WorldWideScience

Sample records for abstract silicon carbide

  1. Silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M. (Inventor)

    1995-01-01

    Composite flexible multilayer insulation systems (MLI) were evaluated for thermal performance and compared with currently used fibrous silica (baseline) insulation system. The systems described are multilayer insulations consisting of alternating layers of metal foil and scrim ceramic cloth or vacuum metallized polymeric films quilted together using ceramic thread. A silicon carbide thread for use in the quilting and the method of making it are also described. These systems provide lightweight thermal insulation for a variety of uses, particularly on the surface of aerospace vehicles subject to very high temperatures during flight.

  2. Method of preparing a porous silicon carbide

    NARCIS (Netherlands)

    Moene, R.; Tazelaar, F.W.; Makkee, M.; Moulijn, J.A.

    1994-01-01

    Abstract of NL 9300816 (A) Described is a method of preparing a porous silicon carbide suitable for use as a catalyst or as a catalyst support. Porous carbon is provided with a catalyst which is suitable for catalysing gasification of carbon with hydrogen, and with a catalyst suitable for catalysing

  3. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  4. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    tions ranging from kiln furniture to membrane material. Keywords. Microwave sintering; biaxial flexure; silicon carbide. 1. Introduction. Silicon carbide (SiC) ceramics is a very well known candidate material for a structural application. However, due to (i) poor densification due to highly directional bonding, (ii) susceptibility of ...

  5. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  6. Silicon Carbide Gate Driver, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA needs efficient, low mass, low volume power electronics for a wide variety of applications and missions. Silicon carbide (SiC) switches provide fast, low loss...

  7. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  8. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 µm and. 25 µm, and a sintered silicon ... the sintered silicon carbide was found out to be linked to its previous thermal history. Keywords. Indentation fatigue .... This presence of a grain size effect in the RIF behaviour of the ...

  9. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu

    and solar cells, and further pursue concepts in materials for thermoelectrics, biofuel cells and supercapacitor research proposals. In fact, there are a number of energy applications which can be based on the SiC materials.- Fluorescent SiC for white LED in general lighting - Cubic SiC for a highly...... efficient solar cell- Cubic SiC for water splitting to generate hydrogen.Further on, we have the following concepts that could be explored- Thermoelectric SiC for electricity generation from heat- Biofuels cells based on carbon electrodes on SiC- Supercapacitors based on sintered SiC and carbon materials......Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  10. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  11. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  12. Progress in silicon carbide semiconductor technology

    Science.gov (United States)

    Powell, J. A.; Neudeck, P. G.; Matus, L. G.; Petit, J. B.

    1992-01-01

    Silicon carbide semiconductor technology has been advancing rapidly over the last several years. Advances have been made in boule growth, thin film growth, and device fabrication. This paper wi11 review reasons for the renewed interest in SiC, and will review recent developments in both crystal growth and device fabrication.

  13. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  14. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  15. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  16. Multifractal characterization of epitaxial silicon carbide on silicon

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2017-10-01

    Full Text Available The purpose of this study was to investigate the topography of silicon carbide films at two steps of growth. The topography was measured by atomic force microscopy. The data were processed for extraction of information about surface condition and changes in topography during the films growth. Multifractal geometry was used to characterize three-dimensional micro- and nano-size features of the surface. X-ray measurements and Raman spectroscopy were performed for analysis of the films composition. Two steps of morphology evolution during the growth were analyzed by multifractal analysis. The results contribute to the fabrication of silicon carbide large area substrates for micro- and nanoelectronic applications.

  17. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  18. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the sma...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications.......Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  19. Low blow Charpy impact of silicon carbides

    Science.gov (United States)

    Abe, H.; Chandan, H. C.; Bradt, R. C.

    1978-01-01

    The room-temperature impact resistance of several commercial silicon carbides was examined using an instrumented pendulum-type machine and Charpy-type specimens. Energy balance compliance methods and fracture toughness approaches, both applicable to other ceramics, were used for analysis. The results illustrate the importance of separating the machine and the specimen energy contributions and confirm the equivalence of KIc and KId. The material's impact energy was simply the specimen's stored elastic strain energy at fracture.

  20. Compressive creep of hot pressed silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C.R.M., E-mail: cosmeroberto@gmail.com [Universidade de Brasilia (UnB), Campus Darcy Ribeiro, Brasilia CEP 70736-020, DF (Brazil); Nono, M.C.A. [Instituto de Nacional de Pesquisas Espaciais (INPE-LAS) (Brazil); Reis, D.A.P.; Hwang, M.K. [Instituto de Aeronautica e Espaco (IAE) (Brazil)

    2010-07-15

    Silicon carbide has a good match of chemical, mechanical and thermal properties and therefore is considered an excellent structural ceramic for high temperature applications. The aim of the present work is compressive creep evaluation of liquid phase sintered silicon carbide with aluminum and rare earth oxide as sintering aids. Rare earth oxides are possible additives considering their highly refractory remnant grain-boundary phase and lower synthesis costs compared to high purity rare earth. Samples were prepared with silicon carbide powder (90 wt%) and aluminum oxide (5 wt%) plus rare earth oxide (5 wt%) additions. Powders were mixed, milled and hot pressed at 1800 deg. C in argon atmosphere. Compressive creep tests were carried out under stress from 150 to 300 MPa and temperatures from 1300 to 1400 deg. C. At lower creep test temperatures, the obtained stress exponent values were correlated to mechanisms based on diffusion. At intermediate temperatures, grain-boundary sliding becomes operative, accommodated by diffusion. At higher temperatures cavities are discernible. Oxidation reactions and ionic diffusion result on surface oxidized layer, grain-boundary amorphous and intergranular crystalline Al{sub 6}Si{sub 2}O{sub 13}, {delta}-Y{sub 2}Si{sub 2}O{sub 7} and YAG phases. In this case cavitation and amorphous phases redistribution enhance grain-boundary sliding, not accommodated by diffusion. Coalescence occurs at triple point and multigrain-junctions, with subsequent strain rate acceleration and cavitational creep.

  1. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  2. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  3. Stoichiometric Defects in Silicon Carbide

    International Nuclear Information System (INIS)

    Liao, Ting; Bedoya-Martinez, O. N.; Roma, G.; Liao, Ting; Liao, Ting

    2010-01-01

    Defect structures showing odd-membered rings are known features of several tetrahedral semiconductors as well as carbon nano-structures; examples of them are bond defects in crystalline and amorphous silicon, Stone Wales defects in fullerenes and carbon nano-tubes, and the core structure of partial dislocations in some tetrahedral semiconductors. We investigate, using Density Functional Theory, two types of stoichiometry-conserving defects, which we call SCD and anti-SCD and which are metastable structures presenting five- and seven-membered rings, both in the cubic and in the hexagonal 4H-SiC polytypes. We also investigate the annealing properties of the two mentioned variants and find that one of them (SCD) easily disappears, turning back to a normal site, while the other (anti-SCD) transforms to an antisite pair, overcoming a barrier of 0. 21 eV. The very short lifetimes at ambient conditions explain why those defects have not been observed up to now, but they suggest they should be observable at very low temperature, and we provide local vibrational modes to facilitate their identification. (authors)

  4. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, T. J.; Winterbottom, W. L.

    1986-01-01

    Work performed to develop silicon carbide materials of high strength and to form components of complex shape and high reliability is described. A beta-SiC powder and binder system was adapted to the injection molding process and procedures and process parameters developed capable of providing a sintered silicon carbide material with improved properties. The initial effort has been to characterize the baseline precursor materials (beta silicon carbide powder and boron and carbon sintering aids), develop mixing and injection molding procedures for fabricating test bars, and characterize the properties of the sintered materials. Parallel studies of various mixing, dewaxing, and sintering procedures have been carried out in order to distinguish process routes for improving material properties. A total of 276 MOR bars of the baseline material have been molded, and 122 bars have been fully processed to a sinter density of approximately 95 percent. The material has a mean MOR room temperature strength of 43.31 ksi (299 MPa), a Weibull characteristic strength of 45.8 ksi (315 MPa), and a Weibull modulus of 8.0. Mean values of the MOR strengths at 1000, 1200, and 14000 C are 41.4, 43.2, and 47.2 ksi, respectively. Strength controlling flaws in this material were found to consist of regions of high porosity and were attributed to agglomerates originating in the initial mixing procedures. The mean stress rupture lift at 1400 C of five samples tested at 172 MPa (25 ksi) stress was 62 hours and at 207 MPa (30 ksi) stress was 14 hours. New fluid mixing techniques have been developed which significantly reduce flaw size and improve the strength of the material. Initial MOR tests indicate the strength of the fluid-mixed material exceeds the baseline property by more than 33 percent.

  5. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...

  6. Production of nano structured silicon carbide by high energy ball ...

    African Journals Online (AJOL)

    In this paper, an attempt has been made to modify the micro sized Silicon carbide powder into nano structured Silicon carbide powder using High Energy Ball Mill. Ball milling was carried out for the total duration of 50 hours. The sample was taken out after every 5 hours of milling and it was characterized for its crystallite ...

  7. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  8. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  9. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation; proton ; stopping and range of

  10. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  11. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  12. Development of a silicon carbide sewing thread

    Science.gov (United States)

    Sawko, Paul M.; Vasudev, Anand

    1989-01-01

    A silicon carbide (SiC) sewing thread has been designed which consists of a two-ply yarn in a 122 turns-per-meter-twist construction. Two processing aids in thread construction were evaluated. Prototype blankets were sewn using an SiC thread prepared either with polytetrafluoroethylene sizing or with an overwrap of rayon/dacron service yarn. The rayon/dacron-wrapped SiC thread was stronger, as shown by higher break-strength retention and less damage to the outer-mold-line fabric. This thread enables thermal protection system articles to be sewn or joined, or have perimeter close-out of assembled parts when using SiC fabric for high-temperature applications.

  13. Quantum Properties of Dichroic Silicon Vacancies in Silicon Carbide

    Science.gov (United States)

    Nagy, Roland; Widmann, Matthias; Niethammer, Matthias; Dasari, Durga B. R.; Gerhardt, Ilja; Soykal, Öney O.; Radulaski, Marina; Ohshima, Takeshi; Vučković, Jelena; Son, Nguyen Tien; Ivanov, Ivan G.; Economou, Sophia E.; Bonato, Cristian; Lee, Sang-Yun; Wrachtrup, Jörg

    2018-03-01

    Although various defect centers have displayed promise as either quantum sensors, single photon emitters, or light-matter interfaces, the search for an ideal defect with multifunctional ability remains open. In this spirit, we study the dichroic silicon vacancies in silicon carbide that feature two well-distinguishable zero-phonon lines and analyze the quantum properties in their optical emission and spin control. We demonstrate that this center combines 40% optical emission into the zero-phonon lines showing the contrasting difference in optical properties with varying temperature and polarization, and a 100% increase in the fluorescence intensity upon the spin resonance, and long spin coherence time of their spin-3 /2 ground states up to 0.6 ms. These results single out this defect center as a promising system for spin-based quantum technologies.

  14. A review of oxide, silicon nitride, and silicon carbide brazing

    International Nuclear Information System (INIS)

    Santella, M.L.; Moorhead, A.J.

    1987-01-01

    There is growing interest in using ceramics for structural applications, many of which require the fabrication of components with complicated shapes. Normal ceramic processing methods restrict the shapes into which these materials can be produced, but ceramic joining technology can be used to overcome many of these limitations, and also offers the possibility for improving the reliability of ceramic components. One method of joining ceramics is by brazing. The metallic alloys used for bonding must wet and adhere to the ceramic surfaces without excessive reaction. Alumina, partially stabilized zirconia, and silicon nitride have high ionic character to their chemical bonds and are difficult to wet. Alloys for brazing these materials must be formulated to overcome this problem. Silicon carbide, which has some metallic characteristics, reacts excessively with many alloys, and forms joints of low mechanical strength. The brazing characteristics of these three types of ceramics, and residual stresses in ceramic-to-metal joints are briefly discussed

  15. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  16. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  17. Characterization of commercial silicon carbide powders and green bodies

    International Nuclear Information System (INIS)

    Srinivasan, M.; Binnie, W.P.; Friedman, W.D.; Youngman, R.A.; Sherman, W.M.

    1988-01-01

    Several commercially available submicron alpha and beta silicon carbide powders are characterized for their physical and chemical properties. The paper also addresses key areas to consider in the examination of silicon carbide ceramics in the green state during fabrication. Several nondestructive evaluation techniques including x-ray radiography, ultrasonics, and computed x-ray tomography are applied to map variations in density of the green body and to identify variations in homogeneity and potential flaws

  18. Single-Event Effects in Silicon and Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2014-01-01

    NASA Electronics Parts and Packaging program-funded activities over the past year on single-event effects in silicon and silicon carbide power devices are presented, with focus on SiC device failure signatures.

  19. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  20. Preparation And Characterization Of Silicon Carbide Foam By Using In-Situ Generated Polyurethane Foam

    Directory of Open Access Journals (Sweden)

    Shalini Saxena

    2015-08-01

    Full Text Available Abstract The open cell silicon carbide SiC foam was prepared using highly crosslinked hybrid organic- inorganic polymer resin matrix. As inorganic polymer polycarbosilane was taken and organic resin was taken as a mixture of epoxy resin and diisocyanates. The resultant highly crosslinked hybrid resin matrix on heating and subsequently on pyrolysis yielded open cell silicon carbide foam. The hybrid resin matrix was characterized by Fourier transform Infrared Spectroscopy FT-IR and thermal properties i.e. Thermogravimetric analysis TGA amp Differential Scanning Calorimetry DSC were also studied. The morphological studies of silicon carbide ceramic foam were carried out using X-ray Spectroscopy XRD amp Scanning Electron Microscopy SEM.

  1. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Silicon carbide corrosion in HTGR fuel particles

    International Nuclear Information System (INIS)

    Gruebmeier, H.; Naoumidis, A.; Thiele, B.A.

    1977-01-01

    The silicon carbide layer in TRISO-coated HTR fuel particles occasionally is attacked during irradiation by fission products generated within the kernel material. Investigations to define the cause of the SiC corrosion are described, which included ceramographic, microradiographic and microanalytical studies on irradiated and unirradiated coated particles of various kernel compositions. The results of these studies showed that the presence of chlorine within the particle, in combination with certain metallic fission products or uranium, can lead to corrosion of the SiC layer. These results provided the basis for establishing a model, which relates the transport of fission products as volatile metal chlorides and their chemical reaction with the SiC corrosion. In addition this model is consistent with the fact that under the influence of a thermal gradient corrosive attack of the SiC occurs on the cooler side of the particle. The correlation between the occurrence of SiC corrosion during irradiation and heavy-metal transport observed in thermal gradient annealing studies of unirradiated particles of the same barch constitutes the basis for a new method for quality control. (orig.) [de

  3. Highly permeable and mechanically robust silicon carbide hollow fiber membranes

    NARCIS (Netherlands)

    de Wit, Patrick; Kappert, Emiel; Lohaus, T.; Wessling, Matthias; Nijmeijer, Arian; Benes, Nieck Edwin

    2015-01-01

    Silicon carbide (SiC) membranes have shown large potential for applications in water treatment. Being able to make these membranes in a hollow fiber geometry allows for higher surface-to-volume ratios. In this study, we present a thermal treatment procedure that is tuned to produce porous silicon

  4. Enhanced Sintering of Boron Carbide-Silicon Composites by Silicon

    Science.gov (United States)

    Zeng, Xiaojun; Liu, Weiliang

    2016-11-01

    Boron carbide (B4C)-silicon (Si) composites have been prepared by aqueous tape casting, laminating, and spark plasma sintering (SPS). The influences of silicon (Si) content on the phases, microstructure, sintering properties, and mechanical properties of the obtained B4C-Si composites are studied. The results indicate that the addition of Si powder can act as a sintering aid and contribute to the sintering densification. The addition of Si powder can also act as a second phase and contribute to the toughening for composites. The relative density of B4C-Si composites samples with adding 10 wt.% Si powder prepared by SPS at 1600 °C and 50 MPa for 8 min is up to 98.3%. The bending strength, fracture toughness, and Vickers hardness of the sintered samples are 518.5 MPa, 5.87 MPa m1/2, and 38.9 GPa, respectively. The testing temperature-dependent high-temperature bending strength and fracture toughness can reach a maximum value at 1350 °C. The B4C-Si composites prepared at 1600, 1650, and 1700 °C have good high-temperature mechanical properties. This paper provides a facile low-temperature sintering route for B4C ceramics with improved properties.

  5. Formation of carbide derived carbon coatings on silicon carbide

    Science.gov (United States)

    Cambaz, Zarife Goknur

    Control over the structure of materials on nanoscale can open numerous opportunities for the development of materials with controlled properties. Carbon, which is one of the most promising materials for nanotechnology, can be produced by many different methods. One of the most versatile, in terms of a variety of structures demonstrated (graphite, porous amorphous carbon, nanotubes, graphene and diamond), is selective etching of SiC and other carbides. Since the Si atoms are extracted layer by layer, atomic level control of the carbon structures can potentially be achieved without changing the size and shape of the sample. Carbon produced by this method is called Carbide-Derived Carbon (CDC). In this work, CDC formation was studied on single crystalline 3C-SiC whiskers and 6H-SIC wafers by chlorination and vacuum decomposition at high temperatures with the goals to better understand the mechanism of carbide-to-carbon transformation and determine conditions for synthesis of desired carbon structures. The reaction kinetics, morphology and shape conservation were investigated at nanoscale. The transformation mechanism of the SIC surface to carbon was discussed in detail accounting to the effects of processing parameters (temperature, and composition of the environment), and material parameters (surface conditions, surface chemistry, crystal face, etc.). The characterization of the carbon structures was performed by using scanning electron microscopy (SEM), Raman spectroscopy and transmission electron microscopy (TEM). We compared chlorination of SiC whiskers with wet etching and showed that chlorination revealed the dislocations, while wet etching resulted in pagoda-like 3-D nanostructures upon selective etching of stacking faults (SFs). The difference in etching mechanisms was discussed. We determined the processing conditions for controlled synthesis of carbon structures like graphene, graphite and carbon nanotubes (CNTs) on the surface of alpha-SiC wafers by

  6. Silicon carbide alloys: Research reports in materials science

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, M.M.

    1986-01-01

    The book draws from work done on other silicon materials, silicon nitrides and sialons, to emphasize the importance of the SiC system. A comprehensive treatment of non-oxide silicon ceramics, this work is of special interest to researchers involved in ceramics, materials science, and high-temperature technology. This book covers the alloys of silicon carbide with aluminum nitride. Crystallography and experimental methods including sample preparation, furnace methods, X-ray and electron diffraction, optical and electron microscopy and chemical analysis are covered.

  7. Effect of hydrogen on the microstructure of silicon carbide

    International Nuclear Information System (INIS)

    Fischman, G.S.

    1985-01-01

    The effect of hydrogenation on the microstructure of a pressureless sintered silicon carbide was studied. Samples which were annealed in a 40:60 mole % H 2 :Ar atmosphere at 1400 0 C for 50 hours were microstructurally compared with unannealed samples and samples that had been annealed in a similar manner but using an argon atmosphere. The results were also compared with microstructural results obtained from in situ studies using both hydrogen and argon atmospheres. These results were compared with a thermodynamic model which was constructed using a free energy minimization technique. The observed effects of hydrogenation were surface decarburization and amorphization throughout the silicon carbide material. Other observations include the thermally induced growth of microcrystalline silicon and accelerated amorphization around the silicon microcrystals in samples used in hydrogen in situ studies. An analysis of the microstructure of the reference material was also performed

  8. Pulmonary response, in vivo, to silicon carbide whiskers.

    Science.gov (United States)

    Vaughan, G L; Trently, S A; Wilson, R B

    1993-11-01

    Fischer rats were exposed to silicon carbide whiskers (SiCW), boron carbide whiskers (BCW), silicon carbide platelets (SiCP), or crocidolite asbestos separately administered by intratracheal instillation. SiCW proved to be the most toxic material within the test group. Dramatic increases in alveolar macrophage populations within 1 week of exposure to SiCW persisted for at least 28 days, evidence of the chronic inflammation observed in necropsies during the first months of the study. The most common finding in histological preparations of tissues taken from animals 18 months after exposure to SiCW was a high incidence (frequency > 0.85) of multiple pulmonary granulomas which occasionally occluded airways. Lesions associated with crocidolite were similar to those found with SiCW. Equivalent treatment with BCW and SiCP produced no significant histological changes within 18 months of exposure.

  9. Method of producing high density silicon carbide product

    International Nuclear Information System (INIS)

    1981-01-01

    A method of sintering silicon carbide powders containing boron or boron - containing compounds as densification aids to produce a high-density silicon carbide ceramic material is described. It has been found that higher densification can be obtained by sintering the powders in an atmosphere containing boron. Boron may be introduced in the form of a gas, e.g. boron trichloride, mixed with the inert gas used, i.e. nitrogen, argon or helium, or boron compounds, e.g. boron carbide, may be applied to the interior of the sintering chamber as solutions or slurries. Alternatively a boron compound, per se, in the sintering chamber, or furnace components containing a significant amount of boron may be used. (U.K.)

  10. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  11. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Phenolic resin; nanometric silicon carbide; nanocomposites; friction coefficient. 1. Introduction. Phenolic resin composites have their applications in a wide range of fields ... Curing time and temperature as well as mold materials influence the resulting homogeneity, glass transition temperature and mechanical properties.

  12. Ultrafast nonlinear response of silicon carbide to intense THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Iwaszczuk, Krzysztof; Kaltenecker, Korbinian J.

    2017-01-01

    We demonstrate ultrafast nonlinear absorption induced by strong, single-cycle THz fields in bulk, lightly doped 4H silicon carbide. A combination of Zener tunneling and intraband transitions makes the effect as at least as fast as the excitation pulse. The sub-picosecond recovery time makes...

  13. Influence of nanometric silicon carbide on phenolic resin composites

    Indian Academy of Sciences (India)

    The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric ...

  14. PECVD silicon carbide surface micromachining technology and selected MEMS applications

    NARCIS (Netherlands)

    Rajaraman, V.; Pakula, L.S.; Yang, H.; French, P.J.; Sarro, P.M.

    2011-01-01

    Attractive material properties of plasma enhanced chemical vapour deposited (PECVD) silicon carbide (SiC) when combined with CMOS-compatible low thermal budget processing provides an ideal technology platform for developing various microelectromechanical systems (MEMS) devices and merging them with

  15. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    Verrilli M J, Opila E J, Calomino A and Kiser J D 2004 Effect of environment on the stress–rupture behavior of a carbon-fibre-reinforced silicon carbide ceramic matrix composite, J. Am. Ceram. Soc. 87(8): 1536–. 1542. Zhang Q and Li G 2009 A review of the application of C/SiC composites in thermal protection system,.

  16. Neuro - Fuzzy Analysis for Silicon Carbide Abrasive Grains ...

    African Journals Online (AJOL)

    The manufacture of abrasives in Nigeria has been severely impeded by the difficulty of identifying suitable local raw materials and the associated local formulation for abrasives with global quality standards. This paper presents a study on application of neuro fuzzy to the formulation of silicon carbide abrasives using locally ...

  17. Sintering of nano crystalline o silicon carbide doping with

    Indian Academy of Sciences (India)

    Sinterable silicon carbide powders were prepared by attrition milling and chemical processing of an acheson type -SiC. Pressureless sintering of these powders was achieved by addition of aluminium nitride together with carbon. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by ...

  18. Analytical and experimental evaluation of joining silicon carbide to silicon carbide and silicon nitride to silicon nitride for advanced heat engine applications Phase 2. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.; Vartabedian, A.M.; Wade, J.A.; White, C.S. [Norton Co., Northboro, MA (United States). Advanced Ceramics Div.

    1994-10-01

    The purpose of joining, Phase 2 was to develop joining technologies for HIP`ed Si{sub 3}N{sub 4} with 4wt% Y{sub 2}O{sub 3} (NCX-5101) and for a siliconized SiC (NT230) for various geometries including: butt joins, curved joins and shaft to disk joins. In addition, more extensive mechanical characterization of silicon nitride joins to enhance the predictive capabilities of the analytical/numerical models for structural components in advanced heat engines was provided. Mechanical evaluation were performed by: flexure strength at 22 C and 1,370 C, stress rupture at 1,370 C, high temperature creep, 22 C tensile testing and spin tests. While the silicon nitride joins were produced with sufficient integrity for many applications, the lower join strength would limit its use in the more severe structural applications. Thus, the silicon carbide join quality was deemed unsatisfactory to advance to more complex, curved geometries. The silicon carbide joining methods covered within this contract, although not entirely successful, have emphasized the need to focus future efforts upon ways to obtain a homogeneous, well sintered parent/join interface prior to siliconization. In conclusion, the improved definition of the silicon carbide joining problem obtained by efforts during this contract have provided avenues for future work that could successfully obtain heat engine quality joins.

  19. Fabrication and properties of silicon carbide nanowires

    Science.gov (United States)

    Shim, Hyun Woo

    2008-12-01

    Silicon carbide (SiC), with excellent electrical, thermal, and mechanical properties, is a promising material candidate for future devices such as high-temperature electronics and super-strong lightweight structures. Combined with superior intrinsic properties, the nanomaterials of SiC show further advantages thanks to nanoscale effects. This thesis reports the growth mechanism, the self-integration, and the friction of SiC nanowires. The study involves nanowires fabrication using thermal evaporation, structure characterization using electron microscopy, friction measurement, and theoretical modeling. The study on nanowire growth mechanism requires understanding of the surfaces and interfaces of nanowire crystal. The catalyzed growth of SiC nanowires involves interfaces between source vapor, catalytic liquid, and nanowire solid. Our experimental observation includes the periodical twinning in a faceted SiC nanowire and three stage structure transitions during the growth. The proposed theoretical model shows that such phenomenon is the result of surface energy minimization process during the catalytic growth. Surface interactions also exist between nanowires, leading to their self-integration. Our parametric growth study reveals novel self-integration of SiC-SiO 2 core-shell nanowires as a result of SiO2 joining. Attraction between nanowires through van der Waals force and enhanced SiO2 diffusion at high temperature transform individual nanowires to the integrated nanojunctions, nanocables, and finally nanowebs. We also show that such joining process becomes effective either during growth or by annealing. The solid friction is a result of the interaction between two solid surfaces, and it depends on the adhesion and the deformation of two contacting solids among other factors. Having strong adhesion as shown from gecko foot-hairs, nanostructured materials should also have strong friction; this study is the first to investigate friction of nanostructures under

  20. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    International Nuclear Information System (INIS)

    Nagle, Dennis; Zhang, Dajie

    2009-01-01

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm -3 (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  1. SILICON CARBIDE CERAMICS FOR COMPACT HEAT EXCHANGERS

    Energy Technology Data Exchange (ETDEWEB)

    DR. DENNIS NAGLE; DR. DAJIE ZHANG

    2009-03-26

    Silicon carbide (SiC) materials are prime candidates for high temperature heat exchangers for next generation nuclear reactors due to their refractory nature and high thermal conductivity at elevated temperatures. This research has focused on demonstrating the potential of liquid silicon infiltration (LSI) for making SiC to achieve this goal. The major advantage of this method over other ceramic processing techniques is the enhanced capability of making high dense, high purity SiC materials in complex net shapes. For successful formation of net shape SiC using LSI techniques, the carbon preform reactivity and pore structure must be controlled to allow the complete infiltration of the porous carbon structure which allows complete conversion of the carbon to SiC. We have established a procedure for achieving desirable carbon properties by using carbon precursors consisting of two readily available high purity organic materials, crystalline cellulose and phenolic resin. Phenolic resin yields a glassy carbon with low chemical reactivity and porosity while the cellulose carbon is highly reactive and porous. By adjusting the ratio of these two materials in the precursor mixtures, the properties of the carbons produced can be controlled. We have identified the most favorable carbon precursor composition to be a cellulose resin mass ratio of 6:4 for LSI formation of SiC. The optimum reaction conditions are a temperature of 1800 C, a pressure of 0.5 Torr of argon, and a time of 120 minutes. The fully dense net shape SiC material produced has a density of 2.96 g cm{sup -3} (about 92% of pure SiC) and a SiC volume fraction of over 0.82. Kinetics of the LSI SiC formation process was studied by optical microscopy and quantitative digital image analysis. This study identified six reaction stages and provided important understanding of the process. Although the thermal conductivity of pure SiC at elevated temperatures is very high, thermal conductivities of most commercial Si

  2. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Iacopi, Francesca [Queensland Micro and Nanotechnology Centre and Environmental Futures Research Institute, Griffith University, Nathan QLD 4111 (Australia); Boeckl, John J. [Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433 (United States); Hellerstedt, Jack; Fuhrer, Michael S. [Monash Centre for Atomically Thin Materials, Monash University, Monash, VIC 3800 (Australia)

    2016-07-04

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  3. Catastrophic degradation of the interface of epitaxial silicon carbide on silicon at high temperatures

    Science.gov (United States)

    Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar; Boeckl, John J.; Hellerstedt, Jack; Fuhrer, Michael S.; Iacopi, Francesca

    2016-07-01

    Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High-resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurements indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.

  4. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together ...

  5. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Hwan; Lee, Seung-Koo [Department of Chemistry, Kongju National University, Kongju 314-701 (Korea, Republic of); Jeon, Ki-Seok, E-mail: ksjeon@kongju.ac.kr [Fusion Biotechnology Research Center, KRICT, Daejeon 305-600 (Korea, Republic of)

    2009-02-01

    Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors. The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm. In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.

  6. Photoluminescent properties of silicon carbide and porous silicon carbide after annealing

    International Nuclear Information System (INIS)

    Lee, Ki-Hwan; Lee, Seung-Koo; Jeon, Ki-Seok

    2009-01-01

    Photoluminescent (PL) p-type 6H porous silicon carbides (PSCs), which showed a strong blue-green photoluminescence band centered at approximately 490 nm, were annealed in Ar and vacuum conditions. The morphological, optical, and chemical states after annealing are reported on electrochemically etched SiC semiconductors. The thermal treatments in the Ar and vacuum environments showed different trends in the PL spectra of the PSC. In particular, in the case of annealing in a vacuum, the PL spectra showed both a weak red PL peak near 630 nm and a relatively intense PL peak at around 430 nm in the violet region. SEM images showed that the etched surface had spherical nanostructures, mesostructures, and islands. With increasing annealing temperature it changes all spherical nanostructures. The average pore size observed at the surface of the PSC before annealing was of the order of approximately 10 nm. In order to investigate the surface of a series of samples in detail, both the detection of a particular chemical species and the electronic environments at the surface are examined using X-ray photoelectron spectroscopy (XPS). The chemical states from each XPS spectrum depend differently before and after annealing the surface at various temperatures. From these results, the PL spectra could be attributed not only to the quantum size effects but also to the oxide state.

  7. Analytical and Experimental Evaluation of Joining Silicon Carbide to Silicon Carbide and Silicon Nitride to Silicon Nitride for Advanced Heat Engine Applications Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Sundberg, G.J.

    1994-01-01

    Techniques were developed to produce reliable silicon nitride to silicon nitride (NCX-5101) curved joins which were used to manufacture spin test specimens as a proof of concept to simulate parts such as a simple rotor. Specimens were machined from the curved joins to measure the following properties of the join interlayer: tensile strength, shear strength, 22 C flexure strength and 1370 C flexure strength. In parallel, extensive silicon nitride tensile creep evaluation of planar butt joins provided a sufficient data base to develop models with accurate predictive capability for different geometries. Analytical models applied satisfactorily to the silicon nitride joins were Norton's Law for creep strain, a modified Norton's Law internal variable model and the Monkman-Grant relationship for failure modeling. The Theta Projection method was less successful. Attempts were also made to develop planar butt joins of siliconized silicon carbide (NT230).

  8. Microstructure and hydrogen dynamics in hydrogenated amorphous silicon carbides

    Science.gov (United States)

    Shinar, J.; Shinar, R.; Williamson, D. L.; Mitra, S.; Kavak, H.; Dalal, V. L.

    1999-12-01

    Small angle x-ray scattering (SAXS) and deuterium secondary-ion-mass spectrometry (DSIMS) studies of the microstructure and hydrogen dynamics in undoped rf-sputter-deposited (RFS) and undoped and boron-doped electron-cyclotron-resonance-deposited (ECR) hydrogenated amorphous silicon carbides (a-Si1-xCx:H) are described. In the RFS carbides with xcarbides with xBoron doping of the ECR carbides also reduced the bulklike Si-bonded H content, suggesting that it induces nanovoids, consistent with the observed suppression of long-range motion of most of the H and D atoms. However, a small fraction of the H atoms appeared to undergo fast diffusion, reminiscent of the fast diffusion in B-doped a-Si:H.

  9. Revised activation estimates for silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States); Cheng, E.T.; Mann, F.M.

    1996-10-01

    Recent progress in nuclear data development for fusion energy systems includes a reevaluation of neutron activation cross sections for silicon and aluminum. Activation calculations using the newly compiled Fusion Evaluated Nuclear Data Library result in calculated levels of {sup 26}Al in irradiated silicon that are about an order of magnitude lower than the earlier calculated values. Thus, according to the latest internationally accepted nuclear data, SiC is much more attractive as a low activation material, even in first wall applications.

  10. Linear electro-optic effect in cubic silicon carbide

    Science.gov (United States)

    Tang, Xiao; Irvine, Kenneth G.; Zhang, Dongping; Spencer, Michael G.

    1991-01-01

    The first observation is reported of the electrooptic effect of cubic silicon carbide (beta-SiC) grown by a low-pressure chemical vapor deposition reactor using the hydrogen, silane, and propane gas system. At a wavelength of 633 nm, the value of the electrooptic coefficient r41 in beta-SiC is determined to be 2.7 +/- 0.5 x 10 (exp-12) m/V, which is 1.7 times larger than that in gallium arsenide measured at 10.6 microns. Also, a half-wave voltage of 6.4 kV for beta-SiC is obtained. Because of this favorable value of electrooptic coefficient, it is believed that silicon carbide may be a promising candidate in electrooptic applications for high optical intensity in the visible region.

  11. Silicon carbide layer structure recovery after ion implantation

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Demakov, K.D.; Kal'nin, A.A.; Nojbert, F.; Potapov, E.N.; Tairov, Yu.M.

    1984-01-01

    The process of recovery of polytype structure of SiC surface layers in the course of thermal annealing (TA) and laser annealing (LA) upon boron and aluminium implantation is studied. The 6H polytype silicon carbide C face (0001) has been exposed to ion radiation. The ion energies ranged from 80 to 100 keV, doses varied from 5x10 14 to 5x10 16 cm -2 . TA was performed in the 800-2000 K temperature range. It is shown that the recovery of the structure of silicon carbide layers after ion implantation takes place in several stages. Considerable effect on the structure of the annealed layers is exerted by the implantation dose and the type of implanted impurity. The recovery of polytype structure is possible only under the effect of laser pulses with duration not less than the time for the ordering of the polytype in question

  12. Electronic transport properties of the armchair silicon carbide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Song Jiuxu; Yang Yintang; Liu Hongxia [Key Laboratory of Ministry of Education for Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Guo Lixin [School of Science, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: songjiuxu@126.com [Information Science and Technology Institution, Northwest University, Xi' an 710069 (China)

    2010-11-15

    The electronic transport properties of the armchair silicon carbide nanotube (SiCNT) are investigated by using the combined nonequilibrium Green's function method with density functional theory. In the equilibrium transmission spectrum of the nanotube, a transmission valley of about 2.12 eV is discovered around Fermi energy, which means that the nanotube is a wide band gap semiconductor and consistent with results of first principle calculations. More important, negative differential resistance is found in its current voltage characteristic. This phenomenon originates from the variation of density of states caused by applied bias voltage. These investigations are meaningful to modeling and simulation in silicon carbide nanotube electronic devices.

  13. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    OpenAIRE

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated membranes-“microsieves”) or for the coating of the exposed surfaces of sensors (field-effect transistors, waveguide optical detectors). To a more limited extent, silicon carbide (SiC) can find similar ...

  14. Anodic etching of p-type cubic silicon carbide

    Science.gov (United States)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  15. Progress in Studies on Carbon and Silicon Carbide Nanocomposite Materials

    Directory of Open Access Journals (Sweden)

    Peng Xiao

    2010-01-01

    Full Text Available Silicon carbide nanofiber and carbon nanotubes are introduced. The structure and application of nanotubers (nanofibers in carbon/carbon composites are emphatically presented. Due to the unique structure of nanotubers (nanofibers, they can modify the microstructure of pyrocarbon and induce the deposition of pyrocarbon with high text in carbon/carbon composites. So the carbon/carbon composites modified by CNT/CNF have more excellent properties.

  16. Synthesis of multifilament silicon carbide fibers by chemical vapor deposition

    Science.gov (United States)

    Revankar, Vithal; Hlavacek, Vladimir

    1991-01-01

    A process for development of clean silicon carbide fiber with a small diameter and high reliability is presented. An experimental evaluation of operating conditions for SiC fibers of good mechanical properties and devising an efficient technique which will prevent welding together of individual filaments are discussed. The thermodynamic analysis of a different precursor system was analyzed vigorously. Thermodynamically optimum conditions for stoichiometric SiC deposit were obtained.

  17. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    The aim of the present work centers on synthesizing and characterizing carbon fibre (Cf) reinforced, silicon carbide matrix composites which are considered to have potential applications in aerospace and automobile industry. A series of composites, namely the Cf-SiC, Cf-(SiC+ZrC), Cf-(SiC+ZrB2), and Cf-(SiC+ZrO2), have ...

  18. High temperature corrosion of silicon carbide and silicon nitride in the presence of chloride compound

    International Nuclear Information System (INIS)

    McNallan, M.

    1993-01-01

    Silicon carbide and silicon nitride are resistant to oxidation because a protective silicon dioxide films on their surfaces in most oxidizing environments. Chloride compounds can attack the surface in two ways: 1) chlorine can attack the silicon directly to form a volatile silicon chloride compound or 2) alkali compounds combined with the chlorine can be transported to the surface where they flux the silica layer by forming stable alkali silicates. Alkali halides have enough vapor pressure that a sufficient quantity of alkali species to cause accelerated corrosion can be transported to the ceramic surface without the formation of a chloride deposit. When silicon carbide is attacked simultaneously by chlorine and oxygen, the corrosion products include both volatile and condensed spices. Silicon nitride is much more resistance to this type of attack than silicon carbide. Silicon based ceramics are exposed to oxidizing gases in the presence of alkali chloride vapors, the rate of corrosion is controlled primarily by the driving force for the formation of alkali silicate, which can be quantified as the activity of the alkali oxide in equilibrium with the corrosive gas mixture. In a gas mixture containing a fixed partial pressure of KCl, the rate of corrosion is accelerated by increasing the concentration of water vapor and inhibited by increasing the concentration of HCl. Similar results have been obtained for mixtures containing other alkalis and halogens. (Orig./A.B.)

  19. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.

  20. Superconductivity in heavily boron-doped silicon carbide

    OpenAIRE

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    The discoveries of superconductivity in heavily boron-doped diamond (C:B) in 2004 and silicon (Si:B) in 2006 renew the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily-boron doped silicon carbide (SiC:B). The sample used for that study consists of cubic and hexagonal SiC ph...

  1. Silicon Carbide Mounts for Fabry-Perot Interferometers

    Science.gov (United States)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  2. Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite

    Science.gov (United States)

    Yang, Jie

    2015-01-01

    Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.

  3. Photoluminescence and Raman spectroscopy characterization of boron- and nitrogen-doped 6H silicon carbide

    DEFF Research Database (Denmark)

    Ou, Yiyu; Jokubavicius, Valdas; Liu, Chuan

    2011-01-01

    Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could be propo......Boron - and nitrogen-doped 6H silicon carbide epilayers grown on low off-axis 6H silicon carbide substrates have been characterized by photoluminescence and Raman spectroscopy. Combined with secondary ion mass spectrometry results, preferable doping type and optimized concentration could...

  4. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    International Nuclear Information System (INIS)

    Naderi, N.; Hashim, M.R.

    2013-01-01

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  5. Porous-shaped silicon carbide ultraviolet photodetectors on porous silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Naderi, N., E-mail: naderi.phd@gmail.com [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Hashim, M.R. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)

    2013-03-05

    Highlights: ► Porous-shaped silicon carbide thin film was deposited on porous silicon substrate. ► Thermal annealing was followed to enhance the physical properties of samples. ► Metal–semiconductor-metal ultraviolet detectors were fabricated on samples. ► The effect of annealing temperature on electrical performance of devices was studied. ► The efficiency of photodetectors was enhanced by annealing at elevated temperatures. -- Abstract: A metal–semiconductor-metal (MSM) ultraviolet photodetector was fabricated based on a porous-shaped structure of silicon carbide (SiC). For increasing the surface roughness of SiC and hence enhancing the light absorption effect in fabricated devices, porous silicon (PS) was chosen as a template; SiC was deposited on PS substrates via radio frequency magnetron sputtering. Therefore, the deposited layers followed the structural pattern of PS skeleton and formed a porous-shaped SiC layer on PS substrate. The structural properties of samples showed that the as-deposited SiC was amorphous. Thus, a post-deposition annealing process with elevated temperatures was required to convert its amorphous phase to crystalline phase. The morphology of the sputtered samples was examined via scanning electron and atomic force microscopies. The grain size and roughness of the deposited layers clearly increased upon an increase in the annealing temperature. The optical properties of sputtered SiC were enhanced due to applying high temperatures. The most intense photoluminescence peak was observed for the sample with 1200 °C of annealing temperature. For the metallization of the SiC substrates to fabricate MSM photodetectors, two interdigitated Schottky contacts of Ni with four fingers for each electrode were deposited onto all the porous substrates. The optoelectronic characteristics of MSM UV photodetectors with porous-shaped SiC substrates were studied in the dark and under UV illumination. The electrical characteristics of fabricated

  6. Exciton Resonances in Novel Silicon Carbide Polymers

    Science.gov (United States)

    Burggraf, Larry; Duan, Xiaofeng

    2015-05-01

    A revolutionary technology transformation from electronics to excitionics for faster signal processing and computing will be advantaged by coherent exciton transfer at room temperature. The key feature required of exciton components for this technology is efficient and coherent transfer of long-lived excitons. We report theoretical investigations of optical properties of SiC materials having potential for high-temperature excitonics. Using Car-Parinello simulated annealing and DFT we identified low-energy SiC molecular structures. The closo-Si12C12 isomer, the most stable 12-12 isomer below 1100 C, has potential to make self-assembled chains and 2-D nanostructures to construct exciton components. Using TDDFT, we calculated the optical properties of the isomer as well as oligomers and 2-D crystal formed from the isomer as the monomer unit. This molecule has large optical oscillator strength in the visible. Its high-energy and low-energy transitions (1.15 eV and 2.56 eV) are nearly pure one-electron silicon-to-carbon transitions, while an intermediate energy transition (1.28 eV) is a nearly pure carbon-to-silicon one-electron charge transfer. These results are useful to describe resonant, coherent transfer of dark excitons in the nanostructures. Research supported by the Air Force Office of Scientific Research.

  7. Silicon Carbide Emitter Turn-Off Thyristor

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2008-01-01

    Full Text Available A novel MOS-controlled SiC thyristor device, the SiC emitter turn-off thyristor (ETO is a promising technology for future high-voltage switching applications because it integrates the excellent current conduction capability of a SiC thyristor with a simple MOS-control interface. Through unity-gain turn-off, the SiC ETO also achieves excellent Safe Operation Area (SOA and faster switching speeds than silicon ETOs. The world's first 4.5-kV SiC ETO prototype shows a forward voltage drop of 4.26 V at 26.5 A/cm2 current density at room and elevated temperatures. Tested in an inductive circuit with a 2.5 kV DC link voltage and a 9.56-A load current, the SiC ETO shows a fast turn-off time of 1.63 microseconds and a low 9.88 mJ turn-off energy. The low switching loss indicates that the SiC ETO could operate at about 4 kHz if 100 W/cm2 conduction and the 100 W/cm2 turn-off losses can be removed by the thermal management system. This frequency capability is about 4 times higher than 4.5-kV-class silicon power devices. The preliminary demonstration shows that the SiC ETO is a promising candidate for high-frequency, high-voltage power conversion applications, and additional developments to optimize the device for higher voltage (>5 kV and higher frequency (10 kHz are needed.

  8. Diffusion bonding of silicon carbide and silicon nitride to austenitic stainless steel

    International Nuclear Information System (INIS)

    Krugers, J.P.; Ouden, G. den

    1989-01-01

    In this paper the results are reported of a study dealing with diffusion bonding of silicon carbide and silicon nitride (both reaction-bonded and hot-pressed) to austenitic stainless steel (type AISI 316). Experiments were carried out in high vacuum (in the range of 10 -3 -10 -4 Pa) and in an inert gas atmosphere (95 vol% Ar, 5 vol% H 2 ), at temperatures between 1000 and 1300deg C and at various pressures. It was found that under specific conditions the steel could be bonded to both grades of silicon nitride. It was not possible, however, to produce an acceptable bond between steel and silicon carbide. The bonded combinations were tested mechanically by means of shear strength testing. It was found that the higher the process temperature or the longer the process time the stronger the bond. (orig.)

  9. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    Unknown

    Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The present work deals with the sintering of ... recently become an attractive area of research and deve- lopment. The major advantages of ... without the usage of sintering aids (Lee and Case 1999;. Goldstein et al 1999). Several studies have ...

  10. Method for silicon carbide production by reacting silica with hydrocarbon gas

    Science.gov (United States)

    Glatzmaier, Gregory C.

    1994-01-01

    A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400.degree. C. to 1000.degree. C. where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100.degree. C. to 1600.degree. C. to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.

  11. Detonation Synthesis of Alpha-Variant Silicon Carbide

    Science.gov (United States)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  12. Effects of silicon carbide on some refractory properties of Kankara clay

    African Journals Online (AJOL)

    Some refractory properties of Kankara clay, found in abundance in Kankara village of Katsina State, Nigeria blended with silicon carbide, for the production of refractory bricks for furnace lining has been investigated. 5 - 25% silicon carbide was used as blend to improve some refractory properties such as porosity, ...

  13. INVESTIGATION OF POSSIBILITY OF THE SILICON CARBIDE USING FOR DEOXIDATION AND ALLOYING OF STEEL

    OpenAIRE

    M. E. Kontanistov; A. V. Olenchenko

    2004-01-01

    The carried out work on investigation of the possibility of using of silicon carbide for the steel deoxidation and alloying showed that using of silicon carbide is economically expedient on medium-carbon, high-carbon and cord types of steel.

  14. Method of enhanced lithiation of doped silicon carbide via high temperature annealing in an inert atmosphere

    Science.gov (United States)

    Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J

    2014-05-27

    A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.

  15. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  16. Superconductivity in heavily boron-doped silicon carbide.

    Science.gov (United States)

    Kriener, Markus; Muranaka, Takahiro; Kato, Junya; Ren, Zhi-An; Akimitsu, Jun; Maeno, Yoshiteru

    2008-12-01

    The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  17. Low-temperature synthesis of silicon carbide powder using shungite

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-07-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  18. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources: a nominal 300 Volt high voltage input bus and a nominal 28 Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power auxiliary supplies, and two parallel 7.5 kilowatt (kW) discharge power supplies that are capable of providing up to 15 kilowatts of total power at 300 to 500 Volts (V) to the thruster. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall effect thruster. The performance of the unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate exceptional performance with full power efficiencies exceeding 97%. The unit was also tested with a 12.5kW Hall effect thruster to verify compatibility and output filter specifications. With space-qualified silicon carbide or similar high voltage, high efficiency power devices, this would provide a design solution to address the need for high power electric propulsion systems.

  19. High Input Voltage, Silicon Carbide Power Processing Unit Performance Demonstration

    Science.gov (United States)

    Bozak, Karin E.; Pinero, Luis R.; Scheidegger, Robert J.; Aulisio, Michael V.; Gonzalez, Marcelo C.; Birchenough, Arthur G.

    2015-01-01

    A silicon carbide brassboard power processing unit has been developed by the NASA Glenn Research Center in Cleveland, Ohio. The power processing unit operates from two sources - a nominal 300-Volt high voltage input bus and a nominal 28-Volt low voltage input bus. The design of the power processing unit includes four low voltage, low power supplies that provide power to the thruster auxiliary supplies, and two parallel 7.5 kilowatt power supplies that are capable of providing up to 15 kilowatts of total power at 300-Volts to 500-Volts to the thruster discharge supply. Additionally, the unit contains a housekeeping supply, high voltage input filter, low voltage input filter, and master control board, such that the complete brassboard unit is capable of operating a 12.5 kilowatt Hall Effect Thruster. The performance of unit was characterized under both ambient and thermal vacuum test conditions, and the results demonstrate the exceptional performance with full power efficiencies exceeding 97. With a space-qualified silicon carbide or similar high voltage, high efficiency power device, this design could evolve into a flight design for future missions that require high power electric propulsion systems.

  20. Ion beam figuring of CVD silicon carbide mirrors

    Science.gov (United States)

    Gailly, P.; Collette, J.-P.; Fleury Frenette, K.; Jamar, C.

    2017-11-01

    Optical and structural elements made of silicon carbide are increasingly found in space instruments. Chemical vapor deposited silicon carbide (CVD-SiC) is used as a reflective coating on SiC optics in reason of its good behavior under polishing. The advantage of applying ion beam figuring (IBF) to CVD-SiC over other surface figure-improving techniques is discussed herein. The results of an IBF sequence performed at the Centre Spatial de Liège on a 100 mm CVD-SiC mirror are reported. The process allowed to reduce the mirror surface errors from 243 nm to 13 nm rms . Beside the surface figure, roughness is another critical feature to consider in order to preserve the optical quality of CVD-SiC . Thus, experiments focusing on the evolution of roughness were performed in various ion beam etching conditions. The roughness of samples etched at different depths down to 3 ≠m was determined with an optical profilometer. These measurements emphasize the importance of selecting the right combination of gas and beam energy to keep roughness at a low level. Kaufman-type ion sources are generally used to perform IBF but the performance of an end-Hall ion source in figuring CVD-SiC mirrors was also evaluated in this study. In order to do so, ion beam etching profiles obtained with the end-Hall source on CVD-SiC were measured and used as a basis for IBF simulations.

  1. Development of the SOFIA silicon carbide secondary mirror

    Science.gov (United States)

    Fruit, Michel; Antoine, Pascal; Varin, Jean-Luc; Bittner, Hermann; Erdmann, Matthias

    2003-02-01

    The SOFIA telescope is ajoint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory for IR Astronomy to be flown in a specially adapted Boeing 747 SP plane, Kayser-Threde being resopinsible for the development of the Telescope Optics. The φ 352 mm Secondary Mirror is mounted ona chopping mechanism to allow avoidance of background noise during IR observations. Stiffness associated to lightness is a major demand for such a mirror to achieve high frequency chopping. This leads to select SIlicon Carbide for the mirror blank. Its development has been run by the ASTRIUM/BOOSTEC joint venture SiCSPACE, taking full benefit of the instrinsic properties of the BOOSTEC SiC-100 sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM. Achieved performances include a low mass of 1.97 kg, a very high stiffness with a first resonant frequency of 1865 Hz and a measured optical surface accuracy of 39 nm rms, using Ion Beam Figuring. It is proposed here to present the major design features of the SOFIA Secondary Mirror, highlighting the main advantages of using Silicon Carbide, the main steps of its development and the achieved optomechanical performances of the developed mirror.

  2. Design and Fabrication of Silicon-on-Silicon-Carbide Substrates and Power Devices for Space Applications

    Directory of Open Access Journals (Sweden)

    Gammon P.M.

    2017-01-01

    Full Text Available A new generation of power electronic semiconductor devices are being developed for the benefit of space and terrestrial harsh-environment applications. 200-600 V lateral transistors and diodes are being fabricated in a thin layer of silicon (Si wafer bonded to silicon carbide (SiC. This novel silicon-on-silicon-carbide (Si/SiC substrate solution promises to combine the benefits of silicon-on-insulator (SOI technology (i.e device confinement, radiation tolerance, high and low temperature performance with that of SiC (i.e. high thermal conductivity, radiation hardness, high temperature performance. Details of a process are given that produces thin films of silicon 1, 2 and 5 μm thick on semi-insulating 4H-SiC. Simulations of the hybrid Si/SiC substrate show that the high thermal conductivity of the SiC offers a junction-to-case temperature ca. 4× less that an equivalent SOI device; reducing the effects of self-heating, and allowing much greater power density. Extensive electrical simulations are used to optimise a 600 V laterally diffused metal-oxide-semiconductor field-effect transistor (LDMOSFET implemented entirely within the silicon thin film, and highlight the differences between Si/SiC and SOI solutions.

  3. Characterization of silicon carbide and diamond detectors for neutron applications

    Science.gov (United States)

    Hodgson, M.; Lohstroh, A.; Sellin, P.; Thomas, D.

    2017-10-01

    The presence of carbon atoms in silicon carbide and diamond makes these materials ideal candidates for direct fast neutron detectors. Furthermore the low atomic number, strong covalent bonds, high displacement energies, wide bandgap and low intrinsic carrier concentrations make these semiconductor detectors potentially suitable for applications where rugged, high-temperature, low-gamma-sensitivity detectors are required, such as active interrogation, electronic personal neutron dosimetry and harsh environment detectors. A thorough direct performance comparison of the detection capabilities of semi-insulating silicon carbide (SiC-SI), single crystal diamond (D-SC), polycrystalline diamond (D-PC) and a self-biased epitaxial silicon carbide (SiC-EP) detector has been conducted and benchmarked against a commercial silicon PIN (Si-PIN) diode, in a wide range of alpha (Am-241), beta (Sr/Y-90), ionizing photon (65 keV to 1332 keV) and neutron radiation fields (including 1.2 MeV to 16.5 MeV mono-energetic neutrons, as well as neutrons from AmBe and Cf-252 sources). All detectors were shown to be able to directly detect and distinguish both the different radiation types and energies by using a simple energy threshold discrimination method. The SiC devices demonstrated the best neutron energy discrimination ratio (E\\max (n=5 MeV)/E\\max (n=1 MeV)  ≈5), whereas a superior neutron/photon cross-sensitivity ratio was observed in the D-PC detector (E\\max (AmBe)/E\\max (Co-60)  ≈16). Further work also demonstrated that the cross-sensitivity ratios can be improved through use of a simple proton-recoil conversion layer. Stability issues were also observed in the D-SC, D-PC and SiC-SI detectors while under irradiation, namely a change of energy peak position and/or count rate with time (often referred to as the polarization effect). This phenomenon within the detectors was non-debilitating over the time period tested (> 5 h) and, as such, stable operation was

  4. TEM investigation of aluminium containing precipitates in high aluminium doped silicon carbide

    International Nuclear Information System (INIS)

    Wong-Leung, J.; FitzGerald, J.D.

