WorldWideScience

Sample records for abstract air thermal

  1. Odors and Air Pollution: A Bibliography with Abstracts.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The annotated bibliography presents a compilation of abstracts which deal with odors as they relate to air pollution. The abstracts are arranged within the following categories: Emission sources; Control methods; Measurement methods; Air quality measurements; Atmospheric interaction; Basic science and technology; Effects-human health;…

  2. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Schiavon, Stefano; Bauman, Fred; Webster, Tom

    2012-01-01

    Graphical abstract: Surface heat transfer breakdown for an underfloor air distribution (UFAD) system supply plenum. Highlights: ► Thermal decay of a UFAD system is considerable (annual median = 3.7 K). ► Thermal decay is driven by heat transfer through both the concrete slab and the raised floor. ► Thermal decay may lead to higher airflow rates and increased fan and chiller energy consumption. -- Abstract: Underfloor air distribution (UFAD) is a mechanical ventilation strategy in which the conditioned air is primarily delivered to the zone from a pressurized plenum through floor mounted diffusers. Compared to conventional overhead (OH) mixing systems, UFAD has several potential advantages, such as improved thermal comfort and indoor air quality (IAQ), layout flexibility, reduced life cycle costs and improved energy efficiency in suitable climates. In ducted OH systems designers have reasonably accurate control of the diffuser supply temperature, while in UFAD this temperature is difficult to predict due to the heat gain of the conditioned air in the supply plenum. The increase in temperature between the air entering the plenum and air leaving through a diffuser is known as thermal decay. In this study, the detailed whole-building energy simulation program, EnergyPlus, was used to explain the fundamentals of thermal decay, to investigate its influence on energy consumption and to study the parameters that affect thermal decay. It turns out that the temperature rise is considerable (annual median = 3.7 K, with 50% of the values between 2.4 and 4.7 K based on annual simulations). Compared to an idealized simulated UFAD case with no thermal decay, elevated diffuser air temperatures can lead to higher supply airflow rate and increased fan and chiller energy consumption. The thermal decay in summer is higher than in winter and it also depends on the climate. The ground floor with a slab on grade has less temperature rise compared to middle and top floors. An

  3. Global thermal analysis of air-air cooled motor based on thermal network

    Science.gov (United States)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  4. Solar thermal heating and cooling. A bibliography with abstracts

    Science.gov (United States)

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  5. Thermal oxidation for air toxics control

    International Nuclear Information System (INIS)

    Pennington, R.L.

    1991-01-01

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  6. Air Pollution Translations: A Bibliography with Abstracts - Volume 4.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Air Pollution Technical Information Center.

    This volume is the fourth in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The entries are grouped into 12 subject categories: Emission Sources, Control Methods, Measurement Methods, Air Quality Measurements, Atmospheric Interaction, Basic Science and Technology, Effects--Human…

  7. Thermal separation of soil particles from thermal conductivity measurement under various air pressures.

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-05

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  8. Thermal performance of solar air collection-storage system with phase change material based on flat micro-heat pipe arrays

    International Nuclear Information System (INIS)

    Wang, Teng-yue; Diao, Yan-hua; Zhu, Ting-ting; Zhao, Yao-hua; Liu, Jing; Wei, Xiang-qian

    2017-01-01

    Highlights: • A new type of solar air collection-storage thermal system with PCM is proposed. • Flat micro-heat pipe array is used as the core heat transfer element. • Air volume flow rate influence charging and discharging time obviously. • Air-side thermal resistance dominates during charging and discharging. - Abstract: In this study, a new type of solar air collection-storage thermal system (ACSTS) with phase change material (PCM) is designed using flat micro-heat pipe arrays (FMHPA) as the heat transfer core element. The solar air collector comprises FMHPA and vacuum tubes. The latent thermal storage device (LTSD) utilizes lauric acid, which is a type of fatty acid, as PCM. The experiments test the performance of collector efficiency and charging and discharging time of thermal storage device through different air volume flow rates. After a range of tests, high air volume flow rate is concluded to contribute to high collector efficiency and short charging and discharging time and enhance instantaneous heat transfer, whereas an air volume flow rate of 60 m"3/h during discharging provides a steady outlet temperature. The cumulative heat transfer during discharging is between 4210 and 4300 kJ.

  9. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    International Nuclear Information System (INIS)

    Agrawal, Sanjay; Tiwari, G.N.

    2013-01-01

    Highlights: ► Comparative study of PVT air collectors. ► CO 2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO 2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  10. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  11. Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system

    International Nuclear Information System (INIS)

    Yang, Tingting; Athienitis, Andreas K.

    2015-01-01

    Highlights: • BIPV/T system thermal efficiency is 5% higher using two inlets compared to one. • BIPV/T thermal efficiency is 7.6% higher using semi-transparent than opaque PV. • Detailed air temperature profile in BIPV/T channel is obtained. • Nusselt number correlations are developed. - Abstract: An experimental study of thermal characteristics of a novel two-inlet air-based open-loop building integrated photovoltaic/thermal (BIPV/T) system using a full-scale solar simulator is presented. Experimental prototypes of one-inlet and two-inlet BIPV/T systems were constructed for conducting comparative experiments. Variations of BIPV/T systems are also investigated including systems employing opaque mono-crystalline silicon photovoltaic (PV) panels and systems employing semi-transparent mono-crystalline PV panels. Experimental results demonstrate that an equivalent two-inlet system with frameless PV panels can increase the thermal efficiency by 5% compared to a conventional one-inlet system, and that the BIPV/T system with semi-transparent PV panels achieves 7.6% higher thermal efficiency due to the absorption of some solar radiation at the bottom surface in the BIPV/T system cavity. Also, the two-inlet BIPV/T design is easily implemented and does not add significant cost. Detailed air temperature measurements reveal that the mixing of the warm outlet air from the first section and the cool ambient air drawn in from the second inlet contributes to the improved performance of the two-inlet system. Based on a thermal network model of the BIPV/T system and experimental data, correlations are developed for the convective heat transfer coefficients in the two sections. These are necessary for further analysis and development of BIPV/T system with multiple inlets.

  12. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  13. Air Pollution Translations: A Bibliography with Abstracts - Volume 2.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Raleigh, NC.

    This volume is the second in a series of compilations presenting abstracts and indexes of translations of technical air pollution literature. The 444 entries are grouped into 12 subject categories: General; Emission Sources; Atmospheric Interaction; Measurement Methods; Control Methods; Effects--Human Health; Effects--Plants and Livestock;…

  14. Carbon coated CoS_2 thermal battery electrode material with enhanced discharge performances and air stability

    International Nuclear Information System (INIS)

    Xie, Song; Deng, Yafeng; Mei, Jun; Yang, Zhaotang; Lau, Woon-Ming; Liu, Hao

    2017-01-01

    Graphical abstract: A novel carbon coated CoS_2 composite is prepared and investigated as a cathode material for thermal batteries. - Highlights: • A novel C@CoS_2 composite is successfully prepared by hydrothermal method. • The growth of CoS_2 in the glucose solution results in a smaller grain size. • The coating of carbon favors electron transfer and buffers polysulfides formation. • The in situ coated carbon layer effectively prevents the oxidation of CoS_2. • The C@CoS_2 composite shows competitive thermal stability and discharge property. - Abstract: Cobalt disulfide (CoS_2) is a promising thermal battery electrode material for its superior thermal stability and discharge performance. However, the low natural resource and poor air stability restrict its application in thermal battery fabrication. In this work, carbon coated CoS_2 composite was prepared by a facile one-pot hydrothermal method with glucose as carbon source. During the growth of CoS_2, the glucose molecules were in situ adsorbed and carbonized on the surface of the as-synthesized CoS_2, and the resultant carbon coating provided improved electrical conductivity and discharge performances to the composite. The thermal battery cell, which was fabricated with such a composite cathode and with a Li-Si anode, can output a capacity of 235.8 mAh g"−"1 and an energy density of 416.9 Wh kg"−"1 at a cut-off voltage of 1.7 V. This carbon coated CoS_2 composite also presented enhanced air stability. After being stored in dry air for 3 months, the composite can still provide a capacity of 232.4 mAh g"−"1 to 1.7 V, whereas the capacity of bare CoS_2 stored with the same condition dropped from 202.4 mAh g"−"1 to 189.7 mAh g"−"1.

  15. Thermal process of an air column

    International Nuclear Information System (INIS)

    Lee, F.T.

    1994-01-01

    Thermal process of a hot air column is discussed based on laws of thermodynamics. The kinetic motion of the air mass in the column can be used as a power generator. Alternatively, the column can also function as a exhaust/cooler

  16. A detailed thermal-electrical model of three photovoltaic/thermal (PV/T) hybrid air collectors and photovoltaic (PV) module: Comparative study under Algiers climatic conditions

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Kurucz, Ildikó; Bahria, Sofiane; Hamidat, Abderrahmane; Chaouch, Wafa Braham

    2017-01-01

    Highlights: • A detailed thermal and electrical model for PV and PV/T systems has been presented. • The developed numerical model was validated successfully with previously published experimental results. • A comparative study between four solar devices (PV and PV/T systems) was carried out. • The experimental weather conditions of Algiers site are used in the numerical model. • The glazed double-pass photovoltaic/thermal air collector shows the best overall energy efficiency. - Abstract: The thermal photovoltaic hybrid collector is a genuine cogeneration technology; it can produce electricity and heat simultaneously. In this paper, a comparative study is presented between four solar device configurations: photovoltaic module (PV-I), conventional hybrid solar air collector (PV/T-II), glazed hybrid solar air collector (PV/T-III) and glazed double-pass hybrid solar air collector (PV/T-IV). A numerical model is developed and validated through experimental results indicated in the previous literature. The numerical model takes the heat balance equations and different thermal and electrical parameters into account for each configuration included in this study, the energy performances are evaluated with a sample weather data of Algiers site. The numerical results show that the daily average of overall energy efficiency reaches: 29.63%, 51.02%, 69.47% and 74% for the first (PV-I), the second (PV/T-II), the third (PV/T-III) and the fourth (PV/T-IV) configurations respectively. These values are obtained with an air flow of 0.023 kg/s and introducing a sample of experimental weather data collected in Algiers site for a sunny day in summer.

  17. Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling

    International Nuclear Information System (INIS)

    Saw, Lip Huat; Ye, Yonghuang; Tay, Andrew A.O.; Chong, Wen Tong; Kuan, Seng How; Yew, Ming Chian

    2016-01-01

    Highlights: • We designed and analyzed the thermal behavior of the Li-ion battery pack. • We analyzed the heat generation of 38,120 Li-ion cell using ARC. • We validated the simulation results with experimental studies. • We developed the correlations of Nu and Re for the air cooling battery pack. - Abstract: A battery pack is produced by connecting the cells in series and/or in parallel to provide the necessary power for electric vehicles (EVs). Those parameters affecting cost and reliability of the EVs, including cycle life, capacity, durability and warranty are highly dependent on the thermal management system. In this work, computational fluid dynamic analysis is performed to investigate the air cooling system for a 38,120 cell battery pack. The battery pack contained 24 pieces of 38,120 cells, copper bus bars, intake and exhaust plenum and holding plates with venting holes. Heat generated by the cell during charging is measured using an accelerating rate calorimeter. Thermal performances of the battery pack were analyzed with various mass flow rates of cooling air using steady state simulation. The correlation between Nu number and Re number were deduced from the numerical modeling results and compared with literature. Additionally, an experimental testing of the battery pack at different charging rates is conducted to validate the correlation. This method provides a simple way to estimate thermal performance of the battery pack when the battery pack is large and full transient simulation is not viable.

  18. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    International Nuclear Information System (INIS)

    Wang, Tao; Tseng, K.J.; Zhao, Jiyun; Wei, Zhongbao

    2014-01-01

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  19. Air Pollution Publications, A Selected Bibliography With Abstracts, 1966-1968.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Contained are over 1000 entries with abstracts spanning the literature from 1966 to 1968. The references are grouped into broad subject categories: emission sources; atmospheric interactions; measurement; control methods; biosciences and medicine; plants; materials deterioration; air quality; legal and administrative aspects; social aspects; basic…

  20. Indoor Air Quality and Thermal Comfort in School Buildings

    Science.gov (United States)

    Juhásová Šenitková, Ingrid

    2017-12-01

    This paper presents results to thermal comfort and environment quality questions in 21 school building rooms. Results show that about 80% of the occupants expressed satisfaction with their thermal comfort in only 11% of the buildings surveyed. Air quality scores were somewhat higher, with 26% of buildings having 80% or occupant satisfaction. With respect to thermal comfort and air quality performance goals set out by standards, most buildings appear to be falling far short. Occupant surveys offer a means to systematically measure this performance, and also to provide diagnostic information for building designers and operators. The odours from building materials as well as human odours were studied by field measurement. The odour intensity and indoor air acceptability were assessed by a sensory panel. The concentrations of total volatile organic compounds and carbon dioxide were measured. The odours from occupancy and building materials were studied under different air change rate. The case study of indoor air acceptability concerning to indoor odours and its effect on perceived air quality are also presented in this paper.

  1. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Ivanova, T.; Stefanova, G.

    2012-01-01

    inhaled by the manikin was measured and used to assess the clean air supply efficiency of the SHPV. The response of 35 subjects was collected to examine thermal comfort with the SHPV. The subjects participated in 3 experiments at personalized air temperature and room air temperature of 22/20 °C, 23/23 °C......The performance of personalized ventilation with seat headrest-mounted air supply terminal devices (ATD), named seat headrest personalized ventilation (SHPV), was studied. Physical measurements using a breathing thermal manikin were taken to identify its ability to provide clean air to inhalation...... depending on design, shape, size and positioning of the ATD, flow rate and temperature of personalized air, room temperature, clothing thermal insulation of the manikin, etc. Tracer gas was mixed with the room air. The air supplied by the SHPV was free of tracer gas. Tracer gas concentration in the air...

  2. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  3. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  4. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    DEFF Research Database (Denmark)

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.

    2002-01-01

    source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  5. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  6. Measurement and prediction of indoor air quality using a breathing thermal manikin.

    Science.gov (United States)

    Melikov, A; Kaczmarczyk, J

    2007-02-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method for predicting air acceptability based on inhaled air parameters and known exposure-response relationships established in experiments with human subjects is suggested. Recommendations for optimal simulation of human breathing by means of a breathing thermal manikin when studying pollution concentration, temperature and humidity of the inhaled air as well as the transport of exhaled air (which may carry infectious agents) between occupants are outlined. In order to compare results obtained with breathing thermal manikins, their nose and mouth geometry should be standardized.

  7. 2015 German refrigeration and air conditioning meeting. Abstracts; Deutsche Kaelte- und Klimatagung 2015. Kurzfassungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The volume contains the abstracts of the 2015 German refrigeration and air conditioning meeting in 5 chapters: cryo-technology, fundamentals of materials for refrigeration engineering and heat pump technology, facilities and components for the refrigeration and heat pump technology; application of refrigeration engineering; air conditioning technology and heat pump application.

  8. Air-Filled Nanopore Based High-Performance Thermal Insulation Materials

    OpenAIRE

    Gangåssæter, Haakon Fossen; Jelle, Bjørn Petter; Alex Mofid, Sohrab; Gao, Tao

    2017-01-01

    State-of-the-art thermal insulation solutions like vacuum insulation panels (VIP) and aerogels have low thermal conductivity, but their drawbacks may make them unable to be the thermal insulation solutions that will revolutionize the building industry regarding energy-efficient building envelopes. Nevertheless, learning from these materials may be crucial to make new and novel high-performance thermal insulation products. This study presents a review on the state-of-the-art air-filled thermal...

  9. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  10. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    Science.gov (United States)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  11. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  12. An inverse method for calculation of thermal inertia and heat gain in air conditioning and refrigeration systems

    International Nuclear Information System (INIS)

    Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M.

    2015-01-01

    Highlights: • An inverse method is proposed to calculate thermal inertia in HVAC-R systems. • Real-time thermal loads are estimated using the proposed intelligent algorithm. • Calculation algorithm is validated with on-site measurements. • Freezer duty cycle data are extracted only based on temperature measurements. - Abstract: A new inverse method is proposed for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on-site temperature measurements. The method is applied on a walk-in freezer room of a restaurant in Surrey, British Columbia, Canada during one week of its regular operation. The thermal inertia and instantaneous heat gain are calculated and the results are validated using actual information of the materials inside the freezer room. The proposed method can be implemented in intelligent control systems designed for new and existing HVAC-R systems to improve their overall energy efficiency and reduce their environmental impacts

  13. Thermal behaviour of solar air heater with compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, Rene

    2008-01-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computer code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Predictions for the performance of the solar heater also exhibit reasonable agreement, with experimental data with an average error of 7%

  14. A Review on Photovoltaic-Thermal (PV-T) Air and Water Collectors

    International Nuclear Information System (INIS)

    Avezov, R.R.; Akhatov, J. S.; Avezova, N. R.

    2011-01-01

    This paper presents the state-of-the-art on photovoltaic-thermal PV-T collectors. There are presented two main classification groups: -Air and -Water PV-Thermal collectors, design and performance evaluation, comparison of the findings obtained by various researchers. The review also covers the description of different designs of air and water PV-T collectors, the results of theoretical and experimental works, focused to optimization of the technical and economical performances in terms of electrical as well as thermal outputs. (authors)

  15. Thermal history and comfort in a Brazilian subtropical climate: a 'cool' addiction hypothesis

    OpenAIRE

    Vecchi, Renata De; Cândido, Christhina Maria; Lamberts, Roberto

    2016-01-01

    Abstract Currently, there is a rising trend for commercial buildings to use air conditioning to provide indoor thermal comfort. This paper focuses on the impact of prolonged exposure to indoor air-conditioned environments on occupants' thermal acceptability and preferences in a mixed-mode building in Brazil. Questionnaires were administered while indoor microclimatic measurements were carried out (i.e., air temperature, radiant air temperature, air speed and humidity). Results suggest signifi...

