WorldWideScience

Sample records for abstracts mechanical engineering

  1. Mechanical Engineering Department technical abstracts

    International Nuclear Information System (INIS)

    1984-01-01

    The Mechanical Engineering Department publishes abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). General information about the current role and activities of each of the Department's seven divisions precedes the technical abstracts. Further information about a division's work may be obtained from the division leader, whose name is given at the end of each divisional summary. The Department's seven divisions are as follows: Nuclear Test Engineering Division, Nuclear Explosives Engineering Division, Weapons Engineering Division, Energy Systems Engineering Division, Engineering Sciences Division, Magnetic Fusion Engineering Division and Materials Fabrication Division

  2. Mechanical Engineering Department technical abstracts

    International Nuclear Information System (INIS)

    Denney, R.M.

    1982-01-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts

  3. Technical abstracts: Mechanical engineering, 1990

    International Nuclear Information System (INIS)

    Broesius, J.Y.

    1991-01-01

    This document is a compilation of the published, unclassified abstracts produced by mechanical engineers at Lawrence Livermore National Laboratory (LLNL) during the calendar year 1990. Many abstracts summarize work completed and published in report form. These are UCRL-JC series documents, which include the full text of articles to be published in journals and of papers to be presented at meetings, and UCID reports, which are informal documents. Not all UCIDs contain abstracts: short summaries were generated when abstracts were not included. Technical Abstracts also provides descriptions of those documents assigned to the UCRL-MI (miscellaneous) category. These are generally viewgraphs or photographs presented at meetings. An author index is provided at the back of this volume for cross referencing

  4. Mechanical Engineering Department technical abstracts for the period January-June 1985

    International Nuclear Information System (INIS)

    Woo, H.H.

    1986-01-01

    This document contains the abstracts from 116 reports produced by the Mechanical Engineering Department of the Lawrence Livermore National Laboratory during the period January - June, 1985. The Mechanical Engineering Department is reponsible for the design, analysis, fabrication, testing, and field installation of all mechanical components and systems required by Defence Systems, Lasers, Magnetic Fusion Energy, Physics, and Biomedical and Environmental Research. Similar support is provided to the Chemistry and Computation Departments. Keyword, author, and report-number indices are included

  5. Formal Abstraction in Engineering Education--Challenges and Technology Support

    Science.gov (United States)

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  6. Engineering Abstractions in Model Checking and Testing

    DEFF Research Database (Denmark)

    Achenbach, Michael; Ostermann, Klaus

    2009-01-01

    Abstractions are used in model checking to tackle problems like state space explosion or modeling of IO. The application of these abstractions in real software development processes, however, lacks engineering support. This is one reason why model checking is not widely used in practice yet...... and testing is still state of the art in falsification. We show how user-defined abstractions can be integrated into a Java PathFinder setting with tools like AspectJ or Javassist and discuss implications of remaining weaknesses of these tools. We believe that a principled engineering approach to designing...... and implementing abstractions will improve the applicability of model checking in practice....

  7. Mechanical Engineering Department Technical Review

    International Nuclear Information System (INIS)

    Carr, R.B.; Denney, R.M.

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to inform readers of various technical activities within the Department, promote exchange of ideas, and give credit to personnel who are achieving the results. The report is presented in two parts: technical achievements and publication abstracts. The first is divided into seven sections, each of which reports on an engineering division and its specific activities related to nuclear tests, nuclear explosives, weapons, energy systems, engineering sciences, magnetic fusion, and materials fabrication

  8. Data Abstraction Mechanisms in Sina/st

    NARCIS (Netherlands)

    Meyrowitz, N.K.; Aksit, Mehmet; Tripathi, Anand

    1988-01-01

    This paper describes a new data abstraction mechanism in an object-oriented model of computing. The data abstraction mechanism described here has been devised in the context of the design of Sina/st language. In Sina/st no language constructs have been adopted for specifying inheritance or

  9. CUBE (Computer Use By Engineers) symposium abstracts

    International Nuclear Information System (INIS)

    Ruminer, J.J.

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories

  10. A new and efficient mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Shadloo, M.S.; Poultangari, R.; Abdollahzadeh Jamalabadi, M.Y.; Rashidi, M.M.

    2015-01-01

    Highlights: • A new slider–crank mechanism, with superior performance is presented. • Thermodynamic processes as well as vibration and internal forces have been modeled. • Comparison with the conventional four-stroke spark ignition engines is made. • Advantages and disadvantages of the proposed mechanism are discussed. - Abstract: In this paper a new symmetrical crank and slider mechanism is proposed and a zero dimensional model is utilized to study its combustion performance enhancement in a four-stroke spark ignition (SI) engine. The main features of this new mechanism are superior thermodynamic efficiency, lower internal frictions, and lower pollutants. Comparison is made between its performance and that of the conventional four-stroke SI engines. Presented mechanism is designed to provide better fuel consumption of internal combustion engines. These advantages over standard engine are achieved through synthesis of new mechanism. Numerical calculation have been performed for several cases of different mechanism parameters, compression ratio and engine speed. A comprehensive comparison between their thermodynamic processes as well as vibration and internal forces has been done. Calculated efficiency and power diagrams are plotted and compared with performance of a conventional SI engine. Advantages and disadvantages of the proposed mechanism are discussed in details

  11. Proceedings of the COBEM 99: 15. Brazilian congress on mechanical engineering. Engineering committed to quality of life. Abstracts

    International Nuclear Information System (INIS)

    1999-01-01

    Theoretical and experimental papers are presented approaching the following area and subjects: petroleum industry, equipment and products, gas and wind turbines, hydroelectric power plants and equipment, environment, mechanical engineering, computerized analysis, fluid flow, thermal machines, fluid flow and mechanics, porous media, nuclear energy, refrigeration, bioengineering, energy sources, consumption and conservation

  12. Mechanical Engineering Department engineering research: Annual report, FY 1986

    International Nuclear Information System (INIS)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O.

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication

  13. Mechanical engineer's handbook

    CERN Document Server

    Marghitu, Dan B

    2001-01-01

    The Mechanical Engineer's Handbook was developed and written specifically to fill a need for mechanical engineers and mechanical engineering students throughout the world. With over 1000 pages, 550 illustrations, and 26 tables the Mechanical Engineer's Handbook is very comprehensive, yet affordable, compact, and durable. The Handbook covers all major areas of mechanical engineering with succinct coverage of the definitions, formulas, examples, theory, proofs, and explanations of all principle subject areas. The Handbook is an essential, practical companion for all mechanic

  14. Mechanical Engineering Department engineering research: Annual report, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Denney, R.M.; Essary, K.L.; Genin, M.S.; Highstone, H.H.; Hymer, J.D.; Taft, S.O. (eds.)

    1986-12-01

    This report provides information on the five areas of research interest in LLNL's Mechanical Engineering Department. In Computer Code Development, a solid geometric modeling program is described. In Dynamic Systems and Control, structure control and structure dynamics are discussed. Fabrication technology involves machine cutting, interferometry, and automated optical component manufacturing. Materials engineering reports on composite material research and measurement of molten metal surface properties. In Nondestructive Evaluation, NMR, CAT, and ultrasound machines are applied to manufacturing processes. A model for underground collapse is developed. Finally, an alternative heat exchanger is investigated for use in a fusion power plant. Separate abstracts were prepared for each of the 13 reports in this publication. (JDH)

  15. Mechanical Engineering Department. Technical review

    Energy Technology Data Exchange (ETDEWEB)

    Simecka, W.B.; Condouris, R.A.; Talaber, C. (eds.)

    1980-01-01

    The Mechanical Engineering Department Technical Review is published to (1) inform the readers of various technical activities within the Department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical achievements and publication abstracts. The first is divided into eight sections, one for each Division in the Department providing the reader with the names of the personnel and the Division accomplishing the work.

  16. Mechanical engineering department technical review

    International Nuclear Information System (INIS)

    Carr, R.B.; Denney, R.M.

    1981-01-01

    The Mechanical Engineering Department Technical Review is published to: (1) inform the readers of various technical activities within the department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical acievements and publication abstracts. The first is divided into eight sections, one for each division in the department providing the reader with the names of the personnel and the division accomplishing the work

  17. Mechanical Engineering Department. Technical review

    International Nuclear Information System (INIS)

    Simecka, W.B.; Condouris, R.A.; Talaber, C.

    1980-01-01

    The Mechanical Engineering Department Technical Review is published to (1) inform the readers of various technical activities within the Department, (2) promote exchange of ideas, and (3) give credit to the personnel who are achieving the results. The report is formatted into two parts: technical achievements and publication abstracts. The first is divided into eight sections, one for each Division in the Department providing the reader with the names of the personnel and the Division accomplishing the work

  18. Mechanical engineering education

    CERN Document Server

    Davim, J Paulo

    2012-01-01

    Mechanical Engineering is defined nowadays as a discipline "which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems". Recently, mechanical engineering has also focused on some cutting-edge subjects such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, as well as aspects related to sustainable mechanical engineering.This book covers mechanical engineering higher education with a particular emphasis on quality assurance and the improvement of academic

  19. Tokamak engineering mechanics

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Weiyue; Du, Shijun

    2014-01-01

    Provides a systematic introduction to tokamaks in engineering mechanics. Includes design guides based on full mechanical analysis, which makes it possible to accurately predict load capacity and temperature increases. Presents comprehensive information on important design factors involving materials. Covers the latest advances in and up-to-date references on tokamak devices. Numerous examples reinforce the understanding of concepts and provide procedures for design. Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study of mechanical/fusion engineering with a general understanding of tokamak engineering mechanics.

  20. Engineering mechanics

    CERN Document Server

    Gross, Dietmar; Schröder, Jörg; Wall, Wolfgang A; Rajapakse, Nimal

    Statics is the first volume of a three-volume textbook on Engineering Mechanics. The authors, using a time-honoured straightforward and flexible approach, present the basic concepts and principles of mechanics in the clearest and simplest form possible to advanced undergraduate engineering students of various disciplines and different educational backgrounds. An important objective of this book is to develop problem solving skills in a systematic manner. Another aim of this volume is to provide engineering students as well as practising engineers with a solid foundation to help them bridge the gap between undergraduate studies on the one hand and advanced courses on mechanics and/or practical engineering problems on the other. The book contains numerous examples, along with their complete solutions. Emphasis is placed upon student participation in problem solving. The contents of the book correspond to the topics normally covered in courses on basic engineering mechanics at universities and colleges. Now in i...

  1. Mechanical Engineering Department technical review

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E (eds.)

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  2. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  3. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  4. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Engineering of polymers and composite materials. Catalysis in chemical engineering

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning polymer and composite materials technology as well as catalysis in chemical engineering. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  5. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Plenary reports. Engineering of inorganic substances and materials

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of inorganic substances and materials. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  6. Mechanical engineers data handbook

    CERN Document Server

    Carvill, James

    1994-01-01

    This text provides the student and professional mechanical engineer with a reference text of an essentially practical nature. It is uncluttered by text, and extensive use of illustrations and tables provide quick and clear access to information. It alsoincludes examples of detailed calculations on many of the applications of technology used by mechanical and production engineers, draughtsmen and engineering designers.Although mainly intended for those studying and practising mechanical engineering, a glance at the contents will show that it is also useful to those in related br

  7. Development of a robust and compact kerosene–diesel reaction mechanism for diesel engines

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Mohan, Balaji; An, Hui; Zhou, Dezhi; Yu, Wenbin

    2016-01-01

    Highlights: • An approach is used to develop a robust kerosene–diesel reaction mechanism. • Ignition delay of the kerosene sub-mechanism is well validated with experiments. • The kerosene sub-mechanism reproduces the flame lift-off lengths of Jet-A reasonably well. • The kerosene sub-mechanism performs reasonably well under engine conditions. - Abstract: The use of kerosene fuels in internal combustion engines is getting more widespread. The North Atlantic Treaty Organization military is pushing for the use of a single fuel on the battlefield in order to reduce logistical issues. Moreover, in some countries, fuel adulteration is a serious matter where kerosene is blended with diesel and used in diesel engines. So far, most investigations done regarding the use of kerosene fuels in diesel engines are experimental and there is negligible simulation work done in this area possibly because of the lack of a robust and compact kerosene reaction mechanism. This work focuses on the development of a small but reliable kerosene–diesel reaction mechanism, suitable to be used for diesel engine simulations. The new kerosene–diesel reaction mechanism consists only of 48 species and 152 reactions. Furthermore, the kerosene sub-mechanism in this new mechanism is well validated for its ignition delay times and has proven to replicate kerosene combustion well in a constant volume combustion chamber and an optical engine. Overall, this new kerosene–diesel reaction mechanism is proven to be robust and practical for diesel engine simulations.

  8. Springer handbook of mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Karl-Heinrich [Magdeburg Univ. (Germany). Dept. of Mechanical Engineering; Antonsson, Erik K. (eds.) [California Inst. of Technology (CALTEC), Pasadena, CA (United States). Dept. of Mechanical Engineering

    2009-07-01

    Mechanical Engineering is a professional engineering discipline which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems. It requires a solid understanding of the key concepts including mechanics, kinematics, thermodynamics and energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircrafts, heating and cooling systems, industrial equipment and machinery. In addition to these main areas, specialized fields are necessary to prepare future engineers for their positions in industry, such as mechatronics and robotics, transportation and logistics, fuel technology, automotive engineering, biomechanics, vibration, optics and others. Accordingly, the Springer Handbook of Mechanical Engineering devotes its contents to all areas of interest for the practicing engineer as well as for the student at various levels and educational institutions. Authors from all over the world have contributed with their expertise and support the globally working engineer in finding a solution for today's mechanical engineering problems. Each subject is discussed in detail and supported by numerous figures and tables. DIN standards are retained throughout and ISO equivalents are given where possible. The text offers a concise but detailed and authoritative treatment of the topics with full references. (orig.)

  9. A brief history of mechanical engineering

    CERN Document Server

    Dixit, Uday Shanker; Davim, J Paulo

    2017-01-01

    What is mechanical engineering? What a mechanical engineering does? How did the mechanical engineering change through ages? What is the future of mechanical engineering? This book answers these questions in a lucid manner. It also provides a brief chronological history of landmark events and answers questions such as: When was steam engine invented? Where was first CNC machine developed? When did the era of additive manufacturing start? When did the marriage of mechanical and electronics give birth to discipline of mechatronics? This book informs and create interest on mechanical engineering in the general public and particular in students. It also helps to sensitize the engineering fraternity about the historical aspects of engineering. At the same time, it provides a common sense knowledge of mechanical engineering in a handy manner.

  10. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Organic substances and pharmaceuticals engineering. Petrochemistry and chemical processing of alternative feedstock

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning organic substances and pharmaceuticals engineering, petrochemistry and chemical processing of alternative feedstock. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  11. Mechanical engineers' handbook, materials and engineering mechanics

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of materials and mechanical design inengineering Mechanical Engineers' Handbook, Fourth Edition provides aquick guide to specialized areas you may encounter in your work,giving you access to the basics of each and pointing you towardtrusted resources for further reading, if needed. The accessibleinformation inside offers discussions, examples, and analyses ofthe topics covered. This first volume covers materials and mechanical design, givingyou accessible and in-depth access to the most common topics you'llencounter in the discipline: carbon and alloy steels, stainlesssteels, a

  12. Perspectives of ukrainian mechanical engineering development

    OpenAIRE

    Dyrda, E.; Schepetkova, A.; Galushko, O.

    2013-01-01

    Theses are devoted to problems and perspectives of Ukrainian mechanical engineering development. Role of mechanical engineering in national economy is described. Problems of mechanical engineering, such as losing the cometetive advantages, production decreasing, debts growing, ineffective assets structure, are investigated. Influence of European integration process on mechanical engineering enterprises is discussed.

  13. Engineered Barrier System - Mechanical Integrity of KBS-3 Spent Fuel Canisters. Report from a Workshop. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    2007-09-15

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for a final repository for the geological disposal of spent nuclear fuel in the year 2009. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS). The workshop reported here mainly dealt with the mechanical integrity of KBS-3 spent fuel canisters. This included assessment and review of various loading conditions, structural integrity models and mechanical properties of the copper shell and the cast iron insert. Degradation mechanisms such as stress corrosion cracking and brittle creep fracture were also briefly addressed. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS, the performance confirmation for the EBS, long-term stability of the buffer and the backfill, corrosion properties of copper canisters and the spent fuel dissolution and source term modelling. The goal of ongoing review work in connection of the workshop series is to achieve a comprehensive overview of all aspects of SKB's EBS and spent fuel work prior to the handling of the forthcoming license application. This report aims to summarise the issues discussed at the workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of all the discussions at the workshop, and individual statements made by workshop participants should be regarded as personal opinions rather than SKI viewpoints. Results from the EBS workshops series will be used as one important basis in future review work. This reports includes in addition to the workshop synthesis, questions to SKB identified prior to the workshop, and extended abstracts for introductory presentations

  14. Abstraction Mechanisms in the BETA Programming Language

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    1983-01-01

    . It is then necessary that the abstraction mechanisms are powerful in order to define more specialized constructs. BETA is an object oriented language like SIMULA 67 ([SIMULA]) and SMALLTALK ([SMALLTALK]). By this is meant that a construct like the SIMULA class/subclass mechanism is fundamental in BETA. In contrast......]) --- covering both data, procedural and control abstractions, substituting constructs like class, procedure, function and type. Correspondingly objects, procedure activation records and variables are all regarded as special cases of the basic building block of program executions: the entity. A pattern thus......The BETA programming language is developed as part of the BETA project. The purpose of this project is to develop concepts, constructs and tools in the field of programming and programming languages. BETA has been developed from 1975 on and the various stages of the language are documented in [BETA...

  15. Modern mechanical engineering research, development and education

    CERN Document Server

    2014-01-01

    This book covers modern subjects of mechanical engineering such as nanomechanics and nanotechnology, mechatronics and robotics, computational mechanics, biomechanics, alternative energies, sustainability as well as all aspects related with mechanical engineering education. The chapters help enhance the understanding of both the fundamentals of mechanical engineering and its application to the solution of problems in modern industry. This book is suitable for students, both in final undergraduate mechanical engineering courses or at the graduate level. It also serves as a useful reference for academics, mechanical engineering researchers, mechanical, materials and manufacturing engineers, professionals in related with mechanical engineering.

  16. CUBE (Computer Use By Engineers) symposium abstracts. [LASL, October 4--6, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Ruminer, J.J. (comp.)

    1978-07-01

    This report presents the abstracts for the CUBE (Computer Use by Engineers) Symposium, October 4, through 6, 1978. Contributors are from Lawrence Livermore Laboratory, Los Alamos Scientific Laboratory, and Sandia Laboratories.

  17. Teaching Continuum Mechanics in a Mechanical Engineering Program

    Science.gov (United States)

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  18. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  19. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Chemical engineering of nanomaterials. Energy- and resource-saving chemical-engineering processes and problems of their intensification. Processes and apparatuses of chemical engineering, chemical cybernetics. Ecological problems of chemical engineering and related fields

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning chemical engineering of nanomaterials, energy- and resource-saving chemical-engineering processes, processes and apparatuses of chemical engineering, chemical cybernetics, ecological problems of chemical engineering and related fields. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  20. Engineering quantum mechanics

    CERN Document Server

    Ahn, Doyeol

    2011-01-01

    A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...

  1. Indian Chemical Engineering Congress 1995: 48th annual session of Indian Institute of Chemical Engineers: abstracts and invited lectures

    International Nuclear Information System (INIS)

    1995-01-01

    The 48th Annual Session of Indian Institute of Chemical Engineers was held in Kalpakkam during December 27-30, 1995. The book contains the proceeding of the conference, both abstracts and invited lectures. The topics covered included various aspects pertaining to chemical engineering and technology along with the chemical and engineering processes relevant to nuclear fuel cycle like uranium ore processing, fuel fabrication, reactor operation, fuel reprocessing and radioactive waste management. Papers relevant to INIS are indexed separately

  2. Seismic Consequence Abstraction

    International Nuclear Information System (INIS)

    Gross, M.

    2004-01-01

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  3. Seismic Consequence Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  4. Hamiltonian mechanics limits microscopic engines

    Science.gov (United States)

    Anglin, James; Gilz, Lukas; Thesing, Eike

    2015-05-01

    We propose a definition of fully microscopic engines (micro-engines) in terms of pure mechanics, without reference to thermodynamics, equilibrium, or cycles imposed by external control, and without invoking ergodic theory. This definition is pragmatically based on the observation that what makes engines useful is energy transport across a large ratio of dynamical time scales. We then prove that classical and quantum mechanics set non-trivial limits-of different kinds-on how much of the energy that a micro-engine extracts from its fuel can be converted into work. Our results are not merely formal; they imply manageable design constraints on micro-engines. They also suggest the novel possibility that thermodynamics does not emerge from mechanics in macroscopic regimes, but rather represents the macroscopic limit of a generalized theory, valid on all scales, which governs the important phenomenon of energy transport across large time scale ratios. We propose experimental realizations of the dynamical mechanisms we identify, with trapped ions and in Bose-Einstein condensates (``motorized bright solitons'').

  5. International conference on the performance of engineered barriers. Physical and chemical properties, behaviour and evolution. Short abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Schaefers, Annika; Fahland, Sandra (eds.)

    2014-08-01

    The volume includes the abstracts of the papers presented at the international conference on the performance of engineered barrier systems, their physical and chemical properties, behavior and evolution. The papers cover the topics bentonite buffers, radioactive waste repository safety, geophysical and geochemical property monitoring, repository sealing materials, thermo-hydro-mechanical characterization, gas injection tests, hydration and heating tests, clay-iron interaction experiments, water retention behavior, thermal stability of materials, numerical modeling studies, long-term simulations, thermo-hydrologic phenomena, uncertainty and sensitivity studies, probabilistic assessments, preliminary safety analyses of Gorleben.

  6. Standardized Curriculum for Diesel Engine Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: diesel engine mechanics I and II. The eight units in diesel engine mechanics I are as follows: orientation; shop safety; basic shop tools; fasteners; measurement; engine operating principles; engine components; and basic auxiliary…

  7. Mechanical design engineering handbook

    CERN Document Server

    Childs, Peter R N

    2013-01-01

    Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum

  8. Introductory Education for Mechanical Engineering by Exercise in Mechanical Disassembly

    Science.gov (United States)

    Matsui, Yoshio; Asakawa, Naoki; Iwamori, Satoru

    An introductory program “Exercise for engineers in mechanical disassembly” is an exercise that ten students of every team disassemble a motor scooter to the components and then assemble again to the initial form in 15 weeks. The purpose of this program is to introduce mechanical engineering by touching the real machine and learning how it is composed from various mechanical parts to the students at the early period after the entrance into the university. Additional short lectures by young teachers and a special lecture by a top engineer in the industry encourage the students to combine the actual machine and the mechanical engineering subjects. Furthermore, various educations such as group leader system, hazard prediction training, parts filing are included in this program. As a result, students recognize the importance of the mechanical engineering study and the way of group working.

  9. RHETORICAL PATTERNS, VERB TENSE, AND VOICE IN CROSS DISCIPLINARY RESEARCH ARTICLE ABSTRACT

    Directory of Open Access Journals (Sweden)

    Sharifah Hanidar

    2016-05-01

    Full Text Available This article investigates research article abstracts in terms of their rhetorical patterns and the use of verb tenses and voice. A total of 40 abstracts were selected from four international journals in the fields of Biology, Mechanical Engineering, Linguistics, and Medicine. A four move model was adopted from Hardjanto (1997 to analyze the structure of the abstracts. The results show that all the abstracts have Move 1, creating a research space; 70% have Move 2, describing research procedure; 85% have Move 3, summarizing principal results; and 85% have Move 4, evaluating results. All the abstracts in medicine have Moves 1, 2, 3 and 4, whereas the most common pattern in Biology is Moves 1, 3 and 4, in Mechanical Engineering Moves 1, 2 and 3, and in Linguistics Moves 1, 2 and 4. This seems to suggest that there is a disciplinary variation in the structuring of RA abstracts in the four disciplines under investigation. With regard to the use of verb tense and voice in each move, the present tense and past tense in the active voice and the past tense in the passive voice were the most frequently used tenses. The present tense in the active voice was frequently used in Moves 1 and 4, while the past tense in the active voice was commonly used in Move 3 and the past tense in the passive voice was frequently found in Move 2. Furthermore, it was found that the present tense in the active voice was frequently used in Biology, Mechanical Engineering and Linguistics, whereas the past tense in the active voice occurred more frequently in Medicine, and the past tense in the passive voice was more frequently found in Mechanical Engineering than in other disciplines.

  10. PREFACE: 3rd International Conference of Mechanical Engineering Research (ICMER 2015)

    Science.gov (United States)

    Mamat, Riazalman; Rahman, Mustafizur; Mohd. Zuki Nik Mohamed, Nik; Che Ghani, Saiful Anwar; Harun, Wan Sharuzi Wan

    2015-12-01

    The 3rd ICMER2015 is the continuity of the NCMER2010. The year 2010 represents a significant milestone in the history for Faculty of Mechanical Engineering, Universiti Malaysia Pahang (UMP) Malaysia with the organization of the first and second national level conferences (1st and 2nd NCMER) at UMP on May 26-27 and Dec 3-4 2010. The Faculty then changed the name from National Conference on Mechanical Engineering Research (NCMER) to International Conference on Mechanical Engineering Research (ICMER) in 2011 and this year, 2015 is our 3rd ICMER. These proceedings contain the selected scientific manuscripts submitted to the conference. It is with great pleasure to welcome you to the "International Conference on Mechanical Engineering Research (ICMER2015)" that is held at Zenith Hotel, Kuantan, Malaysia. The call for papers attracted submissions of over two hundred abstracts from twelve different countries including Japan, Iran, China, Kuwait, Indonesia, Norway, Philippines, Morocco, Germany, UAE and more. The scientific papers published in these proceedings have been revised and approved by the technical committee of the 3rd ICMER2015. All of the papers exhibit clear, concise, and precise expositions that appeal to a broad international readership interested in mechanical engineering, combustion, metallurgy, materials science as well as in manufacturing and biomechanics. The reports present original ideas or results of general significance supported by clear reasoning and compelling evidence, and employ methods, theories and practices relevant to the research. The authors clearly state the questions and the significance of their research to theory and practice, describe how the research contributes to new knowledge, and provide tables and figures that meaningfully add to the narrative. In this edition of ICMER representatives attending are from academia, industry, governmental and private sectors. The plenary and invited speakers will present, discuss, promote and

  11. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...... obtained by their own means and were competing on achieving the highest efficiency. We added an extra dimension to the project by making detailed measurements of the pressure variation to check simple thermodynamic models of the engine. The course had integrated lessons in sketching and technical drawing...

  12. Mechanical engineering science in SI units

    CERN Document Server

    Gwyther, J L; Williams, G

    1970-01-01

    0.1 Mechanical Engineering Science covers various fundamental concepts that are essential in the practice of mechanical engineering. The title is comprised of 19 chapters that detail various topics, including chemical and physical laws. The coverage of the book includes Newtonian laws, mechanical energy, friction, stress, and gravity. The text also discusses the chemical aspects of mechanical engineering, which include gas laws, states of matter, and fuel combustion. The last chapter tackles concerns in laboratory experiments. The book will be of great use to students of mechanical eng

  13. Engineering Change Management Method Framework in Mechanical Engineering

    Science.gov (United States)

    Stekolschik, Alexander

    2016-11-01

    Engineering changes make an impact on different process chains in and outside the company, and lead to most error costs and time shifts. In fact, 30 to 50 per cent of development costs result from technical changes. Controlling engineering change processes can help us to avoid errors and risks, and contribute to cost optimization and a shorter time to market. This paper presents a method framework for controlling engineering changes at mechanical engineering companies. The developed classification of engineering changes and accordingly process requirements build the basis for the method framework. The developed method framework comprises two main areas: special data objects managed in different engineering IT tools and process framework. Objects from both areas are building blocks that can be selected to the overall business process based on the engineering process type and change classification. The process framework contains steps for the creation of change objects (both for overall change and for parts), change implementation, and release. Companies can select singleprocess building blocks from the framework, depending on the product development process and change impact. The developed change framework has been implemented at a division (10,000 employees) of a big German mechanical engineering company.

  14. Agent-based autonomous systems and abstraction engines: Theory meets practice

    OpenAIRE

    Dennis, L.A.; Aitken, J.M.; Collenette, J.; Cucco, E.; Kamali, M.; McAree, O.; Shaukat, A.; Atkinson, K.; Gao, Y.; Veres, S.M.; Fisher, M.

    2016-01-01

    We report on experiences in the development of hybrid autonomous systems where high-level decisions are made by a rational agent. This rational agent interacts with other sub-systems via an abstraction engine. We describe three systems we have developed using the EASS BDI agent programming language and framework which supports this architecture. As a result of these experiences we recommend changes to the theoretical operational semantics that underpins the EASS framework and present a fourth...

  15. Annual Conference Abstracts

    Science.gov (United States)

    Journal of Engineering Education, 1972

    1972-01-01

    Includes abstracts of papers presented at the 80th Annual Conference of the American Society for Engineering Education. The broad areas include aerospace, affiliate and associate member council, agricultural engineering, biomedical engineering, continuing engineering studies, chemical engineering, civil engineering, computers, cooperative…

  16. The Abstraction Engine

    DEFF Research Database (Denmark)

    Fortescue, Michael David

    The main thesis of this book is that abstraction, far from being confined to higher formsof cognition, language and logical reasoning, has actually been a major driving forcethroughout the evolution of creatures with brains. It is manifest in emotive as well as rationalthought. Wending its way th...

  17. Mechanics of materials an introduction to engineering technology

    CERN Document Server

    Ghavami, Parviz

    2015-01-01

    This book, framed in the processes of engineering analysis and design, presents concepts in mechanics of materials for students in two-year or four-year programs in engineering technology, architecture, and building construction, as well as for students in vocational schools and technical institutes. Using the principles and laws of mechanics, physics, and the fundamentals of engineering, Mechanics of Materials: An Introduction for Engineering Technology will help aspiring and practicing engineers and engineering technicians from across disciplines—mechanical, civil, chemical, and electrical—apply concepts of engineering mechanics for analysis and design of materials, structures, and machine components. The book is ideal for those seeking a rigorous, algebra/trigonometry-based text on the mechanics of materials. This book also: ·       Elucidates concepts of engineering mechanics in materials, including stress and strain, force systems on structures, moment of inertia, and shear and bending moments...

  18. An introduction to mechanical engineering, pt.2

    CERN Document Server

    Clifford, Michael

    2010-01-01

    An Introduction to Mechanical Engineering: Part 2 is an essential text for all second-year undergraduate students as well as those studying foundation degrees and HNDs. The text provides thorough coverage of the following core engineering topics:Fluid dynamicsThermodynamicsSolid mechanicsControl theory and techniquesMechanical power, loads and transmissionsStructural vibrationAs well as mechanical engineers, the text will be highly relevant to automotive, aeronautical/aerospace and general engineering students.The material in this book has full student and lecturer support on an accompanying w

  19. An introduction to mechanical engineering, pt.1

    CERN Document Server

    Clifford, Michael; Shipway, Philip

    2012-01-01

    An Introduction to Mechanical Engineering is an essential text for all first-year undergraduate students as well as those studying for foundation degrees and HNDs. The text gives a thorough grounding in the following core engineering topics: thermodynamics, fluid mechanics, solid mechanics, dynamics, electricals and electronics, and materials science. As well as mechanical engineers, the text will be highly relevant to civil, automotive, aeronautical/aerospace and general engineering students.The text is written by an experienced team of first-year lecturers at the internationally renowned Uni

  20. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  1. Handbook of mechanical engineering terms

    CERN Document Server

    Ramalingam, KK

    2009-01-01

    About the Book: The Handbook of Mechanical Engineering terms contains short, precise definitions of about four thousand terms. These terms have been collected from different sources, edited and grouped under twenty six parts and given alphabetically under each part for easy reference. The book will be a source of guidance and help to the students, staff and practising engineers in understanding and updating the subject matter. Contents: The Handbook of Mechanical Engineering terms contains short, precise definitions of about four thousand terms. These terms have been collected from differ

  2. 46 CFR 12.15-13 - Deck engine mechanic.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Deck engine mechanic. 12.15-13 Section 12.15-13 Shipping... ENDORSEMENTS Qualified Member of the Engine Department § 12.15-13 Deck engine mechanic. (a) An applicant for an endorsement as deck engine mechanic shall be a person holding an MMC or MMD endorsed as junior engineer. The...

  3. Application of SolidWorks Plastic in the Training in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Maria Ivanova Bakalova

    2017-12-01

    Full Text Available Abstract. In this article is presented an example of the application of SolidWorks the training in mechanical engineering. The main features of the design of the parts intended for injection molding are mentioned. SolidWorks allows all these recommendations to be implemented when creating the details. The text explains the simulation settings that are made in SolidWorks Plastics when simulating injection molding. Through a specific example referred to how to make an analysis of the results obtained.

  4. Expose Mechanical Engineering Students to Biomechanics Topics

    Science.gov (United States)

    Shen, Hui

    2011-01-01

    To adapt the focus of engineering education to emerging new industries and technologies nationwide and in the local area, a biomechanics module has been developed and incorporated into a mechanical engineering technical elective course to expose mechanical engineering students at ONU (Ohio Northern University) to the biomedical engineering topics.…

  5. 14th National Conference on Physics. Abstracts. Volume 2

    International Nuclear Information System (INIS)

    Calboreanu, Alexandru; Grecu, Dan

    2005-01-01

    The National Conference on Physics 2005, is dedicated to 'The International Year of Physics' by the scientific community of physicists in Romania. Within the frame of this 'Festival of Physics', The First Symposium on Technical Physics and Physical Engineering' TPPE 2005, was organized as a satellite event at the Polytechnic University of Bucharest. As it is well known, the contributed papers to the National Conference on Physics were structured on chapters, corresponding to 'the sections' of The Romanian Society of Physics, their abstracts being then published in a two volume 'Book of Abstracts'. All the chapters of this book, except the 8th and the 9th, can be found in 'Abstracts Volume I'. According to the topics of the TPPE 2005, these two chapters, namely: 8. Technical Physics and Physical Engineering and 9. Physics and Energy are published separately in the 'Abstracts Volume II', but as it can be seen, the unitary character of the Conference is preserved and developed. The most important topics of this second volume are: optoelectronics; advanced materials and technologies; physics, electronics and electrical engineering; physics and mechanical engineering; physics and chemical engineering; physics, information and computer engineering; physics and industry; physics, biology and medical engineering; renewable energy sources and energy efficiency; nuclear engineering. We present the progress made in physics education concerning: physics teaching in technical education; E-learning and modern methods in physics teaching; physics education in schools and universities, in a special section of the first volume of abstracts. Regarding the essential role of physics in the realizing of a knowledge-based society of the new millennium the strengthening of the relationship between researchers and academics becomes thus the main message of this scientific meeting. (P.S.)

  6. Mechanical engineer's reference book

    CERN Document Server

    Parrish, A

    1973-01-01

    Mechanical Engineer's Reference Book: 11th Edition presents a comprehensive examination of the use of Systéme International d' Unités (SI) metrication. It discusses the effectiveness of such a system when used in the field of engineering. It addresses the basic concepts involved in thermodynamics and heat transfer. Some of the topics covered in the book are the metallurgy of iron and steel; screw threads and fasteners; hole basis and shaft basis fits; an introduction to geometrical tolerancing; mechanical working of steel; high strength alloy steels; advantages of making components as castings

  7. Fluid mechanics for engineers. A graduate textbook

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, Meinhard T. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    2010-07-01

    The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph.D-level elective course (MEEN-622), both of which I have been teaching at Texas A and M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. (orig.)

  8. Engineering science and mechanics department head named

    OpenAIRE

    Nystrom, Lynn A.

    2004-01-01

    Ishwar K. Puri, professor of mechanical engineering and executive associate dean of engineering at the University of Illinois at Chicago, will become the head of Virginia Tech•À_ó»s Department of Engineering Science and Mechanics Aug. 1.

  9. SCEE 2008 book of abstracts. The 7. international conference on scientific computing in electrical engineering (SCEE 2008)

    Energy Technology Data Exchange (ETDEWEB)

    Roos, J.; Costa, L.R.J. (ed.)

    2008-09-15

    SCEE is an international conference series dedicated to Scientific Computing in Electrical Engineering. The 7th International Conference on Scientific Computing in Electrical Engineering (SCEE 2008) in Espoo, Finland, is organized by the Helsinki University of Technology (TKK); Faculty of Electronics, Communications and Automation (ECA); Department of Radio Science and Engineering (RAD); Circuit Theory Group. (SCEE 2008 web site: http://www.ct.tkk.fi/scee2008/). The aim of the SCEE 2008 conference is to bring together scientists from academia and industry with the goal of intensive discussions on modeling and numerical simulation of electronic circuits and of electromagnetic fields. The conference is mainly directed towards mathematicians and electrical engineers. The SCEE 2008 conference has the following four main topics: 1. Computational Electromagnetics (CE), 2. Circuit Simulation (CS), 3. Coupled Problems (CP), 4. Mathematical and Computational Methods (CM). The selection of abstracts in this book was carried out by the Program Committee; each abstract was reviewed by two or three reviewers. The authors of all accepted abstracts were invited to submit an extended full paper, which will be reviewed as well. The accepted full papers will later on be published in a separate post-conference book

  10. The Stirling engine mechanism optimization

    Directory of Open Access Journals (Sweden)

    Jiří Podešva

    2016-03-01

    Full Text Available A special type of the gas engine with external combustion is called Stirling engine. The mechanism has two pistons with two volumes inside. The pistons are connected together through cooler, regenerator and warmer. The engine effectivity depends on the piston movement behaviour. The usual sinusoidal time curve leads to low effectiveness. The quick movement from lower to upper position with a certain delay in both top and bottom dead centres is more effective. The paper deals with three types of mechanisms, analyzing the piston movement, and their behavior. Special emphasize is taken to the piston movement regime.

  11. Korean society of mechanical engineers 60 years

    International Nuclear Information System (INIS)

    2005-12-01

    This book introduces 60 years of Korean society of mechanical engineers with birth, foundation, development process, change of enforcement regulation and articles of association, important data of this association, 60 years of parts, committee and branch, business of association like academic event, publication, technical development business, supporting research centers, bond Korean society of mechanical engineers and mechanical industry and development of related organizations, development for industrial fields and development direction of Korean society of mechanical engineers.

  12. A thermodynamic approach to compare the performance of rhombic-drive and crank-drive mechanisms for a beta-type Stirling engine

    International Nuclear Information System (INIS)

    Aksoy, F.; Solmaz, H.; Karabulut, H.; Cinar, C.; Ozgoren, Y.O.; Polat, Seyfi

    2016-01-01

    Highlights: • Rhombic drive and crank drive mechanisms of a beta type engine were compared. • Nodal analysis method was used to compare engines having different drive mechanism. • Maximum specific power was 1410 W/L for rhombic-drive engine. • Heat transfer coefficient was determined as 475 W/m"2K for rhombic-drive engine. • Rhombic drive provided higher efficiency because of its better kinematic behaviours. - Abstract: In this study, the effect of rhombic drive and crank drive mechanisms on the performance of a beta-type Stirling engine was investigated by nodal analysis. Kinematic and thermodynamic relations for both drive mechanisms were introduced and a Fortran code was written for the solution. Piston strokes, cylinder and displacer diameters, hot and cold end temperatures, regenerator volumes and heat transfer surface areas were taken equal for both engines with two different drive mechanisms. In the analysis, air was used as the working gas. Engine power and efficiency were compared for different charge pressure values, working gas mass values, heat transfer coefficients and hot end temperatures. Maximum specific engine power was 1410 W/L for the engine with rhombic drive mechanism and 1200 W/L for the engine with crank drive mechanism at 4 bars of charge pressure and 500 W/m"2K heat transfer coefficient. Rhombic drive mechanism was relatively advantageous at low working gas mass values and high hot end temperatures. In comparison with the engine having rhombic drive mechanism, the relatively poor kinematic behaviour of the engine having crank drive mechanism caused lower engine efficiency and performance. Heat transfer coefficient was also predicted by using an experimental pressure trace.