    2002-01-01

    Full text: Silicon carbide is a promising semiconductor material for applications in high temperature and high power devices. The successful growth of good quality epilayers in this material has enhanced its potential for device applications. As a novel semiconductor material, there is a need for studying its basic physical properties and the role of dopants in this material. In this study, silicon carbide epilayers were grown on 4H-SiC wafers of (0001) orientation with a miscut angle of 8 deg at a temperature of 1550 deg C. The epilayers contained regions of high aluminium doping well above the solubility of aluminium in silicon carbide. High temperature annealing of this material resulted in the precipitation of aluminium in the wafers. The samples were analysed by secondary ion mass spectrometry and transmission electron microscopy. Selected area diffraction studies show the presence of aluminium carbide and aluminium silicon carbide phases. Copyright (2002) Australian Society for Electron Microscopy Inc

  5. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  6. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    Science.gov (United States)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  7. Effect of oxygen and nitrogen interactions on friction of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Friction studies were conducted with single-crystal silicon carbide contacting silicon carbide and titanium after having been exposed to oxygen and nitrogen in various forms. After they had been sputter cleaned, the surfaces were (1) exposed to gaseous oxygen and nitrogen (adsorption), (2) ion bombarded with oxygen and nitrogen, or (3) reacted with oxygen (SiC only). Auger emission spectroscopy was used to determine the presence of oxygen and nitrogen. The results indicate that the surfaces of silicon carbide with reacted and ion-bombarded oxygen ions give higher coefficients of friction than do argon sputter-cleaned surfaces. The effects of oxygen on friction may be related to the relative chemical, thermodynamic properties of silicon, carbon, and titanium for oxygen. The adsorbed films of oxygen, nitrogen, and mixed gases of oxygen and nitrogen on sputter-cleaned, oxygen-ion bombarded, and oxygen-reacted surfaces generally reduce friction. Adsorption to silicon carbide is relatively weak.

  8. TRANSFORMATIONS IN NANO-DIAMONDS WITH FORMATION OF NANO-POROUS SILICON CARBIDE AT HIGH PRESSURE

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2010-01-01

    Full Text Available The paper contains investigations on regularities of diamond - silicon carbide composite structure formation at impact-wave excitation. It has been determined that while squeezing a porous blank containing Si (SiC nano-diamond by explosive detonation products some processes are taking place such as diamond nano-particles consolidation, reverse diamond transition into graphite, fragments formation from silicon carbide. A method for obtaining high-porous composites with the presence of ultra-disperse diamond particles has been developed. Material with three-dimensional high-porous silicon-carbide structure has been received due to nano-diamond graphitation at impact wave transmission and plastic deformation. The paper reveals nano-diamonds inverse transformation into graphite and its subsequent interaction with the silicon accompanied by formation of silicon-carbide fragments with dimensions of up to 100 nm.

  9. Broadband antireflective silicon carbide surface produced by cost-effective method

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Ou, Yiyu; Ou, Haiyan

    2013-01-01

    A cost-effective method for fabricating antireflective subwavelength structures on silicon carbide is demonstrated. The nanopatterning is performed in a 2-step process: aluminum deposition and reactive ion etching. The effect, of the deposited aluminum film thickness and the reactive ion etching...... conditions, on the average surface reflectance and nanostructure landscape have been investigated systematically. The average reflectance of silicon carbide surface is significantly suppressed from 25.4% to 0.05%, under the optimal experimental conditions, in the wavelength range of 390-784 nm. The presence...... of stochastic nanostructures also changes the wetting properties of silicon carbide surface from hydrophilic (47°) to hydrophobic (108°)....

  10. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites

    Science.gov (United States)

    Singh, M.; Levine, S. R.

    1995-01-01

    A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.

  11. Epitaxial Growth of Cadmium Selenide Films on Silicon with a Silicon Carbide Buffer Layer

    Science.gov (United States)

    Antipov, V. V.; Kukushkin, S. A.; Osipov, A. V.; Rubets, V. P.

    2018-03-01

    An epitaxial cubic 350-nm-thick cadmium selenide has been grown on silicon for the first time by the method of evaporation and condensation in a quasi-closed volume. It is revealed that, in this method, the optimum substrate temperature is 590°C, the evaporator temperature is 660°C, and the growth time is 2 s. To avoid silicon etching by selenium with formation of amorphous SiSe2, a high-quality 100-nm-thick buffer silicon carbide layer has been synthesized on the silicon surface by substituting atoms. The powder diffraction pattern and the Raman spectrum unambiguously correspond to cubic cadmium selenide crystal. The ellipsometric, Raman, and electron diffraction analyses demonstrate high structural perfection of the cadmium selenide layer and the absence of a polycrystalline phase.

  12. Hydrothermal corrosion of silicon carbide joints without radiation

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki, E-mail: koyanagit@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Katoh, Yutai; Terrani, Kurt A. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Young-Jin [GE Global Research Center, Schenectady, NY 12309 (United States); Kiggans, James O. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hinoki, Tatsuya [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2016-12-01

    Hydrothermal corrosion of four types of the silicon carbide (SiC) to SiC plate joints were investigated under pressurized water reactor and boiling water reactor relevant chemical conditions without irradiation. The joints were formed by metal diffusion bonding using molybdenum or titanium interlayer, reaction sintering using Ti–Si–C system, and SiC nanopowder sintering. Most of the joints withstood the corrosion tests for five weeks. The recession of the SiC substrates was limited. Based on the recession of the bonding layers, it was concluded that all the joints except for the molybdenum diffusion bond are promising under the reducing environments without radiation. The SiC nanopowder sintered joint was the most corrosion tolerant under the oxidizing environment among the four joints.

  13. Silicon carbide: a versatile material for biosensor applications.

    Science.gov (United States)

    Oliveros, Alexandra; Guiseppi-Elie, Anthony; Saddow, Stephen E

    2013-04-01

    Silicon carbide (SiC) has been around for more than 100 years as an industrial material and has found wide and varied applications because of its unique electrical and thermal properties. In recent years there has been increased attention to SiC as a viable material for biomedical applications. Of particular interest in this review is its potential for application as a biotransducer in biosensors. Among these applications are those where SiC is used as a substrate material, taking advantage of its surface chemical, tribological and electrical properties. In addition, its potential for integration as system on a chip and those applications where SiC is used as an active material make it a suitable substrate for micro-device fabrication. This review highlights the critical properties of SiC for application as a biosensor and reviews recent work reported on using SiC as an active or passive material in biotransducers and biosensors.

  14. Body of Knowledge for Silicon Carbide Power Electronics

    Science.gov (United States)

    Boomer, Kristen; Lauenstein, Jean-Marie; Hammoud, Ahmad

    2016-01-01

    Wide band gap semiconductors, such as silicon carbide (SiC), have emerged as very promising materials for future electronic components due to the tremendous advantages they offer in terms of power capability, extreme temperature tolerance, and high frequency operation. This report documents some issues pertaining to SiC technology and its application in the area of power electronics, in particular those geared for space missions. It also serves as a body of knowledge (BOK) in reference to the development and status of this technology obtained via literature and industry survey as well as providing a listing of the major manufacturers and their capabilities. Finally, issues relevant to the reliability of SiC-based electronic parts are addressed and limitations affecting the full utilization of this technology are identified.

  15. Silicon carbide detector for laser-generated plasma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bertuccio, Giuseppe, E-mail: Giuseppe.Bertuccio@polimi.it [Department of Electronics Engineering and Information Science, Politecnico di Milano, Como Campus, Via Anzani 42, 22100 Como (Italy); National Institute of Nuclear Physics, INFN sez. Milano, Via Celoria 16, 20133 Milano (Italy); Puglisi, Donatella [Department of Electronics Engineering and Information Science, Politecnico di Milano, Como Campus, Via Anzani 42, 22100 Como (Italy); National Institute of Nuclear Physics, INFN sez. Milano, Via Celoria 16, 20133 Milano (Italy); Torrisi, Lorenzo [Department of Physics, University of Messina, Ctr. Papardo 31, 98166 S. Agata, Messina (Italy); National Institute of Nuclear Physics, INFN-LNS, Via S. Sofia 62, 95123 Catania (Italy); Lanzieri, Claudio [Selex Sistemi Integrati S.p.A., Via Tiburtina km 12,400, 00131 Rome (Italy)

    2013-05-01

    We present the performance of a Silicon Carbide (SiC) detector in the acquisition of the radiation emitted by laser generated plasmas. The detector has been employed in time of flight (TOF) configuration within an experiment performed at the Prague Asterix Laser System (PALS). The detector is a 5 mm{sup 2} area 100 nm thick circular Ni-SiC Schottky junction on a high purity 4H-SiC epitaxial layer 115 μm thick. Current signals from the detector with amplitudes up to 1.6 A have been measured, achieving voltage signals over 80 V on a 50 Ω load resistance with excellent signal to noise ratios. Resolution of few nanoseconds has been experimentally demonstrated in TOF measurements. The detector has operated at 250 V DC bias under extreme operating conditions with no observable performance degradation.

  16. Corrosion behaviour of aluminium matrix composites containing silicon carbide particles

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S.J. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design; Noble, B. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design; Trowsdale, A.J. [Nottingham Univ. (United Kingdom). Dept. of Materials Engineering and Materials Design

    1996-12-31

    An examination of the pitting attack in two aluminium matrix composites (1050 and 2124) each reinforced with varying fractions (0-30 wt.%) of silicon carbide particles (SiC{sub p}) in the size range 3-40 {mu}m has been made in 1 N NaCl solution. It has been demonstrated that the existence of pores and crevices at SiC{sub p}/matrix interfaces strongly influences pit initiation. This is further aided by the cracking of large SiC{sub p}{>=}20 {mu}m, during processing. The presence of {theta}(CuAl{sub 2}) and S(CuMgAl{sub 2}) precipitates in 2124-SiC{sub p} composite also promotes pitting attack at SiC{sub p}-matrix and intermetallic-matrix interfaces. (orig.)

  17. Application of silicon carbide to synchrotron-radiation mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.; Hursman, T.L.; Williams, J.T.

    1983-09-01

    Damage to conventional mirror materials exposed to the harsh synchrotron radiation (SR) environment has prompted the SR user community to search for more suitable materials. Next-generation insertion devices, with their attendant flux increases, will make the problem of mirror design even more difficult. A parallel effort in searching for better materials has been underway within the laser community for several years. The technology for dealing with high thermal loads is highly developed among laser manufacturers. Performance requirements for laser heat exchangers are remarkably similar to SR mirror requirements. We report on the application of laser heat exchanger technology to the solution of typical SR mirror design problems. The superior performance of silicon carbide for laser applications is illustrated by various material trades studies, and its superior performance for SR applications is illustrated by means of model calculations

  18. Late formation of silicon carbide in type II supernovae

    Science.gov (United States)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua

    2018-01-01

    We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119

  19. Method of Assembling a Silicon Carbide High Temperature Anemometer

    Science.gov (United States)

    Okojie, Robert S. (Inventor); Fralick, Gustave C. (Inventor); Saad, George J. (Inventor)

    2004-01-01

    A high temperature anemometer includes a pair of substrates. One of the substrates has a plurality of electrodes on a facing surface, while the other of the substrates has a sensor cavity on a facing surface. A sensor is received in the sensor cavity, wherein the sensor has a plurality of bondpads, and wherein the bondpads contact the plurality of electrodes when the facing surfaces are mated with one another. The anemometer further includes a plurality of plug-in pins, wherein the substrate with the cavity has a plurality of trenches with each one receiving a plurality of plug-in pins. The plurality of plug-in pins contact the plurality of electrodes when the substrates are mated with one another. The sensor cavity is at an end of one of the substrates such that the sensor partially extends from the substrate. The sensor and the substrates are preferably made of silicon carbide.

  20. A Novel Compact and Reliable Hybrid Silicon/Silicon Carbide Device Module for Efficient Power Conversion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — United Silicon Carbide, Inc. proposes to develop a novel compact, efficient and high-temperature power module, based on unique co-packaging approach of normally-off...

  1. Expanding the versatility of silicon carbide thin films and nanowires

    Science.gov (United States)

    Luna, Lunet

    Silicon carbide (SiC) based electronics and sensors hold promise for pushing past the limits of current technology to achieve small, durable devices that can function in high-temperature, high-voltage, corrosive, and biological environments. SiC is an ideal material for such conditions due to its high mechanical strength, excellent chemical stability, and its biocompatibility. Consequently, SiC thin films and nanowires have attracted interest in applications such as micro- and nano-electromechanical systems, biological sensors, field emission cathodes, and energy storage devices. However to fully realize SiC in such technologies, the reliability of metal contacts to SiC at high temperatures must be improved and the nanowire growth mechanism must be understood to enable strict control of nanowire crystal structure and orientation. Here, we present a novel metallization scheme, utilizing solid-state graphitization of SiC, to improve the long-term reliability of Pt/Ti contacts to polycrystalline n-type SiC films at high temperature. The metallization scheme includes an alumina protection layer and exhibits low, stable contact resistivity even after long-term (500 hr) testing in air at 450 ºC. We also report the crystal structure and growth mechanism of Ni-assisted silicon carbide nanowires using single-source precursor, methyltrichlorosilane. The effects of growth parameters, such as substrate and temperature, on the structure and morphology of the resulting nanowires will also be presented. Overall, this study provides new insights towards the realization of novel SiC technologies, enabled by advanced electron microscopy techniques located in the user facilities at the Molecular Foundry in Berkeley, California. This work was performed in part at the Molecular Foundry, supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  2. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bei; Ahmed, Mohsin; Iacopi, Francesca, E-mail: f.iacopi@griffith.edu.au [Environmental Futures Research Institute, Griffith University, Nathan 4111 (Australia); Wood, Barry [Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia 4072 (Australia)

    2016-05-02

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm{sup −2} with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  3. All-solid-state supercapacitors on silicon using graphene from silicon carbide

    Science.gov (United States)

    Wang, Bei; Ahmed, Mohsin; Wood, Barry; Iacopi, Francesca

    2016-05-01

    Carbon-based supercapacitors are lightweight devices with high energy storage performance, allowing for faster charge-discharge rates than batteries. Here, we present an example of all-solid-state supercapacitors on silicon for on-chip applications, paving the way towards energy supply systems embedded in miniaturized electronics with fast access and high safety of operation. We present a nickel-assisted graphitization method from epitaxial silicon carbide on a silicon substrate to demonstrate graphene as a binder-free electrode material for all-solid-state supercapacitors. We obtain graphene electrodes with a strongly enhanced surface area, assisted by the irregular intrusion of nickel into the carbide layer, delivering a typical double-layer capacitance behavior with a specific area capacitance of up to 174 μF cm-2 with about 88% capacitance retention over 10 000 cycles. The fabrication technique illustrated in this work provides a strategic approach to fabricate micro-scale energy storage devices compatible with silicon electronics and offering ultimate miniaturization capabilities.

  4. Dynamic modulus and damping of boron, silicon carbide, and alumina fibers

    Science.gov (United States)

    Dicarlo, J. A.; Williams, W.

    1980-01-01

    The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide-coated boron fibers were measured from -190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature-dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamic fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron-based fibers are strongly anelastic, displaying frequency-dependent moduli and very high microstructural damping. The single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.

  5. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  6. The Affordable Pre-Finishing of Silicon Carbide for Optical Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Creare proposes to develop a novel, laser-assisted, pre-finishing process for chemical vapor deposition (CVD) coated silicon-carbide ceramics. Our innovation will...

  7. Low-Cost, Silicon Carbide Replication Technique for LWIR Mirror Fabrication, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SSG proposes an innovative optical manufacturing approach that will enable the low-cost fabrication of lightweighted, Long Wave Infrared (LWIR) Silicon Carbide (SiC)...

  8. CHARACTERIZATION OF PRECIPITATES IN CUBIC SILICON CARBIDE IMPLANTED WITH 25Mg+ IONS

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Edwards, Danny J.; Schreiber, Daniel K.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2016-09-26

    The aim of this study is to characterize precipitates in Mg+ ion implanted and high-temperature annealed cubic silicon carbide using scanning transmission electron microscopy, electron energy loss spectroscopy and atom probe tomography.

  9. Ultra-Lightweight, High Efficiency Silicon-Carbide (SIC) Based Power Electronic Converters Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Phase I of this project, APEI, Inc. proved the feasibility of creating ultra-lightweight power converters (utilizing now emerging silicon carbide [SiC] power...

  10. A Silicon Carbide Foundry for NASA's UV and High Temperature CMOS Electronics Needs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — CoolCAD Electronics has developed a patent-pending technology to design and fabricate Silicon Carbide (SiC) MOSFET opto-electronic integrated circuits (ICs). We both...

  11. The First JFET-based Silicon Carbide Active Pixel Sensor UV Imager, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is critically important in the fields of space astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc....

  12. The First JFET-Based Silicon Carbide Active Pixel Sensor UV Imager, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Solar-blind ultraviolet (UV) imaging is needed in the fields of astronomy, national defense, and bio-chemistry. United Silicon Carbide, Inc. proposes to develop a...

  13. Novel Silicon Carbide Deep Ultraviolet Detectors: Device Modeling, Characterization, Design and Prototyping, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon Carbide deep UV detectors can achieve large gains, high signal-to-noise ratios and solar-blind operation, with added benefits of smaller sizes, lower...

  14. FUNCTIONALLY GRADED ALUMINA/MULLITE COATINGS FOR PROTECTION OF SILICON CARBIDE CERAMIC COMPONENTS FROM CORROSION

    Energy Technology Data Exchange (ETDEWEB)

    Prof. Stratis V. Sotirchos

    2001-02-01

    The main objective of this research project was the formulation of processes that can be used to prepare compositionally graded alumina/mullite coatings for protection from corrosion of silicon carbide components (monolithic or composite) used or proposed to be used in coal utilization systems (e.g., combustion chamber liners, heat exchanger tubes, particulate removal filters, and turbine components) and other energy-related applications. Since alumina has excellent resistance to corrosion but coefficient than silicon carbide, the key idea of this project has been to develop graded coatings with composition varying smoothly along their thickness between an inner (base) layer of mullite in contact with the silicon carbide component and an outer layer of pure alumina, which would function as the actual protective coating of the component. (Mullite presents very good adhesion towards silicon carbide and has thermal expansion coefficient very close to that of the latter.)

  15. Improving the Response of Silicon Carbide Devices to Cosmic Radiation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of this proposal is to provide NASA space SEE and TID tolerant high voltage and low on-resistance silicon carbide power devices that meet the...

  16. Novel Silicon Carbide Deep Ultraviolet Detectors: Device Modeling, Characterization, Design and Prototyping, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Silicon Carbide deep UV detectors can achieve large gains, high signal-to-noise ratios and solar-blind operation, with added benefits of smaller sizes, lower...

  17. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) has developed new silicon carbide (SiC) foam-based optics with hybrid skins that are composite, athermal and lightweight (FOCAL) that...

  18. Silicon Carbide Lightweight Optics With Hybrid Skins for Large Cryo Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Optical Physics Company (OPC) proposes to manufacture new silicon carbide (SiC) foam-based optics that are composite, athermal and lightweight (FOCAL) that provide...

  19. Identification of stacking faults in silicon carbide by polarization-resolved second harmonic generation microscopy.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Polychroniadis, Efstathios K; Stanciu, George A

    2017-07-07

    Although silicon carbide is a highly promising crystalline material for a wide range of electronic devices, extended and point defects which perturb the lattice periodicity hold deep implications with respect to device reliability. There is thus a great need for developing new methods that can detect silicon carbide defects which are detrimental to device functionality. Our experiment demonstrates that polarization-resolved second harmonic generation microscopy can extend the efficiency of the "optical signature" concept as an all-optical rapid and non-destructive set of investigation methods for the differentiation between hexagonal and cubic stacking faults in silicon carbide. This technique can be used for fast and in situ characterization and optimization of growth conditions for epilayers of silicon carbide and similar materials.

  20. TOPICAL REVIEW: Nanoscale transport properties at silicon carbide interfaces

    Science.gov (United States)

    Roccaforte, F.; Giannazzo, F.; Raineri, V.

    2010-06-01

    Wide bandgap semiconductors promise devices with performances not achievable using silicon technology. Among them, silicon carbide (SiC) is considered the top-notch material for a new generation of power electronic devices, ensuring the improved energy efficiency required in modern society. In spite of the significant progress achieved in the last decade in the material quality, there are still several scientific open issues related to the basic transport properties at SiC interfaces and ion-doped regions that can affect the devices' performances, keeping them still far from their theoretical limits. Hence, significant efforts in fundamental research at the nanoscale have become mandatory to better understand the carrier transport phenomena, both at surfaces and interfaces. In this paper, the most recent experiences on nanoscale transport properties will be addressed, reviewing the relevant key points for the basic devices' building blocks. The selected topics include the major concerns related to the electronic transport at metal/SiC interfaces, to the carrier concentration and mobility in ion-doped regions and to channel mobility in metal/oxide/SiC systems. Some aspects related to interfaces between different SiC polytypes are also presented. All these issues will be discussed considering the current status and the drawbacks of SiC devices.

  1. Electronic properties of intrinsic and doped amorphous silicon carbide films

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, M. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)]. E-mail: mvetter@eel.upc.edu; Voz, C. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Ferre, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Martin, I. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Orpella, A. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Puigdollers, J. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain); Andreu, J. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Av. Diagonal 647, E-08028 Barcelona (Spain); Alcubilla, R. [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Gran Capita s/n, Modul C4, E-08034 Barcelona (Spain)

    2006-07-26

    Hydrogenated amorphous silicon carbide (a-SiC{sub x} : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms{sup -1} is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC{sub x} : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T {sub s}{approx}80 deg. C and T {sub s}{approx}170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E {sub a}) and conductivity pre-factor ({sigma} {sub 0}) were calculated for a large number of samples with different composition. A correlation between E {sub a} and {sigma} {sub 0} was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T {sub m} = 400 deg. C, and an intercept at {sigma} {sub 00} = 0.1 {omega}{sup -1}cm{sup -1}.

  2. In situ growth of silicon carbide nanowires from anthracite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.; Fox, J.T.; Cannon, F.S.; Komarneni, S. [Penn State University, University Park, PA (United States)

    2011-04-15

    Silicon carbide nanowires (SCNWs) were grown from anthracite fine surfaces through a simple one-step carbothermal process with silicon powder as the Si precursor. This straightforward and fast formation of SCNWs made it possible to maintain the binding of briquetted waste anthracite fines at very high temperatures as an alternative fuel in foundry cupola furnaces. This SCNW mechanism could thus provide the crucial hot crushing strength in the cupola heat zone and melt zone. Progressive thermal tests exhibited that the formation of the SCNWs started from 1100{sup o}C, and was favored at 1400{sup o}C. No extra metal catalyst was needed for the growth of the SCNWs. Characterizations were performed by XRD, SEM, EDS, TEM, and SAED. The SCNWs were 30-60 nm in diameter. Many non-epitaxial branches of the nanowires were also formed through this one-step process as observed by TEM. The results suggest that the SCNWs were most likely grown through the vapor solid mechanism.

  3. Electronic properties of intrinsic and doped amorphous silicon carbide films

    International Nuclear Information System (INIS)

    Vetter, M.; Voz, C.; Ferre, R.; Martin, I.; Orpella, A.; Puigdollers, J.; Andreu, J.; Alcubilla, R.

    2006-01-01

    Hydrogenated amorphous silicon carbide (a-SiC x : H) films have shown excellent surface passivation of crystalline silicon. With the aim of large area deposition of these films the influence of the rf plasma power was investigated. It is found that homogenous deposition with effective surface recombination velocity lower than 100 cms -1 is possible up to 6'' diameter in a simple parallel plate reactor by optimizing deposition parameters. For application in solar cell processes the conductivity of these a-SiC x : H films might become of importance since good surface passivation results from field-effect passivation which needs an insulating dielectric layer. Therefore, the temperature dependence of the dark dc conductivity of these films was investigated in the temperature range from - 20 to 260 deg. C. Two transition temperatures, T s ∼80 deg. C and T s ∼170 deg. C, were found where conductivity increases, resp. decreases over-exponential. From Arrhenius plots activation energy (E a ) and conductivity pre-factor (σ 0 ) were calculated for a large number of samples with different composition. A correlation between E a and σ 0 was found giving a Meyer-Neldel relation with a slope of 59 mV, corresponding to a material characteristic temperature T m = 400 deg. C, and an intercept at σ 00 = 0.1 Ω -1 cm -1

  4. Structural and compositional complexity of nitrogen implantation in silicon carbide

    International Nuclear Information System (INIS)

    Suvorova, Alexandra A.; Rubanov, Sergey; Suvorov, Alexander V.

    2012-01-01

    We present a study of the nitrogen-implanted SiC, with the focus being to understand the structure and composition of the implanted region and its evolution with annealing. The implantation region was probed as a function of implant and annealing conditions using a combination of transmission electron microscopy (TEM) based imaging and spectroscopy techniques as well as Raman spectroscopy. Raman spectroscopy revealed carbon bands at ∼1600 cm −1 and 1370 cm −1 and silicon nitride bands at ∼460 cm −1 and 790 cm −1 for the samples processed at high temperatures. TEM showed that nitrogen ion implantation of the silicon carbide followed by thermal annealing creates complicated nanocomposite structure. Elemental maps obtained using energy-filtered TEM revealed concentration variation across the implanted layer with carbon accumulation observed at the interfaces and the center of the implanted layer. The nitrogen atoms substitution of carbon in SiC and the segregation of implantation-induced carbon atoms are believed to be the reason for the observed structure.

  5. Microstructural optimization of solid-state sintered silicon carbide

    Science.gov (United States)

    Vargas-Gonzalez, Lionel R.

    Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These

  6. Creating and Controlling Single Spins in Silicon Carbide

    Science.gov (United States)

    Christle, David

    Silicon carbide (SiC) is a well-established commercial semiconductor used in high-power electronics, optoelectronics, and nanomechanical devices, and has recently shown promise for semiconductor-based implementations of quantum information technologies. In particular, a set of divacancy-related point defects have improved coherence properties relative to the prominent nitrogen-vacancy center in diamond, are addressable at near-telecom wavelengths, and reside in a material for which there already exist advanced growth, doping, and microfabrication capabilities. These properties suggest divacancies in SiC have compelling advantages for photonics and micromechanical applications, yet their relatively recent discovery means crucial aspects of their fundamental physics for these applications are not well understood. I will review our progress on manipulating spin defects in SiC, and discuss efforts towards isolating and controlling them at the single defect limit. In particular, our most recent experimental results demonstrate isolation and control of long-lived (T2 = 0 . 9 ms) divacancies in a form of SiC that can be grown epitaxially on silicon. By studying the time-resolved photoluminescence of a single divacancy, we reveal its fundamental orbital structure and characterize in detail the dynamics of its special optical cycle. Finally, we probe individual divacancies using resonant laser techniques and reveal an efficient spin-photon interface with figures of merit comparable to those reported for NV centers in diamond. These results suggest a pathway towards photon-mediated entanglement of SiC defect spins over long distances. This work was supported by NSF, AFOSR, the Argonne CNM, the Knut & Alice Wallenberg Foundation, the Linköping Linnaeus Initiative, the Swedish Government Strategic Research Area, and the Ministry of Education, Science, Sports and Culture of Japan.

  7. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    Energy Technology Data Exchange (ETDEWEB)

    baney, Ronald; Tulenko, James

    2012-11-20

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  8. Thermodynamic calculations for chemical vapor deposition of silicon carbide

    International Nuclear Information System (INIS)

    Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi

    1985-03-01

    The composition of vapor and condensed phases at equilibrium and CVD phase diagrams were calculated for the CH 3 SiCl 3 -H 2 -Ar system using a computer code SOLGASMIX-PV, which is based on the free energy minimization method. These calculations showed that β-SiC, β-SiC+C(s), β-SiC+Si(s), β-SiC+Si(l), Si(s), Si(l), or C(s) would be deposited depending on deposition parameters. In the CH 3 SiCl 3 -Ar system, condensed phase was found to be β-SiC+C(s) or C(s). Comparing the calculated CVD phase diagrams with the experimental results from the literature, β-SiC+C(s) and β-SiC+Si(s) were deposited in the experiments at the high temperature (more than 2000K) and low temperature (less than 1700K) parts of a resion, respectively, where only β-SiC would be deposited in the calculations. These are remakable results to consider the deposition mechanism of silicon carbide. (author)

  9. Silicon carbide optics for space and ground based astronomical telescopes

    Science.gov (United States)

    Robichaud, Joseph; Sampath, Deepak; Wainer, Chris; Schwartz, Jay; Peton, Craig; Mix, Steve; Heller, Court

    2012-09-01

    Silicon Carbide (SiC) optical materials are being applied widely for both space based and ground based optical telescopes. The material provides a superior weight to stiffness ratio, which is an important metric for the design and fabrication of lightweight space telescopes. The material also has superior thermal properties with a low coefficient of thermal expansion, and a high thermal conductivity. The thermal properties advantages are important for both space based and ground based systems, which typically need to operate under stressing thermal conditions. The paper will review L-3 Integrated Optical Systems - SSG’s (L-3 SSG) work in developing SiC optics and SiC optical systems for astronomical observing systems. L-3 SSG has been fielding SiC optical components and systems for over 25 years. Space systems described will emphasize the recently launched Long Range Reconnaissance Imager (LORRI) developed for JHU-APL and NASA-GSFC. Review of ground based applications of SiC will include supporting L-3 IOS-Brashear’s current contract to provide the 0.65 meter diameter, aspheric SiC secondary mirror for the Advanced Technology Solar Telescope (ATST).

  10. Ductile mode grinding of reaction-bonded silicon carbide mirrors.

    Science.gov (United States)

    Dong, Zhichao; Cheng, Haobo

    2017-09-10

    The demand for reaction-bonded silicon carbide (RB-SiC) mirrors has escalated recently with the rapid development of space optical remote sensors used in astronomy or Earth observation. However, RB-SiC is difficult to machine due to its high hardness. This study intends to perform ductile mode grinding to RB-SiC, which produces superior surface integrity and fewer subsurface damages, thus minimizing the workload of subsequent lapping and polishing. For this purpose, a modified theoretical model for grain depth of cut of grinding wheels is presented, which correlates various processing parameters and the material characteristics (i.e., elastic module) of a wheel's bonding matrix and workpiece. Ductile mode grinding can be achieved as the grain depth of cut of wheels decreases to be less than the critical cut depth of workpieces. The theoretical model gives a roadmap to optimize the grinding parameters for ductile mode grinding of RB-SiC and other ultra-hard brittle materials. Its feasibility was validated by experiments. With the optimized grinding parameters for RB-SiC, the ductile mode grinding produced highly specular surfaces (with roughness of ∼2.2-2.8  nm Ra), which means the material removal mechanism of RB-SiC is dominated by plastic deformation rather than brittle fracture. Contrast experiments were also conducted on fused silica, using the same grinding parameters; this produced only very rough surfaces, which further validated the feasibility of the proposed model.

  11. Processes and applications of silicon carbide nanocomposite fibers

    Science.gov (United States)

    Shin, D. G.; Cho, K. Y.; Jin, E. J.; Riu, D. H.

    2011-10-01

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and γ-Al2O3. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200°C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  12. Evaluation of CVD silicon carbide for synchrotron radiation mirrors

    International Nuclear Information System (INIS)

    Takacs, P.Z.

    1981-07-01

    Chemical vapor deposited silicon carbide (CVD SiC) is a recent addition to the list of materials suitable for use in the harsh environment of synchrotron radiation (SR) beam lines. SR mirrors for use at normal incidence must be ultrahigh vacuum compatible, must withstand intense x-ray irradiation without surface damage, must be capable of being polished to an extremely smooth surface finish, and must maintain surface figure under thermal loading. CVD SiC exceeds the performance of conventional optical materials in all these areas. It is, however, a relatively new optical material. Few manufacturers have experience in producing optical quality material, and few opticians have experience in figuring and polishing the material. The CVD material occurs in a variety of forms, sensitively dependent upon reaction chamber production conditions. We are evaluating samples of CVD SiC obtained commercially from various manufacturers, representing a range of deposition conditions, to determine which types of CVD material are most suitable for superpolishing. At the time of this writing, samples are being polished by several commercial vendors and surface finish characteristics are being evaluated by various analytical methods

  13. Silicon carbide transparent chips for compact atomic sensors

    Science.gov (United States)

    Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.

    2017-11-01

    Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].

  14. Synthesis of silicon carbide by carbothermal reduction of silica

    International Nuclear Information System (INIS)

    Abel, Joao Luis

    2009-01-01

    The production of silicon carbide (SiC) in an industrial scale still by carbothermal reduction of silica. This study aims to identify, in a comparative way, among the common reducers like petroleum coke, carbon black, charcoal and graphite the carbothermal reduction of silica from the peat. It is shown, that the peat, also occurs in nature together with high purity silica sand deposits, where the proximity of raw materials and their quality are key elements that determine the type, purity and cost of production of SiC. Tests were running from samples produced in the electric resistance furnace with controlled atmosphere at temperatures of 1550 degree C, 1600 degree C and 1650 degree C, both the precursors and products of reaction of carbothermal reduction were characterized by applying techniques of X-ray diffraction, scanning electron microscopy (SEM) and Energy-Dispersive X-ray analysis Spectroscopy (EDS). The results showed the formation of SiC for all common reducers, as well as for peat, but it was not possible to realize clearly the difference between them, being necessary, specific tests. (author)

  15. Metal assisted photochemical etching of 4H silicon carbide

    Science.gov (United States)

    Leitgeb, Markus; Zellner, Christopher; Schneider, Michael; Schwab, Stefan; Hutter, Herbert; Schmid, Ulrich

    2017-11-01

    Metal assisted photochemical etching (MAPCE) of 4H-silicon carbide (SiC) in Na2S2O8/HF and H2O2/HF aqueous solutions is investigated with platinum as metallic cathode. The formation process of the resulting porous layer is studied with respect to etching time, concentration and type of oxidizing agent. From the experiments it is concluded that the porous layer formation is due to electron hole pairs generated in the semiconductor, which stem from UV light irradiation. The generated holes are consumed during the oxidation of 4H-SiC and the formed oxide is dissolved by HF. To maintain charge balance, the oxidizing agent has to take up electrons at the Pt/etching solution interface. Total dissolution of the porous layers is achieved when the oxidizing agent concentration decreases during MAPCE. In combination with standard photolithography, the definition of porous regions is possible. Furthermore chemical micromachining of 4 H-SiC at room temperature is possible.

  16. Processes and applications of silicon carbide nanocomposite fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D G; Cho, K Y; Riu, D H [Nanomaterials Team, Korea Institute of Ceramic Engineering and Technology, 233-5 Gasan-dong, Guemcheon-gu, Seoul 153-801 (Korea, Republic of); Jin, E J, E-mail: dhriu15@seoultech.ac.kr [Battelle-Korea Laborotary, Korea University, Anamdong, Seongbuk-gu, Seoul (Korea, Republic of)

    2011-10-29

    Various types of SiC such as nanowires, thin films, foam, and continuous fibers have been developed since the early 1980s, and their applications have been expanded into several new applications, such as for gas-fueled radiation heater, diesel particulate filter (DPF), ceramic fiber separators and catalyst/catalyst supports include for the military, aerospace, automobile and electronics industries. For these new applications, high specific surface area is demanded and it has been tried by reducing the diameter of SiC fiber. Furthermore, functional nanocomposites show potentials in various harsh environmental applications. In this study, silicon carbide fiber was prepared through electrospinning of the polycarbosilane (PCS) with optimum molecular weight distribution which was synthesized by new method adopting solid acid catalyst such as ZSM-5 and {gamma}-Al{sub 2}O{sub 3}. Functional elements such as aluminum, titanium, tungsten and palladium easily doped in the precursor fiber and remained in the SiC fiber after pyrolysis. The uniform SiC fibers were produced at the condition of spinning voltage over 20 kV from the PCS solution as the concentration of 1.3 g/ml in DMF/Toluene (3:7) and pyrolysis at 1200deg. C. Pyrolyzed products were processed into several interesting applications such as thermal batteries, hydrogen sensors and gas filters.

  17. Grain boundary resistance to amorphization of nanocrystalline silicon carbide

    Science.gov (United States)

    Chen, Dong; Gao, Fei; Liu, Bo

    2015-01-01

    Under the C displacement condition, we have used molecular dynamics simulation to examine the effects of grain boundaries (GBs) on the amorphization of nanocrystalline silicon carbide (nc-SiC) by point defect accumulation. The results show that the interstitials are preferentially absorbed and accumulated at GBs that provide the sinks for defect annihilation at low doses, but also driving force to initiate amorphization in the nc-SiC at higher doses. The majority of surviving defects are C interstitials, as either C-Si or C-C dumbbells. The concentration of defect clusters increases with increasing dose, and their distributions are mainly observed along the GBs. Especially these small clusters can subsequently coalesce and form amorphous domains at the GBs during the accumulation of carbon defects. A comparison between displacement amorphized nc-SiC and melt-quenched single crystal SiC shows the similar topological features. At a dose of 0.55 displacements per atom (dpa), the pair correlation function lacks long range order, demonstrating that the nc-SiC is fully amorphilized. PMID:26558694

  18. CLASSiC: Cherenkov light detection with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Oscar [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Albergo, Sebastiano [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Alessandro, Raffaello [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Lenzi, Piergiulio [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Sciuto, Antonella [CNR-IMM, VIII Strada 5, Zona Industriale, Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); Starodubtsev, Oleksandr [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Tricomi, Alessia [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy)

    2017-02-11

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  19. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    Science.gov (United States)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  20. Silicon Carbide Junction Field Effect Transistor Digital Logic Gates Demonstrated at 600 deg. C

    Science.gov (United States)

    Neudeck, Philip G.

    1998-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. The HTIES team recently fabricated and demonstrated the first semiconductor digital logic gates ever to function at 600 C.

  1. Influence of oxygen on the ion-beam synthesis of silicon carbide buried layers in silicon

    International Nuclear Information System (INIS)

    Artamanov, V.V.; Valakh, M.Ya.; Klyui, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of silicon structures with silicon carbide (SiC) buried layers produced by high-dose carbon implantation followed by a high-temperature anneal are investigated by Raman and infrared spectroscopy. The influence of the coimplantation of oxygen on the features of SiC buried layer formation is also studied. It is shown that in identical implantation and post-implantation annealing regimes a SiC buried layer forms more efficiently in CZ Si wafers or in Si (CZ or FZ) subjected to the coimplantation of oxygen. Thus, oxygen promotes SiC layer formation as a result of the formation of SiO x precipitates and accommodation of the volume change in the region where the SiC phase forms. Carbon segregation and the formation of an amorphous carbon film on the SiC grain boundaries are also discovered

  2. Test setup for long term reliability investigation of Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Baker, Nick; Munk-Nielsen, Stig; Beczkowski, Szymon

    2013-01-01

    Silicon Carbide MOSFETs are now widely available and have frequently been demonstrated to offer numerous advantages over Silicon based devices. However, reliability issues remain a significant concern in their realisation in commercial power electronic systems. In this paper, a test bench......-state resistance is routinely monitored online through the use of an innovative voltage measurement system. The packaged Silicon Carbide MOSFET is shown to exhibit a 25% increase in on-state resistance as the device ages throughout its lifetime, with the test still on-going....

  3. Effects of space exposure on ion-beam-deposited silicon-carbide and boron-carbide coatings.

    Science.gov (United States)

    Keski-Kuha, R A; Blumenstock, G M; Fleetwood, C M; Schmitt, D R

    1998-12-01

    Two recently developed optical coatings, ion-beam-deposited silicon carbide and ion-beam-deposited boron carbide, are very attractive as coatings on optical components for instruments for space astronomy and earth sciences operating in the extreme-UV spectral region because of their high reflectivity, significantly higher than any conventional coating below 105 nm. To take full advantage of these coatings in space applications, it is important to establish their ability to withstand exposure to the residual atomic oxygen and other environmental effects at low-earth-orbit altitudes. The first two flights of the Surface Effects Sample Monitor experiments flown on the ORFEUS-SPAS and the CRISTA-SPAS Shuttle missions provided the opportunity to study the effects of space exposure on these materials. The results indicate a need to protect ion-beam-deposited silicon-carbide-coated optical components from environmental effects in a low-earth orbit. The boron-carbide thin-film coating is a more robust coating able to withstand short-term exposure to atomic oxygen in a low-earth-orbit environment.

  4. Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide

    Science.gov (United States)

    Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo

    2017-06-01

    Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.

  5. Effects of silicon carbide on the phase developments in mullite-carbon ceramic composite

    Directory of Open Access Journals (Sweden)

    Fatai Olufemi ARAMIDE

    2017-12-01

    Full Text Available The effects of the addition of silicon carbide and sintering temperatures on the phases developed, in sintered ceramic composite produced from kaolin and graphite was investigated. The kaolin and graphite of known mineralogical composition were thoroughly blended with 4 and 8 vol % silicon carbide. From the homogeneous mixture of kaolin, graphite and silicon carbide, standard samples were prepared via uniaxial compaction. The test samples produced were subjected to firing (sintering at 1300°C, 1400°C and 1500°C. The sintered samples were characterized for the developed phases using x‐ray diffractometry analysis, microstructural morphology using ultra‐high resolution field emission scanning electron microscope (UHRFEGSEM. It was observed that microstructural morphology of the samples revealed the evolution of mullite, cristobalite and microcline. The kaolinite content of the raw kaolin undergoes transformation into mullite and excess silica, the mullite and the silica phases contents increased with increased sintering temperature. It is also generally observed that the graphite content progressively reduced linearly with increased sintering temperature. It is concluded that silicon carbide acts as anti-oxidant for the graphite, this anti-oxidant effect was more effective at 4 vol % silicon carbide.

  6. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.

    Science.gov (United States)

    Yao, Yimin; Zeng, Xiaoliang; Pan, Guiran; Sun, Jiajia; Hu, Jiantao; Huang, Yun; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping

    2016-11-16

    Polymer composites with high thermal conductivity have attracted much attention, along with the rapid development of electronic devices toward higher speed and better performance. However, high interfacial thermal resistance between fillers and matrix or between fillers and fillers has been one of the primary bottlenecks for the effective thermal conduction in polymer composites. Herein, we report on engineering interfacial structure of silicon carbide nanowire/cellulose microcrystal paper by generating silver nanostructures. We show that silver nanoparticle-deposited silicon carbide nanowires as fillers can effectively enhance the thermal conductivity of the matrix. The in-plane thermal conductivity of the resultant composite paper reaches as high as 34.0 W/m K, which is one order magnitude higher than that of conventional polymer composites. Fitting the measured thermal conductivity with theoretical models qualitatively demonstrates that silver nanoparticles bring the lower interfacial thermal resistances both at silicon carbide nanowire/cellulose microcrystal and silicon carbide nanowire/silicon carbide nanowire interfaces. This interfacial engineering approach provides a powerful tool for sophisticated fabrication of high-performance thermal-management materials.

  7. Silicon Carbide Temperature Monitor Processing Improvements. Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy Casey [Idaho National Lab. (INL), Idaho Falls, ID (United States); Daw, Joshua Earl [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahamad [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-29

    Silicon carbide (SiC) temperature monitors are used as temperature sensors in Advanced Test Reactor (ATR) irradiations at the Idaho National Laboratory (INL). Although thermocouples are typically used to provide real-time temperature indication in instrumented lead tests, other indicators, such as melt wires, are also often included in such tests as an independent technique of detecting peak temperatures incurred during irradiation. In addition, less expensive static capsule tests, which have no leads attached for real-time data transmission, often rely on melt wires as a post-irradiation technique for peak temperature indication. Melt wires are limited in that they can only detect whether a single temperature is or is not exceeded. SiC monitors are advantageous because a single monitor can be used to detect for a range of temperatures that occurred during irradiation. As part of the process initiated to make SiC temperature monitors available at the ATR, post-irradiation evaluations of these monitors have been previously completed at the High Temperature Test Laboratory (HTTL). INL selected the resistance measurement approach for determining irradiation temperature from SiC temperature monitors because it is considered to be the most accurate measurement. The current process involves the repeated annealing of the SiC monitors at incrementally increasing temperature, with resistivity measurements made between annealing steps. The process is time consuming and requires the nearly constant attention of a trained staff member. In addition to the expensive and lengthy post analysis required, the current process adds many potential sources of error in the measurement, as the sensor must be repeatedly moved from furnace to test fixture. This time-consuming post irradiation analysis is a significant portion of the total cost of using these otherwise inexpensive sensors. An additional consideration of this research is that, if the SiC post processing can be automated, it

  8. Silicon-Rich Silicon Carbide Hole-Selective Rear Contacts for Crystalline-Silicon-Based Solar Cells.

    Science.gov (United States)

    Nogay, Gizem; Stuckelberger, Josua; Wyss, Philippe; Jeangros, Quentin; Allebé, Christophe; Niquille, Xavier; Debrot, Fabien; Despeisse, Matthieu; Haug, Franz-Josef; Löper, Philipp; Ballif, Christophe

    2016-12-28

    The use of passivating contacts compatible with typical homojunction thermal processes is one of the most promising approaches to realizing high-efficiency silicon solar cells. In this work, we investigate an alternative rear-passivating contact targeting facile implementation to industrial p-type solar cells. The contact structure consists of a chemically grown thin silicon oxide layer, which is capped with a boron-doped silicon-rich silicon carbide [SiC x (p)] layer and then annealed at 800-900 °C. Transmission electron microscopy reveals that the thin chemical oxide layer disappears upon thermal annealing up to 900 °C, leading to degraded surface passivation. We interpret this in terms of a chemical reaction between carbon atoms in the SiC x (p) layer and the adjacent chemical oxide layer. To prevent this reaction, an intrinsic silicon interlayer was introduced between the chemical oxide and the SiC x (p) layer. We show that this intrinsic silicon interlayer is beneficial for surface passivation. Optimized passivation is obtained with a 10-nm-thick intrinsic silicon interlayer, yielding an emitter saturation current density of 17 fA cm -2 on p-type wafers, which translates into an implied open-circuit voltage of 708 mV. The potential of the developed contact at the rear side is further investigated by realizing a proof-of-concept hybrid solar cell, featuring a heterojunction front-side contact made of intrinsic amorphous silicon and phosphorus-doped amorphous silicon. Even though the presented cells are limited by front-side reflection and front-side parasitic absorption, the obtained cell with a V oc of 694.7 mV, a FF of 79.1%, and an efficiency of 20.44% demonstrates the potential of the p + /p-wafer full-side-passivated rear-side scheme shown here.

  9. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording

    Science.gov (United States)

    Deku, Felix; Cohen, Yarden; Joshi-Imre, Alexandra; Kanneganti, Aswini; Gardner, Timothy J.; Cogan, Stuart F.

    2018-02-01

    Objective. Foreign body response to indwelling cortical microelectrodes limits the reliability of neural stimulation and recording, particularly for extended chronic applications in behaving animals. The extent to which this response compromises the chronic stability of neural devices depends on many factors including the materials used in the electrode construction, the size, and geometry of the indwelling structure. Here, we report on the development of microelectrode arrays (MEAs) based on amorphous silicon carbide (a-SiC). Approach. This technology utilizes a-SiC for its chronic stability and employs semiconductor manufacturing processes to create MEAs with small shank dimensions. The a-SiC films were deposited by plasma enhanced chemical vapor deposition and patterned by thin-film photolithographic techniques. To improve stimulation and recording capabilities with small contact areas, we investigated low impedance coatings on the electrode sites. The assembled devices were characterized in phosphate buffered saline for their electrochemical properties. Main results. MEAs utilizing a-SiC as both the primary structural element and encapsulation were fabricated successfully. These a-SiC MEAs had 16 penetrating shanks. Each shank has a cross-sectional area less than 60 µm2 and electrode sites with a geometric surface area varying from 20 to 200 µm2. Electrode coatings of TiN and SIROF reduced 1 kHz electrode impedance to less than 100 kΩ from ~2.8 MΩ for 100 µm2 Au electrode sites and increased the charge injection capacities to values greater than 3 mC cm-2. Finally, we demonstrated functionality by recording neural activity from basal ganglia nucleus of Zebra Finches and motor cortex of rat. Significance. The a-SiC MEAs provide a significant advancement in the development of microelectrodes that over the years has relied on silicon platforms for device manufacture. These flexible a-SiC MEAs have the potential for decreased tissue damage and reduced

  10. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  11. Melting of Grey Cast Iron Based on Steel Scrap Using Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Stojczew A.

    2014-08-01

    Full Text Available The paper presents the issue of synthetic cast iron production in the electric induction furnace exclusively on the steel scrap base. Silicon carbide and synthetic graphite were used as carburizers. The carburizers were introduced with solid charge or added on the liquid metal surface. The chemical analysis of the produced cast iron, the carburization efficiency and microstructure features were presented in the paper. It was stated that ferrosilicon can be replaced by silicon carbide during the synthetic cast iron melting process. However, due to its chemical composition (30% C and 70% Si which causes significant silicon content in iron increase, the carbon deficit can be partly compensated by the carburizer introduction. Moreover it was shown that the best carbon and silicon assimilation rate is obtained where the silicon carbide is being introduced together with solid charge. When it is thrown onto liquid alloy surface the efficiency of the process is almost two times less and the melting process lasts dozen minutes long. The microstructure of the cast iron produced with the silicon carbide shows more bulky graphite flakes than inside the microstructure of cast iron produced on the pig iron base.

  12. Mechanical Properties and Microstructure of Biomorphic Silicon Carbide Ceramics Fabricated from Wood Precursors

    Science.gov (United States)

    Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.

  13. Spark Plasma Sintering of Low Alloy Steel Modified with Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Hebda M.

    2016-06-01

    Full Text Available The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA process and sintered by spark plasma sintering (SPS technique. After the SPS process, half of each of obtained samples was heat-treated in a vacuum furnace. The results show that the high-density materials have been achieved. Homogeneous and fine microstructure was obtained. The heat treatment that followed the SPS process resulted in an increase in the mechanical and plastic properties of samples with the addition 1wt. % of silicon carbide. The investigated compositions containing 1 wt.% of SiC had better corrosion resistance than samples with 3 wt.% of silicon carbide addition. Moreover, corrosion resistance of the samples with 1 wt.% of SiC can further be improved by applying heat treatment.

  14. GRANULATION TRIALS OF WASTE THE DUST SILICON CARBIDE FOR UTILIZATION IN METALLURGY

    Directory of Open Access Journals (Sweden)

    Gabriel Borowski

    2016-09-01

    Full Text Available The article presents the results of laboratory granulation tests of dust silicon carbide and the results of research on the selection of the binder and the properties of the granules obtained. The research material was a waste of the silicon carbide powder with a high fragmentation, mixed with a cement or an organic modified starch specimen. Six tests were performed in a disc granulator with 100 cm in diameter. In each series of trial specified: the type and share of the binder, the diameter of the granules, tenderness, type of structure and mechanical properties. Good granules of silicon carbide obtained with the addition of cement binder with 4% of the mass fraction and at least 24 hours of seasoning. The binder should be added twice by powdering, first in a stirred granulator, and again after manufacture. It was found that the resulting granules may be used as a replacement of ferrosilicon in the process of steelmaking.

  15. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    Science.gov (United States)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  16. A re-examination of two-step lateral stress history in silicon carbide

    International Nuclear Information System (INIS)

    Dandekar, Dattatraya P.

    2004-01-01

    The observed two-step lateral stress history in silicon carbide, SiC-B under plane shock wave propagation [N. K. Bourne, J. Millett, and I. Pickup, J. Appl. Phys. 81, 6019 (1997)] is attributed to a delayed failure in SiC-B due to propagation of a slow moving front traveling behind the main shock wave. According to this attribution, the first lower magnitude, step corresponds to the lateral stress in intact shock compressed silicon carbide as a result of the fast moving plane shock wave. The second step of higher magnitude, observed after a few hundred nanoseconds, corresponds to the lateral stress in failed silicon carbide due to propagation of the slower moving front. The current analysis, takes into account additional relevant existing results dealing with shock response of SiC-B, and shows that the suggested explanation for the observed phenomenon remains in doubt

  17. FLiNaK compatibility studies with Inconel 600 and silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Yoder, Graydon L., E-mail: yodergljr@ornl.gov [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Heatherly, Dennis; Wilson, Dane [Oak Ridge National Laboratory, Bldg. 5700, MS 6167 Bethel Valley Rd., Oak Ridge, TN 37831 (United States); Caja, Mario [Electrochemical Systems, Inc. (ESI), 9320 Collingwood Rd., Knoxville, TN 37922 (United States)

    2016-10-15

    Highlights: • A versatile experimental design has been developed to examine liquid fluoride salt materials compatibility behavior. • Samples of silicon carbide and a grafoil/nickel spiral wound gasket were exposed to FLiNaK salt at 700 °C for 90 days and showed no degradation. • Alloy 600 showed material effects penetrating up to 300 μm below the salt interface after exposure to the salt for 90 days at 700 °C. • Comparison of the Alloy 600 corrosion results with existing data indicated that results were comparable to the few corrosion results available for Alloy 600. • Sapphire viewing windows incorporated in the experiment showed fogging by condensed salt components at the highest test temperatures. - Abstract: A small liquid fluoride salt test apparatus has been constructed and testing has been conducted to examine the compatibility of silicon carbide (SiC), Inconel 600 and a spiral wound gasket material in FLiNaK, the ternary eutectic alkaline metal fluoride salt mixture. These tests were conducted to evaluate materials and sealing systems that could be used in fluoride salt systems. Three months of testing at 700 °C was conducted to assure that these materials and seals would be acceptable when operating under prototypic operating conditions. The SiC specimens showed little or no change over the test period, while the spiral wound gasket material did not show any degradation except that salt might have been seeping into the outermost spirals of the gasket. The Inconel 600 specimens showed regions of voiding which penetrated the specimen surface to about 250 μm in depth. Analysis indicated that the salt had leached chrome from the Inconel surface, as was expected for this material.