  16. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Science.gov (United States)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  17. Preterm infant thermal care: differing thermal environments produced by air versus skin servo-control incubators.

    Science.gov (United States)

    Thomas, K A; Burr, R

    1999-06-01

    Incubator thermal environments produced by skin versus air servo-control were compared. Infant abdominal skin and incubator air temperatures were recorded from 18 infants in skin servo-control and 14 infants in air servo-control (26- to 29-week gestational age, 14 +/- 2 days postnatal age) for 24 hours. Differences in incubator and infant temperature, neutral thermal environment (NTE) maintenance, and infant and incubator circadian rhythm were examined using analysis of variance and scatterplots. Skin servo-control resulted in more variable air temperature, yet more stable infant temperature, and more time within the NTE. Circadian rhythm of both infant and incubator temperature differed by control mode and the relationship between incubator and infant temperature rhythms was a function of control mode. The differences between incubator control modes extend beyond temperature stability and maintenance of NTE. Circadian rhythm of incubator and infant temperatures is influenced by incubator control.

  18. Performance analysis of a hybrid photovoltaic thermal solar air heater

    International Nuclear Information System (INIS)

    Othman, Mohd Yusof; Yatim, Baharudin; Abu Bakar, Mohd Nazari; Sopian, Kamaruzzaman

    2006-01-01

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  19. Effect of Air Gap Entrapped in Firefighter Protective Clothing on Thermal Resistance and Evaporative Resistance

    Directory of Open Access Journals (Sweden)

    He Hualing

    2018-03-01

    Full Text Available Heat and water vapor transfer behavior of thermal protective clothing is greatly influenced by the air gap entrapped in multilayer fabric system. In this study, a sweating hot plate method was used to investigate the effect of air gap position and size on thermal resistance and evaporative resistance of firefighter clothing under a range of ambient temperature and humidity. Results indicated that the presence of air gap in multilayer fabric system decreased heat and water vapor transfer abilities under normal wear. Moreover, the air gap position slightly influenced the thermal and evaporative performances of the firefighter clothing. In this study, the multilayer fabric system obtained the highest thermal resistance, when the air space was located at position B. Furthermore, the effect of ambient temperature on heat and water vapor transfer properties of the multilayer fabric system was also investigated in the presence of a specific air gap. It was indicated that ambient temperature did not influence the evaporative resistance of thermal protective clothing. A thermographic image was used to test the surface temperature of multilayer fabric system when an air gap was incorporated. These results suggested that a certain air gap entrapped in thermal protective clothing system could affect wear comfort.

  20. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  1. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  2. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction

    International Nuclear Information System (INIS)

    Yew, M.C.; Ramli Sulong, N.H.; Chong, W.T.; Poh, S.C.; Ang, B.C.; Tan, K.H.

    2013-01-01

    Highlights: • A novel integrated cool roof system for attic temperature reduction is introduced. • 13 °C temperature reduction achieved due to its efficient heat transfer mechanism. • Aluminium tube cavity of the roof is able to reduce the attic temperature. • This positive result is due to its efficient heat reflection and hot air rejection. • Thermal insulation coating incorporates the usage of eggshell waste as bio-filler. - Abstract: Cool roof systems play a significant role in enhancing the comfort level of occupants by reducing the attic temperature of the building. Heat transmission through the roof can be reduced by applying thermal insulation coating (TIC) on the roof and/or installing insulation under the roof of the attic. This paper focuses on a TIC integrated with a series of aluminium tubes that are installed on the underside of the metal roof. In this study, the recycled aluminium cans were arranged into tubes that act as a moving-air-cavity (MAC). The TIC was formulated using titanium dioxide pigment with chicken eggshell (CES) waste as bio-filler bound together by a polyurethane resin binder. The thermal conductivity of the thermal insulation paint was measured using KD2 Pro Thermal Properties Analyzer. Four types of cool roof systems were designed and the performances were evaluated. The experimental works were carried out indoors by using halogen light bulbs followed by comparison of the roof and attic temperatures. The temperature of the surrounding air during testing was approximately 27.5 °C. The cool roof that incorporated both TIC and MAC with opened attic inlet showed a significant improvement with a reduction of up to 13 °C (from 42.4 °C to 29.6 °C) in the attic temperature compared to the conventional roof system. The significant difference in the results is due to the low thermal conductivity of the thermal insulation paint (0.107 W/mK) as well as the usage of aluminium tubes in the roof cavity that was able to transfer

  3. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems

    International Nuclear Information System (INIS)

    Iten, M.; Liu, S.

    2014-01-01

    Highlights: • A procedure to design effective thermal energy storage (TES) system. • A guidance for the selection of the working material (PCM) and the heat exchanger development. • Suggestions for heat transfer enhancement techniques for the air-TES system. • Mathematical, computational and experimental methods optimising the air-TES system. - Abstract: The paper seeks to offer a procedure to design an effective short term thermal energy storage (TES) system using phase change materials. The methodology focus on two main aspects: the selection of the working material and the heat exchanger development. The selection of the appropriate PCMs is one of the main keys for any TES therefore their classifications, properties, advantages and disadvantages need to be investigated. Due to the intensive researches using this kind of materials in the recent years, there are a range of commercial PCMs available and supplied by different companies. However, all types of PCM present their specific problems and therefore requirements are defined in order to select the most suitable PCMs. The other main key when designing TES is related to the heat exchanger formed by the PCM and the cold/hot heat sources. For this step, the choice of the appropriate container to encapsulate the PCM and the heat transfer enhancement techniques are analysed. Distinct methodologies such as experimental and numerical study methods and modelling software tools are presented to analyse the thermal energy performance of the system and achieve the optimal design of the TES system

  4. Effect of air confinement on thermal contact resistance in nanoscale heat transfer

    Science.gov (United States)

    Pratap, Dheeraj; Islam, Rakibul; Al-Alam, Patricia; Randrianalisoa, Jaona; Trannoy, Nathalie

    2018-03-01

    Here, we report a detailed analysis of thermal contact resistance (R c) of nano-size contact formed between a Wollaston wire thermal probe and the used samples (fused silica and titanium) as a function of air pressure (from 1 Pa to 105 Pa). Moreover, we suggest an analytical model using experimental data to extract R c. We found that for both samples, the thermal contact resistance decreases with increasing air pressure. We also showed that R c strongly depends on the thermal conductivity of materials keeping other parameters the same, such as roughness of the probe and samples, as well as the contact force. We provide a physical explanation of the R c trend with pressure and thermal conductivity of the materials: R c is ascribed to the heat transfer through solid-solid (probe-sample) contact and confined air at nanoscale cavities, due to the rough nature of the materials in contact. The contribution of confined air on heat transfer through the probe sample contact is significant at atmospheric pressure but decreases as the pressure decreases. In vacuum, only the solid-solid contact contributes to R c. In addition, theoretical calculations using the well-known acoustic and diffuse mismatch models showed a high thermal conductivity material that exhibits high heat transmission and consequently low R c, supporting our findings.

  5. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality......, a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  6. Measurement and prediction of indoor air quality using a breathing thermal manikin

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of measured inhaled air parameters. Proper simulation of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method......The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...

  7. Thermal decomposition kinetics of antimony oxychloride in air

    Institute of Scientific and Technical Information of China (English)

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  8. Thermal history and comfort in a Brazilian subtropical climate: a 'cool' addiction hypothesis

    Directory of Open Access Journals (Sweden)

    Renata De Vecchi

    Full Text Available Abstract Currently, there is a rising trend for commercial buildings to use air conditioning to provide indoor thermal comfort. This paper focuses on the impact of prolonged exposure to indoor air-conditioned environments on occupants' thermal acceptability and preferences in a mixed-mode building in Brazil. Questionnaires were administered while indoor microclimatic measurements were carried out (i.e., air temperature, radiant air temperature, air speed and humidity. Results suggest significant differences in occupants' thermal acceptability and cooling preferences based on thermal history; differences were found between groups based on different physical characteristics (i.e., different gender and body condition. The findings also indicated a significant potential to implement temperature fluctuations indoors when occupants are exposed to air conditioning environments in warm and humid climates.

  9. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  10. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    International Nuclear Information System (INIS)

    Liu, Zhen-Hua; Hu, Ren-Lin; Lu, Lin; Zhao, Feng; Xiao, Hong-shen

    2013-01-01

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m 3 /h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  11. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    Science.gov (United States)

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  12. Numerical investigation of a joint approach to thermal energy storage and compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Pan, Lehua; Cai, Zuansi; Li, Cai; Li, Yi

    2017-01-01

    Highlights: •One wellbore-reservoir numerical model was built to study the impact of ATES on CAESA. •With high injection temperature, the joint of ATES can improve CAESA performance. •The considerable utilization of geothermal occurs only at the beginning of operations. •Combination of CAESA and ATES can be achieved in common aquifers. -- Abstract: Different from conventional compressed air energy storage (CAES) systems, the advanced adiabatic compressed air energy storage (AA-CAES) system can store the compression heat which can be used to reheat air during the electricity generation stage. Thus, AA-CAES system can achieve a higher energy storage efficiency. Similar to the AA-CAES system, a compressed air energy storage in aquifers (CAESA) system, which is integrated with an aquifer thermal energy storage (ATES) could possibly achieve the same objective. In order to investigate the impact of ATES on the performance of CAESA, different injection air temperature schemes are designed and analyzed by using numerical simulations. Key parameters relative to energy recovery efficiencies of the different injection schemes, such as pressure distribution and temperature variation within the aquifers as well as energy flow rate in the injection well, are also investigated in this study. The simulations show that, although different injection schemes have a similar overall energy recovery efficiency (∼97%) as well as a thermal energy recovery efficiency (∼79.2%), the higher injection air temperature has a higher energy storage capability. Our results show the total energy storage for the injection air temperature at 80 °C is about 10% greater than the base model scheme at 40 °C. Sensitivity analysis reveal that permeability of the reservoir boundary could have significant impact on the system performance. However, other hydrodynamic and thermodynamic properties, such as the storage reservoir permeability, thermal conductivity, rock grain specific heat and rock

  13. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    A comprehensive study comprising physical measurements and human subject experiments was conducted to explore the potential for improving occupants' thermal comfort and indoor air quality (IAQ) using a personalized ventilation (PV) system combined with an under-floor air distribution(UFAD) system....... The integrated PV-UFAD system, when operated at relatively high temperature of the air supplied from the UFAD system, provided comfortable cooling of the facial region, improved inhaled air quality, and decreased the risk of "cold feet," which is often reported in rooms with UFAD alone. This article explores...... and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Velocity and temperature distribution in the chamber were measured. A breathing thermal manikin was used to measure the heat loss from 26 body segments and to determine the equivalent temperature. The responses of 30 human...

  14. Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications

    International Nuclear Information System (INIS)

    Tyagi, V.V.; Pandey, A.K.; Buddhi, D.; Tyagi, S.K.

    2013-01-01

    Highlights: ► Calcium chloride hexahydrate (CaCl 2 ⋅6H 2 O) as a PCM was used in this study. ► Two different capsulated system (HDPE based panel and balls) were designed. ► The results of CaCl 2 ⋅6H 2 O are very attractive for space air conditioning. ► Energy and exergy analyses for space cooling applications. - Abstract: This communication presents the experimental study of PCM based thermal management systems for space heating and cooling applications using energy and exergy analysis. Two different types of based thermal management system (TMS-I and TMS-II) using calcium chloride hexahydrate as the heat carrier has been designed, fabricated and studied for space heating and cooling applications at a typical climatic zone in India. In the first experimental arrangement the charging of PCM has been carried out with air conditioning system while discharging has been carried out using electric heater for both the thermal management systems. While in the second arrangement the charging of PCM has been carried out by solar energy and the discharging has been carried out by circulating the cooler ambient air during the night time. In the first experiment, TMS-I is found to be more effective than that of TMS-II while it was found to be reverse in the case of second experiment for both the charging and discharging processes not only for energetic but also for the exergetic performances

  15. Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management

    International Nuclear Information System (INIS)

    Wu, Weixiong; Zhang, Guoqing; Ke, Xiufang; Yang, Xiaoqing; Wang, Ziyuan; Liu, Chenzhen

    2015-01-01

    Highlights: • A kind of composite phase change material board (PCMB) is prepared and tested. • PCMB presents a large thermal storage capacity and enhanced thermal conductivity. • PCMB displays much better cooling effect in comparison to natural air cooling. • PCMB presents different cooling characteristics in comparison to ribbed radiator. - Abstract: A kind of phase change material board (PCMB) was prepared for use in the thermal management of electronics, with paraffin and expanded graphite as the phase change material and matrix, respectively. The as-prepared PCMB presented a large thermal storage capacity of 141.74 J/g and enhanced thermal conductivity of 7.654 W/(m K). As a result, PCMB displayed much better cooling effect in comparison to natural air cooling, i.e., much lower heating rate and better uniformity of temperature distribution. On the other hand, compared with ribbed radiator technology, PCMB also presented different cooling characteristics, demonstrating that they were suitable for different practical application

  16. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Energy Technology Data Exchange (ETDEWEB)

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  17. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    International Nuclear Information System (INIS)

    Tchinda, R.

    2005-11-01

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  18. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Liu, Li; Nielsen, Peter V.; Li, Yuguo

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate...... the human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  19. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  20. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    International Nuclear Information System (INIS)

    Mathe, Vikas L.; Varma, Vijay; Raut, Suyog; Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K.; Bhoraskar, Sudha V.; Das, Asoka K.

    2016-01-01

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  1. Enhanced active aluminum content and thermal behaviour of nano-aluminum particles passivated during synthesis using thermal plasma route

    Energy Technology Data Exchange (ETDEWEB)

    Mathe, Vikas L., E-mail: vlmathe@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Varma, Vijay; Raut, Suyog [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Nandi, Amiya Kumar; Pant, Arti; Prasanth, Hima; Pandey, R.K. [High Energy Materials Research Lab, Sutarwadi, Pune 411021, Maharashtra (India); Bhoraskar, Sudha V. [Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra (India); Das, Asoka K. [Utkal University, VaniVihar, Bhubaneswar, Odisha 751004 (India)

    2016-04-15

    Graphical abstract: - Highlights: • Synthesis of nano crystalline Al (nAl) using DC thermal plasma reactor. • In situ passivation of nAl by palmitic acid and air. • Enhanced active aluminum content obtained for palmitic acid passivated nAl. • Palmitic acid passivated nAl are quite stable in humid atmospheres. - Abstract: Here, we report synthesis and in situ passivation of aluminum nanoparticles using thermal plasma reactor. Both air and palmitc acid passivation was carried out during the synthesis in the thermal plasma reactor. The passivated nanoparticles have been characterized for their structural and morphological properties using X-ray diffraction (XRD) and transmission electron microscopy (TEM) techniques. In order to understand nature of passivation vibrational spectroscopic analysis have been carried out. The enhancement in active aluminum content and shelf life for a palmitic acid passivated nano-aluminum particles in comparison to the air passivated samples and commercially available nano Al powder (ALEX) has been observed. Thermo-gravimetric analysis was used to estimate active aluminum content of all the samples under investigation. In addition cerimetric back titration method was also used to estimate AAC and the shelf life of passivated aluminum particles. Structural, microstructural and thermogravomateric analysis of four year aged passivated sample also depicts effectiveness of palmitic acid passivation.

  2. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  3. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  4. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  5. Enthalpy estimation for thermal comfort and energy saving in air conditioning system

    International Nuclear Information System (INIS)

    Chu, C.-M.; Jong, T.-L.

    2008-01-01

    The thermal comfort control of a room must consider not only the thermal comfort level but also energy saving. This paper proposes an enthalpy estimation that is conducive for thermal comfort control and energy saving. The least enthalpy estimator (LEE) combines the concept of human thermal comfort with the theory of enthalpy to predict the load for a suitable setting pair in order to maintain more precisely the thermal comfort level and save energy in the air conditioning system

  6. Exergy analysis on the irreversibility of rotary air preheater in thermal power plant

    International Nuclear Information System (INIS)

    Wang Hongyue; Zhao Lingling; Zhou Qiangtai; Xu Zhigao; Kim, Hyung Taek

    2008-01-01

    Energy recovery devices can have a substantial impact on process efficiency and their relevance to the problem of conservation of energy resources is generally recognized to be beyond dispute. One type of such a device, which is commonly used in thermal power plants and air conditioning systems, is the rotary air preheater. A major disadvantage of the rotary air preheater is that there is an unavoidable leakage due to carry over and pressure difference. There are gas streams involved in the heat transfer and mixing processes. There are also irreversibilities, or exergy destruction, due to mixing, pressure losses and temperature gradients. Therefore, the purpose of this research paper is based from the second law of thermodynamics, which is to build up the relationship between the efficiency of the thermal power plant and the total process of irreversibility in the rotary air preheater using exergy analysis. For this, the effects of the variation of the principal design parameters on the rotary air preheater efficiency, the exergy efficiency, and the efficiency of the thermal power plant are examined by changing a number of parameters of rotary air preheater. Furthermore, some conclusions are reached and recommendations are made so as to give insight on designing some optimal parameters

  7. A review on the thermal hydraulic characteristics of the air-cooled

    Indian Academy of Sciences (India)

    In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to ...

  8. Experimental testing of the thermal performance of finned air coolers

    International Nuclear Information System (INIS)

    Imhof, A.; Keller, J.; Koelliker, A.