  13. Investigations of leakage mechanisms and its influences on a micro swing engine considering rarefaction effects

    International Nuclear Information System (INIS)

    Zhou, Xiong; Zhang, Zhenyu; Kong, Wenjun; Du, Ning

    2016-01-01

    Highlights: • Mechanisms of the leakage flow in different flow regimes have been studied. • The leakage flow regime and patterns in the micro swing engine are presented. • Slip on the walls has a larger effect on leakage flow with decreasing the gap. • Rarefaction effects on the engine performance have been investigated. - Abstract: Considering rarefaction effects, this paper investigated mechanisms of the clearance leakage and its influences on a micro swing engine for the micro power generation by employing three different flow models named as discrete velocity direction (DVD) model, Navier-Stokes equations with slip boundary conditions (NS-slip) and no-slip boundary conditions (NS-no slip). Using the DVD model, this paper firstly studied leakage mechanisms of a micro Couette-Poisueille flow. Factors which control the leakage in different regimes were obtained. Furthermore, the system-level predictions of the clearance leakage in the micro swing engine have been conducted by solving the Navier-Stokes equations. The leakage flow regime, patterns and characteristics were presented. Results by NS-slip and NS-no slip were compared to study the rarefaction effects. Finally, investigations of the engine size and the gap height on the engine performance have been conducted. The significance of the leakage in different engine size regimes was presented, and the results show that rarefaction effects affect the indicated thermal efficiency greatly with the decrease of the engine size scale.

  14. Thermodynamic analysis of a beta-type Stirling engine with rhombic drive mechanism

    International Nuclear Information System (INIS)

    Aksoy, Fatih; Cinar, Can

    2013-01-01

    Highlights: • Thermodynamic analysis of Stirling engine with rhombic-drive mechanism was performed. • The analysis was performed for smooth and grooved displacer cylinders. • The convective heat transfer coefficient was predicted using the experimental results. • The experimental results was compared with the theoretical results. - Abstract: This paper presents a theoretical investigation on kinematic and thermodynamic analysis of a beta type Stirling engine with rhombic-drive mechanism. Variations in the hot and cold volumes of the engine were calculated using kinematic relations. Two different displacer cylinders were investigated: one of them had smooth inner surface and the other had axial slots grooved into the cylinder to increase the heat transfer area. The effects of the slots grooved into the displacer cylinder inner surface on the performance were calculated using nodal analysis in Fortran. The effects of working fluid mass on cyclic work were investigated using 200, 300 and 400 W/m 2 K convective heat transfer coefficients for smooth and grooved displacer cylinders. The variation of engine power with engine speed was obtained by using the same convective heat transfer coefficients and isothermal conditions. The convective heat transfer coefficient was predicted as 104 W/m 2 K using the experimental results measured from the prototype engine under atmospheric conditions. The variation in cyclic work determined by the experimental study was also compared with the theoretical results obtained for different convective heat transfer coefficients and isothermal conditions

  15. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  16. Mechanical engineering principles

    CERN Document Server

    Bird, John

    2014-01-01

    A student-friendly introduction to core engineering topicsThis book introduces mechanical principles and technology through examples and applications, enabling students to develop a sound understanding of both engineering principles and their use in practice. These theoretical concepts are supported by 400 fully worked problems, 700 further problems with answers, and 300 multiple-choice questions, all of which add up to give the reader a firm grounding on each topic.The new edition is up to date with the latest BTEC National specifications and can also be used on undergraduate courses in mecha

  17. Computational structural mechanics for engine structures

    Science.gov (United States)

    Chamis, C. C.

    1989-01-01

    The computational structural mechanics (CSM) program at Lewis encompasses: (1) fundamental aspects for formulating and solving structural mechanics problems, and (2) development of integrated software systems to computationally simulate the performance/durability/life of engine structures. It is structured to mainly supplement, complement, and whenever possible replace, costly experimental efforts which are unavoidable during engineering research and development programs. Specific objectives include: investigate unique advantages of parallel and multiprocesses for: reformulating/solving structural mechanics and formulating/solving multidisciplinary mechanics and develop integrated structural system computational simulators for: predicting structural performances, evaluating newly developed methods, and for identifying and prioritizing improved/missing methods needed. Herein the CSM program is summarized with emphasis on the Engine Structures Computational Simulator (ESCS). Typical results obtained using ESCS are described to illustrate its versatility.

  18. Mechanical engineers' handbook, energy and power

    CERN Document Server

    Kutz, Myer

    2015-01-01

    The engineer's ready reference for mechanical power and heat Mechanical Engineer's Handbook provides the mostcomprehensive coverage of the entire discipline, with a focus onexplanation and analysis. Packaged as a modular approach, thesebooks are designed to be used either individually or as a set,providing engineers with a thorough, detailed, ready reference ontopics that may fall outside their scope of expertise. Each bookprovides discussion and examples as opposed to straight data andcalculations, giving readers the immediate background they needwhile pointing them toward more in-depth infor

  19. Mechanical engineering

    International Nuclear Information System (INIS)

    1988-01-01

    The Mechanical Engineering Division provides the other NAC divisions with design and construction services. Items of special mechanical significance are discussed here. The projects which received major design attention during the past year were: a coupling capacitor for SPC2; a bending magnet and solenoid for ECR ion source; a scanner for outer orbits of the SSC; a scattering chamber for an experimental beamline; a beam swinger; a rotary target magazine for isotope production; a robot arm for isotope production; an isotope transport system and a target cooling system for isotope production. The major projects that were under construction are: a magnetic spectrometer; a second injector cyclotron (SPC2) and extensions to the high-energy beamlines. 4 figs

  20. Geometry of surfaces a practical guide for mechanical engineers

    CERN Document Server

    Radzevich, Stephen P

    2012-01-01

    Presents an in-depth analysis of geometry of part surfaces and provides the tools for solving complex engineering problems Geometry of Surfaces: A Practical Guide for Mechanical Engineers is a comprehensive guide to applied geometry of surfaces with focus on practical applications in various areas of mechanical engineering. The book is divided into three parts on Part Surfaces, Geometry of Contact of Part Surfaces and Mapping of the Contacting Part Surfaces. Geometry of Surfaces: A Practical Guide for Mechanical Engineers combines differential geometry and gearing theory and presents new developments in the elementary theory of enveloping surfaces. Written by a leading expert of the field, this book also provides the reader with the tools for solving complex engineering problems in the field of mechanical engineering. Presents an in-depth analysis of geometry of part surfaces Provides tools for solving complex engineering problems in the field of mechanical engineering Combines differential geometry an...

  1. Mechanical technology for higher engineering technicians

    CERN Document Server

    Black, Peter

    1972-01-01

    Mechanical Technology for Higher Engineering Technicians deals with the mechanics of machines, thermodynamics, and mechanics of fluids. This book presents discussions and examples that deal with the strength of materials, technology of machines, and techniques used by professional engineers. The book explains the strain energy of torsion, coil springs, and the effects of axial load. The author also discusses the forces that produce bending, shearing, and bending combined with direct stress, as well as beams subjected to a uniform bending moment or simply supported beams with concentrated non-c

  2. Book of abstracts Chemical Engineering: IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists. Materials of All-Russian Symposium on chemistry and extraction engineering. Chemical-metallurgical processes of ore and secondary raw material processing. Analytical control of chemical industries, man-made and natural objects

    International Nuclear Information System (INIS)

    Zakhodyaeva, Yu.A.; Belova, V.V.

    2012-01-01

    In the given volume of abstracts of the IV All-Russian Conference on chemical engineering, All-Russian Youth Conference on chemical engineering, All-Russian school on chemical engineering for young scientists and specialists (Moscow, March 18-23, 2012) there are the abstracts of the reports concerning polymer and composite materials technology as well as catalysis in chemical engineering. The abstracts deal with state-of-the-art and future development of theoretical and experimental investigations as well as with experience in practical realization of development works in the field of chemical engineering and relative areas [ru

  3. Making a search engine for Indocean - A database of abstracts: An experience

    Digital Repository Service at National Institute of Oceanography (India)

    Tapaswi, M.P.; Haravu, L.J.

    stream_size 23701 stream_content_type text/plain stream_name Inf_Manage_Trends_Issues_2003_307.pdf.txt stream_source_info Inf_Manage_Trends_Issues_2003_307.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... Information Mallagement : Trends and Issues (Festschrift ill honour of Prof S. Seetharama) 52 . Making a Search Engine for Indocean - A Database of Abstracts : An Experience Murari P Tapaswi* and L J Haravu** *Documentation Officer. National Information...

  4. The Purdue Mechanics Freeform Classroom: A New Approach to Engineering Mechanics Education

    OpenAIRE

    Rhoads, Jeffrey F.; Nauman, Eric; Holloway, Beth M; Krousgrill, Charles Morton

    2014-01-01

    The [REMOVED] Mechanics Freeform Classroom: A New Approach to Engineering Mechanics EducationMotivated by the need to address the broad spectrum of learning styles embraced by today’sengineering students, a desire to encourage active, peer-to-peer, and self-learning, and a goal ofinteracting with every student despite ever-expanding enrollments, the mechanics faculty at[REMOVED] University have developed the [REMOVED] Mechanics Freeform Classroom(PMFC) -- a new approach to engineering mechani...

  5. Virtual reality as a new trend in mechanical and electrical engineering education

    Directory of Open Access Journals (Sweden)

    Kamińska Dorota

    2017-12-01

    Full Text Available In their daily practice, academics frequently face lack of access to modern equipment and devices, which are currently in use on the market. Moreover, many students have problems with understanding issues connected to mechanical and electrical engineering due to the complexity, necessity of abstract thinking and the fact that those concepts are not fully tangible. Many studies indicate that virtual reality can be successfully used as a training tool in various domains, such as development, health-care, the military or school education. In this paper, an interactive training strategy for mechanical and electrical engineering education shall be proposed. The prototype of the software consists of a simple interface, meaning it is easy for comprehension and use. Additionally, the main part of the prototype allows the user to virtually manipulate a 3D object that should be analyzed and studied. Initial studies indicate that the use of virtual reality can contribute to improving the quality and efficiency of higher education, as well as qualifications, competencies and the skills of graduates, and increase their competitiveness in the labour market.

  6. Virtual reality as a new trend in mechanical and electrical engineering education

    Science.gov (United States)

    Kamińska, Dorota; Sapiński, Tomasz; Aitken, Nicola; Rocca, Andreas Della; Barańska, Maja; Wietsma, Remco

    2017-12-01

    In their daily practice, academics frequently face lack of access to modern equipment and devices, which are currently in use on the market. Moreover, many students have problems with understanding issues connected to mechanical and electrical engineering due to the complexity, necessity of abstract thinking and the fact that those concepts are not fully tangible. Many studies indicate that virtual reality can be successfully used as a training tool in various domains, such as development, health-care, the military or school education. In this paper, an interactive training strategy for mechanical and electrical engineering education shall be proposed. The prototype of the software consists of a simple interface, meaning it is easy for comprehension and use. Additionally, the main part of the prototype allows the user to virtually manipulate a 3D object that should be analyzed and studied. Initial studies indicate that the use of virtual reality can contribute to improving the quality and efficiency of higher education, as well as qualifications, competencies and the skills of graduates, and increase their competitiveness in the labour market.

  7. Selection of software for mechanical engineering undergraduates

    International Nuclear Information System (INIS)

    Cheah, C. T.; Yin, C. S.; Halim, T.; Naser, J.; Blicblau, A. S.

    2016-01-01

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  8. Selection of software for mechanical engineering undergraduates

    Energy Technology Data Exchange (ETDEWEB)

    Cheah, C. T.; Yin, C. S.; Halim, T.; Naser, J.; Blicblau, A. S., E-mail: ablicblau@swin.edu.au [Swinburne University of Technology, Faculty of Science Engineering and Technology, PO Box 218 Hawthorn, Victoria, Australia, 3122 (Australia)

    2016-07-12

    A major problem with the undergraduate mechanical course is the limited exposure of students to software packages coupled with the long learning curve on the existing software packages. This work proposes the use of appropriate software packages for the entire mechanical engineering curriculum to ensure students get sufficient exposure real life design problems. A variety of software packages are highlighted as being suitable for undergraduate work in mechanical engineering, e.g. simultaneous non-linear equations; uncertainty analysis; 3-D modeling software with the FEA; analysis tools for the solution of problems in thermodynamics, fluid mechanics, mechanical system design, and solid mechanics.

  9. Gasoline Engine Mechanics. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This vocational program guide is intended to assist in the organization, operation, and evaluation of a program in gasoline engine mechanics in school districts, area vocational centers, and community colleges. The following topics are covered: job duties of small-engine mechanics; program content (curriculum framework and student performance…

  10. International Conference on Research and Innovations in Mechanical Engineering

    CERN Document Server

    Singh, Paramjit; Singh, Harwinder; Brar, Gurinder

    2014-01-01

    This book comprises the proceedings of International Conference on Research and Innovations in Mechanical Engineering (ICRIME 2013) organized by Guru Nanak Dev Engineering College, Ludhiana with support from AICTE, TEQIP, DST and PTU, Jalandhar. This international conference served as a premier forum for communication of new advances and research results in the fields of mechanical engineering. The proceedings reflect the conference’s emphasis on strong methodological approaches and focus on applications within the domain of mechanical engineering. The contents of this volume aim to highlight new theoretical and experimental findings in the fields of mechanical engineering and closely related fields, including interdisciplinary fields such as robotics and mechatronics.

  11. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Stochastic reactor model used for numerical study of HCCI engine. • New reduced oxidation mechanism with NOx developed (47 species and 272 reactions). • Mechanism predicts cylinder pressure and heat release with sufficient accuracy. • Mechanism was able to capture the trend in NO x emission with sufficient accuracy. - Abstract: Ethanol is considered a potential biofuel for internal combustion engines. In this study, homogeneous charge compression ignition (HCCI) simulations of ethanol engine experiments were performed using stochastic reactor model (SRM). Detailed ethanol oxidation mechanism is developed by including NO x reaction in existing detailed oxidation mechanism with 57 species and 383 reactions. Detailed ethanol mechanism with NO x used in this study contains 76 species and 495 reactions. This mechanism was reduced by direct relation graph (DRG) method, which was validated with the experimental results. Existing Lu’s 40-species skeletal mechanism with NO formation were also compared with detailed and reduced mechanisms for predicting maximum cylinder pressure, maximum heat release rate and crank angle position of maximum cylinder pressure in HCCI engine. Reduced mechanism developed in this study exhibited the best resemblance with the experimental data. This reduced mechanism was also validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors. The results showed that reduced mechanism is capable of predicting HCCI engine performance parameters with sufficient accuracy. Sensitivity analysis was conducted to determine the influential reactions in ethanol oxidation. Results also show that detailed and reduced mechanism was able to predict NO x emission in good agreement with the corresponding experimental data.

  12. Basic Mechanics with Engineering Applications

    CERN Document Server

    Jones, J; Fawcett, J N

    2012-01-01

    This book gives a sufficient grounding in mechanics for engineers to tackle a significant range of problems encountered in the design and specification of simple structures and machines. It also provides an excellent background for students wishing to progress to more advanced studies in three-dimensional mechanics.

  13. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  14. Condition and prospects of development of agricultural mechanical engineering

    OpenAIRE

    Vsevolod Babushkin; Margarita Ignatyeva

    2011-01-01

    In this paper, an estimation of condition and level of development of agricultural mechanical engineering is given; also an expert estimation of scales of the Russian market of agricultural machinery is given. The factors negatively influencing formation of the named market are designated. Features and prospects of development of agricultural mechanical engineering of Sverdlovsk region are defined. State regulation mechanisms of domestic agricultural mechanical engineering development are des...

  15. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order telegraph...

  16. Modern engineering thermodynamics

    CERN Document Server

    Balmer, Robert T

    2010-01-01

    Designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematica

  17. Welcoming speech from Dean Faculty of Mechanical Engineering, UMP

    Science.gov (United States)

    Taha, Zahari

    2012-09-01

    In the Name of Allah, the Most Beneficent, the Most Merciful. It is with great pleasure that I welcome the participants of the International Conference of Mechanical Engineering Research 2011. The Prophet Muhammad (peace be upon him) said 'Acquire knowledge and impart it to the people.' (Al Tirmidhi). The quest for knowledge has been from the beginning of time but knowledge only becomes valuable when it is disseminated and applied to benefit humankind. It is hoped that ICMER 2011 will be a platform to gather and disseminate the latest knowledge in mechanical engineering. Academicians, Scientist, Researchers and practitioners of mechanical engineering will be able to share and discuss new findings and applications of mechanical engineering. It is envisaged that the intellectual discourse will result in future collaborations between universities, research institutions and industry both locally and internationally. In particular it is expected that focus will be given to issues on environmental and energy sustainability. Researchers in the mechanical engineering faculty at UMP have a keen interest in technology to harness energy from the ocean. Lowering vehicle emissions has been a primary goal of researchers in the mechanical engineering faculty and the automotive engineering centre as well including developing vehicles using alternative fuels such as biodiesel and renewable sources such as solar driven electric vehicles. Finally I would like to congratulate the organizing committee for their tremendous efforts in organizing the conference. As I wrote this in the Holy Land of Makkah, I pray to Allah swt that the conference will be a success. Prof. Dr. Zahari Taha CEng, MIED, FASc Dean, Faculty of Mechanical Engineering Universiti Malaysia Pahang

  18. Grounded understanding of abstract concepts: The case of STEM learning.

    Science.gov (United States)

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  19. Optimization of a relativistic quantum mechanical engine.

    Science.gov (United States)

    Peña, Francisco J; Ferré, Michel; Orellana, P A; Rojas, René G; Vargas, P

    2016-08-01

    We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.

  20. Quantum Mechanics for Electrical Engineers

    CERN Document Server

    Sullivan, Dennis M

    2011-01-01

    The main topic of this book is quantum mechanics, as the title indicates.  It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory.   It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions.  Two key features make this book different from others on quantum mechanics, even those usually intended for engineers:   First, after a brief introduction, much of the development is through Fourier theory, a topic that is at

  1. 46 CFR 113.35-9 - Mechanical engine order telegraph systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems. 113.35-9 Section 113.35-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-9 Mechanical engine order...

  2. Thermal integrity in mechanics and engineering

    CERN Document Server

    Shorr, Boris F

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author’s contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspec...

  3. Engineering a General Education Program: Designing Mechanical Engineering General Education Courses

    Science.gov (United States)

    Fagette, Paul; Chen, Shih-Jiun; Baran, George R.; Samuel, Solomon P.; Kiani, Mohammad F.

    2013-01-01

    The Department of Mechanical Engineering at our institution created two engineering courses for the General Education Program that count towards second level general science credit (traditional science courses are first level). The courses were designed for the general student population based upon the requirements of our General Education Program…

  4. The role of mechanical loading in ligament tissue engineering.

    Science.gov (United States)

    Benhardt, Hugh A; Cosgriff-Hernandez, Elizabeth M

    2009-12-01

    Tissue-engineered ligaments have received growing interest as a promising alternative for ligament reconstruction when traditional transplants are unavailable or fail. Mechanical stimulation was recently identified as a critical component in engineering load-bearing tissues. It is well established that living tissue responds to altered loads through endogenous changes in cellular behavior, tissue organization, and bulk mechanical properties. Without the appropriate biomechanical cues, new tissue formation lacks the necessary collagenous organization and alignment for sufficient load-bearing capacity. Therefore, tissue engineers utilize mechanical conditioning to guide tissue remodeling and improve the performance of ligament grafts. This review provides a comparative analysis of the response of ligament and tendon fibroblasts to mechanical loading in current bioreactor studies. The differential effect of mechanical stimulation on cellular processes such as protease production, matrix protein synthesis, and cell proliferation is examined in the context of tissue engineering design.

  5. Mechanics of materials formulas and problems : engineering mechanics 2

    CERN Document Server

    Gross, Dietmar; Wriggers, Peter; Schröder, Jörg; Müller, Ralf

    2017-01-01

    This book contains the most important formulas and more than 140 completely solved problems from Mechanics of Materials and Hydrostatics. It provides engineering students material to improve their skills and helps to gain experience in solving engineering problems. Particular emphasis is placed on finding the solution path and formulating the basic equations. Topics include: - Stress - Strain - Hooke’s Law - Tension and Compression in Bars - Bending of Beams - Torsion - Energy Methods - Buckling of Bars - Hydrostatics .

  6. International Conference on Mechanical Engineering and Technology

    CERN Document Server

    Mechanical Engineering and Technology

    2012-01-01

    The volume includes a set of selected papers extended and revised from the 2011 International Conference on Mechanical Engineering and Technology, held on London, UK, November 24-25, 2011.   Mechanical engineering technology is the application of physical principles and current technological developments to the creation of useful machinery and operation design. Technologies such as solid models may be used as the basis for finite element analysis (FEA) and / or computational fluid dynamics (CFD) of the design. Through the application of computer-aided manufacturing (CAM), the models may also be used directly by software to create "instructions" for the manufacture of objects represented by the models, through computer numerically controlled (CNC) machining or other automated processes, without the need for intermediate drawings.   This volume covers the subject areas of mechanical engineering and technology, and also covers interdisciplinary subject areas of computers, communications, control and automation...

  7. Mechanical engineers' handbook, manufacturing and management

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of manufacturing and management in mechanicalengineering Mechanical Engineers' Handbook, Fourth Edition provides aquick guide to specialized areas that engineers may encounter intheir work, providing access to the basics of each and pointingtoward trusted resources for further reading, if needed. The book'saccessible information offers discussions, examples, and analysesof the topics covered, rather than the straight data, formulas, andcalculations found in other handbooks. No single engineer can be aspecialist in all areas that they are called upon to work in. It'sa discipline

  8. Mechanical Engineering Senior Design Project Final Presentations | College

    Science.gov (United States)

    Engineering Research Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical of Engineering & Applied Science A B C D E F G H I J K L M N O P Q R S T U V W X Y Z D2L Programs Concentration in Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer

  9. Application of Modern Simulation Technology in Mechanical Outstanding Engineer Training

    Directory of Open Access Journals (Sweden)

    Gongfa Li

    2014-03-01

    Full Text Available This text has described the relationship between outstanding engineer training and modern simulation technology, have recommended the characteristics of mechanical outstanding engineer in detail. Aiming at the importance of the teaching practice link to course of theory of mechanics, mechanical design and mechanical signal analysis, have expounded the function of modern simulation technology in the mechanical outstanding engineer training, especially on teaching practice in the theory of mechanics, mechanical design and mechanical signal analysis. It has the advantages of economizing the teaching cost, overcoming the hardware constrains, model prediction, promoting student's innovation and manipulative ability, so can popularize and develop in a more cost-effective manner in the university.

  10. Engineering mechanical microenvironment of macrophage and its biomedical applications.

    Science.gov (United States)

    Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min

    2018-03-01

    Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.

  11. Mechanics, Models and Methods in Civil Engineering

    CERN Document Server

    Maceri, Franco

    2012-01-01

    Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.

  12. Elements of theoretical mechanics for electronic engineers

    CERN Document Server

    Bultot, Franz

    1965-01-01

    Elements of Theoretical Mechanics for Electronic Engineers deals with theoretical mechanics, which is considered one of the fundamental branches of instruction essential to training an engineer. This book discusses the oscillatory motions and their counterparts in electrical circuits and radio, and provides an introduction to differential operators of vector field theory. Other topics covered include systems and functions of vectors; dynamics of a free point; vibrations and waves; and statics. Worked examples and many notes on the application of most sections of the theories to electrical deve

  13. 46 CFR 113.35-13 - Mechanical engine order telegraph systems; operation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; operation...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-13 Mechanical engine order telegraph systems; operation. If more than one transmitter operates a...

  14. Proceedings of the 3. Canada-US rock mechanics symposium and 20. Canadian rock mechanics symposium : rock engineering 2009 : rock engineering in difficult conditions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This conference provided a forum for geologists, mining operators and engineers to discuss the application of rock mechanics in engineering designs. Members of the scientific and engineering communities discussed challenges and interdisciplinary elements involved in rock engineering. New geological models and methods of characterizing rock masses and ground conditions in underground engineering projects were discussed along with excavation and mining methods. Papers presented at the conference discussed the role of rock mechanics in forensic engineering. Geophysics, geomechanics, and risk-based approaches to rock engineering designs were reviewed. Issues related to high pressure and high flow water conditions were discussed, and new rock physics models designed to enhance hydrocarbon recovery were presented. The conference featured 84 presentations, of which 9 have been catalogued separately for inclusion in this database. tabs., figs.

  15. Mechanical design criteria for intervertebral disc tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2010-04-19

    Due to the inability of current clinical practices to restore function to degenerated intervertebral discs, the arena of disc tissue engineering has received substantial attention in recent years. Despite tremendous growth and progress in this field, translation to clinical implementation has been hindered by a lack of well-defined functional benchmarks. Because successful replacement of the disc is contingent upon replication of some or all of its complex mechanical behaviors, it is critically important that disc mechanics be well characterized in order to establish discrete functional goals for tissue engineering. In this review, the key functional signatures of the intervertebral disc are discussed and used to propose a series of native tissue benchmarks to guide the development of engineered replacement tissues. These benchmarks include measures of mechanical function under tensile, compressive, and shear deformations for the disc and its substructures. In some cases, important functional measures are identified that have yet to be measured in the native tissue. Ultimately, native tissue benchmark values are compared to measurements that have been made on engineered disc tissues, identifying where functional equivalence was achieved, and where there remain opportunities for advancement. Several excellent reviews exist regarding disc composition and structure, as well as recent tissue engineering strategies; therefore this review will remain focused on the functional aspects of disc tissue engineering. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. DESIGN QUALITY IN MECHANICAL ENGINEERING APPLICATION

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdogan Eker

    2010-09-01

    Full Text Available There is a close relationship between material chose and quality in mechanical engineering application like there is in all the other engineering applications. If this relation is balanced then engineering success increases. Material chose comes to fore in the design process most of the time. The two most important responsibilities of the design engineer in here is to chose suitable material and to know the production processes about design. The chose of material of a design that will fulfill the needs all through its life has great importance. It is needed to limit the material applicants by choosing the most suitable ones among variable material. Choosing materials that were examined before and whose behavior is well known provides the designer to feel confident. However since using highly successful materials would increase the competitive power of the designs; designers should follow the developments in materials and know the features of new materials. The description of these features can be interpreted within quality. Quality from the point of engineer is the total fulfillment of expectations.Engineer today are faced with very important problems such as fast technological innovations, a dynamic socio-economical environment, global rivalry. One of the life buoys they stick while trying to solve these problems is total method of quality control. Total Quality model which can provide higher competitive power compared to classical management model brings success only when applied with its whole components. "Approach toward prevention" and "measurement and statistics" have an important place among these elements. The first step of the approach toward prevention composes of design quality and Quality Function Deployment (QFD, or in other words The House of Quality method that will provide this. In this paper; considering the quality function deployment, how the chose of material are done in mechanical engineering applications will be explained.

  17. Thermal integrity in mechanics and engineering

    International Nuclear Information System (INIS)

    Shorr, Boris F.

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  18. Thermal integrity in mechanics and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, Boris F. [Central Institute of Aviation Motors (CIAM), Moscow (Russian Federation)

    2015-07-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  19. Elements of Motivational Structure for Studying Mechanical Engineering

    OpenAIRE

    Nikša Dubreta; Damir Miloš

    2017-01-01

    The article presents the findings on students' reasons for studying mechanical engineering. These reasons were covered in terms of extrinsic and intrinsic motivation additionally related to selected independent variables of the sample – students' secondary school Grade Point Average, their gender and the socio-economic status. The research was conducted with the first year students of the Faculty of Mechanical Engineering at the University of Zagreb, Croatia. The sample consisted of 282 stude...

  20. Analysis of the Lifecycle of Mechanical Engineering Products

    OpenAIRE

    Gubaidulina, Rauza Khamidovna; Gruby, S. V.; Davlatov, G. D.

    2016-01-01

    Principal phases of the lifecycle of mechanical engineering products are analyzed in the paper. The authors have developed methods and procedures to improve designing, manufacturing, operating and recycling of the machine. It has been revealed that economic lifecycle of the product is a base for appropriate organization of mechanical engineering production. This lifecycle is calculated as a minimal sum total of consumer and producer costs. The machine construction and its manufacturing techno...

  1. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  2. Internship Abstract - Aerosciences and Flight Mechanics Intern

    Science.gov (United States)

    Rangel, John

    2015-01-01

    Mars is a hard place to land on, but my internship with NASA's Aerosciences & Flight Mechanics branch has shown me the ways in which men and women will one day land safely. I work on Mars Aerocapture, an aeroassist maneuver that reduces the fuel necessary to "capture" into Martian orbit before a descent. The spacecraft flies through the Martian atmosphere to lose energy through heating before it exits back into space, this time at a slower velocity and in orbit around Mars. Spacecraft will need to maneuver through the Martian atmosphere to accurately hit their orbit, and they will need to survive the generated heat. Engineering teams need simulation data to continue their designs, and the guidance algorithm that ensures a proper orbit insertion needs to be refined - two jobs that fell to me at the summer's start. Engineers within my branch have developed two concept aerocapture vehicles, and I run simulations on their behavior during the maneuver. I also test and refine the guidance algorithm. I spent the first few weeks familiarizing myself with the simulation software, troubleshooting various guidance bugs and writing code. Everything runs smoothly now, and I recently sent my first set of trajectory data to a Thermal Protection System group so they can incorporate it into their heat-bearing material designs. I hope to generate plenty of data in the next few weeks for various engineering groups before my internship ends mid-August. My major accomplishment so far is improving the guidance algorithm. It is a relatively new algorithm that promises higher accuracy and fuel efficiency, but it hasn't undergone extensive testing yet. I've had the opportunity to work with the principal developer - a professor at Iowa State University - to find and fix several issues. I was also assigned the task of expanding the branch's aerodynamic heating simulation software. I am excited to do this because engineers in the future will use my work to generate meaningful data and make

  3. Scientific meeting abstracts

    International Nuclear Information System (INIS)

    1999-01-01

    The document is a collection of the scientific meeting abstracts in the fields of nuclear physics, medical sciences, chemistry, agriculture, environment, engineering, different aspects of energy and presents research done in 1999 in these fields

  4. Science meeting. Abstracts

    International Nuclear Information System (INIS)

    2000-01-01

    the document is a collection of the science meeting abstracts in the fields of nuclear physics, medical sciences, chemistry, agriculture, environment, engineering, material sciences different aspects of energy and presents research done in 2000 in these fields

  5. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  6. 2012 International Conference on Mechanical and Electronic Engineering

    CERN Document Server

    Lin, Sally; ICMEE2012; Advances in Mechanical and Electronic Engineering v.2

    2012-01-01

    This book includes the volume 2 of the proceedings of the 2012 International Conference on Mechanical and Electronic Engineering(ICMEE2012), held at June 23-24,2012 in Hefei, China. The conference provided a rare opportunity to bring together worldwide researchers who are working in the fields. This volume 2 is focusing on Mechatronic Engineering and Technology,  Electronic Engineering and Electronic Information Technology .

  7. Engineering three-dimensional cell mechanical microenvironment with hydrogels.

    Science.gov (United States)

    Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian

    2012-12-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.

  8. Engineering three-dimensional cell mechanical microenvironment with hydrogels

    International Nuclear Information System (INIS)

    Huang Guoyou; Wang Lin; Han Yulong; Zhang Qiancheng; Xu Feng; Lu Tianjian; Wang Shuqi; Wu Jinhui

    2012-01-01

    Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed. (topical review)

  9. Microfabrication of hierarchical structures for engineered mechanical materials

    Science.gov (United States)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  10. The development and application of CFD technology in mechanical engineering

    Science.gov (United States)

    Wei, Yufeng

    2017-12-01

    Computational Fluid Dynamics (CFD) is an analysis of the physical phenomena involved in fluid flow and heat conduction by computer numerical calculation and graphical display. The numerical method simulates the complexity of the physical problem and the precision of the numerical solution, which is directly related to the hardware speed of the computer and the hardware such as memory. With the continuous improvement of computer performance and CFD technology, it has been widely applied to the field of water conservancy engineering, environmental engineering and industrial engineering. This paper summarizes the development process of CFD, the theoretical basis, the governing equations of fluid mechanics, and introduces the various methods of numerical calculation and the related development of CFD technology. Finally, CFD technology in the mechanical engineering related applications are summarized. It is hoped that this review will help researchers in the field of mechanical engineering.

  11. Deconstructing Engineering Education Programmes: The DEEP Project to Reform the Mechanical Engineering Curriculum

    Science.gov (United States)

    Busch-Vishniac, Ilene; Kibler, Tom; Campbell, Patricia B.; Patterson, Eann; Guillaume, Darrell; Jarosz, Jeffrey; Chassapis, Constantin; Emery, Ashley; Ellis, Glenn; Whitworth, Horace; Metz, Susan; Brainard, Suzanne; Ray, Pradosh

    2011-01-01

    The goal of the Deconstructing Engineering Education Programmes project is to revise the mechanical engineering undergraduate curriculum to make the discipline more able to attract and retain a diverse community of students. The project seeks to reduce and reorder the prerequisite structure linking courses to offer greater flexibility for…

  12. Development of salt tolerant plants through genetic engineering (abstract)

    International Nuclear Information System (INIS)

    Mukhtar, Z.; Khan, S.A.; Zafar, Y.

    2005-01-01

    Salinity stress is one of the most serious factors limiting the productivity of agricultural crops. Genetic engineering provides a useful tool for tailoring plants with enhanced salt tolerance characteristics. Many organisms have evolved mechanisms to survive and grow under such extreme environments. These organisms provide us with a useful source of genes which can be used to improve salt tolerance in plants. The present study aims at identification and cloning of useful halo tolerance conferring genes from fungi and plants and to develop salt tolerant transgenic plants. Here we describe the cloning and use of HSR1 gene (a yeast transcription factor known to confer salt tolerance) and Na/sup +//H/sup +/ antiporter gene AtNHX1 (3016 bp) from Arabidopsis thaliana, and transformation of tobacco with HSR1 and AtNHX1 genes through Agrobacterium method. A number of transgenic tobacco plants were regenerated from leaf explants transformed with Agrobacterium tumefaciens (LBA4404) having HSR1 and AtNHX1 genes by leaf disc method. The putative transgenic plants were analyzed by PCR and dot blot analysis. Screening of these transgenic plants at different salinity levels is in progress which will help identify the suitable plant lines and thus the promising genes which can be further exploited to engineer salt tolerant crop plants. (author)

  13. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    International Nuclear Information System (INIS)

    Fajar, D M; Khotimah, S N; Khairurrijal

    2016-01-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine. (paper)

  14. Thermodynamic and Mechanical Analysis of a Thermomagnetic Rotary Engine

    Science.gov (United States)

    Fajar, D. M.; Khotimah, S. N.; Khairurrijal

    2016-08-01

    A heat engine in magnetic system had three thermodynamic coordinates: magnetic intensity ℋ, total magnetization ℳ, and temperature T, where the first two of them are respectively analogous to that of gaseous system: pressure P and volume V. Consequently, Carnot cycle that constitutes the principle of a heat engine in gaseous system is also valid on that in magnetic system. A thermomagnetic rotary engine is one model of it that was designed in the form of a ferromagnetic wheel that can rotates because of magnetization change at Curie temperature. The study is aimed to describe the thermodynamic and mechanical analysis of a thermomagnetic rotary engine and calculate the efficiencies. In thermodynamic view, the ideal processes are isothermal demagnetization, adiabatic demagnetization, isothermal magnetization, and adiabatic magnetization. The values of thermodynamic efficiency depend on temperature difference between hot and cold reservoir. In mechanical view, a rotational work is determined through calculation of moment of inertia and average angular speed. The value of mechanical efficiency is calculated from ratio between rotational work and heat received by system. The study also obtains exergetic efficiency that states the performance quality of the engine.

  15. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    Science.gov (United States)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  16. Control Engineering as a Part of Undergraduate Curriculum for Mechanical Engineering in India

    Science.gov (United States)

    Akhtar, Shagil; Iqbal, Syed Muneeb; Bajpai, Shrish

    2016-01-01

    In this present study we have traced the genesis of control engineering in the scope of mechanical engineering and then some analysis on its recent developments, their increasing need and how this particular subject has evolved machines functioning nowadays specifically its standard of education in India. We have probed this field right from its…

  17. A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine

    International Nuclear Information System (INIS)

    Bahlouli, Keyvan; Atikol, Ugur; Khoshbakhti Saray, R.; Mohammadi, Vahid

    2014-01-01

    Highlights: • A two-stage reduction process is used to produce two reduced mechanisms. • The mechanisms are combined to develop a reaction mechanism for a fuel blend. • The genetic algorithm is used for optimization of reaction constants. • The developed reduced mechanism can be used to predict the ignition timing in HCCI engine for a fuel blend. - Abstract: One of the main challenges associated with homogeneous charge compression ignition (HCCI) combustion engine application is the lack of direct control on ignition timing. One of the solutions to this problem is mixing two fuels with various properties at a variety of ratios on a cycle-by-cycle basis. In the current study, a reduced mechanism for a fuel blend of natural-gas and n-heptane is proposed. The approach is validated for the prediction of ignition timing in the HCCI combustion engine. A single-zone combustion model is used to simulate the HCCI engine. A two-stage reduction process is used to produce two reduced mechanisms of existing semi-detailed GRI-Mech. 3.0 mechanism that contains 53 species and 325 reactions and Golovichev’s mechanism consisting of 57 species and 290 reactions for natural gas and n-heptane fuels, respectively. Firstly, the unimportant species and related reactions are identified by employing the directed relation graph with error propagation (DRGEP) reduction method and then, to extend reduction, the principal component analysis (PCA) method is utilized. To evaluate the validity of the reduced mechanism, representative engine combustion parameters such as peak pressure, maximum heat release, and CA50 are used. The reduced mechanism of GRI-Mech. 3.0 mechanism, containing 19 species and 39 reactions, and the reduced mechanism of Golovichev’s mechanism, consisting of 40 species and 95 reactions, provide good prediction for the mentioned parameters in comparison with those of detailed mechanisms. The combination of the generated reduced mechanisms is used to develop a

  18. Deformation and fracture mechanics of engineering materials

    National Research Council Canada - National Science Library

    Hertzberg, Richard W; Vinci, Richard Paul; Hertzberg, Jason L

    2012-01-01

    "Hertzberg's 5th edition of Deformation & Fracture Mechanics of Engineering Materials offers several new features including a greater number and variety of homework problems using more computational software...

  19. Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.