  18. Improved Ablation Resistance of Silicone Rubber Composites by Introducing Montmorillonite and Silicon Carbide Whisker

    Directory of Open Access Journals (Sweden)

    Guangwu Zhang

    2016-08-01

    Full Text Available Montmorillonite (MMT was added to silicone rubber (SR to improve the ablation resistance of the silicone. Following this, different quantities of silicon carbide whiskers (SiCw were incorporated into the MMT/SR to yield a hybrid, ablative composite. The tensile strength and elongation at break of the composite increased after the addition of MMT. The ablation test results showed that MMT helped to form a covering layer by bonding with the silica and other components on the ablated surface. The linear and mass ablation rates exhibited decreases of 22.5% and 18.2%, respectively, in comparison to a control sample. After further incorporation of SiCw as the second filler, the resulting composites exhibited significantly higher tensile strength and ablation resistance, but not particularly lower elongation at break in comparison to the control sample. The SiCw/MMT fillers were beneficial in forming a dense and compact covering layer that delayed the heat and oxygen diffusion into the inner layers, which improved the ablation properties effectively. The remaining whiskers acted as a micro skeleton to maintain the composite’s char strength. Compared to the control sample, the linear and mass ablation rates of the composite after incorporating 6 phr SiCw and 10 phr MMT decreased by 59.2% and 43.6%, respectively. These experimental results showed that the fabricated composites exhibited outstanding mechanical properties and excellent ablation resistance.

  19. Reactive infiltration in fabricating silicon carbide composites for electronic packaging

    Science.gov (United States)

    Xiao, Liming

    The silicon carbide (SiC) composite is a promising material to improve thermal dissipation and thermal expansion matching for electronic packaging, but its wide application has been greatly hindered by the high fabrication cost. To address this cost issue, two new reactive infiltration methods have been proposed and developed to fabricate SiC composite in a net-shape manner. They are Method 1--locally magnesium-enhanced infiltration and Method 2--globally carbon-enhanced infiltration. In Method 1, a magnesium wetting agent was strategically inserted at the interface between SiC powder and Al-Si alloy. The molten Al-Si alloy was assisted by chemical reaction to infiltrate into the porous SiC powder in an inert atmosphere sealed in a quartz tube or a steel cup. The infiltration kinetics was characterized by measuring the infiltration weight gain with respect to time. It was found that the infiltration kinetics could be divided into three stages: infiltration initiation, rapid infiltration, and slow infiltration, and most of the weight gain occurred in the rapid infiltration stage. The rapid infiltration was due to the magnesium-silicon oxide reaction and the magnesium accumulation at the infiltration front. Modeling of the infiltration kinetics showed the magnesium dilution increased the dynamic contact angle, which in turn decreased the infiltration rate. The SiC oxidation, Mg content and temperature were shown to be important factors affecting the infiltration. In Method 2, a carbon wetting agent is coated globally on every SiC particle. To accomplish this coating, a slip casting, drying, curing and carbonization process was developed. A crucibleless infiltration method was designed to fabricate SiC composites in an open atmosphere protected by nitrogen. The temperature change of SiC preform during infiltration was monitored to determine the infiltration kinetics. The silicon-carbon reaction was found to create a spontaneous infiltration of molten Si or molten Al

  20. On electronic structure of polymer-derived amorphous silicon carbide ceramics

    Science.gov (United States)

    Wang, Kewei; Li, Xuqin; Ma, Baisheng; Wang, Yiguang; Zhang, Ligong; An, Linan

    2014-06-01

    The electronic structure of polymer-derived amorphous silicon carbide ceramics was studied by combining measurements of temperature-dependent conductivity and optical absorption. By comparing the experimental results to theoretical models, electronic structure was constructed for a carbon-rich amorphous silicon carbide, which revealed several unique features, such as deep defect energy level, wide band-tail band, and overlap between the band-tail band and defect level. These unique features were discussed in terms of the microstructure of the material and used to explain the electric behavior.

  1. High frequency three-phase PWM grid connected drive using silicon-carbide switches

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Pedersen, Jacob Lykke; Nymand, Morten

    2016-01-01

    This paper presents controller design procedure for a fully silicon-carbide (SiC) based three-phase grid-connected PWM drive. The influence of the feedforward compensation for the presented setup is studied and the transfer function of the system with feedforward is derived and compared with the ......This paper presents controller design procedure for a fully silicon-carbide (SiC) based three-phase grid-connected PWM drive. The influence of the feedforward compensation for the presented setup is studied and the transfer function of the system with feedforward is derived and compared...

  2. Observations on infiltration of silicon carbide compacts with an aluminium alloy

    Science.gov (United States)

    Asthana, R.; Rohatgi, P. K.

    1992-01-01

    The melt infiltration of ceramic particulates permits an opportunity to observe such fundamental materials phenomena as nucleation, dynamic wetting and growth in constrained environments. Experimental observations are presented on the infiltration behavior and matrix microstructures that form when porous compacts of platelet-shaped single crystals of alpha- (hexagonal) silicon carbide are infiltrated with a liquid 2014 Al alloy. The infiltration process involved counter gravity infiltration of suitably tamped and preheated compacts of silicon carbide platelets under an external pressure in a special pressure chamber for a set period, then by solidification of the infiltrant metal in the interstices of the bed at atmospheric pressure.

  3. Nucleation of Small Silicon Carbide Dust Clusters in AGB Stars

    Energy Technology Data Exchange (ETDEWEB)

    Gobrecht, David; Cristallo, Sergio; Piersanti, Luciano [Osservatorio Astronomico di Teramo, INAF, I-64100 Teramo (Italy); Bromley, Stefan T. [Departament de Cincia de Materials i Química Fisica and Institut de Química Terica i Computacional (IQTCUB),Universitat de Barcelona, E-08028 Barcelona (Spain)

    2017-05-10

    Silicon carbide (SiC) grains are a major dust component in carbon-rich asymptotic giant branch stars. However, the formation pathways of these grains are not fully understood. We calculate ground states and energetically low-lying structures of (SiC){sub n}, n = 1, 16 clusters by means of simulated annealing and Monte Carlo simulations of seed structures and subsequent quantum-mechanical calculations on the density functional level of theory. We derive the infrared (IR) spectra of these clusters and compare the IR signatures to observational and laboratory data. According to energetic considerations, we evaluate the viability of SiC cluster growth at several densities and temperatures, characterizing various locations and evolutionary states in circumstellar envelopes. We discover new, energetically low-lying structures for Si{sub 4}C{sub 4}, Si{sub 5}C{sub 5}, Si{sub 15}C{sub 15}, and Si{sub 16}C{sub 16} and new ground states for Si{sub 10}C{sub 10} and Si{sub 15}C{sub 15}. The clusters with carbon-segregated substructures tend to be more stable by 4–9 eV than their bulk-like isomers with alternating Si–C bonds. However, we find ground states with cage geometries resembling buckminsterfullerens (“bucky-like”) for Si{sub 12}C{sub 12} and Si{sub 16}C{sub 16} and low-lying stable cage structures for n ≥ 12. The latter findings thus indicate a regime of cluster sizes that differ from small clusters as well as from large-scale crystals. Thus—and owing to their stability and geometry—the latter clusters may mark a transition from a quantum-confined cluster regime to a crystalline, solid bulk-material. The calculated vibrational IR spectra of the ground-state SiC clusters show significant emission. They include the 10–13 μ m wavelength range and the 11.3 μm feature inferred from laboratory measurements and observations, respectively, although the overall intensities are rather low.

  4. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    Science.gov (United States)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify

  5. Mechanical behaviour of silicon carbide submitted to high temperature

    International Nuclear Information System (INIS)

    Menard, M.; Le Flem, M.; Gelebart, L.; Boussuge, M.

    2007-01-01

    Ceramics (composite ceramics) are considered materials for manufacturing structure pieces of future nuclear reactor cores. In condition of nominal running, the temperature of these components is estimated at 500-800 C and could reach 1600 C in accidental condition. On account of its refractory properties and of its good compatibility with neutron flux, silicon carbide is retained for such applications, particularly for fuel cladding material (SiC/SiC composite). A study aiming to specify the mechanical behaviour of the monolithic αSiC (hexagonal structure) between 1000 and 1500 C as well as its evolution after ionic irradiation is presented. This study presents particularly the mechanical characterizations of SiC in three points bending obtained until 1450 C and surface characterizations led on SiC irradiated with ions. The rupture tests in three points bending carried out in temperature on specimens pre-cracked by indentation show an increase of 85% of the SiC rupture stress between 1000 and 1300 C. Above 1300 C, the damage of SiC induces a significant decrease of the rupture stress. Aniso-thermal creep tests on polished specimens show that the SiC presents a viscoplastic behaviour from 1200 C. Surface characterizations by Raman spectroscopy, micro and nano-indentation, acoustic microscopy led at ambient temperature on fresh and irradiated to Xe ions (94 MeV) SiC at 400 C are presented too. The formation of a structural disorder and of Si-Si homonuclear bonds disorder, suggesting a SiC amorphization, are revealed by Raman spectroscopy between 3*10 14 and 3.6*10 15 ions/cm 2 of fluence. These microstructural changes lead to a macroscopic swelling quantifiable by measuring the height of the step formed during irradiations between the non irradiated and irradiated areas. Measurements by profilometry show that between 3*10 14 and 1.2*10 15 ions/cm 2 of fluence, the height of the step increases of 47 nm to 83 nm, and then is stabilized with the fluence increase. The

  6. Study of Pellets and Lumps as Raw Materials in Silicon Production from Quartz and Silicon Carbide

    Science.gov (United States)

    Dal Martello, E.; Tranell, G.; Gaal, S.; Raaness, O. S.; Tang, K.; Arnberg, L.

    2011-10-01

    The use of high-purity carbon and quartz raw materials reduces the need for comprehensive refining steps after the silicon has been produced carbothermically in the electric reduction furnace. The current work aims at comparing the reaction mechanisms and kinetics occurring in the inner part of the reduction furnace when pellets or lumpy charge is used, as well as the effect of the raw material mix. Laboratory-scale carbothermic reduction experiments have been carried out in an induction furnace. High-purity silicon carbide and two different high-purity hydrothermal quartzes were charged as raw materials at different molar ratios. The charge was in the form of lumps (size, 2-5 mm) or as powder (size, 10-20 μm), mixed and agglomerated as pellets (size, 1-3 mm) and reacted at 2273 K (2000 °C). The thermal properties of the quartzes were measured also by heating a small piece of quartz in CO atmosphere. The investigated quartzes have different reactivity in reducing atmosphere. The carbothermal reduction experiments show differences in the reacted charge between pellets and lumps as charge material. Solid-gas reactions take place from the inside of the pellets porosity, whereas reactions in lumps occur topochemically. Silicon in pellets is produced mainly in the rim zone. Larger volumes of silicon have been found when using lumpy charge. More SiO is produced when using pellets than for lumpy SiO2 for the same molar ratio and heating conditions. The two SiC polytypes used in the carbothermal reduction experiments as carbon reductants presented different reactivity.

  7. Evaluation of Bidirectional Silicon Carbide Solid-State Circuit Breaker v3.2

    Science.gov (United States)

    2013-07-01

    shown in figure 3 (1). The DC supply charges the 3 capacitor through a high resistance. Then the insulated gate bipolar transistor (IGBT) is...insulated gate bipolar transistor JFET junction field-effect transistor SiC silicon carbide TRL technical readiness level USCi United Silicon...field-effect transistor (JFET) based bidirectional solid-state circuit breaker (BDSSCB) to reduce self-trigging and reset response times, and increase

  8. All-Optical dc Nanotesla Magnetometry Using Silicon Vacancy Fine Structure in Isotopically Purified Silicon Carbide

    Directory of Open Access Journals (Sweden)

    D. Simin

    2016-07-01

    Full Text Available We uncover the fine structure of a silicon vacancy in isotopically purified silicon carbide (4H-^{28}SiC and reveal not yet considered terms in the spin Hamiltonian, originated from the trigonal pyramidal symmetry of this spin-3/2 color center. These terms give rise to additional spin transitions, which would be otherwise forbidden, and lead to a level anticrossing in an external magnetic field. We observe a sharp variation of the photoluminescence intensity in the vicinity of this level anticrossing, which can be used for a purely all-optical sensing of the magnetic field. We achieve dc magnetic field sensitivity better than 100  nT/sqrt[Hz] within a volume of 3×10^{-7}mm^{3} at room temperature and demonstrate that this contactless method is robust at high temperatures up to at least 500 K. As our approach does not require application of radio-frequency fields, it is scalable to much larger volumes. For an optimized light-trapping waveguide of 3  mm^{3}, the projection noise limit is below 100  fT/sqrt[Hz].

  9. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) power supply for the Power Processing Unit (PPU) of...

  10. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Baker, Nick; Luo, Haoze; Iannuzzo, Francesco

    2017-01-01

    the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal-Oxide-Semiconductor-Field-Effect...

  11. Abrasive wear behavior of heat-treated ABC-silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  12. Broadband antireflection silicon carbide surface by self-assembled nanopatterned reactive-ion etching

    DEFF Research Database (Denmark)

    Ou, Yiyu; Aijaz, Imran; Jokubavicius, Valdas

    2013-01-01

    of 390x02013;784 nm is dramatically suppressed from 21.0x00025; to 1.9x00025; after introducing the pseudoperiodic nanostructures. A luminescence enhancement of 226x00025; was achieved at an emission angle of 20x000B0; on the fluorescent silicon carbide. Meanwhile, the angle-resolved photoluminescence...... study presents a considerable omnidirectional luminescence enhancement....

  13. Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: Molecular Structure and Tribological Properties

    NARCIS (Netherlands)

    Pujari, S.P.; Scheres, L.M.W.; Weidner, T.; Baio, J.E.; Cohen Stuart, M.A.; Rijn, van C.J.M.; Zuilhof, H.

    2013-01-01

    In order to achieve improved tribological and wear properties at semiconductor interfaces, we have investigated the thermal grafting of both alkylated and fluorine-containing ((CxF2x+1)–(CH2)n-) 1-alkynes and 1-alkenes onto silicon carbide (SiC). The resulting monolayers display static water contact

  14. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    the use of sintering aids. In the meantime, Prochazka. (1975) reported that with addition of boron and carbon to submicron size β-SiC, sintering of silicon carbide to near theoretical density was achieved. He proposed that during the firing of pure submicron powders of covalently bonded solids, densification is prevented by a ...

  15. Silicon carbide recovered from photovoltaic industry waste as photocatalysts for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Hu, Yu [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Zeng, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Zhong, Lin, E-mail: zhonglin@scu.edu.cn [College of Chemical Engineering, Sichuan University, Chengdu, 610064 (China); Liu, Kewei; Cao, Hongmei [College of Chemistry, Sichuan University, Chengdu, 610064 (China); Li, Wei [College of Material Science and Enginneering, Sichuan University, Chengdu, 610064 (China); Yan, Hongjian, E-mail: hjyan@scu.edu.cn [College of Chemistry, Sichuan University, Chengdu, 610064 (China)

    2017-05-05

    Highlights: • SiC was recovered from photovoltaic industry waste. • The recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides. • The recovered SiC shows photocatalytic H{sub 2} evolution from water. - Abstract: In recent years, the focus on creating a dependable and efficient means to recycle or recover the valuable parts from the waste material has drawn significantly attention as an environmentally friendly way to deal with the industrial wastes. The silicon carbide (SiC) crystalline is one of reusable material in the slurry wastes generated during wafer slicing. Here we report the use of recovered SiC from the slurry wastes as photocatalysts to produce hydrogen in the presence of Na{sub 2}SO{sub 3}-Na{sub 2}S as electron donor. The recovered SiC were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy spectra (XPS), UV–vis (UV–vis) spectroscopy, and photoluminescence (PL) spectroscopy. The morphology of SiC loaded with 1 wt% Pt as cocatalyst by thermal-reduction method was observed by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). The experimental results reveal that the recovered SiC is mainly consist of 3C-SiC, 6H-SiC and some silicon oxycarbides on the surface of the SiC. The highest hydrogen production rate is 191.8 μmol h{sup −1} g{sup −1}. This study provides a way to recycle crystalline SiC from the discharged waste in the photovoltaic industry and reuse it as photocatalyst to yield hydrogen with the advantage of low energy consumption, low pollution and easy operation.

  16. Silicon carbide thin films for high temperature microelectromechanical systems

    Science.gov (United States)

    Fleischman, Aaron Judah

    Silicon Carbide (SiC) was studied for use as a material in microelectromechanical systems (MEMS). An APCVD reactor was built to deposit SiC on 100-mm diameter substrates. 3C-SiC films were grown heteroepitaxially atop 100-mm Si wafers. SiC was deposited atop suitable sacrificial layers of polysilicon and thermal oxide. The reactor gas flow was modeled using finite element techniques. The gas flow formed a recirculating pattern, with fresh reactant gases injected at the top of the reactor, traveling down the inside sidewalls and introduced at the bottom of the wafer, forming a plume of heated gases rising to the top of the reactor. This recirculation pattern explains the gradually decreasing growth rate from the wafer's bottom to its top as reactant gases are gradually depleted as they rise. Intentional doping of 3C-SiC films was studied, using diborane and phosphine dopant sources. SIMS indicated that B and P could be incorporated into 3C-SiC films, however B doped films were electrically compensated due to trace amounts of nitrogen in the diborane. Boron concentrations above 3C-SiC's solid solubility caused the SiC to become polycrystalline. Phosphorus incorporation was less predictable and did not vary linearly with phosphine flow rates. A reactive ion etch (REE) process was developed to etch 3C-SiC. Addition of He to the plasma chemistry enhanced the etch rates and etch anisotropy of the 3C-SiC. The etch recipe also produced similar results for polycrystalline SiC on polysilicon and thermal oxide. A maximum SiC etch rate of 1,267 A/min with a selectivity of 1.4 to Si was obtained. Using the above methods, SiC resonant devices were fabricated using polysilicon and thermal oxide as sacrificial layers. Polysilicon resonant devices were fabricated for comparison. The devices were tested by measuring their resonant frequency at room and elevated temperatures to 900°C to determine Young's modulus and its temperature dependence. All devices showed resonant frequency

  17. The ultrasonic machining of silicon carbide / alumina composites

    Science.gov (United States)

    Nicholson, Garth Martyn John

    Silicon carbide fibre reinforced alumina is a ceramic composite which was developed in conjunction with the Rolls-Royce Aerospace Group. The material is intended for use in the latest generation of jet engines, specifically for high temperature applications such as flame holders, combustor barrel segments and turbine blade tip seals. The material in question has properties which have been engineered by optimizing fibre volume fractions, weaves and fibre interface materials to meet the following main requirements : high thermal resistance, high thermal shock resistance and low density.Components intended for manufacture using this material will use the "direct metal oxidation" (DIMOX) method. This process involves manufacturing a near net shape component from the woven fibre matting, and infiltrating the matting with the alumina matrix material. Some of the components outlined require high tolerance features to be included in their design. The combustor barrel segments for example require slots to be formed within them for sealing purposes, the dimensions of these features preclude their formation using DIMOX, and therefore require a secondary process to be performed. Conventional machining techniques such as drilling, turning and milling cannot be used because of the brittle nature of the material. Electrodischarge machining (E.D.M.) cannot be used since the material is an insulator. Electrochemical machining (E.C.M.) cannot be used since the material is chemically inert. One machining method which could be used is ultrasonic machining (U.S.M.).The research programme investigated the feasibility of using ultrasonic machining as a manufacturing method for this new fibre reinforced composite. Two variations of ultrasonic machining were used : ultrasonic drilling and ultrasonic milling. Factors such as dimensional accuracy, surface roughness and delamination effects were examined. Previously performed ultrasonic machining experimental programmes were reviewed, as well

  18. Effect of Ion Beam Irradiation on Silicon Carbide with Different Microstructures

    International Nuclear Information System (INIS)

    Park, Kyeong Hwan; Park, Ji Yeon; Kim, Weon Ju; Jung, Choong Hwan; Ryu, Woo Seog

    2006-01-01

    SiC and SiC/SiC composites are one of promising candidates for structural materials of the next generation energy systems such as the gas-cooled reactors and fusion reactors. This anticipation yields many material issues, and radiation effects of silicon carbide are recognized as an important research subject. Silicon carbide has diverse crystal structures (called polytypes), such as α-SiC (hexagonal structure), β-SiC (cubic structure) and amorphous SiC. Among these polytypes, β-SiC has been studied as matrix material in SiC/SiC composites. Near-stoichiometric β-SiC with high crystallinity and purity is considered as suitable material in the next generation energy system and matrix material in SiC/SiC composites because of its excellent radiation resistance. Highly pure and crystalline β-SiC and SiC/SiC composites could be obtained by the chemical vapor deposition (CVD) and Infiltration (CVI) process using a gas mixture of methyltrichlorosilane (CH 3 SiCl 3 , MTS) and purified H 2 . SiC produced by the CVD method has different grain size and microstructural morphology depended on the process conditions such as temperature, pressure and the input gas ratio. In this work, irradiation effects of silicon carbide were investigated using ion beam irradiation with emphasis on the influence of grain size and grain boundary. MeV ion irradiation at low temperature makes amorphous phase in silicon carbide. The microstructures and mechanical property changes of silicon carbide with different structures were analyzed after ion beam irradiation

  19. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    International Nuclear Information System (INIS)

    Miyoshi, K.; Buckley, D.H.

    1978-04-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active metal is, and the greater resistance to shear it has, with the exception of rhodium and tungsten, the less transfer to silicon carbide

  20. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  1. Material Analysis of Coated Siliconized Silicon Carbide (SiSiC Honeycomb Structures for Thermochemical Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2013-01-01

    Full Text Available In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD and Scanning Electron Microscopy (SEM with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO2, zircon (ZrSiO4, iron silicide (FeSi and hercynite (FeAl2O4 indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate. The investigations showed that the ferrite is mainly reduced through reaction with silicon (Si, which is present in the SiSiC matrix, and silicon carbide (SiC. These results led to the formulation of a new redox mechanism for this system in which Zn-ferrite is reduced through Si forming silicon dioxide (SiO2 and through SiC forming SiO2 and carbon monoxide. A decline of hydrogen production within the first 20 cycles is suggested to be due to the growth of a silicon dioxide and zircon layer which acts as a diffusion barrier for the reacting specie.

  2. High yield silicon carbide from alkylated or arylated pre-ceramic polymer

    International Nuclear Information System (INIS)

    Baney, R.H.; Gaul, J.H.

    1982-01-01

    Alkylated or arylated methylpolysilanes which exhibit ease of handling and are used to obtain silicon carbide ceramic materials in high yields contain 0 to 60 mole percent (CH 3 ) 2 Si double bond units and 40 to 100 mole percent CH 3 Si triple bond units, wherein there is also bonded to the silicon atoms other silicon atoms and additional alkyl radicals of 1 to 4 carbon atoms or phenyl. They may be prepared by reaction of a Grignard reagent RMgX, where X is halogen and R is Csub(1-4)-alkyl or phenyl, with a starting material which is a solid at 25 0 C, and is identical to the product except that the remaining bonds on the silicon atoms are attached to another silicon atom, or a chlorine or a bromine atom. Ceramics result from heating the polysilane products to 1200 0 C, optionally with fillers. (author)

  3. Doping of silicon carbide by ion implantation; Dopage du carbure de silicium par implantation ionique

    Energy Technology Data Exchange (ETDEWEB)

    Gimbert, J

    1999-03-04

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  4. High Temperature All Silicon-Carbide (SiC) DC Motor Drives for Venus Exploration Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project seeks to prove the feasibility of creating high-temperature silicon-carbide (SiC) based motor drives for...

  5. A new metal electrocatalysts supported matrix: Palladium nanoparticles supported silicon carbide nanoparticles and its application for alcohol electrooxidation

    International Nuclear Information System (INIS)

    Dai Hong; Chen Yanling; Lin Yanyu; Xu Guifang; Yang Caiping; Tong Yuejin; Guo Longhua; Chen Guonan

    2012-01-01

    In this paper, we propose a facile approach for palladium nanoparticles load using silicon carbide nanoparticles as the new supported matrix and a familiar NaBH 4 as reducer. Detailed X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) analysis of the resultant products indicated that palladium nanoparticles are successfully immobilized onto the surface of the silicon carbide nanoparticles with uniform size distribution between 5 and 7 nm. The relative electrochemical characterization clearly demonstrated excellent electrocatalytic activity of this material toward alcohol in alkaline electrolytes. Investigation on the characteristics of the electrocatalytic activity of this material further indicated that the palladium nanoparticles supporting on SiC are very promising for direct alcohol fuel cells (DMFCs), biosensor and electronic devices. Moreover, it was proved that silicon carbide nanoparticles with outstanding properties as support for catalysis are of strong practical interest. And the silicon carbide could perform attractive role in adsorbents, electrodes, biomedical applications, etc.

  6. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  7. Metal-like self-organization of periodic nanostructures on silicon and silicon carbide under femtosecond laser pulses

    International Nuclear Information System (INIS)

    Gemini, Laura; Hashida, Masaki; Shimizu, Masahiro; Miyasaka, Yasuhiro; Inoue, Shunsuke; Tokita, Shigeki; Sakabe, Shuji; Limpouch, Jiri; Mocek, Tomas

    2013-01-01

    Periodic structures were generated on Si and SiC surfaces by irradiation with femtosecond laser pulses. Self-organized structures with spatial periodicity of approximately 600 nm appear on silicon and silicon carbide in the laser fluence range just above the ablation threshold and upon irradiation with a large number of pulses. As in the case of metals, the dependence of the spatial periodicity on laser fluence can be explained by the parametric decay of laser light into surface plasma waves. The results show that the proposed model might be universally applicable to any solid state material

  8. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  9. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    Science.gov (United States)

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  10. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  11. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  12. High Power Silicon Carbide (SiC) Power Processing Unit Development

    Science.gov (United States)

    Scheidegger, Robert J.; Santiago, Walter; Bozak, Karin E.; Pinero, Luis R.; Birchenough, Arthur G.

    2015-01-01

    NASA GRC successfully designed, built and tested a technology-push power processing unit for electric propulsion applications that utilizes high voltage silicon carbide (SiC) technology. The development specifically addresses the need for high power electronics to enable electric propulsion systems in the 100s of kilowatts. This unit demonstrated how high voltage combined with superior semiconductor components resulted in exceptional converter performance.

  13. Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.

    Science.gov (United States)

    Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín

    2017-12-01

    Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Component with a wear protection layer containing silicon carbide. Bauteil mit einer siliziumcarbidhaltigen Verschleiss-Schutzschicht

    Energy Technology Data Exchange (ETDEWEB)

    Mielsch, G.; Froehler, M.; Rutka, A.

    1991-05-16

    A light metal component of an internal combustion engine subject to wear has an iron dispersion layer instead of the usual nickel dispersion coating. Silicon carbide particles are used here as wear protection particles, but the support layer is made of iron. A suitable composition of the electrolyte is also described for an electrolytic coating process similar to that of applying a nickel dispersion layer in the usual way. An advantageous coating plant is also described.

  15. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively

    OpenAIRE

    Tao Yang; Liqin Zhang; Xinmei Hou; Junhong Chen; Kuo-Chih Chou

    2016-01-01

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS...

  16. Enhancing the brightness of electrically driven single-photon sources using color centers in silicon carbide

    Science.gov (United States)

    Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.

    2018-03-01

    Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.

  17. Comparative Evaluations and Microstructure: Mechanical Property Relations of Sintered Silicon Carbide Consolidated by Various Techniques

    Science.gov (United States)

    Barick, Prasenjit; Chatterjee, Arya; Majumdar, Bhaskar; Saha, Bhaskar Prasad; Mitra, Rahul

    2018-04-01

    A comparative evaluation between pressureless or self-sintered silicon carbide (SSiC), hot-pressed silicon carbide (HP-SiC), and spark plasma-sintered silicon carbide (SPS-SiC) has been carried out with emphasis on examination of their microstructures and mechanical properties. The effect of sample dimensions on density and properties of SPS-SiC has been also examined. Elastic modulus, flexural strength, and fracture toughness measured by indentation or testing of single-edge notched beam specimens have been found to follow the following trend, HP-SiC > SSiC > SPS-SiC. The SPS-SiC samples have shown size-dependent densification and mechanical properties, with the smaller sample exhibiting superior properties. The mechanical properties of sintered SiC samples appear to be influenced by relative density, grain size, and morphology, as well as the existence of intergranular glassy phase. Studies of fracture surface morphologies have revealed the mechanism of failure to be transgranular in SSiC or HP-SiC, and intergranular in case of SPS-SiC, indicating the dominating influence of grain size and α-SiC formation with high aspect ratio.

  18. Study of nano-metric silicon carbide powder sintering. Application to fibers processing

    International Nuclear Information System (INIS)

    Malinge, A.

    2011-01-01

    Silicon carbide ceramic matrix composites (SiCf/SiCm) are of interest for high temperature applications in aerospace or nuclear components for their relatively high thermal conductivity and low activation under neutron irradiation. While most of silicon carbide fibers are obtained through the pyrolysis of a poly-carbo-silane precursor, sintering of silicon carbide nano-powders seems to be a promising route to explore. For this reason, pressureless sintering of SiC has been studied. Following the identification of appropriate sintering aids for the densification, optimization of the microstructure has been achieved through (i) the analysis of the influence of operating parameters and (ii) the control of the SiC β a SiC α phase transition. Green fibers have been obtained by two different processes involving the extrusion of SiC powder dispersion in polymer solution or the coagulation of a water-soluble polymer containing ceramic particles. Sintering of these green fibers led to fibers of around fifty microns in diameter. (author) [fr

  19. Aluminum nitride-silicon carbide whisker composites: Processing, properties, and microstructural stability

    Energy Technology Data Exchange (ETDEWEB)

    Cross, M.T.

    1990-01-01

    Aluminum nitride -- silicon carbide whisker composites with up to 20 vol % whiskers were fabricated by pressureless sintering (1750{degree}--1800{degree}C) and by hot-pressing (1700{degree}--1800{degree}C). Silicon carbide whiskers were found to degrade depending on the type of protective powder bed used during sintering. Whiskers were found to degraded in high oxygen containing samples by reaction with sintering additives. Whisker degradation was also due to the formation of silicon carbide -- aluminum nitride solid solution. No whisker degradation was observed in hot-pressed samples. For these samples Young's modulus and fracture toughness were measured. A 33% increase in the fracture toughness was measured by the indentation technique for a 20 vol % whisker composite. Operative toughening mechanisms were investigated using scanning electron microscopy. Crack deflection and whisker bridging were the dominant mechanisms. It was also shown that load transfer from matrix to whiskers can be a contributing factor to toughening. 88 refs., 34 figs., 11 tabs.

  20. Silicon carbide nanomaterial as a coating for solid-phase microextraction.

    Science.gov (United States)

    Tian, Yu; Feng, Juanjuan; Wang, Xiuqin; Sun, Min; Luo, Chuannan

    2018-01-26

    Silicon carbide has excellent properties, such as corrosion resistance, high strength, oxidation resistance, high temperature, and so on. Based on these properties, silicon carbide was coated on stainless-steel wire and used as a solid-phase microextraction coating, and polycyclic aromatic hydrocarbons were employed as model analytes. Using gas chromatography, some important factors that affect the extraction efficiency were optimized one by one, and an analytical method was established. The analytical method showed wide linear ranges (0.1-30, 0.03-30, and 0.01-30 μg/L) with satisfactory correlation coefficients (0.9922-0.9966) and low detection limits (0.003-0.03 μg/L). To investigate the practical application of the method, rainwater and cigarette ash aqueous solution were collected as real samples for extraction and detection. The results indicate that silicon carbide has excellent application in the field of solid-phase microextraction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microalloying Boron Carbide with Silicon to Achieve Dramatically Improved Ductility.

    Science.gov (United States)

    An, Qi; Goddard, William A

    2014-12-04

    Boron carbide (B4C) is a hard material whose value for extended engineering applications such as body armor; is limited by its brittleness under impact. To improve the ductility while retaining hardness, we used density functional theory to examine modifying B4C ductility through microalloying. We found that replacing the CBC chain in B4C with Si-Si, denoted as (B11Cp)-Si2, dramatically improves the ductility, allowing a continuous shear to a large strain of 0.802 (about twice of B4C failure strain) without brittle failure. Moreover, (B11C)-Si2 retains low density and high hardness. This ductility improvement arises because the Si-Si linkages enable the icosahedra accommodate additional shear by rotating instead of breaking bonds.

  2. Formation of Al2O3-HfO2 Eutectic EBC Film on Silicon Carbide Substrate

    Directory of Open Access Journals (Sweden)

    Kyosuke Seya

    2015-01-01

    Full Text Available The formation mechanism of Al2O3-HfO2 eutectic structure, the preparation method, and the formation mechanism of the eutectic EBC layer on the silicon carbide substrate are summarized. Al2O3-HfO2 eutectic EBC film is prepared by optical zone melting method on the silicon carbide substrate. At high temperature, a small amount of silicon carbide decomposed into silicon and carbon. The components of Al2O3 and HfO2 in molten phase also react with the free carbon. The Al2O3 phase reacts with free carbon and vapor species of AlO phase is formed. The composition of the molten phase becomes HfO2 rich from the eutectic composition. HfO2 phase also reacts with the free carbon and HfC phase is formed on the silicon carbide substrate; then a high density intermediate layer is formed. The adhesion between the intermediate layer and the substrate is excellent by an anchor effect. When the solidification process finished before all of HfO2 phase is reduced to HfC phase, HfC-HfO2 functionally graded layer is formed on the silicon carbide substrate and the Al2O3-HfO2 eutectic structure grows from the top of the intermediate layer.

  3. Ferromagnetism observed in silicon-carbide-derived carbon

    Science.gov (United States)

    Peng, Bo; Zhang, Yuming; Wang, Yutian; Guo, Hui; Yuan, Lei; Jia, Renxu

    2018-02-01

    Carbide-derived carbon (CDC) is prepared by etching high purity 4H-SiC single crystals in a mixed atmosphere of 5% Cl2 and 95% Ar for 120 min and 240 min. The secondary ion mass spectroscopy (SIMS) bulk analysis technique excludes the possibility of ferromagnetic transition metal (TM) contamination arising during the experimental process. The paramagnetic and ferromagnetic components are separated from the measured magnetization-magnetic field curves of the samples. Through the use of the Brillouin function, paramagnetic centers carrying a magnetic moment of ˜1.3 μB are fitted. A resolvable hysteresis loop in the low magnetic field area is preserved at room temperature. The temperature dependence of the relative intensity of the Lorentzian-like electron spin resonance (ESR) line observed by electron spin spectroscopy reveals the existence of exchange interaction between the localized paramagnetic centers. First-principles calculations show the dominant configuration of defects in the graphitic CDC films. By calculating the energy difference between the antiferromagnetic and ferromagnetic phases, we deduce that the ferromagnetic coupling is sensitive to the concentration of defects.

  4. Surface modification of silicon carbide with silane coupling agent and hexadecyl iodiele

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xujing, E-mail: shangxujing@tju.edu.cn; Zhu, Yumei, E-mail: zymtju@163.com; Li, Zhihong, E-mail: lzhtju@163.com

    2017-02-01

    Highlights: • A novel universal method was performed to enhance hydrophobicity of SiC powder. • The modification effects of KH550 and KH590 were compared and the optimum reaction parameters were established. • Hexadecyl iodiele was successfully grafted on the surface of SiC-KH590 powder. • Surface changes on SiC powder before and after modification were analyzed via FTIR, XPS, SEM. • The related reaction mechanisms were discussed. - Abstract: In this paper, two kinds of silane coupling agents, namely 3-aminopropyl triethoxysilane (KH550) and 3-mercaptopropyl trimethoxysilane (KH590), were adopted as preliminary modifiers to improve the hydrophobic surface properties of silicon carbide (SiC) powder for the first step. The factors that influence the modification effects were investigated by measuring the contact angle. The results showed that KH590 has a better effect than KH550 for the hydrophobic modification of SiC, and the contact angle improved most after SiC powder was reacted with 0.3 g KH590 at 75 °C in aqueous/alcohol solution for 4 h. On account of further enhancement of hydrophobicity, the study was focused on utilizing nucleophilic substitution between KH590 and hexadecyl iodiele to extend the length of alkyl chain. Compared with using KH590 alone, SiC powder modified by KH590 and hexadecyl iodiele showed better water resistance with an increase of contact angle from 106.8° to 127.5°. The Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectra (XPS) as well as X-ray diffraction (XRD) analysis results showed that KH550/KH590 and hexadecyl iodiele can be covalently bonded to the surface of SiC powder without altering its crystal configuration. This methodology may provide a new way of the modification of inorganic materials in further.

  5. Formation of boron nitride coatings on silicon carbide fibers using trimethylborate vapor

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Mengjiao; Zhou, Tong; He, Jing; Chen, Lifu, E-mail: lfchen@xmu.edu.cn

    2016-09-30

    High quality boron nitride (BN) coatings have been grown on silicon carbide (SiC) fibers by carbothermal nitridation and at atmospheric pressure. SiC fibers were first treated in chlorine gas to form CDC (carbide-derived carbon) film on the fiber surface. The CDC-coated SiC fibers were then reacted with trimethylborate vapor and ammonia vapor at high temperature, forming BN coatings by carbothermal reduction. The FT-IR, XPS, XRD, SEM, TEM and AES were used to investigate the formation of the obtained coatings. It has been found that the obtained coatings are composed of phase mixture of h-BN and amorphous carbon, very uniform in thickness, have smooth surface and adhere well with the SiC fiber substrates. The BN-coated SiC fibers retain ∼80% strength of the as-received SiC fibers and show an obvious interfacial debonding and fiber pullout in the SiC{sub f}/SiOC composites. This method may be useful for the large scale production of high quality BN coating on silicon carbide fiber.

  6. Multi-quantum spin resonances of intrinsic defects in silicon carbide

    International Nuclear Information System (INIS)

    Georgy Astakhov

    2014-01-01

    We report the observation of multi-quantum microwave absorption and emission, induced by the optical excitation of silicon vacancy related defects in silicon carbide (SiC). In particular, we observed two-quantum transitions from +3/2 to -1/2 and from -3/2 to +1/2 spin sublevels, unambiguously indicating the spin S = 3/2 ground state. Our findings may have implications for a broad range of quantum applications. On one hand, a single silicon vacancy defect is a potential source of indistinguishable microwave photon pairs due to the two-quantum emission process. On the other hand, the two-quantum absorption can be used generate a population inversion, which is a prerequisite to fabricate solid-state maser and quantum microwave amplifier. This opens a new platform cavity quantum electrodynamics experiments and quantum information processing on a single chip. (author)

  7. Parallel Connection of Silicon Carbide MOSFETs for Multichip Power Modules

    DEFF Research Database (Denmark)

    Li, Helong

    characterization of SiC MOSFETs regarding the influence of switching loop stray inductance and common source stray inductance. The pulse current measurement methods of fast switching speed power devices are summarized and a new method witch silicon steel current transformer is presented. With the knowledge...... to a significant transient current imbalance during the switching period. Besides the circuit mismatch, a current coupling effect is also found in the DBC layout, which aggravates the transient current imbalance among the paralleled SiC MOSFET dies. The discussions about the effects of the auxiliary source......, which turns out to be able to improve the efficiency compared to the traditional half bridge. Besides the split output topology benefits, compared to the traditional DBC layout, the proposed DBC layout significantly reduces the circuit mismatch and current coupling effect, which consequently improves...

  8. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide

    Science.gov (United States)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; He, Xiaohui; Liu, Bin; Yamamura, Kazuya

    2016-04-01

    For effective machining of difficult-to-machine materials, such as reaction-sintered silicon carbide (RS-SiC) and single-crystal 4H silicon carbide (4H-SiC), a novel polishing technique named anodic oxidation polishing was proposed, which combined with the anodic oxidation of substrate and slurry polishing of oxide. By scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) observation and atomic force microscopy analysis, both the anodic oxidation behaviors of RS-SiC and 4H-SiC were investigated. Through comparison of the surfaces before and after hydrofluoric acid etching of the oxidized samples by the scanning white light interferometry (SWLI) measurement, the relationships between oxidation depth and oxidation time were obtained, and the calculated oxidation rate for RS-SiC was 5.3 nm/s and that for 4H-SiC was 5.8 nm/s based on the linear Deal-Grove model. Through anodic oxidation polishing of RS-SiC substrate and 4H-SiC substrate, respectively, the surface roughness rms obtained by SWLI was improved to 2.103 nm for RS-SiC and to 0.892 nm for 4H-SiC. Experimental results indicate that anodic oxidation polishing is an effective method for the machining of RS-SiC and 4H-SiC samples, which would improve the process level of SiC substrates and promote the application of SiC products in the fields of optics, ceramics, semiconductors, electronics, and so on.

  9. Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics

    International Nuclear Information System (INIS)

    Pavon, J.M. Cano; Alonso, E. Vereda; Cordero, M.T. Siles; Torres, A. Garcia de; Lopez-Cepero, J.M.

    2005-01-01

    Biomorphic silicon carbide ceramics are a new class of materials prepared by several complex processing steps including pre-processing (shaping, drying, high-temperature pyrolysis in an inert atmosphere) and reaction with liquid silicon to obtain silicon-carbide. The results of industrial process of synthesis (measured by the SiC content) must be evaluated by means of fast analytical methods. In the present work, diverse samples of biomorphic ceramics derived from wood are studied for to evaluate the capability of the different analytical techniques (XPS, LIBS, FT-IR and also atomic spectroscopy applied to previously dissolved samples) for the analysis of these materials. XPS and LIBS gives information about the major components, whereas XPS and FT-IR can be used to evaluate the content of SiC. On the other hand, .the use of atomic techniques (as ICP-MS and ETA-AAS) is more adequate for the analysis of metal ions, specially at trace level. The properties of ceramics depend decisively of the content of chemical elements. Major components found were C, Si, Al, S, B and Na in all cases. Previous dissolution of the samples was optimised by acid attack in an oven under microwave irradiation

  10. Use of silicon carbide sludge to form porous alkali-activated materials for insulating application

    Science.gov (United States)

    Prud'homme, E.; Joussein, E.; Rossignol, S.

    2015-07-01

    One of the objectives in the field of alkali-activated materials is the development of materials having greater thermal performances than conventional construction materials such as aerated concrete. The aim of this paper is to present the possibility to obtain controlled porosity and controlled thermal properties with geopolymer materials including a waste like silicon carbide sludge. The porosity is created by the reaction of free silicon contains in silicon carbide sludge leading to the formation of hydrogen. Two possible ways are investigated to control the porosity: modification of mixture formulation and additives introduction. The first way is the most promising and allowed the formation of materials presenting the same density but various porosities, which shows that the material is adaptable to the application. The insulation properties are logically linked to the porosity and density of materials. A lower value of thermal conductivity of 0.075 W.m-1.K-1 can be reached for a material with a low density of 0.27 g.cm-3. These characteristics are really good for a mineral-based material which always displays non-negligible resistance to manipulation.

  11. Fluidized bed deposition and evaluation of silicon carbide coatings on microspheres

    International Nuclear Information System (INIS)

    Federer, J.I.

    1977-01-01

    The fuel element for the HTGR is an array of closely packed fuel microspheres in a carbonaceous matrix. A coating of dense silicon carbide (SiC), along with pyrocarbon layers, is deposited on the fueled microspheres to serve as a barrier against diffusion of fission products. The microspheres are coated with silicon carbide in a fluidized bed by reaction of methyltrichlorosilane (CH 3 SiCl 3 or MTS) and hydrogen at elevated temperatures. The principal variables of coating temperature and reactant gas composition (H 2 /MTS ratio) have been correlated with coating rate, morphology, stoichiometry, microstructure, and density. The optimum temperature for depositing highly dense coatings is in the range 1475 to 1675 0 C. Lower temperatures result in silicon-rich deposits, while higher temperatures may cause unacceptable porosity. The optimum H 2 /MTS ratio for highly dense coatings is 20 or more (approximately 5% MTS or less). The amount of grown-in porosity increases as the H 2 /MTS ratio decreases below 20. The requirement that the H 2 /MTS ratio be about 20 or more imposes a practical restraint on coating rate, since increasing the total flow rate would eventually expel microspheres from the coating tube. Evaluation of stoichiometry, morphology, and microstructure support the above mentioned optimum conditions of temperature and reactant gas composition. 18 figures, 3 tables

  12. Development of an Extreme High Temperature n-type Ohmic Contact to Silicon Carbide

    Science.gov (United States)

    Evans, Laura J.; Okojie, Robert S.; Lukco, Dorothy

    2011-01-01

    We report on the initial demonstration of a tungsten-nickel (75:25 at. %) ohmic contact to silicon carbide (SiC) that performed for up to fifteen hours of heat treatment in argon at 1000 C. The transfer length method (TLM) test structure was used to evaluate the contacts. Samples showed consistent ohmic behavior with specific contact resistance values averaging 5 x 10-4 -cm2. The development of this contact metallization should allow silicon carbide devices to operate more reliably at the present maximum operating temperature of 600 C while potentially extending operations to 1000 C. Introduction Silicon Carbide (SiC) is widely recognized as one of the materials of choice for high temperature, harsh environment sensors and electronics due to its ability to survive and continue normal operation in such environments [1]. Sensors and electronics in SiC have been developed that are capable of operating at temperatures of 600 oC. However operating these devices at the upper reliability temperature threshold increases the potential for early degradation. Therefore, it is important to raise the reliability temperature ceiling higher, which would assure increased device reliability when operated at nominal temperature. There are also instances that require devices to operate and survive for prolonged periods of time above 600 oC [2, 3]. This is specifically needed in the area of hypersonic flight where robust sensors are needed to monitor vehicle performance at temperature greater than 1000 C, as well as for use in the thermomechanical characterization of high temperature materials (e.g. ceramic matrix composites). While SiC alone can withstand these temperatures, a major challenge is to develop reliable electrical contacts to the device itself in order to facilitate signal extraction

  13. High temperature Hexoloy{trademark} SX silicon carbide. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.V.; Lau, S.K.; Storm, R.S. [Carborundum Co., Niagara Falls, NY (United States)

    1994-09-01

    HEXOLOY{reg_sign} SX-SiC, fabricated with Y and Al containing compounds as sintering aids, has been shown to possess significantly improved strength and toughness over HEXOLOY{reg_sign}SA-SiC. This study was undertaken to establish and benchmark the complete mechanical property database of a first generation material, followed by a process optimization task to further improve the properties. Mechanical characterization on the first generation material indicated that silicon-rich pools, presumably formed as a reaction product during sintering, controlled the strength from room temperature to 1,232 C. At 1,370 C in air, the material was failing due to a glass-phase formation at the surface. This glass-phase formation was attributed to the reaction of yttrium aluminates, which exist as a second phase in the material, with the ambient. This process was determined to be a time-dependent one that leads to slow crack growth. Fatigue experiments clearly indicated that the slow crack growth driven by the reaction occurred only at temperatures >1,300 C, above the melting point of the glass phase. Process optimization tasks conducted included the selection of the best SiC powder source, studies on mixing/milling conditions for SiC powder with the sintering aids, and a designed experiment involving a range of sintering and post-treatment conditions. The optimization study conducted on the densification variables indicated that lower sintering temperatures and higher post-treatment pressures reduce the Si-rich pool formation, thereby improving the room-temperature strength. In addition, it was also determined that furnacing configuration and atmosphere were critical in controlling the Si-rich formation.

  14. Joining silicon carbide to austenitic stainless steel through diffusion welding; Stellingen behorende bij het proefschrift

    Energy Technology Data Exchange (ETDEWEB)

    Krugers, Jan-Paul

    1993-01-19

    In this thesis, the results are presented of a study dealing with joining silicon carbide to austenitic stainless steel AIS316 by means of diffusion welding. Welding experiments were carried out without and with the use of a metallic intermediate, like copper, nickel and copper-nickel alloys at various conditions of process temperature, process time, mechanical pressure and interlayer thickness. Most experiments were carried out in high vacuum. For reasons of comparison, however, some experiments were also carried out in a gas shielded environment of 95 vol.% Ar and 5 vol.% H2.

  15. Effect of hot isostatic pressing on the properties of sintered alpha silicon carbide

    Science.gov (United States)

    Watson, G. K.; Moore, T. J.; Millard, M. L.

    1985-01-01

    Two lots of alpha silicon carbide were isostatically hot-pressed under 138 MPa for 2 h in Ar at temperatures up to 2200 C. Nearly theoretically dense specimens resulted. Hot isostatic pressing increased both room-temperature strength and 1200 C strength, and resulted in improved reliability. One lot of material which was pressed at 2200 C showed increases of about 20 percent in room-temperature strength and about 50 percent in 1200 C flexural strength; the Weibull modulus improved about 100 percent.

  16. Microstructure and orientation effects on properties of discontinuous silicon carbide/aluminum composites

    Science.gov (United States)

    Mcdanels, D. L.; Hoffman, C. A.

    1984-01-01

    Composite panels containing up to 40 vol % discontinuous silicon carbide SiC whisker, nodule, or particulate reinforcement in several aluminum matrices are commercially fabricated and the mechanical properties and microstructual characteristics are evaluated. The yield and tensile strengths and the ductility are controlled primarily by the matrix alloy, the temper condition, and the reinforcement content. Particulate and nodule reinforcements are as effective as whisker reinforcement. Increased ductility is attributed to purer, more uniform starting materials and to more mechanical working during fabrication. Comparing mechanical properties with those of other aluminum alloys shows that these low cost, lightweight composites demonstrate very good potential for application to aerospace structures.

  17. Dual ohmic contact to N- and P-type silicon carbide

    Science.gov (United States)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  18. Fluorescent Silicon Carbide and its Applications in White Light-Emitting Diodes

    DEFF Research Database (Denmark)

    Ou, Yiyu

    light extraction efficiency are presented. White LEDs are the most promising techniques to replace the conventional lighting sources. A typical white LED consists of a Gallium Nitride (GaN) blue or Ultraviolet (UV) LED stack and a wavelengthconversion material. Silicon Carbide (SiC) has a wide optical...... materials usually suffer from the low light extraction efficiency due to the large refractive index difference between air and semiconductor interface. To ease this limitation, ARS have been widely applied on the semiconductor surface in LED and solar cell applications. This thesis has theoretically...

  19. Etch rate and surface morphology of polycrystalline beta-silicon carbide using chlorine trifluoride gas

    OpenAIRE

    Habuka, Hitoshi; Oda, S.; Fukai, Y.; Fukae, K.; Takeuchi, T.; Aihara, M.

    2006-01-01

    Etch rates of polycrystalline beta-silicon carbide (SiC) substrate in a wide range from less than one to more than 10 mu m/min are obtained using chlorine trifluoride gas in ambient nitrogen at 673-973 K and atmospheric pressure in a horizontal reactor. Over the chlorine trifluoride gas concentrations of 10-100% used in this study, the etch rate increases at the substrate temperatures between 673 and 773 K. Additionally, the etch rate at temperatures higher than 773 K is independent of the su...

  20. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hongxia; Zhang Heming [Key Laboratory of the Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi' an 710071 (China); Zhang Zhiyong, E-mail: liuhongxia_xidian@126.co [Institute of Information Science and Technology, Northwest University, Xi' an 710069 (China)

    2009-05-01

    A two-probe system of the heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) was established based on its optimized structure. By using a method combining nonequilibrium Green's function (NEGF) with density functional theory (DFT), the transport properties of the heterojunction were investigated. Our study reveals that the highest occupied molecular orbital (HOMO) has a higher electron density on the CNT section and the lowest unoccupied molecular orbital (LUMO) mainly concentrates on the interface and the SiCNT section. The positive and negative threshold voltages are +1.8 and -2.2 V, respectively.

  1. The effect of fiber microstructure on evolution of residual stresses in silicon carbide/titanium aluminide composites

    Science.gov (United States)

    Pindera, Marek-Jerzy; Freed, Alan D.

    1992-01-01

    This paper examines the effect of the morphology of the SCS6 silicon carbide fiber on the evolution of residual stresses in SiC/Ti composites. A micromechanics model based on the concentric cylinder concept is presented which is used to calculate residual stresses in a SiC/Ti composite during axisymmetric cooling by a spatially uniform temperature change. The silicon carbide fiber is modeled as a layered material with five distinct transversely isotropic and orthotropic, elastic layers, whereas the titanium matrix is taken to be isotropic, with temperature-dependent elastoplastic properties. The results arc compared with those obtained based on the assumption that the silicon carbide fiber is isotropic and homogeneous.

  2. Silicon carbide hollow fiber membranes: obtainment and characterization; Membranas de fibra oca de carbeto de silicio: obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, S.S.L.; Ferreira, R.S.B.; Araujo, B.A.; Medeiros, K.M.; Lucena, H.L.; Araujo, E.M., E-mail: sandriely_sonaly@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais

    2016-07-01

    Silicon carbide is a promising material for the production of membranes due to its high melting temperature, thermal shock resistance, excellent mechanical and chemical stability. So, this study aims to characterize silicon carbide membranes in order to apply them in the separation of oil-water. A solution (SiC + PES + 1-Methyl- 2-Pyrrolidone) and through the extrusion technique by immersion precipitation membranes were obtained with hollow fiber geometry was prepared. And then sintered at 1500 ° C. For the characterization analyzes were made XRD, FTIR and SEM to evaluate the morphology and composition of the membranes obtained before and after sintering. (author)

  3. Transport properties of boron-doped single-walled silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Yang, Y.T.; Ding, R.X.; Song, J.X.

    2011-01-01

    The doped boron (B) atom in silicon carbide nanotube (SiCNT) can substitute carbon or silicon atom, forming two different structures. The transport properties of both B-doped SiCNT structures are investigated by the method combined non-equilibrium Green's function with density functional theory (DFT). As the bias ranging from 0.8 to 1.0 V, the negative differential resistance (NDR) effect occurs, which is derived from the great difficulty for electrons tunneling from one electrode to another with the increasing of localization of molecular orbital. The high similar transport properties of both B-doped SiCNT indicate that boron is a suitable impurity for fabricating nano-scale SiCNT electronic devices.