    1988-05-01

    Finned heat exchangers are often used as regenerators in heat recovery systems or as a heat source for heat pump installations. These exchangers are usually operating as air coolers. Heat is extracted from the air flowing through the heat exchanger. If the fin temperature lies below the dew point at the air inlet, water vapour may be condensed, increasing the thermal performance of the cooler. If the air/water heat exchanger is installed outdoors, the blower is usually mounted directly at the exchaner's case. In general this leads to non-ideal air flow conditions. For the sizing of such components the manufacturers dispose of design rules which are based either on theoretical models or on experiments using a uniform air stream. These rules which are mostly internal codes of the individual companies presumably do not take into account some non-ideal conditions such as an inhomogeneous air flow, a poorly sized blower or an increased pressure drop between the fins due to condensed water vapour. Moreover, these codes are possibly not sophisticated enough to enable a correct sizing of the products for any given condition of operation, especially in heat pumps operating under condensation conditions. Therfore, the Swiss Federal Institute for Reactor Research (EIR) carried out a research program dealing with the thermal performance of commercially available finned air coolers. The results give a strong evidence that the sizing of finned air coolers involving a phase change in one of the heat transfer fluids is not yet a procedure belonging to the common knowledge of most of the manufacturers. Moreover, the correct sizing of the blower is at least as important as the sizing of the finned exchanger itself. However, it is evident that there are companies on the Swiss market which use already reliable design tools. 25 refs., 81 figs., 12 tabs

  9. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  10. Buffer thermal energy storage for an air Brayton solar engine

    Science.gov (United States)

    Strumpf, H. J.; Barr, K. P.

    1981-01-01

    The application of latent-heat buffer thermal energy storage to a point-focusing solar receiver equipped with an air Brayton engine was studied. To demonstrate the effect of buffer thermal energy storage on engine operation, a computer program was written which models the recuperator, receiver, and thermal storage device as finite-element thermal masses. Actual operating or predicted performance data are used for all components, including the rotating equipment. Based on insolation input and a specified control scheme, the program predicts the Brayton engine operation, including flows, temperatures, and pressures for the various components, along with the engine output power. An economic parametric study indicates that the economic viability of buffer thermal energy storage is largely a function of the achievable engine life.

  11. Properties of thermal air plasma with admixing of copper and carbon

    International Nuclear Information System (INIS)

    Fesenko, S; Veklich, A; Boretskij, V; Cressault, Y; Gleizes, A; Teulet, Ph

    2014-01-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors

  12. Analysis of a thermal energy storage system for air cooling–heating application through cylindrical tube

    International Nuclear Information System (INIS)

    Anisur, M.R.; Kibria, M.A.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C.

    2013-01-01

    Highlights: • Some design parameters of TES system for air cooling–heating application are studied. • Allowable inner radius and thickness of the tube for air flow should be considered. • Better COP is observed by decreasing the PCM container diameter. - Abstract: In order to reduce building energy consumption, thermal energy storage (TES) system has been explored as an alternative solution for air cooling–heating application. Different types of phase change materials (PCMs) along with the different geometries of TES system have been investigated for this application. In this work, a theoretical model was used to analyse the TES system for air cooling–heating application. The heat transfer phenomena in a phase change material (PCM) outside a double wall circular tube with heat transfer fluid (HTF) as air inside the tube were studied. Potassium fluoride tetrahydrate was used as a PCM for the TES system. Laminar forced convection with varying wall temperature was considered to analyse this system. Here, some important design parameters like inner radius and thickness of the tube for HTF flow were also investigated. It was found that an optimum inner radius and thickness of the tube should be considered to design a TES system. Since, significant change in outlet air temperature from the system was observed for reducing inner radius and increasing the thickness of the tube. The coefficients of performances (COPs) for cooling were found 8.79 and 7.20 for 15 mm and 25 mm inner radiuses of the PCM container respectively. Hence, the system can be optimized by reducing the volume of the PCM container. Furthermore, better COP was observed for higher inlet air temperature while the outlet air temperature was almost identical

  13. Numerical study of a PCM-air heat exchanger's thermal performance

    Science.gov (United States)

    Herbinger, F.; Bhouri, M.; Groulx, D.

    2016-09-01

    In this paper, the use of PCMs in HVAC applications is investigated by studying numerically the thermal performance of a PCM-air heat exchanger. The PCM used in this study is dodecanoic acid. A symmetric 3D model, incorporating conductive and convective heat transfer (air only) as well as laminar flow, was created in COMSOL Multiphysics 5.0. Simulations examined the dependence of the heat transfer rate on the temperature and velocity of the incoming air as well as the size of the channels in the heat exchanger. Results indicated that small channels size lead to a higher heat transfer rates. A similar trend was also obtained for high incoming air temperature, whereas the heat transfer rate was less sensitive to the incoming air velocity.

  14. The relationship between radiant heat, air temperature and thermal comfort at rest and exercise.

    Science.gov (United States)

    Guéritée, Julien; Tipton, Michael J

    2015-02-01

    The aims of the present work were to investigate the relationships between radiant heat load, air velocity and body temperatures with or without coincidental exercise to determine the physiological mechanisms that drive thermal comfort and thermoregulatory behaviour. Seven male volunteers wearing swimming trunks in 18°C, 22°C or 26°C air were exposed to increasing air velocities up to 3 m s(-1) and self-adjusted the intensity of the direct radiant heat received on the front of the body to just maintain overall thermal comfort, at rest or when cycling (60 W, 60 rpm). During the 30 min of the experiments, skin and rectal temperatures were continuously recorded. We hypothesized that mean body temperature should be maintained stable and the intensity of the radiant heat and the mean skin temperatures would be lower when cycling. In all conditions, mean body temperature was lower when facing winds of 3 m s(-1) than during the first 5 min, without wind. When facing winds, in all but the 26°C air, the radiant heat was statistically higher at rest than when exercising. In 26°C air mean skin temperature was lower at rest than when exercising. No other significant difference was observed. In all air temperatures, high correlation coefficients were observed between the air velocity and the radiant heat load. Other factors that we did not measure may have contributed to the constant overall thermal comfort status despite dropping mean skin and body temperatures. It is suggested that the allowance to behaviourally adjust the thermal environment increases the tolerance of cold discomfort. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. On the thermal analysis of a plate-fin heat sink considering the thermal-entry length effect

    International Nuclear Information System (INIS)

    Bassiouny, Ramadan; Maher, Hisham; Hegazy, Adel A.

    2016-01-01

    Highlights: • Dissipated convective heat strongly depends on convection coefficient. Two correlations were developed for so and validated. • A clear error in air temperature distribution along the heat sink was seen if coefficient were not properly selected. • The error decreases when thermal-entry length effect is considered, as for thermal flow through short conduits as Pr <1. - Abstract: Cooling electric and electronic components is very imperative to keep these components functioning properly. The heat sink is a device used to dissipate generated heat and accordingly cool these components. Airflow through heat sinks experiences velocity and thermal boundary layer variation that significantly affects the heat transfer process and heat sink performance as a result. The present study aims at developing an analytical model that compares the effect of adopting fully-developed or thermally-developing flow on convective heat transfer coefficient and accordingly longitudinal predicted air temperature distribution. Experiments on plate-fin heat sinks were carried out to validate the developed model. The results quantitatively showed a noticeable overprediction in the air temperature distribution when the heat transfer coefficient was estimated based on a fully-developed assumption. On the other hand, a close agreement between predicted and measured values was noticed when the thermal-entry length effect was considered.

  16. Evaluation of thermal energy storage materials for advanced compressed air energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.; Wheeler, K.R.; Marksberry, L.

    1983-03-01

    Advanced Compressed-Air Energy Storage (ACAS) plants have the near-term potential to reduce the fuel consumption of compressed-air plants from 33 to 100%, depending upon their design. Fuel is saved by storing some or all of the heat of compression as sensible heat which is subsequently used to reheat the compressed air prior to expansion in the turbine generator. The thermal storage media required for this application must be low cost and durable. The objective of this project was to screen thermal store materials based on their thermal cycle durability, particulate formation and corrosion resistant characteristics. The materials investigated were iron oxide pellets, Denstone pebbles, cast-iron balls, and Dresser basalt rock. The study specifically addressed the problems of particle formation and thermal ratcheting of the materials during thermal cycling and the chemical attack on the materials by the high temperature and moist environment in an ACAS heat storage bed. The results indicate that from the durability standpoint Denstone, cast iron containing 27% or more chromium, and crushed Dresser basalt would possibly stand up to ACAS conditions. If costs are considered in addition to durability and performance, the crushed Dresser basalt would probably be the most desirable heat storage material for adiabatic and hybrid ACAS plants, and more in-depth longer term thermal cycling and materials testing of Dresser basalt is recommended. Also recommended is the redesign and costing analysis of both the hybrid and adiabatic ACAS facilities based upon the use of Dresser basalt as the thermal store material.

  17. Air-Lubricated Thermal Processor For Dry Silver Film

    Science.gov (United States)

    Siryj, B. W.

    1980-09-01

    Since dry silver film is processed by heat, it may be viewed on a light table only seconds after exposure. On the other hand, wet films require both bulky chemicals and substantial time before an image can be analyzed. Processing of dry silver film, although simple in concept, is not so simple when reduced to practice. The main concern is the effect of film temperature gradients on uniformity of optical film density. RCA has developed two thermal processors, different in implementation but based on the same philosophy. Pressurized air is directed to both sides of the film to support the film and to conduct the heat to the film. Porous graphite is used as the medium through which heat and air are introduced. The initial thermal processor was designed to process 9.5-inch-wide film moving at speeds ranging from 0.0034 to 0.008 inch per second. The processor configuration was curved to match the plane generated by the laser recording beam. The second thermal processor was configured to process 5-inch-wide film moving at a continuously variable rate ranging from 0.15 to 3.5 inches per second. Due to field flattening optics used in this laser recorder, the required film processing area was plane. In addition, this processor was sectioned in the direction of film motion, giving the processor the capability of varying both temperature and effective processing area.

  18. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    Science.gov (United States)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  19. Modelling study, efficiency analysis and optimisation of large-scale Adiabatic Compressed Air Energy Storage systems with low-temperature thermal storage

    International Nuclear Information System (INIS)

    Luo, Xing; Wang, Jihong; Krupke, Christopher; Wang, Yue; Sheng, Yong; Li, Jian; Xu, Yujie; Wang, Dan; Miao, Shihong; Chen, Haisheng

    2016-01-01

    Highlights: • The paper presents an A-CAES system thermodynamic model with low temperature thermal energy storage integration. • The initial parameter value ranges for A-CAES system simulation are identified from the study of a CAES plant in operation. • The strategies of system efficiency improvement are investigated via a parametric study with a sensitivity analysis. • Various system configurations are discussed for analysing the efficiency improvement potentials. - Abstract: The key feature of Adiabatic Compressed Air Energy Storage (A-CAES) is the reuse of the heat generated from the air compression process at the stage of air expansion. This increases the complexity of the whole system since the heat exchange and thermal storage units must have the capacities and performance to match the air compression/expansion units. Thus it raises a strong demand in the whole system modelling and simulation tool for A-CAES system optimisation. The paper presents a new whole system mathematical model for A-CAES with simulation implementation and the model is developed with consideration of lowing capital cost of the system. The paper then focuses on the study of system efficiency improvement strategies via parametric analysis and system structure optimisation. The paper investigates how the system efficiency is affected by the system component performance and parameters. From the study, the key parameters are identified, which give dominant influences in improving the system efficiency. The study is extended onto optimal system configuration and the recommendations are made for achieving higher efficiency, which provides a useful guidance for A-CAES system design.

  20. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  1. Applying a novel extra-low temperature dedicated outdoor air system in office buildings for energy efficiency and thermal comfort

    International Nuclear Information System (INIS)

    Li, Han; Lee, W.L.; Jia, Jie

    2016-01-01

    Highlights: • A novel dedicated outdoor air system was proposed and investigated. • The proposed system adopts extra-low temperature outdoor air for space cooling. • The extra-low temperature air was generated by a multi-stage direct expansion coil. • Heat pipe was added to the proposed system to recover the waste cooling energy. • Energy and exergy analysis as well as thermal comfort analysis were conducted. - Abstract: A novel dedicated outdoor air system consisting of a multi-stage direct expansion coil and a zero-energy heat pipe to generate extra-low temperature outdoor air to avoid moisture-related problems was proposed in this study. The proposed system’s performance in achieving the desirable air conditions and better energy efficiency objectives is compared with a conventional direct expansion system for air-conditioning of a typical office building in Hong Kong based on simulation investigations. The simulations were carried out using equipment performance data of a pilot study, and realistic building and system characteristics. It was found that the proposed system, as compared to the conventional system, could reduce the annual indoor discomfort hours by 69.4%. An energy and exergy analysis was also conducted. It was revealed that the proposed system could reduce the annual air-conditioning energy use by 15.6% and the system exergy loss rate by 13.6%. The associated overall exergy efficiency was also found 18.6% higher. The findings of this study confirm that the proposed system is better than the conventional system in terms of both energy and exergy efficiency and the desirable air conditions.

  2. Thermal reservoir sizing for adiabatic compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kere, Amelie; Goetz, Vincent; Py, Xavier; Olives, Regis; Sadiki, Najim [Perpignan Univ. (France). PROMES CNRS UPR 8521; Mercier-Allart, Eric [EDF R et D, Chatou (France)

    2012-07-01

    Despite the operation of the two existing industrial facilities to McIntosh (Alabama), and for more than thirty years, Huntorf (Germany), electricity storage in the form of compressed air in underground cavern (CAES) has not seen the development that was expected in the 80s. The efficiency of this form of storage was with the first generation CAES, less than 50%. The evolving context technique can significantly alter this situation. The new generation so-called Adiabatic CAES (A-CAES) is to retrieve the heat produced by the compression via thermal storage, thus eliminating the necessity of gas to burn and would allow consideration efficiency overall energy of the order of 70%. To date, there is no existing installation of A-CAES. Many studies describe the principal and the general working mode of storage systems by adiabatic compression of air. So, efficiencies of different configurations of adiabatic compression process were analyzed. The aim of this paper is to simulate and analyze the performances of a thermal storage reservoir integrated in the system and adapted to the working conditions of a CAES.

  3. Numerical investigation on turbulence mixing characteristics under thermal striping flows. Investigations on fluid temperature fluctuation phenomena in air and sodium

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Satoshi [Customer System Co. Ltd., Tokai, Ibaraki (Japan); Muramatsu, Toshiharu

    1999-05-01

    A three-dimensional thermal striping analysis was carried out using a direct numerical simulation code DINUS-3, for a coaxial jet configuration using air and sodium as a working fluid, within the framework of the EJCC thermo-hydraulic division. From the analysis, the following results have been obtained: (1) Calculated potential core length in air and sodium turbulence flows agreed with a theoretical value (5d - 7d ; d : diameter of jet nozzle) in the two-dimensional free jet theory. (2) Hydraulic characteristics in sodium flows as the potential core length can be estimated by the use of that of air flow characteristics. (3) Shorter thermally potential core length defined by spatial temperature distribution was evaluated in sodium flows, compared with that in air flows. This is due to the higher thermal conductivity of sodium. (4) Thermal characteristics in sodium flows as the thermally potential core length can not be evaluated, based on that air thermal characteristics. (author)

  4. Effect of Water-Air Clearing on Thermal Mixing in IRWST Using Three-Dimensional CFD Analysis

    International Nuclear Information System (INIS)

    Ha, Jeong Hee; Lee, Doo Yong; Hong, Soon Joon; Jeong, Jae Sik; Park, Man Heung; Moon, Young Tae

    2013-01-01

    In this paper, the water-air clearing effects on thermal mixing in the IRWST were investigated with the CFD simulation. The boundary conditions for each discharge phase were obtained from the RELAP5 simulation. The flow distribution in the IRWST for the water clearing phase was reflected as the initial condition for the air clearing simulation. The flow distribution for the air clearing phase was applied as the initial condition for the steam condensation phase. The result of the steam condensation phase with the SCRM showed that the thermal mixing in the IRWST might be enhanced by the mixing effects of the water-air clearing before the steam discharge. IRWST (in-containment refueling water storage tank) is one of the advanced design features of APR1400 (Advanced Power Reactor . 1400). Connected to the Safety Depressurization and Vent System (SDVS), IRWST is designed to absorb the high energy flow from Pilot Operated Safety and Relief Valves (POSRVs) to protect the over-pressurization of the Reactor Coolant System. Due to thermal hydraulic loads induced by discharged fluids, it is crucial to understand the phenomena occur in the IRWST and thermal mixing is one of them. It has been known that the unstable steam condensation which results in oscillations and acts as the loads on the IRWST wall and structures can occur if there is a large local temperature difference. Thus, there is a regulation related to IRWST temperature distribution (difference) to be satisfied. To understand the phenomena and design the IRWST with sufficient safety margin, many experimental and numerical researches have been performed. The results of these researches showed that the CFD analysis predicts well the temperature distribution in the pool globally and can be a proper evaluation methodology to analyze the complex thermal mixing phenomena in the IRWST with a sufficiently fine mesh distribution and proper numerical models. But the previous studies have tended to focus the phenomenological

  5. Small fan assisted air conditioner for thermal comfort and energy saving in Thailand

    International Nuclear Information System (INIS)

    Atthajariyakul, Surat; Lertsatittanakorn, Charoenporn

    2008-01-01

    From the fact that Thai people have a tolerance to high air temperature and are accustomed to high air movement from electric fans in non-air conditioned space, this paper proposes the use of small fan assisted air conditioners for human thermal comfort and energy saving in Thailand. In the study, a total 15 students were tested in a 2.5 x 3.5 x 2.5 m 3 test room equipped with a 12,000 Btu/h split type air conditioner. During the tests, the room air temperature was varied from 25, 26, 27 and 28 deg. C every 1 h. A small fan with 15 cm diameter was placed in front of each subject. In each hour, the small fan was varied to supply a small area with velocity from 0.2, 0.5, 1, 1.5 and 2 m/s. In each condition, the subjects were asked to vote for their thermal sensation. The results showed that the temperature set point could be increased up to 28 deg. C when a small fan was used to supply local air velocity from 0.5 to 2 m/s according to individual preference. This would reduce the electricity consumption of the air conditioning unit. According to the proposed method, this can save energy for office buildings in the commercial sector as high as 1959.51 GWh/year

  6. Abstraction of Drift-Scale Coupled Processes

    International Nuclear Information System (INIS)

    Francis, N.D.; Sassani, D.