    Science.gov (United States)

    Nerurkar, Nandan L; Elliott, Dawn M; Mauck, Robert L

    2007-08-01

    Engineering a functional replacement for the annulus fibrosus (AF) of the intervertebral disc is contingent upon recapitulation of AF structure, composition, and mechanical properties. In this study, we propose a new paradigm for AF tissue engineering that focuses on the reconstitution of anatomic fiber architecture and uses constitutive modeling to evaluate construct function. A modified electrospinning technique was utilized to generate aligned nanofibrous polymer scaffolds for engineering the basic functional unit of the AF, a single lamella. Scaffolds were tested in uniaxial tension at multiple fiber orientations, demonstrating a nonlinear dependence of modulus on fiber angle that mimicked the nonlinearity and anisotropy of native AF. A homogenization model previously applied to native AF successfully described scaffold mechanical response, and parametric studies demonstrated that nonfibrillar matrix, along with fiber connectivity, are key contributors to tensile mechanics for engineered AF. We demonstrated that AF cells orient themselves along the aligned scaffolds and deposit matrix that contributes to construct mechanics under loading conditions relevant to the in vivo environment. The homogenization model was applied to cell-seeded constructs and provided quantitative measures for the evolution of matrix and interfibrillar interactions. Finally, the model demonstrated that at fiber angles of the AF (28 degrees -44 degrees ), engineered material behaved much like native tissue, suggesting that engineered constructs replicate the physiologic behavior of the single AF lamella. Constitutive modeling provides a powerful tool for analysis of engineered AF neo-tissue and native AF tissue alike, highlighting key mechanical design criteria for functional AF tissue engineering.

  20. Mechanical and materials engineering of modern structure and component design

    CERN Document Server

    Altenbach, Holm

    2015-01-01

    This book presents the latest findings on mechanical and materials engineering as applied to the design of modern engineering materials and components. The contributions cover the classical fields of mechanical, civil and materials engineering, as well as bioengineering and advanced materials processing and optimization. The materials and structures discussed can be categorized into modern steels, aluminium and titanium alloys, polymers/composite materials, biological and natural materials, material hybrids and modern nano-based materials. Analytical modelling, numerical simulation, state-of-the-art design tools and advanced experimental techniques are applied to characterize the materials’ performance and to design and optimize structures in different fields of engineering applications.

  1. Creating mechanisms of toxic substances emission of combustion engines

    OpenAIRE

    Jankowski Antoni; Kowalski Mirosław

    2015-01-01

    The paper analyses the mechanisms of creation of toxic exhaust gases, which mainly derived from inexact fuel metering and improper air-fuel mixture preparation. The paper describes the process of creating toxic components in the exhaust gases of piston engines during engine operation, and impact on the emission of these components determining the composition of the fuel mixture determined equivalence factor Φ. The principal mechanisms of formation of toxic exhaust gases, in particular nitroge...

  2. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  3. Creating mechanisms of toxic substances emission of combustion engines

    Directory of Open Access Journals (Sweden)

    Jankowski Antoni

    2015-12-01

    Full Text Available The paper analyses the mechanisms of creation of toxic exhaust gases, which mainly derived from inexact fuel metering and improper air-fuel mixture preparation. The paper describes the process of creating toxic components in the exhaust gases of piston engines during engine operation, and impact on the emission of these components determining the composition of the fuel mixture determined equivalence factor Φ. The principal mechanisms of formation of toxic exhaust gases, in particular nitrogen oxides, carbon monoxide and hydrocarbons, and also essential according to create each of toxic exhaust gases are the subject of the paper. Moreover, empirical relationships, by means of which it is possible to determine the time of creation of the individual components of toxic exhaust gases, are presented. For example, one of the mechanisms for prompt formation of nitrogen oxides and hydrocarbons graphic illustration of formation as a function of crank angle is described. At the conclusion, the summary and significance of information on creation mechanisms of toxic components in the exhaust gases of piston engines are presented.

  4. Contact mechanics of reverse engineered distal humeral hemiarthroplasty implants.

    Science.gov (United States)

    Willing, Ryan; King, Graham J W; Johnson, James A

    2015-11-26

    Erosion of articular cartilage is a concern following distal humeral hemiarthroplasty, because native cartilage surfaces are placed in contact with stiff metallic implant components, which causes decreases in contact area and increases in contact stresses. Recently, reverse engineered implants have been proposed which are intended to promote more natural contact mechanics by reproducing the native bone or cartilage shape. In this study, finite element modeling is used in order to calculate changes in cartilage contact areas and stresses following distal humeral hemiarthroplasty with commercially available and reverse engineered implant designs. At the ulna, decreases in contact area were -34±3% (p=0.002), -27±1% (pengineered and cartilage reverse engineered designs, respectively. Peak contact stresses increased by 461±57% (p=0.008), 387±127% (p=0.229) and 165±16% (p=0.003). At the radius, decreases in contact area were -21±3% (p=0.013), -13±2% (p0.999), 241±32% (p=0.010) and 61±10% (p=0.021). Between the three different implant designs, the cartilage reverse engineered design yielded the largest contact areas and lowest contact stresses, but was still unable to reproduce the contact mechanics of the native joint. These findings align with a growing body of evidence indicating that although reverse engineered hemiarthroplasty implants can provide small improvements in contact mechanics when compared with commercially available designs, further optimization of shape and material properties is required in order reproduce native joint contact mechanics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Channeled Scaffolds for Engineering Myocardium with Mechanical Stimulation

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q.; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2011-01-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) are critically important for engineering functional myocardial tissue. We report the development of chitosan-collagen scaffolds with micro-pores and an array of parallel channels (~200 μm in diameter) that were specifically designed for cardiac tissue engineering with mechanical stimulation. The scaffolds were designed to have the structural and mechanical properties similar to those of the native human heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom-designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1–2 mm thick) consisted of metabolically active cells and started to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stresses promoted cell alignment, elongation, and the expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. PMID:22081518

  6. Latest progress of soft rock mechanics and engineering in China

    Directory of Open Access Journals (Sweden)

    Manchao He

    2014-06-01

    Full Text Available The progress of soft rock mechanics and associated technology in China is basically accompanied by the development of mining engineering and the increasing disasters of large rock deformation during construction of underground engineering. In this regard, Chinese scholars proposed various concepts and classification methods for soft rocks in terms of engineering practices. The large deformation mechanism of engineering soft rocks is to be understood through numerous experiments; and thus a coupled support theory for soft rock roadways is established, followed by the development of a new support material, i.e. the constant resistance and large deformation bolt/anchor with negative Poisson's ratio effect, and associated control technology. Field results show that large deformation problems related to numbers of engineering cases can be well addressed with this new technology, an effective way for similar soft rock deformation control.

  7. The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013

    International Nuclear Information System (INIS)

    Remolina-Millán, Aduljay; Hernández-Arroyo, Emil

    2014-01-01

    The organizing committee of The International Congress of Mechanical Engineering and Agricultural Sciences – CIIMCA 2013 – are pleased to present CIIMCA-2013: the first international conference focused on subjects of materials science, mechanical engineering and renewable energy organized by Mechanical Engineering Faculty of the ''Universidad Pontificia Bolivariana'' in Bucaramanga, Colombia. This conference aims to be a place to produce discussions on whole topics of the congress, between the scientists of Colombia and the world. We strongly believe that knowledge is fundamental to the development of our countries. For that reason this multidisciplinary conference is looking forward to integrate engineering, agricultural science and nanoscience and nanotechnology to produce a synergy of this area of knowledge and to achieve scientific and technological developments. Agriculture is a very important topic for our conference; in Colombia, agricultural science needs more attention from the scientific community and the government. In the Faculty of Mechanical Engineering we are beginning to work on these issues to produce knowledge and improve the conditions in our country. The CIIMCA conference is a great opportunity to create interpersonal relationships and networks between scientists around the world. The interaction between scientists is very important in the process of the construction of knowledge. The general chairman encourages and invites you to make friends, relationships and participate strongly in the symposia and all program activities. PhD Aduljay Remolina-Millán Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Msc Emil Hernández-Arroyo Principal Chairman, International Mechanical Engineering and Agricultural Sciences Congress – CIIMCA Conferencephotograph Conferencephotograph 'Universidad Pontificia Bolivariana seccional Bucaramanga' host of the first

  8. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  9. A Comparison of the mechanical engineering and safety engineering student’s ICT attitudes at the Obuda University

    Directory of Open Access Journals (Sweden)

    Kiss Gabor

    2016-01-01

    Full Text Available Communication and technology are critical to education. However, using technology in education is not an easy task as communication barriers emerge. The aim of this research is to analyze the ICT attitudes from different faculties at the Obuda University that is between the mechanical engineering students and safety engineering students from the Donát Bánki Mechanical Safety Engineer Faculty. The students from these two groups will use different ICT tool at work after their graduation; the mechanical engineering students will work mostly with designer ICT tools, the safety engineering students will use security systems. It would be important to know whether instructors, when using ICT, have to follow different teaching methods and approaches in these two different groups or not. We measured the ICT attitude with a tool consisting of 23 items (Likert scaled. We worked with 361 students. The data analysis was performed with SPSS software using descriptive statistics and Mann-Whitney test. The results show both groups having the same positive ICT attitude however with one difference.

  10. Quantum mechanics for applied physics and engineering

    CERN Document Server

    Fromhold, Albert T

    2011-01-01

    This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch

  11. Development of a Mechanical Engineering Test Item Bank to promote learning outcomes-based education in Japanese and Indonesian higher education institutions

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Cross

    2017-11-01

    Full Text Available Following on the 2008-2012 OECD Assessment of Higher Education Learning Outcomes (AHELO feasibility study of civil engineering, in Japan a mechanical engineering learning outcomes assessment working group was established within the National Institute of Education Research (NIER, which became the Tuning National Center for Japan. The purpose of the project is to develop among engineering faculty members, common understandings of engineering learning outcomes, through the collaborative process of test item development, scoring, and sharing of results. By substantiating abstract level learning outcomes into concrete level learning outcomes that are attainable and assessable, and through measuring and comparing the students’ achievement of learning outcomes, it is anticipated that faculty members will be able to draw practical implications for educational improvement at the program and course levels. The development of a mechanical engineering test item bank began with test item development workshops, which led to a series of trial tests, and then to a large scale test implementation in 2016 of 348 first semester master’s students in 9 institutions in Japan, using both multiple choice questions designed to measure the mastery of basic and engineering sciences, and a constructive response task designed to measure “how well students can think like an engineer.” The same set of test items were translated from Japanese into to English and Indonesian, and used to measure achievement of learning outcomes at Indonesia’s Institut Teknologi Bandung (ITB on 37 rising fourth year undergraduate students. This paper highlights how learning outcomes assessment can effectively facilitate learning outcomes-based education, by documenting the experience of Japanese and Indonesian mechanical engineering faculty members engaged in the NIER Test Item Bank project.First published online: 30 November 2017

  12. Analytical expression for an optimised link bar mechanism for a beta-type Stirling engine

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2007-01-01

    The design of a mechanism for kinematic beta-type Stirling engines, where the displacer piston and the working piston share the same cylinder, is complicated. A well-known solution is the rhombic drive, but this solution depends on oil lubrication because of the gear wheels connecting the two...... counter rotating crank shafts. In a hermetically sealed Stirling engine it is an advantage to avoid oil in the crank case, making the application of the rhombic drive difficult. In this paper, another crank mechanism is presented, which has been developed for a 9 kW single cylinder engine. The new crank...... mechanism is a further development of the mechanism in a previous 9 kW engine. The crank mechanism for the beta-type Stirling engine is based on two four-link straight line mechanisms pointing up and down, respectively. The mechanism pointing upwards is connected to the working piston, while the mechanism...

  13. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VI, MAINTAINING MECHANICAL GOVERNORS--DETROIT DIESEL ENGINES.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF MECHANICAL GOVERNORS USED ON DIESEL ENGINES. TOPICS ARE (1) TYPES OF GOVERNORS AND ENGINE LOCATION, (2) GOVERNOR APPLICATIONS, (3) LIMITING SPEED MECHANICAL GOVERNOR, (4) VARIABLE SPEED MECHANICAL GOVERNOR, AND (5) CONSTANT SPEED…

  14. Dynamic Mechanical and Nanofibrous Topological Combinatory Cues Designed for Periodontal Ligament Engineering.

    Science.gov (United States)

    Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won

    2016-01-01

    Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.

  15. Research Skills Enhancement in Future Mechanical Engineers

    Directory of Open Access Journals (Sweden)

    Jorge Lino Alves

    2011-04-01

    Full Text Available Nowadays, the Web is a common tool for students searching information about the subjects taught in the different university courses. Although this is a good tool for the first rapid knowledge, a deeper study is usually demanded.

    After many years of teaching a course about ceramic and composite materials in the Integrated Master in Mechanical Engineering of Faculty of Engineering of University of Porto, Portugal, the authors used the Bologna reformulation of the mechanical engineering course to introduce new teaching methodologies based on a project based learning methodology.

    One of the main innovations is a practical work that comprises the study of a recent ceramic scientific paper, using all the actual available tools, elaboration of a scientific report, work presentation and participation in a debate.

    With this innovative teaching method the enrolment of the students was enhanced with a better knowledge about the ceramics subject and the skills related with the CDIO competences.

    This paper presents the reasons for this implementation and explains the teaching methodology adopted as well as the changes obtained in the students’ final results.

  16. Mathematical formulas for industrial and mechanical engineering

    CERN Document Server

    Kadry, Seifedine

    2014-01-01

    Mathematical Formulas For Industrial and Mechanical Engineering serves the needs of students and teachers as well as professional workers in engineering who use mathematics. The contents and size make it especially convenient and portable. The widespread availability and low price of scientific calculators have greatly reduced the need for many numerical tables that make most handbooks bulky. However, most calculators do not give integrals, derivatives, series and other mathematical formulas and figures that are often needed. Accordingly, this book contains that information in an easy way to

  17. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs.

    Science.gov (United States)

    Riehl, Brandon D; Park, Jae-Hong; Kwon, Il Keun; Lim, Jung Yul

    2012-08-01

    Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.

  18. Channelled scaffolds for engineering myocardium with mechanical stimulation.

    Science.gov (United States)

    Zhang, Ting; Wan, Leo Q; Xiong, Zhuo; Marsano, Anna; Maidhof, Robert; Park, Miri; Yan, Yongnian; Vunjak-Novakovic, Gordana

    2012-10-01

    The characteristics of the matrix (composition, structure, mechanical properties) and external culture environment (pulsatile perfusion, physical stimulation) of the heart are important characteristics in the engineering of functional myocardial tissue. This study reports on the development of chitosan-collagen scaffolds with micropores and an array of parallel channels (~ 200 µm in diameter) that were specifically designed for cardiac tissue engineering using mechanical stimulation. The scaffolds were designed to have similar structural and mechanical properties of those of native heart matrix. Scaffolds were seeded with neonatal rat heart cells and subjected to dynamic tensile stretch using a custom designed bioreactor. The channels enhanced oxygen transport and facilitated the establishment of cell connections within the construct. The myocardial patches (14 mm in diameter, 1-2 mm thick) consisted of metabolically active cells that began to contract synchronously after 3 days of culture. Mechanical stimulation with high tensile stress promoted cell alignment, elongation, and expression of connexin-43 (Cx-43). This study confirms the importance of scaffold design and mechanical stimulation for the formation of contractile cardiac constructs. Copyright © 2011 John Wiley & Sons, Ltd.

  19. Reducing barriers to energy efficiency in the German mechanical engineering sector. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German mechanical engineering (ME) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of four case studies of energy management in German companies in the ME sector. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the ME sector may be improved. The results of the study for the ME sector in Germany are summarised in this executive summary under the following headings: - Characterising the mechanical engineering sector; - Case studies of energy management in the German mechanical engineering sector; - Evidence of barriers in the German mechanical engineering sector; - The role of energy service companies in the mechanical engineering sector; - Policy implications. (orig.)

  20. Reducing barriers to energy efficiency in the German mechanical engineering sector. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schleich, J.; Boede, U.

    2000-12-01

    This report describes the empirical research into barriers to energy efficiency in the German mechanical engineering (ME) sector. It is one of nine such reports in the BARRIERS project. The report contains description and analysis of four case studies of energy management in German companies in the ME sector. The results are analysed using the theoretical framework developed for the BARRIERS project. The report also provides brief recommendations on how these barriers to the rational use of energy (RUE) may be overcome and how energy efficiency within the ME sector may be improved. The results of the study for the ME sector in Germany are summarised in this executive summary under the following headings: - Characterising the mechanical engineering sector; - Case studies of energy management in the German mechanical engineering sector; - Evidence of barriers in the German mechanical engineering sector; - The role of energy service companies in the mechanical engineering sector; - Policy implications. (orig.)

  1. Mechanical stimulation in the engineering of heart muscle.

    Science.gov (United States)

    Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus

    2016-01-15

    Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.

  2. Formula Student as Part of a Mechanical Engineering Curriculum

    Science.gov (United States)

    Davies, Huw Charles

    2013-01-01

    Formula Student (FS) is a multi-university student design competition managed by the UK Institution of Mechanical Engineers. Students are required to demonstrate and prove their creativity and engineering skills through the design, manufacture and financing of a small formula style race car. This paper seeks to explore the educational value that…

  3. Exploring Interaction Space as Abstraction Mechanism for Task-Based User Interface Design

    DEFF Research Database (Denmark)

    Nielsen, C. M.; Overgaard, M.; Pedersen, M. B.

    2007-01-01

    Designing a user interface is often a complex undertaking. Model-based user interface design is an approach where models and mappings between them form the basis for creating and specifying the design of a user interface. Such models usually include descriptions of the tasks of the prospective user......, but there is considerable variation in the other models that are employed. This paper explores the extent to which the notion of interaction space is useful as an abstraction mechanism to reduce the complexity of creating and specifying a user interface design. We present how we designed a specific user interface through...... mechanism that can help user interface designers exploit object-oriented analysis results and reduce the complexity of designing a user interface....

  4. Proceedings of the sixth international and forty third national conference on fluid mechanics and fluid power: book of abstracts

    International Nuclear Information System (INIS)

    Jain, Anuj; Paul, Akshoy Ranjan

    2016-01-01

    Fluid Mechanics and Fluid Power (FMFP) Conference is an important meeting to promote all activities in the field of Fluid Mechanics and Fluid Power in India. FMFP-2016 offers great opportunity to scientists, researchers, engineers and business executives from all parts of the world to share the recent advancements and future trends in all aspects of fluid mechanics and fluid power- be it theoretical, experimental, applied and computational, and build network. It covers theoretical and experimental fluid dynamics, flow instability, transition, turbulence and control, fluid machinery, turbomachinery and fluid power, IC engines and gas turbines, multiphase flows, fluid-structure interaction and flow-induced noise, micro and nano fluid mechanics, bio-inspired fluid mechanics, energy and environment, specialized topics (transport phenomena in materials processing and manufacturing, MHD and EHD flows, granular flows, nuclear reactor, thermal hydraulics, defence and space engineering, sustainable habitat. Papers relevant to INIS are indexed separately

  5. Abstract Datatypes in PVS

    Science.gov (United States)

    Owre, Sam; Shankar, Natarajan

    1997-01-01

    PVS (Prototype Verification System) is a general-purpose environment for developing specifications and proofs. This document deals primarily with the abstract datatype mechanism in PVS which generates theories containing axioms and definitions for a class of recursive datatypes. The concepts underlying the abstract datatype mechanism are illustrated using ordered binary trees as an example. Binary trees are described by a PVS abstract datatype that is parametric in its value type. The type of ordered binary trees is then presented as a subtype of binary trees where the ordering relation is also taken as a parameter. We define the operations of inserting an element into, and searching for an element in an ordered binary tree; the bulk of the report is devoted to PVS proofs of some useful properties of these operations. These proofs illustrate various approaches to proving properties of abstract datatype operations. They also describe the built-in capabilities of the PVS proof checker for simplifying abstract datatype expressions.

  6. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus.

    Science.gov (United States)

    Xiao, Yinghua; Friis, Elizabeth A; Gehrke, Stevin H; Detamore, Michael S

    2013-10-01

    Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.

  7. Mechanical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  8. Superconducting Qubits as Mechanical Quantum Engines.

    Science.gov (United States)

    Sachtleben, Kewin; Mazon, Kahio T; Rego, Luis G C

    2017-09-01

    We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.

  9. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    Directory of Open Access Journals (Sweden)

    Wan Nurlina Wan Yahya

    2014-07-01

    Full Text Available Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration.

  10. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering.

    Science.gov (United States)

    Li, Ke; Zhang, Chunqiu; Qiu, Lulu; Gao, Lilan; Zhang, Xizheng

    2017-08-01

    Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers

  11. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  12. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  13. The Abstract Machine Model for Transaction-based System Control

    Energy Technology Data Exchange (ETDEWEB)

    Chassin, David P.

    2003-01-31

    Recent work applying statistical mechanics to economic modeling has demonstrated the effectiveness of using thermodynamic theory to address the complexities of large scale economic systems. Transaction-based control systems depend on the conjecture that when control of thermodynamic systems is based on price-mediated strategies (e.g., auctions, markets), the optimal allocation of resources in a market-based control system results in an emergent optimal control of the thermodynamic system. This paper proposes an abstract machine model as the necessary precursor for demonstrating this conjecture and establishes the dynamic laws as the basis for a special theory of emergence applied to the global behavior and control of complex adaptive systems. The abstract machine in a large system amounts to the analog of a particle in thermodynamic theory. The permit the establishment of a theory dynamic control of complex system behavior based on statistical mechanics. Thus we may be better able to engineer a few simple control laws for a very small number of devices types, which when deployed in very large numbers and operated as a system of many interacting markets yields the stable and optimal control of the thermodynamic system.

  14. A mechanism to assess the relationship between socio-technical ...

    African Journals Online (AJOL)

    A mechanism to assess the relationship between socio-technical congruence and project performance in incremental model. W.A.W.M. Sobri, S.S.M. Fauzi, M.H.N.M. Nasir, R Ahmad, A.J. Suali. Abstract. No Abstract. Keywords: coordination; software development; software project; software engineering project; ...

  15. The durability and mechanical strenght properties of bamboo in ...

    African Journals Online (AJOL)

    The durability and mechanical strenght properties of bamboo in reinforced concrete. GA Alade, FA Olutoge, AA Alade. Abstract. No Abstract. Journal of Applied Science, Engineering and Technology Vol. 4(2) 2004: 35-40. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  16. Cumulative abstracts of Cryogenic Technology Section proceedings of the Meeting on Engineering and Technology in Basic Research 1982-2003

    International Nuclear Information System (INIS)

    Ikeda, Hiroshi

    2005-01-01

    The Cryogenic Technology Section in the Meeting on Engineering and Technology in Basic Research had been held by Institute of Molecular Science, Plasma Research Center and KEK since 1976. The abstracts of papers and reports read in the meeting on engineering and technology in basic research from 1982 to 2003 are classified by five parts. The first part includes 22 papers on automation system; the second part contains 17 papers on cryostat production; the third part 31 papers on peripheral device; the forth 23 papers on production of cryogenic device and the fifth 18 papers on repair and management of cryogenic device. Further information is able to be obtained by each homepage. (S.Y.)

  17. MULTIDISCIPLINARY PROJECTS FOR SECOND YEAR CHEMICAL AND MECHANICAL ENGINEERING STUDENTS

    Directory of Open Access Journals (Sweden)

    MARWAN M. SHAMEL

    2013-04-01

    Full Text Available In the second semester of the second year of a Mechanical Engineering course, students are supposed to take a Module Outside the Main Discipline (MOMD. This module is chosen to be “Product Design Exercise” a module that is offered to Chemical Engineering students at the same stage. The aim was to expose students from both disciplines to an environment in which they are encouraged to interact with and engage team members with a relatively different background. The students were divided into eight groups all comprised of Chemical and Mechanical Engineering students, and they were offered different open-ended projects that were selected to exploit the knowledge developed by the students thus far and they were slightly skewed towards Chemical Engineering. The students demonstrated a high level of cooperation and motivation throughout the period of the project. Effective communication and closing of knowledge gaps were prevalent. At the end of the project period, students produced a journal paper in lieu of the project report.

  18. Gasoline Engine Mechanics. Performance Objectives. Intermediate Course.

    Science.gov (United States)

    Jones, Marion

    Several intermediate performance objectives and corresponding criterion measures are listed for each of six terminal objectives presented in this curriculum guide for an intermediate gasoline engine mechanics course at the secondary level. (For the beginning course guide see CE 010 947.) The materials were developed for a two-semester (2 hour…

  19. A study of competence in mathematics and mechanics in an engineering curriculum

    Science.gov (United States)

    Munns, Andrew

    2017-11-01

    Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as 'The Mathematics Problem', with students not demonstrating understanding of the subject. This paper will suggest that students are constructing different concept images in engineering and mathematics, based on their perception of either the use or exchange-value for the topics. Using a mixed methods approach, the paper compares 10 different types of concept image constructed by students, which suggests that familiar procedural images are preferred in mathematics. In contrast strategic and conceptual images develop for mechanics throughout the years of the programme, implying that different forms of competence are being constructed by students between the two subjects. The paper argues that this difference is attributed to the perceived use-value of mechanics in the career of the engineer, compared to the exchange-value associated with mathematics. Questions are raised about the relevance of current definitions of competence given that some routine mathematical operations previously performed by engineers are now being replaced by technology, in the new world of work.

  20. Building Safe Concurrency Abstractions

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann

    2014-01-01

    Concurrent object-oriented programming in Beta is based on semaphores and coroutines and the ability to define high-level concurrency abstractions like monitors, and rendezvous-based communication, and their associated schedulers. The coroutine mechanism of SIMULA has been generalized into the no......Concurrent object-oriented programming in Beta is based on semaphores and coroutines and the ability to define high-level concurrency abstractions like monitors, and rendezvous-based communication, and their associated schedulers. The coroutine mechanism of SIMULA has been generalized...

  1. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  2. Engineering of Impulse Mechanism for Mechanical Hander Power Tools

    Science.gov (United States)

    Nikolaevich Drozdov, Anatoliy

    2018-03-01

    The solution to the problem of human security in cities should be considered on the basis of an integrated and multidisciplinary approach, including issues of security and ecology in the application of technical means used to ensure the viability and development of technocracy. In this regard, an important task is the creation of a safe technique with improved environmental properties with high technological characteristics. This primarily relates to mechanised tool — the division of technological machines with built in engines is that their weight is fully or partially perceived by the operator’s hands, making the flow and control of the car. For this subclass of machines is characterized by certain features: a built-in motor, perception of at least part of their weight by the operator during the work, the implementation of feeding and management at the expense of the muscular power of the operator. Therefore, among the commonly accepted technical and economic characteristics, machines in this case, important ergonomic (ergonomics), regulation of levels which ensures the safety of the operator. To ergonomics include vibration, noise characteristics, mass, and force feeding machine operator. Vibration is a consequence of the dynamism of the system operator machine - processed object (environment) in which the engine energy is redistributed among all the structures, causing their instability. In the machine vibration caused by technological and constructive (transformative mechanisms) unbalance of individual parts of the drive, the presence of technological and design (impact mechanisms) clearances and other reasons. This article describes a new design of impulse mechanism for hander power tools (wrenches, screwdrivers) with enhanced torque. The article substantiates a simulation model of dynamic compression process in an operating chamber during impact, provides simulation results and outlines further lines of research.

  3. Advanced mechanics of solids

    CERN Document Server

    Bruhns, Otto T

    2003-01-01

    Mechanics, and in particular, the mechanics of solids, forms the basis of all engi­ neering sciences. It provides the essential foundations for understanding the action of forces on bodies, and the effects of these forces on the straining of the body on the one hand, and on the deformation and motion of the body on the other. Thus, it provides the solutions of many problems with which the would-be engineer is going to be confronted with on a daily basis. In addition, in engineering studies, mechanics has a more vital importance, which many students appreciate only much later. Because of its clear, and analyt­ ical setup, it aids the student to a great extent in acquiring the necessary degree of abstraction ability, and logical thinking, skills without which no engineer in the practice today would succeed. Many graduates have confirmed to me that learning mechanics is generally per­ ceived as difficult. On the other hand, they always also declared that the preoccu­ pation with mechanics made an essential c...

  4. An Interactive Simulator-Based Pedagogical (ISP) Approach for Teaching Microcontrollers in Engineering Programs

    Science.gov (United States)

    Tang, Shensheng

    2014-01-01

    Microcontrollers is a required course in most Electrical, Computer, and Mechanic Engineering (Technology) programs at U.S. universities. Most engineering courses (e.g., microcontrollers), by nature, introduce abstract concepts, definitions, and models, and use primarily lectures and readings (words, symbols) to transmit information. This…

  5. Ghana Science Abstracts

    International Nuclear Information System (INIS)

    Entsua-Mensah, C.

    2004-01-01

    This issue of the Ghana Science Abstracts combines in one publication all the country's bibliographic output in science and technology. The objective is to provide a quick reference source to facilitate the work of information professionals, research scientists, lecturers and policy makers. It is meant to give users an idea of the depth and scope and results of the studies and projects carried out. The scope and coverage comprise research outputs, conference proceedings and periodical articles published in Ghana. It does not capture those that were published outside Ghana. Abstracts reported have been grouped under the following subject areas: Agriculture, Biochemistry, Biodiversity conservation, biological sciences, biotechnology, chemistry, dentistry, engineering, environmental management, forestry, information management, mathematics, medicine, physics, nuclear science, pharmacy, renewable energy and science education

  6. International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing

    CERN Document Server

    Nigrelli, Vincenzo; Oliveri, Salvatore; Peris-Fajarnes, Guillermo; Rizzuti, Sergio

    2017-01-01

    This book gathers papers presented at the International Joint Conference on Mechanics, Design Engineering and Advanced Manufacturing (JCM 2016), held on 14-16 September, 2016, in Catania, Italy. It reports on cutting-edge topics in product design and manufacturing, such as industrial methods for integrated product and process design; innovative design; and computer-aided design. Further topics covered include virtual simulation and reverse engineering; additive manufacturing; product manufacturing; engineering methods in medicine and education; representation techniques; and nautical, aeronautics and aerospace design and modeling. The book is divided into eight main sections, reflecting the focus and primary themes of the conference. The contributions presented here will not only provide researchers, engineers and experts in a range of industrial engineering subfields with extensive information to support their daily work; they are also intended to stimulate new research directions, advanced applications of t...

  7. A new guide of mechanical engineering

    International Nuclear Information System (INIS)

    1993-01-01

    This book introduces a new guide of mechanical engineering which deals with basic thing such as mathematical formula, dynamics, material dynamics, industrial materials, machine design like screws and rivets, gears and springs, the method of machine such as drilling machine and its work, planar, shaper and slotter and their work, honing and super finishing machine and their work, measuring of machine, test and machine, hydraulics and hydraulic machine and telecommunication equipment and automation.

  8. From action to abstraction: Gesture as a mechanism of change.

    Science.gov (United States)

    Goldin-Meadow, Susan

    2015-12-01

    Piaget was a master at observing the routine behaviors children produce as they go from knowing less to knowing more about at a task, and making inferences not only about how the children understood the task at each point, but also about how they progressed from one point to the next. In this paper, I examine a routine behavior that Piaget overlooked-the spontaneous gestures speakers produce as they explain their solutions to a problem. These gestures are not mere hand waving. They reflect ideas that the speaker has about the problem, often ideas that are not found in that speaker's talk. But gesture can do more than reflect ideas-it can also change them. In this sense, gesture behaves like any other action; both gesture and action on objects facilitate learning problems on which training was given. However, only gesture promotes transferring the knowledge gained to problems that require generalization. Gesture is, in fact, a special kind of action in that it represents the world rather than directly manipulating the world (gesture does not move objects around). The mechanisms by which gesture and action promote learning may therefore differ-gesture is able to highlight components of an action that promote abstract learning while leaving out details that could tie learning to a specific context. Because it is both an action and a representation, gesture can serve as a bridge between the two and thus be a powerful tool for learning abstract ideas.

  9. Summary of Research 2001, Department of Mechanical Engineering, Graduate School of Engineering and Applied Sciences

    National Research Council Canada - National Science Library

    McNelley, Terry

    2002-01-01

    This report contains project summaries of the research projects in the Department of Mechanical Engineering A list of recent publications is also included, which consists of conference presentations...

  10. Conference on Hamiltonian Systems and Celestial Mechanics 2014 & Workshop on Virus Dynamics and Evolution : Extended Abstracts Spring 2014

    CERN Document Server

    Cors, Josep; Llibre, Jaume; Korobeinikov, Andrei

    2015-01-01

    The two parts of the present volume contain extended conference abstracts corresponding to selected talks given by participants at the "Conference on Hamiltonian Systems and Celestial Mechanics 2014" (HAMSYS2014) (15 abstracts) and at the "Workshop on Virus Dynamics and Evolution" (12 abstracts), both held at the Centre de Recerca Matemàtica (CRM) in Barcelona from June 2nd to 6th, 2014, and from June 23th to 27th, 2014, respectively. Most of them are brief articles, containing preliminary presentations of new results not yet published in regular research journals. The articles are the result of a direct collaboration between active researchers in the area after working in a dynamic and productive atmosphere. The first part is about Central Configurations, Periodic Orbits and Hamiltonian Systems with applications to Celestial Mechanics – a very modern and active field of research. The second part is dedicated to mathematical methods applied to viral dynamics and evolution. Mathematical modelling of biologi...

  11. 7. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2014-09-01

    This book includes the abstracts of the communications presented at the 7th International Conference on Materials Science and Condensed Matter Physics, traditional biennial meeting organized by the Institute of Applied Physics of the Academy of Sciences of Moldova (IAP) which celebrates this year its 50th anniversary. The conference reports have been delivered in a broad range of topics in materials science, condensed matter physics, electrochemistry reflecting the research results of the scientific staff and Ph.D. students from the IAP as well as those by distinguished guests from different countries. The abstracts cover special issues of modern theoretical and experimental physics and advanced technology, such as advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structural properties; ordering and phase transitions; quantum optics and electronics; strong correlated electronic systems; crystal growth; electronic processes and transport properties of semiconductors and superconductors; ordering processes in magnetic and multiferroic systems; interaction of light and matter, and optical phenomena; properties of composites, meta materials and molecular materials; crystal engineering of solid state structures; metal-organic materials; porous materials; advanced materials with magnetic, luminescent, nonlinear optical , thermoelectric, catalytic, analytic and pharmaceutical properties; defects engineering and mechanical properties; crystallography of organic, inorganic and supramolecular compounds; advanced physics of nanosystems; methods of nanostructures and nanomaterials fabrication and characterization; electronic properties of quantum wells, superlattices, nanowires and nanodots; meso- and nanoelectronics, optical processes in nanostructures; emerging phenomena in nanocomposites and nanomaterials; device modelling and simulation, device structures and elements; photovoltaics: crystals, thin films, nanoparticles

  12. Engineering a Place for Women: A Study of How Departmental Climate Influences the Career Satisfaction of Female Mechanical Engineering Faculty Members

    Science.gov (United States)

    Young, Monica J.

    2012-01-01

    The purpose of this mixed-methods study was to better understand how female mechanical engineering faculty members' career experiences in academia affect their satisfaction. Specifically, the research considered differences in satisfaction reported by female and male mechanical engineering faculty members in terms of: (a) departmental…

  13. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers

    OpenAIRE

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable...

  14. A Study of Competence in Mathematics and Mechanics in an Engineering Curriculum

    Science.gov (United States)

    Munns, Andrew

    2017-01-01

    Professional bodies expect engineers to show competence in both mathematics and engineering topics such as mechanics, using their abilities in both of these to solve problems. Yet within engineering programmes there is a phenomenon known as "The Mathematics Problem", with students not demonstrating understanding of the subject. This…

  15. Computational Quantum Mechanics for Materials Engineers The EMTO Method and Applications

    CERN Document Server

    Vitos, L

    2007-01-01

    Traditionally, new materials have been developed by empirically correlating their chemical composition, and the manufacturing processes used to form them, with their properties. Until recently, metallurgists have not used quantum theory for practical purposes. However, the development of modern density functional methods means that today, computational quantum mechanics can help engineers to identify and develop novel materials. Computational Quantum Mechanics for Materials Engineers describes new approaches to the modelling of disordered alloys that combine the most efficient quantum-level th

  16. Simulation based engineering in solid mechanics

    CERN Document Server

    Rao, J S

    2017-01-01

    This book begins with a brief historical perspective of the advent of rotating machinery in 20th century Solid Mechanics and the development of the discipline of the Strength of Materials. High Performance Computing (HPC) and Simulation Based Engineering Science (SBES) have gradually replaced the conventional approach in Design bringing science directly into engineering without approximations. A recap of the required mathematical principles is given. The science of deformation, strain and stress at a point under the application of external traction loads is next presented. Only one-dimensional structures classified as Bars (axial loads), Rods (twisting loads) and Beams (bending loads) are considered in this book. The principal stresses and strains and von Mises stress and strain that used in design of structures are next presented. Lagrangian solution was used to derive the governing differential equations consistent with assumed deformation field and solution for deformations, strains and stresses were obtai...

  17. PREFACE: 1st International Conference on Mechanical Engineering Research 2011 (ICMER2011)

    Science.gov (United States)

    Abu Bakar, Rosli

    2012-09-01

    The year 2010 represented a significant milestone in the history of the Mechanical Engineering community with the organization of the first and second national level conferences (National Conference in Mechanical Engineering for Research, 1st and 2nd NCMER) at Universiti Malaysia Pahang on 26-27 May and 3-4 December 2010. The conferences attracted a large number of delegates from different premier academic and research institutions in the country to participate and share their research experiences at the conference. The International Conference on Mechanical Engineering Research (ICMER 2011) followed on from the first and second conferences due to good support from researchers. The ICMER 2011 is a good platform for researchers and postgraduate students to present their latest finding in research. The conference covers a wide range of topics including the internal combustion engine, machining processes, heat and mass transfer, fuel, biomechanical analysis, aerodynamic analysis, thermal comfort, computational techniques, design and simulation, automotive transmission, optimization techniques, hybrid electric vehicles, engine vibration, heat exchangers, finite element analysis, computational fluid dynamics, green energy, vehicle dynamics renewable energy, combustion, design, product development, advanced experimentation techniques, to name but a few. The international conference has helped to bridge the gap between researchers working at different institutions and in different countries to share their knowledge and has helped to motivate young scientists with their research. This has also given some clear direction for further research from the deliberations of the conference. Several people have contributed in different ways to the success of the conference. We thank the keynote speakers and all authors of the contributed papers, for the cooperation rendered to us in the publication of the CD conference proceedings. In particular, we would like to place on record our

  18. Spatial Distribution of Amorphization Intensity in B4C during Rate-Dependent Indentation and Ballistic Impact Processes [1.2 Solid Mechanics

    Science.gov (United States)

    2017-11-17

    Journal of Engineering Materials and Technology 2014-present • Associate Editor, Mechanics of Materials, an International Journal 2008-present...Honorable Mention in the Elegance of Science Art Competition 2017 • Mechanical & Aerospace Engineering Graduate Student Research Award 2017...Processes Ghatu Subhash Department of Mechanical and Aerospace Engineering University of Florida, Gainesville, FL, 32611 Abstract At high

  19. Abstractions for Mechanical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2012-01-01

    mechanical system. The tangential manifolds are generated using constants of motion, which can be derived from Noether's theorem. The transversal manifolds are subsequently generated on a reduced space, given by the Routhian, via action-angle coordinates. The method fully applies for integrable systems. We...

  20. The Engineering Mechanism in Formation of Informational Basis of Analysis of Financial Sustainability of Enterprise

    Directory of Open Access Journals (Sweden)

    Chumak Oksana V.