  4. Growth and intercalation of graphene on silicon carbide studied by low-energy electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Speck, Florian; Ostler, Markus; Wanke, Martina; Seyller, Thomas [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Technische Physik, Erlangen (Germany); Technische Universitaet Chemnitz, Institut fuer Physik (Germany); Besendoerfer, Sven [Universitaet Erlangen-Nuernberg, Lehrstuhl fuer Technische Physik, Erlangen (Germany); Krone, Julia [Technische Universitaet Chemnitz, Institut fuer Physik (Germany)

    2017-11-15

    Based on its electronic, structural, chemical, and mechanical properties, many potential applications have been proposed for graphene. In order to realize these visions, graphene has to be synthesized, grown, or exfoliated with properties that are determined by the targeted application. Growth of so-called epitaxial graphene on silicon carbide by sublimation of silicon in an argon atmosphere is one particular method that could potentially lead to electronic applications. In this contribution we summarize our recent work on different aspects of epitaxial graphene growth and interface manipulation by intercalation, which was performed by a combination of low-energy electron microscopy, low-energy electron diffraction, atomic force microscopy and photoelectron spectroscopy. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Silicon doped boron carbide nanorod growth via a solid-liquid-solid process

    Science.gov (United States)

    Han, Wei-Qiang

    2006-03-01

    Here we report the synthesis of silicon doped boron carbide (Si-doped B4C) nanorods via a solid reaction using activated carbon, boron, and silicon powder as reactants. These nanorods have been studied by high-resolution transmission electron microscopy, scanning electron microscopy, electron energy loss spectroscopy, and energy-dispersive x-ray spectrometry. The diameter of Si-doped B4C nanorods ranges from 15to70nm. The length of Si-doped B4C nanorods is up to 30μm. NixCoyBz nanoparticles are used as catalysts for the growth of Si-doped B4C nanorods. A solid-liquid-solid growth mechanism is proposed.

  6. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  7. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.

    Science.gov (United States)

    Shen, Dianyu; Zhan, Zhaolin; Liu, Zhiduo; Cao, Yong; Zhou, Li; Liu, Yuanli; Dai, Wen; Nishimura, Kazuhito; Li, Chaoyang; Lin, Cheng-Te; Jiang, Nan; Yu, Jinhong

    2017-06-01

    In this study, we report a facile approach to fabricate epoxy composite incorporated with silicon carbide nanowires (SiC NWs). The thermal conductivity of epoxy/SiC NWs composites was thoroughly investigated. The thermal conductivity of epoxy/SiC NWs composites with 3.0 wt% filler reached 0.449 Wm -1  K -1 , approximately a 106% enhancement as compared to neat epoxy. In contrast, the same mass fraction of silicon carbide micron particles (SiC MPs) incorporated into epoxy matrix showed less improvement on thermal conduction properties. This is attributed to the formation of effective heat conduction pathways among SiC NWs as well as a strong interaction between the nanowires and epoxy matrix. In addition, the thermal properties of epoxy/SiC NWs composites were also improved. These results demonstrate that we developed a novel approach to enhance the thermal conductivity of the polymer composites which meet the requirement for the rapid development of the electronic devices.

  8. Synthesis of silicon carbide nanopowders in free flowing plasma jet with different energy levels

    Science.gov (United States)

    Nikitin, D.; Sivkov, A.; Rahmatullin, I.; Ivashutenko, A.

    2017-05-01

    Silicon carbide (SiC) nanopowders were produced by the synthesis in an electrodischarge plasma jet generated by a high-current pulsed coaxial magnetoplasma accelerator. The present work focuses on the experiments where the obtained hypersonic plasma jet flew into space of the reactor chamber without impact on a target. The energy level of experiments was changed from ∼10.0 to ∼30.0 kJ. Four experiments were carried out at different energy levels. The powder products synthesized by the plasmadynamic method were studied by such well-known methods: X-ray diffraction (XRD), transmission electron microscopy (TEM). All the powders mainly contain cubic silicon carbide (β-SiC) particles with clear crystal structures and triangular shapes. SiC content reaches its maximum value 95% at the energy level 21.0 kJ, then SiC content is decreased to 70% the energy level 27.8 kJ. The powder crystallites in different experiments have approximately the same average crystallite size because quasistationary time, which allows growing powder crystallites, is absent.

  9. Properties of ultrathin cholesterol and phospholipid layers surrounding silicon-carbide nanotube: MD simulations.

    Science.gov (United States)

    Raczyński, Przemysław; Raczyńska, Violetta; Górny, Krzysztof; Gburski, Zygmunt

    2015-08-15

    Computer simulation technique was used to study the dynamics of cholesterol and POPC phospholipid molecules forming a thin layer on the surface of the carbon and silicon-carbide nanotubes. Each nanotube was surrounded by an ultra-thin film formed by n lipid molecules, where n varies from 15 to 50. All studies were done for five temperatures, including physiological one (T=260, 285, 310, 335 and 360K). The influence of a nanotube on the dynamics of cholesterol or phospholipid molecules in a layer is presented and discussed. The water is ubiquitous in all biological milieus, where the cholesterol or lipids occur. Thus, simulations were performed in a water environment. Moreover, to show different behavior of lipids in systems with water the results were compared with the samples without it. The dynamical and structural observables, such as the mean square displacement, diffusion coefficient, radial distribution function, and activation energy were calculated to qualitatively investigate the behavior of cholesterol and phospholipid molecules in the layers. We observed remarkable differences between the cholesterol dynamics depending whether the ultrathin film surrounds carbon or silicon-carbide nanotube and whether the water environment appeared. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol

    Directory of Open Access Journals (Sweden)

    Debarpita Ghosal

    2015-07-01

    Full Text Available The performance of toluene methylation reaction was studied on H-ZSM-5 catalyst modified with La, Ce and Nb at different percentage loading. It was found that 10% metal loading produced the best performance in the reaction in terms of toluene conversion. The catalyst was coated on silicon carbide foam support which showed better conversion than the pelleted catalyst. Again, among the treated and untreated H-ZSM-5, the La-ZSM-5 catalyst is chosen for the reaction for its highest selectivity towards xylene, the main product. All catalysts were characterized in terms of surface properties, SEM, XRD and NH3-TPD. Kinetic study was done on La-ZSM-5 catalyst with 10% loading. In this kineticstudy, Langmuir Hinshelwood kinetic model with surface reaction as rate controlling step was selected as the rate equation. The activation energy was found to be 47 kJ/mol. © 2015 BCREC UNDIP. All rights reserved. Received: 9th December 2014; Revised: 27th April 2015; Accepted: 29th April 2015  How to Cite: Ghosal, D., Basu, J.K., Sengupta, S. (2015. Application of La-ZSM-5 Coated Silicon Carbide Foam Catalyst for Toluene Methylation with Methanol. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 201-209. (doi:10.9767/bcrec.10.2.7872.201-209 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7872.201-209  

  11. Device for fracturing silicon-carbide coatings on nuclear-fuel particles

    Science.gov (United States)

    Turner, L.J.; Willey, M.G.; Tiegs, S.M.; Van Cleve, J.E. Jr.

    This invention is a device for fracturing particles. It is designed especially for use in hot cells designed for the handling of radioactive materials. In a typical application, the device is used to fracture a hard silicon-carbide coating present on carbon-matrix microspheres containing nuclear-fuel materials, such as uranium or thorium compounds. To promote remote control and facilitate maintenance, the particle breaker is pneumatically operated and contains no moving parts. It includes means for serially entraining the entrained particles on an anvil housed in a leak-tight chamber. The flow rate of the gas is at a value effecting fracture of the particles; preferably, it is at a value fracturing them into product particulates of fluidizable size. The chamber is provided with an outlet passage whose cross-sectional area decreases in the direction away from the chamber. The outlet is connected tangentially to a vertically oriented vortex-flow separator for recovering the product particulates entrained in the gas outflow from the chamber. The invention can be used on a batch or continuous basis to fracture the silicon-carbide coatings on virtually all of the particles fed thereto.

  12. UV laser ablation of silicon carbide ring surfaces for mechanical seal applications

    Science.gov (United States)

    Daurelio, Giuseppe; Bellosi, Alida; Sciti, Diletta; Chita, Giuseppe; Allegretti, Didio; Guerrini, Fausto

    2000-02-01

    Silicon carbide ceramic seal rings are treated by KrF excimer laser irradiation. Surface characteristics, induced by laser treatment, depend upon laser fluence, the number of laser pulses, their energy and frequency, the rotation rate of the ring and the processing atmosphere. It was ascertained that silicon carbide has to be processed under an inert atmosphere to avoid surface oxidation. Microstructural analyses of surface and cross section of the laser processed samples showed that the SiC surface is covered by a scale due to the melting/resolidification processes. At high fluence there are no continuous scales on the surfaces; materials is removed by decomposition/vaporization and the ablation depth is linearly dependent on the number of pulses. Different surface morphologies are observed. The evolution of surface morphology and roughness is discussed with reference to compositions, microstructure and physical and optical properties of the ceramic material and to laser processing parameters. Preliminary results on tribological behavior of the treated seals are reported.

  13. Developmental history and trends for reaction-bonded silicon carbide mirrors

    Science.gov (United States)

    Ealey, Mark A.; Weaver, Gerald Q.

    1996-11-01

    During the decade of the 1980's, silicon carbide was funded primarily as the water cooled mirror material for the future and secondarily as a lightweight tactical alternative to beryllium and glass. With the perceived deployment of Star Wars, the payoff for the silicon carbide investment was imminent. Wrong assumption. The emphasis shifted from cooled optics to lightweight, uncooled optics and structures during the early 1990's. CERAFORM SiC became more attractive as a mirror material as the forming process produced lighter, closed back mirrors and a polishing process was developed to finish the bare material to 10 angstroms rms. Cost became the major limitation to penetrating commercial markets and with the defense cut-backs in 1993 UTOS ceases operations. The facilities and intellectual property associated with CERAFORM was at the mercy of bean counters. In March 1995 Xintics officially purchased form the United Technologies Corporation all intellectual property including patents, processes, proposals, engineering notebook, and trademarks pertaining to CERAFORM SiC. In a subsequent deal, part of the furnace facility was also obtained.

  14. A Model for the Oxidation of Carbon Silicon Carbide Composite Structures

    Science.gov (United States)

    Sullivan, Roy M.

    2004-01-01

    A mathematical theory and an accompanying numerical scheme have been developed for predicting the oxidation behavior of carbon silicon carbide (C/SiC) composite structures. The theory is derived from the mechanics of the flow of ideal gases through a porous solid. The result of the theoretical formulation is a set of two coupled nonlinear differential equations written in terms of the oxidant and oxide partial pressures. The differential equations are solved simultaneously to obtain the partial vapor pressures of the oxidant and oxides as a function of the spatial location and time. The local rate of carbon oxidation is determined using the map of the local oxidant partial vapor pressure along with the Arrhenius rate equation. The nonlinear differential equations are cast into matrix equations by applying the Bubnov-Galerkin weighted residual method, allowing for the solution of the differential equations numerically. The numerical method is demonstrated by utilizing the method to model the carbon oxidation and weight loss behavior of C/SiC specimens during thermogravimetric experiments. The numerical method is used to study the physics of carbon oxidation in carbon silicon carbide composites.

  15. Modification of silicon nitride and silicon carbide surfaces for food and biosensor applications

    NARCIS (Netherlands)

    Rosso, M.

    2009-01-01

    Silicon-rich silicon nitride (SixN4, x > 3) is a robust insulating material widely used for the coating of microdevices: its high chemical and mechanical inertness make it a material of choice for the reinforcement of fragile microstructures (e.g. suspended microcantilevers, micro-fabricated

  16. Effect of metallic coating on the properties of copper-silicon carbide composites

    Science.gov (United States)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  17. Pulsed Capacitance Measurement of Silicon Carbide (SiC) Schottky Diode and SiC Metal Oxide Semiconductor

    National Research Council Canada - National Science Library

    Griffin, Timothy E

    2006-01-01

    The incremental capacitance C was measured for a silicon carbide (SiC) Schottky diode during a reverse-biasing pulse and for two SiC n-MOS transistors during a negative pulse to their source with the drain grounded...

  18. Polytype Stability and Microstructural Characterization of Silicon Carbide Epitaxial Films Grown on [ {11}overline{{2}} {0} ]- and [0001]-Oriented Silicon Carbide Substrates

    Science.gov (United States)

    Bishop, S. M.; Reynolds, C. L.; Liliental-Weber, Z.; Uprety, Y.; Zhu, J.; Wang, D.; Park, M.; Molstad, J. C.; Barnhardt, D. E.; Shrivastava, A.; Sudarshan, T. S.; Davis, R. F.

    2007-04-01

    The polytype and surface and defect microstructure of epitaxial layers grown on 4H( {11}overline{{2}} {0} ), 4H(0001) on-axis, 4H(0001) 8° off-axis, and 6H(0001) on-axis substrates have been investigated. High-resolution x-ray diffraction (XRD) revealed the epitaxial layers on 4H( {11}overline{{2}} {0} ) and 4H(0001) 8° off-axis to have the 4H-SiC (silicon carbide) polytype, while the 3C-SiC polytype was identified for epitaxial layers on 4H(0001) and 6H(0001) on-axis substrates. Cathodoluminescence (CL), Raman spectroscopy, and transmission electron microscopy (TEM) confirmed these results. The epitaxial surface of 4H( {11}overline{{2}} {0} ) films was specular with a roughness of 0.16-nm root-mean-square (RMS), in contrast to the surfaces of the other epitaxial layer-substrate orientations, which contained curvilinear boundaries, growth pits (˜3 × 104 cm-2), triangular defects >100 μm, and significant step bunching. Molten KOH etching revealed large defect densities within 4H( {11}overline{{2}} {0} ) films that decreased with film thickness to ˜106 cm-2 at 2.5 μm, while cross-sectional TEM studies showed areas free of defects and an indistinguishable film-substrate interface for 4H( {11}overline{{2}} {0} ) epitaxial layers.

  19. Simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by slurry-sampling graphite furnace AAS.

    Science.gov (United States)

    Minami, Hirotsugu; Yada, Masako; Yoshida, Tomomi; Zhang, Qiangbin; Inoue, Sadanobu; Atsuya, Ikuo

    2004-03-01

    A fast and accurate analytical method was established for the simultaneous direct determination of aluminum, calcium and iron in silicon carbide and silicon nitride powders by graphite furnace atomic absorption spectrometry using a slurry sampling technique and a Hitachi Model Z-9000 atomic absorption spectrometer. The slurry samples were prepared by the ultrasonication of silicon carbide or silicon nitride powders with 0.1 M nitric acid. Calibration curves were prepared by using a mixed standard solution containing aluminum, calcium, iron and 0.1 M nitric acid. The analytical results of the proposed method for aluminum, calcium and iron in silicon carbide and silicon nitride reference materials were in good agreement with the reference values. The detection limits for aluminum, calcium and iron were 0.6 microg/g, 0.15 microg/g and 2.5 microg/g, respectively, in solid samples, when 200 mg of powdered samples were suspended in 20 ml of 0.1 M nitric acid and a 10 microl portion of the slurry sample was then measured. The relative standard deviation of the determination of aluminum, calcium and iron was 5 - 33%.

  20. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  1. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO; Difusion de plata a traves de carburo de silicio en combustibles nucleares microencapsulados TRISO

    Energy Technology Data Exchange (ETDEWEB)

    Cancino T, F.; Lopez H, E., E-mail: Felix.cancino@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Col. Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-10-15

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  2. The thermal degradation of Poly(methyl methacrylate/silicon carbide nanocomposites

    Directory of Open Access Journals (Sweden)

    Popović Ivanka G.

    2002-01-01

    Full Text Available The thermal stability of poly(methyl methacrylate (PMMA and silicon carbide (SiC composites was studied by thermogravimetry. The influence of particle size, SiC structural modification and particle specific surface was analyzed. It was established that particle size had the greatest influence on PMMA/SiC thermal stability and that the most stable composites were those with the smallest particle diameter, i.e the largest particle specific surface. The values of the thermal degradation activation energy indicated that in some cases particle deagglomeration probably did occur which enabled polymer-filler nanoscale interaction and indicated that the system PMMA/SiC could form nanocomposites.

  3. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  4. Modeling and simulation of boron-doped nanocrystalline silicon carbide thin film by a field theory.

    Science.gov (United States)

    Xiong, Liming; Chen, Youping; Lee, James D

    2009-02-01

    This paper presents the application of a multiscale field theory in modeling and simulation of boron-doped nanocrystalline silicon carbide (B-SiC). The multiscale field theory was briefly introduced. Based on the field theory, numerical simulations show that intergranular glassy amorphous films (IGFs) and nano-sized pores exist in triple junctions of the grains for nanocrystalline B-SiC. Residual tensile stress in the SiC grains and compressive stress on the grain boundaries (GBs) were observed. Under tensile loading, it has been found that mechanical response of 5 wt% boron-SiC exhibits five characteristic regimes. Deformation mechanism at atomic scale has been revealed. Tensile strength and Young's modulus of nanocrystalline SiC were accurately reproduced.

  5. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion

    Energy Technology Data Exchange (ETDEWEB)

    Perham, T. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States)

    1996-11-01

    The primary objective of this study is to develop a technique for joining a commercially available Silicon Carbide that gives good room temperature strength and the potential for good high temperature strength. One secondary objective is that the joining technique be adaptable to SiC{sub f}/SiC composites and/or Nickel based superalloys, and another secondary objective is that the materials provide good neutron irradiation resistance and low activation for potential application inside nuclear fusion reactors. The joining techniques studied here are: (1) reaction bonding with Al-Si/Si/SiC/C; (2) reaction/infiltration with calcium aluminum silicate; (3) ion exchange mechanism to form calcium hexaluminate (a refractory cement); and (4) oxide frit brazing with cordierite.

  6. High-temperature mechanical properties of a uniaxially reinforced zircon-silicon carbide composite

    International Nuclear Information System (INIS)

    Singh, R.N.

    1990-01-01

    This paper reports that mechanical properties of a monolithic zircon ceramic and zircon-matrix composites uniaxially reinforced with either uncoated or BN-coated silicon carbide monofilaments were measured in flexure between 25 degrees and 1477 degrees C. Monolithic zircon ceramics were weak and exhibited a brittle failure up to abut 1300 degrees C. An increasing amount of the plastic deformation was observed before failure above about 1300 degrees C. In contrast, composites reinforced with either uncoated or BN-coated Sic filaments were stronger and tougher than the monolithic zircon at all test temperatures between 25 degrees and 1477 degrees. The ultimate strength and work-of-fracture of composite samples decreased with increasing temperature. A transgranular matrix fracture was shown by the monolithic and composite samples tested up to about 1200 degrees C, whereas an increasing amount of the intergranular matrix fracture was displayed above 1200 degrees C

  7. The quantitative analysis of silicon carbide surface smoothing by Ar and Xe cluster ions

    Science.gov (United States)

    Ieshkin, A. E.; Kireev, D. S.; Ermakov, Yu. A.; Trifonov, A. S.; Presnov, D. E.; Garshev, A. V.; Anufriev, Yu. V.; Prokhorova, I. G.; Krupenin, V. A.; Chernysh, V. S.

    2018-04-01

    The gas cluster ion beam technique was used for the silicon carbide crystal surface smoothing. The effect of processing by two inert cluster ions, argon and xenon, was quantitatively compared. While argon is a standard element for GCIB, results for xenon clusters were not reported yet. Scanning probe microscopy and high resolution transmission electron microscopy techniques were used for the analysis of the surface roughness and surface crystal layer quality. The gas cluster ion beam processing results in surface relief smoothing down to average roughness about 1 nm for both elements. It was shown that xenon as the working gas is more effective: sputtering rate for xenon clusters is 2.5 times higher than for argon at the same beam energy. High resolution transmission electron microscopy analysis of the surface defect layer gives values of 7 ± 2 nm and 8 ± 2 nm for treatment with argon and xenon clusters.

  8. Etching nano-holes in silicon carbide using catalytic platinum nano-particles

    Science.gov (United States)

    Moyen, E.; Wulfhekel, W.; Lee, W.; Leycuras, A.; Nielsch, K.; Gösele, U.; Hanbücken, M.

    2006-09-01

    The catalytic reaction of platinum during a hydrogen etching process has been used to perform controlled vertical nanopatterning of silicon carbide substrates. A first set of experiments was performed with platinum powder randomly distributed on the SiC surface. Subsequent hydrogen etching in a hot wall reactor caused local atomic hydrogen production at the catalyst resulting in local SiC etching and hole formation. Secondly, a highly regular and monosized distribution of Pt was obtained by sputter deposition of Pt through an Au membrane serving as a contact mask. After the lift-off of the mask, the hydrogen etching revealed the onset of well-controlled vertical patterned holes on the SiC surface.

  9. Test bench for thermal cycling of 10 kV silicon carbide power modules

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Jørgensen, Asger Bjørn; Maarbjerg, Anders Eggert

    2016-01-01

    measurement of on-state voltages and direct real-time measurement of die surface temperatures, enabled by fiber optical sensors, which are built into the power modules. A thermal model of the module prototypes, based on the temperature measurements, is established. Independent verification steps have been......This paper presents a test bench for lifetime investigation of 10 kV silicon carbide power modules. The test bench subjects high voltage switching operation to the modules while power cycling. Thus both a thermal and electrical operating point is emulated. The power cycling setup features offline...... made to validate the performance of the on-state voltage measurement and the thermal model. Issues are revealed in the form of common mode currents in gate drive supply, which should be remedied. Finally a new operating point for power cycling is suggested to better stress the power modules....

  10. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    Science.gov (United States)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  11. High-temperature effect of hydrogen on sintered alpha-silicon carbide

    Science.gov (United States)

    Hallum, G. W.; Herbell, T. P.

    1986-01-01

    Sintered alpha-silicon carbide was exposed to pure, dry hydrogen at high temperatures for times up to 500 hr. Weight loss and corrosion were seen after 50 hr at temperatures as low as 1000 C. Corrosion of SiC by hydrogen produced grain boundary deterioration at 1100 C and a mixture of grain and grain boundary deterioration at 1300 C. Statistically significant strength reductions were seen in samples exposed to hydrogen for times greater than 50 hr and temperatures above 1100 C. Critical fracture origins were identified by fractography as either general grain boundary corrision at 1100 C or as corrosion pits at 1300 C. A maximum strength decrease of approximately 33 percent was seen at 1100 and 1300 C after 500 hr exposure to hydrogen. A computer assisted thermodynamic program was also used to predict possible reaction species of SiC and hydrogen.

  12. Pressure dependence of the refractive index of diamond, cubic silicon carbide and cubic boron nitride

    Science.gov (United States)

    Balzaretti, N. M.; da Jornada, J. A. H.

    1996-09-01

    The pressure dependence of the refractive index of diamond, cubic boron nitride and cubic silicon carbide, was measured up to 9 GPa by an interferometric method using the diamond anvil cell. A least-square fit yields the following values for ( {1}/{n}) ( {dn }/{dP }): - 3.6 × 10 -4GPa -1 for diamond, -3.2 × 10 -4GPa -1 for c-BN and, for 3CSiC, -8.3 × 10 -4GPa -1. These results were used to investigate, for the first time under pressure, general empirical relationships between refractive index and energy gap found in the literature. The volume dependence of the electronic polarizability, α, of these compounds was determined through the Lorentz-Lorenz approach. The obtained linear behavior of α for the three cases was correlated to previous results for the pressure dependence of the transverse effective charge, e T∗.

  13. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    Science.gov (United States)

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  14. Aluminum-doped hydrogenated microcrystalline cubic silicon carbide films deposited by hot wire CVD

    International Nuclear Information System (INIS)

    Miyajima, Shinsuke; Yamada, Akira; Konagai, Makoto

    2006-01-01

    Aluminum-doped hydrogenated microcrystalline cubic silicon carbide (Al-doped μc-3C-SiC:H) films were successfully deposited by hot wire chemical vapor deposition using a gas mixture of monomethylsilane, hydrogen and trimethylaluminum (TMA). Deposition rate and infrared absorption measurements indicate that radicals generated from TMA extract hydrogen atoms from the growing surface of the films. Infrared absorption and secondary ion mass spectroscopy measurements suggest the existence of Al-H complexes in the deposited film. The dark conductivity was found to be below 10 - 7 S/cm for as-deposited films and 10 - 6 -10 - 4 S/cm for annealed films. Our studies indicate the possibility of forming p-type μc-3C-SiC:H films on glass substrates at process temperature below 400 deg. C

  15. 5 kW bidirectional grid-connected drive using silicon-carbide switches: Control

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Lazar, Radu; Pedersen, Jacob Lykke

    2017-01-01

    his paper presents a controller design for a fully silicon-carbide (SiC) based bidirectional three-phase grid-connected PWM drive. For drive applications, controller must be robust and fast to be able to provide power flow in both directions. In this paper, proportional resonance (PR) current......-phase rectifier with switching frequency of 45 kHz will be tested. The test is done by connecting it to a grid simulator and the load is a resistive load. In the second test the rectifier will be connected to the grid via an auto-transformer and load is a 7.5kW SiC based drive which is connected to a permanent...

  16. Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations

    CERN Document Server

    Delonca, M; Gil Costa, M; Vacca, A

    2014-01-01

    Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature of interest for beam intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numeric...

  17. Estimate of toxically influence of silicon carbide nanoparticles according histopatologycal changes

    Directory of Open Access Journals (Sweden)

    Grozdanov Anita

    2013-07-01

    Full Text Available Taking in consideration a very wide application of nanoparticules in different industrial sectors due to their remarkable properties for implementation in different products, very important part for future development of nanotechology is following a histopatologycal changes provoke of this material.Silicon carbide (SiC as ceramic material with high thermal conductivity, high stability, good wear resistance and small thermal expansion coefficient is very applied in ceramic’s industry, power electronics, biomaterials, pharmaceutics etc. Histopathological changes of SiC particles were investigate on 4 weeks old female Wistar rats divided into four groups (two control and two experimental groups, sacrificed 2, 7 and 14 days after treatment. Histopathological diagnosis was performed on heart, liver, spleen, kidneys, lung, brain, gastrointestinal tract, using standard Hematoxilin-eosin staining methods. The main toxicological influences of SiC were observed on liver, lungs and gastrointestinal tract.

  18. Stress testing on silicon carbide electronic devices for prognostics and health management.

    Energy Technology Data Exchange (ETDEWEB)

    Kaplar, Robert James; Brock, Reinhard C.; Marinella, Matthew; King, Michael Patrick; Smith, Mark A.; Atcitty, Stanley

    2011-01-01

    Power conversion systems for energy storage and other distributed energy resource applications are among the drivers of the important role that power electronics plays in providing reliable electricity. Wide band gap semiconductors such as silicon carbide (SiC) and gallium nitride (GaN) will help increase the performance and efficiency of power electronic equipment while condition monitoring (CM) and prognostics and health management (PHM) will increase the operational availability of the equipment and thereby make it more cost effective. Voltage and/or temperature stress testing were performed on a number of SiC devices in order to accelerate failure modes and to identify measureable shifts in electrical characteristics which may provide early indication of those failures. Those shifts can be interpreted and modeled to provide prognostic signatures for use in CM and/or PHM. Such experiments will also lead to a deeper understanding of basic device physics and the degradation mechanisms behind failure.

  19. In-cascade ionization effects on defect production in 3C silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Haizhou [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA; Zhang, Yanwen [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Weber, William J. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

    2017-06-05

    Understanding how energy deposited in electronic and atomic subsystems may affect defect dynamics is a long-standing fundamental challenge in materials research. The coupling of displacement cascades and in-cascade ionization-induced annealing are investigated in silicon carbide (SiC). A delayed damage accumulation under ion irradiation is revealed with a linear dependence as a function of both increasing ionization and increasing ratio of electronic to nuclear energy deposition. An in-cascade healing mechanism is suggested with a low threshold value of electronic energy loss (~1.0 keV nm-1). The in-cascade ionization effects must be considered in predicting radiation performance of SiC.

  20. Effect of Liquid Phase Content on Thermal Conductivity of Hot-Pressed Silicon Carbide Ceramics

    International Nuclear Information System (INIS)

    Lim, Kwang-Young; Jang, Hun; Lee, Seung-Jae; Kim, Young-Wook

    2015-01-01

    Silicon carbide (SiC) is a promising material for Particle-Based Accident Tolerant (PBAT) fuel, fission, and fusion power applications due to its superior physical and thermal properties such as low specific mass, low neutron cross section, excellent radiation stability, low coefficient of thermal expansion, and high thermal conductivity. Thermal conductivity of PBAT fuel is one of very important factors for plant safety and energy efficiency of nuclear reactors. In the present work, the effect of Y 2 O 3 -Sc 2 O 3 content on the microstructure and thermal properties of the hot pressed SiC ceramics have been investigated. Suppressing the β to α phase transformation of SiC ceramics is beneficial in increasing the thermal conductivity of liquid-phase sintered SiC ceramics. Developed SiC ceramics with Y 2 O 3 -Sc 2 O 3 additives are very useful for thermal conductivity on matrix material of the PBAT fuel

  1. Joining of silicon carbide using interlayer with matching coefficient of thermal expansion

    International Nuclear Information System (INIS)

    Perham, T.

    1996-11-01

    The primary objective of this study is to develop a technique for joining a commercially available Silicon Carbide that gives good room temperature strength and the potential for good high temperature strength. One secondary objective is that the joining technique be adaptable to SiC f /SiC composites and/or Nickel based superalloys, and another secondary objective is that the materials provide good neutron irradiation resistance and low activation for potential application inside nuclear fusion reactors. The joining techniques studied here are: (1) reaction bonding with Al-Si/Si/SiC/C; (2) reaction/infiltration with calcium aluminum silicate; (3) ion exchange mechanism to form calcium hexaluminate (a refractory cement); and (4) oxide frit brazing with cordierite

  2. Diorganosilacetylene-alt-diorganosilvinylene polymers and a process densifying porous silicon-carbide bodies

    Science.gov (United States)

    Barton, Thomas J.; Ijadi-Maghsoodi, Sina; Pang, Yi

    1994-05-17

    The present invention provides linear organosilicon polymers including acetylene and vinylene moieties, and a process for their preparation. These diorganosilacetylene-alt-diorganosilvinylene linear polymers can be represented by the formula: --[--(R.sup.1)(R.sup.2)Si--C.tbd.C--(R.sup.3)(R.sup.4)Si--CH=CH--].sub.n-- , wherein n.gtoreq.2; and each R.sup.1, R.sup.2, R.sup.3, and R.sup.4 is independently selected from the group consisting of hydrogen, halogen, alkyl, alkenyl, aryl, and aralkyl radicals. The polymers are soluble in organic solvents, air stable, and can be pulled into fibers or cast into films. They can be thermally converted into silicon carbide ceramic materials.

  3. EPR investigations of silicon carbide nanoparticles functionalized by acid doped polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Karray, Fekri [Laboratoire des materiaux Ceramiques Composites et Polymeres, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Kassiba, Abdelhadi, E-mail: kassiba@univ-lemans.fr [Institute of Molecules and Materials of Le Mans (I3M), UMR-CNRS 6283, Universite du Maine, 72085 Le Mans (France)

    2012-06-15

    Nanocomposites (SiC-PANI) based on silicon carbide nanoparticles (SiC) encapsulated in conducting polyaniline (PANI) are synthesized by direct polymerization of PANI on the nanoparticle surfaces. The conductivity of PANI and the nanocomposites was modulated by several doping levels of camphor sulfonic acid (CSA). Electron paramagnetic resonance (EPR) investigations were carried out on representative SiC-PANI samples over the temperature range [100-300 K]. The features of the EPR spectra were analyzed taking into account the paramagnetic species such as polarons with spin S=1/2 involved in two main environments realized in the composites as well as their thermal activation. A critical temperature range 200-225 K was revealed through crossover changes in the thermal behavior of the EPR spectral parameters. Insights on the electronic transport properties and their thermal evolutions were inferred from polarons species probed by EPR and the electrical conductivity in doped nanocomposites.

  4. Quantum Chemistry, and Eclectic Mix: From Silicon Carbide to Size Consistency

    Energy Technology Data Exchange (ETDEWEB)

    Rintelman, Jamie Marie [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    Chemistry is a field of great breadth and variety. It is this diversity that makes for both an interesting and challenging field. My interests have spanned three major areas of theoretical chemistry: applications, method development, and method evaluation. The topics presented in this thesis are as follows: (1) a multi-reference study of the geometries and relative energies of four atom silicon carbide clusters in the gas phase; (2) the reaction of acetylene on the Si(100)-(2x1) surface; (3) an improvement to the Effective Fragment Potential (EFP) solvent model to enable the study of reactions in both aqueous and nonaqueous solution; and (4) an evaluation of the size consistency of Multireference Perturbation Theory (MRPT). In the following section, the author briefly discusses two topics central to, and present throughout, this thesis: Multi-reference methods and Quantum Mechanics/Molecular Mechanics (QM/MM) methods.

  5. Ab initio density functional theory investigation of structural and electronic properties of silicon carbide nanotube bundles

    International Nuclear Information System (INIS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2008-01-01

    By using ab initio density functional theory the structural and electronic properties of isolated and bundled (8,0) and (6,6) silicon carbide nanotubes (SiCNTs) are investigated. Our results show that for such small diameter nanotubes the inter-tube interaction causes a very small radial deformation, while band splitting and reduction of the semiconducting energy band gap are significant. We compared the equilibrium interaction energy and inter-tube separation distance of (8,0) SiCNT bundle with (10,0) carbon nanotube (CNT) bundle where they have the same radius. We found that there is a larger inter-tube separation and weaker inter-tube interaction in the (8,0) SiCNT bundle with respect to (10,0) CNT bundle, although they have the same radius

  6. Influences of Device and Circuit Mismatches on Paralleling Silicon Carbide MOSFETs

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Wang, Xiongfei

    2016-01-01

    , the influence of circuit mismatch on paralleling SiC MOSFETs is investigated and experimentally evaluated for the first time. It is found that the mismatch of the switching loop stray inductance can also lead to on-state current unbalance with inductive output current, in addition to the on-state resistance......This paper addresses the influences of device and circuit mismatches on paralleling the Silicon Carbide (SiC) MOSFETs. Comprehensive theoretical analysis and experimental validation from paralleled discrete devices to paralleled dies in multichip power modules are first presented. Then...... of the device. It further reveals that circuit mismatches and a current coupling among the paralleled dies exist in a SiC MOSFET multichip power module, which is critical for the transient current distribution in the power module. Thus, a power module layout with an auxiliary source connection is developed...

  7. Optimization of toxic biological compound adsorption from aqueous solution onto Silicon and Silicon carbide nanoparticles through response surface methodology.

    Science.gov (United States)

    Gupta, Vinod Kumar; Fakhri, Ali; Rashidi, Sahar; Ibrahim, Ahmed A; Asif, Mohammad; Agarwal, Shilpi

    2017-08-01

    The subject of this paper is removal of Aflatoxin B 1 as toxic biological compound adsorption onto Silicon (Si) and Silicon carbide (SiC) nanoparticles in aqueous matrices using Response surface methodology. The surface frame of Si and SiC nanoparticles were comminuted by XRD, TEM, SEM, and BET. Experiments were steered well-found by Box-Behnken plan (BBD). Experiments of batch method were performed to prognosticate the reaction equilibrium of Aflatoxin B 1 removal. The response surface methodological approach was used. In the agreeable perusal, effect of adsorbent dosage, temperature and pH on the Aflatoxin B 1 adsorption from aqueous matrices using Si and SiC nanoparticles has been investigated. The interplay of the changeables and their implication was studied using the analysis of variance. The optimum adsorbent dosage, pH, and temperature were obtained to be 0.04g, 9.0 and 278K, respectively and adsorption of Aflatoxin B 1 was 42.50 and 46.10mg/g for Si and SiC nanoparticles, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Four-quadrant silicon and silicon carbide photodiodes for beam position monitor applications: electrical characterization and electron irradiation effects

    Science.gov (United States)

    Rafí, J. M.; Pellegrini, G.; Godignon, P.; Quirion, D.; Hidalgo, S.; Matilla, O.; Fontserè, A.; Molas, B.; Takakura, K.; Tsunoda, I.; Yoneoka, M.; Pothin, D.; Fajardo, P.

    2018-01-01

    Silicon photodiodes are very useful devices as X-ray beam monitors in synchrotron radiation beamlines, as well as other astronomy and space applications. Owing to their lower susceptibility to variable temperature and illumination conditions, there is also special interest in silicon carbide devices for some of these applications. Moreover, radiation hardness of the involved technologies is a major concern for high-energy physics and space applications. This work presents four-quadrant photodiodes produced on ultrathin (10 μm) and bulk Si, as well as on SiC epilayer substrates. An extensive electrical characterization has been carried out by using current-voltage (I-V) and capacitance-voltage (C-V) techniques. The impact of different temperature (from ‑50oC to 175oC) and visible light conditions on the electrical characteristics of the devices has been evaluated. Radiation effects caused by 2 MeV electron irradiation up to 1×1014, 1×1015 and 1×1016 e/cm2 fluences have been studied. Special attention has been devoted to the study of charge build-up in diode interquadrant isolation, as well as its impact on interquadrant resistance. The study of these electrical properties and its radiation-induced degradation should be taken into account for device applications.

  9. A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries.

    Science.gov (United States)

    Chen, Bing-Hong; Chuang, Shang-I; Liu, Wei-Ren; Duh, Jenq-Gong

    2015-12-30

    In this study, a jumbo silicon/silicon carbide (Si/SiC) composite (JSC), a novel anode material source, was extracted from solar power industry cutting waste and used as a material for lithium-ion batteries (LIBs), instead of manufacturing the nanolized-Si. Unlike previous methods used for preventing volume expansion and solid electrolyte interphase (SEI), the approach proposed here simply entails applying surface modification to JSC-based electrodes by using nitrogen-atmospheric pressure plasma jet (N-APPJ) treatment process. Surface organic bonds were rearranged and N-doped compounds were formed on the electrodes through applying different plasma treatment durations, and the qualitative examinations of before/after plasma treatment were identified by X-ray photoelectron spectroscopy (XPS) and electron probe microanalyzer (EPMA). The surface modification resulted in the enhancement of electrochemical performance with stable capacity retention and high Coulombic efficiency. In addition, depth profile and scanning electron microscope (SEM) images were executed to determine the existence of Li-N matrix and how the nitrogen compounds change the surface conditions of the electrodes. The N-APPJ-induced rapid surface modification is a major breakthrough for processing recycled waste that can serve as anode materials for next-generation high-performance LIBs.

  10. Analysis of obsydians and films of silicon carbide by RBS technique

    International Nuclear Information System (INIS)

    Franco S, F.

    1998-01-01

    Motivated by archaeological interest this work is presented, which consist in the characterization of obsydian samples from different mineral sites in Mexico and films of silicon carbide, undertaken by an Ion Beam Analysis: RBS (Rutherford Back Scattering). As part of an intensive investigation of obsydian in Mesoamerica by anthropologists from Mexico National Institute of Anthropology and History, 818 samples were collected from different volcanic sources in Central Mexico for the purpose of establishing a data bank of element concentrations of each source. Part of this collection was analyzed by Neutron activation analysis and most of the important elements concentrations reported. In the first part of this work, the non-destructive IBA technique, RBS are used to analyze obsydian samples. The last part is an analysis of thin films of silicon carbide as a part of a research program of the Universidad Nacional Autonoma de Mexico and ININ. The application of this technique were carried out at the IF-UNAM, and the analysis was performed at laboratories of the ININ Nuclear Centre facilities. The samples considered in this work were mounted on a sample holder designed for the purpose of exposing each sample to the alpha particles beam. This RBS analysis was carried out with an ET Tandem accelerator at the IF UNAM. The spectrometry was carried out with employing a Si(Li) detector set at 15 degrees in relation to the target normal. The mean projectile energy was 2.00 MeV, and the beam profile was about 4 mm in diameter. As results were founded elemental concentrations of a set of samples from ten different sources: Altotonga (Veracruz), Penjamo (Guanajuato), Otumba (Mexico), Zinapecuaro (MIchoacan), Ucareo (Michoacan), Tres Cabezas (Puebla), Sierra Navajas (Hidalgo), Zaragoza (Puebla), Guadalupe Victoria (Puebla) and Oyameles (Puebla). The mean values are accompanied by errors expressed as one standard devistion of the mean for each element

  11. Impact of microcrystalline silicon carbide growth using hot-wire chemical vapor deposition on crystalline silicon surface passivation

    International Nuclear Information System (INIS)

    Pomaska, M.; Beyer, W.; Neumann, E.; Finger, F.; Ding, K.

    2015-01-01

    Highly crystalline microcrystalline silicon carbide (μc-SiC:H) with excellent optoelectronic material properties is a promising candidate as highly transparent doped layer in silicon heterojunction (SHJ) solar cells. These high quality materials are usually produced using hot wire chemical vapor deposition under aggressive growth conditions giving rise to the removal of the underlying passivation layer and thus the deterioration of the crystalline silicon (c-Si) surface passivation. In this work, we introduced the n-type μc-SiC:H/n-type μc-SiO x :H/intrinsic a-SiO x :H stack as a front layer configuration for p-type SHJ solar cells with the μc-SiO x :H layer acting as an etch-resistant layer against the reactive deposition conditions during the μc-SiC:H growth. We observed that the unfavorable expansion of micro-voids at the c-Si interface due to the in-diffusion of hydrogen atoms through the layer stack might be responsible for the deterioration of surface passivation. Excellent lifetime values were achieved under deposition conditions which are needed to grow high quality μc-SiC:H layers for SHJ solar cells. - Highlights: • High surface passivation quality was preserved after μc-SiC:H deposition. • μc-SiC:H/μc-SiO x :H/a-SiO x :H stack a promising front layer configuration • Void expansion at a-SiO x :H/c-Si interface for deteriorated surface passivation • μc-SiC:H provides a high transparency and electrical conductivity.

  12. Growth of boron doped hydrogenated nanocrystalline cubic silicon carbide (3C-SiC) films by Hot Wire-CVD

    Energy Technology Data Exchange (ETDEWEB)

    Pawbake, Amit [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Mayabadi, Azam; Waykar, Ravindra; Kulkarni, Rupali; Jadhavar, Ashok [School of Energy Studies, Savitribai Phule Pune University, Pune 411 007 (India); Waman, Vaishali [Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411 005 (India); Parmar, Jayesh [Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 (India); Bhattacharyya, Somnath [Department of Metallurgical and Materials Engineering, IIT Madras, Chennai 600 036 (India); Ma, Yuan‐Ron [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China); Devan, Rupesh; Pathan, Habib [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, Sandesh, E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-15

    Highlights: • Boron doped nc-3C-SiC films prepared by HW-CVD using SiH{sub 4}/CH{sub 4}/B{sub 2}H{sub 6}. • 3C-Si-C films have preferred orientation in (1 1 1) direction. • Introduction of boron into SiC matrix retard the crystallanity in the film structure. • Film large number of SiC nanocrystallites embedded in the a-Si matrix. • Band gap values, E{sub Tauc} and E{sub 04} (E{sub 04} > E{sub Tauc}) decreases with increase in B{sub 2}H{sub 6} flow rate. - Abstract: Boron doped nanocrystalline cubic silicon carbide (3C-SiC) films have been prepared by HW-CVD using silane (SiH{sub 4})/methane (CH{sub 4})/diborane (B{sub 2}H{sub 6}) gas mixture. The influence of boron doping on structural, optical, morphological and electrical properties have been investigated. The formation of 3C-SiC films have been confirmed by low angle XRD, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infra-red (FTIR) spectroscopy and high resolution-transmission electron microscopy (HR-TEM) analysis whereas effective boron doping in nc-3C-SiC have been confirmed by conductivity, charge carrier activation energy, and Hall measurements. Raman spectroscopy and HR-TEM analysis revealed that introduction of boron into the SiC matrix retards the crystallanity in the film structure. The field emission scanning electron microscopy (FE-SEM) and non contact atomic force microscopy (NC-AFM) results signify that 3C-SiC film contain well resolved, large number of silicon carbide (SiC) nanocrystallites embedded in the a-Si matrix having rms surface roughness ∼1.64 nm. Hydrogen content in doped films are found smaller than that of un-doped films. Optical band gap values, E{sub Tauc} and E{sub 04} decreases with increase in B{sub 2}H{sub 6} flow rate.

  13. Measurement of leakage neutron spectra from silicon carbide cylinders with D–T neutrons and validation of evaluated nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Han, R. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413 (China); Nie, Y. [Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413 (China); Chen, Z., E-mail: zqchen@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, S. [College of Physics Electronic Information, Inner Mongolia University for the Nationalities, Tongliao 028000 (China); Shi, F.; Lin, W.; Ren, P.; Tian, G.; Sun, Q.; Gou, B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Ruan, X.; Ren, J. [Key Laboratory of Nuclear Data, China Institute of Atomic Energy, Beijing 102413 (China); Ye, M. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China)

    2016-11-15

    Highlights: • Evaluated data for SiC are validated by a high precision benchmark experiment. • Leakage neutron spectra from SiC cylinders are measured at 60° and 120° using time-of-flight method. • The experimental results are compared with the MCNP-4C calculations with ENDF-BVII.1, JENDL-4.0 and CENDL-3.1 libraries. • The SiC evaluated nuclear data from CENDL-3.1 library was checked for the first time and proved to be reliable. - Abstract: Benchmarking of evaluated nuclear data libraries was performed for 14 MeV neutrons on silicon carbide samples. The experiments were carried out by using the benchmark experimental facility at China Institute of Atomic Energy (CIAE). The leakage neutron spectra from SiC (Φ13 cm × 20 cm) at 60° and 120° and SiC (Φ13 cm × 2 cm) at 60° were measured by the TOF method. The measured spectra are well reproduced by MCNP-4C calculations with the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 evaluated nuclear data libraries, except 5–8 MeV range for 20 cm thickness. The discrepancies are mostly considered as caused by the improper evaluation of the angular distribution and secondary neutron energy distribution of the elastic scattering and inelastic scattering in evaluated nuclear data libraries.

  14. Measurement of leakage neutron spectra from silicon carbide cylinders with D–T neutrons and validation of evaluated nuclear data

    International Nuclear Information System (INIS)

    Luo, F.; Han, R.; Nie, Y.; Chen, Z.; Zhang, S.; Shi, F.; Lin, W.; Ren, P.; Tian, G.; Sun, Q.; Gou, B.; Ruan, X.; Ren, J.; Ye, M.

    2016-01-01

    Highlights: • Evaluated data for SiC are validated by a high precision benchmark experiment. • Leakage neutron spectra from SiC cylinders are measured at 60° and 120° using time-of-flight method. • The experimental results are compared with the MCNP-4C calculations with ENDF-BVII.1, JENDL-4.0 and CENDL-3.1 libraries. • The SiC evaluated nuclear data from CENDL-3.1 library was checked for the first time and proved to be reliable. - Abstract: Benchmarking of evaluated nuclear data libraries was performed for 14 MeV neutrons on silicon carbide samples. The experiments were carried out by using the benchmark experimental facility at China Institute of Atomic Energy (CIAE). The leakage neutron spectra from SiC (Φ13 cm × 20 cm) at 60° and 120° and SiC (Φ13 cm × 2 cm) at 60° were measured by the TOF method. The measured spectra are well reproduced by MCNP-4C calculations with the CENDL-3.1, ENDF/B-VII.1 and JENDL-4.0 evaluated nuclear data libraries, except 5–8 MeV range for 20 cm thickness. The discrepancies are mostly considered as caused by the improper evaluation of the angular distribution and secondary neutron energy distribution of the elastic scattering and inelastic scattering in evaluated nuclear data libraries.

  15. Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill

    Energy Technology Data Exchange (ETDEWEB)

    Carreño-Gallardo, C.; Estrada-Guel, I. [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología-Chihuahua, Miguel de Cervantes No. 120, CP 31109, Chihuahua, México (Mexico); López-Meléndez, C. [Universidad La Salle Chihuahua, Prol. Lomas de Majalca No. 11201, CP 31020, Chihuahua, México (Mexico); Martínez-Sánchez, R., E-mail: roberto.martinez@cimav.edu.mx [Centro de Investigación en Materiales Avanzados (CIMAV), Laboratorio Nacional de Nanotecnología-Chihuahua, Miguel de Cervantes No. 120, CP 31109, Chihuahua, México (Mexico)

    2014-02-15

    Highlights: • Synthesis of 2024-SiC{sub NP} nanocomposite by mechanical milling process. • SiC nanoparticles improved mechanical properties of aluminum alloy 2024 matrix. • A homogeneous distribution of SiC nanoparticles were observed in the matrix • Compressive and hardness properties of the composite are improved significantly. -- Abstract: Al{sub 2024} alloy was reinforced with silicon carbide nanoparticles (SiC{sub NP}), whose concentration was varied in the range from 0 to 5 wt.%; some composites were synthesized with the mechanical milling (MM) process. Structure and microstructure of the consolidated samples were studied by X-ray diffraction and transmission electron microscopy, while mechanical properties were investigated by compressive tests and hardness measurements. The microstructural evidence shows that SiC{sub NP} were homogeneously dispersed into the Al{sub 2024} alloy using high-energy MM after 2 h of processing. On the other hand, an increase of the mechanical properties (yield stress, maximum strength and hardness) was observed in the synthesized composites as a direct function of the SiC{sub NP} content. In this research several strengthening mechanisms were observed, but the main was the obstruction of dislocations movement by the addition of SiC{sub NP}.

  16. Friction and Wear of Metals With a Single-Crystal Abrasive Grit of Silicon Carbide - Effect of Shear Strength of Metal

    National Research Council Canada - National Science Library

    Miyoshi, Kazuhisa

    1978-01-01

    An investigation was conducted to examine the removal and plastic deformation of metal as a function of the metal properties when the metal is in sliding contact with a single-crystal abrasive grit of silicon carbide...

  17. 3C-Silicon Carbide Microresonators for Timing and Frequency Reference

    Directory of Open Access Journals (Sweden)

    Graham S. Wood

    2016-11-01

    Full Text Available In the drive to miniaturise and integrate reference oscillator components, microelectromechanical systems (MEMS resonators are excellent candidates to replace quartz crystals. Silicon is the most utilised resonator structural material due to its associated well-established fabrication processes. However, when operation in harsh environments is required, cubic silicon carbide (3C-SiC is an excellent candidate for use as a structural material, due to its robustness, chemical inertness and high temperature stability. In order to actuate 3C-SiC resonators, electrostatic, electrothermal and piezoelectric methods have been explored. Both electrothermal and piezoelectric actuation can be accomplished with simpler fabrication and lower driving voltages, down to 0.5 V, compared to electrostatic actuation. The vibration amplitude at resonance can be maximised by optimising the design and location of the electrodes. Electrical read out of the resonator can be performed with electrostatic or piezoelectric transduction. Finally, a great deal of research has focused on tuning the resonant frequency of a 3C-SiC resonator by adjusting the DC bias applied to the electrodes, with a higher (up to 160-times tuning range for electrothermal tuning compared to piezoelectric tuning. Electrothermal tuning lowers the frequency, while piezoelectric tuning can be used to raise the frequency.

  18. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide.

    Science.gov (United States)

    Emtsev, Konstantin V; Bostwick, Aaron; Horn, Karsten; Jobst, Johannes; Kellogg, Gary L; Ley, Lothar; McChesney, Jessica L; Ohta, Taisuke; Reshanov, Sergey A; Röhrl, Jonas; Rotenberg, Eli; Schmid, Andreas K; Waldmann, Daniel; Weber, Heiko B; Seyller, Thomas

    2009-03-01

    Graphene, a single monolayer of graphite, has recently attracted considerable interest owing to its novel magneto-transport properties, high carrier mobility and ballistic transport up to room temperature. It has the potential for technological applications as a successor of silicon in the post Moore's law era, as a single-molecule gas sensor, in spintronics, in quantum computing or as a terahertz oscillator. For such applications, uniform ordered growth of graphene on an insulating substrate is necessary. The growth of graphene on insulating silicon carbide (SiC) surfaces by high-temperature annealing in vacuum was previously proposed to open a route for large-scale production of graphene-based devices. However, vacuum decomposition of SiC yields graphene layers with small grains (30-200 nm; refs 14-16). Here, we show that the ex situ graphitization of Si-terminated SiC(0001) in an argon atmosphere of about 1 bar produces monolayer graphene films with much larger domain sizes than previously attainable. Raman spectroscopy and Hall measurements confirm the improved quality of the films thus obtained. High electronic mobilities were found, which reach mu=2,000 cm (2) V(-1) s(-1) at T=27 K. The new growth process introduced here establishes a method for the synthesis of graphene films on a technologically viable basis.

  19. The effect of electrospun nanofibers alignment on the synthesis of one-dimensional silicon carbide nanostructure

    Science.gov (United States)

    Hooshyar, Ali; Kokabi, Mehrdad

    2018-01-01

    One-dimensional silicon carbide (1D SiC) nanostructure has shown unusual properties such as extremely high strength, good flexibility, fracture toughness, wide band gap ( 3.2eV), large breakdown electric field strength (>2 MV cm-1, 10 times that of silicon), and inverse Hall-Petch effect. Because of these advantages, 1D SiC nanomaterial has gained extensive attention on the wide range of applications in microelectronics, optoelectronics, nanocomposites, and catalyst supports. Many methods have been used for the synthesis of 1D SiC nanostructures such as chemical vapor deposition, carbon nanotube-confined reaction, laser ablation, high-frequency induction heating, and arc discharge. However, these methods have also some shortcomings such as using catalyst, high-cost, low yield, irregular geometry and impurity. In this work, electrospinning was used to prepare aligned PVA/SiO2 composite nanofibers and the effect of fiber alignment on the production efficiency and quality of 1D SiC nanostructure was investigated. For this purpose, aligned electrospun nanofibers, as the desirable precursor, were put in a tube furnace and heated up to 1250°C under a controlled program in an inert atmosphere. Finally, the grown 1D SiC nanostructure product was characterized using SEM, XRD, and FTIR. The results confirmed the successful synthesis of pure crystalline1D β-SiC nanostructure with high yield, more regular, and metal catalyst-free.

  20. Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics.