    2000-01-01

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M andO 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  7. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, M.; Akyol, S.M. [Uludag University, Department of Mechanical Engineering, Faculty of Engineering and Architecture, Bursa (Turkey)

    2012-08-15

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO{sub 2}) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO{sub 2} concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO{sub 2} level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin. (orig.)

  8. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Science.gov (United States)

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  9. Modeling of Thermal Behavior of Raw Natural Gas Air Coolers

    Science.gov (United States)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    When gas is being prepared for a long-range transportation, it passes through air cooling units (ACUs) after compressing; there, hot gas passing through finned tubes is cooled with air streams. ACU's mode of operation shall ensure a certain value of gas temperature at the ACU's outlet. At that, when cooling raw gas, temperature distribution along all the tubes shall be known to prevent local hydrate formation. The paper proposes a mathematical model allowing one to obtain a thermal field distribution inside the ACU and study influence of various factors onto it.

  10. Solar Thermal AIR Collector Based on New Type Selective Coating

    Directory of Open Access Journals (Sweden)

    Musiy, R.Y.

    2014-01-01

    Full Text Available Based on the best for optical performance and selective coating solar thermal air collector, which operates by solar power on the principle of simultaneous ventilation and heating facilities, is designed. It can be used for vacation homes, museums, wooden churches, warehouses, garages, houses, greenhouses etc.

  11. Air-ground temperature coupling: analysis by means of Thermal Orbits

    Czech Academy of Sciences Publication Activity Database

    Čermák, Vladimír; Bodri, L.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 112-122 ISSN 2160-0414 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk(CZ) LG13040 Institutional support: RVO:67985530 Keywords : Thermal Orbits * temperature monitoring * air temperature vs ground temperature Subject RIV: DG - Athmosphere Sciences, Meteorology

  12. Thermal effect of lubricating oil in positive-displacement air compressors

    International Nuclear Information System (INIS)

    Valenti, Gianluca; Colombo, Luigi; Murgia, Stefano; Lucchini, Andrea; Sampietro, Andrea; Capoferri, Andrea; Araneo, Lucio

    2013-01-01

    The isentropic efficiency of positive-displacement compressors may be improved in order to follow an increasing demand for energy savings. This work analyzes the thermal effect of the lubricating oil presence in the air during compression with the scope of exploiting it as a thermal ballast to mitigate both the gas temperature rise and its compression work. The bibliographic review shows that other authors suggested that oil can have positive effects if properly injected. Here an energy balance analysis is executed with the scope of deriving relations for the gas–liquid compression in analogy with those typical for the gas-only compression and of confirming that ideally the liquid presence may have beneficial effects, making the gas–liquid compression even better than 1- and 2-time intercooled gas compressions. Given these positive results, a heat transfer analysis is conducted to model the thermal interaction between gas and oil droplets within a mid-size rotary vane air compressor. A droplet diameter of the order of 100 μm leads to large reductions of both temperature increase and compression work: air can exit the discharge port at a temperature as low as 60 °C and compression work can be lowered by 23–28% with respect to conventional compressors. Finally, a test rig is constructed and operated to investigate a large-flow and large-angle oil nozzle taken from the market showing that, at the operating conditions of a compressor, oil breaks up into small droplets and undefined structures with large exchange surfaces. -- Highlights: ► Exploitation of thermal effect of oil in gas compressors is assessed numerically. ► Oil in 100 μm-diameter droplets mitigates effectively the gas temperature rise. ► Discharge temperature and compression work result to be much smaller than typical. ► An experimental setup is used to investigate oil atomization via commercial nozzles. ► A tested nozzle creates fine oil droplets and structures at conditions of

  13. THERMAL REGIME OF MASSIVE CONCRETE DAMS WITH AIR CAVITIES IN THE SEVERE CLIMATE

    Directory of Open Access Journals (Sweden)

    Aniskin Nikolay Alekseevich

    2012-12-01

    The thermal regime of the concrete dam with an air cavity can be adjustable by simple structural elements, including a heat-insulating wall and artificial heating of cavities. The required intensity and duration of heating are to be identified. Final conclusions about the most favorable thermal regime pattern will be made upon completion of fundamental calculations of the thermal stress state of the dam to be performed in the next phase of the research.

  14. Air quality assessment in the vicinity of nuclear and thermal power stations

    International Nuclear Information System (INIS)

    Sivaramasundaram, K.; Vijay Bhaskar, B.; Muthusubramanian, P.; Rajan, M.P.; Hegde, A.G.

    2007-01-01

    The status and ranking of any country, in the context of globalisation, is decided by its economic progress, which is directly linked into power generation. The power is generated by many routes and the nuclear and thermal routes are noteworthy among them. As the power production and its associated activities may cause qualitative deterioration, it is essential to study the impact of power production on atmospheric environment. In this connection, a comparative study has been carried out to assess the air quality with special reference to criteria pollutants in the vicinity of nuclear and thermal power stations. In the present investigation, the air samples are collected on weekly basis and the pollutants such as sulphur dioxide (SO 2 ), nitrogen oxides (NOx), carbon monoxide (CO), suspended particulate matter (SPM) and respirable particulate matter (RPM) are estimated by adopting standard procedures set by United States-Environmental Protection Agency (US-EPA) and Central Pollution Control Board (CPCB). As the micro meteorological parameters influence on the status of air quality, simultaneous measurements of these parameters are also carried, out during sampling. It is studied that estimated concentrations of all criteria pollutants in the vicinity of these power stations are within the permissible limits set by CPCB. On the basis of the generated database pertaining to the concentrations of criteria air pollutants in the vicinity of nuclear and thermal power stations, it is concluded that nuclear power production may be considered as a viable option in terms of environmental protection in our country. (author)

  15. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied...... of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air...

  16. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air...... with the temperature of 25°C. PV improved thermal conditions and was up to nearly 10 times more efficient in delivering clean air at workstations than mixing ventilation systems, which resulted in strong protection of occupants from the cross-infection. In the room space outside workstations no substantial differences...

  17. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater

    Directory of Open Access Journals (Sweden)

    Foued Chabane

    2014-03-01

    Full Text Available The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s−1. Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s−1 with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  18. Experimental study of heat transfer and thermal performance with longitudinal fins of solar air heater.

    Science.gov (United States)

    Chabane, Foued; Moummi, Noureddine; Benramache, Said

    2014-03-01

    The thermal performance of a single pass solar air heater with five fins attached was investigated experimentally. Longitudinal fins were used inferior the absorber plate to increase the heat exchange and render the flow fluid in the channel uniform. The effect of mass flow rate of air on the outlet temperature, the heat transfer in the thickness of the solar collector, and the thermal efficiency were studied. Experiments were performed for two air mass flow rates of 0.012 and 0.016 kg s(-1). Moreover, the maximum efficiency values obtained for the 0.012 and 0.016 kg s(-1) with and without fins were 40.02%, 51.50% and 34.92%, 43.94%, respectively. A comparison of the results of the mass flow rates by solar collector with and without fins shows a substantial enhancement in the thermal efficiency.

  19. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    Science.gov (United States)

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2017-05-01

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, etc....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  1. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Science.gov (United States)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  2. A solar air collector with integrated latent heat thermal storage

    Directory of Open Access Journals (Sweden)

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  3. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  4. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, A.

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  5. XPS study of influence of exposure to air on thermal stability and kinetics of hydrogen decomposition of MgH{sub 2} films obtained by direct hydrogenation from gaseous phase of metallic Mg

    Energy Technology Data Exchange (ETDEWEB)

    Dobrovolsky, V.D., E-mail: dobersh@ipms.kiev.ua; Khyzhun, O.Y.; Sinelnichenko, A.K.; Ershova, O.G.; Solonin, Y.M.

    2017-02-15

    Highlights: • Air influence on thermal stability of MgH{sub 2} have been studied by XPS. • XPS spectra of MgH{sub 2} films obtained at different hydrogen pressures have been studied. • Changes in the chemical state of MgH{sub 2} films depending on time of exposure to air are analyzed. • Correlation exists between chemical surface condition of MgH{sub 2} films and their thermal stableness. • Process of hydrogen desorption from MgH{sub 2} films is studied using TDS for model samples. - Abstract: Mechanism of influence of exposure to air on thermal stability of MgH{sub 2} obtained by direct hydrogenation from the gas phase, the nature of the hydride sensitivity to the negative impact of air and the role of its surface chemical state have not been studied enough. The present article presents data of X-ray photoelectron spectroscopy (XPS) measurements of the Mg 2s, O 1s, C 1s core-level spectra of surface of hydride MgH{sub 2} films derived by gas phase hydrogenation of model samples of metallic Mg, and the evolution of changes in the chemical state of the surface of the hydride films depending on the time of exposure to air and formation conditions (hydrogen pressure and hydrogenation regime). Based on results of XPS, X-ray diffraction (XRD), and thermodesorption spectroscopy (TDS), the existence of a relationship (correlation) between chemical surface condition of hydride MgH{sub 2} films obtained at different hydrogen pressures (3.0 MPa and 11.5 MPa) and their thermal stableness and temperature of the beginning of hydride decomposition has been established.

  6. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  7. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  8. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2014-12-01

    Full Text Available Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, so these policies will undoubtedly impact thermal coal supply chain member enterprises. Based on the actual situation in China, this paper figures out how the member enterprises adjust their business decisions to satisfy the requirements of air pollution prevention and control policies by establishing system dynamic models of policy impact transfer. These dynamic analyses can help coal enterprises and thermal power enterprises do strategic environmental assessments and find directions of sustainable development. Furthermore, the policy simulated results of this paper provide the Chinese government with suggestions for policy-making to make sure that the energy conservation and emission reduction policies and sustainable energy policies can work more efficiently.

  9. Quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...

  10. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    Science.gov (United States)

    Beck, David F.

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  11. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruixin [Department of Building, National University of Singapore (Singapore); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark); Sekhar, S.C. [Department of Building, National University of Singapore (Singapore); Melikov, A.K. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark)

    2010-09-15

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as ''warm head'' can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems - a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system. (author)

  12. Air quality overview assessment of thermal power generation in Vancouver, BC

    International Nuclear Information System (INIS)

    Caton, R.B.; Brotherston, A.E.

    1992-01-01

    B.C. Hydro is preparing a 25 year utilization plan for Burrard Thermal Generating Plant, a 900 MW natural gas fired steam boiler facility near Vancouver. Historical emissions from the plant and ambient air quality in the region were reviewed to place plant operations in context of the technological modifications which have been made over the past 10 years. Environmental effects criteria and regulatory developments which may constrain planning were reviewed and evaluated. Unit emission rates at Burrard have been reduced by 40% since 1989, by extensive combustion modifications, to ca 40 ng/J of NOx. Nevertheless, anticipated regulatory requirements of emissions reductions nationally and in the Vancouver region will necessitate further reductions, or equivalent strategies, over the next ten years. The findings of the Burrard Thermal air quality review are summarized, including historical emissions in the Lower Mainland, transport and transformation of oxidants and acidic deposition, human health impacts, and vegetation impacts. The difficulties that arise in evaluating the imapct of an isolated source of NOx in an urban area are discussed. 30 refs., 5 figs., 6 tabs

  13. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  14. Phytomonitoring of air pollution around a thermal power plant

    Science.gov (United States)

    Agrawal, M.; Agrawal, S. B.

    This study was undertaken in order to assess the impact of air pollutants on vegetation around Obra thermal power plant (1550 M W capacity) in the Mirzapur district of Uttar Pradesh. For this purpose, Mangifera indica, Citrus medico and Bouganvillaea spectabilis plants, most common at all sites, were selected as test plants. Five study sites were selected northeast (prevailing wind) of the thermal power plant. A control site was also selected at a distance of 30 km north of Obra. Responses of plants to pollutants in terms of presence of foliar injury symptoms and changes in chlorophyll, ascorbic acid and S content were measured. These changes were correlated with ambient SO 2 and suspended particulate matter (SPM) concentrations and the amount of dust settled on leaf surfaces. The SO 2 and SPM concentrations were quite high in the immediate vicinity of the power plant. There also exists a direct relationship between the concentration of SPM in air and amount of dust deposited on leaf surfaces. Maximum dust deposition was observed on M. indica plants. The levels of foliar injury, chlorophyll and ascorbic acid were found to decrease and that of S increase in plants around the power plant in comparison to those growing at a control site. The magnitude of such changes was maximum in M. indica and minimum in C. medica. A species specific direct relationship between the increase in the amount of S and decrease in chlorophyll content was observed. The study suggests that differential sensitivity of plants to SO 2 may be used in evaluating the air pollution impact around emission sources and M. indica plants can be used as an indicator plant for quantifying biological changes.

  15. Characterizing Spatial and Temporal Patterns of Thermal Environment and Air Quality in Taipei Metropolitan Area

    Science.gov (United States)

    Juang, J. Y.; Sun, C. H.; Jiang, J. A.; Wen, T. H.

    2017-12-01

    The urban heat island effect (UHI) caused by the regional-to-global environmental changes, dramatic urbanization, and shifting in land-use compositions has becoming an important environmental issue in recent years. In the past century, the coverage of urban area in Taipei Basin has dramatically increasing by ten folds. The strengthen of UHI effect significantly enhances the frequency of warm-night effect, and strongly influences the thermal environment of the residents in the Greater Taipei Metropolitan. In addition, the urban expansions due to dramatic increasing in urban populations and traffic loading significantly impacts the air quality and causes health issue in Taipei. In this study, the main objective is to quantify and characterize the temporal and spatial distributions of thermal environmental and air quality in the Greater Taipei Metropolitan Area by using monitoring data from Central Weather Bureau, Environmental Protection Administration. In addition, in this study, we conduct the analysis on the distribution of physiological equivalent temperature in the micro scale in the metropolitan area by using the observation data and quantitative simulation to investigate how the thermal environment is influenced under different conditions. Furthermore, we establish a real-time mobile monitoring system by using wireless sensor network to investigate the correlation between the thermal environment, air quality and other environmental factors, and propose to develop the early warning system for heat stress and air quality in the metropolitan area. The results from this study can be integrated into the management and planning system, and provide sufficient and important background information for the development of smart city in the metropolitan area in the future.

  16. Supra-thermal charged particle energies in a low pressure radio-frequency electrical discharge in air

    International Nuclear Information System (INIS)

    Littlefield, R.G.

    1976-01-01

    Velocity spectra of supra-thermal electrons escaping from a low-pressure radio-frequency discharge in air have been measured by a time-of-flight method of original design. In addition, the energy spectra of the supra-thermal electrons and positive ions escaping from the rf discharge have been measured by a retarding potential method. Various parameters affecting the energy of the supra-thermal charged particles are experimentally investigated. A model accounting for the supra-thermal charged particle energies is developed and is shown to be consistent with experimental observations

  17. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-01-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof

  18. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  19. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  20. Energy and exergy analysis of a two pass photovoltaic –thermal (PV/T) air heater

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study elaborately its thermal and electrical performance corresponding to the warm and humid environment. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such way that the absorber plate is partially covered by solar cells. Thin metallic strips (called slats) are attached longitudinally at the bottom side of the absorber plate to improve the overall system performance (by increasing the cooling rate of the absorber plate). Thermal and electrical performances of the whole system at different cooling rates are presented. The exergy analysis of double pass hybrid solar air (PV/T) heater with slats has also been carried out. The instantaneous overall energy and overall exergy efficiency of the double pass hybrid (PV/T) solar air heater varies between 29 – 37 percent and 14-17 percent respectively. These obtained values are comparable with that of published results.