    2017-12-01

    Full Text Available The article is aimed at substantiating the mechanism and instruments of financial and accountancy engineering with purpose of formation of information support of analysis of financial sustainability in the enterprise management system. The essence and preconditions of introduction of financial and accountancy engineering are disclosed. Expediency of application of the financial engineering mechanism at enterprise while analyzing financial sustainability has been substantiated. An analysis of methods of formation and use of derivative balance reports was carried out. Models of the conception of mechanisms and instruments of financial and accountancy engineering in analyzing the financial sustainability of enterprise have been suggested. A mega-accounts system in the working plan of the enterprise’s accounts has been recommended. Seven iterations have been provided, which constitute the basis of accounting-analytical support of the accountancy engineering. The information obtained on the basis of the financial and accountancy engineering mechanism allows to carry out real assessment of the enterprise’s financial sustainability.

  1. Propulsion Mechanism of Catalytic Microjet Engines.

    Science.gov (United States)

    Fomin, Vladimir M; Hippler, Markus; Magdanz, Veronika; Soler, Lluís; Sanchez, Samuel; Schmidt, Oliver G

    2014-02-01

    We describe the propulsion mechanism of the catalytic microjet engines that are fabricated using rolled-up nanotech. Microjets have recently shown numerous potential applications in nanorobotics but currently there is a lack of an accurate theoretical model that describes the origin of the motion as well as the mechanism of self-propulsion. The geometric asymmetry of a tubular microjet leads to the development of a capillary force, which tends to propel a bubble toward the larger opening of the tube. Because of this motion in an asymmetric tube, there emerges a momentum transfer to the fluid. In order to compensate this momentum transfer, a jet force acting on the tube occurs. This force, which is counterbalanced by the linear drag force, enables tube velocities of the order of 100 μ m/s. This mechanism provides a fundamental explanation for the development of driving forces that are acting on bubbles in tubular microjets.

  2. The Application of Problem-Based Learning in Mechanical Engineering

    Science.gov (United States)

    Putra, Z. A.; Dewi, M.

    2018-02-01

    The course of Technology and Material Testing prepare students with the ability to do a variety of material testing in the study of mechanical engineering. Students find it difficult to understand the materials to make them unable to carry out the material testing in accordance with the purpose of study. This happens because they knowledge is not adequately supported by the competence to find and construct learning experience. In this study, quasy experiment research method with pre-post-test with control group design was used. The subjects of the study were students divided in two groups; control and experiment with twenty-two students in each group. Study result: their grades showed no difference in between the pre-test or post-test in control group, but the difference in grade existed between the pre-test and post-test in experiment group. Yet, there is no significant difference in the study result on both groups. The researcher recommend that it is necessary to develop Problem-Based Learning that suits need analysis on D3 Program for Mechanical Engineering Department at the State University of Padang, to ensure the compatibility between Model of Study and problems and need. This study aims to analyze how Problem-Based Learning effects on the course of Technology and Material Testing for the students of D3 Program of Mechanical Engineering of the State University of Padang.

  3. Game mechanics engine

    OpenAIRE

    Magnusson, Lars V

    2011-01-01

    Game logic and game rules exists in all computer games, but they are created di erently for all game engines. This game engine dependency exists because of how the internal object model is implemented in the engine, as a place where game logic data is intermingled with the data needed by the low- level subsystems. This thesis propose a game object model design, based on existing theory, that removes this dependency and establish a general game logic framework. The thesis the...

  4. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers.

    Science.gov (United States)

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable, ensures prompt service, and, most importantly, enhances safe management of mechanical ventilators.

  5. comparison of elastic-plastic FE method and engineering method for RPV fracture mechanics analysis

    International Nuclear Information System (INIS)

    Sun Yingxue; Zheng Bin; Zhang Fenggang

    2009-01-01

    This paper described the FE analysis of elastic-plastic fracture mechanics for a crack in RPV belt line using ABAQUS code. It calculated and evaluated the stress intensity factor and J integral of crack under PTS transients. The result is also compared with that by engineering analysis method. It shows that the results using engineering analysis method is a little larger than the results using FE analysis of 3D elastic-plastic fracture mechanics, thus the engineering analysis method is conservative than the elastic-plastic fracture mechanics method. (authors)

  6. NASA GSFC Mechanical Engineering Latest Inputs for Verification Standards (GEVS) Updates

    Science.gov (United States)

    Kaufman, Daniel

    2003-01-01

    This viewgraph presentation provides information on quality control standards in mechanical engineering. The presentation addresses safety, structural loads, nonmetallic composite structural elements, bonded structural joints, externally induced shock, random vibration, acoustic tests, and mechanical function.

  7. Grounding abstractness: Abstract concepts and the activation of the mouth

    Directory of Open Access Journals (Sweden)

    Anna M Borghi

    2016-10-01

    Full Text Available One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth. While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts.

  8. Elements of Motivational Structure for Studying Mechanical Engineering

    Science.gov (United States)

    Dubreta, Nikša; Miloš, Damir

    2017-01-01

    The article presents the findings on students' reasons for studying mechanical engineering. These reasons were covered in terms of extrinsic and intrinsic motivation additionally related to selected independent variables of the sample--students' secondary school Grade Point Average, their gender and the socio-economic status. The research was…

  9. Essays on the history of mechanical engineering

    CERN Document Server

    Genchi, Giuseppe

    2016-01-01

    This book treats several subjects from the History of Mechanism and Machine Science, and also contains an illustrative presentation of the Museum of Engines and Mechanisms of the University of Palermo, Italy, which houses a collection of various pieces of machinery from the last 150 years. The various sections deal with some eminent scientists of the past, with the history of industrial installations, machinery and transport, with the human inventiveness for mechanical and scientific devices, and with robots and human-driven automata. All chapters have been written by experts in their fields. The volume shows a wide-ranging panorama on the historical progress of scientific and technical knowledge in the past centuries. It will stimulate new research and ideas for those involved in the history of Science and Technology.

  10. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  11. 49 CFR 173.220 - Internal combustion engines, self-propelled vehicles, mechanical equipment containing internal...

    Science.gov (United States)

    2010-10-01

    ... and vehicles with certain electronic equipment when transported by aircraft or vessel. When an... vehicles, mechanical equipment containing internal combustion engines, and battery powered vehicles or... Than Class 1 and Class 7 § 173.220 Internal combustion engines, self-propelled vehicles, mechanical...

  12. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  13. Estrogen inhibits lysyl oxidase and decreases mechanical function in engineered ligaments.

    Science.gov (United States)

    Lee, Cassandra A; Lee-Barthel, Ann; Marquino, Louise; Sandoval, Natalie; Marcotte, George R; Baar, Keith

    2015-05-15

    Women are more likely to suffer an anterior cruciate ligament (ACL) rupture than men, and the incidence of ACL rupture in women rises with increasing estrogen levels. We used an engineered ligament model to determine how an acute rise in estrogen decreases the mechanical properties of ligaments. Using fibroblasts isolated from human ACLs from male or female donors, we engineered ligaments and determined that ligaments made from female ACL cells had more collagen and were equal in strength to those made from male ACL cells. We then treated engineered ligaments for 14 days with low (5 pg/ml), medium (50 pg/ml), or high (500 pg/ml) estrogen, corresponding to the range of in vivo serum estrogen concentrations and found that collagen within the grafts increased without a commensurate increase in mechanical strength. Mimicking the menstrual cycle, with 12 days of low estrogen followed by 2 days of physiologically high estrogen, resulted in a decrease in engineered ligament mechanical function with no change in the amount of collagen in the graft. The decrease in mechanical stiffness corresponded with a 61.7 and 76.9% decrease in the activity of collagen cross-linker lysyl oxidase with 24 and 48 h of high estrogen, respectively. Similarly, grafts treated with the lysyl oxidase inhibitor β-aminoproprionitrile (BAPN) for 24 h showed a significant decrease in ligament mechanical strength [control (CON) = 1.58 ± 0.06 N; BAPN = 1.06 ± 0.13 N] and stiffness (CON = 7.7 ± 0.46 MPa; BAPN = 6.1 ± 0.71 MPa) without changing overall collagen levels (CON = 396 ± 11.5 μg; BAPN = 382 ± 11.6 μg). Together, these data suggest that the rise in estrogen during the follicular phase decreases lysyl oxidase activity in our engineered ligament model and if this occurs in vivo may decrease the stiffness of ligaments and contribute to the elevated rate of ACL rupture in women. Copyright © 2015 the American Physiological Society.

  14. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    Science.gov (United States)

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  15. Basic Gasoline Engine Mechanics. Florida Vocational Program Guide.

    Science.gov (United States)

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This packet contains a program guide and Career Merit Achievement Plan (Career MAP) for the implementation of a basic gasoline engine mechanics program in Florida secondary and postsecondary schools. The program guide describes the program content and structure, provides a program description, lists job titles under the program, and includes a…

  16. Engine Fundamentals: Automotive Mechanics Instructional Program. Block 2.

    Science.gov (United States)

    O'Brien, Ralph D.

    The second of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in engine fundamentals at the secondary and postsecondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…

  17. Mechanical design and engineering calculation of the SMCAMS magnet

    International Nuclear Information System (INIS)

    Chen Guosheng

    2001-01-01

    The basis of the mechanical design of the SMCAMS magnet, and the structure characters of the magnet and its coils are introduced. Finally, the engineering design of other parts, including deflectors, probes and accelerating electrodes are described

  18. Prospect of mechanical engineering. Report from MIT; Kikai kogaku no atarashii tenkai. MIT kara no hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Asada, H [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1996-01-05

    The author of this article is a professor of Department of Mechanical Engineering of Massachusetts Institute of Technology (MIT) and the director general of Laboratory for Information Systems and Technology of the institute. At Department of Mechanical Engineering of Engineering Faculty of world-famous MIT, Laboratory for Information Systems and Technology was established in 1994 and in the same year, the curricula of the department were greatly revised after 30 years for its enforcement from the new semester starting from September, 1995. These two occasions are suggestive for guessing the future of mechanical engineering, hence its aim and meaning are introduced. Department of Mechanical Engineering aims to bring up system integrators who can consolidate systems based on wide-ranged knowledge, and its basic subjects are divided into 4 subjects namely dynamics and control, heat and fluid, system engineering and control, and design and production, and it has been decided that each of them is taught in equal weight and in parallel. Also as a new study field in the above Department of Mechanical Engineering, nanotechnology and artificial intelligence, and high-technological aircraft and networks are shown as examples.

  19. Review on patents for mechanical stimulation of articular cartilage tissue engineering

    NARCIS (Netherlands)

    Donkelaar, van C.C.; Schulz, R.M.

    2008-01-01

    To repair articular cartilage defects in osteoarthritic patients with three-dimensional tissue engineered chondrocyte grafts, requires the formation of new cartilage with sufficient mechanical properties. The premise is that mechanical stimulation during the culturing process is necessary to reach

  20. Thermodynamic analysis of diesel engine coupled with ORC and absorption refrigeration cycle

    International Nuclear Information System (INIS)

    Salek, Farhad; Moghaddam, Alireza Naghavi; Naserian, Mohammad Mahdi

    2017-01-01

    Highlights: • Coupling ORC and Ammonia absorption cycles with diesel engine to recover energy. • By using designed bottoming system, recovered diesel engine energy is about 10%. • By using designed bottoming system, engine efficiency will grow about 4.65%. - Abstract: In this paper, Rankine cycle and Ammonia absorption cycle are coupled with Diesel engine to recover the energy of exhaust gases. The novelty of this paper is the use of ammonia absorption refrigeration cycle bottoming Rankine cycle which coupled with diesel engine to produce more power. Bottoming system converts engine exhaust thermal energy to cooling and mechanical energy. Energy transfer process has been done by two shell and tube heat exchangers. Simulation processes have been done by programming mathematic models of cycles in EES Program. Based on results, recovered energy varies with diesel engine load. For the particular load case of current research, the use of two heat exchangers causes 0.5% decrement of engine mechanical power. However, the recovered energy is about 10% of engine mechanical power.

  1. Diesel Engine Mechanics.

    Science.gov (United States)

    Foutes, William A.

    Written in student performance terms, this curriculum guide on diesel engine repair is divided into the following eight sections: an orientation to the occupational field and instructional program; instruction in operating principles; instruction in engine components; instruction in auxiliary systems; instruction in fuel systems; instruction in…

  2. Mechanical-engineering aspects of mirror-fusion technology

    International Nuclear Information System (INIS)

    Fisher, D.K.; Doggett, J.N.

    1982-01-01

    The mirror approach to magnetic fusion has evolved from the original simple mirror cell to today's mainline effort: the tandem-mirror machine with thermal barriers. Physics and engineering research is being conducted throughout the world, with major efforts in Japan, the USSR, and the US. At least one facility under construction (MFTF-B) will approach equivalent energy breakeven in physics performance. Significant mechanical engineering development is needed, however, before a demonstration reactor can be constructed. The principal areas crucial to mirror reactor development include large high-field superconducting magnets, high-speed continuous vacuum-pumping systems, long-pulse high-power neutral-beam and rf-plasma heating systems, and efficient high-voltage high-power direct converters. Other areas common to all fusion systems include tritium handling technology, first-wall materials development, and fusion blanket design

  3. Modular Engineering Concept at Novo Nordisk Engineering

    DEFF Research Database (Denmark)

    Moelgaard, Gert; Miller, Thomas Dedenroth

    1997-01-01

    This report describes the concept of a new engineering method at Novo Nordisk Engineering: Modular Engineering (ME). Three tools are designed to support project phases with different levels of detailing and abstraction. ME supports a standard, cross-functional breakdown of projects that facilitates...

  4. A Typology of Techniques for Motivation of Personnel at Mechanical Engineering Enterprises

    Directory of Open Access Journals (Sweden)

    Melnyk Olga G.

    2015-03-01

    Full Text Available The purpose of the article is to develop a typology of techniques for motivation of personnel at mechanical engineering enterprises providing for systematization of their forms on the basis of a number of the existing features and identified new ones, which are justified by the requirements of today. There has been proved the fragmentary character of developments in this area making it impossible to form basic prerequisites for studying the concept. It has been found that certain features of the typology of methods for motivating employees may also be signs of a typology of techniques for motivation of personnel at enterprises of mechanical engineering industry. Among the current signs of a typology of techniques for motivation of personnel at mechanical engineering enterprises it is proposed to use the following ones: the nature of the impact; results obtained, object of the impact; direction; nature of the objectives; scope of the anticipated changes in the existing motivation system; nature of the needs, at which the techniques are directed. In addition, expediency of introducing new features of the typology, namely: the novelty level (classic and innovative motivation techniques, level of individualization (individual and standard; level of formalization (formalized at the high, medium and low level, source of the need for formation and implementation (the techniques, which necessity is specified by the enterprise, and the techniques, which necessity is specified by the business environment, origin («field» and «office» ones. These results allow forming a holistic view of the diversity of techniques for motivation of personnel at mechanical engineering enterprises as well as reasonable choosing among them their individual types at improving the motivation system. Prospects for further research in this direction should be allocation and systematization of the factors influencing the choice of one or another technique for motivation of

  5. Mechanical Objects and the Engineering Learner: An Experimental Study of How the Presence of Objects Affects Students' Performance on Engineering Related Tasks

    Science.gov (United States)

    Bairaktarova, Diana N.

    2013-01-01

    People display varying levels of interaction with the mechanical objects in their environment; engineers in particular as makers and users of these objects display a higher level of interaction with them. Investigating the educational potential of mechanical objects in stimulating and supporting learning in engineering is warranted by the fact…

  6. Technical Work Plan for: Near Field Environment: Engineered System: Radionuclide Transport Abstraction Model Report

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2006-12-08

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model

  7. Performance comparison of a novel configuration of beta-type Stirling engines with rhombic drive engine

    International Nuclear Information System (INIS)

    Solmaz, Hamit; Karabulut, Halit

    2014-01-01

    Highlights: • The paper describes a novel arrangement of a beta-type Stirling engine. • Its performance was compared with rhombic drive engine. • The power output of the engine was found to be greater than rhombic drive. • Efficiency was found to be higher than rhombic drive at the same working fluid mass. • Efficiency was found to be lower than rhombic drive at the same charge pressure. - Abstract: This study presents a beta type Stirling engine mechanism and its performance analysis. The displacer motion of the engine is performed by a lever mechanism. The performance of the engine was investigated via comparing with a rhombic-drive engine possessing an equal sided rhombic. Comparison was made for kinematic behaviors, power and thermal efficiency. For comparison; the piston swept volume, the inner heat transfer area, the hot and cold end temperatures, the inner heat transfer coefficient, charge pressure and dead volumes were kept equal for both engines. As working fluid the helium was used. Thermodynamic treatments of engines were performed via the nodal analysis. The power of the lever driven engine was found to be greater than the power of the rhombic drive engine. Under the equal charge pressure, the thermal efficiency of the lever driven engine was found to be lower than the efficiency of the rhombic drive engine however, under the equal working fluid mass the thermal efficiency of the lever driven engine was found to be greater than that of the rhombic drive engine. The external volume and mass of the lever driven engine is lower than the rhombic drive engine

  8. Alternative evaluation of innovations’ effectiveness in mechanical engineering

    Science.gov (United States)

    Puryaev, A. S.

    2017-09-01

    The aim of present work is approbation of the developed technique for assessing innovations’ effectiveness. We demonstrate an alternative assessment of innovations’ effectiveness (innovation projects) in mechanical engineering on illustrative example. It is proposed as an alternative to the traditional method technique based on the value concept and the method of “Cash flow”.

  9. NPP life management (abstracts)

    International Nuclear Information System (INIS)

    Litvinskij, L.L.; Barbashev, S.V.

    2002-01-01

    Abstracts of the papers presented at the International conference of the Ukrainian Nuclear Society 'NPP Life Management'. The following problems are considered: modernization of the NPP; NPP life management; waste and spent nuclear fuel management; decommissioning issues; control systems (including radiation and ecological control systems); information and control systems; legal and regulatory framework. State nuclear regulatory control; PR in nuclear power; training of personnel; economics of nuclear power engineering

  10. A Model for Implementing Practical Design in the Education of Mechanical Engineers

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Mouritsen, Ole Ø.; Andersen, Torben Ole

    2006-01-01

    In this paper the PBL model used at Aalborg University in the mechanical engineering is shortly presented. A specific semester with a both theoretical and practical content that allow the students to is presented in detail. It is then used as a reference project for a subsequent discussion on three...... potential concerns with respect to the continued succes of problem and project based learning in mechanical and mechatronics engineering namely: individual assessment, bologna (student exchange) model and research based teaching....

  11. Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications

    International Nuclear Information System (INIS)

    Yan, Libo; Chouw, Nawawi; Jayaraman, Krishnan

    2015-01-01

    Highlights: • UV weathering degraded mechanical properties of flax/epoxy composites. • SEM confirmed degradation in fibre/matrix interfacial bonding. • UV weathering caused discolouration, matrix erosion, microcracking. - Abstract: The lack of data related to durability is one major challenge that needed to be addressed prior to the widespread acceptance of natural fibre reinforced polymer composites for engineering applications. In this work, the combined effect of ultraviolet (UV) radiation and water spraying on the mechanical properties of flax fabric reinforced epoxy composite was investigated to assess the durability performance of this composite used for civil engineering applications. Specimens fabricated by hand lay-up process were exposed in an accelerated weathering chamber for 1500 h. Tensile and three-point bending tests were performed to evaluate the mechanical properties. Scanning electron microscope (SEM) was used to analyse the microstructures of the composites. In addition, the durability performance of flax/epoxy composite was compared with synthetic (glass and carbon) and hybrid fibre reinforced composites. The test results show that the tensile strength/modulus of the weathered composites decreased 29.9% and 34.9%, respectively. The flexural strength/modulus reduced 10.0% and 10.2%, respectively. SEM study confirmed the degradation in fibre/matrix interfacial bonding after exposure. Comparisons with other composites implies that flax fabric/epoxy composite has potential to be used for civil engineering applications when taking its structural and durability performance into account. Proper treatments to enhance its durability performance will make it more comparable to synthetic fibre reinforced composites when considering as construction building materials

  12. Abstraction in artificial intelligence and complex systems

    CERN Document Server

    Saitta, Lorenza

    2013-01-01

    Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences.  After discussing the characterizing properties of abstraction, a formal model, the K

  13. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  14. Conceptual Design Automation : Abstraction complexity reduction by feasilisation and knowledge engineering

    NARCIS (Netherlands)

    Schut, E.J.

    2010-01-01

    In order to keep innovating, engineers are working more and more with engineering software, providing them a way to cut away their routine and repetitive activities. Computer aided design and simulation software are for instance considered standard tools in most engineering companies. Today, to

  15. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    Science.gov (United States)

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  16. Rotation, Reflection, and Frame Changes; Orthogonal tensors in computational engineering mechanics

    Science.gov (United States)

    Brannon, R. M.

    2018-04-01

    Whilst vast literature is available for the most common rotation-related tasks such as coordinate changes, most reference books tend to cover one or two methods, and resources for less-common tasks are scarce. Specialized research applications can be found in disparate journal articles, but a self-contained comprehensive review that covers both elementary and advanced concepts in a manner comprehensible to engineers is rare. Rotation, Reflection, and Frame Changes surveys a refreshingly broad range of rotation-related research that is routinely needed in engineering practice. By illustrating key concepts in computer source code, this book stands out as an unusually accessible guide for engineers and scientists in engineering mechanics.

  17. Particular mechanism for continuously varying the compression ratio for an internal combustion engine

    Science.gov (United States)

    Raţiu, S.; Cătălinoiu, R.; Alexa, V.; Miklos, I.; Cioată, V.

    2018-01-01

    Variable compression ratio (VCR) is a technology to adjust the compression ratio of an internal combustion engine while the engine is in operation. The paper proposes the presentation of a particular mechanism allowing the position of the top dead centre to be changed, while the position of the bottom dead centre remains fixed. The kinematics of the mechanism is studied and its trajectories are graphically represented for different positions of operation.

  18. Abstracts of contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  19. A Plastic Damage Mechanics Model for Engineered Cementitious Composites

    DEFF Research Database (Denmark)

    Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe

    2007-01-01

    This paper discusses the establishment of a plasticity-based damage mechanics model for Engineered Cementitious Composites (ECC). The present model differs from existing models by combining a matrix and fiber description in order to describe the behavior of the ECC material. The model provides...

  20. Combination of biochemical and mechanical cues for tendon tissue engineering.

    Science.gov (United States)

    Testa, Stefano; Costantini, Marco; Fornetti, Ersilia; Bernardini, Sergio; Trombetta, Marcella; Seliktar, Dror; Cannata, Stefano; Rainer, Alberto; Gargioli, Cesare

    2017-11-01

    Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Tendon healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering, using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fraying and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus provided by Transforming Growth Factor Beta (TGF-β) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with single inducement. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties.

    Science.gov (United States)

    Salinas, Evelia Y; Hu, Jerry C; Athanasiou, Kyriacos

    2018-04-26

    The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile

  2. Experiments in Creative Engineering at the Department of Mechanical Engineering in Kurume National College of Technology

    Science.gov (United States)

    Tanaka, Hiroshi; Hashimura, Shinji; Hiroo, Yasuaki

    We present a program to learn ability to solve problems on engineering. This program is called “Experiments in creative engineering” in the department of mechanical engineering in Kurume National College of Technology advanced engineering school. In the program, students have to determine own theme and manufacture experimental devices or some machines by themselves. The students must also perform experiments to valid the function and performance of their devices by themselves. The restriction of the theme is to manufacture a device which function dose not basically exist in the world with limited cost (up to 20,000Yen) . As the results of questionnaire of students, the program would be very effective to the creative education for the students.

  3. Abstracts: NRC Waste Management Program reports

    Energy Technology Data Exchange (ETDEWEB)

    Heckman, R.A.; Minichino, C.

    1979-11-01

    This document consists of abstracts of all reports published by the Nuclear Regulatory Commission (NRC) Waste Management Program at Lawrence Livermore Laboratory (LLL). It will be updated at regular intervals. Reports are arranged in numerical order, within each category. Unless otherwise specified, authors are LLL scientists and engineers.

  4. Abstracts: NRC Waste Management Program reports

    International Nuclear Information System (INIS)

    Heckman, R.A.; Minichino, C.

    1979-11-01

    This document consists of abstracts of all reports published by the Nuclear Regulatory Commission (NRC) Waste Management Program at Lawrence Livermore Laboratory (LLL). It will be updated at regular intervals. Reports are arranged in numerical order, within each category. Unless otherwise specified, authors are LLL scientists and engineers

  5. ESPR 2015. Abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    The volume includes the abstracts of the ESPR 2015 covering the following topics: PCG (post graduate courses): Radiography; fluoroscopy and general issue; nuclear medicine, interventional radiology and hybrid imaging, pediatric CT, pediatric ultrasound; MRI in childhood. Scientific sessions and task force sessions: International aspects; neuroradiology, neonatal imaging, engineering techniques to simulate injury in child abuse, CT - dose and quality, challenges in the chest, cardiovascular and chest, muscoskeletal, oncology, pediatric uroradiology and abdominal imaging, fetal and postmortem imaging, education and global challenges, neuroradiology - head and neck, gastrointestinal and genitourinary.

  6. ESPR 2015. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-05-10

    The volume includes the abstracts of the ESPR 2015 covering the following topics: PCG (post graduate courses): Radiography; fluoroscopy and general issue; nuclear medicine, interventional radiology and hybrid imaging, pediatric CT, pediatric ultrasound; MRI in childhood. Scientific sessions and task force sessions: International aspects; neuroradiology, neonatal imaging, engineering techniques to simulate injury in child abuse, CT - dose and quality, challenges in the chest, cardiovascular and chest, muscoskeletal, oncology, pediatric uroradiology and abdominal imaging, fetal and postmortem imaging, education and global challenges, neuroradiology - head and neck, gastrointestinal and genitourinary.

  7. Study of reciprocating engine with Z mechanism. Part 1. Discussion of effect on the performances of new concept engine; Yodo shiten riron wo mochiita ofuku do engine ni kansuru kenkyu. 1. Shinkihon kozo no donyu ni yoru seino kojo no suisatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Y; Fukuzaki, S; Kanno, M [Yoshiki Industrial Co. Ltd., Yamagata (Japan)

    1997-10-01

    A new reciprocating engine was developed as an application of new mechanism named as `Z mechanism.` In this new engine, the piston motion is described by a simple sine function and gives lower velocity around top dead center than that in conventional piston engines. Thus, the mode of combustion in this engine is closer to constant-volume process and gives higher thermal efficiency than ordinary engines. Use of Z-mechanism also eliminated high-order components of vibration that ordinary engines suffer. Development high-performance engine was successfully conducted with this new mechanism. 4 refs., 11 figs., 1 tab.

  8. Mechanical engineering problems in the TFTR neutral beam system

    International Nuclear Information System (INIS)

    Cannon, D.D.; Bryant, E.H.; Johnson, R.L.; Kim, J.; Queen, C.C.; Schilling, G.

    1975-01-01

    A conceptual design of a prototype beam line for the TFTR Neutral Beam System has been developed. The basic components have been defined, cost estimates prepared, and the necessary development programs identified. Four major mechanical engineering problems, potential solutions and the required development programs are discussed

  9. Catastrophe theory and its application status in mechanical engineering

    Directory of Open Access Journals (Sweden)

    Jinge LIU

    Full Text Available Catastrophe theory is a kind of mathematical method which aims to apply and interpret the discontinuous phenomenon. Since its emergence, it has been widely used to explain a variety of emergent phenomena in the fields of natural science, social science, management science and some other science and technology fields. Firstly, this paper introduces the theory of catastrophe in several aspects, such as its generation, radical principle, basic characteristics and development. Secondly, it summarizes the main applications of catastrophe theory in the field of mechanical engineering, focusing on the research progress of catastrophe theory in revealing catastrophe of rotor vibration state, analyzing friction and wear failure, predicting metal fracture, and so on. Finally, it advises that later development of catastrophe theory should pay more attention to the combination of itself with other traditional nonlinear theories and methods. This paper provides a beneficial reference to guide the application of catastrophe theory in mechanical engineering and related fields for later research.

  10. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    International Nuclear Information System (INIS)

    Aguilar, R.

    2003-01-01

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) types and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance

  11. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    Energy Technology Data Exchange (ETDEWEB)

    R. Aguilar

    2003-06-24

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) types and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.

  12. Interactive training model of TRIZ for mechanical engineers in China

    Science.gov (United States)

    Tan, Runhua; Zhang, Huangao

    2014-03-01

    Innovation is a process of taking an original idea and converting it into a business value, in which the engineers face some inventive problems which can be solved hardly by experience. TRIZ, as a new theory for companies in China, provides both conceptual and procedural knowledge for finding and solving inventive problems. Because the government plays a leading role in the diffusion of TRIZ, too many companies from different industries are waiting to be trained, but the quantity of the trainers mastering TRIZ is incompatible with that requirement. In this context, to improve the training effect, an interactive training model of TRIZ for the mechanical engineers in China is developed and the implementation in the form of training classes is carried out. The training process is divided into 6 phases as follows: selecting engineers, training stage-1, finding problems, training stage-2, finding solutions and summing up. The government, TRIZ institutions and companies to join the programs interact during the process. The government initiates and monitors a project in form of a training class of TRIZ and selects companies to join the programs. Each selected companies choose a few engineers to join the class and supervises the training result. The TRIZ institutions design the training courses and carry out training curriculum. With the beginning of the class, an effective communication channel is established by means of interview, discussion face to face, E-mail, QQ and so on. After two years training practices, the results show that innovative abilities of the engineers to join and pass the final examinations increased distinctly, and most of companies joined the training class have taken congnizance of the power of TRIZ for product innovation. This research proposes an interactive training model of TRIZ for mechanical engineers in China to expedite the knowledge diffusion of TRIZ.

  13. A dual flow bioreactor with controlled mechanical stimulation for cartilage tissue engineering

    NARCIS (Netherlands)

    Spitters, Tim; Leijten, Jeroen Christianus Hermanus; Deus, F.D.; Costa, I.B.F.; van Apeldoorn, Aart A.; van Blitterswijk, Clemens; Karperien, Hermanus Bernardus Johannes

    2013-01-01

    In cartilage tissue engineering bioreactors can create a controlled environment to study chondrocyte behavior under mechanical stimulation or produce chondrogenic grafts of clinically relevant size. Here we present a novel bioreactor, which combines mechanical stimulation with a two compartment

  14. Software Engineering Technology Infusion Within NASA

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1996-01-01

    Abstract technology transfer is of crucial concern to both government and industry today. In this paper, several software engineering technologies used within NASA are studied, and the mechanisms, schedules, and efforts at transferring these technologies are investigated. The goals of this study are: 1) to understand the difference between technology transfer (the adoption of a new method by large segments of an industry) as an industry-wide phenomenon and the adoption of a new technology by an individual organization (called technology infusion); and 2) to see if software engineering technology transfer differs from other engineering disciplines. While there is great interest today in developing technology transfer models for industry, it is the technology infusion process that actually causes changes in the current state of the practice.

  15. Evaluating Risk Awareness in Undergraduate Students Studying Mechanical Engineering

    Science.gov (United States)

    Langdon, G. S.; Balchin, K.; Mufamadi, P.

    2010-01-01

    This paper examines the development of risk awareness among undergraduate students studying mechanical engineering at a South African university. A questionnaire developed at the University of Liverpool was modified and used on students from the first, second and third year cohorts to assess their awareness in the areas of professional…

  16. Proceedings of the sixty-sixth annual session of Indian Institute of Chemical Engineers and joint Indo-North American symposium: oral and poster abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    The aim of the symposium was to to discuss the current trends and future developments in the field of chemical engineering technology. The main themes of the symposium were: Advanced Separation Techniques; Biochemical Engineering; Process Intensification; Fossil Fuel, Nuclear and Alternate Energy; Novel Reactors and operating strategies; Green Chemistry and Engineering; Food Security; Water Treatment, Reuse and Recycle; Healthcare Technology; Nanomaterials; Process Development; Process Engineering and Control; Borderless Chemical Engineering; Fluid Mechanics and CFD; Intellectual Property Rights; Sustainable Development etc. Papers relevant to INIS are indexed separately

  17. Gelatin Scaffolds with Controlled Pore Structure and Mechanical Property for Cartilage Tissue Engineering.

    Science.gov (United States)

    Chen, Shangwu; Zhang, Qin; Nakamoto, Tomoko; Kawazoe, Naoki; Chen, Guoping

    2016-03-01

    Engineering of cartilage tissue in vitro using porous scaffolds and chondrocytes provides a promising approach for cartilage repair. However, nonuniform cell distribution and heterogeneous tissue formation together with weak mechanical property of in vitro engineered cartilage limit their clinical application. In this study, gelatin porous scaffolds with homogeneous and open pores were prepared using ice particulates and freeze-drying. The scaffolds were used to culture bovine articular chondrocytes to engineer cartilage tissue in vitro. The pore structure and mechanical property of gelatin scaffolds could be well controlled by using different ratios of ice particulates to gelatin solution and different concentrations of gelatin. Gelatin scaffolds prepared from ≥70% ice particulates enabled homogeneous seeding of bovine articular chondrocytes throughout the scaffolds and formation of homogeneous cartilage extracellular matrix. While soft scaffolds underwent cellular contraction, stiff scaffolds resisted cellular contraction and had significantly higher cell proliferation and synthesis of sulfated glycosaminoglycan. Compared with the gelatin scaffolds prepared without ice particulates, the gelatin scaffolds prepared with ice particulates facilitated formation of homogeneous cartilage tissue with significantly higher compressive modulus. The gelatin scaffolds with highly open pore structure and good mechanical property can be used to improve in vitro tissue-engineered cartilage.

  18. 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing

    CERN Document Server

    Daidie, Alain; Eynard, Benoit; Paredes, Manuel

    2016-01-01

    Covering key topics in the field such as technological innovation, human-centered sustainable engineering and manufacturing, and manufacture at a global scale in a virtual world, this book addresses both advanced techniques and industrial applications of key research in interactive design and manufacturing. Featuring the full papers presented at the 2014 Joint Conference on Mechanical Design Engineering and Advanced Manufacturing, which took place in June 2014 in Toulouse, France, it presents recent research and industrial success stories related to implementing interactive design and manufacturing solutions.

  19. Use of Concept Maps as an Assessment Tool in Mechanical Engineering Education

    Science.gov (United States)

    Tembe, B. L.; Kamble, S. K.

    2013-01-01

    The purpose of this study to investigate, how third year mechanical engineering students are able to use their knowledge of concept maps in their study of the topic of "Introduction to the Internal Combustion Engines (IICE)". 41 students participated in this study. Firstly, the students were taught about concept maps and then asked to…

  20. Radioactive isotopes in clinical medicine and research. Abstracts

    International Nuclear Information System (INIS)

    2005-01-01

    The contribution displays 44 abstracts and 35 posters from the 27th International Symposium on ''radioactive isotopes in clinical medicine and research'', organized by the Austrian society of nuclear medicine and the department of nuclear medicine and the center for biomedical engineering and physics of the Vienna medical university. The abstracts are sorted according to lecture headers: radiopharmaceutical sciences, endocrinology, clinical PET, neurology, oncology, physics and instrumentation, cardiology, inflammation, therapy and varia. (uke)

  1. Technical Work Plan for: Near Field Environment: Engineered Barrier System: Radionuclide Transport Abstraction Model Report

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2006-01-01

    This technical work plan (TWP) describes work activities to be performed by the Near-Field Environment Team. The objective of the work scope covered by this TWP is to generate Revision 03 of EBS Radionuclide Transport Abstraction, referred to herein as the radionuclide transport abstraction (RTA) report. The RTA report is being revised primarily to address condition reports (CRs), to address issues identified by the Independent Validation Review Team (IVRT), to address the potential impact of transport, aging, and disposal (TAD) canister design on transport models, and to ensure integration with other models that are closely associated with the RTA report and being developed or revised in other analysis/model reports in response to IVRT comments. The RTA report will be developed in accordance with the most current version of LP-SIII.10Q-BSC and will reflect current administrative procedures (LP-3.15Q-BSC, ''Managing Technical Product Inputs''; LP-SIII.2Q-BSC, ''Qualification of Unqualified Data''; etc.), and will develop related Document Input Reference System (DIRS) reports and data qualifications as applicable in accordance with prevailing procedures. The RTA report consists of three models: the engineered barrier system (EBS) flow model, the EBS transport model, and the EBS-unsaturated zone (UZ) interface model. The flux-splitting submodel in the EBS flow model will change, so the EBS flow model will be validated again. The EBS transport model and validation of the model will be substantially revised in Revision 03 of the RTA report, which is the main subject of this TWP. The EBS-UZ interface model may be changed in Revision 03 of the RTA report due to changes in the conceptualization of the UZ transport abstraction model (a particle tracker transport model based on the discrete fracture transfer function will be used instead of the dual-continuum transport model previously used). Validation of the EBS-UZ interface model will be revised to be consistent with

  2. Engineering and Design: Reliability Analysis of Navigation Lock and Dam Mechanical and Electrical Equipment

    National Research Council Canada - National Science Library

    Beranek, Dwight

    2001-01-01

    This engineer technical letter (ETL) provides guidance for assessing the reliability of mechanical and electrical systems of navigation locks and dams and for establishing an engineering basis for major rehabilitation investment decisions...

  3. Abstracts of the Canadian Society for Civil Engineering annual conference including the general conference, the 1. international structural specialty conference, the 1. international construction specialty conference, and the 1. specialty conference on disaster mitigation : towards a sustainable future

    International Nuclear Information System (INIS)

    El-Badry, M.; Loov, R.E.; Ruwanpura, J.; El-Hacha, R.; Kroman, J.; Rankin, J.

    2006-01-01

    This conference provided a forum for national and international practicing engineers, researchers and technical experts to discuss sustainable solutions to infrastructure development. Discussions focused on recent developments in new technologies for building more economic and sustainable infrastructure, while improving the safety of buildings, bridges, roads, water supply and sewage treatment systems. The conference was held in conjunction with associated specialty conferences, including a first international structures specialty conference, a first international construction specialty conference, and a first specialty conference on disaster mitigation. This book of abstracts highlights all the specialty conferences and accompanies a CD-ROM that has the full text of all the papers. Manuscripts of the full papers submitted to the specialty conferences were peer-reviewed by international scientific committees. The general conference provided a forum to learn about new technologies and future directions in various areas of civil engineering. It included a special theme session on sustainable development and a special session on innovation and information technology. Other technical sessions focused on topics such as civil engineering history and education; infrastructure management and renewal; asset management; risk assessment and management; engineering materials and mechanics; environmental engineering and science; hydrotechnical engineering; cold region engineering; and, transportation engineering. The general conference featured 88 presentations, of which 15 have been catalogued separately for inclusion in this database

  4. Was Babbage's Analytical Engine intended to be a mechanical model of the mind?

    Science.gov (United States)

    Green, Christopher D

    2005-02-01

    In the 1830s, Charles Babbage worked on a mechanical computer he dubbed the Analytical Engine. Although some people around Babbage described his invention as though it had authentic mental powers, Babbage refrained from making such claims. He does not, however, seem to have discouraged those he worked with from mooting the idea publicly. This article investigates whether (1) the Analytical Engine was the focus of a covert research program into the mechanism of mentality; (2) Babbage opposed the idea that the Analytical Engine had mental powers but allowed his colleagues to speculate as they saw fit; or (3) Babbage believed such claims to be fanciful, but cleverly used the publicity they engendered to draw public and political attention to his project.

  5. Abstracts and research accomplishments of university coal research projects

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science.