    Science.gov (United States)

    Hertel, S; Waldmann, D; Jobst, J; Albert, A; Albrecht, M; Reshanov, S; Schöner, A; Krieger, M; Weber, H B

    2012-07-17

    Graphene is an outstanding electronic material, predicted to have a role in post-silicon electronics. However, owing to the absence of an electronic bandgap, graphene switching devices with high on/off ratio are still lacking. Here in the search for a comprehensive concept for wafer-scale graphene electronics, we present a monolithic transistor that uses the entire material system epitaxial graphene on silicon carbide (0001). This system consists of the graphene layer with its vanishing energy gap, the underlying semiconductor and their common interface. The graphene/semiconductor interfaces are tailor-made for ohmic as well as for Schottky contacts side-by-side on the same chip. We demonstrate normally on and normally off operation of a single transistor with on/off ratios exceeding 10(4) and no damping at megahertz frequencies. In its simplest realization, the fabrication process requires only one lithography step to build transistors, diodes, resistors and eventually integrated circuits without the need of metallic interconnects.

  1. Applications, Prospects and Challenges of Silicon Carbide Junction Field Effect Transistor (SIC JFET

    Directory of Open Access Journals (Sweden)

    Frederick Ojiemhende Ehiagwina

    2016-09-01

    Full Text Available Properties of Silicon Carbide Junction Field Effect Transistor (SiC JFET such as high switching speed, low forward voltage drop and high temperature operation have attracted the interest of power electronic researchers and technologists, who for many years developed devices based on Silicon (Si.  A number of power system Engineers have made efforts to develop more robust equipment including circuits or modules with higher power density. However, it was realized that several available power semiconductor devices were approaching theoretical limits offered by Si material with respect to capability to block high voltage, provide low on-state voltage drop and switch at high frequencies. This paper presents an overview of the current applications of SiC JFET in circuits such as inverters, rectifiers and amplifiers. Other areas of application reviewed include; usage of the SiC JFET in pulse signal circuits and boost converters. Efforts directed toward mitigating the observed increase in electromagnetic interference were also discussed. It also presented some areas for further research, such as having more applications of SiC JFET in harsh, high temperature environment. More work is needed with regards to SiC JFET drivers so as to ensure stable and reliable operation, and reduction in the prices of SiC JFETs through mass production by industries.

  2. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Science.gov (United States)

    Gondal, M. A.; Ilyas, A. M.; Baig, Umair

    2016-08-01

    Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO2) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet-visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  3. Growth and Physical Structure of Amorphous Boron Carbide Deposited by Magnetron Sputtering on a Silicon Substrate with a Titanium Interlayer

    Directory of Open Access Journals (Sweden)

    Roberto Caniello

    2013-01-01

    Full Text Available Multilayer amorphous boron carbide coatings were produced by radiofrequency magnetron sputtering on silicon substrates. To improve the adhesion, titanium interlayers with different thickness were interposed between the substrate and the coating. Above three hundreds nanometer, the enhanced roughness of the titanium led to the growth of an amorphous boron carbide with a dense and continuing columnar structure, and no delamination effect was observed. Correspondingly, the adhesion of the coating became three time stronger than in the case of a bare silicon substrate. Physical structure and microstructural proprieties of the coatings were investigated by means of a scan electron microscopy, atomic force microscopy and X-ray diffraction. The adhesion of the films was measured by a scratch tester.

  4. Formation of hexagonal silicon carbide by high energy ion beam irradiation on Si (1 0 0) substrate

    International Nuclear Information System (INIS)

    Bhuyan, H; Favre, M; Valderrama, E; Avaria, G; Chuaqui, H; Mitchell, I; Wyndham, E; Saavedra, R; Paulraj, M

    2007-01-01

    We report the investigation of high energy ion beam irradiation on Si (1 0 0) substrates at room temperature using a low energy plasma focus (PF) device operating in methane gas. The unexposed and ion exposed substrates were characterized by x-ray diffraction, scanning electron microscopy (SEM), photothermal beam deflection, energy-dispersive x-ray analysis and atomic force microscopy (AFM) and the results are reported. The interaction of the pulsed PF ion beams, with characteristic energy in the 60-450 keV range, with the Si surface, results in the formation of a surface layer of hexagonal silicon carbide. The SEM and AFM analyses indicate clear step bunching on the silicon carbide surface with an average step height of 50 nm and a terrace width of 800 nm

  5. Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tony, Voo Chung Sung; Voon, Chun Hong; Lee, Chang Chuan and others, E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering, University Malaysia (Malaysia)

    2017-11-15

    Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO{sub 2} and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO{sub 2} and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO{sub 2} in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO{sub 2} and MWCNTs to SiCNTs was achieved for blend of SiO{sub 2} and MWCNTs in molar ratio of 1:3. (author)

  6. Porous silicon carbide and aluminum oxide with unidirectional open porosity as model target materials for radioisotope beam production

    CERN Document Server

    Czapski, M; Tardivat, C; Stora, T; Bouville, F; Leloup, J; Luis, R Fernandes; Augusto, R Santos

    2013-01-01

    New silicon carbide (SiC) and aluminum oxide (Al2O3) of a tailor-made microstructure were produced using the ice-templating technique, which permits controlled pore formation conditions within the material. These prototypes will serve to verify aging of the new advanced target materials under irradiation with proton beams. Before this, the evaluation of their mechanical integrity was made based on the energy deposition spectra produced by FLORA codes. (C) 2013 Elsevier B.V. All rights reserved.

  7. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    Science.gov (United States)

    2017-08-01

    TECHNICAL REPORT 3073 August 2017 Silicon Carbide Defect Qubits/Quantum Memory with Field-tuning: OSD Quantum Science and Engineering Program...Pacific personnel and working towards supporting demonstrations of quantum entanglement based on these qubits and quantum memories developed out of the...EFFECT OF FIELD-EFFECT TUNINING ....11 5. QUBIT/QUANTUM MEMORY DEVICE DESIGN AND FABRICATION ..............................12 5.1 DEVICE DESIGN

  8. Time-Dependent Stress Rupture Strength Degradation of Hi-Nicalon Fiber-Reinforced Silicon Carbide Composites at Intermediate Temperatures

    Science.gov (United States)

    Sullivan, Roy M.

    2016-01-01

    The stress rupture strength of silicon carbide fiber-reinforced silicon carbide composites with a boron nitride fiber coating decreases with time within the intermediate temperature range of 700 to 950 degree Celsius. Various theories have been proposed to explain the cause of the time-dependent stress rupture strength. The objective of this paper is to investigate the relative significance of the various theories for the time-dependent strength of silicon carbide fiber-reinforced silicon carbide composites. This is achieved through the development of a numerically based progressive failure analysis routine and through the application of the routine to simulate the composite stress rupture tests. The progressive failure routine is a time-marching routine with an iterative loop between a probability of fiber survival equation and a force equilibrium equation within each time step. Failure of the composite is assumed to initiate near a matrix crack and the progression of fiber failures occurs by global load sharing. The probability of survival equation is derived from consideration of the strength of ceramic fibers with randomly occurring and slow growing flaws as well as the mechanical interaction between the fibers and matrix near a matrix crack. The force equilibrium equation follows from the global load sharing presumption. The results of progressive failure analyses of the composite tests suggest that the relationship between time and stress-rupture strength is attributed almost entirely to the slow flaw growth within the fibers. Although other mechanisms may be present, they appear to have only a minor influence on the observed time-dependent behavior.

  9. Single-Event Effect Testing of the Cree C4D40120D Commercial 1200V Silicon Carbide Schottky Diode

    Science.gov (United States)

    Lauenstein, J.-M.; Casey, M. C.; Wilcox, E. P.; Kim, Hak; Topper, A. D.

    2014-01-01

    This study was undertaken to determine the single event effect (SEE) susceptibility of the commercial silicon carbide 1200V Schottky diode manufactured by Cree, Inc. Heavy-ion testing was conducted at the Texas A&M University Cyclotron Single Event Effects Test Facility (TAMU). Its purpose was to evaluate this device as a candidate for use in the Solar-Electric Propulsion flight project.

  10. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  11. The effect of microstructural variation on the mechanical and acoustic properties of silicon carbide

    Science.gov (United States)

    Slusark, Douglas Michael

    Silicon carbide ceramic materials have many beneficial properties which have led to their adoption in various industrial uses, including its application as an armor material. This is due to the high hardness and stiffness of these materials, as well as a low relative density. The homogeneity of the final properties depends upon the processing history of the material. Factors which affect this include the need for high temperatures and sintering additives to achieve densification, as well as the presence of additive agglomerates and pressing artifacts within the green compact. This dissertation seeks to determine the effect which microstructural variability has on the acoustic and mechanical properties of sintered silicon carbide materials. Sample sets examined included commercially produced, pressurelessly sintered tiles, as well as additional, targeted tiles which were specifically produced for evaluation in this study. Production of these targeted samples was carried out such that particular aspects of the microstructure were emphasized. These included tiles which were fired with an excess of boron sintering aid as well as tiles which had been pressed to a reduced green body density and then fired. The sample evaluation procedure which was developed incorporated non destructive evaluation methods, mechanical testing, and both fractographic and image analysis of fractured and polished sections. Non destructive evaluation of the tiles was carried out by Archimedes density and ultrasound scanning at 20 MHz to determine the acoustic attenuation coefficient. Selected samples were chosen for machining into ASTM B-type bend bars on which 4-pt flexure testing was performed. Strength limiting features were designated for each sample set. The correlation between acoustic attenuation coefficient and quasi-static strength was examined both qualitatively and quantitatively. This was done by comparing the primary fracture location of flexure bars to features within the

  12. Silicon Carbide and Diamond Neutron Detectors for Active Interrogation Security Applications

    Science.gov (United States)

    Hodgson, Michael

    A thorough investigation has been carried out in order to determine the suitability of diamond and silicon carbide for active interrogation applications. This included electrical and radiological characterisation of single crystal diamond (D-SC) and polycrystalline diamond (D-PC) detectors; epitaxial silicon carbide (SiC-EP) and semi-insulating silicon carbide (SiC-SI); all compared against the performance of a commercial silicon PIN photodiode (Si-PIN) from Hamamatsu. This work aided in determining whether the detectors were suitable for radiation detection purposes, as well as obtaining the operational criteria for use. Characterisation work was also conducted on semi-insulating silicon carbide detectors from three different suppliers, as well as on detectors fabricated via different techniques. This work demonstrated the robustness of the material, as the charge collection properties were unaffected by contact fabrication technique. Changes in current-voltage characteristics were observed for different contact fabrication methods, but were generally still low (≈nA) over the ranges tested (+/-500V). Following this work the performance of selected detectors was measured against criteria for the AWE active interrogation project. Radiation dose dependent performance deterioration was observed in the SiC-SI and D-PC detectors, with decreased charge collection efficiency (-45+/-4%) and intrinsic efficiency (-40% at -400V) observed respectively. It is not clear as to whether these effects are a result of bulk material damage or contact/surface/mount damage, but an increase in the current-voltage relationship was also observed on these detectors, as well as the Si-PIN (SiC-SI≈+25% and D-PC≈+20% at -400V; Si- PIN≈+300% at -25V). Instability of the peak position and/or counting rate with irradiation time was observed in D-SC, D-PC and all the semi-insulating SiC (polarisation effect). For D-SC this was primarily with alpha particles and stability would be

  13. Development of an aluminum nitride-silicon carbide material set for high-temperature sensor applications

    Science.gov (United States)

    Griffin, Benjamin A.; Habermehl, Scott D.; Clews, Peggy J.

    2014-06-01

    A number of important energy and defense-related applications would benefit from sensors capable of withstanding extreme temperatures (>300°C). Examples include sensors for automobile engines, gas turbines, nuclear and coal power plants, and petroleum and geothermal well drilling. Military applications, such as hypersonic flight research, would also benefit from sensors capable of 1000°C. Silicon carbide (SiC) has long been recognized as a promising material for harsh environment sensors and electronics because it has the highest mechanical strength of semiconductors with the exception of diamond and its upper temperature limit exceeds 2500°C, where it sublimates rather than melts. Yet today, many advanced SiC MEMS are limited to lower temperatures because they are made from SiC films deposited on silicon wafers. Other limitations arise from sensor transduction by measuring changes in capacitance or resistance, which require biasing or modulation schemes that can with- stand elevated temperatures. We are circumventing these issues by developing sensing structures directly on SiC wafers using SiC and piezoelectric aluminum nitride (AlN) thin films. SiC and AlN are a promising material combination due to their high thermal, electrical, and mechanical strength and closely matched coefficients of thermal expansion. AlN is also a non-ferroelectric piezoelectric material, enabling piezoelectric transduction at temperatures exceeding 1000°C. In this paper, the challenges of incorporating these two materials into a compatible MEMS fabrication process are presented. The current progress and initial measurements of the fabrication process are shown. The future direction and the need for further investigation of the material set are addressed.

  14. Fabrication of through-wafer 3D microfluidics in silicon carbide using femtosecond laser

    Science.gov (United States)

    Huang, Yinggang; Wu, Xiudong; Liu, Hewei; Jiang, Hongrui

    2017-06-01

    We demonstrate a prototype through-wafer microfluidic structure in bulk silicon carbide (SiC) fabricated by femtosecond laser micromachining. The effects of laser fluence and scanning speed on the laser-affected zone are also investigated. Furthermore, the wettability of the laser-affected surface for the target liquid, mineral oil, is examined. Microchannels of various cross-sectional shapes are fabricated by the femtosecond laser and their effects on the liquid flow are simulated and compared. This fabrication approach offers a fast and efficient route to implement SiC-based through-wafer micro-structures, which are not able to be realized using other methods such as chemical etching. The flexibility of manufacturing 3D structures based on this fabrication method enables more complex structures as well. Smooth liquid flow in the microchannels of the bulk SiC substrate is presented. The work shown here paves a new way for various applications such as reliable microfluidic systems in a high-temperature, high radioactivity, and corrosive environment, and could be combined with SiC wafer-to-wafer bonding to realize a plethora of novel microelectromechanical (MEMS) structures.

  15. Density Measurement of Silicon Carbide Layers of Simulated Coated Particles by Using a Density Gradient Column

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Lee, Young Woo; Kim, Weon Ju; Kim, Young Min; Kim, Yeon Ku; Oh, Seung Chul; Jeong, Kyung Chai; Cho, Moon Sung

    2009-01-01

    The TRISO-coated fuel particle for a HTGR(high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of a buffer PyC(pyrolytic carbon) layer, inner PyC(I-PyC) layer, SiC(silicon carbide) layer, and outer PyC(O-PyC) layer. The SiC coating layer acts as the primary barrier to the release of metallic fission products as well as fission gas and iodine. The density of SiC layer is one of the most important material properties for evaluating the soundness of SiC layer. The SiC fragments are acquired by oxidizing the broken coated particles. The SiC fragments are so small and irregular that it is not easy to measure the weight and volume of the SiC fragments. Density gradient column and standard floats can be used to measure such a small fragment. Xray radiography is one of the alternatives to measure the density of coating layer. It is very difficult to calibrate the density by using the X-ray image. In this study, the densities of the SiC specimens of simulated TRISO-coated particles with ZrO 2 kernel were measured by a density gradient column with a density gradient solution

  16. Coupled electronic and atomic effects on defect evolution in silicon carbide under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xue, Haizhou [Univ. of Tennessee, Knoxville, TN (United States); Zarkadoula, Eva [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sachan, Ritesh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Army Research Office, Triangle Park, NC (United States); Ostrouchov, Christopher [Univ. of Tennessee, Knoxville, TN (United States); Liu, Peng [Univ. of Tennessee, Knoxville, TN (United States); Shandong Univ., Jinan (China); Wang, Xue -lin [Shandong Univ., Jinan (China); Zhang, Shuo [Lanzhou Univ., Gansu Province (China); Wang, Tie Shan [Lanzhou Univ., Gansu Province (China); Weber, William J. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-10-16

    Understanding energy dissipation processes in electronic/atomic subsystems and subsequent non-equilibrium defect evolution is a long-standing challenge in materials science. In the intermediate energy regime, energetic particles simultaneously deposit a significant amount of energy to both electronic and atomic subsystems of silicon carbide (SiC). Here we show that defect evolution in SiC closely depends on the electronic-to-nuclear energy loss ratio (Se/Sn), nuclear stopping powers (dE/dxnucl), electronic stopping powers (dE/dxele), and the temporal and spatial coupling of electronic and atomic subsystem for energy dissipation. The integrated experiments and simulations reveal that: (1) increasing Se/Sn slows damage accumulation; (2) the transient temperatures during the ionization-induced thermal spike increase with dE/dxele, which causes efficient damage annealing along the ion trajectory; and (3) for more condensed displacement damage within the thermal spike, damage production is suppressed due to the coupled electronic and atomic dynamics. Ionization effects are expected to be more significant in materials with covalent/ionic bonding involving predominantly well-localized electrons. Here, insights into the complex electronic and atomic correlations may pave the way to better control and predict SiC response to extreme energy deposition

  17. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    International Nuclear Information System (INIS)

    Koyanagi, T.; Shimoda, K.; Kondo, S.; Hinoki, T.; Ozawa, K.; Katoh, Y.

    2014-01-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180°C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. The apparent stress exponent of the irradiation creep slightly exceeded unity, and instantaneous creep coefficient at 380 to 790°C was estimated to be ∼1 × 10 -5 [MPa -1 dpa -1 ] at ∼0.1 dpa and 1 × 10 -7 to 1 × 10 -6 [MPa -1 dpa -1 ] at ∼1 dpa. The irradiation creep strain appeared greater than that for the high purity SiC. Microstructural observation and data analysis indicated that the grain-boundary sliding associated with the secondary phases contributes to the irradiation creep at 380–790°C to 0.01–0.11 dpa. (author)

  18. Influence of Hot Implantation on Residual Radiation Damage in Silicon Carbide

    International Nuclear Information System (INIS)

    Rawski, M.; Zuk, J.; Kulik, M.; Drozdziel, A.; Pyszniak, K.; Turek, M.; Lin, L.; Prucnal, S.

    2011-01-01

    Remarkable thermomechanical and electrical properties of silicon carbide (SiC) make this material very attractive for high-temperature, high-power, and high-frequency applications. Because of very low values of diffusion coefficient of most impurities in SiC, ion implantation is the best method to selectively introduce dopants over well-defined depths in SiC. Aluminium is commonly used for creating p-type regions in SiC. However, post-implantation radiation damage, which strongly deteriorates required electric properties of the implanted layers, is difficult to anneal even at high temperatures because of remaining residual damage. Therefore implantation at elevated target temperatures (hot implantation) is nowadays an accepted method to decrease the level of the residual radiation damage by avoiding ion beam-induced amorphization. The main objective of this study is to compare the results of the Rutherford backscattering spectroscopy with channeling and micro-Raman spectroscopy investigations of room temperature and 500 o C Al + ion implantation-induced damage in 6H-SiC and its removal by high temperature (up to 1600 o C) thermal annealing. (author)

  19. Modeling chemical and topological disorder in irradiation-amorphized silicon carbide

    International Nuclear Information System (INIS)

    Yuan Xianglong; Hobbs, Linn W.

    2002-01-01

    In order to explore the relationship of chemical disorder to topological disorder during irradiation-induced amorphization of silicon carbide, a topological analysis of homonuclear bond distribution, atom coordination number and network ring size distribution has been carried out for imposed simulated disorder, equilibrated with molecular dynamics (MD) procedures utilizing a Tersoff potential. Starting configurations included random atom positions, β-SiC coordinates chemically disordered over a range of chemical disorder parameters and atom coordinates generated from earlier MD simulations of embedded collision cascades. For random starting positions in embedded simulations, the MD refinement converged to an average Si coordination of 4.3 and an average of 1.4 Si-Si and 1.0 C-C bonds per Si and C site respectively. A chemical disorder threshold was observed (χ≡N C-C /N Si-C >0.3-0.4), below which range MD equilibration resulted in crystalline behavior at all temperatures and above which a glass transition was observed. It was thus concluded that amorphization is driven by a critical concentration of homonuclear bonds. About 80% of the density change at amorphization was attributable to threshold chemical disorder, while significant topological changes occurred only for larger values of the chemical disorder parameter

  20. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    Science.gov (United States)

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  1. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    Science.gov (United States)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  2. Effects of phosphorus on the electrical characteristics of plasma deposited hydrogenated amorphous silicon carbide thin films

    Science.gov (United States)

    Alcinkaya, Burak; Sel, Kivanc

    2018-01-01

    The properties of phosphorus doped hydrogenated amorphous silicon carbide (a-SiCx:H) thin films, that were deposited by plasma enhanced chemical vapor deposition technique with four different carbon contents (x), were analyzed and compared with those of the intrinsic a-SiCx:H thin films. The carbon contents of the films were determined by X-ray photoelectron spectroscopy. The thickness and optical energies, such as Tauc, E04 and Urbach energies, of the thin films were determined by UV-Visible transmittance spectroscopy. The electrical properties of the films, such as conductivities and activation energies were analyzed by temperature dependent current-voltage measurements. Finally, the conduction mechanisms of the films were investigated by numerical analysis, in which the standard transport mechanism in the extended states and the nearest neighbor hopping mechanism in the band tail states were taken into consideration. It was determined that, by the effect of phosphorus doping the dominant conduction mechanism was the standard transport mechanism for all carbon contents.

  3. Effect of laser pulsed radiation on the properties of implanted layers of silicon carbide

    International Nuclear Information System (INIS)

    Violin, Eh.E.; Voron'ko, O.N.; Nojbert, F.; Potapov, E.N.

    1984-01-01

    Results are presented of investigation into pulsed laser radiation effects on the layers of GH polytype silicon carbide converted to amorphous state by implantation of boron and aluminium ions. The implantation doses were selected to be 5x10 16 for boron and 5x10 15 cm -2 for aluminium, with the ion energies being 60 and 80 keV, respectively. The samples annealed under nanosecond regime are stated to posseys neither photoluminescence (PL) nor cathodoluminescence (CL). At the same time the layers annealed in millisecond regime have a weak PL at 100 K and CL at 300 K. The PL and CL are observed in samples, laser-annealed at radiation energy density above 150-160 J/cm 2 in case of boron ion implantation and 100-120 J/cm 2 in case of aluminium ion implantation. Increasing the radiation energy density under the nanosecond regime of laser annealing results in the surface evaporation due to superheating of amorphous layers. Increasing the energy density above 220-240 J/cm 2 results in destruction of the samples

  4. Concept Demonstration of Dopant Selective Reactive Etching (DSRIE) in Silicon Carbide

    Science.gov (United States)

    Okojie, Robert S.

    2015-01-01

    Accurate quantification of combustor pressure dynamics for the primary purpose of experimental validation of computational fluid dynamics (CFD) codes requires the use of robust, reliable and sensitive pressure sensors that can resolve sub--pound-per-square-inch pressure levels in high temperature environments (i.e., combustor). The state of the art microfabricated piezoresistive silicon carbide (SiC) pressure sensors that we have developed are capable of operating reliably at 600 degrees Centigrade. This technology was used in support of the ARMD ISRP-ERA (NASA's Aeronautics Research Mission Directorate, Integrated System Research Project - Environmentally Responsible Aviation) program to quantify combustor thermoacoustic instabilities. The results showed that while the SiC pressure sensors survived the high temperature and measured instabilities, the diaphragm (force collector) was not thin enough to be sensitive in resolving sub-pound-per-square-inch pressures; 30 meters is the thinnest diaphragm achievable with conventional reactive ion etching (RIE) processes. Therefore, this precludes its use for sub-pound-per-square-inch pressure measurement with high fidelity. In order to effectively resolve sub-pound-per-square-inch pressures, a thinner more sensitive diaphragm (10 meters) is needed. To achieve this would require a new and innovative fabrication process technique.

  5. Precipitates and voids in cubic silicon carbide implanted with 25Mg+ ions

    Science.gov (United States)

    Jiang, Weilin; Spurgeon, Steven R.; Liu, Jia; Schreiber, Daniel K.; Jung, Hee Joon; Devaraj, Arun; Edwards, Danny J.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2018-01-01

    Single crystal cubic phase silicon carbide (3C-SiC) films on Si were implanted to 9.6 × 101625Mg+/cm2 at 673 K and annealed at 1073 and 1573 K for 2, 6, and 12 h in an Ar environment. The data from scanning transmission election microscopy (STEM) and electron energy loss spectroscopy (EELS) mapping suggest a possible formation of unidirectionally aligned tetrahedral precipitates of core (MgC2)-shell (Mg2Si) in the implanted sample annealed at 1573 K for 12 h. There are also small spherical voids near the surface and larger faceted voids around the region of maximum vacancy concentration. Atom probe tomography confirms 25Mg segregation dominated by small atomic clusters with local 25Mg concentrations up to 85 at.%. The resulting precipitate size and number density are found to decrease and increase, respectively, probably as a result of the thermal annealing that decomposes the 25Mg-bearing precipitates at the elevated temperatures and subsequent nucleation and growth below 1073 K during the cooling stage. The results from this study provide data needed to fully understand the property degradation of SiC in a high-flux fast neutron environment.

  6. Neutron response of silicon carbide semiconductor detectors from deterministic adjoint transport calculations

    International Nuclear Information System (INIS)

    Rowe, M.; Manalo, K.; Plower, T.; Sjoden, G.

    2009-01-01

    Evaluation of silicon carbide (SiC) semiconductor detectors for use in power monitoring is of significant interest because of their distinct advantages, including small size, small mass, and their inactivity both chemically and neutronically. The main focus of this paper includes evaluating the predicted response of a SiC detector when placed in a 17 x 17 Westinghouse PWR assembly, using the PENTRAN code system for the 3-D deterministic adjoint transport computations. Adjoint transport results indicated maximum adjoint values of 1, 0.507 and 0.308 were obtained for the thermal, epithermal and fast neutron energy groups, respectively. Within a radial distance of 6.08 cm from the SiC detector, local fuel pins contribute 75.33% at this radius within the thermal group response. A total of 35.85% of the response in the epithermal group is accounted for in the same 6.08 cm radius; similarly, 21.58% of the fast group response is accounted for in the same radius. This means that for neutrons, the effective monitoring range of the SiC detectors is on the order of five fuel pins away from the detector; pins outside this range in the fuel lattice are minimally 'seen' by the SiC detector. (authors)

  7. Prolonged silicon carbide integrated circuit operation in Venus surface atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Philip G. Neudeck

    2016-12-01

    Full Text Available The prolonged operation of semiconductor integrated circuits (ICs needed for long-duration exploration of the surface of Venus has proven insurmountably challenging to date due to the ∼ 460 °C, ∼ 9.4 MPa caustic environment. Past and planned Venus landers have been limited to a few hours of surface operation, even when IC electronics needed for basic lander operation are protected with heavily cumbersome pressure vessels and cooling measures. Here we demonstrate vastly longer (weeks electrical operation of two silicon carbide (4H-SiC junction field effect transistor (JFET ring oscillator ICs tested with chips directly exposed (no cooling and no protective chip packaging to a high-fidelity physical and chemical reproduction of Venus’ surface atmosphere. This represents more than 100-fold extension of demonstrated Venus environment electronics durability. With further technology maturation, such SiC IC electronics could drastically improve Venus lander designs and mission concepts, fundamentally enabling long-duration enhanced missions to the surface of Venus.

  8. TEM Analysis of Interfaces in Diffusion-Bonded Silicon Carbide Ceramics Joined Using Metallic Interlayers

    Science.gov (United States)

    Ozaki, T.; Tsuda, H.; Halbig, M. C.; Singh, M.; Hasegawa, Y.; Mori, S.; Asthana R.

    2016-01-01

    Silicon Carbide (SiC) is a promising material for thermo-structural applications due to its excellent high-temperature mechanical properties, oxidation resistance, and thermal stability. However, joining and integration technologies are indispensable for this material in order to fabricate large size and complex shape components with desired functionalities. Although diffusion bonding techniques using metallic interlayers have been commonly utilized to bond various SiC ceramics, detailed microstructural observation by Transmission Electron Microscopy (TEM) of the bonded area has not been carried out due to difficulty in preparing TEM samples. In this study, we tried to prepare TEM samples from joints of diffusion bonded SiC ceramics by Focused Ion Beam (FIB) system and carefully investigated the interfacial microstructure by TEM analysis. The samples used in this study were SiC fiber bonded ceramics (SA-Tyrannohex: SA-THX) diffusion bonded with metallic interlayers such as Ti, TiMo, and Mo-B. In this presentation, the result of microstructural analysis obtained by TEM observations and the influence of metallic interlayers and fiber orientation of SA-THX on the joint microstructure will be discussed.

  9. Multi-nuclear NMR study of polytype and defect distribution in neutron irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Brigden, C.T., E-mail: ctb26@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Farnan, I., E-mail: if203@cam.ac.uk [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Hania, P.R., E-mail: hania@nrg.eu [Nuclear Research Group (NRG), Westerduinweg 3, NL-1755LE Petten (Netherlands)

    2014-01-15

    Silicon carbide containing 92% β-SiC has been irradiated in a material test reactor at a fast neutron fluence (>0.1 MeV) of 3.39 × 10{sup 21} n cm{sup −2} at an average temperature of 796 °C, and subsequently studied by {sup 29}Si and {sup 13}C MAS NMR spectroscopy. A small amount of structural alteration was measured with the α-SiC polytypes increasing from around 8–14%. Based on the assumption that the primary dominant defect is the paramagnetic Si{sub V}{sup -} defect. The defect concentration has been measured in both the irradiated and unirradiated sample using spin lattice relaxation time (T{sub 1}) data obtained via a saturation-recovery experiment and was found to increase from 4.6 × 10{sup 18} cm{sup −3} to 1.5 × 10{sup 20} cm{sup −3}. A case is presented to show that a small residual internuclear dipolar coupling contribution (at 3.80 × 10{sup −6}% of its total value) towards the T{sub 1} in the unirradiated reference sample significantly modifies the relaxation time from a value based solely on the dominant nuclear defect coupling mechanism.

  10. Simultaneous On-State Voltage and Bond-Wire Resistance Monitoring of Silicon Carbide MOSFETs

    Directory of Open Access Journals (Sweden)

    Nick Baker

    2017-03-01

    Full Text Available In fast switching power semiconductors, the use of a fourth terminal to provide the reference potential for the gate signal—known as a kelvin-source terminal—is becoming common. The introduction of this terminal presents opportunities for condition monitoring systems. This article demonstrates how the voltage between the kelvin-source and power-source can be used to specifically monitor bond-wire degradation. Meanwhile, the drain to kelvin-source voltage can be monitored to track defects in the semiconductor die or gate driver. Through an accelerated aging test on 20 A Silicon Carbide Metal-Oxide-Semiconductor-Field-Effect Transistors (MOSFETs, it is shown that there are opposing trends in the evolution of the on-state resistances of both the bond-wires and the MOSFET die. In summary, after 50,000 temperature cycles, the resistance of the bond-wires increased by up to 2 mΩ, while the on-state resistance of the MOSFET dies decreased by approximately 1 mΩ. The conventional failure precursor (monitoring a single forward voltage cannot distinguish between semiconductor die or bond-wire degradation. Therefore, the ability to monitor both these parameters due to the presence of an auxiliary-source terminal can provide more detailed information regarding the aging process of a device.

  11. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    Energy Technology Data Exchange (ETDEWEB)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S. [U.S. Army Research Laboratory, WMRD, Aberdeen Proving Ground, Maryland 21005 (United States); Shanholtz, E. R. [ORISE, Belcamp, Maryland 21017 (United States)

    2016-07-14

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  12. The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide

    International Nuclear Information System (INIS)

    De Heer, Walt A

    2012-01-01

    Graphene electronics was officially invented at the Georgia Institute of Technology in 2003 after experimental and theoretical research on graphene properties starting from 2001. This paper focuses on the motivation and events leading to the invention of graphene electronics, as well as on recent developments. Graphene electronics was originally conceived as a new electronics paradigm to incorporate the room-temperature ballistic and coherent properties of carbon nanotubes in a patternable electronic material. Graphene on silicon carbide was chosen as the most suitable material. Other electronics schemes, involving transferred (exfoliated and chemical vapor deposition-produced) graphitic materials, that operate in the diffusive regime may not be competitive with standard methods and may therefore not significantly impact electronics. In recent years, epitaxial graphene has improved to the point where graphene electronics according to the original concept appears to be within reach. Beyond electronics, epitaxial graphene research has led to important developments in graphene physics in general and has become a leading platform for graphene science as well.

  13. Columnar-to-Equiaxed Transition in Metal-Matrix Composites Reinforced with Silicon Carbide Particles

    Directory of Open Access Journals (Sweden)

    Alicia E. Ares

    2013-01-01

    Full Text Available The present work is focused on the study of the effect of directional heat extraction on the silicon-carbide (SiC distribution in zinc-aluminum matrix composites (MMCs and on the columnar-to-equiaxed (CET position in directionally solidified samples. To this end, a ZA-27 alloy matrix was reinforced with ceramic particles of SiC and vertically directionally solidified. The cooling rates, temperature gradients, and interphase velocities were then measured, and their influence on the solidification microstructure of the MMCs was analyzed. The recalescence detected and measured during the equiaxed transition was of the order of 3.5°C to 1.1°C. The values of the temperature gradients reached a minimum during the CET and were even negative in most cases (between −3.89 K and 0.06 K. The interphase velocities varied between 0.07 mm/s and 0.44 mm/s at the transition. Also, the presence of ceramic particles in ZA-27 alloys affected the thermodynamic local conditions and the kinetics of nucleation, producing a finer microstructure.

  14. Biocompatibility of Hydrogen-Diluted Amorphous Silicon Carbide Thin Films for Artificial Heart Valve Coating

    Science.gov (United States)

    Rizal, Umesh; Swain, Bhabani S.; Rameshbabu, N.; Swain, Bibhu P.

    2018-01-01

    Amorphous silicon carbide (a-SiC:H) thin films were synthesized using trichloromethylsilane by a hot wire chemical vapor deposition process. The deposited films were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray diffraction and x-ray photoelectron spectroscopy to confirm its chemical bonding, structural network and composition of the a-SiC:H films. The optical microscopy images reveal that hydrogen dilution increased the surface roughness and pore density of a-SiC:H thin film. The Raman spectroscopy and FTIR spectra reveal chemical network consisting of Si-Si, C-C and Si-C bonds, respectively. The XRD spectroscopy and Raman spectroscopy indicate a-SiC:H still has short-range order. In addition, in vitro cytotoxicity test ensures the behavior of cell-semiconductor hybrid to monitor the proper coordination. The live-dead assays and MTT assay reveal an increase in green nucleus cell, and cell viability is greater than 88%, respectively, showing non-toxic nature of prepared a-SiC:H film. Moreover, the result indicated by direct contact assay, and cell prefers to adhere and proliferate on a-SiC:H thin films having a positive effect as artificial heart valve coating material.

  15. Grain-boundary type and distribution in silicon carbide coatings and wafers

    Science.gov (United States)

    Cancino-Trejo, Felix; López-Honorato, Eddie; Walker, Ross C.; Ferrer, Romelia Salomon

    2018-03-01

    Silicon carbide is the main diffusion barrier against metallic fission products in TRISO (tristructural isotropic) coated fuel particles. The explanation of the accelerated diffusion of silver through SiC has remained a challenge for more than four decades. Although, it is now well accepted that silver diffuse through SiC by grain boundary diffusion, little is known about the characteristics of the grain boundaries in SiC and how these change depending on the type of sample. In this work five different types (coatings and wafers) of SiC produced by chemical vapor deposition were characterized by electron backscatter diffraction (EBSD). The SiC in TRISO particles had a higher concentration of high angle grain boundaries (aprox. 70%) compared to SiC wafers, which ranged between 30 and 60%. Similarly, SiC wafers had a higher concentration of low angle grain boundaries ranging between 15 and 30%, whereas TRISO particles only reached values of around 7%. The same trend remained when comparing the content of coincidence site lattice (CSL) boundaries, since SiC wafers showed a concentration of more than 30%, whilst TRISO particles had contents of around 20%. In all samples the largest fractions of CSL boundaries (3 ≤ Σ ≤ 17) were the Σ3 boundaries. We show that there are important differences between the SiC in TRISO particles and SiC wafers which could explain some of the differences observed in diffusion experiments in the literature.

  16. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling.

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-28

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 10 3 to 10 4  s -1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).

  17. Theoretical studies of the lithium atom on the silicon carbide nanotubes

    International Nuclear Information System (INIS)

    Yu, Guolong; Chen, Na; Wang, Feifei; Xie, Yiqun; Ye, Xiang; Gu, Xiao

    2014-01-01

    Based on density functional theory method, we have investigated structural, electronic, and magnetic properties of lithium (Li) atom adsorbed on silicon carbide (SiC) zigzag (9,0) and armchair (5,5) nanotubes. Effective adsorptions are found on both inner- and outer-side of the SiC nanotubes, with adsorption energies ranging from 1.03 to 1.71 eV. Interestingly, we have found that SiC nanotubes exhibit different behaviors with several Li adsorption sites. Li adsorptions on the s-Si and s-H sites of the outer surface and all the five sites of the inner surface in zigzag (9,0) nanotube emerge metallic features, whereas adsorptions on other sides of (9,0) and all sites of armchair (5,5) SiC nanotubes show semiconducting characters. The calculating results also indicate that lithium adsorptions on most sites of SiC nanotubes yield spontaneous magnetization, where net magnetic moment is 1 μ B . Additionally, spin density of states, spin density distribution, and charge density difference are also calculated to investigate the electronic and magnetic properties of SiC nanotubes induced by Li adsorption

  18. Adsorption of rare-earth atoms onl silicon carbide nanotube: a density-functional study

    Science.gov (United States)

    An, Zhiwei; Shen, Jiang

    2014-07-01

    In this paper, we investigate the adsorption of a series of rare-earth (RE) metal atoms (La, Pr, Nd, Sm and Eu) on the pristine zigzag (8, 0) silicon carbide nanotube (SiCNT) using density functional theory (DFT). Main focuses are placed on the stable adsorption sites, the corresponding binding energies, and the modified electronic properties of the SiC nanotubes due to the adsorbates. A single RE atom prefers to adsorb strongly at the hollow site with relatively high binding energy (larger than 1.0 eV). Due to the rolling effect of single-walled SiCNTs, the inside configurations are more stable than the outside ones. For RE-adsorbed systems, the adsorption of metal atoms induces certain impurity states within the band gap of the pristine SiCNT. Furthermore, we analyze there exists hybridizations between RE-5d, 6s, C-2p and Si-3p orbitals for the RE atom adsorption on the SiCNTs.

  19. DC electrical conductivity of silicon carbide ceramics and composites for flow channel insert applications

    International Nuclear Information System (INIS)

    Katoh, Y.; Kondo, S.; Snead, L.L.

    2009-01-01

    High purity chemically vapor-deposited silicon carbide (SiC) and 2D continuous SiC fiber, chemically vapor-infiltrated SiC matrix composites with pyrocarbon interphases were examined. Specifically, temperature dependent (RT to 800 deg. C) electrical conductivity and the influence of neutron irradiation were measured. The influence of neutron irradiation on electrical properties appeared very strong for the SiC of this study, typically resulting in orders lower ambient conductivity and steeper temperature dependency of this conductivity. For the 2D composites, through-thickness (normal to the fiber axis') electrical conductivity was dominated by bypass conduction via interphase network at relatively low temperatures, whereas conduction through SiC constituents dominated at higher temperatures. Through-thickness electrical conductivity of neutron-irradiated 2D SiC composites with thin PyC interphase, currently envisioned for flow channel insert application, will likely in the order of 10 S/m at the appropriate operating temperature. Mechanisms of electrical conduction in the composites and irradiation-induced modification of electrical conductivity of the composites and their constituents are discussed.

  20. Interface control and mechanical property improvements in silicon carbide/titanium composites

    Science.gov (United States)

    Brewer, W. D.; Unnam, J.

    1982-01-01

    Several composite systems made of titanium matrix reinforced with silicon carbide fiber were investigated to obtain a better understanding of composite-degradation mechanisms and to develop techniques to minimize loss of mechanical properties during fabrication and in service. Emphasis was on interface control by fiber or matrix coatings. X-ray diffraction studies on planar samples showed that the formation of titanium silicides was greatly inhibited by the presence of aluminum or Ti3A1 layers at the fiber-matrix interface, with the Ti3A1 being more effective in reducing the reactions. Fiber studies showed that coating the fiber with a 1-micron-thick layer of aluminum improved the as-fabricated strength of a stoichiometric SiC fiber and reduced the fiber degradation during exposure to composite-fabrication conditions. Applying an interfacial barrier by coating the matrix foils instead of the fibers was found to be an effective method for improving composite strength. Reducing the fabrication temperature also resulted in significant improvements in composite strengths. Good-quality, well-consolidated composites were fabricated at temperatures well below those currently used for SiC-Ti composite fabrication.

  1. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Erzar, Benjamin

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s−1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual–Forquin–Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956504

  2. Strain rate sensitivity of the tensile strength of two silicon carbides: experimental evidence and micromechanical modelling

    Science.gov (United States)

    Zinszner, Jean-Luc; Erzar, Benjamin; Forquin, Pascal

    2017-01-01

    Ceramic materials are commonly used to design multi-layer armour systems thanks to their favourable physical and mechanical properties. However, during an impact event, fragmentation of the ceramic plate inevitably occurs due to its inherent brittleness under tensile loading. Consequently, an accurate model of the fragmentation process is necessary in order to achieve an optimum design for a desired armour configuration. In this work, shockless spalling tests have been performed on two silicon carbide grades at strain rates ranging from 103 to 104 s-1 using a high-pulsed power generator. These spalling tests characterize the tensile strength strain rate sensitivity of each ceramic grade. The microstructural properties of the ceramics appear to play an important role on the strain rate sensitivity and on the dynamic tensile strength. Moreover, this experimental configuration allows for recovering damaged, but unbroken specimens, giving unique insight on the fragmentation process initiated in the ceramics. All the collected data have been compared with corresponding results of numerical simulations performed using the Denoual-Forquin-Hild anisotropic damage model. Good agreement is observed between numerical simulations and experimental data in terms of free surface velocity, size and location of the damaged zones along with crack density in these damaged zones. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  3. Study on stress relaxation behavior of silicon carbide by BSR method

    Science.gov (United States)

    Abe, Kazuma; Nogami, Shuhei; Hasegawa, Akira; Nozawa, Takashi; Hinoki, Tatsuya

    2011-10-01

    Bend stress relaxation (BSR) experiment at temperatures of 600-1400 °C for 1-100 h was performed on the two types of highly crystallized monolithic silicon carbide (SiC) produced by chemically vapor deposition (CVD) and liquid phase sintering (LPS) methods. Both materials exhibited similar time-dependent trend of stress relaxation. The BSR ratio dropped rapidly during the first hour of the tests and then decreased gradually in the higher temperature tests. The CVD-SiC and the LPS-SiC showed good thermal creep resistance at the expected operating temperature (about 600-1000 °C) of fusion blanket using SiC fiber-reinforced SiC matrix (SiC/SiC) composite. On the other hand, the BSR ratio of those two materials, especially of the LPS-SiC, dropped steeply at the temperatures of 1200-1400 °C. The activation energy of the stress relaxation calculated by a cross-cut method increased with the temperature.

  4. Study on stress relaxation behavior of silicon carbide by BSR method

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Kazuma, E-mail: abe@jupiter.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Nogami, Shuhei, E-mail: shuhei.nogami@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Hasegawa, Akira, E-mail: akira.hasegawa@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Nozawa, Takashi, E-mail: nozawa.takashi67@jaea.go.jp [Japan Atomic Energy Agency, 2-4, Shirakata Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan); Hinoki, Tatsuya, E-mail: hinoki@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan)

    2011-10-01

    Bend stress relaxation (BSR) experiment at temperatures of 600-1400 deg. C for 1-100 h was performed on the two types of highly crystallized monolithic silicon carbide (SiC) produced by chemically vapor deposition (CVD) and liquid phase sintering (LPS) methods. Both materials exhibited similar time-dependent trend of stress relaxation. The BSR ratio dropped rapidly during the first hour of the tests and then decreased gradually in the higher temperature tests. The CVD-SiC and the LPS-SiC showed good thermal creep resistance at the expected operating temperature (about 600-1000 deg. C) of fusion blanket using SiC fiber-reinforced SiC matrix (SiC/SiC) composite. On the other hand, the BSR ratio of those two materials, especially of the LPS-SiC, dropped steeply at the temperatures of 1200-1400 deg. C. The activation energy of the stress relaxation calculated by a cross-cut method increased with the temperature.

  5. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  6. Joining and Integration of Silicon Carbide-Based Materials for High Temperature Applications

    Science.gov (United States)

    Halbig, Michael C.; Singh, Mrityunjay

    2016-01-01

    Advanced joining and integration technologies of silicon carbide-based ceramics and ceramic matrix composites are enabling for their implementation into wide scale aerospace and ground-based applications. The robust joining and integration technologies allow for large and complex shapes to be fabricated and integrated with the larger system. Potential aerospace applications include lean-direct fuel injectors, thermal actuators, turbine vanes, blades, shrouds, combustor liners and other hot section components. Ground based applications include components for energy and environmental systems. Performance requirements and processing challenges are identified for the successful implementation different joining technologies. An overview will be provided of several joining approaches which have been developed for high temperature applications. In addition, various characterization approaches were pursued to provide an understanding of the processing-microstructure-property relationships. Microstructural analysis of the joint interfaces was conducted using optical, scanning electron, and transmission electron microscopy to identify phases and evaluate the bond quality. Mechanical testing results will be presented along with the need for new standardized test methods. The critical need for tailoring interlayer compositions for optimum joint properties will also be highlighted.

  7. Silicon carbide as a heat-enhancing agent in microwave ablation: in vitro experiments.

    Science.gov (United States)

    Isfort, P; Penzkofer, T; Pfaff, E; Bruners, P; Günther, R W; Schmitz-Rode, T; Mahnken, A H

    2011-08-01

    Silicon carbide (SiC) is an inert compound material with excellent microwave absorption and heat-conducting properties. The aim of our study was to investigate the heat-enhancing effects of SiC in microwave ablation in an in vitro setting. Different concentrations of SiC powder were mixed with 2% gelatin, producing a 20-ml mixture that was then heated with a clinical microwave ablation system (5 min/45 W). Temperature was measured continuously fiberoptically. Additional heating properties were assessed for the most heatable concentrations at different energy settings (10, 20, and 30 W). As reference, 2% gelatin without SiC was heated. Statistical evaluation by analysis of variance with post hoc Student-Newman-Keuls testing was performed. For the different SiC concentrations, maximum temperatures measured were 45.7 ± 1.2°C (0% SiC, control), 50.4 ± 3.6°C (2% SiC), 60.8 ± 1.8°C (10% SiC), 74.9 ± 2.6°C (20% SiC), and 83.4 ± 2.5°C (50% SiC). Differences between all data points were significant (P particles.

  8. Bare and boron-doped cubic silicon carbide nanowires for electrochemical detection of nitrite sensitively.

    Science.gov (United States)

    Yang, Tao; Zhang, Liqin; Hou, Xinmei; Chen, Junhong; Chou, Kuo-Chih

    2016-04-25

    Fabrication of eletrochemical sensors based on wide bandgap compound semiconductors has attracted increasing interest in recent years. Here we report for the first time electrochemical nitrite sensors based on cubic silicon carbide (SiC) nanowires (NWs) with smooth surface and boron-doped cubic SiC NWs with fin-like structure. Multiple techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) were used to characterize SiC and boron-doped SiC NWs. As for the electrochemical behavior of both SiC NWs electrode, the cyclic voltammetric results show that both SiC electrodes exhibit wide potential window and excellent electrocatalytic activity toward nitrite oxidation. Differential pulse voltammetry (DPV) determination reveals that there exists a good linear relationship between the oxidation peak current and the concentration in the range of 50-15000 μmoL L(-1) (cubic SiC NWs) and 5-8000 μmoL L(-1) (B-doped cubic SiC NWs) with the detection limitation of 5 and 0.5 μmoL L(-1) respectively. Compared with previously reported results, both as-prepared nitrite sensors exhibit wider linear response range with comparable high sensitivity, high stability and reproducibility.

  9. The improvement of wave-absorbing ability of silicon carbide fibers by depositing boron nitride coating

    Science.gov (United States)

    Ye, Fang; Zhang, Litong; Yin, Xiaowei; Liu, Yongsheng; Cheng, Laifei

    2013-04-01

    This work investigated electromagnetic wave (EMW) absorption and mechanical properties of silicon carbide (SiC) fibers with and without boron nitride (BN) coating by chemical vapor infiltration (CVI). The dielectric property and EM shielding effectiveness of SiC fiber bundles before and after being coated by BN were measured by wave guide method. The EM reflection coefficient of SiC fiber laminates with and without BN coating was determined by model calculation and NRL-arc method, respectively. Tensile properties of SiC fiber bundles with and without BN coating were tested at room temperature. Results show that SiC fibers with BN coating had a great improvement of EMW absorbing property because the composites achieved the impedance matching. BN with the low permittivity and dielectric loss contributed to the enhancive introduction and reduced reflection of EMW. The tensile strength and Weibull modulus of SiC fiber bundles coated by BN increased owing to the decrease of defects in SiC fibers and the protection of coating during loading.

  10. Preparation of silicon carbide-supported vanadium oxide and its application of removing NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Bo; Xu, Xu [Yangzhou University, College of Environmental Science and Engineering, Yangzhou, Jiangsu (China); Bai, Shu-Li [Wuyi University, College of Chemical and Environmental Engineering, Jiangmen, Guangdong (China); Guan, Yu-Jiang; Jiang, Sheng-Tao [Taizhou University, Environmental Engineering, Taizhou, Zhejiang (China)

    2017-03-15

    The aim of this work was to study the preparation of SiC-supported V{sub 2}O{sub 5} catalysts and the kinetics on selective catalytic reduction for NO with NH{sub 3} on the catalysts. Using incipient wetness impregnation methods, vanadium oxide was applied to silicon carbide to prepare a SiC-supported vanadium oxide. X-ray photoelectron spectroscopy analysis confirmed that V{sub 2}O{sub 5} existed in the prepared materials. Using the prepared materials as catalysts, selective catalytic reduction for NO by NH{sub 3} has been analyzed, and reaction kinetics on the catalysts was studied at 150-300 C. The obtained results showed that the reduction reaction on the catalysts is close to zero-order kinetics with respect to NH{sub 3}, first-order with respect to NO, and half-order to O{sub 2}. Apparent activation energy for the reduction reaction was found to be 38 kJ mol{sup -1}. The prepared materials are stable and reusable. (orig.)

  11. Electromagnetic local density of states in graphene-covered porous silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting [Department of Physics, Nanchang University, Nanchang 330031 (China); Wang, Tong-Biao, E-mail: tbwang@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang 330031 (China); Liao, Qing-Hua; Liu, Jiang-Tao; Yu, Tian-Bao [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian-Hua [Institute for Advanced Study, Nanchang University, Nanchang 330031 (China)

    2017-06-21

    Surface phonon polariton supported by silicon carbide (SiC) can be strongly coupled with graphene plasmon in the graphene-covered SiC bulk. The spectrum of the electromagnetic local density of states exhibits two peaks whose positions can be tuned by the chemical potential of graphene. In this work, we study the electromagnetic local density of states in the proximity of a graphene-covered SiC with periodic hole arrays. The well-known peak from the coupling of surface polariton supported by SiC and graphene plasmon splits into two. With increased volume ratio of holes, one of the split peak shifts towards high frequencies, whereas the other moves towards low frequencies. The dependence of split-peak positions on the chemical potential and permittivity of filling materials in the holes are also investigated. This study offers another method of modulating the electromagnetic local density of states. - Highlights: • The electromagnetic local density of states in the proximity of graphene-covered anisotropic SiC is firstly studied. • The peak from resonance of surface phonon polaritons in the EM-LDOS spectrum can be split into two. • The split peaks can be tuned by chemical potential, filling factor, and filling materials. • Our results provide a new method to modulate the EM-LDOS.

  12. Additive Manufacturing of Silicon Carbide-Based Ceramic Matrix Composites: Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay; Halbig, Michael C.; Grady, Joseph E.

    2016-01-01

    Advanced SiC-based ceramic matrix composites offer significant contributions toward reducing fuel burn and emissions by enabling high overall pressure ratio (OPR) of gas turbine engines and reducing or eliminating cooling air in the hot-section components, such as shrouds, combustor liners, vanes, and blades. Additive manufacturing (AM), which allows high value, custom designed parts layer by layer, has been demonstrated for metals and polymer matrix composites. However, there has been limited activity on additive manufacturing of ceramic matrix composites (CMCs). In this presentation, laminated object manufacturing (LOM), binder jet process, and 3-D printing approaches for developing ceramic composite materials are presented. For the laminated object manufacturing (LOM), fiber prepreg laminates were cut into shape with a laser and stacked to form the desired part followed by high temperature heat treatments. For the binder jet, processing optimization was pursued through silicon carbide powder blending, infiltration with and without SiC nano powder loading, and integration of fibers into the powder bed. Scanning electron microscopy was conducted along with XRD, TGA, and mechanical testing. Various technical challenges and opportunities for additive manufacturing of ceramics and CMCs will be presented.

  13. Tuning the electronic band-gap of fluorinated 3C-silicon carbide nanowires

    Science.gov (United States)

    Miranda Durán, Álvaro; Trejo Baños, Alejandro; Pérez, Luis Antonio; Cruz Irisson, Miguel

    The possibility of control and modulation of the electronic properties of silicon carbide nanowires (SiCNWs) by varying the wire diameter is well known. SiCNWs are particularly interesting and technologically important, due to its electrical and mechanical properties, allowing the development of materials with specific electronic features for the design of stable and robust electronic devices. Tuning the band gap by chemical surface passivation constitutes a way for the modification of the electronic band gap of these nanowires. We present, the structural and electronic properties of fluorinated SiCNWs, grown along the [111] crystallographic direction, which are investigated by first principles. We consider nanowires with six diameters, varying from 0.35 nm to 2.13 nm, and eight random covering schemes including fully hydrogen- and fluorine terminated ones. Gibbs free energy of formation and electronic properties were calculated for the different surface functionalization schemes and diameters considered. The results indicate that the stability and band gap of SiCNWs can be tuned by surface passivation with fluorine atoms This work was supported by CONACYT infrastructure project 252749 and UNAM-DGAPA-PAPIIT IN106714. A.M. would like to thank for financial support from CONACyT-Retención. Computing resources from proyect SC15-1-IR-27 of DGTIC-UNAM are acknowledged.