  1. Improvement of thermal regeneration of spent granular activated carbon using air agent : Application of sintering and deoxygenation

    International Nuclear Information System (INIS)

    Cho, Joon-Hyung; Jeon, Soo-Bin; Oh, Kwang-Joong; Kim, Yoon-Su; Seo, Jong-Beom; Jung, Jong-Hyeon

    2014-01-01

    Thermal regeneration of spent granular activated carbon (GAC) using sintering, air-activation, and deoxygenation was investigated to determine the potential of this method for overcoming the drawbacks of thermal regeneration. The conditions for each step were optimized. The physicochemical properties of four regenerated GACs were assessed using BET, SEM, and FT-IR analysis. The suitability of the regenerated GACs for liquid-phase applications was assessed by phenol adsorption, using adsorption isotherms, kinetics, and thermodynamics. Sintering increased the micropore area and volume of regenerated GAC by 19% and 16%, respectively, and controlled excessive burn-off, reducing it by 19%. Air-activation has economic advantages because the reaction time is 80% less than that for steam activation. Deoxygenation improved the maximum adsorption capacity by 7%, although the number of micropores was reduced. Regenerated GAC by sintering, air-activation, and deoxygenation was best for liquid-phase applications; the results show that these steps help to overcome the drawbacks of thermal regeneration

  2. Improvement of thermal regeneration of spent granular activated carbon using air agent : Application of sintering and deoxygenation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joon-Hyung; Jeon, Soo-Bin; Oh, Kwang-Joong [Pusan National University, Busan (Korea, Republic of); Kim, Yoon-Su [Kolon Global Corporation, Gwacheon (Korea, Republic of); Seo, Jong-Beom [HyunDai Steel Company, Dangjin (Korea, Republic of); Jung, Jong-Hyeon [Daegu Haany University, Gyeongsan (Korea, Republic of)

    2014-09-15

    Thermal regeneration of spent granular activated carbon (GAC) using sintering, air-activation, and deoxygenation was investigated to determine the potential of this method for overcoming the drawbacks of thermal regeneration. The conditions for each step were optimized. The physicochemical properties of four regenerated GACs were assessed using BET, SEM, and FT-IR analysis. The suitability of the regenerated GACs for liquid-phase applications was assessed by phenol adsorption, using adsorption isotherms, kinetics, and thermodynamics. Sintering increased the micropore area and volume of regenerated GAC by 19% and 16%, respectively, and controlled excessive burn-off, reducing it by 19%. Air-activation has economic advantages because the reaction time is 80% less than that for steam activation. Deoxygenation improved the maximum adsorption capacity by 7%, although the number of micropores was reduced. Regenerated GAC by sintering, air-activation, and deoxygenation was best for liquid-phase applications; the results show that these steps help to overcome the drawbacks of thermal regeneration.

  3. Impact of kiln thermal energy demand and false air on cement kiln flue gas CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Arachchige, Udara S.P.R.; Kawan, Dinesh; Tokheim, Lars-Andre [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); (Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The present study is focused on the effect of the specific thermal energy demand and the false air factor on carbon capture applied to cement kiln exhaust gases. The carbon capture process model was developed and implemented in Aspen Plus. The model was developed for flue gases from a typical cement clinker manufacturing plant. The specific thermal energy demand as well as the false air factor of the kiln system were varied in order to determine the effect on CO2 capture plant performance, such as the solvent regeneration energy demand. In general, an increase in the mentioned kiln system factors increases the regeneration energy demand. The reboiler energy demand is calculated as 3270, 3428 and 3589 kJ/kg clinker for a specific thermal energy of 3000, 3400 and 3800 kJ/kg clinker, respectively. Setting the false air factor to 25, 50 or 70% gives a reboiler energy demand of 3428, 3476, 3568 kJ/kg clinker, respectively.

  4. Numerical study of the thermal and aerodynamic insulation of a cavity with a vertical downstream air jet

    Energy Technology Data Exchange (ETDEWEB)

    Mhiri, H.; El Golli, S. [Ecole Nationale d`Ingenieurs, Monastir (Tunisia). Lab. d`Energetique; Berthon, A.; Le Palec, G.; Bournot, P. [Technopole de Chateau-Gombert, Marseille (France)

    1998-10-01

    Because of its numerous industrial applications (air conditioning, thermal insulation, behavior of fires), heat transfer in rectangular cavities has made the subject of many works which concern both theoretical numerical studies and experimental investigations. This work is devoted to a numerical approach of the laminar mixed convection in a cavity which one of the boundaries is materialized by a laminar vertical downstream air jet. The purpose is to analyze the interaction of this flow with the natural movement that grows in the cavity under the combined action of boundary thermal gradients and external medium of the cavity in order to examine thermal insulation qualities of the jet. Calculations have been made with the help of the finite volume method.

  5. The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lin; Lin, Zhang; Yao, Ting [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Hong Kong SAR (China); Liu, Jing; Wang, Qiuwang [State Key Lab of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-02-15

    The influence of the supply air temperature on the mean local air age and thermal comfort of a typical individual office under stratum ventilation is investigated by a numerical method, which is validated by an experiment carried out by the authors. The results show that for an office, when the supply air temperature is increased from 19 C to 21 C, the corresponding mean occupied zone temperature rises from 24.5 C to 26.5 C. The inhaled air quality for the occupant is improved when supply air temperature rises from 19 C to 21 C. Also, the thermal comfort indices (predicted mean vote or PMV, predicted percentage of dissatisfied or PPD and predicted dissatisfied or PD) fulfill the requirements of ISO 7730 and CR 175 1998. For summer cooling operation, stratum ventilation may offer a feasible solution to elevated indoor temperatures, which are recommended by several governments in East Asia. (author)

  6. Collecting performance of an evacuated tubular solar high-temperature air heater with concentric tube heat exchanger

    International Nuclear Information System (INIS)

    Wang, Ping-Yang; Li, Shuang-Fei; Liu, Zhen-Hua

    2015-01-01

    Highlights: • A novel evacuated tube solar high temperature air heater is designed. • The solar air heater system consists of 30 linked collecting units. • Every unit consisted of a evacuated tube, a simplified CPC and concentric tube. • The flow air is heated over temperature of 200 °C. - Abstract: A set of evacuated tube solar high temperature air heaters with simplified CPC (compound parabolic concentrator) and concentric tube heat exchanger is designed to provide flow air with a temperature of 150–230 °C for industrial production. The solar air heater system consists of 30 linked collecting units. Each unit includes a simplified CPC and an all-glass evacuated tube absorber with a concentric copper tube heat exchanger installed inside. A stainless steel mesh layer with high thermal conductivity is filled between the evacuated tube and the concentric copper tube. Air passes through each collecting unit, and its temperature increases progressively. An experimental investigation of the thermal performance of the air heater is performed, and the experimental results demonstrate the presented high-temperature solar air heater has excellent collecting performance and large output power, even in the winter. The measured thermal efficiency corresponding to the air temperature of 70 °C reaches 0.52. With the increase of air temperature, thermal efficiency reaches 0.35 at an air temperature of 150 °C, and 0.21 at an air temperature of 220 °C.

  7. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  8. Thermal characterisation of compact heat exchangers for air heating and cooling in electric vehicles

    International Nuclear Information System (INIS)

    Torregrosa-Jaime, B.; Corberán, J.M.; Payá, J.; Delamarche, J.L.

    2017-01-01

    The use of air conditioning in all-electric cars reduces their driving range by 33% in average. With the purpose of reducing the energy consumption of the vehicle and optimising the performance of the batteries, the mobile air-conditioning can be integrated with the temperature control system of the powertrain by means of a coolant loop. In such layouts, the air-to-coolant heat exchangers must operate efficiently in both air heating and cooling modes. Dynamic simulation tools comprising the entire thermal system are essential to assess its performance. In this context, fast but accurate models of the system components are required. This paper presents the thermal characterisation of a commercial compact louvered-fin flat-tube heat exchanger (heater core) for this novel application, based on an experimental campaign comprising 279 working points that reflect real air-conditioning (heating and cooling) working conditions. A general methodology to fit a single correlation of the global heat transfer coefficient for both dry and wet working conditions is explained. The semiempirical correlation developed is employed in a single-node model of the heat exchanger that requires minimal computation time. The present model predicts the heat transfer rate with an average deviation of 3.5% in the cases with dehumidification and 1.9% in the cases when the heat exchanger remains dry.

  9. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  10. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Science.gov (United States)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  11. Effect of Collector Aspect Ratio on the Thermal Performance of Wavy Finned Absorber Solar Air Heater

    OpenAIRE

    Abhishek Priyam; Prabha Chand

    2016-01-01

    A theoretical investigation on the effect of collector aspect ratio on the thermal performance of wavy finned absorber solar air heaters has been performed. For the constant collector area, the various performance parameters have been calculated for plane and wavy finned solar air heaters. It has been found that the performance of wavy finned solar air heater improved with the increase in the collector aspect ratio. The performance of wavy finned solar air heater has been found 30 percent hig...

  12. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z. [Institute of Heating, Ventilation, Air Conditioning and Gas Engineering, Tongji University, Shanghai (China); Deng, S. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2006-07-01

    This paper reports on the results of a questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residential buildings in Hong Kong. The survey aimed at investigating the current situation of sleeping thermal environment and bedroom air conditioning, in order to gather relevant background information to develop strategies for bedroom air conditioning in the subtropics. It focused on the use patterns and types of bedroom air conditioning systems used, human factors such as the use of bedding and sleep wear during sleep, preference for indoor air temperature settings in bedrooms, ventilation control at nighttime with room air conditioner (RAC) turned on, etc. The results of the survey showed that most of the respondents would prefer a relatively low indoor air temperature at below 24 {sup o}C. Most of the respondents might however not be satisfied with the indoor air quality (IAQ) in bedrooms in Hong Kong. On the other hand, 68% of the respondents did not use any ventilation control intentionally during their sleep with their RACs turned on. A lack of knowledge of the ventilation control devices provided on window type room air conditioners (WRACs) indicated an urgent need for user education. (author)

  13. Effect of CRAC units layout on thermal management of data center

    International Nuclear Information System (INIS)

    Nada, S.A.; Said, M.A.

    2017-01-01

    Highlights: • CFD study of thermal management in data centers. • Effects of layout arrangements of the CRACs units relative to the racks array on data center performance. • Design guide liens for data centers energy efficiency improvements. - Abstract: Comprehensive numerical studies of thermal management of data centers were presented by several investigators for different geometric and operating conditions of data centers. In the present work, a technical note regarding the effect of the computer room air conditioning (CRAC) units layout arrangements is presented. Two arrangements of CRAC units layouts are investigated; namely locating CRACs units in line with the racks row and locating the CRACs units perpendicular to the rack row. Temperature distributions, air flow characteristics particularly air recirculation and bypass and thermal management in data centers are evaluated in terms of the measureable overall performance parameters: supply/return heat indices (SHI/RHI) and return temperature indices (RTI). The results showed that locating CRAC units perpendicular to the racks row has the following effects: (i) enhances the uniformity of the air flow from the perforated tiles along the rack row, (ii) reduces the hot air recirculation at the ends racks of the row and the cold air bypass at the middle rack of the row and (iii) enhances the data center performance parameters RTI, SHI and RHI.

  14. Thermal sensation and comfort with five different air terminal devices for personalized ventilation

    DEFF Research Database (Denmark)

    Kaczmarczyk, Jan; Melikov, Arsen Krikor; Bolashikov, Z.

    2004-01-01

    could not see it. During exposures, subjects performed typical office work. Several times during the experiment they answered questions regarding air quality and SBS symptoms, thermal sensation, draught risk, and reported changes made in the PVS. Results showed that all participants actively made use...

  15. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Air-cooling viability to increase the power in the thermal power stations of gas: Colombian case

    International Nuclear Information System (INIS)

    Amell, Andres; Bedoya, H. A

    2000-01-01

    Thermal power decreases as air temperature increases, which reduce both efficiency and projects yielding. Technologically it is possible to eliminate the environment temperature incidence on reduction of power and efficiency, cooling the input air to the turbine, obtaining important power and efficiency improvements. In this work, the technical and economical viability, when applying air cooling technologies (evaporative cooling, steam compression, and production and ice storage (TES) were studied, having in mind meteorological conditions and Colombian electric marketing features, in which, nearly 2800 MW of natural gas thermal power have been installed in the last decade. as a result of applying these cooling technologies the study determined: the mean potential of recoverable power at the second peak of the national demand curve, shows several schemes in which they are technically and economically viable in the Colombian context

  17. Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation

    International Nuclear Information System (INIS)

    Chen, Xiao; Wang, Qian; Srebric, Jelena

    2016-01-01

    Highlights: • This study evaluates an occupant-feedback driven Model Predictive Controller (MPC). • The MPC adjusts indoor temperature based on a dynamic thermal sensation (DTS) model. • A chamber model for predicting chamber air temperature is developed and validated. • Experiments show that MPC using DTS performs better than using Predicted Mean Vote. - Abstract: In current centralized building climate control, occupants do not have much opportunity to intervene the automated control system. This study explores the benefit of using thermal comfort feedback from occupants in the model predictive control (MPC) design based on a novel dynamic thermal sensation (DTS) model. This DTS model based MPC was evaluated in chamber experiments. A hierarchical structure for thermal control was adopted in the chamber experiments. At the high level, an MPC controller calculates the optimal supply air temperature of the chamber heating, ventilation, and air conditioning (HVAC) system, using the feedback of occupants’ votes on thermal sensation. At the low level, the actual supply air temperature is controlled by the chiller/heater using a PI control to achieve the optimal set point. This DTS-based MPC was also compared to an MPC designed based on the Predicted Mean Vote (PMV) model for thermal sensation. The experiment results demonstrated that the DTS-based MPC using occupant feedback allows significant energy saving while maintaining occupant thermal comfort compared to the PMV-based MPC.

  18. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    Directory of Open Access Journals (Sweden)

    Rongxiang Zhang

    2015-09-01

    Full Text Available Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is conducted by using the Monte Carlo simulation method. A structure preserving model is applied to the multi-bus power system, in which air conditioners are aggregated at certain load buses. An inner-outer iteration scheme is adopted to solve power system dynamics. An experiment is conducted on a test air conditioner to examine the performance of the proposed decentralized control law. Simulation results on a test power system verify the effectiveness of the proposed strategy for air conditioners participating in frequency control.

  19. Experimental study on the thermal performance of a new type of thermal energy storage based on flat micro-heat pipe array

    International Nuclear Information System (INIS)

    Li, Feng-fei; Diao, Yan-hua; Zhao, Yao-hua; Zhu, Ting-ting; Liu, Jing

    2016-01-01

    Highlights: • A novel thermal energy storage based on flat micro-heat pipe array is proposed. • The thermal storage shows excellent thermal performance in the working process. • The novel thermal storage has the advantage of low flow resistance. - Abstract: The thermal performance of an air-based phase change storage unit is analyzed and discussed in this study. The thermal energy storage uses flat micro-heat pipe array (FMHPA) as the core heat transfer component and lauric acid as phase change material (PCM). An experimental system is devised to test the heat storage–release property of the storage unit under different inlet temperatures and flow rates of the heat transfer medium. The performance of the storage unit and the melting/solidification curves of the phase change material are obtained based on extensive experimental data. Experimental results indicate that the flat micro-heat pipe array exhibits excellent temperature uniformity in the heat storage–release process, and the performance of the storage unit is efficient and steady.

  20. Computational Fluid Dynamics and Room Air Movement

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2004-01-01

    on the mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem...

  1. Thermal performance of 2350 kW totally enclosed air to air cooled motor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.C.; Kuo, S.C.; Chen, S.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Mechanical Engineering; Cheng, T.F. [TATUNG CO., Sanhsia, Taiwan (China)

    2009-07-01

    This study investigated numerically and experimentally the thermal performance of a 2350 kW enclosed air-to-air cooled motor. The experiment was divided into 2 sections. The centrifugal fans were tested using a standard test apparatus. Flow rates, output power, and pressure drop between the inlet and outlet were obtained. The motor was then tested to measure the flow rate of the external flow, and inlet and outlet temperatures of the external and internal flow in the heat exchanger. Motor performance was then simulated using a computational fluid dynamics (CFD) tool. Heat transfer within the motor was divided into external and internal flows. External flow was driven by the rotation of the centrifugal fan mounted to the frame on the motor shaft and passing through the tubes of a staggered heat exchanger mounted on the top of the frame. Internal flow was circulated through the heat exchanger by 2 axial fans located on either side of the rotor and cooled by the external flow. Axial and centrifugal fan simulations were in good agreement with results obtained during the experiments. The study demonstrated that the calculated velocity distributions of external flow fluids through the heat exchanger tubes are non-uniform. Air outlet temperatures for internal and external flows were estimated within 2 per cent. However, stator and rotor simulations were 3 per cent lower than experimental measured values. 7 refs., 1 tab., 15 figs.

  2. Cooling Effectiveness Measurements for Air Film Cooling of Thermal Barrier Coated Surfaces in a Burner Rig Environment Using Phosphor Thermometry

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    While the effects of thermal barrier coating (TBC) thermal protection and air film cooling effectiveness are usually studied separately, their contributions to combined cooling effectiveness are interdependent and are not simply additive. Therefore, combined cooling effectiveness must be measured to achieve an optimum balance between TBC thermal protection and air film cooling. In this investigation, surface temperature mapping was performed using recently developed Cr-doped GdAlO3 phosphor thermometry. Measurements were performed in the NASA GRC Mach 0.3 burner rig on a TBC-coated plate using a scaled up cooling hole geometry where both the mainstream hot gas temperature and the blowing ratio were varied. Procedures for surface temperature and cooling effectiveness mapping of the air film-cooled TBC-coated surface are described. Applications are also shown for an engine component in both the burner rig test environment as well as an engine afterburner environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  3. Design Evaluation of Thermal-hydraulic Test Facility for a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungmo; Kim, Byeong-Yeon; Ko, Yung Joo; Cho, Youngil; Kim, Jong-Man; Son, Seok-Kwon; Jo, Youngchul; Kang, Byeong Su; Jung, Minhwan; Eoh, Jaehyuk; Lee, Hyeong-Yeon; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the recent progress of overall design phase for the SELFA facility and deals with basic thermal-hydraulic design parameters and its design validation as well. For more reliable design of the safety-grade decay heat removal system (DHRS) in PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor), two kinds of sodium-to-air heat exchangers have been employed in the system as an ultimate heat sink. One is a natural draft sodium-to-air heat exchanger (AHX) with helically-coiled sodium tubes, and the other is a forced draft sodium-to-air heat exchanger (FHX) with finned tubes with a straight-type arranged. Since the FHX is normally operated in an active mode with a forced air draft conditions, its performance should be verified for any anticipated operating conditions. To validate the test section design, evaluations of both thermal-hydraulic and mechanical design have been carried out, and some new concepts or devices were newly employed to replicate the prototypic conditions as closely as possible.

