporal region. All the patients studied had hypertension. EEG disclosed photomyoclonic response in the proband patient. Muscle biopsy disclosed ragged-red fibers and abnormal mitochondria by electron microscopy. Biochemical analysis showed a defect of cytochrome C oxidase in mitochondria isolated from skeletal muscle. Several clinical and genetic aspects of the mitochondrial encephalomyopathies are discussed.

  16. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics

    Science.gov (United States)

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-05-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (Δ Ψm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

  17. Mitochondrial uncoupling does not decrease reactive oxygen species production after ischemia-reperfusion.

    Science.gov (United States)

    Quarrie, Ricardo; Lee, Daniel S; Reyes, Levy; Erdahl, Warren; Pfeiffer, Douglas R; Zweier, Jay L; Crestanello, Juan A

    2014-10-01

    Cardiac ischemia-reperfusion (IR) leads to myocardial dysfunction by increasing production of reactive oxygen species (ROS). Mitochondrial H(+) leak decreases ROS formation; it has been postulated that increasing H(+) leak may be a mechanism of decreasing ROS production after IR. Ischemic preconditioning (IPC) decreases ROS formation after IR, but the mechanism is unknown. We hypothesize that pharmacologically increasing mitochondrial H(+) leak would decrease ROS production after IR. We further hypothesize that IPC would be associated with an increase in the rate of H(+) leak. Isolated male Sprague-Dawley rat hearts were subjected to either control or IPC. Mitochondria were isolated at end equilibration, end ischemia, and end reperfusion. Mitochondrial membrane potential (mΔΨ) was measured using a tetraphenylphosphonium electrode. Mitochondrial uncoupling was achieved by adding increasing concentrations of FCCP. Mitochondrial ROS production was measured by fluorometry using Amplex-Red. Pyridine dinucleotide levels were measured using HPLC. Before IR, increasing H(+) leak decreased mitochondrial ROS production. After IR, ROS production was not affected by increasing H(+) leak. H(+) leak increased at end ischemia in control mitochondria. IPC mitochondria showed no change in the rate of H(+) leak throughout IR. NADPH levels decreased after IR in both IPC and control mitochondria while NADH increased. Pharmacologically, increasing H(+) leak is not a method of decreasing ROS production after IR. Replenishing the NADPH pool may be a means of scavenging the excess ROS thereby attenuating oxidative damage after IR.

  18. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    Science.gov (United States)

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins.

  19. Mechanism of Alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells.

    Science.gov (United States)

    Bensassi, Fatma; Gallerne, Cindy; el Dein, Ossama Sharaf; Hajlaoui, Mohamed Rabeh; Bacha, Hassen; Lemaire, Christophe

    2011-12-18

    Alternariol monomethyl ether (AME) is a major mycotoxin produced by fungi of the genus Alternaria and a common contaminant of food products such as fruits and cereals worldwide. AME can cause serious health problems for animals as well as for humans. In this study, human colon carcinoma cells (HCT116) were used to explore the mechanisms of cell death induced by AME. Exposure of HCT116 cells to AME resulted in significant cytotoxicity manifested by a loss in cell viability mainly mediated by activation of apoptotic process. AME activated the mitochondrial apoptotic pathway evidenced by the opening of the mitochondrial permeability transition pore (PTP), loss of the mitochondrial transmembrane potential (ΔΨm) downstream generation of O(2)(-), cytochrome c release and caspase 9 and 3 activation. Experiments conducted on isolated organelles indicated that AME does not directly target mitochondria to induce PTP-dependent permeabilization of mitochondrial membranes. Moreover, no difference was observed in Bax-KO cells in comparison to parental cells, suggesting that the pro-apoptotic protein Bax is not involved in AME-induced mitochondrial apoptosis. Our findings demonstrate for the first time that AME induces cell death in human colon carcinoma cells by activating the mitochondrial pathway of apoptosis.

  20. Mitochondrial DNA plays an equal role in influencing female and male longevity in centenarians.

    Science.gov (United States)

    He, Yong-Han; Lu, Xiang; Tian, Jiao-Yang; Yan, Dong-Jing; Li, Yu-Chun; Lin, Rong; Perry, Benjamin; Chen, Xiao-Qiong; Yu, Qin; Cai, Wang-Wei; Kong, Qing-Peng

    2016-10-01

    The mitochondrion is a double membrane-bound organelle which plays important functional roles in aging and many other complex phenotypes. Transmission of the mitochondrial genome in the matrilineal line causes the evolutionary selection sieve only in females. Theoretically, beneficial or neutral variations are more likely to accumulate and be retained in the female mitochondrial genome during evolution, which may be an initial trigger of gender dimorphism in aging. The asymmetry of evolutionary processes between gender could lead to males and females aging in different ways. If so, gender specific variation loads could be an evolutionary result of maternal heritage of mitochondrial genomes, especially in centenarians who live to an extreme age and are considered as good models for healthy aging. Here, we tested whether the mitochondrial variation loads were associated with altered aging patterns by investigating the mtDNA haplogroup distribution and genetic diversity between female and male centenarians. We found no evidence of differences in aging patterns between genders in centenarians. Our results indicate that the evolutionary consequence of gender dimorphism in mitochondrial genomes is not a factor in the altered aging patterns in human, and that mitochondrial DNA contributes equally to longevity in males and females. PMID:27451341