  14. Atomic-Level Simulation Study of n-Hexane Pyrolysis on Silicon Carbide Surfaces.

    Science.gov (United States)

    Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao; Shing, Katherine

    2017-10-24

    Ethylene production plays a key role in the petrochemical industry. The severe operation conditions of ethylene thermal cracking, such as high-temperature and coke-formation, pose challenges for the development of new corrosion-resistant and coking-resistant materials for ethylene reactor radiant coils tubes (RCTs). We investigated the performance of ceramic materials such as silicon carbide (SiC) in severe pyrolysis conditions by using reactive force field molecular dynamics (ReaxFF MD) simulation method. Our results indicate that β-SiC surface remains fully stable at 1500 K, whereas increased temperature results in melted interface. At 2500 K, fully grown cross-linked-graphene-like polycyclic aromatic hydrocarbon coking structure on SiC surfaces was observed. Such coking was particularly severe in the carbon-side of the surface slab. The coking structures were mainly derived from surface atoms at the initial 3.0 ns, as a result of the loss of interfacial hydroxyl layer and further hydrothermal corrosion. The SiC substrate surface enhances the ethylene cracking rate and also leads to different intermediate-state compounds. Our fundamental research will have significant and broad impact on both petrochemical industry and academic research in materials science, petrochemistry, and combustion chemistry.

  15. Polycrystalline silicon carbide dopant profiles obtained through a scanning nano-Schottky contact

    International Nuclear Information System (INIS)

    Golt, M. C.; Strawhecker, K. E.; Bratcher, M. S.; Shanholtz, E. R.

    2016-01-01

    The unique thermo-electro-mechanical properties of polycrystalline silicon carbide (poly-SiC) make it a desirable candidate for structural and electronic materials for operation in extreme environments. Necessitated by the need to understand how processing additives influence poly-SiC structure and electrical properties, the distribution of lattice defects and impurities across a specimen of hot-pressed 6H poly-SiC processed with p-type additives was visualized with high spatial resolution using a conductive atomic force microscopy approach in which a contact forming a nano-Schottky interface is scanned across the sample. The results reveal very intricate structures within poly-SiC, with each grain having a complex core-rim structure. This complexity results from the influence the additives have on the evolution of the microstructure during processing. It was found that the highest conductivities localized at rims as well as at the interface between the rim and the core. The conductivity of the cores is less than the conductivity of the rims due to a lower concentration of dopant. Analysis of the observed conductivities and current-voltage curves is presented in the context of nano-Schottky contact regimes where the conventional understanding of charge transport to diode operation is no longer valid.

  16. Silicon carbide devices: more reliability for transmission and distribution systems; Dispositivos de SiC: mais confiabilidade para sistemas de transmissao e distribuicao

    Energy Technology Data Exchange (ETDEWEB)

    Basset, Roger; Ballad, John [Areva T and D Tecnology Centre (United Kingdom)

    2006-05-15

    The silicon carbide power semiconductors will represent an essential role in relation to electrical nets in the future. Counting with higher voltage levels, more rapid commutations and allowing higher temperatures then the current silicon semiconductors, they will result in power electronic equipment with lower dissipation and smaller amount of components, becoming more compacts and reliable.

  17. Determination of silicon and aluminum in silicon carbide nanocrystals by high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Dravecz, Gabriella; Bencs, László; Beke, Dávid; Gali, Adam

    2016-01-15

    The determination of Al contaminant and the main component Si in silicon carbide (SiC) nanocrystals with the size-distribution of 1-8nm dispersed in an aqueous solution was developed using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS-GFAAS). The vaporization/atomization processes were investigated in a transversally heated graphite atomizer by evaporating solution samples of Al and Si preserved in various media (HCl, HNO3). For Si, the best results were obtained by applying a mixture of 5µg Pd plus 5µg Mg, whereas for Al, 10µg Mg (each as nitrate solution) was dispensed with the samples, but the results obtained without modifier were found to be better. This way a maximum pyrolysis temperature of 1200°C for Si and 1300°C for Al could be used, and the optimum (compromise) atomization temperature was 2400°C for both analytes. The Si and Al contents of different sized SiC nanocrystals, dispersed in aqueous solutions, were determined against aqueous (external) calibration standards. The correlation coefficients (R values) of the calibrations were found to be 0.9963 for Si and 0.9991 for Al. The upper limit of the linear calibration range was 2mg/l Si and 0.25mg/l Al. The limit of detection was 3µg/l for Si and 0.5µg/l for Al. The characteristic mass (m0) was calculated to be 389pg Si and 6.4pg Al. The Si and Al content in the solution samples were found to be in the range of 1.0-1.7mg/l and 0.1-0.25mg/l, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Friction stir surfacing of cast A356 aluminium–silicon alloy with boron carbide and molybdenum disulphide powders

    Directory of Open Access Journals (Sweden)

    R. Srinivasu

    2015-06-01

    Full Text Available Good castability and high strength properties of Al–Si alloys are useful in defence applications like torpedoes, manufacture of Missile bodies, and parts of automobile such as engine cylinders and pistons. Poor wear resistance of the alloys is major limitation for their use. Friction stir processing (FSP is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods. Keeping in view of the requirement of improving wear resistance of cast aluminium–silicon alloy, friction stir processing was attempted for surface modification with boron carbide (B4C and molybdenum disulfide (MoS2 powders. Metallography, micro compositional analysis, hardness and pin-on-disc wear testing were used for characterizing the surface composite coating. Microscopic study revealed breaking of coarse silicon needles and uniformly distributed carbides in the A356 alloy matrix after FSP. Improvement and uniformity in hardness was obtained in surface composite layer. Higher wear resistance was achieved in friction stir processed coating with carbide powders. Addition of solid lubricant MoS2 powder was found to improve wear resistance of the base metal significantly.

  19. Pristine Samples of Silicon Carbide Separated From the Canyon Diablo Meteorite

    Science.gov (United States)

    Leung, I. S.; Winston, R.

    2008-12-01

    The Canyon Diablo is an iron meteorite whose collision with Earth created Meteor Crater in Arizona. In a study of a large block (53 kg) of this meteorite, Henri Moissan reported his findings of green, hexagonal crystals of silicon carbide (SiC) which was given the name moissanite the following year by George Kunz (1905). Moissan did not report finding the cubic form of SiC. Subsequently, many erroneous reports appeared when the polishing compound (synthetic SiC) was mistakenly considered by researchers as a natural mineral associated with, rather than a contaminant of many rock types. Hence, the occurrence of SiC in the Canyon Diablo remains in doubt, and any proposal to investigate this problem was discouraged and regarded as predictably unproductive. This notion hampered further work on abundant materials housed in museums. SiC grains have been found in primitive meteorites and interplanetary dust particles. Some have been identified as presolar grains. The significance of SiC in the Canyon Diablo cannot be revealed unless we have abundant data from pristine samples, enough for us to classify them into presolar or other types. We report here a simple method we used to separate SiC crystals from the meteorite. We chose samples containing a carbon nodule composed of graphite, diamond-lonsdaleite, and SiC grains in the iron matrix. We broke up the carbon nodule with a sharp tungsten carbide chisel and hammer. After removing the large metal fragments, we put a small amount of the fine black grains in a Petri dish with acetone, then swerved the dish to scatter the grains sparingly on the bottom of the dish. Under a binocular microscope, SiC crystals can be spotted easily by their adamantine luster, color (blue, green, beige, etc.), and high birefringence when placed between crossed polarizers of a petrographic microscope. We also X-rayed individual grains, and have identified several hexagonal polytype structures as well as the cubic form (3C polytype).

  20. Electrochemical properties and applications of nanocrystalline, microcrystalline, and epitaxial cubic silicon carbide films.

    Science.gov (United States)

    Zhuang, Hao; Yang, Nianjun; Zhang, Lei; Fuchs, Regina; Jiang, Xin

    2015-05-27

    Microstructures of the materials (e.g., crystallinitiy, defects, and composition, etc.) determine their properties, which eventually lead to their diverse applications. In this contribution, the properties, especially the electrochemical properties, of cubic silicon carbide (3C-SiC) films have been engineered by controlling their microstructures. By manipulating the deposition conditions, nanocrystalline, microcrystalline and epitaxial (001) 3C-SiC films are obtained with varied properties. The epitaxial 3C-SiC film presents the lowest double-layer capacitance and the highest reversibility of redox probes, because of its perfect (001) orientation and high phase purity. The highest double-layer capacitance and the lowest reversibility of redox probes have been realized on the nanocrystalline 3C-SiC film. Those are ascribed to its high amount of grain boundaries, amorphous phases and large diversity in its crystal size. Based on their diverse properties, the electrochemical performances of 3C-SiC films are evaluated in two kinds of potential applications, namely an electrochemical capacitor using a nanocrystalline film and an electrochemical dopamine sensor using the epitaxial 3C-SiC film. The nanocrystalline 3C-SiC film shows not only a high double layer capacitance (43-70 μF/cm(2)) but also a long-term stability of its capacitance. The epitaxial 3C-SiC film shows a low detection limit toward dopamine, which is one to 2 orders of magnitude lower than its normal concentration in tissue. Therefore, 3C-SiC film is a novel but designable material for different emerging electrochemical applications such as energy storage, biomedical/chemical sensors, environmental pollutant detectors, and so on.

  1. Separation of silicon carbide-coated fertile and fissile particles by gas classification

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1976-07-01

    The separation of 235 U and 233 U in the reprocessing of HTGR fuels is a key feature of the feed-breed fuel cycle concept. This is attained in the Fort St. Vrain (FSV) reactor by coating the fissile (Th- 235 U) particles and the fertile (Th- 233 U) particles separately with silicon carbide (SiC) layers to contain the fission products and to protect the kernels from burning in the head-end reprocessing steps. Pneumatic (gas) classification based on size and density differences is the reference process for separating the SiC-coated particles into fissile and fertile streams for subsequent handling. Terminal velocities have been calculated for the +- 2 sigma ranges of particle sizes and densities for ''Fissile B''--''Fertile A'' particles used in the FSV reactor. Because of overlapping particle fractions, a continuous pneumatic separator appears infeasible; however, a batch separation process can be envisioned. Changing the gas from air to CO 2 and/or the temperature to 300 0 C results in less than 10 percent change in calculated terminal velocities. Recently reported work in gas classification is discussed in light of the theoretical calculations. The pneumatic separation of fissile and fertile particles needs more study, specifically with regard to (1) measuring the recoveries and separation efficiencies of actual fissile and fertile fractions in the tests of the pneumatic classifiers; and (2) improving the contactor design or flowsheet to avoid apparent flow separation or flooding problems at the feed point when using the feed rates required for the pilot plant

  2. Linear electro-optical behavior of hybrid nanocomposites based on silicon carbide nanocrystals and polymer matrices

    Science.gov (United States)

    Bouclé, J.; Kassiba, A.; Makowska-Janusik, M.; Herlin-Boime, N.; Reynaud, C.; Desert, A.; Emery, J.; Bulou, A.; Sanetra, J.; Pud, A. A.; Kodjikian, S.

    2006-11-01

    An electro-optical activity has been recently reported for hybrid nanocomposite thin films where inorganic silicon carbide nanocrystals (ncSiC) are incorporated into polymer matrices. The role of the interface SiC polymer is suggested as the origin of the observed second order nonlinear optical susceptibility in the hybrid materials based on poly-(methylmethacrylate) (PMMA) or poly-( N -vinylcarbazole) matrices. In this work, we report an analysis of the electro-optical response of this hybrid system as a function of the ncSiC content and surface state in order to precise the interface effect in the observed phenomenon. Two specific ncSiC samples with similar morphology and different surface states are incorporated in the PMMA matrix. The effective Pockels parameters of the corresponding hybrid nanocomposites have been estimated up to 7.59±0.74pm/V ( 1wt.% of ncSiC in the matrix). The interfacial region ncSiC polymer is found to play the main role in the observed effect. Particularly, the electronic defects on the ncSiC nanocrystal surface modify the interfacial electrical interactions between the two components. The results are interpreted and discussed on the basis of the strong influence of these active centers in the interfacial region at the nanoscale, which are found to monitor the local hyperpolarizabilities and the macroscopic nonlinear optical susceptibilities. This approach allows us to complete the description and understanding of the electro-optical response in the hybrid SiC /polymer systems.

  3. Limited inflammatory response in rats after acute exposure to a silicon carbide nanoaerosol

    Energy Technology Data Exchange (ETDEWEB)

    Laloy, J., E-mail: julie.laloy@unamur.be [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Lozano, O. [University of Namur (UNamur), Research Centre in Physics of Matter and Radiation (PMR), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium); Alpan, L.; Masereel, B. [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Toussaint, O. [University of Namur (UNamur), Laboratory of Cellular Biochemistry and Biology (URBC), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium); Dogné, J. M. [University of Namur (UNamur), Department of Pharmacy, Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences NARILIS (Belgium); Lucas, S. [University of Namur (UNamur), Research Centre in Physics of Matter and Radiation (PMR), Namur Nanosafety Centre NNC, Namur Research Institute for Life Sciences NARILIS (Belgium)

    2015-08-15

    Inhalation represents the major route of human exposure to manufactured nanomaterials (NMs). Assessments are needed about the potential risks of NMs from inhalation on different tissues and organs, especially the respiratory tract. The aim of this limited study is to determine the potential acute pulmonary toxicity in rats exposed to a dry nanoaerosol of silicon carbide (SiC) nanoparticles (NPs) in a whole-body exposure (WBE) model. The SiC nanoaerosol is composed of a bimodal size distribution of 92.8 and 480 nm. The exposure concentration was 4.91 mg/L, close to the highest recommended concentration of 5 mg/L by the Organisation for Economic Co-operation and Development. Rats were exposed for 6 h to a stable and reproducible SiC nanoaerosol under real-time measurement conditions. A control group was exposed to the filtered air used to create the nanoaerosol. Animals were sacrificed immediately, 24 or 72 h after exposure. The bronchoalveolar lavage fluid from rat lungs was recovered. Macrophages filled with SiC NPs were observed in the rat lungs. The greatest load of SiC and macrophages filled with SiC were observed on the rat lungs sacrificed 24 h after acute exposure. A limited acute inflammatory response was found up to 24 h after exposure characterized by a lactate dehydrogenase and total protein increase or presence of inflammatory cells in pulmonary lavage. For this study a WBE model has been developed, it allows the simultaneous exposure of six rats to a nanoaerosol and six rats to clean-filtered air. The nanoaerosol was generated using a rotating brush system (RBG-1000) and analyzed with an electrical low pressure impactor in real time.

  4. Stability of the tungsten diselenide and silicon carbide heterostructure against high energy proton exposure

    Science.gov (United States)

    Walker, Roger C.; Shi, Tan; Jariwala, Bhakti; Jovanovic, Igor; Robinson, Joshua A.

    2017-10-01

    Single layers of tungsten diselenide (WSe2) can be used to construct ultra-thin, high-performance electronics. Additionally, there has been considerable progress in controlled and direct growth of single layers on various substrates. Based on these results, high-quality WSe2-based devices that approach the limit of physical thickness are now possible. Such devices could be useful for space applications, but understanding how high-energy radiation impacts the properties of WSe2 and the WSe2/substrate interface has been lacking. In this work, we compare the stability against high energy proton radiation of WSe2 and silicon carbide (SiC) heterostructures generated by mechanical exfoliation of WSe2 flakes and by direct growth of WSe2 via metal-organic chemical vapor deposition (MOCVD). These two techniques produce WSe2/SiC heterostructures with distinct differences due to interface states generated during the MOCVD growth process. This difference carries over to differences in band alignment from interface states and the ultra-thin nature of the MOCVD-grown material. Both heterostructures are not susceptible to proton-induced charging up to a dose of 1016 protons/cm2, as measured via shifts in the binding energy of core shell electrons and a decrease in the valence band offset. Furthermore, the MOCVD-grown material is less affected by the proton exposure due to its ultra-thin nature and a greater interaction with the substrate. These combined effects show that the directly grown material is suitable for multi-year use in space, provided that high quality devices can be fabricated from it.

  5. Assessment of Silicon Carbide Composites for Advanced Salt-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Yutai [ORNL; Wilson, Dane F [ORNL; Forsberg, Charles W [ORNL

    2007-09-01

    The Advanced High-Temperature Reactor (AHTR) is a new reactor concept that uses a liquid fluoride salt coolant and a solid high-temperature fuel. Several alternative fuel types are being considered for this reactor. One set of fuel options is the use of pin-type fuel assemblies with silicon carbide (SiC) cladding. This report provides (1) an initial viability assessment of using SiC as fuel cladding and other in-core components of the AHTR, (2) the current status of SiC technology, and (3) recommendations on the path forward. Based on the analysis of requirements, continuous SiC fiber-reinforced, chemically vapor-infiltrated SiC matrix (CVI SiC/SiC) composites are recommended as the primary option for further study on AHTR fuel cladding among various industrially available forms of SiC. Critical feasibility issues for the SiC-based AHTR fuel cladding are identified to be (1) corrosion of SiC in the candidate liquid salts, (2) high dose neutron radiation effects, (3) static fatigue failure of SiC/SiC, (4) long-term radiation effects including irradiation creep and radiation-enhanced static fatigue, and (5) fabrication technology of hermetic wall and sealing end caps. Considering the results of the issues analysis and the prospects of ongoing SiC research and development in other nuclear programs, recommendations on the path forward is provided in the order or priority as: (1) thermodynamic analysis and experimental examination of SiC corrosion in the candidate liquid salts, (2) assessment of long-term mechanical integrity issues using prototypical component sections, and (3) assessment of high dose radiation effects relevant to the anticipated operating condition.

  6. Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants.

    Science.gov (United States)

    Gryshkov, Oleksandr; Klyui, Nickolai I; Temchenko, Volodymyr P; Kyselov, Vitalii S; Chatterjee, Anamika; Belyaev, Alexander E; Lauterboeck, Lothar; Iarmolenko, Dmytro; Glasmacher, Birgit

    2016-11-01

    Porous and cytocompatible silicon carbide (SiC) ceramics derived from wood precursors and coated with bioactive hydroxyapatite (HA) and HA-zirconium dioxide (HA/ZrO2) composite are materials with promising application in engineering of bone implants due to their excellent mechanical and structural properties. Biomorphic SiC ceramics have been synthesized from wood (Hornbeam, Sapele, Tilia and Pear) using a forced impregnation method. The SiC ceramics have been coated with bioactive HA and HA/ZrO2 using effective gas detonation deposition approach (GDD). The surface morphology and cytotoxicity of SiC ceramics as well as phase composition and crystallinity of deposited coatings were analyzed. It has been shown that the porosity and pore size of SiC ceramics depend on initial wood source. The XRD and FTIR studies revealed the preservation of crystal structure and phase composition of in the HA coating, while addition of ZrO2 to the initial HA powder resulted in significant decomposition of the final HA/ZrO2 coating and formation of other calcium phosphate phases. In turn, NIH 3T3 cells cultured in medium exposed to coated and uncoated SiC ceramics showed high re-cultivation efficiency as well as metabolic activity. The recultivation efficiency of cells was the highest for HA-coated ceramics, whereas HA/ZrO2 coating improved the recultivation efficiency of cells as compared to uncoated SiC ceramics. The GDD method allowed generating homogeneous HA coatings with no change in calcium to phosphorus ratio. In summary, porous and cytocompatible bio-SiC ceramics with bioactive coatings show a great promise in construction of light, robust, inexpensive and patient-specific bone implants for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Ion beam evaluation of silicon carbide membrane structures intended for particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pallon, J., E-mail: jan.pallon@nuclear.lu.se [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden); Syväjärvi, M. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Wang, Q. [Sensor System, ACREO Swedish ICT AB, Box 1070, SE-164 25 Kista (Sweden); Yakimova, R.; Iakimov, T. [Linköping University, Department of Physics, Chemistry and Biology, SE-58183 Linköping (Sweden); Graphensic AB, Teknikringen 1F, SE-58330 Linköping (Sweden); Elfman, M.; Kristiansson, P.; Nilsson, E.J.C.; Ros, L. [Division of Nuclear Physics, Physics Department, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2016-03-15

    Thin ion transmission detectors can be used as a part of a telescope detector for mass and energy identification but also as a pre-cell detector in a microbeam system for studies of biological effects from single ion hits on individual living cells. We investigated a structure of graphene on silicon carbide (SiC) with the purpose to explore a thin transmission detector with a very low noise level and having mechanical strength to act as a vacuum window. In order to reach very deep cavities in the SiC wafers for the preparation of the membrane in the detector, we have studied the Inductive Coupled Plasma technique to etch deep circular cavities in 325 μm prototype samples. By a special high temperature process the outermost layers of the etched SiC wafers were converted into a highly conductive graphitic layer. The produced cavities were characterized by electron microscopy, optical microscopy and proton energy loss measurements. The average membrane thickness was found to be less than 40 μm, however, with a slightly curved profile. Small spots representing much thinner membrane were also observed and might have an origin in crystal defects or impurities. Proton energy loss measurement (also called Scanning Transmission Ion Microscopy, STIM) is a well suited technique for this thickness range. This work presents the first steps of fabricating a membrane structure of SiC and graphene which may be an attractive approach as a detector due to the combined properties of SiC and graphene in a monolithic materials structure.

  8. Edge reconstruction effect in pristine and H-passivated zigzag silicon carbide nanoribbons.

    Science.gov (United States)

    Lou, Ping

    2011-10-14

    The edge reconstruction effect of the zigzag silicon carbide nanoribbons (zz SiC NRs) to a stable line of alternatively fused seven and five membered rings without and with H passivation have been studied using first principles density functional theory (DFT). The both side's edges of the pristine SiC are respectively terminated by Si and C atoms and are called the Si-edge and the C-edge, respectively. In the un-passivated systems, the C-edge reconstructed (Crc) could effectively lower the edge energy of the system, while the Si-edge reconstructed (Sirc) could raise the edge energy of the system. Thus, the Crc edge is the best edge for the edge reconstruction of the system, while the both edge reconstructed (brc) system is the metastability. Moreover, the brc system has a nonmagnetic metallic state, whereas the Crc system, as well as Sirc system, has a ferromagnetic metallic state. The edge reconstructed destroys the magnetic moment of the corresponding edge atoms. The magnetic moment arises from the unreconstructed zigzag edges. The pristine zz edge system has a ferrimagnetic metallic state. However, in the H-passivated systems, the unreconstructed zigzag edge (zz-H) is the best edge. The Crc-H system is the metastability. The Sirc-H system has only slightly higher energy than the Crc-H system, whereas the brc-H system of the pristine SiC NR has the highest edge energy. Thus, the H passivation would prevent the occurrence of edge reconstruction. Moreover, H passivation induces a metal-semiconductor transition in the zz and brc SiC NRs. Additionally, except for brc-H system which has non-magnetic semiconducting state, the zz-H, Crc-H, and Sirc-H systems have the magnetic state.

  9. Toxicity of silicon carbide nanowires to sediment-dwelling invertebrates in water or sediment exposures

    Science.gov (United States)

    Mwangi, Joseph N.; Wang, Ning; Ritts, Andrew; Kunz, James L.; Ingersoll, Christopher G.; Li, Hao; Deng, Baolin

    2011-01-01

    Silicon carbide nanowires (SiCNW) are insoluble in water. When released into an aquatic environment, SiCNW would likely accumulate in sediment. The objective of this study was to assess the toxicity of SiCNW to four freshwater sediment-dwelling organisms: amphipods (Hyalella azteca), midges (Chironomus dilutus), oligochaetes (Lumbriculus variegatus), and mussels (Lampsilis siliquoidea). Amphipods were exposed to either sonicated or nonsonicated SiCNW in water (1.0 g/L) for 48 h. Midges, mussels, and oligochaetes were exposed only to sonicated SiCNW in water for 96 h. In addition, amphipods were exposed to sonicated SiCNW in whole sediment for 10 d (44% SiCNW on dry wt basis). Mean 48-h survival of amphipods exposed to nonsonicated SiCNW in water was not significantly different from the control, whereas mean survival of amphipods exposed to sonicated SiCNW in two 48-h exposures (0 or 15% survival) was significantly different from the control (90 or 98% survival). In contrast, no effect of sonicated SiCNW was observed on survival of midges, mussels, or oligochaetes. Survival of amphipods was not significantly reduced in 10-d exposures to sonicated SiCNW either mixed in the sediment or layered on the sediment surface. However, significant reduction in amphipod biomass was observed with the SiCNW either mixed in sediment or layered on the sediment surface, and the reduction was more pronounced for SiCNW layered on the sediment. These results indicated that, under the experimental conditions, nonsonicated SiCNW in water were not acutely toxic to amphipods, sonicated SiCNW in water were acutely toxic to the amphipods, but not to other organisms tested, and sonicated SiCNW in sediment affected the growth but not the survival of amphipods.

  10. Mullite-based coating on silicon carbide refractory obtained from PMSQ [poly(methylsilsesquioxane)

    International Nuclear Information System (INIS)

    Machado, Glauson Aparecido Ferreira

    2017-01-01

    Silicon carbide (SiC) presents low thermal expansion, high strength and thermal conductivity. For this reason it is used as kiln furniture for materials sintering. On the other hand, SiC degrades at high temperature under aggressive atmosphere. The use of protective coatings can avoid the right exposition of SiC surface to the furnace atmosphere. Mullite can be a suitable material as protective coating because of its high corrosion resistance and thermal expansion coefficient matching that of SiC (4,7 x 10 -6 /°C e 5,3 x 10 -6 /°C, respectively). In the present work a mullite coating obtained from ceramic precursor polymer and aluminium powder was studied to be applied over SiC refractories. Compositions were prepared with 10, 20, 30 and 50% (vol.) of aluminium powder added to the polymer. They were used aluminium powders with different distributions sizes These compositions were heat treated at different thermal cycles to determine a suitable condition to obtain a high mullite content. The composition with 20% of the smaller particle size Al powder was selected and used to be applied as a suspension over SiC refractory. The applied suspension, after dried, crosslinked and heat treated, formed a mullite coating over SiC refractory. Cycles of thermal shock were performed in coated and uncoated SiC samples to compare each other. They were carried out 26 cycles of thermal shock, in the following conditions: 600°C/30 min. and air cooling to room temperature. After each thermal shock, samples were analysed by mean of optical and electron microscopy, elastic modulus was also determined. After thermal shock cycles the coating presented good adhesion and no significant damage were observed. (author)

  11. Characterization of Interface State in Silicon Carbide Metal Oxide Semiconductor Capacitors

    Science.gov (United States)

    Kao, Wei-Chieh

    Silicon carbide (SiC) has always been considered as an excellent material for high temperature and high power devices. Since SiC is the only compound semiconductor whose native oxide is silicon dioxide (SiO2), it puts SiC in a unique position. Although SiC metal oxide semiconductor (MOS) technology has made significant progress in recent years, there are still a number of issues to be overcome before more commercial SiC devices can enter the market. The prevailing issues surrounding SiC MOSFET devices are the low channel mobility, the low quality of the oxide layer and the high interface state density at the SiC/SiO2 interface. Consequently, there is a need for research to be performed in order to have a better understanding of the factors causing the poor SiC/SiO2 interface properties. In this work, we investigated the generation lifetime in SiC materials by using the pulsed metal oxide semiconductor (MOS) capacitor method and measured the interface state density distribution at the SiC/SiO2 interface by using the conductance measurement and the high-low frequency capacitance technique. These measurement techniques have been performed on n-type and p-type SiC MOS capacitors. In the course of our investigation, we observed fast interface states at semiconductor-dielectric interfaces in SiC MOS capacitors that underwent three different interface passivation processes, such states were detected in the nitrided samples but not observed in PSG-passivated samples. This result indicate that the lack of fast states at PSG-passivated interface is one of the main reasons for higher channel mobility in PSG MOSFETs. In addition, the effect of mobile ions in the oxide on the response time of interface states has been investigated. In the last chapter we propose additional methods of investigation that can help elucidate the origin of the particular interface states, enabling a more complete understanding of the SiC/SiO2 material system.

  12. First principles investigations of single dopants in diamond and silicon carbide

    Science.gov (United States)

    Hu, Wenhao

    In the most recent two decades, the development of impurity controls with ultra-high precision in semiconductors motivates people to put more and more attentions on the solotronic devices, whose properties depend on one or a few dopants. One of the most promising applications of solotronic device is the qubit in quantum computing. In the procedure of exploring qubit candidates, the most straightforward challenges we need face include that the qubit must be highly isolated and can be initialized/manipulated efficiently with high fidelities. It has been proved that qubits based on single defects have excellent performances as quits. For instance, the NV center in diamond forms a ground spin triplet which can be manipulated at room temperature with electromagnetic fields. This work focuses on searching for new single defects as qubit candidates with density functional theory. Lanthanides element possesses excellent optical characteristics and extremely long nuclear coherence time. Therefore, combining it into the diamond platform can be possible design for integrated quantum information processing devices in the future. To investigate the stability of lanthanides dopants in the diamond matrix, the formation energies of charge states of complexes are calculated. The broadening of Eu(III) peak in the photoluminescence spectrum can be verified according to the existence of more than stable configuration and steady 4f electron occupation. In the case of transition-metal dopant in the silicon carbide, it is found that both silicon and carbon substituted nickels in 3C-SiC shows a magnetic-antimagnetic transition under applied strains. The virtual hopping rate of electrons strongly depends on the distance between the spin pair residing in the nickel and dangling bonds. Therefore, the Heisenberg exchange coupling between them can be adjusted subtly by controlling the external strain. According to the spin Hamiltonian of the defect, the spin state can be manipulated

  13. Characterization, Modeling and Design Parameters Identification of Silicon Carbide Junction Field Effect Transistor for Temperature Sensor Applications

    Directory of Open Access Journals (Sweden)

    Sofiane Khachroumi

    2010-01-01

    Full Text Available Sensor technology is moving towards wide-band-gap semiconductors providing high temperature capable devices. Indeed, the higher thermal conductivity of silicon carbide, (three times more than silicon, permits better heat dissipation and allows better cooling and temperature management. Though many temperature sensors have already been published, little endeavours have been invested in the study of silicon carbide junction field effect devices (SiC-JFET as a temperature sensor. SiC-JFETs devices are now mature enough and it is close to be commercialized. The use of its specific properties versus temperatures is the major focus of this paper. The SiC-JFETs output current-voltage characteristics are characterized at different temperatures. The saturation current and its on-resistance versus temperature are successfully extracted. It is demonstrated that these parameters are proportional to the absolute temperature. A physics-based model is also presented. Relationships between on-resistance and saturation current versus temperature are introduced. A comparative study between experimental data and simulation results is conducted. Important to note, the proposed model and the experimental results reflect a successful agreement as far as a temperature sensor is concerned.

  14. In-situ nanoindentation of irradiated silicon carbide in TRISO particle fuel up to 500 °C

    International Nuclear Information System (INIS)

    Rohbeck, Nadia; Tsivoulas, Dimitrios; Shapiro, Ian P.; Xiao, Ping; Knol, Steven; Escleine, Jean-Michel; Perez, Marc

    2015-01-01

    The evolution of hardness and elastic modulus with temperature for silicon carbide (SiC) coatings in tristructural-isotropic fuel was measured by in-situ nanoindentation from ambient temperature up to 500 °C. Over this temperature range a significant drop in SiC hardness was identified, whereas the elastic modulus decreased only slightly with increasing temperature. The SiC coatings that had been irradiated in the High Flux Reactor in the ‘PYCASSO’ experiment exhibited irradiation hardening.

  15. In-situ nanoindentation of irradiated silicon carbide in TRISO particle fuel up to 500 °C

    Energy Technology Data Exchange (ETDEWEB)

    Rohbeck, Nadia, E-mail: p.xiao@manchester.ac.uk [School of Materials, University of Manchester, Grosvenor Street, Manchester, M13 9PL (United Kingdom); Tsivoulas, Dimitrios; Shapiro, Ian P.; Xiao, Ping [School of Materials, University of Manchester, Grosvenor Street, Manchester, M13 9PL (United Kingdom); Knol, Steven [Nuclear Research and Consultancy Group (NRG), PO Box 25, NL-1755, Petten (Netherlands); Escleine, Jean-Michel; Perez, Marc [Commissariat à l' Energie Atomique (CEA), CEA/Cadarache, 13108, St Paul lez Durance (France)

    2015-10-15

    The evolution of hardness and elastic modulus with temperature for silicon carbide (SiC) coatings in tristructural-isotropic fuel was measured by in-situ nanoindentation from ambient temperature up to 500 °C. Over this temperature range a significant drop in SiC hardness was identified, whereas the elastic modulus decreased only slightly with increasing temperature. The SiC coatings that had been irradiated in the High Flux Reactor in the ‘PYCASSO’ experiment exhibited irradiation hardening.

  16. Continuous multispectral imaging of surface phonon polaritons on silicon carbide with an external cavity quantum cascade laser

    Science.gov (United States)

    Dougakiuchi, Tatsuo; Kawada, Yoichi; Takebe, Gen

    2018-03-01

    We demonstrate the continuous multispectral imaging of surface phonon polaritons (SPhPs) on silicon carbide excited by an external cavity quantum cascade laser using scattering-type scanning near-field optical microscopy. The launched SPhPs were well characterized via the confirmation that the theoretical dispersion relation and measured in-plane wave vectors are in excellent agreement in the entire measurement range. The proposed scheme, which can excite and observe SPhPs with an arbitrary wavelength that effectively covers the spectral gap of CO2 lasers, is expected to be applicable for studies of near-field optics and for various applications based on SPhPs.

  17. A fast-neutron detection detector based on fission material and large sensitive 4H silicon carbide Schottky diode detector

    Science.gov (United States)

    Liu, Linyue; Liu, Jinliang; Zhang, Jianfu; Chen, Liang; Zhang, Xianpeng; Zhang, Zhongbing; Ruan, Jinlu; Jin, Peng; Bai, Song; Ouyang, Xiaoping

    2017-12-01

    Silicon carbide radiation detectors are attractive in the measurement of the total numbers of pulsed fast neutrons emitted from nuclear fusion and fission devices because of high neutron-gamma discrimination and good radiation resistance. A fast-neutron detection system was developed based on a large-area 4H-SiC Schottky diode detector and a 235U fission target. Excellent pulse-height spectra of fission fragments induced by mono-energy deuterium-tritium (D-T) fusion neutrons and continuous energy fission neutrons were obtained. The detector is proven to be a good candidate for pulsed fast neutron detection in a complex radiation field.

  18. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Tatsuya, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Masuda, Takashi, E-mail: mtatsuya@jaist.ac.jp, E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya [Green Device Research Center, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211 (Japan); Yano, Hiroshi; Iwamuro, Noriyuki [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573 (Japan)

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  19. Preparation of porous silicon carbide from molecular precursors; Preparation de carbure de silicium poreux a partir de precurseurs moleculaires

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J

    2008-02-15

    The preparation of Porous Silicon Carbide (SiC) from molecular precursors is described in this work. Firstly, poly-silane and poly-carbo-silane were synthesised from targeted molecular precursors TSCH and TCDSCB. The pyrolysis of these polymers under inert conditions gave the SiC. Secondly, the preparation of functional poly-silane was explored. It was shown that Cp{sub 2}Ti(OPh){sub 2} was a suitable catalyst for the preparation of such functional poly-silane in a one-pot process. Finally, macroporous SiC were prepared from hard templating method by using a commercial silica. (author)

  20. Direct measurement high resolution wide range extreme temperature optical sensor using an all-silicon carbide probe.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2009-05-01

    We propose and demonstrate a temperature sensing method using an all-silicon carbide probe that combines wavelength-tuned signal processing for coarse measurements and classical Fabry-Perot etalon peak shift for fine measurements. This method gives direct unambiguous temperature measurements with a high temperature resolution over a wide temperature range. Specifically, temperature measurements from room temperature to 1000 degrees C are experimentally demonstrated with an estimated resolution varying from 0.66 degrees C at room temperature to 0.12 degrees C at 1000 degrees C. The proposed sensor has applications in next-generation greener gas turbines for power production.

  1. X-ray diffraction and scanning electron microscopy study of pyrolytic silicon carbide particles for a high temperature reactor

    International Nuclear Information System (INIS)

    Uny, G.; Morlevat, J.-P.

    1977-01-01

    A study has been made by X-ray diffraction and scanning electron microscopy of the silicon carbide in the fuel particles for a high-temperature reactor. The results obtained, taken in conjunction with observations by transmission electron microscopy, allow pyrolytic SiC to be characterised as a sequence of β SiC lamellae separated by layers of microtwins. The mechanical properties of a SiC deposit are functions of the dimensions of the coherent domains of β SiC and it has been possible to define the optimum conditions of the deposit. (Auth.)

  2. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Swarnima; Sribalaji, M. [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India); Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G. [International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI) Hyderabad, Balapur P.O., Hyderabad, Andhra Pradesh 500005 (India); Singh, Raghuvir [CSIR-National Metallurgical Laboratory, Jamshedpur, Jharkhand 831007 (India); Keshri, Anup Kumar, E-mail: anup@iitp.ac.in [Materials Science and Engineering, Indian Institute of Technology Patna, Navin Government Polytechnic Campus, Patliputra Colony, Patna, Bihar 800013 (India)

    2016-02-28

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E{sub corr}) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO{sub 4} and SiO{sub 2}.

  3. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel–tungsten composite coatings

    International Nuclear Information System (INIS)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-01-01

    Graphical abstract: - Highlights: • Pulse electrodeposited Ni–W–SiC coating has been synthesized successfully. • Dome to turtle like structure has been observed on addition of SiC in Ni–W coating. • Formation of W(Ni) solid solution was observed on adding 5 g/l SiC in Ni–W coating. • Corrosion resistance improved for Ni–W–5 g/l SiC coating. • Texture formation and continuous barrier layer enhanced the corrosion resistance. - Abstract: Silicon carbide (SiC) reinforced nickel–tungsten (Ni–W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni–W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni–W–5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni–W–5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, E corr ) compared to Ni–W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni–W–5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO 4 and SiO 2 .

  4. Friction and wear of metals with a single-crystal abrasive grit of silicon carbide: Effect of shear strength of metal

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with spherical, single-crystal silicon carbide riders in contact with various metals and with metal riders in contact with silicon carbide flats. Results indicate that: (1) the friction force in the plowing of metal and (2) the groove height (corresponding to the volume of the groove) are related to the shear strength of the metal. That is, they decrease linearly as the shear strength of the bulk metal increases. Grooves are formed in metals primarily from plastic deformation, with occasional metal removal. The relation between the groove width D and the load W can be expressed by W = kD, superscript n which satisfies Meyer's law.

  5. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    Science.gov (United States)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  6. Selected Silicon Carbide Reports from Rutgers Materials Center of Excellence Annual Reports, 2010-2011

    Science.gov (United States)

    2015-03-01

    unit at the maximum temperature of 1,950 °C. To achieve maximum density of the samples, about 1% of boron carbide (B4C) and excess C as graphite (B/C...has been detected in the samples. Increased concentrations of free C were observed near the metallurgical-grade edge, similar to the X - ray ... Carbide Reports from Rutgers Materials Center of Excellence Annual Reports, 2010–2011 edited by JW McCauley (Emeritus) Cooperative Agreement

  7. Comparison of diffusion coefficients and activation energies for AG diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Kim, Bong Goo; Yeo, Sung Hwan; Lee, Young Woo; Cho, Moon Sung

    2015-01-01

    The migration of silver (Ag) in silicon carbide (SiC) and 110mAg through SiC of irradiated tri-structural isotropic (TRISO) fuel has been studied for the past three to four decades. However, there is no satisfactory explanation for the transport mechanism of Ag in SiC. In this work, the diffusion coefficients of Ag measured and/or estimated in previous studies were reviewed, and then pre-exponential factors and activation energies from the previous experiments were evaluated using Arrhenius equation. The activation energy is 247.4 kJ·mol -1 from Ag paste experiments between two SiC layers produced using fluidized-bed chemical vapor deposition (FBCVD), 125.3 kJ·mol -1 from integral release experiments (annealing of irradiated TRISO fuel), 121.8 kJ·mol -1 from fractional Ag release during irradiation of TRISO fuel in high flux reactor (HFR), and 274.8 kJ·mol -1 from Ag ion implantation experiments, respectively. The activation energy from ion implantation experiments is greater than that from Ag paste, fractional release and integral release, and the activation energy from Ag paste experiments is approximately two times greater than that from integral release experiments and fractional Ag release during the irradiation of TRISO fuel in HFR. The pre-exponential factors are also very different depending on the experimental methods and estimation. From a comparison of the pre-exponential factors and activation energies, it can be analogized that the diffusion mechanism of Ag using ion implantation experiment is different from other experiments, such as a Ag paste experiment, integral release experiments, and heating experiments after irradiating TRISO fuel in HFR. However, the results of this work do not support the long held assumption that Ag release from FBCVD-SiC, used for the coating layer in TRISO fuel, is dominated by grain boundary diffusion. In order to understand in detail the transport mechanism of Ag through the coating layer, FBCVD-SiC in TRISO fuel, a

  8. Structure-Property Relationships in Polymer Derived Amorphous/Nano-Crystalline Silicon Carbide for Nuclear Applications

    International Nuclear Information System (INIS)

    Zunjarrao, Suraj C.; Singh, Abhishek K.; Singh, Raman P.

    2006-01-01

    Silicon carbide (SiC) is a promising candidate for several applications in nuclear reactors owing to its high thermal conductivity, high melting temperature, good chemical stability, and resistance to swelling under heavy ion bombardment. However, fabricating SiC by traditional powder processing route generally requires very high temperatures for pressureless sintering. Polymer derived ceramic materials offer unique advantages such as ability to fabricate net shaped components, incorporate reinforcements and relatively low processing temperatures. Furthermore, for SiC based ceramics fabricated using polymer infiltration process (PIP), the microstructure can be tailored by controlling the processing parameters, to get an amorphous, nanocrystalline or crystalline SiC. In this work, fabrication of polymer derived amorphous and nano-grained SiC is presented and its application as an in-core material is explored. Monolithic SiC samples are fabricated by controlled pyrolysis of allyl-hydrido-poly-carbo-silane (AHPCS) under inert atmosphere. Chemical changes, phase transformations and microstructural changes occurring during the pyrolysis process are studied as a function of the processing temperature. Polymer cross-linking and polymer to ceramic conversion is studied using infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) are performed to monitor the mass loss and phase change as a function of temperature. X-ray diffraction studies are done to study the intermediate phases and microstructural changes. Variation in density is carefully monitored as a function of processing temperature. Owing to shrinkage and gas evolution during pyrolysis, precursor derived ceramics are inherently porous and composite fabrication typically involves repeated cycles of polymer re-infiltration and pyrolysis. However, there is a limit to the densification that can be achieved by this method and porosity in the final materials presents

  9. Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature

    Science.gov (United States)

    Obraztsova, O.; Ottaviani, L.; Klix, A.; Döring, T.; Palais, O.; Lyoussi, A.

    2018-01-01

    Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C) and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV), wide band gap energy (3.27 eV) and high thermal conductivity (4.9 W/cm·K), SiC can operate in harsh environment (high temperature, high pressure and high radiation level) without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV), higher threshold displacement energy (40-50 eV) and thermal conductivity (22 W/cm·K), which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD) diamond

  10. Comparison between Silicon-Carbide and diamond for fast neutron detection at room temperature

    Directory of Open Access Journals (Sweden)

    Obraztsova O.

    2018-01-01

    Full Text Available Neutron radiation detector for nuclear reactor applications plays an important role in getting information about the actual neutron yield and reactor environment. Such detector must be able to operate at high temperature (up to 600° C and high neutron flux levels. It is worth nothing that a detector for industrial environment applications must have fast and stable response over considerable long period of use as well as high energy resolution. Silicon Carbide is one of the most attractive materials for neutron detection. Thanks to its outstanding properties, such as high displacement threshold energy (20-35 eV, wide band gap energy (3.27 eV and high thermal conductivity (4.9 W/cm·K, SiC can operate in harsh environment (high temperature, high pressure and high radiation level without additional cooling system. Our previous analyses reveal that SiC detectors, under irradiation and at elevated temperature, respond to neutrons showing consistent counting rates as function of external reverse bias voltages and radiation intensity. The counting-rate of the thermal neutron-induced peak increases with the area of the detector, and appears to be linear with respect to the reactor power. Diamond is another semi-conductor considered as one of most promising materials for radiation detection. Diamond possesses several advantages in comparison to other semiconductors such as a wider band gap (5.5 eV, higher threshold displacement energy (40-50 eV and thermal conductivity (22 W/cm·K, which leads to low leakage current values and make it more radiation resistant that its competitors. A comparison is proposed between these two semiconductors for the ability and efficiency to detect fast neutrons. For this purpose the deuterium-tritium neutron generator of Technical University of Dresden with 14 MeV neutron output of 1010 n·s-1 is used. In the present work, we interpret the first measurements and results with both 4H-SiC and chemical vapor deposition (CVD

  11. Microstructure, mechanical and fracture properties of groundnut shell ash and silicon carbide dispersion strengthened aluminium matrix composites

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2018-01-01

    Full Text Available The mechanical properties of aluminium hybrid composites reinforced with groundnut shell ash (GSA and silicon carbide was investigated. GSA and silicon carbide with different mix ratios (10:0, 7.5:2.5, 5.0:5.0, 2.5:7.5 and 0:10 constituted 6 and 10 wt.% of the reinforcing phase, while the matrix material was Al–Mg–Si alloy. The hybrid composites were produced via a two-step stir casting technique. Microstructural examination, hardness, tensile and fracture toughness testing were carried out to appraise the mechanical properties of the composites. The results show that with increasing GSA in the reinforcing phase, the hardness, ultimate tensile strength (UTS and specific strength of the composites decreased slightly for both 6 and 10 wt.% reinforced Al–Mg–Si based composites owing to the amount of the oxides of Al, Si, Ca, K2 and Mg present in the composition of GSA. However, the percentage elongation improved marginally and was generally invariant to increasing GSA content while the fracture toughness increased with increasing GSA content. GSA offered a favourable influence on the mechanical properties of Al–Mg–Si hybrid composites comparable to that of rice husk ash and bamboo leaf ash.

  12. Investigation of the heating behavior of carbide-bonded graphene coated silicon wafer used for hot embossing

    Science.gov (United States)

    Yang, Gao; Li, Lihua; Lee, Wing Bun; Ng, Man Cheung; Chan, Chang Yuen

    2018-03-01

    A recently developed carbide-bonded graphene (CBG) coated silicon wafer was found to be an effective micro-patterned mold material for implementing rapid heating in hot embossing processes owing to its superior electrical and thermal conductivity, in addition to excellent mechanical properties. To facilitate the achievement of precision temperature control in the hot embossing, the heating behavior of a CBG coated silicon wafer sample was experimentally investigated. First, two groups of controlled experiments were conducted for quantitatively evaluating the influence of the main factors such as the vacuum pressure and gaseous environment (vacuum versus nitrogen) on its heating performance. The electrical and thermal responses of this sample under a voltage of 60 V were then intensively analyzed, and revealed that it had somewhat semi-conducting properties. Further, we compared its thermal profiles under different settings of the input voltage and current limiting threshold. Moreover, the strong temperature dependence of electrical resistance for this material was observed and determined. Ultimately, the surface temperature of CBG coated silicon wafer could be as high as 1300 ℃, but surprisingly the graphene coating did not detach from the substrate under such an elevated temperature due to its strong thermal coupling with the silicon wafer.

  13. Study of irradiation effects in the silicon carbide cubic polytype by photoluminescence and electron spin resonance spectroscopies

    International Nuclear Information System (INIS)

    Lefevre, J.

    2008-01-01

    This experimental work has consisted in the study of point defects induced by an electronic irradiation in the cubic crystallographic structure of silicon carbide with low temperature photoluminescence and electron spin resonance spectroscopies. The first one of these measurement tools has allowed to estimate the displacement threshold energy in the silicon sub-lattice and then to analyze the thermal stability of the irradiation defects in the low temperature range: (10-300 K) and then in the high temperature range: (300-1400 K). Besides, on the base of a recent theoretical model, this thesis has confirmed the proposition of the isolated silicon antisite for the D1 center whose running beyond the nominal running temperature of fission nuclear reactors (generation IV), for which SiC is in part intended, seems to be particularly problematic. Measurements carried out by ESR under lighting have at last allowed to detect a new defect in its metastable spin state S=1, possibly associated to a silicon interstitial configuration. (O.M.)

  14. Experimental evaluation of the stability and mechanical behavior of contacts in silicon carbide for the design of the basic angle monitoring system of GAIA

    NARCIS (Netherlands)

    Veggel, A.A. van; Berkhout, W.J.; Schalkx, M.K.; Wielders, A.A.; Rosielle, P.C.J.N.; Nijmeijer, H.

    2005-01-01

    The satellite GAIA will be launched in ca. 2010 to make a 3-D map of our Galaxy. The payload module of the satellite will carry two astrometric telescopes amongst other instrumentation. The optical bench and astrometric telescopes will be constructed for a large part in Silicon Carbide (SiC). A

  15. Assessment of thermal shock induced damage in silicon carbide fibre reinforced glass matrix composites

    Directory of Open Access Journals (Sweden)

    Boccaccini, A. R.

    1998-09-01

    Full Text Available The development of microstructural damage in silicon carbide fibre (Nicalon™ reinforced glass matrix composite samples subjected to thermal shock was investigated by using a nondestructive forced resonance technique and fibre push out indentation tests. Thermal shock testing involved quenching samples in a water bath maintained at room temperature from a high temperature (650ºC. Changes in the Young's modulus and internal friction of the samples with increasing number of shocks were measured accurately by the forced resonance technique. Fibre push-out tests showed no significant changes in the properties of the fibre-matrix interface, indicating that damage in the composite was concentrated mainly in the development of matrix microcracking. It was also shown that the internal friction is a very sensitive parameter by which to detect the onset and development of such microcracking. A simple semi-empirical model is proposed to correlate the internal friction level with the microcracking density in the glass matrix. Finally, the relevance of detecting nondestructively the existence of microcracks in the glass matrix, before any significant interfacial degradation occurs, is emphasized, in conextion with the possibility of inducing a crack healing process by a thermal treatment (annealing, taking advantage of the viscous flow properties of the glass.

    El desarrollo de daño microestructural en materiales compuestos de matriz de vidrio reforzados con fibras de carburo de silicio (Nicalon™ sometidos a choque térmico fue investigado mediante la técnica no-destructiva de resonancia forzada y por mediciones de indentación "push-out" de fibras. Los ensayos de choque térmico involucraron el enfriamiento brusco en un baño de agua a temperatura ambiente de las piezas previamente calentadas a una temperatura elevada (650ºC. La técnica de resonancia forzada permitió medir cambios en el módulo de Young de elasticidad y en la fricci

  16. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    Science.gov (United States)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  17. Design and Thermal Analysis for Irradiation of Pyrolytic Carbon/Silicon Carbide Diffusion Couples in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    Tristructural-isotropic (TRISO)–coated particle fuel is a promising advanced fuel concept consisting of a spherical fuel kernel made of uranium oxide and uranium carbide, surrounded by a porous carbonaceous buffer layer and successive layers of dense inner pyrolytic carbon (IPyC), silicon carbide (SiC) deposited by chemical vapor , and dense outer pyrolytic carbon (OPyC). This fuel concept is being considered for advanced reactor applications such as high temperature gas-cooled reactors (HTGRs) and molten salt reactors (MSRs), as well as for accident-tolerant fuel for light water reactors (LWRs). Development and implementation of TRISO fuel for these reactor concepts support the US Department of Energy (DOE) Office of Nuclear Energy mission to promote safe, reliable nuclear energy that is sustainable and environmentally friendly. During operation, the SiC layer serves as the primary barrier to metallic fission products and actinides not retained in the kernel. It has been observed that certain fission products are released from TRISO fuel during operation, notably, Ag, Eu, and Sr [1]. Release of these radioisotopes causes safety and maintenance concerns.

  18. Microstructure and high temperature compressive mechanical behavior of biomophic silicon carbide-based ceramics; Microestructura y comportamiento mecanico a altas temperaturas de ceramicas biomorficas de carburo de silicio

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Fernandez, J.; Valera-Feria, F.M.; Dominguez-Rodriguez, A.; Singh, M.

    2001-07-01

    Environment conscious ceramics (eco ceramics) are a new class of ceramic materials fabricated from natural wood (a renewable source). The affordable, net shape ceramics are fabricated by pyrolysis and molten silicon infiltration of wood performs. The resulting materials have complex microstructure and multifunctional properties. the microstructure before and after high temperature plastic deformation was studied by scanning electron microscopy. These ceramics present regions of silicon and silicon carbide that follow the fibrous microstructure of the wood selected, resulting in a structure that resembles a continuous fiber composite. This structure results in very good mechanical properties as the evolutionary process has perfected it. (Author) 10 refs.

  19. Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles

    Directory of Open Access Journals (Sweden)

    S. Mitrović

    2014-06-01

    Full Text Available The paper presents the wear characteristics of a hybrid composite based on zinc-aluminium ZA27 alloy, reinforced with silicon-carbide and graphite particles. The tested sample contains 5 vol.% of SiC and 3 vol.% Gr particles. Compocasting technique has been used to prepare the samples. The experiments were performed on a “block-on-disc” tribometer under conditions of dry sliding. The wear volumes of the alloy and the composite were determined by varying the normal loads and sliding speeds. The paper contains the procedure for preparation of sample composites and microstructure of the composite material and the base ZA27 alloy. The wear surface of the composite material was examined using the scanning electronic microscope (SEM and energy dispersive spectrometry (EDS. Conclusions were obtained based on the observed impact of the sliding speed, normal load and sliding distance on tribological behaviour of the observed composite.

  20. Effective optimization of surface passivation on porous silicon carbide using atomic layer deposited Al2O3

    DEFF Research Database (Denmark)

    Lu, Weifang; Iwasa, Yoshimi; Ou, Yiyu

    2017-01-01

    Porous silicon carbide (B–N co-doped SiC) produced by anodic oxidation showed strong photoluminescence (PL) at around 520 nm excited by a 375 nm laser. The porous SiC samples were passivated by atomic layer deposited (ALD) aluminum oxide (Al2O3) films, resulting in a significant enhancement...... of the PL intensity (up to 689%). The effect of thickness, annealing temperature, annealing duration and precursor purge time on the PL intensity of ALD Al2O3 films was investigated. In order to investigate the penetration depth and passivation effect in porous SiC, the samples were characterized by X...... effective method to enhance the luminescence efficiency of porous SiC....