  4. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

    Science.gov (United States)

    Feng, Li-shuang; Wang, Kai; Jiao, Hong-chen; Wang, Jun-jie; Liu, Dan-ni; Yang, Zhao-hua

    2018-01-01

    A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically 16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

  5. Entransy analysis on the thermal performance of flat plate solar air collectors

    Institute of Scientific and Technical Information of China (English)

    Jie Deng; Xudong Yang; Yupeng Xu; Ming Yang

    2017-01-01

    Based on the thermo-electric analogy (the so-called thermal entransy analysis), the unified airside convective heat transfer coefficient for different sorts of flat plate solar air collectors (FPSACs) is identified in terms of colector aperture area. In addition, the colector thermodynamic characteristic matching coefficient is defined to depict the matching property of collector thermal performance between the collector airside heat transfer and the total heat losses. It is found that the airside convective heat transfer coefficient can be experimentally determined by collector thermal performance test method to compare the airside thermal performances of FPSACs with different types of airflow structures. Moreover, the smaler the colector thermodynamic characteristic matching coefficient is, the better the thermodynamic perfect degree of a FPSAC is. The minimum limit value of the collector thermodynamic matching coefficient is close to zero but it can not vanish in practical engineering. Parameter sensitivity analysis on the total entransy dissipation and the entransy increment of a general FPSAC is also undertaken. The results indicate that the effective way of decreasing total entransy dissipation and enhancing the useful entransy increment is improving the efficiency intercept of the FPSAC. This is equivalent to the cognition result of thermal analysis. However, the evaluation indices identified by the thermal entransy analysis can not be extracted by singular thermal analysis.

  6. Experimental and theoretical analysis of effects of atomic, diatomic and polyatomic inert gases in air and EGR on mixture properties, combustion, thermal efficiency and NOx emissions of a pilot-ignited NG engine

    International Nuclear Information System (INIS)

    Li, Weifeng; Liu, Zhongchang; Wang, Zhongshu; Dou, Huili

    2015-01-01

    Highlights: • The specific heat ratio of the mixture increases with increasing Ar. • The thermal efficiency increases first and then decreases with increasing Ar. • Mechanisms of reducing NOx emissions are different for different dilution gases. • A suitable inert gas should be used to meet different requirements. - Abstract: Argon (Ar), nitrogen (N_2) and carbon dioxide (CO_2), present in exhaust gas recirculation (EGR) and air, are common atomic, diatomic and polyatomic inert gases, separately. As dilution gases, they are always added into the intake charge to reduce nitrogen oxides (NOx) emissions, directly or along with EGR and air. This paper presents the effects of Ar, N_2 and CO_2 on mixture properties, combustion, thermal efficiency and NOx emissions of pilot-ignited natural gas engines. Thermodynamic properties of the air-dilution gas mixture with increasing dilution gases, including density, gas constant, specific heat ratio, specific heat capacity, heat capacity and thermal diffusivity, were analyzed theoretically using thermodynamic relations and ideal gas equations based on experimental results. The thermal and diluent effects of dilution gases on NOx emissions were investigated based on Arrhenius Law and Zeldovich Mechanism, experimentally and theoretically. The experiments were arranged based on an electronically controlled heavy-duty, 6-cylinder, turbocharged, pilot-ignited natural gas engine. The resulted show that adding different inert gases into the intake charge had different influences on the thermodynamic properties of the air-dilution gas mixture. No great change in combustion phase was found with increasing dilution ratio (DR) of Ar, while the flame development duration increased significantly and CA50 moved far away from combustion top dead center (TDC) obviously with increasing DR for both of N_2 and CO_2. Adding Ar was superior in maintaining high thermal efficiencies than CO_2 and N_2, but adding CO_2 was superior in maintaining

  7. Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre

    Energy Technology Data Exchange (ETDEWEB)

    Kavgic, M.; Mumovic, D.; Young, A. [The Bartlett School of Graduate Studies, University College London, Gower Street, London, WC1E 6BT, England (United Kingdom); Stevanovic, Z. [Institute of Nuclear Sciences - Vinca, P.O. Box 522, 11001 Belgrade (RS)

    2008-07-01

    Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO{sub 2}, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants' feet. (author)

  8. Preliminary results of thermal igniter experiments in H2-air-steam environments

    International Nuclear Information System (INIS)

    Lowry, W.

    1981-01-01

    Thermal igniters (glow plugs), proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containment, have been tested for functionability in mixtures of air, hydrogen, and steam. Test environments included 6% to 16% hydrogen concentrations in air, and 8%, 10%, and 12% hydrogen in mixtures with 30% and 40% steam fractions. All were conducted in a 10.6 ft 3 insulated pressure vessel. For all of these tests the glow plug successfully initiated combustion. Dry air/hydrogen tests exhibited a distinct tendency for complete combustion at hydrogen concentrations between 8% and 9%. Steam suppressed both peak pressures and completeness of combustion. No combustion could be initiated at or above a 50% steam fraction. Circulation of the mixture with a fan increased the completeness of combustion. The glow plug showed no evidence of performance degradation throughout the program

  9. Impact of facially applied air movement on the development of the thermal plume above a sitting occupant

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.

    2011-01-01

    implemented in practice. In this study the impact of locally applied airflow on the thermal plume generated by a sitting human body was investigated. The experiment was performed in a climate chamber with upward piston flow. A thermal manikin was sitting on a computer chair behind a table. The air speed...

  10. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine to ...

  11. Thermal performance of air-conditioned office buildings constructed with inclined walls in different climates in China

    International Nuclear Information System (INIS)

    Chan, A.L.S.; Chow, T.T.

    2014-01-01

    Highlights: • A generic fully air-conditioned office building with inclined walls was modeled. • Simulations were run under climatic conditions in three modern cities in China. • Reduction in cooling load can outweigh the increase in heating load for Hong Kong. • Inclined angle of 30° is appropriate for inverted pyramidal building in Hong Kong. • Building constructed with inclined walls is not encouraged in Shanghai and Beijing. - Abstract: An inverted pyramidal building is built with inclined walls instead of the traditional vertical façades. In terms of thermal performance, an inverted pyramidal building can provide a self-shading effect against the beam solar radiation, leading to a reduction in solar heat gain as well as building cooling load. On the other hand, the heating requirement of an inverted pyramidal building will be increased in winter. There is a strong dependency of building performance on the climatic condition. In this study, a generic air-conditioned office building with inclined walls set at different inclination angles was modeled using a building energy simulation program. Computer simulations were run to assess the thermal performance of the building constructed with inclined walls under different climatic conditions in three modern cities in China–Hong Kong, Shanghai and Beijing. The results reveal that for the building cases with inclined walls set at different inclination angles in subtropical Hong Kong, the saving in annual cooling load ranges from 0.6% to 10.9% and can outweigh the increase in heating load. Moreover, an inclination angle of 30° was found as a better design option for an inverted pyramidal building with symmetrical layout design under the climatic condition in Hong Kong. For the other two cities: Shanghai and Beijing, the saving in cooling load due to self-shading effect cannot offset the increased heating requirement. Design and construction of an inverted pyramidal building is not encouraged in these two

  12. Experimental evidence of the thermal effect of lubricating oil sprayed in sliding-vane air compressors

    Directory of Open Access Journals (Sweden)

    Gianluca Valenti

    2014-11-01

    Full Text Available A way to increase the efficiency of positive-displacement air compressor is spraying the lube oil to exploit it not only as lubricating and sealing agent but also as thermal ballast. This work seeks the experimental evidence in sliding-vane compressors by measuring the air standard volume flow rate and the electrical power input of three diverse configurations. The first configuration, taken as the reference, employs a conventional injection system comprising calibrated straight orifices. The other two, referred to as advanced, adopt smaller orifices and pressure-swirl full-cone nozzles designed for the purpose; the third configuration utilizes a pump to boost the oil pressure. The laser imagining technique shows that the nozzles generate sprays that break-up within a short distance into spherical droplets, ligaments, ramifications and undefined structures. Tests on the packaged compressors reveal that the advanced configurations provide almost the same air flow rate while utilizing half of the oil because the sprays generate a good sealing. Moreover, the sprayed oil is acting as a thermal ballast because the electrical input is reduced by 3.5% and 3.0%, respectively, if the pump is present or not , while the specific energy requirement, accounting for the slightly reduced air flow, by 2.4% and 2.9%, respectively.

  13. Preliminary assessment of the thermal effects of an annular air space surrounding an emplaced nuclear waste canister

    International Nuclear Information System (INIS)

    Davis, B.W.

    1979-01-01

    Modeling results have previously shown that the presence of a large air space (e.g., a repository room) within a nuclear waste repository is expected to cause a waste canister's temperature to remain cooler than it would otherwise be. Results presented herein show that an annular air space surrounding the waste canisters can have similar cooling effects under certain prescribable conditions; for a 16 ft x 1 ft diameter canister containing 650 PWR rods which initially generate a total of 4.61 kw, analysis will show that annular air spaces greater than 11 in will permit the canister surface to attain peak temperatures lower than that which would result from a zero-gap/perfect thermal contact. It was determined that the peak radial temperature gradient in the salt varies in proportion to the inverse of the drill hole radius. Thermal radiation is shown to be the dominant mode of heat transfer across an annular air space during the first two years after emplacement. Finally, a methodology is presented which will allow investigators to easily model radiation and convection heat transfer through air spaces by treating the space as a conduction element that possesses non-linear temperature dependent conductivity

  14. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    OpenAIRE

    Xiaopeng Guo; Xiaodan Guo; Jiahai Yuan

    2014-01-01

    Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, s...

  15. Predicting the Air Quality, Thermal Comfort and Draught Risk for a Virtual Classroom with Desk-Type Personalized Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2018-02-01

    Full Text Available This paper concerns the prediction of indoor air quality (IAQ, thermal comfort (TC and draught risk (DR for a virtual classroom with desk-type personalized ventilation system (PVS. This numerical study considers a coupling of the computational fluid dynamics (CFD, human thermal comfort (HTC and building thermal behavior (BTB numerical models. The following indexes are used: the predicted percentage of dissatisfied people (PPD index is used for the evaluation of the TC level; the carbon dioxide (CO2 concentration in the breathing zone is used for the calculation of IAQ; and the DR level around the occupants is used for the evaluation of the discomfort due to draught. The air distribution index (ADI, based in the TC level, the IAQ level, the effectiveness for heat removal and the effectiveness for contaminant removal, is used for evaluating the performance of the personalized air distribution system. The numerical simulation is made for a virtual classroom with six desks. Each desk is equipped with one PVS with two air terminal devices located overhead and two air terminal devices located below the desktop. In one numerical simulation six occupants are used, while in another simulation twelve occupants are considered. For each numerical simulation an air supply temperature of 20 °C and 24 °C is applied. The results obtained show that the ADI value is higher for twelve persons than for six persons in the classroom and it is higher for an inlet air temperature of 20 °C than for an inlet air temperature of 24 °C. In future works, more combinations of upper and lower air terminal devices located around the body area and more combinations of occupants located in the desks will be analyzed.

  16. Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module

    International Nuclear Information System (INIS)

    Tong, Wei; Somasundaram, Karthik; Birgersson, Erik; Mujumdar, Arun S.; Yap, Christopher

    2016-01-01

    Highlights: • Coupled thermal-electrochemical model for a Li-ion battery module resolving every functional layer in all cells. • Parametric analysis of forced convection air cooling of Li-ion battery module with a detailed multi-scale model. • Reversing/reciprocating airflow for Li-ion battery module thermal management provides uniform temperature distribution. - Abstract: Thermal management is critical for safe and reliable operation of lithium-ion battery systems. In this study, a one-dimensional thermal-electrochemical model of lithium-ion battery interactively coupled with a two-dimensional thermal-fluid conjugate model for forced convection air cooling of a lithium-ion battery module is presented and solved numerically. This coupled approach makes the model more unique and detailed as transport inside each cell in the battery module is solved for and thus covering multiple length and time scales. The effect of certain design and operating parameters of the thermal management system on the performance of the battery module is assessed using the coupled model. It is found that a lower temperature increase of the battery module can be achieved by either increasing the inlet air velocity or decreasing the distance between the cells. Higher air inlet velocity, staggered cell arrangement or a periodic reversal airflow of high reversal frequency results in a more uniform temperature distribution in the module. However, doing so increases the parasitic load as well as the volume of the battery module whence a trade-off should be taken into account between these parameters.

  17. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myoung Jun; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger.

  18. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Youngin

    2014-01-01

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  19. Thermal energy storages analysis for high temperature in air solar systems

    International Nuclear Information System (INIS)

    Andreozzi, Assunta; Buonomo, Bernardo; Manca, Oronzio; Tamburrino, Salvatore

    2014-01-01

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  20. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  1. Thermogravimetric assessment of thermal degradation in asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Barneto, Agustín García, E-mail: agustin.garcia@diq.uhu.es [Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Huelva (Spain); Carmona, José Ariza [Department of Chemical Engineering, Physical Chemistry and Organic Chemistry, University of Huelva, Huelva (Spain); Garrido, María José Franco [CEPSA, RDI Centre, Madrid (Spain)

    2016-03-20

    Graphical abstract: - Highlights: • Asphaltenes content of visbreaking streams in oil refinery can be measured by using TGA. • Deconvoluting TGA curves allows the thermal-based composition of asphaltenes to be elucidated. • Asphaltenes cracking involves acceleratory stages compatible with autocatalytic kinetic. • Activation energy during asphaltenes pyrolysis increased with increasing temperature. • Activation energy remained almost constant at 200–225 kJ/mol during oxidative cracking. - Abstract: Monitoring asphaltenes is very important with a view to optimizing visbreaking units in oil refineries. Current analyses based on selective dissolution in different solvents are slow, so new, more expeditious methods for measuring asphaltenes are required to facilitate fuel-oil production. In this work, we studied the thermal degradation of asphaltenes as the potential basis for a thermogravimetric method for their monitoring in visbreaking streams. The thermal degradation of asphaltenes occurs largely from 400 to 500 °C; the process is quite smooth in an inert environment but involves several fast mass loss events in the air. Kinetic parameters for characterizing the process were determined by using two model-free methods and the modified Prout–Tompkins kinetic equation to examine asphaltene thermolysis. Both types of methods showed the activation energy to increase during pyrolysis but to remain almost constant during cracking in the presence of oxygen or even diminish during char oxidation. Deconvoluting the thermogravimetric profiles revealed that asphaltene thermolysis in the air cannot be accurately described in terms of an nth order kinetic model because it involves some acceleratory phases. Also, thermogravimetric analyses of visbreaking streams revealed that char production in them is proportional to their asphaltene content. This relationship enables the thermogravimetric measurement of asphaltenes.

  2. Thermogravimetric assessment of thermal degradation in asphaltenes

    International Nuclear Information System (INIS)

    Barneto, Agustín García; Carmona, José Ariza; Garrido, María José Franco

    2016-01-01

    Graphical abstract: - Highlights: • Asphaltenes content of visbreaking streams in oil refinery can be measured by using TGA. • Deconvoluting TGA curves allows the thermal-based composition of asphaltenes to be elucidated. • Asphaltenes cracking involves acceleratory stages compatible with autocatalytic kinetic. • Activation energy during asphaltenes pyrolysis increased with increasing temperature. • Activation energy remained almost constant at 200–225 kJ/mol during oxidative cracking. - Abstract: Monitoring asphaltenes is very important with a view to optimizing visbreaking units in oil refineries. Current analyses based on selective dissolution in different solvents are slow, so new, more expeditious methods for measuring asphaltenes are required to facilitate fuel-oil production. In this work, we studied the thermal degradation of asphaltenes as the potential basis for a thermogravimetric method for their monitoring in visbreaking streams. The thermal degradation of asphaltenes occurs largely from 400 to 500 °C; the process is quite smooth in an inert environment but involves several fast mass loss events in the air. Kinetic parameters for characterizing the process were determined by using two model-free methods and the modified Prout–Tompkins kinetic equation to examine asphaltene thermolysis. Both types of methods showed the activation energy to increase during pyrolysis but to remain almost constant during cracking in the presence of oxygen or even diminish during char oxidation. Deconvoluting the thermogravimetric profiles revealed that asphaltene thermolysis in the air cannot be accurately described in terms of an nth order kinetic model because it involves some acceleratory phases. Also, thermogravimetric analyses of visbreaking streams revealed that char production in them is proportional to their asphaltene content. This relationship enables the thermogravimetric measurement of asphaltenes.

  3. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  4. Measurements of some parameters of thermal sparks with respect to their ability to ignite aviation fuel/air mixtures

    Science.gov (United States)

    Haigh, S. J.; Hardwick, C. J.; Baldwin, R. E.

    1991-01-01

    A method used to generate thermal sparks for experimental purposes and methods by which parameters of the sparks, such as speed, size, and temperature, were measured are described. Values are given of the range of such parameters within these spark showers. Titanium sparks were used almost exclusively, since it is particles of this metal which are found to be ejected during simulation tests to carbon fiber composite (CFC) joints. Tests were then carried out in which titanium sparks and spark showers were injected into JP4/(AVTAG F40) mixtures with air. Single large sparks and dense showers of small sparks were found to be capable of causing ignition. Tests were then repeated using ethylene/air mixtures, which were found to be more easily ignited by thermal sparks than the JP4/ air mixtures.

  5. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  6. Thermal performance of a multiple PCM thermal storage unit for free cooling

    International Nuclear Information System (INIS)

    Mosaffa, A.H.; Infante Ferreira, C.A.; Talati, F.; Rosen, M.A.