  6. Abstracts and research accomplishments of university coal research projects

    International Nuclear Information System (INIS)

    1991-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their projects in time for distribution at a grantees conference. This book is a compilation of the material received in response to the request. Abstracts discuss the following area: coal science, coal surface science, reaction chemistry, advanced process concepts, engineering fundamentals and thermodynamics, environmental science

  7. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  8. Elements of Motivational Structure for Studying Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Nikša Dubreta

    2017-12-01

    Full Text Available The article presents the findings on students' reasons for studying mechanical engineering. These reasons were covered in terms of extrinsic and intrinsic motivation additionally related to selected independent variables of the sample – students' secondary school Grade Point Average, their gender and the socio-economic status. The research was conducted with the first year students of the Faculty of Mechanical Engineering at the University of Zagreb, Croatia. The sample consisted of 282 students (228 males and 54 females and comprised students of all majors. According to descriptive character of the questionnaire type survey characteristics of the sample are presented. Composite variables of extrinsic and intrinsic motivation were dichotomized to present different levels of the students' overall motivational structure. Results indicate a students' interest in the field of science and technology as the most important element of intrinsic motivation, with no significant relation to any of independent variables. By contrast, extrinsic motivation has manifested as significantly related to the variables of Grade Point Average and to parents' education as one component of the socio-economic status. However, a significant level of indecisive respondents regarding the both intrinsic and extrinsic motivation suggests that the choice of the study programme is not always a consistent and an unambiguous process.

  9. The Code Aster: a product for mechanical engineers

    International Nuclear Information System (INIS)

    Levesque, J.R.

    1998-01-01

    The Code Aster is a 2D or 3D structural finite element software: analysis of structures and thermo-mechanics for evaluation and research with linear for non linear modelling. Since 1989, it has been the host structure that capitalizes on developments made by the Research and Development Division in the field of numerical modelling in structural mechanics, and user experience feedback. It is an industrial design tool, particularly for engineering of facilities in operation and for the evaluation of new projects. This software was developed using a quality Assurance methodology with independent validation. Upgrades to this product are guided by the objective of satisfying the needs of expertise studies, attempting to make functions coherent and complete. (author)

  10. Engineering research, development and technology

    International Nuclear Information System (INIS)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report

  11. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage: an in silico investigation

    NARCIS (Netherlands)

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, C.C. van

    2014-01-01

    Mechanical stimulation during cartilage tissue-engineering enhances extracellular matrix (ECM) synthesis and thereby improves the mechanical properties of tissue engineered (TE) cartilage. Generally, these mechanical stimuli are of a fixed magnitude. However, as a result of ECM synthesis and spatial

  12. Mechanical Characterization of Tissue-Engineered Cartilage Using Microscopic Magnetic Resonance Elastography

    Science.gov (United States)

    Yin, Ziying; Schmid, Thomas M.; Yasar, Temel K.; Liu, Yifei; Royston, Thomas J.

    2014-01-01

    Knowledge of mechanical properties of tissue-engineered cartilage is essential for the optimization of cartilage tissue engineering strategies. Microscopic magnetic resonance elastography (μMRE) is a recently developed MR-based technique that can nondestructively visualize shear wave motion. From the observed wave pattern in MR phase images the tissue mechanical properties (e.g., shear modulus or stiffness) can be extracted. For quantification of the dynamic shear properties of small and stiff tissue-engineered cartilage, μMRE needs to be performed at frequencies in the kilohertz range. However, at frequencies greater than 1 kHz shear waves are rapidly attenuated in soft tissues. In this study μMRE, with geometric focusing, was used to overcome the rapid wave attenuation at high frequencies, enabling the measurement of the shear modulus of tissue-engineered cartilage. This methodology was first tested at a frequency of 5 kHz using a model system composed of alginate beads embedded in agarose, and then applied to evaluate extracellular matrix development in a chondrocyte pellet over a 3-week culture period. The shear stiffness in the pellet was found to increase over time (from 6.4 to 16.4 kPa), and the increase was correlated with both the proteoglycan content and the collagen content of the chondrocyte pellets (R2=0.776 and 0.724, respectively). Our study demonstrates that μMRE when performed with geometric focusing can be used to calculate and map the shear properties within tissue-engineered cartilage during its development. PMID:24266395

  13. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds.

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L

    2013-07-01

    Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Newly developed reduced ethanol mechanism (47 species and 272 reactions) used. • Engine maps over wide range are developed for performance and emissions parameters. • HCCI operating range increases with compression ratio & decreases with engine speed. • Maximum combustion efficiency up to 99% and thermal efficiency up to 50% is achieved. • Maximum N_2O emission found up to 2.7 ppm and lower load have higher N_2O emission. - Abstract: Ethanol fuelled homogenous charge compression ignition engine offers a better alternative to tackle the problems of achieving higher engine efficiency and lower emissions using renewable fuel. Present study computationally investigates the HCCI operating range of ethanol at different compression ratios by varying inlet air temperature and engine speed using stochastic reactor model. A newly developed reduced ethanol oxidation mechanism with NO_x having 47 species and 272 reactions is used for simulation. HCCI operating range for compression ratios 17, 19 and 21 are investigated and found to be increasing with compression ratio. Simulations are conducted for engine speeds ranging from 1000 to 3000 rpm at different intake temperatures (range 365–465 K). Parametric study of combustion and emission characteristics is conducted and engine maps are developed at most efficient inlet temperatures. HCCI operating range is defined using combustion efficiency (>85%) and maximum pressure rise rate (<5 MPa/ms). In HCCI operating range, higher efficiency is found at higher engine loads and lower engine speeds. Emission characteristics of species (NO_x, N_2O, CO, CH_4, C_2H_4, C_2H_6, CH_3CHO, and HCHO) found in significant amount is also analysed for ethanol fulled HCCI engine. Emission maps for different species are presented and discussed for wide range of speed and load conditions. Some of unregulated species such as aldehydes are emitted in significantly higher quantities from ethanol fuelled HCCI engine at higher load

  15. Draft fracture mechanics code case for American Society of Mechanical Engineers NUPACK rules

    International Nuclear Information System (INIS)

    McConnell, P.; Sorenson, K.; Nickell, R.; Saegusa, T.

    2004-01-01

    The containment boundaries of most spent-fuel casks certified for use in the United States by the Nuclear Regulatory Commission are constructed with stainless steel, a material that is ductile in an engineering sense at all temperatures and for which, therefore, fracture mechanics principles are not relevant for the containment application. Ferritic materials may fail in a nonductile manner at sufficiently low temperatures, so fracture mechanics principles may be applied to preclude nonductile fracture. Because of the need to transport and store spent nuclear fuel safely in all types of climatic conditions, these vessels have regulatory lowest service temperatures that range down to -40 C (-40 F) for transport application. Such low service temperatures represent a severe challenge in terms of fracture toughness to many ferritic materials. Linear-elastic and elastic-plastic fracture mechanics principles provide a methodology for evaluating ferritic materials under such conditions

  16. A real CDIO mechanical engineering project in 4th semester

    DEFF Research Database (Denmark)

    Lauritsen, Aage Birkkjær

    In the past 6 years at the mechanical engineering study at the Engineering College of Aarhus we have been practicing project work on 4th Semester in the design of energy technology systems. In my presentation, I will give a description of the project, and the thoughts behind; pedagogic......-6 students, and will partly support the general theory being taught in the courses, but will also provide students with skills in teamwork, project work and system building. The pedagogical considerations behind the development of the project are quite simply that students learn best through active work...

  17. International Stand of Ukrainian Mechanical Engineering in the European Economy

    Directory of Open Access Journals (Sweden)

    Anastasia A. Goncharova

    2014-03-01

    Full Text Available The article analyses the significant changes in the society that have taken place in Ukraine for the past twenty-five years that considerably influenced the structure and dynamics of mechanical engineering, which, due to objective and subjective reasons, is not ready for large-scale transformational actions. The author has also investigated the dynamics of changes, taking place in the machine-building complex of Ukraine. There have been identified structural changes of the industrial complex that occurred during the crisis and post-crisis period. The article has identified the position of Ukrainian engineering in the European economy.

  18. Study of nozzle deposit formation mechanism for direct injection gasoline engines; Chokufun gasoline engine yo nozzle no deposit seisei kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, M; Saito, A [Toyota Central Research and Development Labs., Inc., Aichi (Japan); Matsushita, S [Toyota Motor Corp., Aichi (Japan); Shibata, H [Nippon Soken, Inc., Tokyo (Japan); Niwa, Y [Denso Corp., Aichi (Japan)

    1997-10-01

    Nozzles in fuel injectors for direct injection gasoline engines are exposed to high temperature combustion gases and soot. In such a rigorous environment, it is a fear that fuel flow rate changes in injectors by deposit formation on nozzles. Fundamental factors of nozzle deposit formation were investigated through injector bench tests and engine dynamometer tests. Deposit formation processes were observed by SEM through engine dynamometer tests. The investigation results reveal nozzle deposit formation mechanism and how to suppress the deposit. 4 refs., 8 figs., 3 tabs.

  19. Inventory Abstraction

    International Nuclear Information System (INIS)

    Leigh, C.

    2000-01-01

    The purpose of the inventory abstraction as directed by the development plan (CRWMS M and O 1999b) is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M and O 1999c, 1999d). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) (NRC 1999) key technical issue (KTI): ''The rate at which radionuclides in SNF [Spent Nuclear Fuel] are released from the EBS [Engineered Barrier System] through the oxidation and dissolution of spent fuel'' (Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release to the accessible environment. The inventory abstraction is important in assessing system performance because

  20. Curriculum Development Based on the Big Picture Assessment of the Mechanical Engineering Program

    Science.gov (United States)

    Sabri, Mohd Anas Mohd; Khamis, Nor Kamaliana; Tahir, Mohd Faizal Mat; Wahid, Zaliha; Kamal, Ahmad; Ihsan, Ariffin Mohd; Sulong, Abu Bakar; Abdullah, Shahrum

    2013-01-01

    One of the major concerns of the Engineering Accreditation Council (EAC) is the need for an effective monitoring and evaluation of program outcome domains that can be associated with courses taught under the Mechanical Engineering program. However, an effective monitoring method that can determine the results of each program outcome using Bloom's…

  1. 77 FR 39996 - Department of Mechanical Engineering, Texas A&M University, Notice of Decision on Application for...

    Science.gov (United States)

    2012-07-06

    ... DEPARTMENT OF COMMERCE International Trade Administration Department of Mechanical Engineering, Texas A&M University, Notice of Decision on Application for Duty-Free Entry of Scientific Instruments...: Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123. Instrument: Arc...

  2. A Systems Engineering Approach to Electro-Mechanical Actuator Diagnostic and Prognostic Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The authors have formulated a Comprehensive Systems Engineering approach to Electro-Mechanical Actuator (EMA) Prognostics and Health Management (PHM) system...

  3. Book of Abstracts

    International Nuclear Information System (INIS)

    2013-06-01

    ANIMMA 2013 is the third of a series of conferences devoted to endorsing and promoting scientific and technical activities based on nuclear instrumentation and measurements. The main objective of ANIMMA conference is to unite the various scientific communities not only involved in nuclear instrumentation and measurements, but also in nuclear medicine and radiation. The conference is all about getting scientists, engineers and the industry to meet, exchange cultures and identify new scientific and technical prospects to help overcome both current and future unresolved issues. The conference provides scientists and engineers with a veritable opportunity to compare their latest research and development in different areas: physics, nuclear energy, nuclear fuel cycle, safety, security, future energies (GEN III+, GENIV, ITER, ...). The conference topics include instrumentation and measurement methods for: Fundamental physics; Fusion diagnostics and technology; Nuclear power reactors; Research reactors; Nuclear fuel cycle; Decommissioning, dismantling and remote handling; Safeguards, homeland security; Severe accident monitoring; Environmental and medical sciences; Education, training and outreach. This document brings together the abstracts of the presentations. Each presentation (full paper) is analysed separately and entered in INIS

  4. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-02-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ``Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration`` which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report.

  5. Silicon subsystem mechanical engineering closeout report for the Solenoidal Detector Collaboration

    International Nuclear Information System (INIS)

    Hanlon, J.; Christensen, R.W.; Hayman, G.; Jones, D.C.; Ross, R.; Wilds, W.; Yeamans, S.; Ziock, H.J.

    1995-01-01

    The authors group at Los Alamos National Laboratory was responsible for the mechanical engineering of the silicon tracking system of the Solenoidal Detector Collaboration (SDC) experiment of the Superconducting Super Collider (SSC) project. The responsibility included the overall design of the system from the mechanical point of view, development and integration of the cooling system, which was required to remove the heat generated by the front-end electronics, assembly of the system to extremely tight tolerances, and verification that the construction and operational stability and alignment tolerances would be met. A detailed description of the concepts they developed and the work they performed can be found in a report titled ''Silicon Subsystem Mechanical Engineering Work for the Solenoidal Detector Collaboration'' which they submitted to the SSC Laboratory. In addition to the mechanical engineering work, they also performed activation, background, and shielding studies for the SSC program. Much of the work they performed was potentially useful for other future high energy physics (HEP) projects. This report describes the closeout work that was performed for the Los Alamos SDC project. Four major tasks were identified for completion: (1) integration of the semi-automated assembly station being developed and construction of a precision part to demonstrate solutions to important general assembly problems (the station was designed to build precision silicon tracker subassemblies); (2) build a state-of-the-art TV holography (TVH) system to use for detector assembly stability tests; (3) design, build, and test a water based cooling system for a full silicon shell prototype; and (4) complete and document the activation, background, and shielding studies, which is covered in a separate report

  6. Mechatronics: the future of mechanical engineering; past, present, and a vision for the future

    Science.gov (United States)

    Ramasubramanian, M. K.

    2001-08-01

    Mechatronics is the synergistic integration of precision mechanical engineering, electronics, computational hardware and software in the design of products and processes. Mechatronics, the term coined in Japan in the '70s, has evolved to symbolize what mechanical design engineers do today worldwide. The revolutionary introduction of the microprocessor (or microcontroller) in the early '80s and ever increasing performance-cost ratio has changed the paradigm of mechanical design forever, and has broadened the original definition of mechatronics to include intelligent control and autonomous decision-making. Today, increasing number of new products is being developed at the intersection between traditional disciplines of Engineering, and Computer and Material Sciences. New developments in these traditional disciplines are being absorbed into mechatronics design at an ever-increasing pace. In this paper, a brief history of mechatronics, and several examples of this rapid adaptation of technologies into product design is presented. With the ongoing information technology revolution, especially in wireless communication, smart sensors design (enabled by MEMS technology), and embedded systems engineering, mechatronics design is going through another step change in capabilities and scope. The implications of these developments in mechatronics design in the near future are discussed. Finally, deficiencies in our engineering curriculum to address the needs of the industry to cope up with these rapid changes, and proposed remedies, will also be discussed.

  7. Effects of Structural Deformations of the Crank-Slider Mechanism on the Estimation of the Instantaneous Engine Friction Torque

    Science.gov (United States)

    CHALHOUB, N. G.; NEHME, H.; HENEIN, N. A.; BRYZIK, W.

    1999-07-01

    The focus on the current study is to assess the effects of structural deformations of the crankshaft/connecting-rod/piston mechanism on the computation of the instantaneous engine friction torque. This study is performed in a fully controlled environment in order to isolate the effects of structural deformations from those of measurement errors or noise interference. Therefore, a detailed model, accounting for the rigid and flexible motions of the crank-slider mechanism and including engine component friction formulations, is considered in this study. The model is used as a test bed to generate the engine friction torque,Tfa, and to predict the rigid and flexible motions of the system in response to the cylinder gas pressure. The torsional vibrations and the rigid body angular velocity of the crankshaft, as predicted by the detailed model of the crank-slider mechanism, are used along with the engine load torque and the cylinder gas pressure in the (P-ω) method to estimate the engine friction torque,Tfe. This method is well suited for the purpose of this study because its formulation is based on the rigid body model of the crank-slider mechanism. The digital simulation results demonstrate that the exclusion of the structural deformations of the crank-slider mechanism from the formulation of the (P-ω) method leads to an overestimation of the engine friction torque near the top-dead-center (TDC) position of the piston under firing conditions. Moreover, for the remainder of the engine cycle, the estimated friction torque exhibits large oscillations and takes on positive numerical values as if it is inducing energy into the system. Thus, the adverse effects of structural deformations of the crank-slider mechanism on the estimation of the engine friction torque greatly differ in their nature from one phase of the engine cycle to another.

  8. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.

    Science.gov (United States)

    Ramade, Alexandre; Legant, Wesley R; Picart, Catherine; Chen, Christopher S; Boudou, Thomas

    2014-01-01

    Engineered tissues can be used to understand fundamental features of biology, develop organotypic in vitro model systems, and as engineered tissue constructs for replacing damaged tissue in vivo. However, a key limitation is an inability to test the wide range of parameters that might impact the engineered tissue in a high-throughput manner and in an environment that mimics the three-dimensional (3D) native architecture. We developed a microfabricated platform to generate arrays of microtissues embedded within 3D micropatterned matrices. Microcantilevers simultaneously constrain microtissue formation and report forces generated by the microtissues in real time, opening the possibility to use high-throughput, low-volume screening for studies on engineered tissues. Thanks to the micrometer scale of the microtissues, this platform is also suitable for high-throughput monitoring of drug-induced effect on architecture and contractility in engineered tissues. Moreover, independent variations of the mechanical stiffness of the cantilevers and collagen matrix allow the measurement and manipulation of the mechanics of the microtissues. Thus, our approach will likely provide valuable opportunities to elucidate how biomechanical, electrical, biochemical, and genetic/epigenetic cues modulate the formation and maturation of 3D engineered tissues. In this chapter, we describe the microfabrication, preparation, and experimental use of such microfabricated tissue gauges. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. ABSTRACTION OF DRIFT SEEPAGE

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    Drift seepage refers to flow of liquid water into repository emplacement drifts, where it can potentially contribute to degradation of the engineered systems and release and transport of radionuclides within the drifts. Because of these important effects, seepage into emplacement drifts is listed as a ''principal factor for the postclosure safety case'' in the screening criteria for grading of data in Attachment 1 of AP-3.15Q, Rev. 2, ''Managing Technical Product Inputs''. Abstraction refers to distillation of the essential components of a process model into a form suitable for use in total-system performance assessment (TSPA). Thus, the purpose of this analysis/model is to put the information generated by the seepage process modeling in a form appropriate for use in the TSPA for the Site Recommendation. This report also supports the Unsaturated-Zone Flow and Transport Process Model Report. The scope of the work is discussed below. This analysis/model is governed by the ''Technical Work Plan for Unsaturated Zone Flow and Transport Process Model Report'' (CRWMS MandO 2000a). Details of this activity are in Addendum A of the technical work plan. The original Work Direction and Planning Document is included as Attachment 7 of Addendum A. Note that the Work Direction and Planning Document contains tasks identified for both Performance Assessment Operations (PAO) and Natural Environment Program Operations (NEPO). Only the PAO tasks are documented here. The planning for the NEPO activities is now in Addendum D of the same technical work plan and the work is documented in a separate report (CRWMS MandO 2000b). The Project has been reorganized since the document was written. The responsible organizations in the new structure are the Performance Assessment Department and the Unsaturated Zone Department, respectively. The work plan for the seepage abstraction calls for determining an appropriate abstraction methodology, determining uncertainties in seepage, and providing

  10. Clays in natural and engineered barriers for radioactive waste confinement - 4. International meeting. Book of abstracts

    International Nuclear Information System (INIS)

    2010-01-01

    The 4. edition of the International Meeting 'Clays in Natural and Engineered Barriers for Radioactive Waste Confinement' took place at the 'Cite Internationale des Congres' of Nantes (France). Approximately 500 participants (from about 20 different countries) attended the meeting. All the abstracts (oral and poster sessions) are included in these proceedings. The purpose of this 4. international conference is to gather specialists in the different disciplines related to clays and clay minerals, with scientists from organisations engaged in radioactive waste disposal, in order to evaluate the progress of the research conducted in that field. Multidisciplinary approaches including geology, mineralogy, geochemistry, rheology, geomechanics of clays are required in order to provide a detailed characterisation of the geological host formations considered for the disposal of radioactive waste and to assess the behaviour of engineered and natural barriers when submitted to various types of perturbations induced by disposal facilities. The major objectives for the experimental programs are constituted by the performance evaluation for the natural barrier as well as the impact of repository-induced disturbances upon the confinement properties of clay-rich geological formations. This is being or will be conducted in underground research laboratories, for interpreting the subsequent scientific results, for modelling the long-term behaviour of radioactive waste repositories and for carrying out safety assessment exercises. This conference covers all the aspects of clay characterisation and behaviour relevant to the confinement of radionuclides in clay, considered at various time scales and locations, from the descriptions of basic phenomenological processes to the global understanding of the performance and safety at repository and geological scales. Most of the topics covered by the programme of the conference are in line with the general objectives

  11. Release mechanisms from shallow engineered trenches used as repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Locke, J.; Wood, E.

    1987-05-01

    This report has been written for the Department of the Environment as part of their radioactive waste management research programme. The aim has been to identify release mechanisms of radioactivity from fully engineered trenches of the LAND 2 type and, to identify the data needed for their assessment. No direct experimental work has been involved. The report starts with a brief background to UK strategy and outlines a basic disposal system. It gives reviews of existing experience of low level radioactive waste disposal from LAND 1 trenches and of UK experience of toxic waste disposal to provide a practical basis for the next section which covers the implications of identified release mechanisms on the design requirements for an engineered trench. From these design requirements and their interaction with potential site conditions (both saturated and unsaturated zone sites are considered) an assessment of radionuclide release mechanism is made. (author)

  12. Mini-Symposium on Micromechanics at the CSME Mechanical Engineering Forum

    CERN Document Server

    Muschik, W

    1991-01-01

    This volume contains the lectures presented at the mini-symposium on "Micromechanics" held in conjunction with the CSME Mechanical Engineer­ ing Forum 1990 between the 3rd and 8th June, 1990 at the University of Toronto, Canada. The expressed purpose of this symposium was to discuss some recent developments in the Micromechanics of Materials and how ad­ vances in this field now relate to the solution of practical engineer­ ing problems. Due to the time limit set for this section of the Engineer­ ing Forum as well as the restriction on the number of papers to be pre­ sented, it was not possible to cover a much wider range of topics. How­ ever, an attempt was made to include the most important advances asso­ ciated with the progress made in micromechanics in its application to material science and engineering over the past decade. Thus, the topics are concerned with: the fundamental aspects of the thermodynamics of structured solids (part I), - the micromechanical behaviour of alloys (part II), - the mod...

  13. Miniaturization limitations of rotary internal combustion engines

    International Nuclear Information System (INIS)

    Wang, Wei; Zuo, Zhengxing; Liu, Jinxiang

    2016-01-01

    Highlights: • Developed a phenomenological model for rotary internal combustion engines. • Presented scaling laws for the performance of micro rotary engines. • Adiabatic walls can improve the cycle efficiency but result in higher charge leakage. • A lower compression ratio can increase the efficiency due to lower mass losses. • Presented possible minimum engine size of rotary internal combustion engines. - Abstract: With the rapid development of micro electro-mechanical devices, the demands for micro power generation systems have significantly increased in recent years. Traditional chemical batteries have energy densities much lower than hydrocarbon fuels, which makes internal-combustion-engine an attractive technological alternative to batteries. Micro rotary internal combustion engine has drawn great attractions due to its planar design, which is well-suited for fabrication in MEMS. In this paper, a phenomenological model considering heat transfer and mass leakage has been developed to investigate effects of engine speed, compression ratio, blow-by and heat transfer on the performance of micro rotary engine, which provide the guidelines for preliminary design of rotary engine. The lower possible miniaturization limits of rotary combustion engines are proposed.

  14. Applications of hybrid and digital computation methods in aerospace-related sciences and engineering. [problem solving methods at the University of Houston

    Science.gov (United States)

    Huang, C. J.; Motard, R. L.

    1978-01-01

    The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.

  15. Enabling Robotic Social Intelligence by Engineering Human Social-Cognitive Mechanisms

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Warta, Samantha F.; Barber, Daniel

    2017-01-01

    for artificial cognitive systems. We discuss a recent integrative perspective of social cognition to provide a systematic theoretical underpinning for computational instantiations of these mechanisms. We highlight several commitments of our approach that we refer to as Engineering Human Social Cognition. We...... then provide a series of recommendations to facilitate the development of the perceptual, motor, and cognitive architecture for this proposed artificial cognitive system in future work. For each recommendation, we highlight their relation to the discussed social-cognitive mechanisms, provide the rationale...

  16. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  17. Mechanisms Engineering Test Loop - Phase 1 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Kultgen, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Hvasta, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Lisowski, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Toter, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Borowski, A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2016. Currently, METL is in Phase I of its design and construction. Once operational, the METL facility will test small to intermediate-scale components and systems in order to develop advanced liquid metal technologies. Testing different components in METL is essential for the future of advanced fast reactors as it will provide invaluable performance data and reduce the risk of failures during plant operation.

  18. SERS internship: Spring 1994 abstracts and research papers

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, B.

    1994-05-06

    This document contains abstracts from the science and engineering research semester from the Lawrence Livermore National Laboratory. Projects cover many areas in the fields of contaminant removal from the environment, physics, and genetics research. Individual projects were processed separately for the Department of Energy databases.

  19. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-05

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics.

  20. SERS internship Fall 1992--Spring 1993: Abstract and research papers

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains the abstracts and research papers by students on a variety of topics in engineering, genetics, solid state physics, thermonuclear energy, astrophysics, and other science related topics

  1. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering

    NARCIS (Netherlands)

    Argento, G.; Simonet, M.; Oomens, C.W.J.; Baaijens, F.P.T.

    2012-01-01

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the

  2. Development of a mechanical maintenance training simulator in OpenSimulator for F-16 aircraft engines

    OpenAIRE

    Pinheiro, André; Fernandes, Paulo; Maia, Ana; Cruz, Gonçalo; Pedrosa, Daniela; Fonseca, Benjamim; Paredes, Hugo; Martins, Paulo; Morgado, Leonel; Rafael, Jorge

    2014-01-01

    Mechanical maintenance of F-16 engines is carried out as a team effort involving 3–4 skilled engine technicians, but the details of its procedures and requisites change constantly, to improve safety, optimize resources, and respond to knowledge learned from field outcomes. This provides a challenge for development of training simulators, since simulated actions risk becoming obsolete rapidly and require costly reimplementation. This paper presents the development of a 3D mechanical maintenanc...

  3. Development of Chitosan Scaffolds with Enhanced Mechanical Properties for Intestinal Tissue Engineering Applications.

    Science.gov (United States)

    Zakhem, Elie; Bitar, Khalil N

    2015-10-13

    Massive resections of segments of the gastrointestinal (GI) tract lead to intestinal discontinuity. Functional tubular replacements are needed. Different scaffolds were designed for intestinal tissue engineering application. However, none of the studies have evaluated the mechanical properties of the scaffolds. We have previously shown the biocompatibility of chitosan as a natural material in intestinal tissue engineering. Our scaffolds demonstrated weak mechanical properties. In this study, we enhanced the mechanical strength of the scaffolds with the use of chitosan fibers. Chitosan fibers were circumferentially-aligned around the tubular chitosan scaffolds either from the luminal side or from the outer side or both. Tensile strength, tensile strain, and Young's modulus were significantly increased in the scaffolds with fibers when compared with scaffolds without fibers. Burst pressure was also increased. The biocompatibility of the scaffolds was maintained as demonstrated by the adhesion of smooth muscle cells around the different kinds of scaffolds. The chitosan scaffolds with fibers provided a better candidate for intestinal tissue engineering. The novelty of this study was in the design of the fibers in a specific alignment and their incorporation within the scaffolds.

  4. MECHANICAL ENGINEERING CURRICULUM AT DTU AND THE APPLICATION OF CDIO IN FIRST YEAR COURSES

    DEFF Research Database (Denmark)

    Houbak, Niels; Klit, Peder

    2005-01-01

    philosophy. This course in particular but also the design of the study plan will be described in this paper as will an ongoing effort on evaluating the current curriculum with improvements in mind. A part of this evaluation of the curriculum will involve an analysis of first year courses among some...... of Manufacturing Engineering and Management and the Department of Mechanical Engineering deliver the technical courses for the Bachelor education (called Production and Engineering Design, P&E). In cooperation the two departments gives an introductory ‘Engineering Work’ course with much emphasis on the CDIO...

  5. National Energy Software Center: compilation of program abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brown, J.M.; Butler, M.K.; De Bruler, M.M.

    1979-05-01

    This is the third complete revision of program abstracts undertaken by the Center. Programs of the IBM 7040, 7090, and CDC 3600 vintage have been removed. Historical data and information on abstract format, program package contents, and subject classification are given. The following subject areas are included in the library: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and power plant economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis and engineering design studies; gamma heating and shield design; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; electronics, engineering equipment, and energy systems studies; chemistry; particle accelerators and high-voltage machines; physics; magnetic fusion research; data. (RWR)

  6. National Energy Software Center: compilation of program abstracts

    International Nuclear Information System (INIS)

    Brown, J.M.; Butler, M.K.; De Bruler, M.M.

    1979-05-01

    This is the third complete revision of program abstracts undertaken by the Center. Programs of the IBM 7040, 7090, and CDC 3600 vintage have been removed. Historical data and information on abstract format, program package contents, and subject classification are given. The following subject areas are included in the library: cross section and resonance integral calculations; spectrum calculations, generation of group constants, lattice and cell problems; static design studies; depletion, fuel management, cost analysis, and power plant economics; space-independent kinetics; space--time kinetics, coupled neutronics--hydrodynamics--thermodynamics and excursion simulations; radiological safety, hazard and accident analysis; heat transfer and fluid flow; deformation and stress distribution computations, structural analysis and engineering design studies; gamma heating and shield design; reactor systems analysis; data preparation; data management; subsidiary calculations; experimental data processing; general mathematical and computing system routines; materials; environmental and earth sciences; electronics, engineering equipment, and energy systems studies; chemistry; particle accelerators and high-voltage machines; physics; magnetic fusion research; data

  7. Methodologies of Knowledge Discovery from Data and Data Mining Methods in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Rogalewicz Michał

    2016-12-01

    Full Text Available The paper contains a review of methodologies of a process of knowledge discovery from data and methods of data exploration (Data Mining, which are the most frequently used in mechanical engineering. The methodologies contain various scenarios of data exploring, while DM methods are used in their scope. The paper shows premises for use of DM methods in industry, as well as their advantages and disadvantages. Development of methodologies of knowledge discovery from data is also presented, along with a classification of the most widespread Data Mining methods, divided by type of realized tasks. The paper is summarized by presentation of selected Data Mining applications in mechanical engineering.

  8. Compilation of contract research for the Materials Engineering Branch, Division of Engineering

    International Nuclear Information System (INIS)

    1991-03-01

    This compilation of annual reports for FY 1990 by contractors to the Materials Engineering Branch of the Nuclear Regulatory Commission Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, and nondestructive examination of primary system components. Separate abstracts have been prepared for each of the reports which are divided into the following categories: (1) vessel and piping fracture mechanics (including irradiation embrittlement); (2) pressure vessel surveillance dosimetry; (3) steam generators, aging, and environmental cracking; and (4) nondestructive examination techniques

  9. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  10. Identification of the Scale of Changes in Personnel Motivation Techniques at Mechanical-Engineering Enterprises

    Directory of Open Access Journals (Sweden)

    Melnyk Olga G.

    2016-02-01

    Full Text Available The method for identification of the scale of changes in personnel motivation techniques at mechanical-engineering enterprises based on structural and logical sequence of implementation of relevant stages (identification of the mission, strategy and objectives of the enterprise; forecasting the development of the enterprise business environment; SWOT-analysis of actual motivation techniques, deciding on the scale of changes in motivation techniques, choosing providers for changing personnel motivation techniques, choosing an alternative to changing motivation techniques, implementation of changes in motivation techniques; control over changes in motivation techniques. It has been substantiated that the improved method enables providing a systematic and analytical justification for management decisionmaking in this field and choosing the best for the mechanical-engineering enterprise scale and variant of changes in motivation techniques. The method for identification of the scale of changes in motivation techniques at mechanical-engineering enterprises takes into account the previous, current and prospective character. Firstly, the approach is based on considering the past state in the motivational sphere of the mechanical-engineering enterprise; secondly, the method involves identifying the current state of personnel motivation techniques; thirdly, within the method framework the prospective, which is manifested in strategic vision of the enterprise development as well as in forecasting the development of its business environment, is taken into account. The advantage of the proposed method is that the level of its specification may vary depending on the set goals, resource constraints and necessity. Among other things, this method allows integrating various formalized and non-formalized causal relationships in the sphere of personnel motivation at machine-building enterprises and management of relevant processes. This creates preconditions for a

  11. Abstracts of the 47. Canadian chemical engineering conference

    International Nuclear Information System (INIS)

    1997-01-01

    Chemical engineering and its role in the development of Western Canada's oil sands and heavy oil reserves was the main focus of this conference. The presentations revolved around the theme, 'The Competitive Advantage'. Features of the conference included strong participation by industry, professional development courses, and government. Energy-related sessions were entitled: (1) oil and bitumen recovery, (2) bitumen extraction and froth treatment, (3) bitumen upgrading, (4) in-situ recovery and enhanced oil recovery, (5) air quality, (6) cracking and hydrogenation, and (7) sulfur recovery and gas processing

  12. Uranium mine venting during operation of self-propelled Diesel engine mechanisms

    International Nuclear Information System (INIS)

    Hemer, M.

    1983-01-01

    A draft directive has been issued for the ventilation of uranium mines which takes into consideration the concentration of radon daughter products, radon volume activity as well as the concentration of harmful wastes emitted by the Diesel engines of mining mechanisms. The mathematical relations are given for the calculation of the required amount of pure mine winds. Also listed are the technical requirements for ventilation, dust emission and the control and maintenance of mining mechanisms. (M.D.)

  13. Hydrogen Abstraction Acetylene Addition and Diels-Alder Mechanisms of PAH Formation:  A Detailed Study Using First Principles Calculations.

    Science.gov (United States)

    Kislov, V V; Islamova, N I; Kolker, A M; Lin, S H; Mebel, A M

    2005-09-01

    Extensive ab initio Gaussian-3-type calculations of potential energy surfaces (PES), which are expected to be accurate within 1-2 kcal/mol, combined with statistical theory calculations of reaction rate constants have been applied to study various possible pathways in the hydrogen abstraction acetylene addition (HACA) mechanism of naphthalene and acenaphthalene formation as well as Diels-Alder pathways to acenaphthalene, phenanthrene, and pyrene. The barrier heights; reaction energies; and molecular parameters of the reactants, products, intermediates, and transition states have been generated for all types of reactions involved in the HACA and Diels-Alder mechanisms, including H abstraction from various aromatic intermediates, acetylene addition to radical sites, ring closures leading to the formation of additional aromatic rings, elimination of hydrogen atoms, H disproportionation, C2H2 cycloaddition, and H2 loss. The reactions participating in various HACA sequences (e.g., Frenklach's, alternative Frenklach's, and Bittner and Howard's routes) are demonstrated to have relatively low barriers and high rate constants under combustion conditions. A comparison of the significance of different HACA mechanisms in PAH growth can be made in the future using PES and molecular parameters obtained in the present work. The results show that the Diels-Alder mechanism cannot compete with the HACA pathways even at high combustion temperatures, because of high barriers and consequently low reaction rate constants. The calculated energetic parameters and rate constants have been compared with experimental and theoretical data available in the literature.

  14. Engineering on the straight and narrow: the mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration.

    Science.gov (United States)

    Mauck, Robert L; Baker, Brendon M; Nerurkar, Nandan L; Burdick, Jason A; Li, Wan-Ju; Tuan, Rocky S; Elliott, Dawn M

    2009-06-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation.

  15. Engineering on the Straight and Narrow: The Mechanics of Nanofibrous Assemblies for Fiber-Reinforced Tissue Regeneration

    Science.gov (United States)

    Baker, Brendon M.; Nerurkar, Nandan L.; Burdick, Jason A.; Li, Wan-Ju; Tuan, Rocky S.; Elliott, Dawn M.

    2009-01-01

    Tissue engineering of fibrous tissues of the musculoskeletal system represents a considerable challenge because of the complex architecture and mechanical properties of the component structures. Natural healing processes in these dense tissues are limited as a result of the mechanically challenging environment of the damaged tissue and the hypocellularity and avascular nature of the extracellular matrix. When healing does occur, the ordered structure of the native tissue is replaced with a disorganized fibrous scar with inferior mechanical properties, engendering sites that are prone to re-injury. To address the engineering of such tissues, we and others have adopted a structurally motivated approach based on organized nanofibrous assemblies. These scaffolds are composed of ultrafine polymeric fibers that can be fabricated in such a way to recreate the structural anisotropy typical of fiber-reinforced tissues. This straight-and-narrow topography not only provides tailored mechanical properties, but also serves as a 3D biomimetic micropattern for directed tissue formation. This review describes the underlying technology of nanofiber production and focuses specifically on the mechanical evaluation and theoretical modeling of these structures as it relates to native tissue structure and function. Applying the same mechanical framework for understanding native and engineered fiber-reinforced tissues provides a functional method for evaluating the utility and maturation of these unique engineered constructs. We further describe several case examples where these principles have been put to test, and discuss the remaining challenges and opportunities in forwarding this technology toward clinical implementation. PMID:19207040

  16. INVENTORY ABSTRACTION

    International Nuclear Information System (INIS)

    Ragan, G.

    2001-01-01

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M andO 2000e for/ICN--02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M andO 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest contributors to the dose given a release

  17. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J.D. Schreiber

    2005-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers

  18. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport

  19. EBS Radionuclide Transport Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    J. Prouty

    2006-07-14

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  20. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    J. Prouty

    2006-01-01

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  1. Fuzzy commutative algebra and its application in mechanical engineering

    International Nuclear Information System (INIS)

    Han, J.; Song, H.

    1996-01-01

    Based on literature data, this paper discusses the whole mathematical structure about point-fuzzy number set F(R). By introducing some new operations about addition, subtraction, multiplication, division and scalar multiplication, we prove that F(R) can form fuzzy linear space, fuzzy commutative ring, fuzzy commutative algebra in order. Furthermore, we get that A is fuzzy commutative algebra for any fuzzy subset. At last, we give an application of point-fuzzy number to mechanical engineering

  2. Systems engineering simplified

    CERN Document Server

    Cloutier, Robert; Bone, Mary Alice

    2015-01-01

    IntroductionOverviewDiscussion of Common TerminologyThe Case for Systems EngineeringA Brief History of Systems EngineeringSystem ExamplesSummaryThe System Life CycleManaging System Development-The Vee ModelSystem ProductionSystem Utilization and SupportSystem Retirement and DisposalOther Systems Engineering Development ModelsSpiral ModelAgile Model for Systems EngineeringSystem of InterestAbstraction and DecompositionIntegrationDeveloping and Managing RequirementsCyclone Requiremen

  3. Box-and-arrow explanations need not be more abstract than neuroscientific mechanism descriptions.

    Science.gov (United States)

    Datteri, Edoardo; Laudisa, Federico

    2014-01-01

    The nature of the relationship between box-and-arrow (BA) explanations and neuroscientific mechanism descriptions (NMDs) is a key foundational issue for cognitive science. In this article we attempt to identify the nature of the constraints imposed by BA explanations on the formulation of NMDs. On the basis of a case study about motor control, we argue that BA explanations and NMDs both identify regularities that hold in the system, and that these regularities place constraints on the formulation of NMDs from BA analyses, and vice versa. The regularities identified in the two kinds of explanation play a crucial role in reasoning about the relationship between them, and in justifying the use of neuroscientific experimental techniques for the empirical testing of BA analyses of behavior. In addition, we make claims concerning the similarities and differences between BA analyses and NMDs. First, we argue that both types of explanation describe mechanisms. Second, we propose that they differ in terms of the theoretical vocabulary used to denote the entities and properties involved in the mechanism and engaging in regular, mutual interactions. On the contrary, the notion of abstractness, defined as omission of detail, does not help to distinguish BA analyses from NMDs: there is a sense in which BA analyses are more detailed than NMDs. In relation to this, we also focus on the nature of the extra detail included in NMDs and missing from BA analyses, arguing that such detail does not always concern how the system works. Finally, we propose reasons for doubting that BA analyses, unlike NMDs, may be considered "mechanism sketches." We have developed these views by critically analyzing recent claims in the philosophical literature regarding the foundations of cognitive science.