  1. Initial stages of the growth of barium strontium titanate films on a semi-isolating silicon carbide substrate

    Science.gov (United States)

    Tumarkin, A. V.; Serenkov, I. T.; Sakharov, V. I.; Razumov, S. V.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.; Afrosimov, V. V.

    2017-12-01

    The initial stages of the growth of ferroelectric barium strontium titanate films on single-crystal silicon carbide substrates have been studied for the first time. The choice of a substrate with high thermal conductivity has been due to the possibility of applying these structures in powerful microwave devices. The temperature ranges separating the mechanism of the surface diffusion of deposited atoms from the diffusion via a gaseous phase during the growth of multicomponent films have been determined. The studies show that the mass transfer by means of surface diffusion leads to the formation of small-height nuclei that cover a large area of the substrate, whereas the mass transfer via a gaseous phase leads to the formation of a "columnar" islandtype structure with small percentage of covering the substrate and larger island heights.

  2. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  3. Low-energy ion bombardment to tailor the interfacial and mechanical properties of polycrystalline 3C-silicon carbide

    International Nuclear Information System (INIS)

    Liu Fang; Li, Carolina H.; Pisano, Albert P.; Carraro, Carlo; Maboudian, Roya

    2010-01-01

    Low-energy Ar + ion bombardment of polycrystalline 3C-silicon carbide (poly-SiC) films is found to be a promising surface modification method to tailor the mechanical and interfacial properties of poly-SiC. The film average stress decreases as the ion energy and the bombardment time increase. Furthermore, this treatment is found to change the strain gradient of the films from positive to negative values. The observed changes in stress and strain gradient are explained by ion peening and thermal spikes models. In addition, the poly-SiC films show a significant enhancement in corrosion resistance by this treatment, which is attributed to a reduction in surface energy and to an increase in the compressive stress in the near-surface region.

  4. Deposition of Multicomponent Chromium Carbide Coatings Using a Non-Conventional Source of Chromium and Silicon with Micro-Additions of Boron

    OpenAIRE

    González Ruíz,Jesús Eduardo; Rodríguez Cristo,Alejandro; Paz Ramos,Adrian; Quintana Puchol,Rafael

    2017-01-01

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 oC for 4h. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectr...

  5. Sintering of nano crystalline α silicon carbide by doping with boron ...

    Indian Academy of Sciences (India)

    Unknown

    2.2 Sintering additives. Boron carbide from M/s Starck A, West Germany having a purity of 99⋅5% was used as sintering aid along with carbon. Phenolic resin from M/s Allied Resin & Che- micals Ltd, India, was used as a source for carbon. Phe- nolic resin pyrolizes at high temperature with a carbon yield of 47% (Carbon ...

  6. ABSTRACT

    African Journals Online (AJOL)

    University Health Services. Ahmadu Bella University, Zaria, Nigeria. ABSTRACT. Phywieo-chemical methods were used to analyse the commonly used lcualt samples bought from Zaria and Kano local markets. Blood-leadaoncentrations in ltuali ...

  7. Cubic silicon carbide and boron nitride as possible primary pressure calibrants for high pressure and temperature scale

    Science.gov (United States)

    Zhuravlev, K. K.; Goncharov, A. F.; Tkachev, S. N.; Prakapenka, V.

    2010-12-01

    K. K. Zhuravlev, A. F. Goncharov Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road NW, Washington DC, 20015 V. Prakapenka, S. N. Tkachev CARS, the University of Chicago, Bldg. 434A, Argonne National Laboratory, 9700 S. Cass. Ave., Argonne, IL 60439 Abstract Since its introduction, ruby-based pressure scale (Mao et al., 1986) has been the most commonly used by the high-pressure scientific community. However, it has limited use at elevated temperatures, due to the weakening and broadening of the ruby fluorescence line. The recent developments in the field of high temperature, high pressure physics and geophysics require some alternative pressure scale, which will be capable of measuring pressures at temperatures up to 3000 K. Cubic boron nitride (cBN) was recently (Goncharov et al., 2005) proposed as the possible pressure calibrant. It has been suggested that the simultaneous use of x-ray diffraction to measure density and Brillouin spectroscopy to obtain elastic properties of the crystal can be used to construct the pressure scale independent of any other pressure standards, i.e. cBN can be a primary pressure calibrant. However, the acoustic velocities of cBN are very close to those of diamond and, therefore, are hard to resolve in experiment at high pressures in diamond-anvil cell. Another possible primary pressure calibrant is cubic silicon carbide (SiC-3C). Its density and elastic parameters are quite different from the diamond ones and it is stable over the broad range of temperatures and pressures (up to 1 Mbar). SiC-3C is transparent and allows the use of Brillouin spectroscopy. Additionally, SiC-3C has two strong Raman lines, which can be used for the optical in situ pressure measurements. We report our experimental data on both cBN and SiC-3C and show that they, indeed, can be used in constructing reliable and accurate high-pressure, high-temperature scale. We performed single crystal x-ray diffraction and Brillouin

  8. Analytical and experimental evaluation of joining silicon nitride to metal and silicon carbide to metal for advanced heat engine applications. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S.; Selverian, J.H.; O`Neil, D.; Kim, H. [GTE Labs., Inc., Waltham, MA (US); Kim, K. [Brown Univ., Providence, RI (US). Div. of Engineering

    1993-05-01

    This report summarizes the results of Phase 2 of Analytical and Experimental Evaluation of Joining Silicon Nitride to Metal and Silicon Carbide to Metal for Advanced Heat Engine Applications. A general methodology was developed to optimize the joint geometry and material systems for 650{degrees}C applications. Failure criteria were derived to predict the fracture of the braze and ceramic. Extensive finite element analyses (FEA) were performed to examine various joint geometries and to evaluate the affect of different interlayers on the residual stress state. Also, material systems composed of coating materials, interlayers, and braze alloys were developed for the program based on the chemical stability and strength of the joints during processing, and service. The FEA results were compared with experiments using two methods: (1) an idealized strength relationship of the ceramic, and (2) a probabilistic analysis of the ceramic strength (NASA CARES). The results showed that the measured strength of the joint reached 30--80% of the strength predicted by FEA. Also, potential high-temperature braze alloys were developed and evaluated for the high-temperature application of ceramic-metal joints. 38 tabs, 29 figs, 20 refs.

  9. Abstract

    African Journals Online (AJOL)

    Francis

    Abstract. Aqueous, methanol and chloroform extracts from the leaves of Ficus religiosa, Thespesia populnea and Hibiscus tiliaceus were completely screened for antibacterial and antifungal activity. The chloroform extract of F. religiosa possessed a broad spectrum of antibacterial activity with a zone of inhibition of 10 to 21 ...

  10. Abstract,

    African Journals Online (AJOL)

    Abstract·. A study was carried out to investigate the effect of overso~ing legumes on ~a~gela~d pe'rtormance in. Shinyanga'region, Tanzania. Four leguminous species namely Centrosema pubescence, Clito-':iii ternatea,. cMacroptilium atropurpureum and Stylosanthes hamata were Qversown in. a"natural ran,geland in a.

  11. Abstract

    Indian Academy of Sciences (India)

    65

    Abstract. For well over three hundred years, the monsoon has been considered to be a gigantic land-sea breeze driven by the land-ocean contrast in surface temperature. In this paper, this hypothesis ..... primary driver of the monsoon in many papers and most textbooks (e.g. Lau and Li, 1984,. Webster 1987a, Meehl 1994, ...

  12. ABSTRACT

    African Journals Online (AJOL)

    Email: jameskigera@yahoo.co.uk. ABSTRACT. Background: Implant orthopaedic surgery is associated with a risk of post operative Surgical Site. Infection (SSI). This can have devastating consequences in the case of arthroplasty. Due to the less than ideal circumstances under which surgery is conducted in Africa, there are ...

  13. Abstract

    African Journals Online (AJOL)

    WORKERS ON THEIR JOB PERFORMANCE IN IMO STATE, NIGERIA. NGOZI OKEREKE AND no. ONU. ABSTRACT. The study focused on the. efl'ect of socioeconomic characteristics of field extension workers on their job performance in.1mo state agricultural development programme, Nigeria. Data was collected with the ...

  14. Abstract

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Abstract. Many mathematical models of stochastic dynamical systems were based on the assumption that the drift and volatility coefficients were linear function of the solution. In this work, we arrive at the drift and the volatility by observing the dynamics of change in the selected stocks in a sufficiently small interval t∆ .

  15. Friction and Wear Studies Using Taguchi Method: Application to the Characterization of Carbon-Silicon Carbide Tribological Couples of Automotive Water Pump Seals

    Directory of Open Access Journals (Sweden)

    Pascal Déprez

    2009-01-01

    Full Text Available An experimental design based on the Taguchi method has been applied to optimize the use of a dynamic sealing element of water pump of automotives combustion engines. A carbon primary ring and a silicon carbide mating ring set up this dynamic sealing element. The aim of this work was to experimentally determine the crossed influence of the primary ring variant, the normal load, the surrounding, the mating ring finishing, and the rotational frequency on the dynamic friction coefficient and on the wear of carbon primary ring-silicon carbide mating ring tribological couples. The coefficient of dynamic friction and the wear depend on the design factors. They are also functions of the interactions between these experimental factors, from the implementation of an experimental design. The results obtained allow the optimal functioning condition to be determined and the best friction couple to be used for a given dynamic sealing application.

  16. Microstructure and Mechanical Behaviour of Stir-Cast Al-Mg-Sl Alloy Matrix Hybrid Composite Reinforced with Corn Cob Ash and Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Oluwagbenga Babajide Fatile

    2014-10-01

    Full Text Available In this present study, the microstructural and mechanical behaviour of Al-Mg-Si alloy matrix composites reinforced with silicon carbide (SiC and Corn cob ash (An agro‑waste was investigated. This research work was aimed at assessing the suitability of developing low cost- high performance Al-Mg-Si hybrid composite. Silicon carbide (SiC particulates added with 0,1,2,3 and 4 wt% Corn cob ash (CCA were utilized to prepare 10 wt% of the reinforcing phase with Al-Mg-Si alloy as matrix using two-step stir casting method. Microstructural characterization, density measurement, estimated percent porosity, tensile testing, and micro‑hardness measurement were used to characterize the composites produced. From the results obtained, CCA has great potential to serve as a complementing reinforcement for the development of low cost‑high performance aluminum hybrid composites.

  17. Sputter-Grown Sb-DOPED Silicon Nanocrystals Embedded in Silicon-Rich Carbide for si Heterojunction Solar Cells

    Science.gov (United States)

    Chen, Xiaobo; Tang, Yu; Hao, Jiabo

    Sb-doped silicon nanocrystals (Si-NCs) films were fabricated by magnetron co-sputtering combined with rapid-thermal annealing. The effects of Sb content on the structural and electrical properties of the films were studied. The dot size increased with the increasing Sb content, and could be correlated to the effect of Sb-induced crystallization. The variation in the concentration of Sb shows a significant impact on the film properties, where as doped with 0.8at.% of Sb exhibited major property improvements when compared with other films. By employing Sb-doped Si-NCs films as emitter layers, Si-NCs/monocrystalline silicon heterojunction solar cells were fabricated and the effect of the Sb doping concentration on the photovoltaic properties was studied. It is found that the doping level in the Si-NCs layer is a key factor in determining the short-circuit current density and power conversion efficiency (PCE). With an optimized doping concentration of 0.8at.% of Sb, a maximal PCE of 7.10% was obtained. This study indicates that the Sb-doped Si-NCs can be good candidates for all-silicon tandem solar cells.

  18. Friction and Wear Studies Using Taguchi Method: Application to the Characterization of Carbon-Silicon Carbide Tribological Couples of Automotive Water Pump Seals

    OpenAIRE

    Pascal Déprez; Philippe Hivart; Jean François Coutouly; Etienne Debarre

    2009-01-01

    An experimental design based on the Taguchi method has been applied to optimize the use of a dynamic sealing element of water pump of automotives combustion engines. A carbon primary ring and a silicon carbide mating ring set up this dynamic sealing element. The aim of this work was to experimentally determine the crossed influence of the primary ring variant, the normal load, the surrounding, the mating ring finishing, and the rotational frequency on the dynamic friction coefficient and on t...

  19. Corrosion resistance of AA6063-Type Al-Mg-Si alloy by silicon carbide in sodium chloride solution for marine application

    Science.gov (United States)

    Fayomi, Ojo Sunday Isaac; Abdulwahab, Malik; Popoola, Abimbola Patricia Idowu; Asuke, Ferdinand

    2015-12-01

    The present work focused on corrosion inhibition of AA6063 type (Al-Mg-Si) alloy in sodium chloride (NaCl) solution with a silicon carbide inhibitor, using the potentiodynamic electrochemical method. The aluminium alloy surface morphology was examined, in the as-received and as-corroded in the un-inhibited state, with scanning electron microscopy equipped with energy dispersive spectroscopy (SEM-EDS). The results obtained via linear polarization indicated a high corrosion potential for the unprotected as-received alloy. Equally, inhibition efficiency as high as 98.82% at 10.0 g/v silicon carbide addition was obtained with increased polarization resistance ( R p), while the current density reduced significantly for inhibited samples compared to the un-inhibited aluminium alloy. The adsorption mechanism of the inhibitor aluminium alloy follows the Langmuir adsorption isotherm. This shows that the corrosion rate of aluminium alloy with silicon carbide in NaCl environment decreased significantly with addition of the inhibitor.

  20. Raman modes of 6H polytype of silicon carbide to ultrahigh pressures: A comparison with silicon and diamond

    Science.gov (United States)

    Liu, Jun; Vohra, Yogesh K.

    1994-06-01

    We report the Raman study on 6H-SiC to ultrahigh pressures of 90 GPa in a diamond anvil cell. The LO (Γ) and TO(Γ) Raman frequencies increase with increasing pressures. A very interesting turnaround in the LO-TO splitting is observed above 60 GPa. The density variation of the mode Grüneisen parameters for 6H-SiC is compared to that of silicon, cubic boron nitride, and diamond. The SiC is transparent to the visible light at 95 GPa and the anticipated metallic phase was not observed.

  1. Pull-test adhesion measurements of diamondlike carbon films on silicon carbide, silicon nitride, aluminum oxide, and zirconium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Erck, R.A.; Nichols, F.A. [Argonne National Lab., IL (United States); Dierks, J.F. [North Dakota State Univ., Fargo, ND (United States)

    1993-10-01

    Hydrogenated amorphous carbon films or diamondlike carbon (DLC) films were formed by ion-beam deposition of 400 eV methane (CH{sub 4}) ions on several smooth and rough ceramics, as well as on ceramics coated with a layer of Si and Ti. Adhesion was measured by the pin-pull method. Excellent adhesion was measured for smooth SiC and Si{sub 3}N{sub 4}, but adhesion of DLC to Al{sub 2}O{sub 3} and ZrO{sub 2} was negligible. The use of a Si bonding interlayer produced good adhesion to all the substrates, but a Ti layer was ineffective because bonding between the DLC film and Ti was poor. The presence of surface roughness appeared to greatly increase the measured adhesion in all cases. Bulk thermodynamic calculations are not directly applicable to bonding at the interface. If the standard enthalpy of formation for reaction between CH{sub 4} and substrate is calculated assumpting a carbide or carbon phase is produced, a relation is seen between reaction enthalpy and relative adhesion. Large positive enthalpies are associated with poor adhesion; negative or small positive enthalpies are associated with good adhesion. This relation between enthalpy and adhesion was also observed for DLC deposited on Si. Lack of adhesion to Ti was attributed to inadvertent formation of a surface oxide layer that rendered the enthalpy for reaction with CH{sub 4} strongly positive and similar in magnitude to that for Al{sub 2}O{sub 3} and ZrO{sub 2}.

  2. Review article: silicon carbide. Structure, properties and processing Artigo revisão: carbeto de silício, estrtutura, propriedades e processamento

    Directory of Open Access Journals (Sweden)

    V. A. Izhevskyi

    2000-03-01

    Full Text Available In view of considerable interest in the development of liquid phase sintered structural and high-temperature ceramics on the base of silicon carbide, a comprehensive review of the data on structure, properties and the known methods of processing of silicon carbide seems timely. The most striking feature of silicon carbide is its polytypism, i.e. formation of a great number of different structural modifications without any change in composition. Although this feature of silicon carbide was extensively studied, no systematic up to date analysis was done. However, polytypism and the tendency of the polytypes to undergo structural transformations at working temperatures may lead to uncontrollable modification of the materials properties, and therefore needs to be fully understood. Furthermore, the recently developed liquid phase sintering technique for silicon carbide densification is of an undoubtful interest and the overview of the results achieved until present time may provide some guidelines for the ceramists.Em vista do considerável interesse no desenvolvimento de cerâmicas estruturais e para aplicações em alta temperatura, é oportuna uma revisão quanto a estrutura, propriedades e métodos conhecidos de processamento de cerâmicas a base de carbeto de silício sinterizados via fase líquida. A característica mais interessante do carbeto de silício é o seu politipismo, isto é, a formação de um grande número modificações estruturais para uma mesma composição. Embora este fenômeno venha sendo extensivamente estudado, não se tem até o momento, uma análise sistemática do mesmo, o que seria de extrema importância, uma vez que o politipismo e a tendência à transformação estrutural destes politipos em temperaturas típicas de trabalho podem levar a incontroláveis modificações nas propriedades do material. Além disso, os recentes avanços obtidos na densificação do carbeto de silício através da técnica de sinteriza

  3. Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-07-01

    Full Text Available In this work, an alternative type of carbon-based nanofiller, graphite nanoplatelets (GNPs with comparable properties, easier and lower-cost production, were used to improve the thermal conductivity of an epoxy. By adding 12 wt% GNPs or 71.7 wt% silicon carbide microparticles (micro-SiCs to epoxy, the thermal conductivity reached maxima that were respectively 6.3 and 20.7 times that of the epoxy alone. To further improve the thermal conductivity a mixture of the two fillers was utilized. The utilized GNPs are characterized by two-dimensional (2-D structure with high aspect ratio (~ 447, which enables GNPs effectively act as heat conductive bridges among 3-D micro-SiCs, thus contributes considerably to the formation of a more efficient 3-D percolating network for heat flow, resulting in higher thermal conductivity with relatively lower filler contents which is important for decreasing the density, viscosity and improving the processability of composites. A thermal conductivity, 26.1 times that of epoxy, was obtained with 7 wt% GNPs + 53 wt% micro-SiCs, thus not only break the bottleneck of further improving the thermal conductivity of epoxy composites but also broaden the applications of GNPs.

  4. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review

    Science.gov (United States)

    Casady, J. B.; Johnson, R. W.

    1996-10-01

    Silicon carbide (SiC), a material long known with potential for high-temperature, high-power, high-frequency, and radiation hardened applications, has emerged as the most mature of the wide-bandgap (2.0 eV ≲ Eg ≲ 7.0 eV) semiconductors since the release of commercial 6HSiC bulk substrates in 1991 and 4HSiC substrates in 1994. Following a brief introduction to SiC material properties, the status of SiC in terms of bulk crystal growth, unit device fabrication processes, device performance, circuits and sensors is discussed. Emphasis is placed upon demonstrated high-temperature applications, such as power transistors and rectifiers, turbine engine combustion monitoring, temperature sensors, analog and digital circuitry, flame detectors, and accelerometers. While individual device performances have been impressive (e.g. 4HSiC MESFETs with fmax of 42 GHz and over 2.8 W mm -1 power density; 4HSiC static induction transistors with 225 W power output at 600 MHz, 47% power added efficiency (PAE), and 200 V forward blocking voltage), material defects in SiC, in particular micropipe defects, remain the primary impediment to wide-spread application in commercial markets. Micropipe defect densities have been reduced from near the 1000 cm -2 order of magnitude in 1992 to 3.5 cm -2 at the research level in 1995.

  5. Tailoring the Electronic and Magnetic Properties of Two-Dimensional Silicon Carbide Sheets and Ribbons by Fluorination

    KAUST Repository

    Shi, Zhiming

    2016-07-12

    Fluorination has been instrumental for tuning the properties of several two-dimensional (2D) materials, including graphene, h-BN, and MoS2. However, its potential application has not yet been explored in 2D silicon carbide (SiC), a promising material for nanoelectronic devices. We investigate the structural, electronic, and magnetic properties of fully and partially fluorinated 2D SiC sheets and nanoribbons by means of density functional theory combined with cluster expansion calculations. We find that fully fluorinated 2D SiC exhibits chair configurations and a nonmagnetic semiconducting behavior. Fluorination is shown to be an efficient approach for tuning the band gap. Four ground states of partially fluorinated SiC, SiCF2x with x = 0.0625, 0.25, 0.5, 0.75, are obtained by cluster expansion calculations. All of them exhibit nanoroad patterns, with the x = 0.5 structure identified as the most stable one. The x = 0.0625 structure is a nonmagnetic metal, while the other three are all ferromagnetic half-metals, whose properties are not affected by the edge states. We propose an effective approach for modulating the electronic and magnetic behavior of 2D SiC, paving the way to applications of SiC nanostructures in integrated multifunctional and spintronic nanodevices. © 2016 American Chemical Society.

  6. Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates

    Science.gov (United States)

    Yang, Yue; Wang, Liping

    2017-08-01

    In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.

  7. Wear properties of 10 vol.% silicon carbide particulate-reinforced aluminum composite fabricated by powder injection molding

    Science.gov (United States)

    Patcharawit, T.; Ngeekoh, A.; Chuankrekkul, N.

    2017-09-01

    Wear properties of aluminum matrix composites reinforced with silicon carbide particulate of 10 vol.% addition was investigated in as-sintered and heat-treated conditions under varying loads at -5, -25, -45 and -65N using a ball on flat type of wear test. The composite was fabricated by powder injection molding and sintering at 650 °C for 3 hours. Solution treatment was carried out at 550 °C for 2 hours followed by age-hardening at 160 °C for 6 hours. SEM and XRD results indicated Al and SiCp are present as matrix and reinforcement, while AlN, Al2Cu and Mg2Si were also detected. Further precipitation of Al2Cu and Mg2Si in heat-treated samples promoted maximum macro and micro Vickers hardness values, which were achieved at 161 and 157 Hv respectively. Wear weight loss increased with increasing minus load level. The coefficient of friction was found in the range of 0.042-0.048. Wear mechanisms were determined as the combination of abrasive, adhesion and oxidation.

  8. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  9. Ab initio electronic transport study of two-dimensional silicon carbide-based p-n junctions

    Science.gov (United States)

    Zhou, Hanming; Lin, Xiao; Guo, Hongwei; Lin, Shisheng; Sun, Yiwei; Xu, Yang

    2017-03-01

    Two-dimensional silicon carbide (2d-SiC) is a viable material for next generation electronics due to its moderate, direct bandgap with huge potential. In particular, its potential for p-n junctions is yet to be explored. In this paper, three types of 2d-SiC-based p-n junctions with different doping configuration are modeled. The doping configurations refer to partially replacing carbon with boron or nitrogen atoms along the zigzag or armchair direction, respectively. By employing density functional theory, we calculate the transport properties of the SiC based p-n junctions and obtain negative differential resistance and high rectification ratio. We also find that the junction along the zigzag direction with lower doping density exhibits optimized rectification performance. Our study suggests that 2d-SiC is a promising candidate as a material platform for future nano-devices. Project supported by the National Science Foundation of China (Nos. 61474099, 61674127) and the ZJ-NSF (No. Z17F04003).

  10. Tensile and thermal properties of chemically vapor-infiltrated silicon carbide composites of various high-modulus fiber reinforcements

    International Nuclear Information System (INIS)

    Nozawa, T.; Katoh, Y.; Snead, L.L.; Hinoki, T.; Kohyama, A.

    2008-01-01

    Chemically vapor-infiltrated (CVI) silicon carbide (SiC) matrix composites are candidate structural materials for proposed nuclear fusion and advanced fission applications due to their high temperature stability under neutron irradiation. To optimize the thermal stress properties for nuclear applications, CVI-SiC matrix composites were produced with three-dimensional (3D) fiber architectures with varied Z-fiber content, using the highly-crystalline and near-stoichiometric SiC fiber Tyranno TM -SA. In addition, hybrid SiC/SiC composites incorporating carbon fibers were fabricated to improve thermal conductivity. The purpose of this work is to obtain thermal and mechanical properties data on these developmental composites. Results show that the addition of small amount (>10 %) of Tyranno TM -SA fiber remarkably increases the composite thermal conductivity parallel to the fiber longitudinal direction, in particular the through-thickness thermal conductivity in the orthogonal three-dimensional composite system due to the excellent thermal conductivity of Tyranno TM -SA fiber itself. On the other hand, tensile properties were significantly dependent on the axial fiber volume fraction; 3D SiC/SiC composites with in-plane fiber content 20 % exhibit improved axial strength. The carbon fiber was, in general, beneficial to obtain high thermal conductivity. However matrix cracks induced due to the mismatch of coefficients of thermal expansion (CTE) restricted heat transfer via matrix, limiting the improvement of thermal conductivity and reducing tensile proportional limit stress. (author)

  11. Methods for Producing High-Performance Silicon Carbide Fibers, Architectural Preforms, and High-Temperature Composite Structures

    Science.gov (United States)

    DiCarlo, James A. (Inventor); Yun, Hee-Mann (Inventor)

    2014-01-01

    Methods are disclosed for producing architectural preforms and high-temperature composite structures containing high-strength ceramic fibers with reduced preforming stresses within each fiber, with an in-situ grown coating on each fiber surface, with reduced boron within the bulk of each fiber, and with improved tensile creep and rupture resistance properties tier each fiber. The methods include the steps of preparing an original sample of a preform formed from a pre-selected high-strength silicon carbide ceramic fiber type, placing the original sample in a processing furnace under a pre-selected preforming stress state and thermally treating the sample in the processing furnace at a pre-selected processing temperature and hold time in a processing gas having a pre-selected composition, pressure, and flow rate. For the high-temperature composite structures, the method includes additional steps of depositing a thin interphase coating on the surface of each fiber and forming a ceramic or carbon-based matrix within the sample.

  12. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    International Nuclear Information System (INIS)

    Boukezzata, A.; Keffous, A.; Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A.; Nezzal, G.; Kechouane, M.; Bright, A.; Guerbous, L.; Menari, H.

    2010-01-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K 2 S 2 O 8 solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 MΩ cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K 2 S 2 O 8 solution has been proposed.

  13. Theoretical insights into the effects of the diameter and helicity on the adsorption of formic acid on silicon carbide nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Wang Hongxia; Zhao Jingxiang, E-mail: xjz_hmily@yahoo.com.cn; Wang Xiaoguang; Cai Qinghai [Harbin Normal University, Key Lab for Design and Synthesis of Functionalized Materials and Green Catalysis, School of Chemistry and Chemical Engineering (China); Ding Yihong, E-mail: yhdd@jlu.edu.cn [Jilin University, State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry (China); Wang Xuanzhang [Harbin Normal University, Key Lab for Design and Synthesis of Functionalized Materials and Green Catalysis, School of Chemistry and Chemical Engineering (China)

    2012-01-15

    The anchoring of small organic molecules onto the semiconductor surface has a great application for developing various molecular devices, such as novel solar cells, fuel cells, hybrid systems, sensors, and so on. In the present work, by carrying out detailed density-functional theory calculations, we have investigated the adsorption of the formic acid (HCOOH) molecule on planar and various curved silicon carbide (SiC) nanotubes. By considering both the molecular and dissociative adsorptions of HCOOH on these SiC nanomaterials, we found that the HCOOH molecule prefers to dissociate into HCOO and H group. Interestingly, different adsorption modes were found for HCOOH on SiC nanotubes, i.e. dissociative monodentate or bidentate adsorption, which depends on the tube diameter and helicity. For (n, 0) SiC nanotube, the monodentate adsorption mode is energetically favorable when n is less than 10. However, HCOOH prefers to be adsorbed on other (n, 0) SiC nanotubes in a bridged bidentate mode, which is similar to those of on (n, n) SiC nanotubes or planar SiC sheet. Moreover, upon HCOOH adsorption, these SiC nanomaterials remain to be of the semiconducting nature and their band gaps are decreased to different degrees. In addition, we also explored the effects of HCOOH coverage on its adsorption on SiC nanotube.

  14. Product technology and market assessment for silicon carbide whisker reinforced alumina heat-exchanger tubes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Loutfy, R.O.; Withers, J.C. [Materials and Electrochemical Research Corp., Tucson, AZ (United States); Chakravarti, D. [Arizona Univ., Tucson, AZ (United States)

    1993-10-01

    This report describes a study designed to develop an assessment of key performance features, desirable technical specifications and market potential for silicon carbide whisker-reinforced alumina (henceforth SCWRA) tubes for heat exchanger applications in a number of industries. The results of the first stage of a Delphi study conducted in the US market are presented. The second phase of the study is in progress. The first stage results suggest that there is a small market for SCWRA tubes in heat exchanger applications. The market is expected to grow steadily during the 1990`s. With appropriate performance specifications and competitive pricing, growth should come from (a) new applications that permit recovery in cases that were previously infeasible and (b) selective, partial substitution and replacement of current ceramics and metal/ceramic composites in existing applications. We identify key performance factors and detailed specifications needed in six designated industries (primary metals, fabricated metals, chemicals, glass, utility and incinerators). Reliability, durability and low maintenance costs emerge as critical performance factors across these industries. The data show that although ceramics are recognized as having better properties, enhancing reliability and durability and thus improving maintenance cost performance is a key priority. Such improvements, reflected in the objectives for SCWRA tubes, should facilitate adoption in both new and existing applications. At this time, we are unable to assess market size directly. However, expert judgment provided indices tracking the projected market for heat exchanger tubes from 1990 to 2005.

  15. Potential of Glassy Carbon and Silicon Carbide Photonic Structures as Electromagnetic Radiation Shields for Atmospheric Re-entry

    Science.gov (United States)

    Komarevskiy,Nikolay; Shklover, Valery; Braginsky, Leonid; Hafner, Christian; Lawson, John W.

    2012-01-01

    During high-velocity atmospheric entries, space vehicles can be exposed to strong electromagnetic radiation from ionized gas in the shock layer. Glassy carbon (GC) and silicon carbide (SiC) are candidate thermal protection materials due to their high melting point and also their good thermal and mechanical properties. Based on data from shock tube experiments, a significant fraction of radiation at hypersonic entry conditions is in the frequency range from 215 to 415 THz. We propose and analyze SiC and GC photonic structures to increase the reflection of radiation in that range. For this purpose, we performed numerical optimizations of various structures using an evolutionary strategy. Among the considered structures are layered, porous, woodpile, inverse opal and guided-mode resonance structures. In order to estimate the impact of fabrication inaccuracies, the sensitivity of the reflectivity to structural imperfections is analyzed. We estimate that the reflectivity of GC photonic structures is limited to 38% in the aforementioned range, due to material absorption. However, GC material can be effective for photonic reflection of individual, strong spectral line. SiC on the other hand can be used to design a good reflector for the entire frequency range.

  16. The effect of mixing methods and polymer infiltration and pyrolysis (PIP) cycles on the densification of silicon carbide inert matrix fuel through a polymer precursor route

    International Nuclear Information System (INIS)

    Shih Chunghao; Tulenko, J.S.; Baney, R.H.

    2011-01-01

    Highlights: ► A pre-ceramic polymer precursor route was utilized to fabricate SiC based inert matrix fuel (IMF). ► The effect of mixing and polymer infiltration and pyrolysis (PIP) cycles on the fabrication of the SiC IMF was investigated. ► A theoretical density of ∼86% has been achieved after one PIP cycle. ► Pore size distributions before and after PIP cycles have been determined. ► SEM images showed a “springback” effect for 600 MPa pressed pellets. - Abstract: The effect of mixing methods on the fabrication of silicon carbide (SiC) inert matrix fuel through a polymer precursor route was investigated in order to break up the agglomerates of the SiC particles observed in earlier studies. It was found that a high energy shaker mill could effectively break up the agglomerates and thereby achieve a higher pellet density. Moreover, it was found that the pellet density depended less on the pressing pressure, when the particles are well mixed. SEM images showed cracks caused by the springback effect on pellets with a high cold pressing pressure of 600 MPa, but no signs of springback effect were observed for the 200 MPa pressed pellets. The polymer infiltration and pyrolysis (PIP) cycles were used to further increase the pellet density and close the open pores. The first PIP cycle was found to increase the theoretical density of the pellets from 81.2% to 86.0% and close ∼50% of the open pores. The pore size distribution showed that most of the remaining open pores had diameters smaller than 10 nm. The successive second PIP cycle is not as effective on either the density or the pore size distribution because the small pores present before the second PIP cycle made the infiltration process difficult.

  17. Deposition of multicomponent chromium carbide coatings using a non-conventional source of chromium and silicon with micro-additions of boron

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Ruiz, Jesus Eduardo, E-mail: jesus.gonzalez@biomat.uh.cu [Biomaterials Center, University of Havana (Cuba); Rodriguez Cristo, Alejandro [Mechanical Plants Company, Road of the Sub-Plan, Farm La Cana, Santa Clara, Villa Clara (Cuba); Ramos, Adrian Paz [Department of Chemistry, Universite de Montreal, Quebec (Canada); Quintana Puchol, Rafael [Welding Research Center, Central University Marta Abreu of Las Villas, Villa Clara (Cuba)

    2017-01-15

    The chromium carbide coatings are widely used in the mechanical industry due to its corrosion resistance and mechanical properties. In this work, we evaluated a new source of chromium and silicon with micro-additions of boron on the deposition of multi-component coatings of chromium carbides in W108 steel. The coatings were obtained by the pack cementation method, using a simultaneous deposition at 1000 deg for 4 hours. The coatings were analyzed by X-ray diffraction, X-ray energy dispersive spectroscopy, optical microscopy, microhardness test method and pin-on-disc wear test. It was found that the coatings formed on W108 steel were mainly constituted by (Cr,Fe){sub 23}C{sub 6} , (Cr,Fe){sub 7} C{sub 3} , Cr{sub 5-x}Si{sub 3-x} C{sub x+z}, Cr{sub 3} B{sub 0,44}C{sub 1,4} and (or) Cr{sub 7} BC{sub 4} . The carbide layers showed thicknesses between 14 and 15 μm and maximum values of microhardness between 15.8 and 18.8 GPa. Also, the micro-additions of boron to the mixtures showed statistically significant influence on the thickness, microhardness and abrasive wear resistance of the carbide coatings. (author)

  18. Room temperature photoluminescence spectrum modeling of hydrogenated amorphous silicon carbide thin films by a joint density of tail states approach and its application to plasma deposited hydrogenated amorphous silicon carbide thin films

    International Nuclear Information System (INIS)

    Sel, Kıvanç; Güneş, İbrahim

    2012-01-01

    Room temperature photoluminescence (PL) spectrum of hydrogenated amorphous silicon carbide (a-SiC x :H) thin films was modeled by a joint density of tail states approach. In the frame of these analyses, the density of tail states was defined in terms of empirical Gaussian functions for conduction and valance bands. The PL spectrum was represented in terms of an integral of joint density of states functions and Fermi distribution function. The analyses were performed for various values of energy band gap, Fermi energy and disorder parameter, which is a parameter that represents the width of the energy band tails. Finally, the model was applied to the measured room temperature PL spectra of a-SiC x :H thin films deposited by plasma enhanced chemical vapor deposition system, with various carbon contents, which were determined by X-ray photoelectron spectroscopy measurements. The energy band gap and disorder parameters of the conduction and valance band tails were determined and compared with the optical energies and Urbach energies, obtained by UV–Visible transmittance measurements. As a result of the analyses, it was observed that the proposed model sufficiently represents the room temperature PL spectra of a-SiC x :H thin films. - Highlights: ► Photoluminescence spectra (PL) of the films were modeled. ► In the model, joint density of tail states and Fermi distribution function are used. ► Various values of energy band gap, Fermi energy and disorder parameter are applied. ► The model was applied to the measured PL of the films. ► The proposed model represented the room temperature PL spectrum of the films.

  19. Towards a high performing UV-A sensor based on Silicon Carbide and hydrogenated Silicon Nitride absorbing layers

    International Nuclear Information System (INIS)

    Mazzillo, M.; Renna, L.; Costa, N.; Badalà, P.; Sciuto, A.; Mannino, G.

    2016-01-01

    Exposure to ultraviolet (UV) radiation is a major risk factor for most skin cancers. The sun is our primary natural source of UV radiation. The strength of the sun's ultraviolet radiation is expressed as Solar UV Index (UVI). UV-A (320–400 nm) and UV-B (290–320 nm) rays mostly contribute to UVI. UV-B is typically the most destructive form of UV radiation because it has enough energy to cause photochemical damage to cellular DNA. Also overexposure to UV-A rays, although these are less energetic than UV-B photons, has been associated with toughening of the skin, suppression of the immune system, and cataract formation. The use of preventive measures to decrease sunlight UV radiation absorption is fundamental to reduce acute and irreversible health diseases to skin, eyes and immune system. In this perspective UV sensors able to monitor in a monolithic and compact chip the UV Index and relative UV-A and UV-B components of solar spectrum can play a relevant role for prevention, especially in view of the integration of these detectors in close at hand portable devices. Here we present the preliminary results obtained on our UV-A sensor technology based on the use of hydrogenated Silicon Nitride (SiN:H) thin passivating layers deposited on the surface of thin continuous metal film Ni_2Si/4H-SiC Schottky detectors, already used for UV-Index monitoring. The first UV-A detector prototypes exhibit a very low leakage current density of about 0.2 pA/mm"2 and a peak responsivity value of 0.027 A/W at 330 nm, both measured at 0V bias.

  20. Sustained molecular oxygen activation by solid iron doped silicon carbide under microwave irradiation: Mechanism and application to norfloxacin degradation.

    Science.gov (United States)

    Li, Hongbo; Chen, Jing; Hou, Huijie; Pan, Hong; Ma, Xiaoxue; Yang, Jiakuan; Wang, Linling; Crittenden, John C

    2017-12-01

    Sustained molecular oxygen activation by iron doped silicon carbide (Fe/SiC) was investigated under microwave (MW) irradiation. The catalytic performance of Fe/SiC for norfloxacin (NOR) degradation was also studied. Rapid mineralization in neutral solution was observed with a pseudo-first-order rate constant of 0.2239 min -1 under 540 W of MW irradiation for 20 min. Increasing Fe/SiC rod and MW power significantly enhanced the degradation and mineralization rate with higher yield of reactive oxygen species (ROS). Fe shell corrosion and subsequent Fe 0/II oxidation by molecular oxygen with MW activation was the key factor for NOR degradation through two-electron-transfer by Fe 0 under acidic conditions and single-electron-transfer by Fe II under neutral-alkaline solution. Removal rate of NOR was significantly affected by solution pH, showing higher degradation rates at both acidic and alkaline conditions. The highest removal efficiencies and rates at alkaline pH values were ascribed to the contribution of bound Fe II species on the Fe shell surface due to the hydroxylation of Fe/SiC. ·OH was the main oxidizing specie for NOR degradation, confirmed by density functional theory (DFT) calculations and radical scavenger tests. DFT calculations were conducted on the reaction/activation energies of the transition/final states of NOR/degradation products, combined with intermediate identification with high performance liquid chromatography coupled with a triple-quadruple mass spectrometer (HPLC-MS/MS), the piperazinyl ring was the most reactive site for ·OH attack, followed by further ring-opening and stepwise oxidation. In this study, Fe/SiC were proved to be an excellent catalyst for the treatment of fluoroquinolone antibiotics with MW activation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The significance of strength of silicon carbide for the mechanical integrity of coated fuel particles for HTRs

    International Nuclear Information System (INIS)

    Bongartz, K.; Scheer, A.; Schuster, H.; Taeuber, K.

    1975-01-01

    Silicon carbide (SiC) and pyrocarbon are used as coating material for the HTR fuel particles. The PyC shell having a certain strength acts as a pressure vessel for the fission gases whereas the SiC shell has to retain the solid fission products in the fuel kernel. For measuring the strength of coating material the so-called Brittle Ring Test was developed. Strength and Young's modulus can be measured simultaneously with this method on SiC or PyC rings prepared out of the coating material of real fuel particles. The strength measured on the ring under a certain stress distribution which is characteristic for this method is transformed with the aid of the Weibull formalism for brittle fracture into the equivalent strength of the spherical coating shell on the fuel particle under uniform stress caused by the fission gas pressure. The values measured for the strength of the SiC were high (400-700MN/m 2 ), it could therefore be assumed that a SiC layer might contribute significantly also to the mechanical strength of the fuel coating. This assumption was confirmed by an irradiation test on coated particles with PyC-SiC-PyC coatings. There were several particles with all PyC layers broken during the irradiation, whereas the SiC layers remained intact having to withstand the fission gas pressure alone. This fact can only be explained assuming that the strength of the SiC is within the range of the values measured with the brittle ring test. The result indicates that, in optimising the coating of a fuel particle, the PyC layers of a multilayer coating should be considered alone as prospective layers for the SiC. The SiC shell, besides acting as a fission product barrier, is then also responsible for the mechanical integrity of the particle

  2. Fabrication and Probabilistic Fracture Strength Prediction of High-Aspect-Ratio Single Crystal Silicon Carbide Microspecimens With Stress Concentration

    Science.gov (United States)

    Nemeth, Noel N.; Evans, Laura J.; Jadaan, Osama M.; Sharpe, William N., Jr.; Beheim, Glenn M.; Trapp, Mark A.

    2005-01-01

    Single crystal silicon carbide micro-sized tensile specimens were fabricated with deep reactive ion etching (DRIE) in order to investigate the effect of stress concentration on the room-temperature fracture strength. The fracture strength was defined as the level of stress at the highest stressed location in the structure at the instant of specimen rupture. Specimens with an elliptical hole, a circular hole, and without a hole (and hence with no stress concentration) were made. The average fracture strength of specimens with a higher stress concentration was larger than the average fracture strength of specimens with a lower stress concentration. Average strength of elliptical-hole, circular-hole, and without-hole specimens was 1.53, 1.26, and 0.66 GPa, respectively. Significant scatter in strength was observed with the Weibull modulus ranging between 2 and 6. No fractographic examination was performed but it was assumed that the strength controlling flaws originated from etching grooves along the specimen side-walls. The increase of observed fracture strength with increasing stress concentration was compared to predictions made with the Weibull stress-integral formulation by using the NASA CARES/Life code. In the analysis isotropic material and fracture behavior was assumed - hence it was not a completely rigorous analysis. However, even with these assumptions good correlation was achieved for the circular-hole specimen data when using the specimen data without stress concentration as a baseline. Strength was over predicted for the elliptical-hole specimen data. Significant specimen-to-specimen dimensional variation existed in the elliptical-hole specimens due to variations in the nickel mask used in the etching. To simulate the additional effect of the dimensional variability on the probabilistic strength response for the single crystal specimens the ANSYS Probabilistic Design System (PDS) was used with CARES/Life.

  3. Silicon carbide based sensor system for minimized emissions in flue gases; Kiselkarbidbaserat sensorsystem foer minimering av emissioner i roekgaser

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd Spetz, Anita; Bjorklund, Robert

    2012-02-15

    Control of the combustion process is necessary in order to operate boilers in an economic and environmentally acceptable manner. Large power plants can afford expensive measurement instruments to continuously monitor the composition of flue gas. Smaller facilities often lack complete gas analysis systems and it would be to their advantage to have access to inexpensive measurement equipment which could be installed at several points in the flue gas channel. Since oxygen concentration is such an important parameter for describing the combustion process the lambdasond is currently being used as an oxygen sensor in flue gas. It has the advantage of usage for more than 30 years in the automobile industry. Experience from that application has aided its introduction in the power industry. Conditions are not the same in the two branches but the lambdasond is an established technology, produced in large volume, widely available and inexpensive. Vehicle manufacturers continue to develop sensor technology and monitoring capabilities have been extended to CO, NOx and NH3. The latter is the result of SCR (selective catalytic reduction) of NOx by addition of NH3 (from urea), which has been introduced as an exhaust gas aftertreatment technology in diesel powered vehicles. The power industry can be expected to follow this trend by incorporating sensors for monitoring and control of SCR and SNCR (non-catalytic selective reduction) in flue gas applications. This report describes evaluation of silicon carbide based transistors, which have previously been studied in diesel exhaust gas and small boiler flue gas, for applications in larger power plants

  4. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Science.gov (United States)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  5. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) with Silicon-Carbide-Matrix Coated-Particle Fuel

    International Nuclear Information System (INIS)

    Forsberg, C. W.; Snead, Lance Lewis; Katoh, Yutai

    2012-01-01

    The FHR is a new reactor concept that uses coated-particle fuel and a low-pressure liquid-salt coolant. Its neutronics are similar to a high-temperature gas-cooled reactor (HTGR). The power density is 5 to 10 times higher because of the superior cooling properties of liquids versus gases. The leading candidate coolant salt is a mixture of 7 LiF and BeF 2 (FLiBe) possessing a boiling point above 1300 C and the figure of merit ρC p (volumetric heat capacity) for the salt slightly superior to water. Studies are underway to define a near-term base-line concept while understanding longer-term options. Near-term options use graphite-matrix coated-particle fuel where the graphite is both a structural component and the primary neutron moderator. It is the same basic fuel used in HTGRs. The fuel can take several geometric forms with a pebble bed being the leading contender. Recent work on silicon-carbide-matrix (SiCm) coated-particle fuel may create a second longer-term fuel option. SiCm coated-particle fuels are currently being investigated for use in light-water reactors. The replacement of the graphite matrix with a SiCm creates a new family of fuels. The first motivation behind the effort is to take advantage of the superior radiation resistance of SiC compared to graphite in order to provide a stable matrix for hosting coated fuel particles. The second motivation is a much more rugged fuel under accident, repository, and other conditions.

  6. Microstructural, phase evolution and corrosion properties of silicon carbide reinforced pulse electrodeposited nickel-tungsten composite coatings

    Science.gov (United States)

    Singh, Swarnima; Sribalaji, M.; Wasekar, Nitin P.; Joshi, Srikant; Sundararajan, G.; Singh, Raghuvir; Keshri, Anup Kumar

    2016-02-01

    Silicon carbide (SiC) reinforced nickel-tungsten (Ni-W) coatings were successfully fabricated on steel substrate by pulse electrodeposition method (PED) and the amount of SiC was varied as 0 g/l, 2 g/l, and 5 g/l in Ni-W coating. Effect of subsequent addition of SiC on microstructures, phases and on corrosion property of the coating was investigated. Field emission scanning electron microscopy (FE-SEM) image of the surface morphology of the coating showed the transformation from the dome like structure to turtle shell like structure. X-ray diffraction (XRD) of Ni-W-5 g/l SiC showed the disappearance of (220) plane of Ni(W), peak splitting in major peak of Ni(W) and formation of distinct peak of W(Ni) solid solution. Absence of (220) plane, peak splitting and presence of W(Ni) solid solution was explained by the high resolution transmission electron microscopy (HR-TEM) images. Tafel polarization plot was used to study the corrosion property of the coatings in 0.5 M NaCl solution. Ni-W-5 g/l SiC coating was showed higher corrosion resistance (i.e. ∼21% increase in corrosion potential, Ecorr) compared to Ni-W coating. Two simultaneous phenomena have been identified for the enhanced corrosion resistance of Ni-W-5 g/l SiC coating. (a) Presence of crystallographic texture (b) formation of continuous double barrier layer of NiWO4 and SiO2.

  7. Interfacial bonding and friction in silicon carbide (filament)-reinforced ceramic- and glass-matrix composites

    International Nuclear Information System (INIS)

    Bright, J.D.; Shetty, D.K.

    1989-01-01

    This paper reports interfacial shear strength and interfacial sliding friction stress assessed in unidirectional SiC-filament-reinforced reaction-bonded silicon nitride (RBSN) and borosilicate glass composites and 0/90 cross-ply reinforced borosilicate glass composite using a fiber pushout test technique. The interface debonding load and the maximum sliding friction load were measured for varying lengths of the embedded fibers by continuously monitoring the load during debonding and pushout of single fibers in finite-thickness specimens. The dependences of the debonding load and the maximum sliding friction load on the initial embedded lengths of the fibers were in agreement with nonlinear shear-lag models. An iterative regression procedure was used to evaluate the interfacial properties, shear debond strength (τ d ), and sliding friction stress (τ f ), from the embedded fiber length dependences of the debonding load and the maximum frictional sliding load, respectively. The shear-lag model and the analysis of sliding friction permit explicit evaluation of a coefficient of sliding friction (μ) and a residual compressive stress on the interface (σ 0 ). The cross-ply composite showed a significantly higher coefficient of interfacial friction as compared to the unidirectional composites

  8. Defects in silicon carbide grown by fluorinated chemical vapor deposition chemistry

    Science.gov (United States)

    Stenberg, Pontus; Booker, Ian D.; Karhu, Robin; Pedersen, Henrik; Janzén, Erik; Ivanov, Ivan G.

    2018-04-01

    Point defects in n- and p-type 4H-SiC grown by fluorinated chemical vapor deposition (CVD) have been characterized optically by photoluminescence (PL) and electrically by deep-level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). The results are considered in comparison with defects observed in non-fluorinated CVD growth (e.g., using SiH4 instead of SiF4 as silicon precursor), in order to investigate whether specific fluorine-related defects form during the fluorinated CVD growth, which might prohibit the use of fluorinated chemistry for device-manufacturing purposes. Several new peaks identifying new defects appear in the PL of fluorinated-grown samples, which are not commonly observed neither in other halogenated chemistries, nor in the standard CVD chemistry using silane (SiH4). However, further investigation is needed in order to determine their origin and whether they are related to incorporation of F in the SiC lattice, or not. The electric characterization does not find any new electrically-active defects that can be related to F incorporation. Thus, we find no point defects prohibiting the use of fluorinated chemistry for device-making purposes.

  9. Study on structural design technique of silicon carbide applied for thermochemical hydrogen production IS process

    International Nuclear Information System (INIS)

    Takegami, Hiroaki; Terada, Atsuhiko; Inagaki, Yoshiyuki; Ishikura, Syuichi

    2011-03-01

    The IS process is the hydrogen production method which used the thermochemical reaction cycle of sulfuric acid and iodyne. Therefore, the design to endure the high temperature and moreover corrode-able environment is required to the equipment. Specifically, the sulfuric acid decomposer which is one of the main equipment of the IS process is the equipment to heat with hot helium and for the sulfuric acid of 90 wt% to evaporate. Moreover, it is the important equipment to supply the SO 3 decomposer which is the following process, resolving the part of sulfuric acid vapor into SO 3 with. The heat exchanger that sulfuric acid evaporates must be made pressure-resistant structure because it has the high-pressure helium of 4 MPa and the material that the high temperature and the corrosion environment of equal to or more than 700degC can be endured must be used. As the material, it is selected from the corrosion experiment and so on when SiC which is carbonization silicone ceramics is the most excellent material. However, even if it damages the ceramic block which is a heat exchanger because it becomes the structure which is stored in pressure-resistant metallic container, fluid such as sulfuric acid becomes the structure which doesn't leak out outside. However, the structure design technique to have been unified when using ceramics as the structure part isn't serviced as the standard. This report is the one which was studied about the structural design technique to have taken the material strength characteristic of the ceramics into consideration, refer to existing structural design standard. (author)

  10. Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Drahokoupil, Jan; Fekete, Ladislav; Klimša, Ladislav; Kopeček, Jaromír; Purkrt, Adam; Remeš, Zdeněk; Čtvrtlík, Radim; Tomáštík, Jan; Frank, Otakar; Janíček, P.; Mistrík, J.; Mortet, Vincent

    2016-01-01

    Roč. 69, Oct (2016), s. 13-18 ISSN 0925-9635 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743; GA ČR GA13-31783S; GA MŠk(CZ) LD14011; GA MŠk LM2015088 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * silicon carbide * adherence * mechanical properties * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) Impact factor: 2.561, year: 2016

  11. Studies on Mechanical Behaviour of Aluminium/Nickel Coated Silicon Carbide Reinforced Functionally Graded Composite

    Directory of Open Access Journals (Sweden)

    A. Mohandas

    2017-06-01

    Full Text Available The aim of the work is to fabricate functionally graded aluminium (Al-Si6Cu/ nickel coated SiC metal matrix composite using centrifugal casting route. SiC particles (53-80 µm were coated with nickel using electroless coating technique to enhance the wettability with aluminium matrix. Several attempts were made to coat nickel on SiC by varying the process temperature (65 °C, 75 °C, and 85 °C to obtain a uniform coating. Silicon particles coated with nickel were characterised using EDS enabled Field Emission Scanning Electron Microscope and it was found that the maximum nickel coating on SiC occurred at a process temperature of 75°C. This nickel coated SiC particles were used as the reinforcement for the manufacture of functionally graded metal matrix composite and a cast specimen of dimensions 150×90×15 mm was obtained. To ensure the graded properties in the fabricated composites, microstructure (at a distance of 1, 7 and 14 mm and hardness (at a distance of 1, 3, 7, 10 and 14 mm from outer periphery taken in the radial direction was analysed using Zeiss Axiovert metallurgical microscope and Vickers micro hardness tester respectively. The microstructure reveals presence of more SiC particles at the outer periphery compared to inner periphery and the hardness test shows that the hardness also decreased from outer periphery (90 HV to inner periphery (78 HV.Tensile strength of specimen from outer zone (1-7mm and inner zone (8-14 mm of casting was also tested and found out a value of 153.3 Mpa and 123.3 Mpa for the outer zone and inner zone respectively. An important observation made was that the outer periphery of casting was particle rich and the inner periphery was particle deficient because of centrifugal force and variation in density between aluminium matrix and reinforcement. Functionally graded Al/SiC metal matrix composite could be extensively used in automotive industry especially in the manufacture of liners and brake drums.

  12. Detailed characterisation of focused ion beam induced lateral damage on silicon carbide samples by electrical scanning probe microscopy and transmission electron microscopy

    Science.gov (United States)

    Stumpf, F.; Abu Quba, A. A.; Singer, P.; Rumler, M.; Cherkashin, N.; Schamm-Chardon, S.; Cours, R.; Rommel, M.