    2013-01-01

    Highlights: ► Numerical analysis on the performance of a thermal storages as free cooling system. ► Employing multiple PCMs to enhance heat transfer rate in thermal storages. ► Using an effective heat capacity method, the phase change parameters are determined. ► The effect of the slabs size and air channel thickness on COP is investigated. - Abstract: As demand for refrigeration and air conditioning increased during the last decade, the opportunities have expanded for using thermal energy storage (TES) systems in an economically advantageous manner in place of conventional cooling plants. Many cool storage systems use phase change materials (PCMs) and achieve peak load shifting in buildings. This work presents numerical investigations of the performance enhancement of a free cooling system using a TES unit employing multiple PCMs. The TES unit is composed of a number of rectangular channels for the flowing heat transfer fluid, separated by PCM slabs. Using the effective heat capacity method, the melting and solidification of the PCM is solved. The forced convective heat transfer inside the channels is analyzed by solving the energy equation, which is coupled with the heat conduction equation in the container wall. The effect of design parameters such as PCM slab length, thickness and fluid passage gap on the storage performance is also investigated using an energy based optimization. The results show that a system which can guarantee comfort conditions for the climate of Tabriz, Iran has an optimum COP of 7.0. This could be achieved by a combination of CaCl 2 ·6H 2 O with RT25 with the optimum air channel thickness of 3.2 mm, length of 1.3 m and PCM slab thickness of 10 mm

  7. Solar thermal energy utilization: A bibliography with abstracts

    Science.gov (United States)

    1976-01-01

    Bibliographic series, which is periodically updated, cites documents published since 1957 relating to practical thermal utilization of solar energy. Bibliography is indexed by author, corporate source, title, and keywords.

  8. Augmentation of Effective Thermal Gain of Solar Air Heater using a Novel Turbulator Design- A CFD Study

    Directory of Open Access Journals (Sweden)

    Dhagat Animesh

    2018-01-01

    Full Text Available Augmentation of thermal performance of solar air heater has been the focus of many researchers over the last decades and the use of turbulator or artificial roughness to provide increased fluid mixing in order to achieve augmented heat transfer has been a widely accepted technique. This work aims to evaluate the effect of a novel turbulator design on the effective thermal performance of solar air heater using the methodology of computational fluid dynamics (CFD. A two dimensional CFD analysis is carried out to evaluate the thermal characteristics of solar air heater at various flow Reynolds number conditions for different geometric parameters of the proposed turbulator design. The pitch of the turbulator is varied as 10mm, 20mm, 30mm, 40mm and 50mm for a fixed turbulator height of 2 mm. The Reynolds number is varied from 6,000 to 27,000. The analysis shows that the lower values of pitch produces higher improvement in heat transfer. The maximum increase in Nusselt number is found to be about 2.98 times as compared to the base model for the flow Reynolds number of about 6000. The highest increase in the friction factor is found to be about 3.05 times relative to the base model. The maximum thermal enhancement factor is found to be about 1.99 for the pitch value of 10 mm at a flow Reynolds number of about 6000.

  9. The Response of the Ocean Thermal Skin Layer to Air-Sea Surface Heat Fluxes

    Science.gov (United States)

    Wong, Elizabeth Wing-See

    There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the air-sea boundary. The hypothesis is that since heat lost through the air-sea interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through processes such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the air-sea interface is more

  10. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    Energy Technology Data Exchange (ETDEWEB)

    Nejman, Alicja, E-mail: anejman@iw.lodz.pl [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Cieślak, Małgorzata [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland); Gajdzicki, Bogumił [Textile Research Institute, Scientific Department of Textile Chemistry and Products Modification, 5/15 Brzezinska St., 92-103 Lodz (Poland); Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka [Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, 5/15 Brzezinska St., 92-103 Lodz (Poland)

    2014-08-10

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric.

  11. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric

    International Nuclear Information System (INIS)

    Nejman, Alicja; Cieślak, Małgorzata; Gajdzicki, Bogumił; Goetzendorf-Grabowska, Bogna; Karaszewska, Agnieszka

    2014-01-01

    Highlights: • We applied microcapsules containing n-octadecane for the modification of knitted fabric. • We used printing, coating and padding techniques for the application of microcapsules. • M-PCM application methods allow to regulate the thermal properties of textiles. • M-PCM application methods allow to regulate the air permeability properties of textiles. - Abstract: The aim of the study is to analyze the impact of application methods of microcapsules containing n-octadecane as phase change materials (M-PCM) on the thermal properties and air permeability of modified textile fabric. Polyester knitted fabric, printing, coating and padding methods and polymer pastes with 20 wt.% of M-PCM were used. For the assessment of modification effects the differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used. DSC analysis showed that the highest enthalpy of phase transitions has printed fabric and the lowest padded fabric. The widest range of phase transitions temperatures was observed for printed fabric, slightly narrower for coated fabric and the narrowest for padded fabric. SEM analysis showed differences in the morphology of modified fabrics depending on incorporation techniques, which are compatible with differences in air permeability results. M-PCM application techniques allow to regulate the thermal and air permeability properties of fabric

  12. Modeling and parametric studies for thermal performance of an earth to air heat exchanger integrated with a greenhouse

    International Nuclear Information System (INIS)

    Ghosal, M.K.; Tiwari, G.N.

    2006-01-01

    A thermal model has been developed to investigate the potential of using the stored thermal energy of the ground for greenhouse heating and cooling with the help of an earth to air heat exchanger (EAHE) system integrated with the greenhouse located in the premises of IIT, Delhi, India. Experiments were conducted extensively throughout the year 2003, but the developed model was validated against typical clear and sunny days experiments. Parametric studies performed for the EAHE coupled with the greenhouse illustrate the effects of buried pipe length, pipe diameter, mass flow rate of air, depth of ground and types of soil on the greenhouse air temperatures. The temperatures of the greenhouse air, with the experimental parameters of the EAHE, were found to be, on average 7-8 deg. C higher in the winter and 5-6 deg. C lower in the summer than those of the same greenhouse without the EAHE. The greenhouse air temperatures increase in the winter and decrease in the summer with increasing pipe length, decreasing pipe diameter, decreasing mass flow rate of flowing air inside buried pipe and increasing depth of ground up to 4 m. The predicted and measured values of the greenhouse air temperatures that were verified, in terms of root mean square percent deviation and correlation coefficient, exhibited fair agreement

  13. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  14. Instrumentation and Control Systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Yeon; Kim, Hyung Mo; Cho, Youn Gil; Kim, Jong Man; Ko, Yung Joo; Kang, Byeong Su; Jung, Min Hwan; Jeong, Ji Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A forced-draft sodium-to-air heat exchanger (FHX) is a part of decay heat removal system (DHRS) in Prototype Gen-IV Sodium-cooled fast reactor (PGSFR), which is being developed at Korea Atomic Energy Research Institute (KAERI). Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA) is a test facility for verification and validation of the design code for a forced-draft sodium-to-air heat exchanger (FHX). In this paper, we have provided design and fabrication features for the instrumentation and control systems of SELFA. In general, the instrumentation systems and control systems are coupled for measurement and control of process variables. Instrumentation systems have been designed for investigating thermal-hydraulic characteristics of FHX and control systems have been designed to control the main components (e.g. electromagnetic pumps, heaters, valves etc.) required for test in SELFA. In this paper, we have provided configurations of instrumentation and control systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA). The instrumentation and control systems of SELFA have been implemented based on the expected operation ranges and lesson learned from operational experience of 'Sodium integral effect test loop for safety simulation and assessment-1' (STELLA-1)

  15. Analytical solutions for evaluating the thermal performances of wet air cooling coils under both unit and non-unit Lewis Factors

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng, S.M.; Xu, X.G.

    2010-01-01

    Analytical solutions for evaluating the thermal performances of both chilled water wet cooling coils and direct expansion (DX) wet cooling coils, respectively, under both unit and non-unit Lewis Factors are developed and reported in this paper. The analytical solution was validated by comparing its predictions with those from numerically solving the fundamental governing equations of heat and mass transfer taking place in a wet cooling coil. With the analytical solutions, the distributions of air temperature and humidity ratio along air flow direction in a wet cooling coil can be predicted, and the differences in the thermal performances of the cooling coils under both unit and non-unit Lewis Factors can be identified. The analytical solutions, on one hand, can be a low-cost replacement to numerically solving the fundamental heat and mass transfer governing equations, and on the other hand, is able to deal with evaluating thermal performance for wet air cooling coils operated under both unit and non-unit Lewis Factors.

  16. The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management

    International Nuclear Information System (INIS)

    Lu, Pengyu; Gao, Qing; Wang, Yan

    2016-01-01

    Highlights: • A 1D/3D collaborative computing simulation method for vehicle thermal management. • Analyzing the influence of the thermodynamic systems and the engine compartment geometry on the vehicle performance. • Providing the basis for the matching energy consumptions of thermodynamic systems in the underhood. - Abstract: The vehicle integrated thermal management containing the engine cooling circuit, the air conditioning circuit, the turbocharged inter-cooled circuit, the engine lubrication circuit etc. is the important means of enhancing power performance, promoting economy, saving energy and reducing emission. In this study, a 1D/3D collaborative simulation method is proposed with the engine cooling circuit and air conditioning circuit being the research object. The mathematical characterizations of the multiple thermodynamic systems are achieved by 1D calculation and the underhood structure is described by 3D simulation. Through analyzing the engine compartment integrated heat transfer process, the model of the integrated thermal management system is formed after coupling the cooling circuit and air conditioning circuit. This collaborative simulation method establishes structured correlation of engine-cooling and air conditioning thermal dissipation in the engine compartment, comprehensively analyzing the engine working process and air condition operational process in order to research the interaction effect of them. In the calculation examples, to achieve the integrated optimization of multiple thermal systems design and performance prediction, by describing the influence of system thermomechanical parameters and operating duty to underhood heat transfer process, performance evaluation of the engine cooling circuit and the air conditioning circuit are realized.

  17. Thermal fatigue behavior of C/C composites modified by SiC-MoSi2-CrSi2 coating

    International Nuclear Information System (INIS)

    Chu Yanhui; Fu Qiangang; Li Hejun; Li Kezhi

    2011-01-01

    Highlights: → The low-density C/C composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation. → The thermal fatigue behavior of the modified C/C composites was studied after undergoing thermal cycling for 20 times under the different environments. → The decrease of the flexural strength of the modified C/C composites during thermal cycle in air was primarily attributed to the partial oxidation of the modified C/C samples. - Abstract: Carbon/carbon (C/C) composites were modified by SiC-MoSi 2 -CrSi 2 multiphase coating by pack cementation, and their thermal fatigue behavior under thermal cycling in Ar and air environments was investigated. The modified C/C composites were characterized by scanning electron microscopy and X-ray diffraction. Results of tests show that, after 20-time thermal cycles between 1773 K and room temperature in Ar environment, the flexural strength of modified C/C samples decreased lightly and the percentage of remaining strength was 94.92%. While, after thermal cycling between 1773 K and room temperature in air for 20 times, the weight loss of modified C/C samples was 5.1%, and the flexural strength of the modified C/C samples reduced obviously and the percentage of remaining strength was only 75.22%. The fracture mode of modified C/C samples changed from a brittle behavior to a pseudo-plastic one as the service environment transformed from Ar to air. The decrease of the flexural strength during thermal cycle in air was primarily attributed to the partial oxidation of modified C/C samples.

  18. High-Thermal- and Air-Stability Cathode Material with Concentration-Gradient Buffer for Li-Ion Batteries.

    Science.gov (United States)

    Shi, Ji-Lei; Qi, Ran; Zhang, Xu-Dong; Wang, Peng-Fei; Fu, Wei-Gui; Yin, Ya-Xia; Xu, Jian; Wan, Li-Jun; Guo, Yu-Guo

    2017-12-13

    Delivery of high capacity with high thermal and air stability is a great challenge in the development of Ni-rich layered cathodes for commercialized Li-ion batteries (LIBs). Herein we present a surface concentration-gradient spherical particle with varying elemental composition from the outer end LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM) to the inner end LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA). This cathode material with the merit of NCM concentration-gradient protective buffer and the inner NCA core shows high capacity retention of 99.8% after 200 cycles at 0.5 C. Furthermore, this cathode material exhibits much improved thermal and air stability compared with bare NCA. These results provide new insights into the structural design of high-performance cathodes with high energy density, long life span, and storage stability materials for LIBs in the future.

  19. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  20. NSF-RANN trace contaminants abstracts

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Harnden, D.S.

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included

  1. Study and modeling of energy performance of a hybrid photovoltaic/thermal solar collector: Configuration suitable for an indirect solar dryer

    International Nuclear Information System (INIS)

    Slimani, Mohamed El Amine; Amirat, Madjid; Bahria, Sofiane; Kurucz, Ildikó; Aouli, M’heni; Sellami, Rabah

    2016-01-01

    Highlights: • The simulation results are in compliance with the experimental measurements indicated in the previous literature. • The accuracy of the numerical model is due to the presented energy analysis and also to the well-adopted correlations. • A comparative study between two solar photovoltaic/thermal air collectors was carried out. • The thermal efficiency of the analyzed hybrid collector increased by 30.85% compared to the basic configuration. • The air temperature supplied by a double-pass photovoltaic/thermal collector is very suitable for solar drying. - Abstract: In this paper, a configuration of photovoltaic-thermal hybrid solar collector embeddable in an indirect solar dryer system is studied. In the present structure of the solar photovoltaic/thermal air collector, the air goes through a double pass below and above the photovoltaic module. A system of electrical and thermal balance equations is developed and analyzed governing various electric and heat transfer parameters in the solar hybrid air collector. The numerical model planned for this study gives a good precision of results, which are close to the experimental ones (of previous literature), and makes it possible to have a good assessment of energy performance regarding the studied configuration (temperature, electric and thermal powers, electrical and thermal efficiencies, etc.). The numerical results show the energy effectiveness of this hybrid collector configuration and particularly its interesting use in an indirect solar dryer system that provides a more suitable air temperature for drying agricultural products. The values of the electrical, thermal and overall energy efficiencies reaches 10.5%, 70% and 90% respectively, with a mass flow rate of 0.0155 kg/s and weather data sample for the month of June in the Algiers site. The results presented in this study also reveal how important the effect of certain parameters and operating conditions on the performance of the hybrid

  2. Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2018-01-01

    A hybrid system with a radiant heating system and a mechanical ventilation system, which is regarded as an advanced heating, ventilation and air-conditioning (HVAC) system, has been applied in many modern buildings worldwide. To date, almost no studies focused on comparative analysis of the indoor...... air distribution and the thermal environment for all combinations of radiant heating systems with mechanical ventilation systems. Therefore, in this article, the indoor air distribution and the thermal environment were comparatively analyzed in a room with floor heating (FH) or ceiling heating (CH......) and mixing ventilation (MV) or displacement ventilation (DV) when the supply air temperature ranged from 15.0°C to 19.0°C. The results showed that the temperature effectiveness values were 1.05–1.16 and 0.95–1.02 for MV+ FH and MV+ CH, respectively, and they were 0.78–0.91 and 0.51–0.67 for DV + FH and DV...

  3. CFD simulation of air to air enthalpy heat exchanger

    International Nuclear Information System (INIS)

    Al-Waked, Rafat; Nasif, Mohammad Shakir; Morrison, Graham; Behnia, Masud

    2013-01-01

    Highlights: • A CFD model capable of modelling conjugate heat and mass transfer processes. • A mesh independence studies and a CFD model validation have been conducted. • Effects of flow direction on the effectiveness have been examined. • Performance parameters were sensible and latent effectiveness and pressure drop. - Abstract: A CFD model which supports conjugate heat and mass transfer problem representation across the membrane of air-to-air energy recovery heat exchangers has been developed. The model consists of one flow passage for the hot stream and another for the adjacent cold stream. Only half of each flow passage volume has been modelled on each side of the membrane surface. Three dimensional, steady state and laminar flow studies have been conducted using a commercial CFD package. The volumetric species transport model has been adopted to describe the H 2 O and air gas mixtures. Mesh dependency has been examined and followed by validation of the CFD model against published data. Furthermore, effects of flow direction at the inlet of the heat exchanger on its thermal effectiveness have been investigated. Simulation results are presented and analysed in terms of sensible effectiveness, latent effectiveness and pressure drop across the membrane heat exchanger. Results have shown that counter-flow configuration has greater sensitivity to the mesh centre perpendicular distance from the membrane when compared to the other two flow configurations (cross-/parallel-flow). However, the lateral mesh element length has shown minimal effect on the thermal effectiveness of the enthalpy heat exchanger. For the quasi-flow heat exchanger, a perpendicular flow direction to the inlets has been found to produce a higher performance in contrast to the non-perpendicular flow

  4. Short-term effects of air quality and thermal stress on non-accidental morbidity-a multivariate meta-analysis comparing indices to single measures.

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2018-01-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  5. Short-term effects of air quality and thermal stress on non-accidental morbidity—a multivariate meta-analysis comparing indices to single measures

    Science.gov (United States)

    Lokys, Hanna Leona; Junk, Jürgen; Krein, Andreas

    2018-01-01

    Air quality and thermal stress lead to increased morbidity and mortality. Studies on morbidity and the combined impact of air pollution and thermal stress are still rare. To analyse the correlations between air quality, thermal stress and morbidity, we used a two-stage meta-analysis approach, consisting of a Poisson regression model combined with distributed lag non-linear models (DLNMs) and a meta-analysis investigating whether latitude or the number of inhabitants significantly influence the correlations. We used air pollution, meteorological and hospital admission data from 28 administrative districts along a north-south gradient in western Germany from 2001 to 2011. We compared the performance of the single measure particulate matter (PM10) and air temperature to air quality indices (MPI and CAQI) and the biometeorological index UTCI. Based on the Akaike information criterion (AIC), it can be shown that using air quality indices instead of single measures increases the model strength. However, using the UTCI in the model does not give additional information compared to mean air temperature. Interaction between the 3-day average of air quality (max PM10, max CAQI and max MPI) and meteorology (mean air temperature and mean UTCI) did not improve the models. Using the mean air temperature, we found immediate effects of heat stress (RR 1.0013, 95% CI: 0.9983-1.0043) and by 3 days delayed effects of cold stress (RR: 1.0184, 95% CI: 1.0117-1.0252). The results for air quality differ between both air quality indices and PM10. CAQI and MPI show a delayed impact on morbidity with a maximum RR after 2 days (MPI 1.0058, 95% CI: 1.0013-1.0102; CAQI 1.0068, 95% CI: 1.0030-1.0107). Latitude was identified as a significant meta-variable, whereas the number of inhabitants was not significant in the model.