  4. Box-and-arrow explanations need not be more abstract than neuroscientific mechanism descriptions

    Directory of Open Access Journals (Sweden)

    Edoardo eDatteri

    2014-05-01

    Full Text Available The nature of the relationship between box-and-arrow (BA explanations and neuroscientific mechanism descriptions (NMDs is a key foundational issue for cognitive science. In this article we attempt to identify the nature of the constraints imposed by BA explanations on the formulation of NMDs. On the basis of a case study about motor control, we argue that BA explanations and NMDs both identify regularities that hold in the system, and that these regularities place constraints on the formulation of NMDs from BA analyses, and vice versa. The regularities identified in the two kinds of explanation play a crucial role in reasoning about the relationship between them, and in justifying the use of neuroscientific experimental techniques for the empirical testing of BA analyses of behavior. In addition, we make claims concerning the similarities and differences between BA analyses and NMDs. First, we argue that both types of explanation describe mechanisms. Second, we propose that they differ in terms of the theoretical vocabulary used to denote the entities and properties involved in the mechanism and engaging in regular, mutual interactions. On the contrary, the notion of abstractness, defined as omission of detail, does not help to distinguish BA analyses from NMDs: there is a sense in which BA analyses are more detailed than NMDs. In relation to this, we also focus on the nature of the extra detail included in NMDs and missing from BA analyses, arguing that such detail does not always concern how the system works. Finally, we propose reasons for doubting that BA analyses, unlike NMDs, may be considered mechanism sketches. We have developed these views by critically analyzing recent claims in the philosophical literature regarding the foundations of cognitive science.

  5. Essentials of the finite element method for mechanical and structural engineers

    CERN Document Server

    Pavlou, Dimitrios G

    2015-01-01

    Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanic...

  6. Abstract Cauchy problems three approaches

    CERN Document Server

    Melnikova, Irina V

    2001-01-01

    Although the theory of well-posed Cauchy problems is reasonably understood, ill-posed problems-involved in a numerous mathematical models in physics, engineering, and finance- can be approached in a variety of ways. Historically, there have been three major strategies for dealing with such problems: semigroup, abstract distribution, and regularization methods. Semigroup and distribution methods restore well-posedness, in a modern weak sense. Regularization methods provide approximate solutions to ill-posed problems. Although these approaches were extensively developed over the last decades by many researchers, nowhere could one find a comprehensive treatment of all three approaches.Abstract Cauchy Problems: Three Approaches provides an innovative, self-contained account of these methods and, furthermore, demonstrates and studies some of the profound connections between them. The authors discuss the application of different methods not only to the Cauchy problem that is not well-posed in the classical sense, b...

  7. Book of abstracts of 13. national conference on nuclear structure and 9. symposium on 'nuclear structure and quantum mechanics'

    International Nuclear Information System (INIS)

    2010-07-01

    13. national conference on nuclear structure and 9. symposium on 'nuclear structure and quantum mechanics' was held by China Nuclear Physics Society in Chifeng, 25 to 30 July, 2010. The proceedings collects the abstracts of 102 articles

  8. Renovation of a Mechanical Engineering Senior Design Class to an Industry-Tied and Team-Oriented Course

    Science.gov (United States)

    Liu, Yucheng

    2017-01-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became…

  9. Abstracts of the International Conference on Occupational Radiation Safety in Mining

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts are provided for the 89 papers presented at this conference. They cover the areas of mine ventilation and engineering, instrumentation, dosimetry, and epidemiology, particularly in uranium mines

  10. Passaged adult chondrocytes can form engineered cartilage with functional mechanical properties: a canine model.

    Science.gov (United States)

    Ng, Kenneth W; Lima, Eric G; Bian, Liming; O'Conor, Christopher J; Jayabalan, Prakash S; Stoker, Aaron M; Kuroki, Keiichi; Cook, Cristi R; Ateshian, Gerard A; Cook, James L; Hung, Clark T

    2010-03-01

    It was hypothesized that previously optimized serum-free culture conditions for juvenile bovine chondrocytes could be adapted to generate engineered cartilage with physiologic mechanical properties in a preclinical, adult canine model. Primary or passaged (using growth factors) adult chondrocytes from three adult dogs were encapsulated in agarose, and cultured in serum-free media with transforming growth factor-beta3. After 28 days in culture, engineered cartilage formed by primary chondrocytes exhibited only small increases in glycosaminoglycan content. However, all passaged chondrocytes on day 28 elaborated a cartilage matrix with compressive properties and glycosaminoglycan content in the range of native adult canine cartilage values. A preliminary biocompatibility study utilizing chondral and osteochondral constructs showed no gross or histological signs of rejection, with all implanted constructs showing excellent integration with surrounding cartilage and subchondral bone. This study demonstrates that adult canine chondrocytes can form a mechanically functional, biocompatible engineered cartilage tissue under optimized culture conditions. The encouraging findings of this work highlight the potential for tissue engineering strategies using adult chondrocytes in the clinical treatment of cartilage defects.

  11. Abstracts and parameter index database for reports pertaining to the unsaturated zone and surface water-ground water interactions at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bloomsburg, G.; Finnie, J.; Horn, D.; King, B.; Liou, J.

    1993-05-01

    This report is a product generated by faculty at the University of Idaho in support of research and development projects on Unsaturated Zone Contamination and Transport Processes, and on Surface Water-Groundwater Interactions and Regional Groundwater Flow at the Idaho National Engineering Laboratory. These projects are managed by the State of Idaho's INEL Oversight Program under a grant from the US Department of Energy. In particular, this report meets project objectives to produce a site-wide summary of hydrological information based on a literature search and review of field, laboratory and modeling studies at INEL, including a cross-referenced index to site-specific physical, chemical, mineralogic, geologic and hydrologic parameters determined from these studies. This report includes abstracts of 149 reports with hydrological information. For reports which focus on hydrological issues, the abstracts are taken directly from those reports; for reports dealing with a variety of issues beside hydrology, the abstracts were generated by the University of Idaho authors concentrating on hydrology-related issues. Each abstract is followed by a ''Data'' section which identifies types of technical information included in a given report, such as information on parameters or chemistry, mineralogy, stream flows, water levels. The ''Data'' section does not include actual values or data

  12. 6. International conference on materials science and condensed matter physics. Abstracts

    International Nuclear Information System (INIS)

    2012-09-01

    This book includes abstracts of the communications presented at the 6th International Conference on Materials Science and Condensed Matter Physics. The aim of this event is two-fold. First, it provides a nice opportunity for discussions and the dissemination of the latest results on selected topics in materials science, condensed-matter physics, and electrical methods of materials treatment. On the other hand, this is an occasion for sketching a broad perspective of scientific research and technological developments for the participants through oral and poster presentations. The abstracts presented in the book cover certain issues of modern theoretical and experimental physics and advanced technology, such as crystal growth, doping and implantation, fabrication of solid state structures; defect engineering, methods of fabrication and characterization of nanostructures including nanocomposites, nanowires and nano dots; fullerenes and nano tubes; quantum wells and superlattices; molecular-based materials, meso- and nano electronics; methods of structural and mechanical characterization; optical, transport, magnetic and superconductor properties, non-linear phenomena, size and interface effects; condensed matter theory; modelling of materials and structural properties including low dimensional systems; advanced materials and fabrication processes, device modelling and simulation of structures and elements; optoelectronics and photonics; microsensors and micro electro-mechanical systems; degradation and reliability, advanced technologies of electro-physico-chemical methods and equipment for materials machining, including modification of surfaces; electrophysical technologies of intensification of heat- and mass-transfer; treatment of biological preparations and foodstuff.

  13. Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis

    International Nuclear Information System (INIS)

    Cheng, Chin-Hsiang; Yang, Hang-Suin

    2014-01-01

    In the present study, optimization of rhombic drive mechanism used in a beta-type Stirling engine is performed based on a dimensionless theoretical model toward maximization of shaft work output. Displacements of the piston and the displacer with the rhombic drive mechanism and variations of volumes and pressure in the chambers of the engine are firstly expressed in dimensionless form. Secondly, Schmidt analysis is incorporated with Senft's shaft work theory to build a dimensionless thermodynamic model, which is employed to yield the dimensionless shaft work. The dimensionless model is verified with experimental data. It is found that the relative error between the experimental and the theoretical data in dimensionless shaft work is lower than 5.2%. This model is also employed to investigate the effects of the influential geometric parameters on the shaft work, and the optimization of these parameters is attempted. Eventually, design charts that help design the optimal geometry of the rhombic drive mechanism are presented in this report. - Highlights: • Specifically dealing with optimization of rhombic-drive mechanism used in Stirling engine based on dimensionless model. • Propose design charts that help determine the optimal geometric parameters of the rhombic drive mechanism. • Complete study of influential factors affecting the shaft work output

  14. Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers

    Science.gov (United States)

    Impelluso, Thomas J.

    2009-01-01

    A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…

  15. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  16. Assessment of the Use of AutoCAD in Mechanical Engineering Technical Drawing Education

    OpenAIRE

    Akyürek, Turgut

    2018-01-01

    AutoCAD is one of the widely used software tools in engineering education. In this study, ageneral assessment of AutoCAD for the usage in the mechanical engineering technical drawing educationis made. AutoCAD is assessed in terms of the fulfilment of the requirements defined for the main twotechnical drawing courses. AutoCAD is assessed in terms of its capability in meeting the requirements ofthe technical drawing courses.

  17. Mechanical cues in orofacial tissue engineering and regenerative medicine.

    Science.gov (United States)

    Brouwer, Katrien M; Lundvig, Ditte M S; Middelkoop, Esther; Wagener, Frank A D T G; Von den Hoff, Johannes W

    2015-01-01

    Cleft lip and palate patients suffer from functional, aesthetical, and psychosocial problems due to suboptimal regeneration of skin, mucosa, and skeletal muscle after restorative cleft surgery. The field of tissue engineering and regenerative medicine (TE/RM) aims to restore the normal physiology of tissues and organs in conditions such as birth defects or after injury. A crucial factor in cell differentiation, tissue formation, and tissue function is mechanical strain. Regardless of this, mechanical cues are not yet widely used in TE/RM. The effects of mechanical stimulation on cells are not straight-forward in vitro as cellular responses may differ with cell type and loading regime, complicating the translation to a therapeutic protocol. We here give an overview of the different types of mechanical strain that act on cells and tissues and discuss the effects on muscle, and skin and mucosa. We conclude that presently, sufficient knowledge is lacking to reproducibly implement external mechanical loading in TE/RM approaches. Mechanical cues can be applied in TE/RM by fine-tuning the stiffness and architecture of the constructs to guide the differentiation of the seeded cells or the invading surrounding cells. This may already improve the treatment of orofacial clefts and other disorders affecting soft tissues. © 2015 by the Wound Healing Society.

  18. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    International Nuclear Information System (INIS)

    Lombardi, A.; D'Elia, F.; Ravindran, C.; MacKay, R.

    2014-01-01

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions

  19. Replication of engine block cylinder bridge microstructure and mechanical properties with lab scale 319 Al alloy billet castings

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, A., E-mail: a2lombar@ryerson.ca [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard Street East, Toronto, Ontario M5B2K3 (Canada); D' Elia, F.; Ravindran, C. [Centre for Near-net-shape Processing of Materials, Ryerson University, 101 Gerrard Street East, Toronto, Ontario M5B2K3 (Canada); MacKay, R. [Nemak of Canada Corporation, 4600 G.N. Booth Drive, Windsor, Ontario N9C4G8 (Canada)

    2014-01-15

    In recent years, aluminum alloy gasoline engine blocks have in large part successfully replaced nodular cast iron engine blocks, resulting in improved vehicle fuel efficiency. However, because of the inadequate wear resistance properties of hypoeutectic Al–Si alloys, gray iron cylinder liners are required. These liners cause the development of large tensile residual stress along the cylinder bores and necessitate the maximization of mechanical properties in this region to prevent premature engine failure. The aim of this study was to replicate the engine cylinder bridge microstructure and mechanical properties following TSR treatment (which removes the sand binder to enable easy casting retrieval) using lab scale billet castings of the same alloy composition with varying cooling rates. Comparisons in microstructure between the engine block and the billet castings were carried out using optical and scanning electron microscopy, while mechanical properties were assessed using tensile testing. The results suggest that the microstructure at the top and middle of the engine block cylinder bridge was successfully replicated by the billet castings. However, the microstructure at the bottom of the cylinder was not completely replicated due to variations in secondary phase morphology and distribution. The successful replication of engine block microstructure will enable the future optimization of heat treatment parameters. - Highlights: • A method to replicate engine block microstructure was developed. • Billet castings will allow cost effective optimization of heat treatment process. • The replication of microstructure in the cylinder region was mostly successful. • Porosity was more clustered in the billet castings compared to the engine block. • Mechanical properties were lower in billet castings due to porosity and inclusions.

  20. ICENES 2007 Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, S [Gazi University, Technical Education Faculty, Ankara (Turkey)

    2007-07-01

    In this book Conference Program and Abstracts were included 13th International Conference on Emerging Nuclear Energy Systems which held between 03-08 June 2007 in Istanbul, Turkey. The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology , for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems. The main topics of 159 accepted papers from 35 countries are fusion science and technology, fission reactors, accelerator driven systems, transmutation, laser in nuclear technology, radiation shielding, nuclear reactions, hydrogen energy, solar energy, low energy physics and societal issues.

  1. ICENES 2007 Abstracts

    International Nuclear Information System (INIS)

    Sahin, S.

    2007-01-01

    In this book Conference Program and Abstracts were included 13th International Conference on Emerging Nuclear Energy Systems which held between 03-08 June 2007 in Istanbul, Turkey. The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology , for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems. The main topics of 159 accepted papers from 35 countries are fusion science and technology, fission reactors, accelerator driven systems, transmutation, laser in nuclear technology, radiation shielding, nuclear reactions, hydrogen energy, solar energy, low energy physics and societal issues

  2. STEM Education Related Dissertation Abstracts: A Bounded Qualitative Meta-study

    Science.gov (United States)

    Banning, James; Folkestad, James E.

    2012-12-01

    This article utilizes a bounded qualitative meta-study framework to examine the 101 dissertation abstracts found by searching the ProQuest Dissertation and Theses™ digital database for dissertations abstracts from 1990 through 2010 using the search terms education, science, technology, engineer, and STEM/SMET. Professional search librarians established the search criteria used to establish the database. The overarching research question for this study was: What can we learn from the examination of doctoral dissertations abstracts that focus on the STEM education found from 1990 through 2010? The study's findings provide an overview of doctoral research related to STEM education and the discussion section focuses on quality of abstracts, questions regarding the use of the pipeline metaphor, and location of instructional innovation.

  3. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Reliability in automotive and mechanical engineering determination of component and system reliability

    CERN Document Server

    Bertsche, Bernd

    2008-01-01

    In the present contemporary climate of global competition in every branch of engineering and manufacture it has been shown from extensive customer surveys that above every other attribute, reliability stands as the most desired feature in a finished product. To survive this relentless fight for survival any organisation, which neglect the plea of attaining to excellence in reliability, will do so at a serious cost Reliability in Automotive and Mechanical Engineering draws together a wide spectrum of diverse and relevant applications and analyses on reliability engineering. This is distilled into this attractive and well documented volume and practising engineers are challenged with the formidable task of simultaneously improving reliability and reducing the costs and down-time due to maintenance. The volume brings together eleven chapters to highlight the importance of the interrelated reliability and maintenance disciplines. They represent the development trends and progress resulting in making this book ess...

  5. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.

    Science.gov (United States)

    Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay

    2017-03-01

    Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and

  6. Abstracts of the 17. world congress of the International Commission of Agriculture and Biosystems Engineering (CIGR) : sustainable biosystems through engineering

    Energy Technology Data Exchange (ETDEWEB)

    Savoie, P.; Villeneuve, J.; Morisette, R. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada). Soils and Crops Research and Development Centre] (eds.)

    2010-07-01

    This international conference provided a forum to discuss methods to produce agricultural products more efficiently through improvements in engineering and technology. It was attended by engineers and scientists working from different perspectives on biosystems. Beyond food, farms and forests can provide fibre, bio-products and renewable energy. Seven sections of CIGR were organized in the following technical sessions: (1) land and water engineering, (2) farm buildings, equipment, structures and environment, (3) equipment engineering for plants, (4) energy in agriculture, (5) management, ergonomics and systems engineering, (6) post harvest technology and process engineering, and (7) information systems. The Canadian Society of Bioengineering (CSBE) merged its technical program within the 7 sections of CIGR. Four other groups also held their activities during the conference. The American Society of Agricultural and Biological Engineers (ASABE) organized its 9th international drainage symposium and the American Ecological Engineering Society (AEES) held its 10th annual meeting. The International Network for Information Technology in Agriculture (INFITA), and the 8th world congress on computers in agriculture also joined CIGR 2010.

  7. Eastern and Central Europe Decommissioning, ECED 2015 - Book of Abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    Scientific conference deals with problems of reactor decommissioning and radioactive waste management in the Central Europe. The Conference included the following sessions: (1): Characterisation and Radioactive Waste Management; (2) Managerial Aspects of Decommissioning; (3) JAVYS Experience with Back-End of Nuclear Power Engineering - Progress in Last 2 Years; (4) Decommissioning Planning and Costing and Education; (5) Technical Aspects of Decommissioning; (6) Radioactive Waste Management; (4) Poster Session. The Book of Abstracts contains two invitation speeches and 30 abstracts.

  8. A Novel Pulsatile Bioreactor for Mechanical Stimulation of Tissue Engineered Cardiac Constructs

    Directory of Open Access Journals (Sweden)

    Günther Eissner

    2011-07-01

    Full Text Available After myocardial infarction, the implantation of stem cell seeded scaffolds on the ischemic zone represents a promising strategy for restoration of heart function. However, mechanical integrity and functionality of tissue engineered constructs need to be determined prior to implantation. Therefore, in this study a novel pulsatile bioreactor mimicking the myocardial contraction was developed to analyze the behavior of mesenchymal stem cells derived from umbilical cord tissue (UCMSC colonized on titanium-coated polytetrafluorethylene scaffolds to friction stress. The design of the bioreactor enables a simple handling and defined mechanical forces on three seeded scaffolds at physiological conditions. The compact system made of acrylic glass, Teflon®, silicone, and stainless steel allows the comparison of different media, cells and scaffolds. The bioreactor can be gas sterilized and actuated in a standard incubator. Macroscopic observations and pressure-measurements showed a uniformly sinusoidal pulsation, indicating that the bioreactor performed well. Preliminary experiments to determine the adherence rate and morphology of UCMSC after mechanical loadings showed an almost confluent cellular coating without damage on the cell surface. In summary, the bioreactor is an adequate tool for the mechanical stress of seeded scaffolds and offers dynamic stimuli for pre-conditioning of cardiac tissue engineered constructs in vitro.

  9. The State and Factors of the Economic Dynamics of Mechanical Engineering Enterprises in Ukraine

    Directory of Open Access Journals (Sweden)

    Stadnyk Valentyna V.

    2017-06-01

    Full Text Available The economic dynamics of mechanical engineering enterprises in Ukraine is considered. Steady negative trends in the volumes of production and sales of mechanical engineering products are revealed. The analysis of the export capabilities of the mechanical engineering industry in the context of the main commodity groups showed an increase in the exports of products of the third technological mode, which indicates a decrease in its science intensity. The study of the impact on the state of the industry of general macroeconomic trends, which are reflected in the changes in the Global Competitiveness Index of Ukraine in 2014-2016, demonstrated some improvements in the indicators characterizing the conditions of business management and the results of their innovation activities. With the purpose of assessing the conformity of the directions in innovation activities of enterprises in the industrial sector of Ukraine to the objectives of increasing their innovative potential, there conducted an analysis of the structure of innovation costs, which showed a significant predominance of costs on acquiring equipment, while the implementation of new technologies is carried out mainly on the basis of resource saving and not flexibility; the introduction of product innovations in the market, especially of fundamentally new ones, decreases. The examination of organizational forms of innovation management in mechanical engineering enterprises indicated the lack of complementarity of innovation management and quality management systems, as well as a low level of staff involvement in these improvement processes. The necessity of eliminating these deficiencies in management for increasing the innovative potential of enterprises and achieving cognitive self-sufficiency is underlined. It is noted that the principles underlying modern quality management systems can be used to solve these problems.

  10. Interactive simulations as teaching tools for engineering mechanics courses

    Science.gov (United States)

    Carbonell, Victoria; Romero, Carlos; Martínez, Elvira; Flórez, Mercedes

    2013-07-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills.

  11. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  12. Abstracted Workow Framework with a Structure from Motion Application

    Science.gov (United States)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  13. The Clean Development Mechanism Re-engineered

    DEFF Research Database (Denmark)

    Lütken, Søren

    2016-01-01

    for engineering such mechanism, or indeed reengineering the CDM itself, to make it a viable mitigation financing tool, providing receipts for payments in the form of certified emission reductions (CER). Two solutions are presented, both of which secure new financing for projects that deliver real and measurable...... emissions reduction benefits on the basis of prospective revenues from emissions reduction: one introduces up-front securitization of the emissions reductions; the other builds on a defined value of the CERs without the need for a carbon price or a market for trading. Most of us use simple heuristics...... time. Simply put CERs are not project finance and do not address project capital needs when most needed — upfront. CER based returns are available only after a project is operational. That is why only one third of registered CDM projects went as far as to get their carefully calculated CERs issued...

  14. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering

    NARCIS (Netherlands)

    Kortsmit, J.; Driessen, N.J.B.; Rutten, M.C.M.; Baaijens, F.P.T.

    2009-01-01

    Despite recent progress, mechanical behavior of tissue-engineered heart valves still needs improvement when native aortic valves are considered as a benchmark. Although it is known that cyclic straining enhances tissue formation, optimal loading protocols have not been defined yet. To obtain a

  15. SERS internship fall 1995 abstracts and research papers

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Beverly

    1996-05-01

    This report is a compilation of twenty abstracts and their corresponding full papers of research projects done under the US Department of Energy Science and Engineering Research Semester (SERS) program. Papers cover a broad range of topics, for example, environmental transport, supercomputers, databases, biology. Selected papers were indexed separately for inclusion the the Energy Science and Technology Database.

  16. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ramiro M. Irastorza

    2015-01-01

    Full Text Available Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.. When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  17. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  18. Methods for automated semantic definition of manufacturing structures (mBOM) in mechanical engineering companies

    Science.gov (United States)

    Stekolschik, Alexander, Prof.

    2017-10-01

    The bill of materials (BOM), which involves all parts and assemblies of the product, is the core of any mechanical or electronic product. The flexible and integrated management of engineering (Engineering Bill of Materials [eBOM]) and manufacturing (Manufacturing Bill of Materials [mBOM]) structures is the key to the creation of modern products in mechanical engineering companies. This paper presents a method framework for the creation and control of e- and, especially, mBOM. The requirements, resulting from the process of differentiation between companies that produce serialized or engineered-to-order products, are considered in the analysis phase. The main part of the paper describes different approaches to fully or partly automated creation of mBOM. The first approach is the definition of part selection rules in the generic mBOM templates. The mBOM can be derived from the eBOM for partly standardized products by using this method. Another approach is the simultaneous use of semantic rules, options, and parameters in both structures. The implementation of the method framework (selection of use cases) in a standard product lifecycle management (PLM) system is part of the research.

  19. Installation of Mechatronics Education Using the MindStorms for Dept. of Mechanical Engineering, O.N.C.T

    Directory of Open Access Journals (Sweden)

    Tatsushi Tokuyasu

    2009-09-01

    Full Text Available The author constructed an installation course of mechatronics and conducted on the students of department of mechanical engineering, Oita national college of technology. The course is composed of six sessions and is aiming to grow up the mechanical engineers who can adapt quickly to changes in industrial society. Then, the education programs of computer technology and information processing are more emphasized in this course. Certainly the specific subjects involved with mechatronics are constructed as a part of curriculum in the older grades, however there is some difficulties to make students of department of mechanical engineering to have interests in electronics and/or information science. Viewed in this light, it is better to begin mechatronics education with undergoing experiments like this course since they were in early grade.

  20. Installation of Mechatronics Education Using the MindStorms for Dept. of Mechanical Engineering, O.N.C.T

    Directory of Open Access Journals (Sweden)

    Tatsushi Tokuyasu

    2010-02-01

    Full Text Available The author constructed an installation course of mechatronics and conducted on the students of department of mechanical engineering, Oita national college of technology. The course is composed of six sessions and is aiming to grow up the mechanical engineers who can adapt quickly to changes in industrial society. Then, the education programs of computer technology and information processing are more emphasized in this course. Certainly the specific subjects involved with mechatronics are constructed as a part of curriculum in the older grades, however there is some difficulties to make students of department of mechanical engineering to have interests in electronics and/or information science. Viewed in this light, it is better to begin mechatronics education with undergoing experiments like this course since they were in early grade.

  1. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Competency Test Package.

    Science.gov (United States)

    Hamlin, Larry

    This document contains the competency test package for three sections of a general mechanical repair course: minor automotive maintenance, small engine mechanics, and welding. Following a list of the common essential elements for trade and industrial education, competency tests for the three sections are provided. Each test includes unit name,…

  2. Abstracts of the 54. Canadian Chemical Engineering Conference : Energy for the Future

    International Nuclear Information System (INIS)

    2004-01-01

    The key energy challenges facing the chemical process industries were addressed at this international conference. Chemical engineering was shown to play a critical role in offering technical solutions to the challenges of climate change and pollution abatement on a global scale. The sessions addressed a variety of issues dealing with heavy oil processing and utilization, natural gas processing, reservoir engineering and biotechnology process systems. The presentations also addressed issues dealing with applied thermodynamics, new technologies, polymer engineering and other fundamental processes, including some used by the pulp and paper industry. The conference featured more than 500 presentations from around the world, including Canada, the United States, Asia and Europe. A total of 84 papers have been indexed separately for inclusion in this database

  3. Mechanical engineering and design of silicon-based particle tracking devices

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Gamble, M.T.; Reid, R.S.; Woloshun, K.A.; Dransfield, G.D.; Ziock, H.J.

    1990-01-01

    The Mechanical Engineering and Electronics Division of the Los Alamos National Laboratory has been investigating silicon-based particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, thermal, and materials issues have been addressed. This paper discussed detector structural integrity and stability, including detailed finite element models of the silicon chip support and predictive methods used in designing with advanced composite materials. Electronic thermal loading and efficient dissipation of such energy using heat pipe technology has been investigated. The use of materials whose coefficients of thermal expansion are engineered to match silicon or to be near zero, as appropriate, have been explored. Material analysis and test results from radiation, chemical, and static loading are compared with analytical predictions and discussed. 1 ref., 2 figs., 1 tab

  4. An EMOF-Compliant Abstract Syntax for Bigraphs

    Directory of Open Access Journals (Sweden)

    Timo Kehrer

    2016-12-01

    Full Text Available Bigraphs are an emerging modeling formalism for structures in ubiquitous computing. Besides an algebraic notation, which can be adopted to provide an algebraic syntax for bigraphs, the bigraphical theory introduces a visual concrete syntax which is intuitive and unambiguous at the same time; the standard visual notation can be customized and thus tailored to domain-specific requirements. However, in contrast to modeling standards based on the Meta-Object Facility (MOF and domain-specific languages typically used in model-driven engineering (MDE, the bigraphical theory lacks a precise definition of an abstract syntax for bigraphical modeling languages. As a consequence, available modeling and analysis tools use proprietary formats for representing bigraphs internally and persistently, which hampers the exchange of models across tool boundaries. Moreover, tools can be hardly integrated with standard MDE technologies in order to build sophisticated tool chains and modeling environments, as required for systematic engineering of large systems or fostering experimental work to evaluate the bigraphical theory in real-world applications. To overcome this situation, we propose an abstract syntax for bigraphs which is compliant to the Essential MOF (EMOF standard defined by the Object Management Group (OMG. We use typed graphs as a formal underpinning of EMOF-based models and present a canonical mapping which maps bigraphs to typed graphs in a natural way. We also discuss application-specific variation points in the graph-based representation of bigraphs. Following standard techniques from software product line engineering, we present a framework to customize the graph-based representation to support a variety of application scenarios.

  5. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Wright, L D; Young, R T; Andric, T; Freeman, J W

    2010-01-01

    Electrospinning is a polymer processing technique that produces fibrous structures comparable to the extracellular matrix of many tissues. Electrospinning, however, has been severely limited in its tissue engineering capabilities because this technique has produced few three-dimensional structures. Sintering of electrospun materials provides a method to fabricate unique architectures and allow much larger structures to be made. Electrospun mats were sintered into strips and cylinders, and their tensile and compressive mechanical properties were measured. In addition, electrospun materials with salt pores (salt embedded within the material and then leached out) were fabricated to improve porosity of the electrospun materials for tissue engineering scaffolds. Sintered electrospun poly(d,l-lactide) and poly(l-lactide) (PDLA/PLLA) materials have higher tensile mechanical properties (modulus: 72.3 MPa, yield: 960 kPa) compared to unsintered PLLA (modulus: 40.36 MPa, yield: 675.5 kPa). Electrospun PDLA/PLLA cylinders with and without salt-leached pores had compressive moduli of 6.69 and 26.86 MPa, respectively, and compressive yields of 1.36 and 0.56 MPa, respectively. Sintering of electrospun materials is a novel technique that improves electrospinning application in tissue engineering by increasing the size and types of electrospun structures that can be fabricated.

  6. Abstract Expression Grammar Symbolic Regression

    Science.gov (United States)

    Korns, Michael F.

    This chapter examines the use of Abstract Expression Grammars to perform the entire Symbolic Regression process without the use of Genetic Programming per se. The techniques explored produce a symbolic regression engine which has absolutely no bloat, which allows total user control of the search space and output formulas, which is faster, and more accurate than the engines produced in our previous papers using Genetic Programming. The genome is an all vector structure with four chromosomes plus additional epigenetic and constraint vectors, allowing total user control of the search space and the final output formulas. A combination of specialized compiler techniques, genetic algorithms, particle swarm, aged layered populations, plus discrete and continuous differential evolution are used to produce an improved symbolic regression sytem. Nine base test cases, from the literature, are used to test the improvement in speed and accuracy. The improved results indicate that these techniques move us a big step closer toward future industrial strength symbolic regression systems.

  7. Resumen del II Congreso Latinoamericano de Estudiantes de Ingeniería Mecánica y Metalurgia. // Summary of the 2nd Latin-American Congress for Students of Mechanical Engineering.

    Directory of Open Access Journals (Sweden)

    D. William Fonseca

    2003-09-01

    Full Text Available Del 15 al 20 de Septiembre del 2003 se celebró el II Congreso Latinoamericano de Estudiantes de Ingeniería Mecánica y Metalurgia,CLEIM´2003, con sede en el Hotel Costa Azul de la Villa Panamericana y el Instituto Superior Politécnico José Antonio Echeverría,CUJAE., con el auspicio de la Facultad de Ingeniería Mecánica de la CUJAE y el Centro de Estudios de Innovación y Mantenimiento(CEIM y la colaboración y patrocinio de DHL, Los Portales S.A, Unión de Empresas de Recuperación de Materias Primas, TractoImport, CUBACEL, Movitel, Softel, Centro de Ingeniería Genética y Biotecnología, Ministerio de Cultura, Departamento deTelemática de la Facultad de Eléctrica, Universitur- CUJAE, Unidad de Eventos de Islazul.y LabioFam. El CLEIM fue organizadopor la Federación Estudiantil Universitaria de la Facultad de Ingeniería Mecánica de la CUJAE en coordinación para su promocióncon la Coordinadora Latinoamericana de Estudiantes de Ingeniería Mecánica y Metalurgia, CLEIM. Este informe resume lasprincipales actividades realizadas durante este congreso y los resultados obtenido durante el mismo.___________________________________________________________________________AbstractThe 2nd Latin-American Congress for Students of Mechanical Engineering (CLEIM 2003 was celebrated in the areas of theHigher Polytechnic Institute José Antonio Echeverría and the Costa Azul Hotel, on September 15 - 20 of 2003, sponsored byMechanical Engineering Faculty at CUJAE and Center for Studies of Maintenance (CEIM. This Congress was organized bythe Federation of Students (FEU in the Faculty of Mechanical Engineering at CUJAE in coordination and promotion with theLatin American Coordinator of Mechanical Engineering and Metallurgy Students (CLEIM. This event was protagonist, onceagain, for the union of the great Mechanical Engineers community in Latin-American area with the mission of developing thisprofession with genius, creativity and talent. After an

  8. FAILURE MECHANISMS OF THERMAL BARRIER COATINGS INTERNAL COMBUSTION ENGINES AND llMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ADNAN PARLAK

    2003-04-01

    Full Text Available MechanicaJ properties of high performance ceramics have been improved to the point where their use in heat engines is possible. The high temperature strength and low thermal expansion properties of bigh performance ceramics offer an advantage over metals in the development of non-water cooling engine. However, because bard environment in diesel engine combustion chamber, solving the problem of durabiUty of TBC is important. DurabiUty of thermal barrier coatings(TBC is liınited by two main failure mechanisms: Therınal expansion nlİsmatch betwcen bond coat and top coat and bond coat oxidation. Both of these can cause failure of the ceramic top coat. Developments of recent years sholv that bond coats \\Vith higher oxidation resistance tend to have better coating system cyclic lives

  9. Program Guide for Diesel Engine Mechanics 8742000 (IN47.060500) and Heavy Duty Truck and Bus Mechanics DIM0991 (IN47.060501).

    Science.gov (United States)

    University of South Florida, Tampa. Coll. of Education.

    This competency-based program guide provides course content information and procedures for secondary schools, postsecondary vocational schools, and community colleges in Florida that conduct programs in diesel engine mechanics and heavy duty truck and bus mechanics. The first section is on legal authority, which applies to all vocational education…

  10. Cam Design Projects in an Advanced CAD Course for Mechanical Engineers

    Science.gov (United States)

    Ault, H. K.

    2009-01-01

    The objective of this paper is to present applications of solid modeling aimed at modeling of complex geometries such as splines and blended surfaces in advanced CAD courses. These projects, in CAD-based Mechanical Engineering courses, are focused on the use of the CAD system to solve design problems for applications in machine design, namely the…

  11. Chondroprotective supplementation promotes the mechanical properties of injectable scaffold for human nucleus pulposus tissue engineering.

    Science.gov (United States)

    Foss, Berit L; Maxwell, Thomas W; Deng, Ying

    2014-01-01

    A result of intervertebral disc (IVD) degeneration, the nucleus pulposus (NP) is no longer able to withstand applied load leading to pain and disability. The objective of this study is to fabricate a tissue-engineered injectable scaffold with chondroprotective supplementation in vitro to improve the mechanical properties of a degenerative NP. Tissue-engineered scaffolds were fabricated using different concentrations of alginate and calcium chloride and mechanically evaluated. Fabrication conditions were based on structural and mechanical resemblance to the native NP. Chondroprotective supplementation, glucosamine (GCSN) and chondroitin sulfate (CS), were added to scaffolds at concentrations of 0:0µg/mL (0:0-S), 125:100µg/mL (125:100-S), 250:200µg/mL (250:200-S), and 500:400µg/mL (500:400-S), GCSN and CS, respectively. Scaffolds were used to fabricate tissue-engineered constructs through encapsulation of human nucleus pulposus cells (HNPCs). The tissue-engineered constructs were collected at days 1, 14, and 28 for biochemical and biomechanical evaluations. Confocal microscopy showed HNPC viability and rounded morphology over the 28 day period. MTT analysis resulted in significant increases in cell proliferation for each group. Collagen type II ELISA quantification and compressive aggregate moduli (HA) showed increasing trends for both 250:200-S and the 500:400-S groups on Day 28 with significantly greater HA compared to 0:0-S group. Glycosaminoglycan and water content decreased for all groups. Results indicate the increased mechanical properties of the 250:200-S and the 500:400-S was due to production of a functional matrix. This study demonstrated potential for a chondroprotective supplemented injectable scaffold to restore biomechanical function of a degenerative disc through the production of a mechanically functional matrix. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. A systemic analysis of cheating in an undergraduate engineering mechanics course.

    Science.gov (United States)

    Bertram Gallant, Tricia; Van Den Einde, Lelli; Ouellette, Scott; Lee, Sam

    2014-03-01

    Cheating in the undergraduate classroom is not a new problem, and it is recognized as one that is endemic to the education system. This paper examines the highly normative behavior of using unauthorized assistance (e.g., a solutions manual or a friend) on an individual assignment within the context of an upper division undergraduate course in engineering mechanics. The findings indicate that there are varying levels of accepting responsibility among the students (from denial to tempered to full) and that acceptance of responsibility can lead to identification of learning and necessary behavioral changes. The findings have implications for institutions and engineering faculty, in particular the need for consistent academic integrity education and the teaching of professional integrity and ethics.

  13. Governing Engineering

    DEFF Research Database (Denmark)

    Buch, Anders

    2011-01-01

    Abstract: Most people agree that our world faces daunting problems and, correctly or not, technological solutions are seen as an integral part of an overall solution. But what exactly are the problems and how does the engineering ‘mind set’ frame these problems? This chapter sets out to unravel...... dominant perspectives in challenge perception in engineering in the US and Denmark. Challenge perception and response strategies are closely linked through discursive practices. Challenge perceptions within the engineering community and the surrounding society are thus critical for the shaping...... of engineering education and the engineering profession. Through an analysis of influential reports and position papers on engineering and engineering education the chapter sets out to identify how engineering is problematized and eventually governed. Drawing on insights from governmentality studies the chapter...

  14. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume II, Appendices.

    Science.gov (United States)

    1981-09-01

    The profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industry...

  15. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume I, Text.

    Science.gov (United States)

    1981-09-01

    This profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industr...

  16. Interactive simulations as teaching tools for engineering mechanics courses

    International Nuclear Information System (INIS)

    Carbonell, Victoria; Martínez, Elvira; Flórez, Mercedes; Romero, Carlos

    2013-01-01

    This study aimed to gauge the effect of interactive simulations in class as an active teaching strategy for a mechanics course. Engineering analysis and design often use the properties of planar sections in calculations. In the stress analysis of a beam under bending and torsional loads, cross-sectional properties are used to determine stress and displacement distributions in the beam cross section. The centroid, moments and products of inertia of an area made up of several common shapes (rectangles usually) may thus be obtained by adding the moments of inertia of the component areas (U-shape, L-shape, C-shape, etc). This procedure is used to calculate the second moments of structural shapes in engineering practice because the determination of their moments of inertia is necessary for the design of structural components. This paper presents examples of interactive simulations developed for teaching the ‘Mechanics and mechanisms’ course at the Universidad Politecnica de Madrid, Spain. The simulations focus on fundamental topics such as centroids, the properties of the moment of inertia, second moments of inertia with respect to two axes, principal moments of inertia and Mohr's Circle for plane stress, and were composed using Geogebra software. These learning tools feature animations, graphics and interactivity and were designed to encourage student participation and engagement in active learning activities, to effectively explain and illustrate course topics, and to build student problem-solving skills. (paper)

  17. Object-oriented programming with gradual abstraction

    DEFF Research Database (Denmark)

    Nørmark, Kurt; Thomsen, Lone Leth; Thomsen, Bent

    2013-01-01

    We describe an experimental object-oriented programming language, ASL2, that supports program development by means of a series of abstraction steps. The language allows immediate object construction, and it is possible to use the constructed objects for concrete problem solving tasks. Classes...... restrictive. As a central mechanism, weakly classified objects are allowed to borrow methods from each other. ASL2 supports class generalization, as a counterpart to class specialization and inheritance in mainstream object-oriented programming languages. The final abstraction step discussed in this paper...