    2018-03-01

    The lateral damage induced by focused ion beam on silicon carbide was characterized using electrical scanning probe microscopy (SPM), namely, scanning spreading resistance microscopy and conductive atomic force microscopy (c-AFM). It is shown that the damage exceeds the purposely irradiated circles with a radius of 0.5 μm by several micrometres, up to 8 μm for the maximum applied ion dose of 1018 cm-2. Obtained SPM results are critically compared with earlier findings on silicon. For doses above the amorphization threshold, in both cases, three different areas can be distinguished. The purposely irradiated area exhibits resistances smaller than the non-affected substrate. A second region with strongly increasing resistance and a maximum saturation value surrounds it. The third region shows the transition from maximum resistance to the base resistance of the unaffected substrate. It correlates to the transition from amorphized to defect-rich to pristine crystalline substrate. Additionally, conventional transmission electron microscopy (TEM) and annular dark-field STEM were used to complement and explain the SPM results and get a further understanding of the defect spreading underneath the surface. Those measurements also show three different regions that correlate well with the regions observed from electrical SPM. TEM results further allow to explain observed differences in the electrical results for silicon and silicon carbide which are most prominent for ion doses above 3 × 1016 cm-2. Furthermore, the conventional approach to perform current-voltage measurements by c-AFM was critically reviewed and several improvements for measurement and analysis process were suggested that result in more reliable and impactful c-AFM data.

  13. The Effect of Grain Size on the Radiation Response of Silicon Carbide and its Dependence on Irradiation Species and Temperature

    Science.gov (United States)

    Jamison, Laura

    In recent years the push for green energy sources has intensified, and as part of that effort accident tolerant and more efficient nuclear reactors have been designed. These reactors demand exceptional material performance, as they call for higher temperatures and doses. Silicon carbide (SiC) is a strong candidate material for many of these designs due to its low neutron cross-section, chemical stability, and high temperature resistance. The possibility of improving the radiation resistance of SiC by reducing the grain size (thus increasing the sink density) is explored in this work. In-situ electron irradiation and Kr ion irradiation was utilized to explore the radiation resistance of nanocrystalline SiC (nc-SiC), SiC nanopowders, and microcrystalline SiC. Electron irradiation simplifies the experimental results, as only isolated Frenkel pairs are produced so any observed differences are simply due to point defect interactions with the original microstructure. Kr ion irradiation simulates neutron damage, as large radiation cascades with a high concentration of point defects are produced. Kr irradiation studies found that radiation resistance decreased with particle size reduction and grain refinement (comparing nc-SiC and microcrystalline SiC). This suggests that an interface-dependent amorphization mechanism is active in SiC, suggested to be interstitial starvation. However, under electron irradiation it was found that nc-SiC had improved radiation resistance compared to single crystal SiC. This was found to be due to several factors including increased sink density and strength and the presence of stacking faults. The stacking faults were found to improve radiation response by lowering critical energy barriers. The change in radiation response between the electron and Kr ion irradiations is hypothesized to be due to either the change in ion type (potential change in amorphization mechanism) or a change in temperature (at the higher temperatures of the Kr ion

  14. The effects of applying silicon carbide coating on core reactivity of pebble-bed HTR in water ingress accident

    Energy Technology Data Exchange (ETDEWEB)

    Zuhair, S.; Setiadipura, Topan [National Nuclear Energy Agency of Indonesia, Serpong Tagerang Selatan (Indonesia). Center for Nuclear Reactor Technology and Safety; Su' ud, Zaki [Bandung Institute of Technology (Indonesia). Dept. of Physics

    2017-03-15

    Graphite is used as the moderator, fuel barrier material, and core structure in High Temperature Reactors (HTRs). However, despite its good thermal and mechanical properties below the radiation and high temperatures, it cannot avoid corrosion as a consequence of an accident of water/air ingress. Degradation of graphite as a main HTR material and the formation of dangerous CO gas is a serious problem in HTR safety. One of the several steps that can be adopted to avoid or prevent the corrosion of graphite by the water/air ingress is the application of a thin layer of silicon carbide (SiC) on the surface of the fuel element. This study investigates the effect of applying SiC coating on the fuel surfaces of pebble-bed HTR in water ingress accident from the reactivity points of view. A series of reactivity calculations were done with the Monte Carlo transport code MCNPX and continuous energy nuclear data library ENDF/B-VII at temperature of 1200 K. Three options of UO{sub 2}, PuO{sub 2}, and ThO{sub 2}/UO{sub 2} fuel kernel were considered to obtain the inter comparison of the core reactivity of pebble-bed HTR in conditions of water/air ingress accident. The calculation results indicated that the UO{sub 2}-fueled pebble-bed HTR reactivity was slightly reduced and relatively more decreased when the thickness of the SiC coating increased. The reactivity characteristic of ThO{sub 2}/UO{sub 2}-fueled pebble-bed HTR showed a similar trend to that of UO{sub 2}, but did not show reactivity peak caused by water ingress. In contrast with UO{sub 2}- and ThO{sub 2}-fueled pebble-bed HTR, although the reactivity of PuO{sub 2}-fueled pebble-bed HTR was the lowest, its characteristics showed a very high reactivity peak (0.33 Δk/k) and this introduction of positive reactivity is difficult to control. SiC coating on the surface of the plutonium fuel pebble has no significant impact. From the comparison between reactivity characteristics of uranium, thorium and plutonium cores with 0

  15. Assembly and Delivery of Rabbit Capsules for Irradiation of Silicon Carbide Cladding Tube Specimens in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Takaaki [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Neutron irradiation of silicon carbide (SiC)-based fuel cladding under a high radial heat flux presents a critical challenge for SiC cladding concepts in light water reactors (LWRs). Fission heating in the fuel provides a high heat flux through the cladding, which, combined with the degraded thermal conductivity of SiC under irradiation, results in a large temperature gradient through the thickness of the cladding. The strong temperature dependence of swelling in SiC creates a complex stress profile in SiCbased cladding tubes as a result of differential swelling. The Nuclear Science User Facilities (NSUF) Program within the US Department of Energy Office of Nuclear Energy is supporting research efforts to improve the scientific understanding of the effects of irradiation on SiC cladding tubes. Ultimately, the results of this project will provide experimental validation of multi-physics models for SiC-based fuel cladding during LWR operation. The first objective of this project is to irradiate tube specimens using a previously developed design that allows for irradiation testing of miniature SiC tube specimens subjected to a high radial heat flux. The previous “rabbit” capsule design uses the gamma heating in the core of the High Flux Isotope Reactor (HFIR) to drive a high heat flux through the cladding tube specimens. A compressible aluminum foil allows for a constant thermal contact conductance between the cladding tubes and the rabbit housing despite swelling of the SiC tubes. To allow separation of the effects of irradiation from those due to differential swelling under a high heat flux, a new design was developed under the NSUF program. This design allows for irradiation of similar SiC cladding tube specimens without a high radial heat flux. This report briefly describes the irradiation experiment design concepts, summarizes the irradiation test matrix, and reports on the successful delivery of six rabbit capsules to the HFIR. Rabbits of both low and high

  16. Mechanical behaviour of silicon carbide submitted to high temperature; Comportement mecanique du carbure de silicium en temperature

    Energy Technology Data Exchange (ETDEWEB)

    Menard, M.; Le Flem, M.; Gelebart, L. [CEA Saclay, 91 - Gif sur Yvette (France); Boussuge, M. [Ecole Nationale Superieure des Mines, 75 - Paris (France)

    2007-07-01

    Ceramics (composite ceramics) are considered materials for manufacturing structure pieces of future nuclear reactor cores. In condition of nominal running, the temperature of these components is estimated at 500-800 C and could reach 1600 C in accidental condition. On account of its refractory properties and of its good compatibility with neutron flux, silicon carbide is retained for such applications, particularly for fuel cladding material (SiC/SiC composite). A study aiming to specify the mechanical behaviour of the monolithic {alpha}SiC (hexagonal structure) between 1000 and 1500 C as well as its evolution after ionic irradiation is presented. This study presents particularly the mechanical characterizations of SiC in three points bending obtained until 1450 C and surface characterizations led on SiC irradiated with ions. The rupture tests in three points bending carried out in temperature on specimens pre-cracked by indentation show an increase of 85% of the SiC rupture stress between 1000 and 1300 C. Above 1300 C, the damage of SiC induces a significant decrease of the rupture stress. Aniso-thermal creep tests on polished specimens show that the SiC presents a viscoplastic behaviour from 1200 C. Surface characterizations by Raman spectroscopy, micro and nano-indentation, acoustic microscopy led at ambient temperature on fresh and irradiated to Xe ions (94 MeV) SiC at 400 C are presented too. The formation of a structural disorder and of Si-Si homonuclear bonds disorder, suggesting a SiC amorphization, are revealed by Raman spectroscopy between 3*10{sup 14} and 3.6*10{sup 15} ions/cm{sup 2} of fluence. These microstructural changes lead to a macroscopic swelling quantifiable by measuring the height of the step formed during irradiations between the non irradiated and irradiated areas. Measurements by profilometry show that between 3*10{sup 14} and 1.2*10{sup 15} ions/cm{sup 2} of fluence, the height of the step increases of 47 nm to 83 nm, and then is

  17. Delivery of Cisplatin Anti-Cancer Drug from Carbon, Boron Nitride, and Silicon Carbide Nanotubes Forced by Ag-Nanowire: A Comprehensive Molecular Dynamics Study.

    Science.gov (United States)

    Mehrjouei, Esmat; Akbarzadeh, Hamed; Shamkhali, Amir Nasser; Abbaspour, Mohsen; Salemi, Sirous; Abdi, Pooya

    2017-07-03

    In this work, liberation of cisplatin molecules from interior of a nanotube due to entrance of an Ag-nanowire inside it was simulated by classical molecular dynamics method. The aim of this simulation was investigation on the effects of diameter, chirality, and composition of the nanotube, as well as the influence of temperature on this process. For this purpose, single walled carbon, boron nitride, and silicon carbide nanotube were considered. In order for a more concise comparison of the results, a new parameter namely efficiency of drug release, was introduced. The results demonstrated that the efficiency of drug release is sensitive to its adsorption on outer surface of the nanotube. Moreover, this efficiency is also sensitive to the nanotube composition and its diameter. For the effect of nanotube composition, the results indicated that silicon carbide nanotube has the least efficiency for drug release, due to its strong drug-nanotube. Also, the most important acting forces on drug delivery are van der Waals interactions. Finally, the kinetic of drug release is fast and is not related to the structural parameters of the nanotube and temperature, significantly.

  18. Damage characterisation of silicon carbides for applications in gas turbines in complex load conditions; Charakterisierung des Schaedigungsverhaltens von Siliciumcarbiden fuer den Einsatz in Gasturbinen unter komplexen Beanspruchungsbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Nestle, E.

    2000-06-01

    A tensile test facility for simultaneous thermal, mechanical and corrosive loading was developed and constructed for the purpose of characterizing the damage characteristics of ceramic high-temperature materials. Apart from tensile tests for up to 830 h, tests were also carried out on four-point bending test pieces and disk-shaped oxidation test pieces. The experiments were made at 1450 - 1550 C in dry or moist air. The materials investigated were one hot-pressed silicon carbide and two sintered silicon carbides. [German] Um keramische Hochtemperaturwerkstoffe bezueglich ihres Schaedigungsverhaltens charakterisieren zu koennen, wurde im Rahmen der vorliegenden Arbeit eine Zugpruefanlage zur gleichzeitigen Beanspruchung unter thermischen, mechanischen und korrosiven Bedingungen entwickelt und aufgebaut. Neben den in dieser Anlage durchgefuehrten Zugpruefungen mit Versuchszeiten bis zu 830 h wurden begleitende Untersuchungen an Vierpunkt-Biegeproben und scheibenfoermigen Oxidationsproben durchgefuehrt. Die Versuche konzentrierten sich auf den Temperaturbereich 1450-1550 unter trockenen und feuchten Luftatmosphaeren. Bei den untersuchten Werkstoffen handelte es sich um eine heissgepresste und zwei gesinterte Siliciumcarbid-Qualitaeten. (orig.)

  19. Structural characterization of hard materials by transmission electron microscopy (TEM): Diamond-Silicon Carbide composites and Yttria-stabilized Zirconia

    Science.gov (United States)

    Park, Joon Seok

    2008-10-01

    Diamond-Silicon Carbide (SiC) composites are excellent heat spreaders for high performance microprocessors, owing to the unparalleled thermal conductivity of the former component. Such a combination is obtained by the infiltration of liquid silicon in a synthetic diamond compact, where a rigid SiC matrix forms by the reaction between the raw materials. As well as the outstanding thermal properties, this engineered compound also retains the extreme hardness of the artificial gem. This makes it difficult to perform structural analysis by transmission electron microscopy (TEM), for it is not possible to produce thin foils out of this solid by conventional polishing methods. For the first time, a dual-beam focused ion beam (FIB) instrument successfully allowed site-specific preparation of electron-transparent specimens by the lift-out technique. Subsequent TEM studies revealed that the highest concentration of structural defects occurs in the vicinity of the diamond-SiC interfaces, which are believed to act as the major barriers to the transport of thermal energy. Diffraction contrast analyses showed that the majority of the defects in diamond are isolated perfect screw or 60° dislocations. On the other hand, SiC grains contain partial dislocations and a variety of imperfections such as microtwins, stacking faults and planar defects that are conjectured to consist of antiphase (or inversion) boundaries. Clusters of nanocrystalline SiC were also observed at the diamond-SiC boundaries, and a specific heteroepitaxial orientation relationship was discovered for all cubic SiC that grows on diamond {111} facets. Yttria-stabilized Zirconia (YSZ) is the most common electrolyte material for solid oxide fuel cell (SOFC) applications. It is an ionic conductor in which charge transfer is achieved by the transport of oxygen ions (O 2-). Like the diamond composite above, it is hard and brittle, and difficult to make into electron transparent TEM samples. Provided an effective

  20. Recycling silicon wire-saw slurries: separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field.

    Science.gov (United States)

    Tsai, Tzu-Hsuan; Shih, Yu-Pei; Wu, Yung-Fu

    2013-05-01

    The growing demand for silicon solar cells in the global market has greatly increased the amount of silicon sawing waste produced each year. Recycling kerf Si and SiC from sawing waste is an economical method to reduce this waste. This study reports the separation of Si and SiC using a ramp settling tank. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. The agreement between experimental results and predicted results shows that the particles traveled a short distance to reach the collection port in the ramp tank. Consequently, the time required for tiny particles to hit the tank bottom decreased, and the interference caused by the dispersion between particles and the fluid motion during settling decreased. In the ramp tank, the highest purities of the collected SiC and Si powders were 95.2 and 7.01 wt%, respectively. Using a ramp tank, the recycling fraction of Si-rich powders (SiC sawing waste is regarded as an economical solution to reduce the sawing waste. However, the separation of Si and SiC is difficult. This study reports the separation of Si and SiC using a ramp settling tank under an applied electrical field. As they settle in an electrical field, small Si particles with higher negative charges have a longer horizontal displacement than SiC particles in a solution of pH 7, resulting in the separation of Si and SiC. Compared with the rectangular tanks, the recycling fraction of Si-rich powders using a ramp tank is greater, and the proposed ramp settling tank is more suitable for industrial applications.

  1. Fifth workshop on the role of impurities and defects in silicon device processing. Extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.; Luque, A.; Sopori, B.; Swanson, D.; Gee, J.; Kalejs, J.; Jastrzebski, L.; Tan, T.

    1995-08-01

    This workshop dealt with engineering aspects and material properties of silicon electronic devices. Crystalline silicon growth, modeling, and properties are discussed in general and as applied to solar cells. Topics considered in discussions of silicon growth include: casting, string ribbons, Al backside contacts, ion implantation, gettering, passivation, and ultrasound treatments. Properties studies include: Electronic properties of defects and impurities, dopant and carrier concentrations, structure and bonding, nitrogen effects, degradation of bulk diffusion length, and recombination parameters. Individual papers from the workshop are indexed separately on the Energy Data Bases.

  2. Manganese in silicon carbide

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Hallén, A.

    2012-01-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H–SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400–2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112 ¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  3. Manganese in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Linnarsson, M.K., E-mail: marga@kth.se [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden); Hallen, A. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden)

    2012-02-15

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 Degree-Sign C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112{sup Macron }3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  4. Silicon Carbide Printed Structures

    Data.gov (United States)

    National Aeronautics and Space Administration — The plan is to design a process that will allow precision fabrication of SiC structures using a sterolithographty printer and an oven process to sinter the material...

  5. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, Hesham [General Atomics, San Diego, CA (United States)

    2017-08-03

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures provide the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.

  6. Effects of neutron irradiation on mechanical properties of silicon carbide composites fabricated by nano-infiltration and transient eutectic-phase process

    International Nuclear Information System (INIS)

    Koyanagi, T.; Hinoki, T.; Shimoda, K.; Ozawa, K.; Katoh, Y.

    2014-01-01

    Unidirectional silicon carbide (SiC)-fiber-reinforced SiC matrix (SiC/SiC) composites fabricated by a nano-infiltration and transient eutectic-phase (NITE) process were irradiated with neutrons at 830°C to 5.9 dpa, and at 1270°C to 5.8 dpa. The in-plane and trans-thickness tensile and the inter-laminar shear properties were evaluated at ambient temperature. The mechanical characteristics, including the quasi-ductile behavior, the proportional limit stress, and the ultimate tensile strength, were retained subsequent to irradiation. Analysis of the stress–strain hysteresis loop indicated the increased fiber/matrix interface friction and the decreased residual stresses. The inter-laminar shear strength exhibited a significant decrease following irradiation. (author)

  7. The friction and wear of metals and binary alloys in contact with an abrasive grit of single-crystal silicon carbide

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various metals and iron-base binary alloys (alloying elements Ti, Cr, Mn, Ni, Rh, and W) in contact with single-crystal silicon carbide riders. Results indicate that the coefficient of friction and groove height (corresponding to the wear volume) decrease linearly as the shear strength of the bulk metal increases. The coefficient of friction and groove height generally decrease with an increase in solute content of binary alloys. A separate correlation exists between the solute to iron atomic radius ratio and the decreasing rates of change of coefficient of friction and groove height with increasing solute content. These rates of change are minimum at a solute to iron radius ratio of unity. They increase as the atomic ratio increases or decreases linearly from unity. The correlations indicate that atomic size is an important parameter in controlling friction and wear of alloys.

  8. Investigation of the agglomeration and amorphous transformation effects of neutron irradiation on the nanocrystalline silicon carbide (3C-SiC) using TEM and SEM methods

    Energy Technology Data Exchange (ETDEWEB)

    Huseynov, Elchin M., E-mail: elchin.h@yahoo.com [Department of Nanotechnology and Radiation Material Science, National Nuclear Research Center, Inshaatchilar pr. 4, AZ 1073 Baku (Azerbaijan); Institute of Radiation Problems of Azerbaijan National Academy of Sciences, B.Vahabzade 9, AZ 1143 Baku (Azerbaijan)

    2017-04-01

    Nanocrystalline 3C-SiC particles irradiated by neutron flux during 20 h in TRIGA Mark II light water pool type research reactor. Silicon carbide nanoparticles were analyzed by Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) devices before and after neutron irradiation. The agglomeration of nanoparticles was studied comparatively before and after neutron irradiation. After neutron irradiation the amorphous layer surrounding the nanoparticles was analyzed in TEM device. Neutron irradiation defects in the 3C-SiC nanoparticles and other effects investigated by TEM device. The effect of irradiation on the crystal structure of the nanomaterial was studied by selected area electron diffraction (SAED) and electron diffraction patterns (EDP) analysis.

  9. 13th Workshop on Crystalline Silicon Solar Cell Materials and Processes: Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.; Rand, J.; Saitoh, T.; Sinton, R.; Stavola, M.; Swanson, D.; Tan, T.; Weber, E.; Werner, J.; Al-Jassim, M.

    2003-08-01

    The 13th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental aspects of impurities and defects in silicon: their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. A combination of oral, poster, and discussion sessions will review recent advances in crystal growth, new cell structures, new processes and process characterization techniques, and cell fabrication approaches suitable for future manufacturing demands.

  10. Silicon carbide as an advanced material for long-term fusion reactor development programs; Il Carburo di silicio come materiale avanzato per i programmi long-term relativi ai futuri reattori a fusione nucleare: Review sulle tecnologie applicative e sullo stato della ricerca

    Energy Technology Data Exchange (ETDEWEB)

    Donato, A.

    1991-10-01

    Silicon carbide is being considered a possible candidate low activation material for the construction of important components (e.g., first wall coating, limitors, divertors and beam stops) of future commercial fusion reactors which will require excellent thermal and mechanical behaviour in high temperature environments and very high irradiation fields. In this paper a literature review covering the last ten years (up to 1990) is reported. It concerns silicon carbide properties, its relative manufacturing technologies and technological developments. One hundred and twenty-seven papers published in scientific magazines were selected and reviewed, out of 400 concerning silicon carbide in general. Several important analogies and possible industrial synergies for its use both in fusion reactors and in aerospace devices were found. The material as produced today, the design methodology and the technology are relatively new and seem to need further development. Moreover, extensive research work is necessary to better evaluate silicon carbide behaviour in fusion reactor operating conditions.

  11. Properties of point defects either native or induced by irradiation in the 3C and 6H polytypes of silicon carbide determined by positron annihilation and EPR

    International Nuclear Information System (INIS)

    Kerbiriou, X.

    2006-02-01

    Potential applications of silicon carbide (SiC) in micro-electronics have justified many studies on point defects, which play an important role in the electrical compensation. Moreover, this material has many assets to take part in the fissile materials confining in the gas cooled reactors of the future (4. generation). In this thesis, we have used Electronic Paramagnetic Resonance and Positron Annihilation Spectroscopy to study the properties of point defects (nature, size, charge state, migration and agglomeration during annealing), either native or induced by irradiation with various particles (H + , e - , carbon ions), in the 3C and 6H polytypes of SiC. The positron annihilation study of native defects in 6H-SiC has shown the presence of a strong concentration of non-vacancy traps of acceptor type, which are not present in the 3C-SiC crystals. The nature of the defects detected after irradiation with low energy electrons (190 keV) depends on the polytype. Indeed, while silicon Frenkel pairs and carbon mono-vacancies are detected in the 6H crystals, only carbon mono-vacancies are detected in the 3C crystals. We propose that these differences concerning the populations of detected point defects result from different values of the silicon displacement threshold energy for the two polytypes (approximately 20 eV for 6H and 25 V for 3C). In addition, the irradiations with 12 MeV protons and 132 MeV carbon ions have created silicon mono-vacancies as well as VSi-VC di-vacancies. Neither the particle (protons or ions carbon), nor the polytype (3C or 6H) influence the nature of the generated defects. Finally the study of the annealing of 6H-SiC monocrystals irradiated with 12 MeV protons have revealed several successive processes. The most original result is the agglomeration of the silicon mono-vacancies with the VSi-VC di-vacancies which leads to the formation of VSi-VC-VSi tri-vacancies. (author)

  12. Fabrication and nuclear reactor tests of ultra-thin 3D silicon neutron detectors with a boron carbide converter

    Science.gov (United States)

    Fleta, C.; Guardiola, C.; Esteban, S.; Jumilla, C.; Pellegrini, G.; Quirion, D.; Rodríguez, J.; Lousa, A.; Martínez-de-Olcoz, L.; Lozano, M.

    2014-04-01

    We describe the design, fabrication process and characterization of a thermal neutron detector based on ultra-thin silicon PIN diodes with 3D electrodes and a 10B4C neutron converter layer. The sensors were fabricated on SOI silicon with an active thickness of 20 μm which allows for a low gamma sensitivity, while the 3D structure of the electrodes results in a lower capacitance that in the equivalent planar sensor. The 2.7 μm 10B4C converter layer was deposited through RF magnetron sputtering on a whole silicon wafer, opening the path for mass-production. The detectors were tested in a thermal neutron beam at the nuclear reactor at the Instituto Superior Técnico in Lisbon and their intrinsic detection efficiency for themal neutrons and the gamma sensitivity as a function of the energy threshold were obtained.

  13. Eighth workshop on crystalline silicon solar cell materials and processes: Extended abstracts and papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The theme of this workshop is Supporting the Transition to World Class Manufacturing. This workshop provides a forum for an informal exchange of information between researchers in the photovoltaic and non-photovoltaic fields on various aspects of impurities and defects in silicon, their dynamics during device processing, and their application in defect engineering. This interaction helps establish a knowledge base that can be used for improving device fabrication processes to enhance solar-cell performance and reduce cell costs. It also provides an excellent opportunity for researchers from industry and universities to recognize mutual needs for future joint research. The workshop format features invited review presentations, panel discussions, and two poster sessions. The poster sessions create an opportunity for both university and industrial researchers to present their latest results and provide a natural forum for extended discussions and technical exchanges.

  14. 14th Workshop on Crystalline Silicon Solar Cells& Modules: Materials and Processes; Extended Abstracts and Papers

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B. L.

    2004-08-01

    The 14th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. It will offer an excellent opportunity for researchers in private industry and at universities to prioritize mutual needs for future collaborative research. The workshop is intended to address the fundamental properties of PV silicon, new solar cell designs, advanced solar cell processing techniques, and cell-related module issues. A combination of oral presentations by invited speakers, poster sessions, and discussion sessions will review recent advances in crystal growth, new cell designs, new processes and process characterization techniques, cell fabrication approaches suitable for future manufacturing demands, and solar cell encapsulation. This year's theme, ''Crystalline Si Solar Cells: Leapfrogging the Barriers,'' reflects the continued success of crystalline Si PV in overcoming technological barriers to improve solar cell performance and lower the cost of Si PV. The workshop will consist of presentations by invited speakers, followed by discussion sessions. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV. The sessions will include: Advances in crystal growth and material issues; Impurities and defects; Dynamics during device processing; Passivation; High-efficiency Si solar cells; Advanced processing; Thin Si solar cells; and Solar cell reliability and module issues.

  15. Metal carbides

    International Nuclear Information System (INIS)

    Wells, A.F.

    1988-01-01

    From the viewpoint of general crystal chemistry principles and on the base of modern data the structural chemistry of metal carbides is presented. The classification deviding metal carbides into 4 groups depending on chemical and physical properties is presented. The features of the crystal structure of carbides of alkali alkaline earth, transition, 4 f- and 5f-elements and their effect on physical and chemical properties are considered

  16. A comparative study on carbon, boron-nitride, boron-phosphide and silicon-carbide nanotubes based on surface electrostatic potentials and average local ionization energies.

    Science.gov (United States)

    Esrafili, Mehdi D; Behzadi, Hadi

    2013-06-01

    A density functional theory study was carried out to predict the electrostatic potentials as well as average local ionization energies on both the outer and the inner surfaces of carbon, boron-nitride (BN), boron-phosphide (BP) and silicon-carbide (SiC) single-walled nanotubes. For each nanotube, the effect of tube radius on the surface potentials and calculated average local ionization energies was investigated. It is found that SiC and BN nanotubes have much stronger and more variable surface potentials than do carbon and BP nanotubes. For the SiC, BN and BP nanotubes, there are characteristic patterns of positive and negative sites on the outer lateral surfaces. On the other hand, a general feature of all of the systems studied is that stronger potentials are associated with regions of higher curvature. According to the evaluated surface electrostatic potentials, it is concluded that, for the narrowest tubes, the water solubility of BN tubes is slightly greater than that of SiC followed by carbon and BP nanotubes.

  17. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    Science.gov (United States)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  18. Thermal analysis of silicon carbide coating on a nickel based superalloy substrate and thickness measurement of top layers by lock-in infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2017-04-15

    In this paper, we investigate the capacity of the lock-in infrared thermography technique for the evaluation of non-uniform top layers of a silicon carbide coating with a nickel based superalloy sample. The method utilized a multilayer heat transfer model to analyze the surface temperature response. The modelling of the sample was done in ANSYS. The sample consists of three layers, namely, the metal substrate, bond coat and top coat. A sinusoidal heating at different excitation frequencies was imposed upon the top layer of the sample according to the experimental procedures. The thermal response of the excited surface was recorded, and the phase angle image was computed by Fourier transform using the image processing software, MATLAB and Thermofit Pro. The correlation between the coating thickness and phase angle was established for each excitation frequency. The most appropriate excitation frequency was found to be 0.05 Hz. The method demonstrated potential in the evaluation of coating thickness and it was successfully applied to measure the non-uniform top layers ranging from 0.05 mm to 1 mm with an accuracy of 0.000002 mm to 0.045 mm.

  19. Fabrication of silicon-carbide continuous fiber reinforced carbon (SiC/C) composites using hot press process and the effects of fiber forms on the strength

    International Nuclear Information System (INIS)

    Chang, Tong-Shik; Okura, Akimitsu

    1988-01-01

    Silicon-carbide continuous fiber reinforced carbon (SiC/C) composites was fabricated using a simple hot press process. Three forms of SiC fiber reinforcement, that is, cloth, mat and unidirectional long fibers (UD fibers) were employed. Fine pulverized coke mixed with carbonaceous bulk mesophase (BM) was used as matrix. In this process, SiC fibers were laminated alternately with the matrix admixture in a die, and then heated to 600deg C under a pressure of 49 MPa. The results were as follows: (1) The maximum strengths of the composites were the greatest for the UD fiber reinforcements at 121.5 MPa while the cloth and mat reinforcements showed appreciably lower strengths. (2) After secondary heat treatments at 800deg C to 1500deg C, the composite reinforced with UD fibers showed excellent strengths above 106 MPa which were greater than that of an as-fabricated commercial C/C composite. The strengths of the composites reinforced with cloth and mat, however, were significantly reduced by the heat treatments. (author)

  20. Effect of Environment on Stress-Rupture Behavior of a Carbon Fiber-Reinforced Silicon Carbide (C/SiC) Ceramic Matrix Composite

    Science.gov (United States)

    Verrilli, Michael J.; Opila, Elizabeth J.; Calomino, Anthony; Kiser, J. Douglas

    2002-01-01

    Stress-rupture tests were conducted in air, vacuum, and steam-containing environments to identify the failure modes and degradation mechanisms of a carbon fiber-reinforced silicon carbide (C/SiC) composite at two temperatures, 600 and 1200 C. Stress-rupture lives in air and steam containing environments (50 - 80% steam with argon) are similar for a composite stress of 69 MPa at 1200 C. Lives of specimens tested in a 20% steam/argon environment were about twice as long. For tests conducted at 600 C, composite life in 20% steam/argon was 20 times longer than life in air. Thermogravimetric analysis of the carbon fibers was conducted under similar conditions to the stress-rupture tests. The oxidation rate of the fibers in the various environments correlated with the composite stress-rupture lives. Examination of the failed specimens indicated that oxidation of the carbon fibers was the primary damage mode for specimens tested in air and steam environments at both temperatures.

  1. Enhancing the activation of silicon carbide tracer particles for PEPT applications using gas-phase deposition of alumina at room temperature and atmospheric pressure

    Science.gov (United States)

    Valdesueiro, D.; Garcia-Triñanes, P.; Meesters, G. M. H.; Kreutzer, M. T.; Gargiuli, J.; Leadbeater, T. W.; Parker, D. J.; Seville, J. P. K.; van Ommen, J. R.

    2016-01-01

    We have enhanced the radio-activation efficiency of SiC (silicon carbide) particles, which by nature have a poor affinity towards 18F ions, to be employed as tracers in studies using PEPT (Positron Emission Particle Tracking). The resulting SiC-Al2O3 core-shell structure shows a good labelling efficiency, comparable to γ-Al2O3 tracer particles, which are commonly used in PEPT. The coating of the SiC particles was carried at 27±3 °C and 1 bar in a fluidized bed reactor, using trimethylaluminium and water as precursors, by a gas phase technique similar to atomic layer deposition. The thickness of the alumina films, which ranged from 5 to 500 nm, was measured by elemental analysis and confirmed with FIB-TEM (focused ion beam - transmission electron microscope), obtaining consistent results from both techniques. By depositing such a thin film of alumina, properties that influence the hydrodynamic behaviour of the SiC particles, such as size, shape and density, are hardly altered, ensuring that the tracer particle shows the same flow behaviour as the other particles. The paper describes a general method to improve the activation efficiency of materials, which can be applied for the production of tracer particles for many other applications too.

  2. Optimization of Gas Composition Used in Plasma Chemical Vaporization Machining for Figuring of Reaction-Sintered Silicon Carbide with Low Surface Roughness.

    Science.gov (United States)

    Sun, Rongyan; Yang, Xu; Ohkubo, Yuji; Endo, Katsuyoshi; Yamamura, Kazuya

    2018-02-05

    In recent years, reaction-sintered silicon carbide (RS-SiC) has been of interest in many engineering fields because of its excellent properties, such as its light weight, high rigidity, high heat conductance and low coefficient of thermal expansion. However, RS-SiC is difficult to machine owing to its high hardness and chemical inertness and because it contains multiple components. To overcome the problem of the poor machinability of RS-SiC in conventional machining, the application of atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) to RS-SiC was proposed. As a highly efficient and damage-free figuring technique, AP-PCVM has been widely applied for the figuring of single-component materials, such as Si, SiC, quartz crystal wafers, and so forth. However, it has not been applied to RS-SiC since it is composed of multiple components. In this study, we investigated the AP-PCVM etching characteristics for RS-SiC by optimizing the gas composition. It was found that the different etching rates of the different components led to a large surface roughness. A smooth surface was obtained by applying the optimum gas composition, for which the etching rate of the Si component was equal to that of the SiC component.

  3. Determination of the sputter rate variation pattern of a silicon carbide target for radio frequency magnetron sputtering using optical transmission measurements

    International Nuclear Information System (INIS)

    Galvez de la Puente, G.; Guerra Torres, J.A.; Erlenbach, O.; Steidl, M.; Weingaertner, R.; De Zela, F.; Winnacker, A.

    2010-01-01

    We produce amorphous silicon carbide thin films (a-SiC) by radio frequency (rf) magnetron sputtering from SiC bulk target. We present the emission pattern of the rf magnetron with SiC target as a function of process parameters, like target sample distance, rf power, sputtering rate and process gas pressure. The emission pattern is determined by means of thickness distribution of the deposited a-SiC films obtained from optical transmission measurements using a slightly improved method of Swanepoel concerning the determination of construction of the envelopes in the interference pattern of the transmission spectra. A calibration curve is presented which allows the conversion of integrated transmission to film thickness. Holding constant a set of process parameters and only varying the target sample distance the emission pattern of the rf magnetron with SiC target was determined, which allowed us to predict the deposition rate distribution for a wide range of process parameters and target geometry. In addition, we have found that the transmission spectra of the a-SiC films change with time and saturate after approximately 10 days. Within this process no change in thickness is involved, so that the determination of thickness using transmission data is justified.

  4. Microstructure and mechanical behavior of stir-cast Zn–27Al based composites reinforced with rice husk ash, silicon carbide, and graphite

    Directory of Open Access Journals (Sweden)

    Kenneth Kanayo Alaneme

    2017-04-01

    Full Text Available The microstructure and mechanical properties of Zn–27Al based composites reinforced with rice husk ash (RHA, silicon carbide (SiC, and graphite (Cg particles have been investigated. The Zn–27Al composites consisting of varied weight ratios of the reinforcing materials were produced using the stir casting process. Hardness test, tensile properties evaluation, fracture toughness determination, and microstructural examination, were used to characterize the composites produced. Results show that the microstructures of the composites are similar, consisting of the dendritic structure of the Zn–27Al alloy matrix with fine dispersion of the reinforcing particles. The hardness of the composites decreased with increase in the weight percent of RHA (and corresponding decrease in SiC weight percent in the reinforcement. The tensile strength and yield strength decreased slightly with increase in the weight ratio of RHA in the composites with a maximum of 8.5% and 9.6% reductions respectively observed for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement. Although some of the composite compositions containing RHA had slightly higher % elongation values compared with those without RHA, it was generally observed that the % elongation was invariant to the composite RHA content. The fracture toughness of the composites increases with increase in the weight percent of RHA with as much as a 20% increase obtained for as much as 40% RHA (corresponding to 40% reduction in SiC in the hybrid reinforcement.

  5. The Influence of High-Power Ion Beams and High-Intensity Short-Pulse Implantation of Ions on the Properties of Ceramic Silicon Carbide

    Science.gov (United States)

    Kabyshev, A. V.; Konusov, F. V.; Pavlov, S. K.; Remnev, G. E.

    2016-02-01

    The paper is focused on the study of the structural, electrical and optical characteristics of the ceramic silicon carbide before and after irradiation in the regimes of the high-power ion beams (HPIB) and high-intensity short-pulse implantation (HISPI) of carbon ions. The dominant mechanism of transport of charge carriers, their type and the energy spectrum of localized states (LS) of defects determining the properties of SiC were established. Electrical and optical characteristics of ceramic before and after irradiation are determined by the biographical and radiation defects whose band gap (BG) energy levels have a continuous energetic distribution. A dominant p-type activation component of conduction with participation of shallow acceptor levels 0.05-0.16 eV is complemented by hopping mechanism of conduction involving the defects LS with a density of 1.2T017-2.4T018 eV-Am-3 distributed near the Fermi level.The effect of radiation defects with deep levels in the BG on properties change dominates after HISPI. A new material with the changed electronic structure and properties is formed in the near surface layer of SiC after the impact of the HPIB.

  6. In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects

    Science.gov (United States)

    Pourchez, Jérémie; Forest, Valérie; Boumahdi, Najih; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Herlin-Boime, Nathalie; Leconte, Yann; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2012-10-01

    Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol-gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-α production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases (α-SiC vs. β-SiC) on the TNF-α production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H2O2 production.

  7. In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects

    Energy Technology Data Exchange (ETDEWEB)

    Pourchez, Jeremie, E-mail: pourchez@emse.fr; Forest, Valerie [LINA EA 4624, Ecole Nationale Superieure des Mines, CIS-EMSE (France); Boumahdi, Najih; Boudard, Delphine [SFR IFRESIS (France); Tomatis, Maura; Fubini, Bice [Universita di Torino, Dipartimento di Chimica and ' G. Scansetti' Interdepartmental Center for Studies on Asbestos and other Toxic Particulates (Italy); Herlin-Boime, Nathalie; Leconte, Yann [Service des Photons, Atomes et Molecules, CEA-CNRS URA2453, IRAMIS, CEA SACLAY, Laboratoire Francis Perrin (France); Guilhot, Bernard; Cottier, Michele; Grosseau, Philippe [SFR IFRESIS (France)

    2012-10-15

    Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol-gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-{alpha} production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases ({alpha}-SiC vs. {beta}-SiC) on the TNF-{alpha} production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H{sub 2}O{sub 2} production.

  8. Abrasive slurry composition for machining boron carbide

    Science.gov (United States)

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  9. Limiting Size of Monolayer Graphene Flakes Grown on Silicon Carbide or via Chemical Vapor Deposition on Different Substrates

    Science.gov (United States)

    Alekseev, N. I.

    2018-05-01

    The maximum size of homogeneous monolayer graphene flakes that form during the high-temperature evaporation of silicon from a surface of SiC or during graphene synthesis via chemical vapor deposition is estimated, based on the theoretical calculations developed in this work. Conditions conducive to the fragmentation of a monolayer graphene sheet to form discrete fragments or terrace-type structures in which excess energy due to dangling bonds at the edges is compensated for by the lack of internal stress are indentified and described. The results from calculations for the sizes of graphene structures are compared with experimental findings for the most successful graphene syntheses reported in the literature.

  10. Densification of silicon and zirconium carbides by a new process: spark plasma sintering; Densification des carbures de silicium et de zirconium par un procede innovant: le spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, F

    2006-12-15

    Materials research for suitable utilization in 4. generation nuclear plants needs new ways to densify testing components. Two carbides, silicon and zirconium carbide seems to be the most suitable choice due to their mechanical, thermal and neutron-transparency properties against next nuclear plant specifications. Nevertheless one main difficulty remains, which is densifying them even at high temperature. Spark Plasma Sintering a new metal-, ceramic- and composite-sintering process has been used to densify both SiC and ZrC. Understanding bases of mass transport mechanisms in SPS have been studied. Composites and interfaces have been processed and analyzed. This manuscript reports original results on SiC and ZrC ceramics sintered with commercial powder started, without additives. (author)

  11. The neutron capture process in the He shell in core-collapse supernovae: Presolar silicon carbide grains as a diagnostic tool for nuclear astrophysics

    Science.gov (United States)

    Pignatari, Marco; Hoppe, Peter; Trappitsch, Reto; Fryer, Chris; Timmes, F. X.; Herwig, Falk; Hirschi, Raphael

    2018-01-01

    Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2% of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30% of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M⊙ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path.

  12. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites.

    Science.gov (United States)

    Li, Yong; Huang, Xingyi; Hu, Zhiwei; Jiang, Pingkai; Li, Shengtao; Tanaka, Toshikatsu

    2011-11-01

    Dielectric polymer composites with high dielectric constants and high thermal conductivity have many potential applications in modern electronic and electrical industry. In this study, three-phase composites comprising poly(vinylidene fluoride) (PVDF), barium titanate (BT) nanoparticles, and β-silicon carbide (β-SiC) whiskers were prepared. The superiority of this method is that, when compared with the two-phase PVDF/BT composites, three-phase composites not only show significantly increased dielectric constants but also have higher thermal conductivity. Our results show that the addition of 17.5 vol % β-SiC whiskers increases the dielectric constants of PVDF/BT nanocomposites from 39 to 325 at 1000 Hz, while the addition of 20.0 vol % β-SiC whiskers increases the thermal conductivity of PVDF/BT nanocomposites from 1.05 to 1.68 W m(-1) K(-1) at 25 °C. PVDF/β-SiC composites were also prepared for comparative research. It was found that PVDF/BT/β-SiC composites show much higher dielectric constants in comparison with the PVDF/β-SiC composites within 17.5 vol % β-SiC. The PVDF/β-SiC composites show dielectric constants comparable to those of the three-phase composites only when the β-SiC volume fraction is 20.0%, whereas the dielectric loss of the PVDF/β-SiC composites was much higher than that of the three-phase composites. The frequency dependence of the dielectric property for the composites was investigated by using broad-band (10(-2)-10(6) Hz) dielectric spectroscopy.

  13. A comparison of mechanical properties of three MEMS materials - silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon (Ta-C)

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, John A. (Argonne National Laboratory, Argonne, IL); Moldovan, N. (Northwestern University, Evanston, IL); Xiao, Xingcheng (Argonne National Laboratory, Argonne, IL); Zorman, C. A. (Case Western Reserve University, Cleveland, OH); Mancini, D. C. (Argonne National Laboratory, Argonne, IL); Peng, B. (Northwestern University, Evanston, IL); Espinosa, H. D. (Northwestern University, Evanston, IL); Friedmann, Thomas Aquinas; Auciello, Orlando, (Argonne National Laboratory, Argonne, IL)

    2004-06-01

    Many MEMS devices are based on polysilicon because of the current availability of surface micromachining technology. However, polysilicon is not the best choice for devices where extensive sliding and/or thermal fields are applied due to its chemical, mechanical and tribological properties. In this work, we investigated the mechanical properties of three new materials for MEMS/NEMS devices: silicon carbide (SiC) from Case Western Reserve University (CWRU), ultrananocrystalline diamond (UNCD) from Argonne National Laboratory (ANL), and hydrogen-free tetrahedral amorphous carbon (ta-C) from Sandia National Laboratories (SNL). Young's modulus, characteristic strength, fracture toughness, and theoretical strength were measured for these three materials using only one testing methodology - the Membrane Deflection Experiment (MDE) developed at Northwestern University. The measured values of Young's modulus were 430GPa, 960GPa, and 800GPa for SiC, UNCD, and ta-C, repectively. Fracture toughness measurments resulted in values of 3.2, 4.5, and 6.2 MPa x m{sup 1/2}, respectively. The strengths were found to follow a Weibull distribution but their scaling was found to be controlled by different specimen size parameters. Therefore, a cross comparison of the strengths is not fully meaningful. We instead propose to compare their theoretical strengths as determined by employing Novozhilov fracture criterion. The estimated theoretical strength for SiC is 10.6GPa at a characteristic length of 58nm, for UNCD is 18.6GPa at a characteristic length of 37nm, and for ta-C is 25.4GPa at a characteristic length of 38nm. The techniques used to obtained these results as well as microscopic fractographic analyses are summarized in the article. We also highlight the importance of characterizing mechanical properties of MEMS materials by means of only one simple and accurate experimental technique.

  14. Effect of silicon carbide addition on the corrosion behavior of powder metallurgy Cu−30Zn brass in a 3.5 wt% NaCl solution

    Energy Technology Data Exchange (ETDEWEB)

    Almomani, Mohammed Ali, E-mail: maalmomani7@just.edu.jo [Department of Industrial Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110 (Jordan); Tyfour, Wa' il Radwan, E-mail: wrtyfou@just.edu.jo [Department of Industrial Engineering, Jordan University of Science and Technology, P. O. Box 3030, Irbid 22110 (Jordan); Nemrat, Mohammed Hani, E-mail: mohammednemrat@yahoo.com [Department of Mechanical Engineering, Institute of Applied Technology, Abu Dhabi (United Arab Emirates)

    2016-09-15

    A study was made to evaluate the corrosion behavior when Cu−30Zn alloy is reinforced with different weight fractions of silicon carbide (SiC) particles in a simulated sea solution (3.5 wt% NaCl aqueous solution). The composites were produced via powder metallurgy (PM) route. For the sake of comparison, the corrosion behaviors of unreinforced and reinforced alloy were examined. Electrochemical measurements (potentiodynamic testing) showed that the corrosion rate of the composites decreased with increase of SiC weight percentages, as a result of weak microgalvanic couple between reinforcement particles and Cu−30Zn matrix, and the low possibility of intermetallic phases formation. ANOVA test indicated that the variations of corrosion rate of the composites upon changing weight percentages of SiC particles are statistically significant. Polarization curves showed that the passive film tends to be less stable, and the potential difference between passivation and free corrosion points increased with increase of SiC weight percentages, as SiC cathodically protect the matrix material by sacrificial anodic dissolution of crevice regions about reinforcement particles. Scanning Electron Microscope (SEM) images of the sample's surfaces before and after testing are in agreement with the electrochemical results. - Highlights: • Effect of adding SiC on both uniform and localized corrosion of Cu−30Zn alloy is studied. • Reinforcing Cu−30Zn with nonconductive SiC particles decreases its tendency to uniform and localized corrosion. • Reinforcement particles cathodically protect the matrix material, and retard pit propagation to the matrix.

  15. The combined effect of titanic carbide and aluminum phosphide on the refinement of primary silicon in Al-50Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dai Hongshang [Key Lab. of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong Univ., Jinan (China); Liu Xiangfa [Key Lab. of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong Univ., Jinan (China); Shandong Binzhou Bohai Piston Co., Ltd., Binzhou, SD (China)

    2008-12-15

    Two refinement methods for Al-50Si alloy are presented in this article: one way is using a newly developed Si-20P alloy at 1573 K: another technique is using the Si-20P alloy in company with Al-TiO{sub 2}-C mixture powder at 1473 K. Compared to the first method, the second one not only has better refinement effect on primary Si but also lower refinement temperature. These results are due to the combined effect of TiC and AlP on the refinement process, and the duplex TiC/AlP nucleus of primary silicon has been demonstrated using electron probe micro-analysis. Moreover, the reaction of Al-TiO{sub 2}-C mixture powder with increasing temperature was investigated using differential scanning calorimetry, which shows that the TiC particles are produced at about 1473 K. AlP particles combine with the in-situ TiC particles in the melt, which is the main reason for the formation of a duplex nucleus, and the disregistry between TiC and AlP in low-index planes is also discussed. (orig.)

  16. The effects of plasma-assisted chemical vapor deposition process variables on the properties of amorphous silicon carbide films

    Science.gov (United States)

    Moskowitz, Illa Lorren

    Amorphous hydrogenated carbon films containing silicon are of considerable interest for a variety of applications including window layers for solar cells, anti-abrasion coatings, masks for x-ray photolithography and biomedical applications. Plasma-assisted chemical vapor deposition (PACVD) is one of the preferred techniques for depositing these films. a-Si:C:H films were deposited by PACVD using a plasma reactor with capacitively coupled parallel plate configuration operating at 13.56 MHz. The following film properties were studied: intrinsic stress (from the curvature of the substrates), micro-hardness (obtained from nanoindentation), surface roughness and morphology (studied using atomic force microscopy), surface energy (obtained from wetting angle measurements) and the optical constants of the films (as obtained from computer modeling of ellipsometric data). The composition of the films was established from Rutherford backscattering experiments and the hydrogen content was measured using nuclear reaction analysis. By investigating the process variables of the PACVD system using a 2-level factorial experimental design, a better understanding of this complex deposition process has been gained. From this study some of the relationships between the process variables of the PACVD system and physical characteristics of the deposited films such as surface roughness, film stress and optical properties have been established. For example, increasing the energy of bombarding ions produced an increase in the surface roughness under certain conditions, but produced a decrease in roughness under other conditions. In another case, changing the composition of the source gas produced a significant change in the refractive index of the films when the ion energy was high, but had little effect when the ion energy was low. Values obtained for the surface roughness of the films and the dispersion functions of n and k obtained from the ellipsometric modeling were in general

  17. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    compared to the growth of GaN on an AlN buffer layer. The dislocations in the GaN films grown directly on SiC were predominantly of mixedtype dislocations. Films also contained basal plane stacking faults and {112. 0} prismatic stacking faults as revealed by transmission electron microcopy (TEM) near the GaN/SiC interface. Channeling cracks were also observed in the GaN films when the AlN buffer layer was not utilized. This was attributed to tensile stress induced from the thermal expansion coefficient mismatch, which was corroborated with in situ stress measurements collected during the growth process. The results provided in this dissertation showed the potential of growing GaN films directly on SiC for vertical power devices, where the use of an AlN buffer layer typically obstructs both electrical and thermal vertical transport in such devices. (Abstract shortened by ProQuest.).

  18. Thermopower of biomorphic silicon carbide

    Science.gov (United States)

    Smirnov, I. A.; Smirnov, B. I.; Mokhov, E. N.; Sulkowski, Cz.; Misiorek, H.; Jezowski, A.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.

    2008-08-01

    The thermopower coefficients of cubic bio-SiC, a high-porosity semiconductor with cellular pores prepared from the biocarbon template of white eucalyptus wood, and single-crystal β-SiC taken as a reference are measured in the temperature range 5 280 K. It is revealed that, in the low-temperature range, the samples are characterized by a thermopower contribution associated with the electron drag by phonons. The thermopower of the bio-SiC samples is measured both along and across the empty pore channels and is found to be anisotropic. Two models are proposed to account for the anisotropy of the thermopower in cubic bio-SiC.

  19. Amorphous silicon germanium carbide photo sensitive bipolar junction transistor with a base-contact and a continuous tunable high current gain

    Energy Technology Data Exchange (ETDEWEB)

    Bablich, A., E-mail: andreas.bablich@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Merfort, C., E-mail: merfort@imt.e-technik.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Eliasz, J., E-mail: jacek.eliasz@student.uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Schäfer-Eberwein, H., E-mail: heiko.schaefer@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Haring-Bolivar, P., E-mail: peter.haring@uni-siegen.de [Department of Electrical and Computer Engineering, Institute of High Frequency and Quantum Electronics, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany); Boehm, M., E-mail: markus.boehm@uni-siegen.de [Department of Electrical and Computer Engineering, Institute for Microsystem Technologies, University of Siegen, Hoelderlinstrasse 3, 57076 Siegen (Germany)

    2014-05-02

    In this paper, the design, fabrication and characterization of an amorphous silicon germanium carbide (a-SiGeC:H) photo sensitive bipolar junction transistor (PS-BJT) with three terminals are presented. Whereas the current gain of similar transistor devices presented in the past (Wu et al., 1984; Hwang et al., 1993; Nascetti and Caputo, 2002; Chang et al., 1985a,b; Wu et al, 1985; Hong et al., 1990) can only be controlled with photo induced charge generation, the n–i–δp–i–n structure developed features a contacted base to provide the opportunity to adjust the current gain optically and electrically, too. Electron microscope-, current-/voltage- and spectral measurements were performed to study the PS-BJT behavior and calculate the electrical and optical current gain. The spectral response maximum of the base–collector diode has a value of 170 mA/W applying a base–collector voltage of − 1 V and is located at 620 nm. The base–emitter diode reaches a sensitivity of 25.7 mA/W at 530 nm with a base-emitter voltage of − 3 V. The good a-Si:H transport properties are validated in a μτ-product of 4.6 × 10{sup −6} cm{sup 2} V s, which is sufficient to reach a continuous base- and photo-tunable current gain of up to − 126 at a base current of I{sub B} = + 10 nA and a collector–emitter voltage of V{sub CE} = − 3 V. The transistor obtains a maximum collector current of − 65.5 μA (V{sub CE} = − 3 V) and + 56.2 μA (V{sub CE} = + 3 V) at 10,000 lx 5300 K white-light illumination. At 3300 lx, the electrical current gain reaches a value of + 100 (V{sub CE} = + 2 V) at I{sub B} = 10 nA. With a negative base current of I{sub B} = − 10 nA the electrical gain can be adjusted between 87 (V{sub CE} = + 2 V) and − 106 (V{sub CE} = -3 V), respectively. When no base charge is applied, the transistor is “off” for V{sub CE} > − 3 V. Reducing the base current increases the electrical current gain. Operating with a voltage V{sub CE} of just ± 2 V

  20. Friction and wear with a single-crystal abrasive grit of silicon carbide in contact with iron base binary alloys in oil: Effects of alloying element and its content

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Sliding friction experiments were conducted with various iron-base binary alloys (alloying elements were Ti, Cr, Mn, Ni, Rh, and W) in contact with a rider of 0.025-millimeter-radius, single-crystal silicon carbide in mineral oil. Results indicate that atomic size and content of alloying element play a dominant role in controlling the abrasive-wear and -friction properties of iron-base binary alloys. The coefficient of friction and groove height (wear volume) general alloy decrease, and the contact pressure increases in solute content. There appears to be very good correlation of the solute to iron atomic radius ratio with the decreasing rate of coefficient of friction, the decreasing rate of groove height (wear volume), and the increasing rate of contact pressure with increasing solute content C. Those rates increase as the solute to iron atomic radius ratio increases from unity.