  18. DESIGN OPTIMIZATION METHOD USED IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    SCURTU Iacob Liviu

    2016-11-01

    Full Text Available This paper presents an optimization study in mechanical engineering. First part of the research describe the structural optimization method used, followed by the presentation of several optimization studies conducted in recent years. The second part of the paper presents the CAD modelling of an agricultural plough component. The beam of the plough is analysed using finite element method. The plough component is meshed in solid elements, and the load case which mimics the working conditions of agricultural equipment of this are created. The model is prepared to find the optimal structural design, after the FEA study of the model is done. The mass reduction of part is the criterion applied for this optimization study. The end of this research presents the final results and the model optimized shape.

  19. From Abstract Art to Abstracted Artists

    Directory of Open Access Journals (Sweden)

    Romi Mikulinsky

    2016-11-01

    Full Text Available What lineage connects early abstract films and machine-generated YouTube videos? Hans Richter’s famous piece Rhythmus 21 is considered to be the first abstract film in the experimental tradition. The Webdriver Torso YouTube channel is composed of hundreds of thousands of machine-generated test patterns designed to check frequency signals on YouTube. This article discusses geometric abstraction vis-à-vis new vision, conceptual art and algorithmic art. It argues that the Webdriver Torso is an artistic marvel indicative of a form we call mathematical abstraction, which is art performed by computers and, quite possibly, for computers.

  20. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications.

    Science.gov (United States)

    Chen, Qi-Zhi; Liang, Shu-Ling; Wang, Jiang; Simon, George P

    2011-11-01

    Poly (glycerol sebacate) (PGS) is a promising elastomer for use in soft tissue engineering. However, it is difficult to achieve with PGS a satisfactory balance of mechanical compliance and degradation rate that meet the requirements of soft tissue engineering. In this work, we have synthesised a new PGS nanocomposite system filled with halloysite nanotubes, and mechanical properties, as well as related chemical characters, of the nanocomposites were investigated. It was found that the addition of nanotubular halloysite did not compromise the extensibility of material, compared with the pure PGS counterpart; instead the elongation at rupture was increased from 110 (in the pure PGS) to 225% (in the 20 wt% composite). Second, Young's modulus and resilience of 3-5 wt% composites were ∼0.8 MPa and >94% respectively, remaining close to the level of pure PGS which is desired for applications in soft tissue engineering. Third, an important feature of the 1-5 wt% composites was their stable mechanical properties over an extended period, which could allow the provision of reliable mechanical support to damaged tissues during the lag phase of the healing process. Finally, the in vitro study indicated that the addition of halloysite slowed down the degradation rate of the composites. In conclusion, the good compliance, enhanced stretchability, stable mechanical behavior over an extended period, and reduced degradation rates make the 3-5 wt% composites promising candidates for application in soft tissue engineering. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Squeezed States and Uncertainty Relations. Abstracts

    International Nuclear Information System (INIS)

    Masahito, Hayashi; Reynaud, S.; Jaekel, M.Th.; Fiuraaek, J.; Garcia-Patron, R.; Cerf, N.J.; Hage, B.; Chelkowski, S.; Franzen, A.; Lastzka, N.; Vahlbruch, N.; Danzmann, K.; Schnabel, R.; Hassan, S.S.; Joshi, A.; Jakob, M.; Bergou, J.A.; Kozlovskii, A.V.; Prakash, H.; Kumar, R.

    2005-01-01

    The purpose of the conference was to bring together people working in the field of quantum optics, with special emphasis on non-classical light sources and related areas, quantum computing, statistical mechanics and mathematical physics. As a novelty, this edition will include the topics of quantum imaging, quantum phase noise and number theory in quantum mechanics. This document gives the program of the conference and gathers the abstracts

  2. Identifying links between origami and compliant mechanisms

    Directory of Open Access Journals (Sweden)

    H. C. Greenberg

    2011-12-01

    Full Text Available Origami is the art of folding paper. In the context of engineering, orimimetics is the application of folding to solve problems. Kinetic origami behavior can be modeled with the pseudo-rigid-body model since the origami are compliant mechanisms. These compliant mechanisms, when having a flat initial state and motion emerging out of the fabrication plane, are classified as lamina emergent mechanisms (LEMs. To demonstrate the feasibility of identifying links between origami and compliant mechanism analysis and design methods, four flat folding paper mechanisms are presented with their corresponding kinematic and graph models. Principles from graph theory are used to abstract the mechanisms to show them as coupled, or inter-connected, mechanisms. It is anticipated that this work lays a foundation for exploring methods for LEM synthesis based on the analogy between flat-folding origami models and linkage assembly.

  3. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering

    NARCIS (Netherlands)

    Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive

  4. Biology: An Important Agricultural Engineering Mechanism

    Science.gov (United States)

    Henderson, S. M.

    1974-01-01

    Describes the field of bioengineering with particular emphasis on agricultural engineering, and presents the results of a survey of schools that combine biology and engineering in their curricula. (JR)

  5. Comparison of different chemical kinetic mechanisms of methane combustion in an internal combustion engine configuration

    OpenAIRE

    Ennetta Ridha; Hamdi Mohamed; Said Rachid

    2008-01-01

    Three chemical kinetic mechanisms of methane combustion were tested and compared using the internal combustion engine model of Chemkin 4.02 [1]: one-step global reaction mechanism, four-step mechanism, and the standard detailed scheme GRIMECH 3.0. This study shows good concordances, especially between the four-step and the detailed mechanisms in the prediction of temperature and main species profiles. But reduced schemes were incapables to predict pollutant emissions in an internal combustion...

  6. Photochemical hydrogen abstractions as radiationless transitions

    International Nuclear Information System (INIS)

    Burrows, H.D.; Formosinho, S.J.

    1977-01-01

    The tunnel-effect theory of radiationless transitions is applied to the quenching of the uranyl ion excited state by aliphatic compounds. The most important mechanism kinetically is suggested to involve chemical quenching via hydrogen abstraction, and rates for these reactions are analysed theoretically. Good agreement between theory and experiment is observed for a number of alcohols and ethers, and the reactions are suggested to possess considerable charge-transfer character. With t-butanol it is suggested that abstraction occurs preferentially from the hydroxylic hydrogen. Theoretical analysis of the rates of hydrogen abstraction from carboxylic acids suggests that the reaction geometry in this case may be different from the reaction with alcohols or ethers. The possibility that excited uranyl ion can abstract a hydrogen atom from water is examined, and theoretical evidence is presented to suggest that this is the main route for deactivation of uranyl ion lowest excited state in water at room temperature. (author)

  7. Preliminary Assessment of the Emporium Model in a Redesigned Engineering Mechanics Course

    Science.gov (United States)

    Rais-Rohani, Masoud; Walters, Andrew

    2014-01-01

    A lecture-based engineering mechanics course (Statics) is redesigned using the Emporium model. Whereas students study the material outside of class via asynchronous online delivery of the content and instructional videos, they do all the other activities (e.g., assignments, tests) either individually or in groups inside the classroom. Computer-…

  8. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  9. 2015 German refrigeration and air conditioning meeting. Abstracts; Deutsche Kaelte- und Klimatagung 2015. Kurzfassungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The volume contains the abstracts of the 2015 German refrigeration and air conditioning meeting in 5 chapters: cryo-technology, fundamentals of materials for refrigeration engineering and heat pump technology, facilities and components for the refrigeration and heat pump technology; application of refrigeration engineering; air conditioning technology and heat pump application.

  10. Methodological advances in predicting flow-induced dynamics of plants using mechanical-engineering theory.

    Science.gov (United States)

    de Langre, Emmanuel

    2012-03-15

    The modeling of fluid-structure interactions, such as flow-induced vibrations, is a well-developed field of mechanical engineering. Many methods exist, and it seems natural to apply them to model the behavior of plants, and potentially other cantilever-like biological structures, under flow. Overcoming this disciplinary divide, and the application of such models to biological systems, will significantly advance our understanding of ecological patterns and processes and improve our predictive capabilities. Nonetheless, several methodological issues must first be addressed, which I describe here using two practical examples that have strong similarities: one from agricultural sciences and the other from nuclear engineering. Very similar issues arise in both: individual and collective behavior, small and large space and time scales, porous modeling, standard and extreme events, trade-off between the surface of exchange and individual or collective risk of damage, variability, hostile environments and, in some aspects, evolution. The conclusion is that, although similar issues do exist, which need to be exploited in some detail, there is a significant gap that requires new developments. It is obvious that living plants grow in and adapt to their environment, which certainly makes plant biomechanics fundamentally distinct from classical mechanical engineering. Moreover, the selection processes in biology and in human engineering are truly different, making the issue of safety different as well. A thorough understanding of these similarities and differences is needed to work efficiently in the application of a mechanistic approach to ecology.

  11. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A skeletal mechanism for biodiesel blend surrogates combustion

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chua, K.J.

    2014-01-01

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NO x and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NO x and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction

  13. Strategies for the Cooperation of Educational Institutions and Companies in Mechanical Engineering

    Science.gov (United States)

    Kettunen, Juha

    2006-01-01

    Purpose: The purpose of this study is to analyse the strategic planning of the Centre for Mechanical Engineering, which is a joint venture of educational institutions and companies in Southwest Finland. Design/methodology/approach: The paper presents the strategies of focus and cost efficiency and how the selected strategies can be adjusted…

  14. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues

    NARCIS (Netherlands)

    Argento, G.; de Jonge, N.; Söntjens, S.H.M.; Oomens, C.W.J.; Bouten, C.V.C.; Baaijens, F.P.T.

    2015-01-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and

  15. Skip cycle method with a valve-control mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Baykara, Cemal; Akin Kutlar, O.; Dogru, Baris; Arslan, Hikmet

    2017-01-01

    Highlights: • A normal four-stroke cycle followed by a skip cycle without gas exchange is tested. • The normal and skipped mode results are compared at equal power levels. • The throttle valve is opened wider, thereby resulting in a higher volumetric efficiency. • The pumping work during the gas exchange decreases significantly. • The fuel consumption (BSFC) is reduced by approximately 14–26% under part load conditions. - Abstract: The efficiency decrease of spark ignition (SI) engines under part-load conditions is a considerable issue. Changing the effective stroke volume based on the load level is one of the methods using to improve the part-load efficiency. In this study, a novel alternative engine valve control technique in order to perform a cycle without gas exchange (skip cycle), is examined. The goal of skip cycle strategy is to reduce the effective stroke volume of an engine under part load conditions by skipping several of the four stroke cycles by cutting off the fuel injection and simultaneously deactivating the inlet and exhaust valves. To achieve the same power level in the skip cycle, the cylinder pressure level reaches higher values compared to those in a normal four stroke cycle operation, but inherently not higher than the maximum one at full load of normal cycle. According to the experimental results, the break specific fuel consumption (BSFC) was reduced by 14–26% at a 1–3 bar break mean effective pressure (BMEP) and a 1200–1800 rpm engine speed of skip cycle operation, in comparison to normal engine operation. The significant decrease in the pumping work from the gas exchange is one of the primary factors for an increase in efficiency under part load conditions. As expected, the fuel consumption reduction rate at lower load conditions was higher. These experimental results indicate a promising potential of the skip cycle system for reducing the fuel consumption under part load conditions.

  16. Methodology for Developing Teaching Activities and Materials for Use in Fluid Mechanics Courses in Undergraduate Engineering Programs

    Science.gov (United States)

    Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert

    2015-01-01

    "Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…

  17. Modeling the impact of scaffold architecture and mechanical loading on collagen turnover in engineered cardiovascular tissues.

    Science.gov (United States)

    Argento, G; de Jonge, N; Söntjens, S H M; Oomens, C W J; Bouten, C V C; Baaijens, F P T

    2015-06-01

    The anisotropic collagen architecture of an engineered cardiovascular tissue has a major impact on its in vivo mechanical performance. This evolving collagen architecture is determined by initial scaffold microstructure and mechanical loading. Here, we developed and validated a theoretical and computational microscale model to quantitatively understand the interplay between scaffold architecture and mechanical loading on collagen synthesis and degradation. Using input from experimental studies, we hypothesize that both the microstructure of the scaffold and the loading conditions influence collagen turnover. The evaluation of the mechanical and topological properties of in vitro engineered constructs reveals that the formation of extracellular matrix layers on top of the scaffold surface influences the mechanical anisotropy on the construct. Results show that the microscale model can successfully capture the collagen arrangement between the fibers of an electrospun scaffold under static and cyclic loading conditions. Contact guidance by the scaffold, and not applied load, dominates the collagen architecture. Therefore, when the collagen grows inside the pores of the scaffold, pronounced scaffold anisotropy guarantees the development of a construct that mimics the mechanical anisotropy of the native cardiovascular tissue.

  18. A logical correspondence between natural semantics and abstract machines

    DEFF Research Database (Denmark)

    Simmons, Robert J.; Zerny, Ian

    2013-01-01

    We present a logical correspondence between natural semantics and abstract machines. This correspondence enables the mechanical and fully-correct construction of an abstract machine from a natural semantics. Our logical correspondence mirrors the Reynolds functional correspondence, but we...... manipulate semantic specifications encoded in a logical framework instead of manipulating functional programs. Natural semantics and abstract machines are instances of substructural operational semantics. As a byproduct, using a substructural logical framework, we bring concurrent and stateful models...

  19. Challenges in Quantitative Abstractions for Collective Adaptive Systems

    Directory of Open Access Journals (Sweden)

    Mirco Tribastone

    2016-07-01

    Full Text Available Like with most large-scale systems, the evaluation of quantitative properties of collective adaptive systems is an important issue that crosscuts all its development stages, from design (in the case of engineered systems to runtime monitoring and control. Unfortunately it is a difficult problem to tackle in general, due to the typically high computational cost involved in the analysis. This calls for the development of appropriate quantitative abstraction techniques that preserve most of the system's dynamical behaviour using a more compact representation. This paper focuses on models based on ordinary differential equations and reviews recent results where abstraction is achieved by aggregation of variables, reflecting on the shortcomings in the state of the art and setting out challenges for future research.

  20. Proceedings of the fourteenth symposium on energy engineering sciences: Mechanical sciences; Solids and fluids

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The Engineering Research Program is charged with the identification, initiation, and management of fundamental research on broad, generic topics addressing energy-related engineering problems. Its stated goals are: (1) to improve and extend the body of knowledge underlying current engineering practice so as to create new options for enhancing energy savings and production, for prolonging useful life of energy-related structures and equipment and for developing advanced manufacturing technologies and materials processing with emphasis on reducing costs with improved industrial production and performance quality; (2) to expand the store of fundamental concepts for solving anticipated and unforeseen engineering problems in the energy technologies. The 26 papers in this proceedings are arranged in the following topical sections: superconductors (4 papers); materials (7); controls (4); fluid mechanics (7); and thin films (4). Papers have been processed separately for inclusion on the data base.

  1. Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.

    Science.gov (United States)

    Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi

    2014-07-01

    Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], pmechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.

  2. Thermodynamic analysis of a pulse tube engine

    International Nuclear Information System (INIS)

    Moldenhauer, Stefan; Thess, André; Holtmann, Christoph; Fernández-Aballí, Carlos

    2013-01-01

    Highlights: ► Numerical model of the pulse tube engine process. ► Proof that the heat transfer in the pulse tube is out of phase with the gas velocity. ► Proof that a free piston operation is possible. ► Clarifying the thermodynamic working principle of the pulse tube engine. ► Studying the influence of design parameters on the engine performance. - Abstract: The pulse tube engine is an innovative simple heat engine based on the pulse tube process used in cryogenic cooling applications. The working principle involves the conversion of applied heat energy into mechanical power, thereby enabling it to be used for electrical power generation. Furthermore, this device offers an opportunity for its wide use in energy harvesting and waste heat recovery. A numerical model has been developed to study the thermodynamic cycle and thereby help to design an experimental engine. Using the object-oriented modeling language Modelica, the engine was divided into components on which the conservation equations for mass, momentum and energy were applied. These components were linked via exchanged mass and enthalpy. The resulting differential equations for the thermodynamic properties were integrated numerically. The model was validated using the measured performance of a pulse tube engine. The transient behavior of the pulse tube engine’s underlying thermodynamic properties could be evaluated and studied under different operating conditions. The model was used to explore the pulse tube engine process and investigate the influence of design parameters.

  3. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications.

    Science.gov (United States)

    Offeddu, Giovanni S; Ashworth, Jennifer C; Cameron, Ruth E; Oyen, Michelle L

    2015-02-01

    Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. China nuclear science and technology report. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675∼CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  5. China nuclear science and technology report. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1993 (Report Numbers CNIC-00675{approx}CNIC-00800) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  6. The effects of matrix inhomogeneities on the cellular mechanical environment in tissue-engineered cartilage : an in silico investigation

    NARCIS (Netherlands)

    Khoshgoftar, M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    Mechanical stimulation during cartilage tissue-engineering (TE) enhances extracellular matrix (ECM) synthesis and thereby improves the mechanical properties of TE cartilage. Generally, these mechanical stimuli are of a fixed magnitude. However, as a result of ECM synthesis and spatial variations

  7. Is searching full text more effective than searching abstracts?

    Directory of Open Access Journals (Sweden)

    Lin Jimmy

    2009-02-01

    Full Text Available Abstract Background With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE® abstracts, full-text articles, and spans (paragraphs within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine. Results Experiments show that treating an entire article as an indexing unit does not consistently yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search. Results suggest that highest overall effectiveness may be achieved by combining evidence from spans and full articles. Conclusion Users searching full text are more likely to find relevant articles than searching only abstracts. This finding affirms the value of full text collections for text retrieval and provides a starting point for future work in exploring algorithms that take advantage of rapidly-growing digital archives. Experimental results also highlight the need to develop distributed text retrieval algorithms, since full-text articles are significantly longer than abstracts and may require the computational resources of multiple machines in a cluster. The MapReduce programming model provides a convenient framework for organizing such computations.

  8. Plans should abstractly describe intended behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, K.; Hayes-Roth, B. [Stanford Univ., CA (United States)

    1996-12-31

    Planning is the process of formulating a potential course of action. How courses of action (plans) produced by a planning module are represented and how they are used by execution-oriented modules of a complex agent to influence or dictate behavior are critical architectural issues. In contrast to the traditional model of plans as executable programs that dictate precise behaviors, we claim that autonomous agents inhabiting dynamic, unpredictable environments can make better use of plans that only abstractly describe their intended behavior. Such plans only influence or constrain behavior, rather than dictating it. This idea has been discussed in a variety of contexts, but it is seldom incorporated into working complex agents. Experiments involving instantiations of our Adaptive Intelligent Systems architecture in a variety of domains have demonstrated the generality and usefulness of the approach, even with our currently simple plan representation and mechanisms for plan following. The behavioral benefits include (1) robust improvisation of goal-directed behavior in response to dynamic situations, (2) ready exploitation of dynamically acquired knowledge or behavioral capabilities, and (3) adaptation based on dynamic aspects of coordinating diverse behaviors to achieve multiple goals. In addition to these run-time advantages, the approach has useful implications for the design and configuration of agents. Indeed, the core ideas of the approach are natural extensions of fundamental ideas in software engineering.

  9. Mechanical Material Engineering

    International Nuclear Information System (INIS)

    Kim, Mun Il

    1993-01-01

    This book introduced mechanical material with introduction, basic problems about metal ingredient of machine of metal and alloy, property of metal material mechanical metal material such as categorization of metal material and high tensile structure steel, mechanic design and steel material with three important points on using of steel materials, selection and directions machine structural steel, selection and directions of steel for tool, selection and instruction of special steel like stainless steel and spring steel, nonferrous metal materials and plastic.

  10. Ei Compendex: A new database makes life easier for engineers

    CERN Multimedia

    2001-01-01

    The Library is expanding its range of databases. The latest arrival, called Ei Compendex, is the world's most comprehensive engineering database, which indexes engineering literature published throughout the world. It also offers bibliographic entries for articles published in scientific journals and for conference proceedings and covers an extensive range of subjects from mechanical engineering to the environment, materials science, solid state physics and superconductivity. Moreover, it is the most relevant quality control and engineering management database. Ei Compendex contains over 4.6 million references from over 2600 journals, conference proceedings and technical reports dating from 1966 to the present. Every year, 220,000 new abstracts are added to the database which is also updated on a weekly basis. In the case of articles published in recent years, it provides an electronic link to the full texts of all major publishers. The database also contains the full texts of Elsevier periodicals (over 250...

  11. PREFACE: 9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational Mechanics

    Science.gov (United States)

    Khalili, N.; Valliappan, S.; Li, Q.; Russell, A.

    2010-07-01

    The use for mathematical models of natural phenomena has underpinned science and engineering for centuries, but until the advent of modern computers and computational methods, the full utility of most of these models remained outside the reach of the engineering communities. Since World War II, advances in computational methods have transformed the way engineering and science is undertaken throughout the world. Today, theories of mechanics of solids and fluids, electromagnetism, heat transfer, plasma physics, and other scientific disciplines are implemented through computational methods in engineering analysis, design, manufacturing, and in studying broad classes of physical phenomena. The discipline concerned with the application of computational methods is now a key area of research, education, and application throughout the world. In the early 1980's, the International Association for Computational Mechanics (IACM) was founded to promote activities related to computational mechanics and has made impressive progress. The most important scientific event of IACM is the World Congress on Computational Mechanics. The first was held in Austin (USA) in 1986 and then in Stuttgart (Germany) in 1990, Chiba (Japan) in 1994, Buenos Aires (Argentina) in 1998, Vienna (Austria) in 2002, Beijing (China) in 2004, Los Angeles (USA) in 2006 and Venice, Italy; in 2008. The 9th World Congress on Computational Mechanics is held in conjunction with the 4th Asian Pacific Congress on Computational Mechanics under the auspices of Australian Association for Computational Mechanics (AACM), Asian Pacific Association for Computational Mechanics (APACM) and International Association for Computational Mechanics (IACM). The 1st Asian Pacific Congress was in Sydney (Australia) in 2001, then in Beijing (China) in 2004 and Kyoto (Japan) in 2007. The WCCM/APCOM 2010 publications consist of a printed book of abstracts given to delegates, along with 247 full length peer reviewed papers published with

  12. Engineering research, development and technology. Thrust area report, FY93

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  13. Identifying and Investigating Difficult Concepts in Engineering Mechanics and Electric Circuits. Research Brief

    Science.gov (United States)

    Streveler, Ruth; Geist, Monica; Ammerman, Ravel; Sulzbach, Candace; Miller, Ronald; Olds, Barbara; Nelson, Mary

    2007-01-01

    This study extends ongoing work to identify difficult concepts in thermal and transport science and measure students' understanding of those concepts via a concept inventory. Two research questions provided the focal point: "What important concepts in electric circuits and engineering mechanics do students find difficult to learn?" and…

  14. Engineering science as a "Discipline of the particular"? : types of generalization in engineering sciences

    NARCIS (Netherlands)

    Vries, de M.J.; Poel, van de I.; Goldberg, D.E.

    2010-01-01

    Literature suggests that in engineering sciences the possibilities to generalize knowledge are more limited than in natural sciences. This is related to the action-oriented nature of engineering sciences and to the role of values. I will discuss the contributions of abstraction and idealization to

  15. Effect of processing methods on the mechanical properties of engineered bamboo

    OpenAIRE

    Sharma, Bhavna; Gatóo, Ana; Ramage, Michael H.

    2015-01-01

    Engineered bamboo is increasingly explored as a material with significant potential for structural applications. The material is comprised of raw bamboo processed into a laminated composite. Commercial methods vary due to the current primary use as an architectural surface material, with processing used to achieve different colours in the material. The present work investigates the effect of two types of processing methods, bleaching and caramelisation, to determine the effect on the mechanic...

  16. 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering

    CERN Document Server

    2017-01-01

    This volume presents selected papers from the 2nd International Conference on Mechanical, Manufacturing and Process Plant Engineering (ICMMPE 2016) which was held from 23rd to 24th November, 2016 in Kuala Lumpur, Malaysia. The proceedings discuss genuine problems of joining technologies that are heart of manufacturing sectors. It discusses the findings of experimental and numerical works from soldering, arc welding to solid state joining technology that faced by current industry. .

  17. Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering.

    OpenAIRE

    Duval , Elise; Baugé , Catherine; Andriamanalijaona , Rina; Bénateau , Hervé; Leclercq , Sylvain; Dutoit , Soizic; Poulain , Laurent; Galéra , Philippe; Boumédiene , Karim

    2012-01-01

    International audience; Cartilage engineering is one of the most challenging issue in regenerative medicine, due to its limited self-ability to repair. Here, we assessed engineering of cartilage tissue starting from human bone marrow (hBM) stem cells under hypoxic environment and delineated the mechanism whereby chondrogenesis could be conducted without addition of exogenous growth factors. hBM stem cells were cultured in alginate beads and chondrogenesis was monitored by chondrocyte phenotyp...

  18. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review

    Directory of Open Access Journals (Sweden)

    Devon E. Anderson

    2017-12-01

    derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.

  19. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    Science.gov (United States)

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.

  20. Applications of the discrete element method in mechanical engineering

    International Nuclear Information System (INIS)

    Fleissner, Florian; Gaugele, Timo; Eberhard, Peter

    2007-01-01

    Compared to other fields of engineering, in mechanical engineering, the Discrete Element Method (DEM) is not yet a well known method. Nevertheless, there is a variety of simulation problems where the method has obvious advantages due to its meshless nature. For problems where several free bodies can collide and break after having been largely deformed, the DEM is the method of choice. Neighborhood search and collision detection between bodies as well as the separation of large solids into smaller particles are naturally incorporated in the method. The main DEM algorithm consists of a relatively simple loop that basically contains the three substeps contact detection, force computation and integration. However, there exists a large variety of different algorithms to choose the substeps to compose the optimal method for a given problem. In this contribution, we describe the dynamics of particle systems together with appropriate numerical integration schemes and give an overview over different types of particle interactions that can be composed to adapt the method to fit to a given simulation problem. Surface triangulations are used to model complicated, non-convex bodies in contact with particle systems. The capabilities of the method are finally demonstrated by means of application examples

  1. 5. International conference on materials science and condensed matter physics and symposium 'Electrical methods of materials treatment'. Abstracts

    International Nuclear Information System (INIS)

    2010-09-01

    This book includes abstracts of the communications presented at the 5th International Conference on Materials Science and Condensed-Matter Physics and at the Symposium dedicated to the 100th anniversary of academician Boris Lazarenko, the prominent scientist and inventor, the first director of the Institute of Applied Physics of the Academy of Sciences of Moldova. The abstracts presented in the book cover a vast range of subjects, such as: advanced materials and fabrication processes; methods of crystal growth, post-growth technological processes, doping and implantation, fabrication of solid state structures; defect engineering, engineering of molecular assembly; methods of nanostructures and nano materials fabrication and characterization; quantum wells and superlattices; nano composite, nanowires and nano dots; fullerenes and nano tubes, molecular materials, meso- and nano electronics; methods of material and structure characterization; structure and mechanical characterization; optical, electrical, magnetic and superconductor properties, transport processes, nonlinear phenomena, size and interface effects; advances in condensed matter theory; theory of low dimensional systems; modelling of materials and structure properties; development of theoretical methods of solid-state characterization; phase transition; advanced quantum physics for nano systems; device modelling and simulation, device structures and elements; micro- and optoelectronics; photonics; microsensors and micro electro-mechanical systems; microsystems; degradation and reliability, solid-state device design; theory and advanced technologies of electro-physico-chemical and combined methods of materials machining and treatment, including modification of surfaces; theory and advanced technologies of using electric fields, currents and discharges so as to intensify heat mass-transfer, to raise the efficiency of treatment of materials, of biological preparations and foodstuff; modern equipment for

  2. An education model of a nano-positioning system for mechanical engineers

    International Nuclear Information System (INIS)

    Lee, Dong Yeon; Gweon, Dae Gab

    2006-01-01

    The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed

  3. Reverse engineering the mechanical and molecular pathways in stem cell morphogenesis.

    Science.gov (United States)

    Lu, Kai; Gordon, Richard; Cao, Tong

    2015-03-01

    The formation of relevant biological structures poses a challenge for regenerative medicine. During embryogenesis, embryonic cells differentiate into somatic tissues and undergo morphogenesis to produce three-dimensional organs. Using stem cells, we can recapitulate this process and create biological constructs for therapeutic transplantation. However, imperfect imitation of nature sometimes results in in vitro artifacts that fail to recapitulate the function of native organs. It has been hypothesized that developing cells may self-organize into tissue-specific structures given a correct in vitro environment. This proposition is supported by the generation of neo-organoids from stem cells. We suggest that morphogenesis may be reverse engineered to uncover its interacting mechanical pathway and molecular circuitry. By harnessing the latent architecture of stem cells, novel tissue-engineering strategies may be conceptualized for generating self-organizing transplants. Copyright © 2013 John Wiley & Sons, Ltd.

  4. Automotive Engines; Automotive Mechanics I: 9043.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  5. Integrating Technical Communication in the Mechanical Engineering Curriculum

    Science.gov (United States)

    Norberg, Seth; Ashcraft, Timothy; van Poppel, Bret

    2017-11-01

    Technical communication is essential to engineering practice, but these skills can be challenging to teach and assess in the classroom. Instructors in the Mechanical Engineering (ME) program at the United States Military Academy are developing new learning exercises to prepare students for success in their capstone design course and beyond. In this paper we highlight the recent successes and lessons learned from two courses: junior-level Thermal-Fluid Systems and the senior-level ME Seminar. Both courses support the newly implemented West Point Writing Program (WPWP), an institutional, writing-across-the-curriculum program. The junior course incorporates four hands-on experiments, which provide an abundance of data for students to analyze, assess, and present. In the senior course the majority of the content that students present is from their ongoing capstone design projects. Between the two courses, students craft essays, lab reports, short summaries, posters, quad charts, and technical presentations. Both courses include peer evaluation, revision exercises, and timed (on demand) writing assignments. The junior course includes assignments co-authored by a group as well as an individual report. An overview of both courses' assignments with course-end feedback from the students and the faculty is provided. Strengths and weaknesses are identified and recommendations for instructors seeking to implement similar technical communications assignments in their own courses are presented.

  6. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ceramic Technology For Advanced Heat Engines Project

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.

  8. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  9. DOE-NABIR PI Workshop: Abstracts January 31-February 2, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Mary (ed.)

    2000-01-01

    The mission of the NABIR program is to provide the scientific understanding needed to use natural processes and to develop new methods to accelerate those processes for the bioremediation of contaminated soils, sediments and groundwater at U.S. Department of Energy (DOE) facilities. The program is implemented through seven interrelated scientific research elements (Assessment, Bacterial Transport, Biogeochemical Dynamics, Bimolecular Science and Engineering, Biotransformation and Biodegradation, Community Dynamics/Microbial Ecology and System Engineering, Integration, Prediction and Optimization); and through an element called Bioremediation and its Societal Implications and Concerns (BASIC), which addresses societal issues and concerns of stakeholders through communication and collaboration among all relevant groups, including community leaders and representatives, engineers, scientists, lawyers, etc. The initial emphasis of NABIR program research is on the bioremediation of metals and radionuclides in the subsurface below the root zone, including both thick vadose and saturated zones. The material presented at this year's workshop focuses on research funded in FY 1998-2000 by DOE's Office of Science through its Office of Biological and Environmental Research. Sixty-eight projects have been funded in the scientific program elements, and two have been funded in the BASIC program. Abstracts of these programs are summarized in this booklet, along with abstracts of other DOE programs related to research in the NABIR program.

  10. Student Motivation in Low-Stakes Assessment Contexts: An Exploratory Analysis in Engineering Mechanics

    Science.gov (United States)

    Musekamp, Frank; Pearce, Jacob

    2016-01-01

    The goal of this paper is to examine the relationship of student motivation and achievement in low-stakes assessment contexts. Using Pearson product-moment correlations and hierarchical linear regression modelling to analyse data on 794 tertiary students who undertook a low-stakes engineering mechanics assessment (along with the questionnaire of…

  11. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  12. Development of a skeletal multi-component fuel reaction mechanism based on decoupling methodology

    International Nuclear Information System (INIS)

    Mohan, Balaji; Tay, Kun Lin; Yang, Wenming; Chua, Kian Jon

    2015-01-01

    Highlights: • A compact multi-component skeletal reaction mechanism was developed. • Combined bio-diesel and PRF mechanism was proposed. • The mechanism consists of 68 species and 183 reactions. • Well validated against ignition delay times, flame speed and engine results. - Abstract: A new coupled bio-diesel surrogate and primary reference fuel (PRF) oxidation skeletal mechanism has been developed. The bio-diesel surrogate sub-mechanism consists of oxidation sub-mechanisms of Methyl decanoate (MD), Methyl 9-decenoate (MD9D) and n-Heptane fuel components. The MD and MD9D are chosen to represent the saturated and unsaturated methyl esters respectively in bio-diesel fuels. Then, a reduced iso-Octane oxidation sub-mechanism is added to the bio-diesel surrogate sub-mechanism. Then, all the sub-mechanisms are integrated to a reduced C_2–C_3 mechanism, detailed H_2/CO/C_1 mechanism and reduced NO_x mechanism based on decoupling methodology. The final mechanism consisted of 68 species and 183 reactions. The mechanism was well validated with shock-tube ignition delay times, laminar flame speed and 3D engine simulations.

  13. Suitability of a PLCL fibrous scaffold for soft tissue engineering applications: A combined biological and mechanical characterisation.

    Science.gov (United States)

    Laurent, Cédric P; Vaquette, Cédryck; Liu, Xing; Schmitt, Jean-François; Rahouadj, Rachid

    2018-04-01

    Poly(lactide-co-ε-caprolactone) (PLCL) has been reported to be a good candidate for tissue engineering because of its good biocompatibility. Particularly, a braided PLCL scaffold (PLL/PCL ratio = 85/15) has been recently designed and partially validated for ligament tissue engineering. In the present study, we assessed the in vivo biocompatibility of acellular and cellularised scaffolds in a rat model. We then determined its in vitro biocompatibility using stem cells issued from both bone marrow and Wharton Jelly. From a biological point of view, the scaffold was shown to be suitable for tissue engineering in all these cases. Secondly, while the initial mechanical properties of this scaffold have been previously reported to be adapted to load-bearing applications, we studied the evolution in time of the mechanical properties of PLCL fibres due to hydrolytic degradation. Results for isolated PLCL fibres were extrapolated to the fibrous scaffold using a previously developed numerical model. It was shown that no accumulation of plastic strain was to be expected for a load-bearing application such as anterior cruciate ligament tissue engineering. However, PLCL fibres exhibited a non-expected brittle behaviour after two months. This may involve a potential risk of premature failure of the scaffold, unless tissue growth compensates this change in mechanical properties. This combined study emphasises the need to characterise the properties of biomaterials in a pluridisciplinary approach, since biological and mechanical characterisations led in this case to different conclusions concerning the suitability of this scaffold for load-bearing applications.

  14. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  15. BANGLADESH EPZS AS AN EXAMPLE FOR DEVELOPMENT OF RUSSIAN MECHANIC ENGINEERING

    Directory of Open Access Journals (Sweden)

    P. P. Bogdanenko

    2015-01-01

    Full Text Available The subject of the article is export processing zones of Bangladesh, which may become a sample for development of mechanic engineering in Russia. Export processing zone, as a kind of special economic zones, is a quite useful tool for the country's economy. They allow reaching a number of government objectives: increase employment, attract investment and enhance volume of collected taxes. In addition to the direct eff ect, the emergence of export processing zones has indirect impact on the economy by increasing purchases from suppliers by SEZ residents. Providing tax and customs benefi ts to residents, the state puts companies outside the zones at a disadvantage. However, to counter this, state imposes restrictions on admission of products of resident companies on domestic market. These restrictions may relate to establishment either of a certain percentage of products that can be delivered freely on the internal market or share that can be delivered after payment of customs duties and taxes. The purpose of this work is to show the results of Bangladesh EPZs and to present basic directions of development for such zone specialized in mechanic engineering in Russia. The methodological base of the research is comparative analysis, cause-eff ect relationships, as well as historical method. In this article the author analyzes the experience of creation of export processing zones in Bangladesh, where they are suffi ciently proven: new jobs and enterprises have been created - investments to these zones account for a signifi cant share of total investments to the country. Moreover export of Bangladesh has increased signifi cantly. At the same time the goal for diversifying the country industry has not been met: textile is the main branch is in these zones. At the article the author points to the possibility of using this experience in Russia in terms of mechanic engineering. Availability of qualifi ed personnel, training base, transfer of

  16. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  17. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Student Manual.

    Science.gov (United States)

    Hamlin, Larry

    This document is a student manual for a general mechanical repair course. Following a list of common essential elements of trade and industrial education, the manual is divided into three sections. The first section, on minor automotive maintenance, contains 13 units: automotive shop safety; engine principles; fuel system operation and repair;…

  18. COBEM 99: Proceedings of the 15. Brazilian congress on mechanical engineering

    International Nuclear Information System (INIS)

    1999-01-01

    The Brazilian Congress on Mechanical Engineering is the main event promoted by the Brazilian Society of Mechanical Sciences and happens biannually. In the congress people involved in industrial, research and teaching activities are able to meet and discuss or present, in technical sessions and exhibitions, recent technological and scientific contributions to this area and related activities. The 15. edition of the COBEM, due to 99, took place in Aguas de Lindoia, Sao Paulo State. Theoretical and experimental papers are presented approaching the following area and subjects: petroleum industry, equipment and products, gas and wind turbines, hydroelectric power plants and equipment, environmental subjects, computerized analysis, heat transfer, fluid flow, thermal machines, porous media, nuclear energy, solar energy, refrigeration, energy sources, consumption and conservation

  19. A numerical study on RCCI engine fueled by biodiesel/methanol

    International Nuclear Information System (INIS)

    Zhou, D.Z.; Yang, W.M.; An, H.; Li, J.; Shu, C.

    2015-01-01

    Highlights: • Numerical study is done to investigate RCCI engine fueled by biodiesel/methanol. • A new biodiesel/methanol dual-fuel chemical reaction mechanism is developed. • Engine performance is improved with fuel reactivity stratification formed. • Soot and NO x significant reduce with methanol induction and fuel reactivity stratification. - Abstract: A 3-D numerical simulation platform based on the KIVA4-CHEMKIN code was constructed by incorporating a newly developed skeletal chemical kinetics mechanism to study the reactivity controlled compression ignition (RCCI) engine performance, combustion and emission characteristics. In the present study, methanol is assumed to be induced into the engine through the intake port, while biodiesel is directly injected into the engine by the end of the compression stroke. The skeletal biodiesel and methanol dual fuel chemical reaction mechanism coupled with CO, NO x and soot formation mechanisms was developed and validated by comparing the ignition delay predicted by the developed mechanism with that of the detailed biodiesel and methanol mechanisms, and also by comparing the simulation results of KIVA-CHEMKIN with the experimental results under different engine operating conditions. A good agreement has been achieved in terms of ignition delay, in-cylinder pressure and heat release rate (HRR). The methanol mass fraction was varied from 0% to 80% at an interval of 20% to form different reactivity stratification. Simulation results revealed that under 10% load conditions, the increasing methanol reduced the peak pressure and heat release rate, whereas under 50% and 100% loads, the peak pressure both appeared at 60% methanol induction. Also, the reactivity distribution and ringing intensity were discussed, aiming at investigating the fuel gradient effects and knocking level, respectively. For the emissions, a general decreasing trend on CO emission was observed at both 50% and 100% loads while at 10% load, a slight

  20. Is searching full text more effective than searching abstracts?

    Science.gov (United States)

    Lin, Jimmy

    2009-02-03

    With the growing availability of full-text articles online, scientists and other consumers of the life sciences literature now have the ability to go beyond searching bibliographic records (title, abstract, metadata) to directly access full-text content. Motivated by this emerging trend, I posed the following question: is searching full text more effective than searching abstracts? This question is answered by comparing text retrieval algorithms on MEDLINE abstracts, full-text articles, and spans (paragraphs) within full-text articles using data from the TREC 2007 genomics track evaluation. Two retrieval models are examined: bm25 and the ranking algorithm implemented in the open-source Lucene search engine. Experiments show that treating an entire article as an indexing unit does not consistently yield higher effectiveness compared to abstract-only search. However, retrieval based on spans, or paragraphs-sized segments of full-text articles, consistently outperforms abstract-only search. Results suggest that highest overall effectiveness may be achieved by combining evidence from spans and full articles. Users searching full text are more likely to find relevant articles than searching only abstracts. This finding affirms the value of full text collections for text retrieval and provides a starting point for future work in exploring algorithms that take advantage of rapidly-growing digital archives. Experimental results also highlight the need to develop distributed text retrieval algorithms, since full-text articles are significantly longer than abstracts and may require the computational resources of multiple machines in a cluster. The MapReduce programming model provides a convenient framework for organizing such computations.

  1. Mechanical Stimulation of Adipose-Derived Stem Cells for Functional Tissue Engineering of the Musculoskeletal System via Cyclic Hydrostatic Pressure, Simulated Microgravity, and Cyclic Tensile Strain.

    Science.gov (United States)

    Nordberg, Rachel C; Bodle, Josie C; Loboa, Elizabeth G

    2018-01-01

    It is critical that human adipose stem cell (hASC) tissue-engineering therapies possess appropriate mechanical properties in order to restore function of the load bearing tissues of the musculoskeletal system. In an effort to elucidate the hASC response to mechanical stimulation and develop mechanically robust tissue engineered constructs, recent research has utilized a variety of mechanical loading paradigms including cyclic tensile strain, cyclic hydrostatic pressure, and mechanical unloading in simulated microgravity. This chapter describes methods for applying these mechanical stimuli to hASC to direct differentiation for functional tissue engineering of the musculoskeletal system.

  2. Book of abstracts of the fourth international school for young scientists and specialists Interaction of hydrogen isotopes with structural materials (IHISM-08)

    International Nuclear Information System (INIS)

    2008-01-01

    The book includes abstracts of presentations at the 4th International School for young scientists and specialists Interaction of hydrogen isotopes with structural materials (IHISM-08). The lectures of lecturer and presentations of young scientists associated with the use of hydrogen isotopes in power engineering, national economy and basic research are considered. The presentations cover the following areas: kinetics and thermodynamics of interaction between hydrogen isotopes and solids including effects of radiogenic helium accumulation; hydrides and hydride transformations; structural transformations and mechanical properties; equipment and research techniques [ru

  3. The Mechanics of Mechanical Watches and Clocks

    CERN Document Server

    Du, Ruxu

    2013-01-01

    "The Mechanics of Mechanical Watches and Clocks" presents historical views and mathematical models of mechanical watches and clocks. Although now over six hundred years old, mechanical watches and clocks are still popular luxury items that fascinate many people around the world. However few have examined the theory of how they work as presented in this book. The illustrations and computer animations are unique and have never been published before. It will be of significant interest to researchers in mechanical engineering, watchmakers and clockmakers, as well as people who have an engineering background and are interested in mechanical watches and clocks. It will also inspire people in other fields of science and technology, such as mechanical engineering and electronics engineering, to advance their designs. Professor Ruxu Du works at the Chinese University of Hong Kong, China. Assistant Professor Longhan Xie works at the South China University of Technology, China.

  4. China nuclear science and technology report: Abstracts, 1992

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1992 (Report Numbers CNIC-00555 ∼ CNIC-00674) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  5. Thermal engineering and micro-technology; Thermique et microtechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Kandlikar, S. [Rochester Inst. of Tech., NY (United States); Luo, L. [Institut National Polytechnique, 54 - Nancy (France); Gruss, A. [CEA Grenoble, GRETH, 38 (France); Wautelet, M. [Mons Univ. (Belgium); Gidon, S. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Gillot, C. [Ecole Nationale Superieure d' Ingenieurs Electriciens de Grenoble, 38 - Saint Martin d' Heres (France)]|[CEA Grenoble, Lab. Electronique et de Technologie de l' Informatique (LETI), 38 (France); Therme, J.; Marvillet, Ch.; Vidil, R. [CEA Grenoble, 38 (France); Dutartre, D. [ST Microelectronique, France (France); Lefebvre, Ph. [SNECMA, 75 - Paris (France); Lallemand, M. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France); Colin, S. [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France); Joulin, K. [Ecole Nationale Superieure de Mecanique et d' Aerotechnique (ENSMA), 86 - Poitiers (France); Gad el Hak, M. [Virginia Univ., Charlottesville, VA (United States)

    2003-07-01

    This document gathers the abstracts and transparencies of 5 invited conferences of this congress of the SFT about heat transfers and micro-technologies: Flow boiling in microchannels: non-dimensional groups and heat transfer mechanisms (S. Kandlikar); Intensification and multi-scale process units (L. Luo and A. Gruss); Macro-, micro- and nano-systems: different physics? (M. Wautelet); micro-heat pipes (M. Lallemand); liquid and gas flows inside micro-ducts (S. Colin). The abstracts of the following presentations are also included: Electro-thermal writing of nano-scale memory points in a phase change material (S. Gidon); micro-technologies for cooling in micro-electronics (C. Gillot); the Minatec project (J. Therme); importance and trends of thermal engineering in micro-electronics (D. Dutartre); Radiant heat transfers at short length scales (K. Joulain); Momentum and heat transfer in micro-electromechanical systems (M. Gad-el-Hak). (J.S.)

  6. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  7. 3-D simulation of soot formation in a direct-injection diesel engine based on a comprehensive chemical mechanism and method of moments

    Science.gov (United States)

    Zhong, Bei-Jing; Dang, Shuai; Song, Ya-Na; Gong, Jing-Song

    2012-02-01

    Here, we propose both a comprehensive chemical mechanism and a reduced mechanism for a three-dimensional combustion simulation, describing the formation of polycyclic aromatic hydrocarbons (PAHs), in a direct-injection diesel engine. A soot model based on the reduced mechanism and a method of moments is also presented. The turbulent diffusion flame and PAH formation in the diesel engine were modelled using the reduced mechanism based on the detailed mechanism using a fixed wall temperature as a boundary condition. The spatial distribution of PAH concentrations and the characteristic parameters for soot formation in the engine cylinder were obtained by coupling a detailed chemical kinetic model with the three-dimensional computational fluid dynamic (CFD) model. Comparison of the simulated results with limited experimental data shows that the chemical mechanisms and soot model are realistic and correctly describe the basic physics of diesel combustion but require further development to improve their accuracy.

  8. Effectiveness of Using a Video Game to Teach a Course in Mechanical Engineering

    Science.gov (United States)

    Coller, B. D.; Scott, M. J.

    2009-01-01

    One of the core courses in the undergraduate mechanical engineering curriculum has been completely redesigned. In the new numerical methods course, all assignments and learning experiences are built around a video/computer game. Students are given the task of writing computer programs to race a simulated car around a track. In doing so, students…

  9. Biomimetics: forecasting the future of science, engineering, and medicine

    Directory of Open Access Journals (Sweden)

    Hwang J

    2015-09-01

    Full Text Available Jangsun Hwang,1 Yoon Jeong,1,2 Jeong Min Park,3 Kwan Hong Lee,1,2,4 Jong Wook Hong,1,2 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, Korea; 3Department of Biomedical Engineering, Boston University, 4OpenView Venture Partners, Boston, MA, USA Abstract: Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. Keywords: biomimicry, tissue engineering, biomaterials, nature, nanotechnology, nanomedicine

  10. Proceedings of the ENCIT 2004: 10. Brazilian congress of thermal engineering and sciences. Abstracts

    International Nuclear Information System (INIS)

    2004-01-01

    Theoretical and experimental papers are presented in this proceedings covering the following subjects: petroleum, industry, fractions and distillates, gas turbines and power plants, reservoir engineering, oil field and wells, offshore drilling, electric power generation, catalysis, aerodynamics, energy consumption and conservation, heat transfer and engines, refrigeration, porous materials and numerical analysis

  11. Stirling Engine Cycle Efficiency

    OpenAIRE

    Naddaf, Nasrollah

    2012-01-01

    ABSTRACT This study strives to provide a clear explanation of the Stirling engine and its efficiency using new automation technology and the Lab View software. This heat engine was invented by Stirling, a Scottish in 1918. The engine’s working principles are based on the laws of thermodynamics and ability of volume expansion of ideal gases at different temperatures. Basically there are three types of Stirling engines: the gamma, beta and alpha models. The commissioner of the thesis ...

  12. Program and abstracts

    International Nuclear Information System (INIS)

    1978-01-01

    This volume contains the program and abstracts of the conference. The following topics are included: metal vapor molecular lasers, magnetohydrodynamics, rare gas halide and nuclear pumped lasers, transfer mechanisms in arcs, kinetic processes in rare gas halide lasers, arcs and flows, XeF kinetics and lasers, fundamental processes in excimer lasers, electrode effects and vacuum arcs, electron and ion transport, ion interactions and mobilities, glow discharges, diagnostics and afterglows, dissociative recombination, electron ionization and excitation, rare gas excimers and group VI lasers, breakdown, novel laser pumping techniques, electrode-related discharge phenomena, photon interactions, attachment, plasma chemistry and infrared lasers, electron scattering, and reactions of excited species

  13. Multi-objective optimization of Stirling engine using Finite Physical Dimensions Thermodynamics (FPDT) method

    International Nuclear Information System (INIS)

    Li, Ruijie; Grosu, Lavinia; Queiros-Conde, Diogo

    2016-01-01

    Highlights: • A gamma Stirling engine has been optimized using FPDT method by multi-objective criteria. • Genetic algorithm and decision making methods were used to get Pareto frontier and optimum points. • It shows: total thermal conductance, hot temperature, stroke and diameter ratios can be improved. - Abstract: In this paper, a solar energy powered gamma type SE has been optimized using Finite Physical Dimensions Thermodynamics (FPDT) method by multi-objective criteria. Genetic algorithm was used to get the Pareto frontier, and optimum points were obtained using the decision making methods of LINMAP and TOPSIS. The optimization results have been compared with those obtained using the ecological method. It was shown that the multi-objective optimization in this paper has a better balance among the optimizing criteria (maximum mechanical power, maximum thermal efficiency and minimum entropy generation flow). The effects of the hot source temperature and the total thermal conductance of the engine on the Pareto frontier have been also studied. This sensibility study shows that an increase in the hot reservoir temperature can increase the output mechanical power, the thermal efficiency of the engine, but also the entropy generation rate. In addition to this, an increase of the total thermal conductance of the engine can strongly increase the output mechanical power and only slightly increase the thermal efficiency. These results allow us to improve the engine performance after some modifications as geometrical dimensions (diameter, stroke, heat exchange surface, etc.) and physical parameters (temperature, thermal conductivity).

  14. Engine Tune-Up Service. Unit 4: Secondary Circuit. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 4, Secondary Circuit, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test and service the secondary ignition circuit. A companion review exercise book and posttests are available separately as CE 031 215-216. An introduction tells how this unit fits into the total…

  15. Engine Tune-up Service. Unit 2: Charging System. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This student guide is for Unit 2, Charging System, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the charging system. A companion review exercise book and posttests are available separately as CE 031 209-210. An introduction tells how this unit fits into the total tune-up service, defines…

  16. Development of transport mechanical engineering as the condition of maintenance of social and economic security of region

    Directory of Open Access Journals (Sweden)

    Vsevolod Petrovich Babushkin

    2012-12-01

    Full Text Available In the article, the transport role in the decision of problems of innovative and scientifically-technological development of territory is defined. Dependence of quality, completeness and timeliness of granting of transport services on replenishment and updating of park of locomotives, cars, i.e. from a level of development of domestic transport mechanical engineering is shown. The basic problems of development given branches –low competitiveness of made production are revealed. The basic accent in the course of such analysis is made on research of competitive possibilities of the enterprises of railway mechanical engineering of Sverdlovsk area. Such enterprises play the increasing role, become points of development of region’s economy and maintenance of its social and economic safety. The cooperation communications, which have developed in an industrial complex of Sverdlovsk area on the basis of development of modern manufacture on building of electric locomotives, have allowed to generate in region cluster railway mechanical engineering. The structure cluster is shown, development prospects, the estimation of its influence on the economy of Sverdlovsk area and maintenance of its social and economic security is given

  17. Norddesign 2012 - Book of Abstract

    DEFF Research Database (Denmark)

    . Conceptualisation and Innovative thinking. Research approaches and topics: Human Behaviour and Cognition. Cooperation and Multidisciplinary Design. Staging and Management of Design. Communication in Design. Design education and teaching: Programmes and Syllabuses. New Courses. Integrated and Multi-disciplinary. We...... fate of the ideas behind the conferences. In that view the conferences have been thematically open and the organization has been tight with a limited number of participants that allows a good overview of all the papers and a lot of informal discussion between the participants. The present conference...... has been organized in line with the original ideas. The topics mentioned in the call for abstracts were: Product Development: Integrated, Multidisciplinary, Product life oriented and Distributed. Multi-product Development. Innovation and Business Models. Engineering Design and Industrial Design...

  18. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  19. China nuclear science and technology report 1995. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1995 (Report Numbers CNIC-00921{approx}CNIC-01020) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  20. China nuclear science and technology report 1995. Abstracts

    International Nuclear Information System (INIS)

    1996-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1995 (Report Numbers CNIC-00921∼CNIC-01020) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  1. China nuclear science and technology report (1991). Abstracts

    International Nuclear Information System (INIS)

    1992-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1991 (Report Numbers CNIC-00455 to CNIC-00554) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  2. China nuclear science and technology report abstracts 1996

    International Nuclear Information System (INIS)

    1997-10-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1996 (Report Numbers CNIC-01021∼CNIC-01130) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  3. Abstracts China nuclear science and technology report (1999)

    International Nuclear Information System (INIS)

    2001-01-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  4. Abstracts: China Nuclear Science and Technology Report (1990)

    International Nuclear Information System (INIS)

    1991-05-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1990 (Report Numbers CNIC--00355 to CNIC-00454) are presented. The items are arranged according to INIS subjects categories, which mainly are physics, chemistry, materials, earth sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  5. China nuclear science and technology report. Abstracts 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1994 (Report Numbers CNIC-00801{approx}CNIC-00920) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  6. China nuclear science and technology report abstracts 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1996 (Report Numbers CNIC-01021{approx}CNIC-01130) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  7. Abstracts China nuclear science and technology report (1999)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1999 (Report Numbers CNIC-01331 -CNIC-01430) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed.

  8. China nuclear science and technology report. Abstracts 1994

    International Nuclear Information System (INIS)

    1995-02-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1994 (Report Numbers CNIC-00801∼CNIC-00920) are presented. The items are arranged according to INIS subject categories, which mainly are physical sciences, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  9. Abstracts China nuclear science and technology reports (1988)

    International Nuclear Information System (INIS)

    1989-03-01

    The bibliographies and abstracts of China Nuclear Science and Technology Reports published in 1988 (Report Numbers CNIC -00115 ∼ CNIC-00254) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  10. Abstracts: China Nuclear Science and Technology Report (1989)

    International Nuclear Information System (INIS)

    1990-04-01

    The bibliographies and abstracts of China Nuclear Science and Technology Report published in 1989 (Report Numbers CNIC--00255∼CNIC--00354) are presented. The items are arranged according to INIS subject categories, which mainly are physics, chemistry, materials, earth sciences, life sciences, isotopes, isotope and radiation applications, engineering and technology, and other aspects of nuclear energy. The numbers on the left corners of the entries are report numbers, and on the right corners the serial numbers. A report number index is annexed

  11. Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude

    Science.gov (United States)

    Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael J.

    2016-01-01

    A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier (Refs. 1 and 2) from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test (Ref. 3) conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

  12. Comparative study on the mechanical mechanism of confined concrete supporting arches in underground engineering.

    Science.gov (United States)

    Lv, Zhijin; Qin, Qian; Jiang, Bei; Luan, Yingcheng; Yu, Hengchang

    2018-01-01

    In order to solve the supporting problem in underground engineering with high stress, square steel confined concrete (SQCC) supporting method is adopted to enhance the control on surrounding rocks, and the control effect is remarkable. The commonly used cross section shapes of confined concrete arch are square and circular. At present, designers have no consensus on which kind is more proper. To search for the answer, this paper makes an analysis on the mechanical properties of the two shapes of the cross-sections. A full-scale indoor comparative test was carried out on the commonly used straight-wall semi-circular SQCC arch and circular steel confined concrete arch (CCC arch). This test is based on self-developed full-scale test system for confined concrete arch. Our research, combining with the numerical analysis, shows: (1) SQCC arch is consistent with CCC arch in the deformation and failure mode. The largest damages parts are at the legs of both of them. (2) The SQCC arch's bearing capability is 1286.9 kN, and the CCC arch's ultimate bearing capability is 1072.4kN. Thus, the SQCC arch's bearing capability is 1.2 times that of the CCC arch. (3) The arches are subjected to combined compression and bending, bending moment is the main reason for the arch failure. The section moment of inertia of SQCC arch is 1.26 times of that of CCC arch, and the former is better than the latter in bending performance. The ultimate bearing capacity is positively correlated with the size of the moment of inertia. Based on the above research, the engineering suggestions are as follows: (1) To improve the bearing capacity of the arch, the cross-sectional shape of the chamber should be optimized and the arch bearing mode changed accordingly. (2) The key damaged positions, such as the arch leg, should be reinforced, optimizing the state of force on the arch. SQCC arches should be used for supporting in underground engineering, which is under stronger influence of the bending moment and

  13. APPLICATION OF APM WINMACHINE SOFTWARE FOR DESIGN AND CALCULATIONS IN MECHANICAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    L. O. Neduzha

    2016-04-01

    Full Text Available Purpose.To conduct the research at all stages of design, development, operation, residual operation life determination, namely, preliminary study, action principle choice, design of draft and technical projects, their optimization, preparation of design documentation and control information for automated production, comprehensive engineering analysis, it is required to use the latest computer technologies. Their use can not only present data and information in some way, but also gives the opportunity to effectively and directly interact with the information object that is created or demonstrated. Methodology.To perform engineering calculations associated with the analysis of the strength of machines, mechanisms, constructions one uses both analytical and numerical methods in practice.The most common method for analysing the stress-strain state of object models, obtaining their dynamic and stability characteristics at constant and variable modes of external load is the finite element method, which is implemented in many famous and widespread software products, providing strength calculation of models of machines, mechanisms and structures. Findings.The use of modern software for designing machine parts and various types of their joints and for strength analysis of structures is justified. Colour charts for distribution of stresses, displacement, internal efforts, safety factor and others allow accurate and quick identification of the most dangerous places in the structure. The program also provides an opportunity to «look» inside the elements and see the resulting distribution of internal force factors. Originality.The paper considered the aspects, which are unexplored at present, associated with the current state and prospects of development of industrial production, the use of software package for design and calculations in the mechanical industry. The result of the work is the justification of software application for solving problems that

  14. Experimental investigation of the effects of direct water injection parameters on engine performance in a six-stroke engine

    International Nuclear Information System (INIS)

    Arabaci, Emre; İçingür, Yakup; Solmaz, Hamit; Uyumaz, Ahmet; Yilmaz, Emre

    2015-01-01

    Highlights: • Exhaust gas temperature and specific fuel consumption decreased with six stroke engine. • Thermal efficiency increased with water injection. • NO emissions decreased with water injection as the temperature decreased at the end of cycle. • Injection timing should be advanced with the increase of engine speed. • HC and CO emissions decrease until 3000 rpm engine speed. - Abstract: In this study, the effects of water injection quantity and injection timing were investigated on engine performance and exhaust emissions in a six-stroke engine. For this purpose, a single cylinder, four-stroke gasoline engine was converted to six-stroke engine modifying a new cam mechanism and adapting the water injection system. The experiments were conducted at stoichometric air/fuel ratio (λ = 1) between 2250 and 3500 rpm engine speed at full load with liquid petroleum gas. Water injection was performed at three different stages as before top dead center, top dead center and after top dead center at constant injection duration and four different injection pressure 25, 50, 75 and 100 bar. The test results showed that exhaust gas temperature and specific fuel consumption decreased by about 7% and 9% respectively. In contrast, fuel consumption and power output increased 2% and 10% respectively with water injection. Thermal efficiency increased by about 8.72% with water injection. CO and HC emissions decreased 21.97% and 18.23% until 3000 rpm respectively. NO emissions decreased with water injection as the temperature decreased at the end of cycle. As a result, it was seen that engine performance improved when suitable injection timing and injected water quantity were selected due to effect of exhaust heat recovery with water injection

  15. Engineering cell wall synthesis mechanism for enhanced PHB accumulation in E. coli.

    Science.gov (United States)

    Zhang, Xing-Chen; Guo, Yingying; Liu, Xu; Chen, Xin-Guang; Wu, Qiong; Chen, Guo-Qiang

    2018-01-01

    The rigidity of bacterial cell walls synthesized by a complicated pathway limit the cell shapes as coccus, bar or ellipse or even fibers. A less rigid bacterium could be beneficial for intracellular accumulation of poly-3-hydroxybutyrate (PHB) as granular inclusion bodies. To understand how cell rigidity affects PHB accumulation, E. coli cell wall synthesis pathway was reinforced and weakened, respectively. Cell rigidity was achieved by thickening the cell walls via insertion of a constitutive gltA (encoding citrate synthase) promoter in front of a series of cell wall synthesis genes on the chromosome of several E. coli derivatives, resulting in 1.32-1.60 folds increase of Young's modulus in mechanical strength for longer E. coli cells over-expressing fission ring FtsZ protein inhibiting gene sulA. Cell rigidity was weakened by down regulating expressions of ten genes in the cell wall synthesis pathway using CRISPRi, leading to elastic cells with more spaces for PHB accumulation. The regulation on cell wall synthesis changes the cell rigidity: E. coli with thickened cell walls accumulated only 25% PHB while cell wall weakened E. coli produced 93% PHB. Manipulation on cell wall synthesis mechanism adds another possibility to morphology engineering of microorganisms. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  16. Use of fracture mechanics in engineering problems

    Energy Technology Data Exchange (ETDEWEB)

    Carter, C S

    1965-02-26

    If an engineering material containing a crack is subjected to a slowly increasing load, applied so that the crack tends to open, a small zone of plastic yielding develops at the crack tip. This zone increases in size with increasing load, and has the effect of resisting the tendency of the crack to extend. The basic concepts of fracture mechanics are outlined and the significance of crack toughness as measured by KDcU and KD1cU which relate the applied stress and crack size for unstable fracture prior to general yielding is discussed. The methods available for crack-toughness evaluation are indicated, and the mathematical expressions describing KDcU and KD1cU for a variety of geometrical situations are quoted. This approach to the design of fracture- resistant structures has been used in a number of fields in the U.S. and could be of value to the British steam turbine, aerospace, and pressure-vessel industries for design, inspection, and material selection. (64 refs.)

  17. Engine Tune-Up Service. Unit 3: Primary Circuit. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 3, Primary Circuit, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the primary ignition circuit. A companion review exercise book and posttests are available separately as CE 031 212-213. An introduction tells how this unit fits into the total tune-up service,…

  18. USSR and Eastern Europe Scientific Abstracts Engineering and Equipment No. 30

    Science.gov (United States)

    1977-03-18

    Table 2j Biblio 4. 41 HUNGARY INVESTIGATION OF TRANSIENT PHENOMENA IN FLUID PIPELINES WITH THE AID OF THE MATRIX OPERATOR Budapest ENERGIA ES...investigated. Ill 5; Biblio 3. 48 USSR UDC 629.7.036.002.2 PROCEDURE AND SETUP FOR RENOVATING WORN-OUT PARTS OF AVIATION GAS-TURBINE ENGINES...Kiev VOPROSY POVYSHENIYA NADEZHNOSTI, DOLGOVECHNOSTI I VOSSTANOVLENIYA AVIATSIONNOY TEKHNIKI [Increasing the Reliability, Lifetime and Renovation of

  19. Engine Cold Start

    Science.gov (United States)

    2015-09-01

    matching pre- calibrated amplifier • BEI Shaft Encoder (0.2 CAD) • Wolff Instrumented Injector The high speed data was recorded and post-processed by...14. ABSTRACT These fuels were used for testing a GEP 6.5L turbocharged V-8 diesel engine operation in a cold box. This engine architecture is...Z39.18 UNCLASSIFIED UNCLASSIFIED v EXECUTIVE SUMMARY A fuel’s cetane number is very important for the operation of modern diesel

  20. Engineered Barrier System - Long-term Stability of Buffer and Backfill. Synthesis and extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Apted, Mick; Arthur, Randy [Monitor Scientific LLC, Denver, CO (United States); Savage, Dave [Quintessa Ltd., Nottingham (GB)] (eds.)

    2005-09-15

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for an encapsulation plant and a deep repository for the geological disposal of spent nuclear fuel. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS) of the repository. This workshop concerns the longterm stability of the buffer and the backfill. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS and the performance confirmation for the EBS. The goal of this work is to achieve a comprehensive overview of all aspects of SKB's EBS work prior to the handling of forthcoming license applications. The reports from the EBS workshops will be used as one important basis in future review work. The workshops involve the gathering of a sufficient number of independent experts in different subjects of relevance to the particular aspect of EBS. A workshop starts with presentations and discussions among these experts. Following this, SKB presents recent results and responds to questions as part of an informal hearing. Finally, the independent experts and the SKI staff examine the SKB responses from different viewpoints. This report aims to summarise the issues discussed at the buffer and backfill workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of the discussions and individual statements made by workshop participants should be regarded as opinions rather than proven facts. This reports includes apart from the workshop synthesis, questions to SKB identified prior or during the workshop, and extended abstracts for introductory presentations.

  1. Engineered Barrier System - Long-term Stability of Buffer and Backfill. Synthesis and extended abstracts

    International Nuclear Information System (INIS)

    Apted, Mick; Arthur, Randy; Savage, Dave

    2005-09-01

    SKI is preparing to review the license applications being developed by the Swedish Nuclear Fuel and Waste Management Company (SKB) for an encapsulation plant and a deep repository for the geological disposal of spent nuclear fuel. As part of its preparation, SKI is conducting a series of technical workshops on key aspects of the Engineered Barrier System (EBS) of the repository. This workshop concerns the longterm stability of the buffer and the backfill. Previous workshops have addressed the overall concept for long-term integrity of the EBS, the manufacturing, testing and QA of the EBS and the performance confirmation for the EBS. The goal of this work is to achieve a comprehensive overview of all aspects of SKB's EBS work prior to the handling of forthcoming license applications. The reports from the EBS workshops will be used as one important basis in future review work. The workshops involve the gathering of a sufficient number of independent experts in different subjects of relevance to the particular aspect of EBS. A workshop starts with presentations and discussions among these experts. Following this, SKB presents recent results and responds to questions as part of an informal hearing. Finally, the independent experts and the SKI staff examine the SKB responses from different viewpoints. This report aims to summarise the issues discussed at the buffer and backfill workshop and to extract the essential viewpoints that have been expressed. The report is not a comprehensive record of the discussions and individual statements made by workshop participants should be regarded as opinions rather than proven facts. This reports includes apart from the workshop synthesis, questions to SKB identified prior or during the workshop, and extended abstracts for introductory presentations

  2. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  3. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-01-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  4. Abstract and research accomplishments of University Coal Research Projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Principal Investigators of the grants supported by the University Coal Research Program were requested to submit abstracts and highlight accomplishments of their respective projects in time for distribution at a conference on June 13--14, 1995 at Tennessee State University in Nashville, Tennessee. This book is a compilation of the material received in response to that request. For convenience, the 70 grants reported in this book are stored into eight technical areas, Coal Science, Coal Surface Science, Reaction Chemistry, Advanced Process Concepts, Engineering Fundamentals and Thermodynamics, Environmental Science, high Temperature Phenomena, and Special topics. Indexes are provided for locating projects by subject, principal investigators, and contracting organizations. Each extended abstract describes project objectives, work accomplished, significance to the Fossil Energy Program, and plans for the next year.

  5. Towards Identify Selective Antibacterial Peptides Based on Abstracts Meaning

    Directory of Open Access Journals (Sweden)

    Liliana I. Barbosa-Santillán

    2016-01-01

    Full Text Available We present an Identify Selective Antibacterial Peptides (ISAP approach based on abstracts meaning. Laboratories and researchers have significantly increased the report of their discoveries related to antibacterial peptides in primary publications. It is important to find antibacterial peptides that have been reported in primary publications because they can produce antibiotics of different generations that attack and destroy the bacteria. Unfortunately, researchers used heterogeneous forms of natural language to describe their discoveries (sometimes without the sequence of the peptides. Thus, we propose that learning the words meaning instead of the antibacterial peptides sequence is possible to identify and predict antibacterial peptides reported in the PubMed engine. The ISAP approach consists of two stages: training and discovering. ISAP founds that the 35% of the abstracts sample had antibacterial peptides and we tested in the updated Antimicrobial Peptide Database 2 (APD2. ISAP predicted that 45% of the abstracts had antibacterial peptides. That is, ISAP found that 810 antibacterial peptides were not classified like that, so they are not reported in APD2. As a result, this new search tool would complement the APD2 with a set of peptides that are candidates to be antibacterial. Finally, 20% of the abstracts were not semantic related to APD2.

  6. Linguistic Engineering and Linguistic of Engineering: Adaptation of Linguistic Paradigm for Circumstance of Engineering Epoch

    OpenAIRE

    Natalya Halina

    2014-01-01

    The article is devoted to the problems of linguistic knowledge in the Engineering Epoch. Engineering Epoch is the time of adaptation to the information flows by knowledge management, The system of adaptation mechanisms is connected with linguistic and linguistic technologies, forming in new linguistic patterns Linguistic Engineering and Linguistic of Engineering.

  7. Topological superposition of abstractions of stochastic processes

    NARCIS (Netherlands)

    Bujorianu, L.M.; Bujorianu, M.C.

    2008-01-01

    In this paper, we present a sound integration mechanism for Markov processes that are abstractions of stochastic hybrid systems (SHS). In a previous work, we have defined a very general model of SHS and we proved that the realization of an SHS is a Markov process. Moreover, we have developed a

  8. Engineering Mathematics I : Electromagnetics, Fluid Mechanics, Material Physics and Financial Engineering

    CERN Document Server

    Rančić, Milica

    2016-01-01

    This book highlights the latest advances in engineering mathematics with a main focus on the mathematical models, structures, concepts, problems and computational methods and algorithms most relevant for applications in modern technologies and engineering. In particular, it features mathematical methods and models of applied analysis, probability theory, differential equations, tensor analysis and computational modelling used in applications to important problems concerning electromagnetics, antenna technologies, fluid dynamics, material and continuum physics and financial engineering. The individual chapters cover both theory and applications, and include a wealth of figures, schemes, algorithms, tables and results of data analysis and simulation. Presenting new methods and results, reviews of cutting-edge research, and open problems for future research, they equip readers to develop new mathematical methods and concepts of their own, and to further compare and analyse the methods and results discussed. The ...

  9. The 1975 NASA/ASEE summer faculty fellowship research program. [research in the areas of aerospace engineering, aerospace systems, and information systems

    Science.gov (United States)

    1975-01-01

    A research program was conducted to further the professional knowledge of qualified engineering and science faculty members, to stimulate an exchange of ideas between participants and NASA engineers and scientists, and to enrich the research activities of the participants' institutions. Abstracts of reports submitted at the end of the program are presented. Topics investigated include multispectral photography, logic circuits, gravitation theories, information systems, fracture mechanics, holographic interferometry, surface acoustic wave technology, ion beams in the upper atmosphere, and hybrid microcircuits.

  10. A unix configuration engine

    International Nuclear Information System (INIS)

    Burgess, M.

    1994-06-01

    A high level description language is presented for the purpose of automatically configuring large heterogeneous networked unix environments, based on class-oriented abstractions. The configuration engine is portable and easily extensible

  11. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  12. The Faculty Perspective on Holistic and Systems Thinking in American and Australian Mechanical Engineering Programmes

    Science.gov (United States)

    Kellam, N. N.; Maher, M. A.; Peters, W. H.

    2008-01-01

    This research effort examined current mechanical engineering educational programmes in America and Australia to determine the degree of holistic, systems thinking of each programme. Faculty from ten American universities and ten Australian universities participated in online surveys and interviews. Resulting data analysis and interpretation…

  13. 3D Printing as a Didactic Tool for Teaching some Engineering and Design Concepts

    OpenAIRE

    Edwin Blasnilo Rua Ramirez; Fernando Jimenez Diaz; German Andres Gutierrez Arias; Nelson Iván Villamizar

    2018-01-01

    Context: 3D printing can be used for a wide range of tasks such as the design and testing of prototypes and finished products in a shorter time. In mechanical engineering, prototype designs are continuously generated in academic class activities and final coursework projects by students and teachers. However, students show limitations while understanding the abstract concepts represented with such designs. Method: Firstly, a large scale 3D printer with improved technical specifications c...

  14. Multi-axial mechanical stimulation of tissue engineered cartilage: Review

    Directory of Open Access Journals (Sweden)

    S D Waldman

    2007-04-01

    Full Text Available The development of tissue engineered cartilage is a promising new approach for the repair of damaged or diseased tissue. Since it has proven difficult to generate cartilaginous tissue with properties similar to that of native articular cartilage, several studies have used mechanical stimuli as a means to improve the quantity and quality of the developed tissue. In this study, we have investigated the effect of multi-axial loading applied during in vitro tissue formation to better reflect the physiological forces that chondrocytes are subjected to in vivo. Dynamic combined compression-shear stimulation (5% compression and 5% shear strain amplitudes increased both collagen and proteoglycan synthesis (76 ± 8% and 73 ± 5%, respectively over the static (unstimulated controls. When this multi-axial loading condition was applied to the chondrocyte cultures over a four week period, there were significant improvements in both extracellular matrix (ECM accumulation and the mechanical properties of the in vitro-formed tissue (3-fold increase in compressive modulus and 1.75-fold increase in shear modulus. Stimulated tissues were also significantly thinner than the static controls (19% reduction suggesting that there was a degree of ECM consolidation as a result of long-term multi-axial loading. This study demonstrated that stimulation by multi-axial forces can improve the quality of the in vitro-formed tissue, but additional studies are required to further optimize the conditions to favour improved biochemical and mechanical properties of the developed tissue.

  15. Carbon nanotubes reinforced chitosan films: mechanical properties and cell response of a novel biomaterial for cardiovascular tissue engineering.

    Science.gov (United States)

    Kroustalli, A; Zisimopoulou, A E; Koch, S; Rongen, L; Deligianni, D; Diamantouros, S; Athanassiou, G; Kokozidou, M; Mavrilas, D; Jockenhoevel, S

    2013-12-01

    Carbon nanotubes have been proposed as fillers to reinforce polymeric biomaterials for the strengthening of their structural integrity to achieve better biomechanical properties. In this study, a new polymeric composite material was introduced by incorporating various low concentrations of multiwalled carbon nanotubes (MWCNTs) into chitosan (CS), aiming at achieving a novel composite biomaterial with superior mechanical and biological properties compared to neat CS, in order to be used in cardiovascular tissue engineering applications. Both mechanical and biological characteristics in contact with the two relevant cell types (endothelial cells and vascular myofibroblasts) were studied. Regarding the mechanical behavior of MWCNT reinforced CS (MWCNT/CS), 5 and 10 % concentrations of MWCNTs enhanced the mechanical behavior of CS, with that of 5 % exhibiting a superior mechanical strength compared to 10 % concentration and neat CS. Regarding biological properties, MWCNT/CS best supported proliferation of endothelial and myofibroblast cells, MWCNTs and MWCNT/CS caused no apoptosis and were not toxic of the examined cell types. Conclusively, the new material could be suitable for tissue engineering (TE) and particularly for cardiovascular TE applications.

  16. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter.

    Science.gov (United States)

    Blackstone, Britani Nicole; Drexler, Jason William; Powell, Heather Megan

    2014-10-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.

  17. Tunable Engineered Skin Mechanics via Coaxial Electrospun Fiber Core Diameter

    Science.gov (United States)

    Blackstone, Britani Nicole; Drexler, Jason William

    2014-01-01

    Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo. PMID:24712409

  18. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  19. Getting creative with hermeneutic phenomenology in engineering

    DEFF Research Database (Denmark)

    Coxon, Ian Robert

    2013-01-01

    (Abstract publication only) Getting creative with hermeneutic phenomenology in engineering: New ideas, timely lessons and useful learning from diverse Danish projects,The 32nd International Human Science Research Conference, August 13-16, Aalborg University, Denmark. Available http://www.ihsrc.aau.dk/Abstracts/...

  20. Multiaxial mechanical response and constitutive modeling of esophageal tissues: Impact on esophageal tissue engineering.

    Science.gov (United States)

    Sommer, Gerhard; Schriefl, Andreas; Zeindlinger, Georg; Katzensteiner, Andreas; Ainödhofer, Herwig; Saxena, Amulya; Holzapfel, Gerhard A

    2013-12-01

    Congenital defects of the esophagus are relatively frequent, with 1 out of 2500 babies suffering from such a defect. A new method of treatment by implanting tissue engineered esophagi into newborns is currently being developed and tested using ovine esophagi. For the reconstruction of the biological function of native tissues with engineered esophagi, their cellular structure as well as their mechanical properties must be considered. Since very limited mechanical and structural data for the esophagus are available, the aim of this study was to investigate the multiaxial mechanical behavior of the ovine esophagus and the underlying microstructure. Therefore, uniaxial tensile, biaxial tensile and extension-inflation tests on esophagi were performed. The underlying microstructure was examined in stained histological sections through standard optical microscopy techniques. Moreover, the uniaxial ultimate tensile strength and residual deformations of the tissue were determined. Both the mucosa-submucosa and the muscle layers showed nonlinear and anisotropic mechanical behavior during uniaxial, biaxial and inflation testing. Cyclical inflation of the intact esophageal tube caused marked softening of the passive esophagi in the circumferential direction. The rupture strength of the mucosa-submucosa layer was much higher than that of the muscle layer. Overall, the ovine esophagus showed a heterogeneous and anisotropic behavior with different mechanical properties for the individual layers. The intact and layer-specific multiaxial properties were characterized using a well-known three-dimensional microstructurally based strain-energy function. This novel and complete set of data serves the basis for a better understanding of tissue remodeling in diseased esophagi and can be used to perform computer simulations of surgical interventions or medical-device applications. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.