  6. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage

    International Nuclear Information System (INIS)

    Barbour, Edward; Mignard, Dimitri; Ding, Yulong; Li, Yongliang

    2015-01-01

    Highlights: • The paper presents a thermodynamic analysis of A-CAES using packed bed regenerators. • The packed beds are used to store the compression heat. • A numerical model is developed, validated and used to simulate system operation. • The simulated efficiencies are between 70.5% and 71.1% for continuous operation. • Heat build-up in the beds reduces continuous cycle efficiency slightly. - Abstract: The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge–storage–discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation

  7. Prediction of air temperature for thermal comfort of people using sleeping bags: a review.

    Science.gov (United States)

    Huang, Jianhua

    2008-11-01

    Six models for determining air temperatures for thermal comfort of people using sleeping bags were reviewed. These models were based on distinctive metabolic rates and mean skin temperatures. All model predictions of air temperatures are low when the insulation values of the sleeping bag are high. Nevertheless, prediction variations are greatest for the sleeping bags with high insulation values, and there is a high risk of hypothermia if an inappropriate sleeping bag is chosen for the intended conditions of use. There is, therefore, a pressing need to validate the models by wear trial and determine which one best reflects ordinary consumer needs.

  8. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    Science.gov (United States)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  9. Effect of Ti and C particle sizes on reaction behavior of thermal explosion reaction of Cu−Ti−C system under Ar and air atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yunhong; Zhao, Qian; Li, Xiujuan; Zhang, Zhihui, E-mail: zhzh@jlu.edu.cn; Ren, Luquan

    2016-09-15

    The thermal explosion (TE) reaction behavior of Cu−Ti−C systems with different Ti and C particle sizes was investigated under air and Ar atmospheres. It was found that increasing the Ti and C particle sizes leads to higher ignition temperatures under both atmospheres and that the maximum combustion temperature decreases with increasing C particle size. The TE reaction is much easier to activate (i.e., it has a lower ignition temperature) in air because of the heat released from Ti oxidation and nitridation and Cu oxidation reactions on the Cu−Ti−C compact surface. TiC ceramic particles are successfully prepared in the bulk Cu−Ti−C compacts under both air and Ar atmospheres through a dissolution-diffusion-precipitation mechanism. Differential thermal and thermodynamic analyses show that the TE reaction ignition process in air is mainly controlled by the Ti particle size. - Highlights: • Variation of Ti and C particle sizes affects thermal reaction (TE) behaviors. • Ignition temperature under air is much lower than that under Ar atmosphere. • Heat of oxidation and nitridation reactions reduces ignition temperature under air.

  10. Design of Parallel Air-Cooled Battery Thermal Management System through Numerical Study

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2017-10-01

    Full Text Available In electric vehicles, the battery pack is one of the most important components that strongly influence the system performance. The battery thermal management system (BTMS is critical to remove the heat generated by the battery pack, which guarantees the appropriate working temperature for the battery pack. Air cooling is one of the most commonly-used solutions among various battery thermal management technologies. In this paper, the cooling performance of the parallel air-cooled BTMS is improved through choosing appropriate system parameters. The flow field and the temperature field of the system are calculated using the computational fluid dynamics method. Typical numerical cases are introduced to study the influences of the operation parameters and the structure parameters on the performance of the BTMS. The operation parameters include the discharge rate of the battery pack, the inlet air temperature and the inlet airflow rate. The structure parameters include the cell spacing and the angles of the divergence plenum and the convergence plenum. The results show that the temperature rise and the temperature difference of the batter pack are not affected by the inlet air flow temperature and are increased as the discharge rate increases. Increasing the inlet airflow rate can reduce the maximum temperature, but meanwhile significantly increase the power consumption for driving the airflow. Adopting smaller cell spacing can reduce the temperature and the temperature difference of the battery pack, but it consumes much more power. Designing the angles of the divergence plenum and the convergence plenum is an effective way to improve the performance of the BTMS without occupying more system volume. An optimization strategy is used to obtain the optimal values of the plenum angles. For the numerical cases with fixed power consumption, the maximum temperature and the maximum temperature difference at the end of the five-current discharge process for

  11. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system

    International Nuclear Information System (INIS)

    Wu, Weixiong; Yang, Xiaoqing; Zhang, Guoqing; Chen, Kai; Wang, Shuangfeng

    2017-01-01

    Highlights: • A heat pipe assisted phase change material based battery thermal management system is proposed. • The proposed system is compact and efficient from a view of practical application. • Cycling conditions are experimentally simulated for practical working environment. • The proposed system presents better thermal performance in comparison to other systems. • Combining forced air convection with heat pipe further enhances the cooling effect. - Abstract: In this paper, a heat pipe-assisted phase change material (PCM) based battery thermal management (BTM) system is designed to fulfill the comprehensive energy utilization for electric vehicles and hybrid electric vehicles. Combining the large heat storage capacity of the PCM with the excellent cooling effect of heat pipe, the as-constructed heat pipe-assisted PCM based BTM is feasible and effective with a relatively longer operation time and more suitable temperature. The experimental results show that the temperature maldistribution of battery module can be influenced by heat pipes when they are activated under high discharge rates of the batteries. Moreover, with forced air convection, the highest temperature could be controlled below 50 °C even under the highest discharge rate of 5C and a more stable and lower temperature fluctuation is obtained under cycling conditions. Meanwhile, the effectiveness of further increasing air velocity (i.e., more fan power consumption) is limited when the highest temperature continues to reduce at a lower rate due to the phase transition process of PCM. These results are expected to provide insights into the design and optimization of BTM systems.

  12. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    International Nuclear Information System (INIS)

    Garandeau, S.

    1984-01-01

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized [fr

  13. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  14. A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Abdalla Hussein Mohamed

    2018-03-01

    Full Text Available To find the temperature rise for high power density yokeless and segmented armature (YASA axial flux permanent magnet synchronous (AFPMSM machines quickly and accurately, a 3D lumped parameter thermal model is developed and validated experimentally and by finite element (FE simulations on a 4 kW YASA machine. Additionally, to get insight in the thermal transient response of the machine, the model accounts for the thermal capacitance of different machine components. The model considers the stator, bearing, and windage losses, as well as eddy current losses in the magnets on the rotors. The new contribution of this work is that the thermal model takes cooling via air channels between the magnets on the rotor discs into account. The model is parametrized with respect to the permanent magnet (PM angle ratio, the PM thickness ratio, the air gap length, and the rotor speed. The effect of the channels is incorporated via convection equations based on many computational fluid dynamics (CFD computations. The model accuracy is validated at different values of parameters by FE simulations in both transient and steady state. The model takes less than 1 s to solve for the temperature distribution.

  15. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Directory of Open Access Journals (Sweden)

    Lahimer A.A.

    2017-01-01

    Full Text Available Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I: car with/ without SRC (at different measurement time; Case (II: using two identical cars concurrently (SRC versus baseline; Case (III: using two identical cars concurrently (solar reflective film (SRF versus baseline and Case (IV: using two identical cars concurrently (SRF versus SRC. Experimental results dedicated to case (I revealed that the maximum cabin air temperature with SRC (39.6°C is significantly lower than that of baseline case (57.3°C. This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  16. The Effect of Solar Reflective Cover on Soak Air Temperature and Thermal Comfort of Car Parked under the Sun

    Science.gov (United States)

    Lahimer, A. A.; Alghoul, M. A.; Sopian, K.; Khrit, N. G.

    2017-11-01

    Parking a vehicle under the sun for a short period of time can rapidly increase the interior air cabin temperature no matter in clear sky days or even in partially cloudy days. These circumstances can be anxieties to car occupants upon entry. The aim of this paper is to evaluate experimentally the effect of solar reflective cover (SRC) on vehicle air temperature and cabin thermal comfort. Experimental measurements of parked cars were conducted in UKM, Bangi city, Malaysia (latitude of 2.9° N and longitude of 101.78° E) under partially cloudy day where average ambient temperature is 33°C. The experimental measurements cover the following cases: case (I): car with/ without SRC (at different measurement time); Case (II): using two identical cars concurrently (SRC versus baseline); Case (III): using two identical cars concurrently (solar reflective film (SRF) versus baseline) and Case (IV): using two identical cars concurrently (SRF versus SRC). Experimental results dedicated to case (I) revealed that the maximum cabin air temperature with SRC (39.6°C) is significantly lower than that of baseline case (57.3°C). This leads to temperature reduction improvement of 31% and the difference between the cabin and the ambient air temperature was minimized by approximately 73%. In addition, the results revealed that the air temperature at breath level of car with SRC dropped to comfort temperature (27°C) after 7 min while baseline car reached comfort temperature after 14 min. Results of the other cases are discussed inside the paper. Overall, it is learned that SRC is found superior as an efficient thermal insulation system limits solar radiation transmission into the cabin through the glass; keeps cabin air temperature close to the ambient temperature; and provide acceptable thermal environment to the occupants as they settle into their parked car.

  17. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower

    International Nuclear Information System (INIS)

    Papaefthimiou, V.D.; Rogdakis, E.D.; Koronaki, I.P.; Zannis, T.C.

    2012-01-01

    A thermodynamic model was developed and used to assess the sensitivity of thermal performance characteristics of a closed wet cooling tower to inlet air conditions. In the present study, three cases of different ambient conditions are considered: In the first case, the average mid-winter and mid-summer conditions as well as the extreme case of high temperature and relative humidity, in Athens (Greece) during summer are considered according to the Greek Regulation for Buildings Energy Performance. In the second case, the varied inlet air relative humidity while the inlet air dry bulb temperature remains constant were taken into account. In the last case, the effects on cooling tower thermal behaviour when the inlet air wet bulb temperature remains constant were examined. The proposed model is capable of predicting the variation of air thermodynamic properties, sprayed water and serpentine water temperature inside the closed wet cooling tower along its height. The reliability of simulations was tested against experimental data, which were obtained from literature. Thus, the proposed model could be used for the design of industrial and domestic applications of conventional air-conditioning systems as well as for sorption cooling systems with solid and liquid desiccants where closed wet cooling towers are used for precooling the liquid solutions. The most important result of this theoretical investigation is that the highest fall of serpentine water temperature and losses of sprayed water are observed for the lowest value of inlet wet bulb temperature. Hence, the thermal effectiveness, which is associated with the temperature reduction of serpentine water as well as the operational cost, which is related to the sprayed water loss due to evaporation, of a closed wet cooling tower depend predominantly on the degree of saturation of inlet air.

  18. Experimental study of a combined system of solar Kang and solar air collector

    International Nuclear Information System (INIS)

    Wei, Wei; Ji, Jie; Chow, Tin-Tai; He, Wei; Chen, Haifei; Guo, Chao; Yu, Hancheng

    2015-01-01

    Highlights: • A combined system of solar Kang and solar air collector is proposed. • An experimental study on the combined system is made. • The mean air temperature reaches 18.5 °C and maintains above 18 °C for 13 h. • The corresponding mean indoor air temperature of the reference room is 8.9 °C. • The Kang surface temperature reaches 27 °C and maintains above 18 °C for 23 h. - Abstract: Chinese Kang is widely used as heated bed and for heat recovery of cooking stove in Northern China. However there are main drawbacks of indoor and outdoor air pollutant generation and heavy demands on solid fuel handling. A novel combined Kang system, which integrates solar Kang and solar air collector, is here proposed. Experiments were conducted to examine the alternative operating modes: (i) only solar air collector in service, (ii) only solar Kang in service, and (iii) both solar Kang and solar air collector in service. The results show that these three modes behave differently and have distinct effects on room thermal environment in winter. When this pollution-free system operates under the third combined mode, the room temperature increases significantly and the vertical temperature gradient reduces. The Kang surface temperature increases and its uniformity is improved. It is also found that the room air temperature is closely related to the Kang surface temperature. Furthermore, most of the time the thermal environment meets the occupant need. This paper reports the experimental work and investigates into the effects on indoor thermal environment as in rural residences in Northern China

  19. Thermal Performance of Solar Air Heater Having Absorber Plate with V-Down Discrete Rib Roughness for Space-Heating Applications

    Directory of Open Access Journals (Sweden)

    Rajendra Karwa

    2013-01-01

    Full Text Available The paper presents results of thermal performance analysis of a solar air heater with v-down discrete rib roughness on the air flow side of the absorber plate, which supplies heated air for space heating applications. The air heater operates in a closed loop mode with inlet air at a fixed temperature of 295 K from the conditional space. The ambient temperature varied from 278 K to 288 K corresponding to the winter season of Western Rajasthan, India. The results of the analysis are presented in the form of performance plots, which can be utilized by a designer for calculating desired air flow rate at different ambient temperature and solar insolation values.

  20. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  1. New type of thermal analyzer with a micro-air-bridge heater

    Science.gov (United States)

    Kimura, Mitsuteru; Hayasaka, Junichi

    1997-11-01

    Miniaturized sensor for thermal analysis is fabricated using micromachining technique and its fundament al characteristics are obtained. This device fabricated in a Si substrate consists of monolithically integrated components of an air-bridge type microheater, a thin film thermocouple and a sample-holder. Boiling points of liquid samples, water and methanol, are observed in the heating curve and the heating-rate curve, and sudden decrease of the temperature at the dropping time of the liquid samples at room temperature due to the effect of evaporation heat is also observed. Loss of the sample due to the evaporation during heating was theoretically discussed.

  2. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  3. Comparison of Thermal Performances between Low Porosity Perforate Plate and Flat Plate Solar Air Collector

    Science.gov (United States)

    Chan, Hoy-Yen; Vinson, A. A.; Baljit, S. S. S.; Ruslan, M. H.

    2018-04-01

    Flat plate solar air collector is the most common collector design, which is relatively simpler to fabricate and lower cost. In the present study, perforated plate solar collector was developed to improve the system thermal performance. A glazed perforated plate of 6mm holes diameter with square geometry was designed and installed as the absorber of the collector. The influences of solar radiation intensity and mass flow rate on the thermal performance were investigated. The perforated collector was compared with the flat plate solar collector under the same operating conditions. The highest values of thermal efficiency in this study for the perforated plate (PP) and the flat plate (FP) solar collectors were 59% and 36% respectively, at solar radiation intensity of 846 Wm-2 and mass flow rate of 0.02 kgs-1. Furthermore, PP collector gave better thermal performance compared to FP collector; and compared to previous studies, the present perforated design was compatible with the flat plate with double pass designs.

  4. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    Institute of Scientific and Technical Information of China (English)

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  5. Dynamic thermal environment and thermal comfort.

    Science.gov (United States)

    Zhu, Y; Ouyang, Q; Cao, B; Zhou, X; Yu, J

    2016-02-01

    Research has shown that a stable thermal environment with tight temperature control cannot bring occupants more thermal comfort. Instead, such an environment will incur higher energy costs and produce greater CO2 emissions. Furthermore, this may lead to the degeneration of occupants' inherent ability to combat thermal stress, thereby weakening thermal adaptability. Measured data from many field investigations have shown that the human body has a higher acceptance to the thermal environment in free-running buildings than to that in air-conditioned buildings with similar average parameters. In naturally ventilated environments, occupants have reported superior thermal comfort votes and much greater thermal comfort temperature ranges compared to air-conditioned environments. This phenomenon is an integral part of the adaptive thermal comfort model. In addition, climate chamber experiments have proven that people prefer natural wind to mechanical wind in warm conditions; in other words, dynamic airflow can provide a superior cooling effect. However, these findings also indicate that significant questions related to thermal comfort remain unanswered. For example, what is the cause of these phenomena? How we can build a comfortable and healthy indoor environment for human beings? This article summarizes a series of research achievements in recent decades, tries to address some of these unanswered questions, and attempts to summarize certain problems for future research. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Assessment of MARS for downcomer multi-dimensional thermal hydraulics during LBLOCA reflood using KAERI air-water direct vessel injection tests

    Energy Technology Data Exchange (ETDEWEB)

    Won-Jae, Lee; Kwi-Seok, Ha; Chul-Hwa, Song [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The MARS code has been assessed for the downcomer multi-dimensional thermal hydraulics during a large break loss-of-coolant accident (LBLOCA) reflood of Korean Next Generation Reactor (KNGR) that adopted an upper direct vessel injection (DVI) design. Direct DVI bypass and downcomer level sweep-out tests carried out at 1/50-scale air-water DVI test facility are simulated to examine the capability of MARS. Test conditions are selected such that they represent typical reflood conditions of KNGR, that is, DVI injection velocities of 1.0 {approx} 1.6 m/sec and air injection velocities of 18.0 {approx} 35.0 m/sec, for single and double DVI configurations. MARS calculation is first adjusted to the experimental DVI film distribution that largely affects air-water interaction in a scaled-down downcomer, then, the code is assessed for the selected test matrix. With some improvements of MARS thermal-hydraulic (T/H) models, it has been demonstrated that the MARS code is capable of simulating the direct DVI bypass and downcomer level sweep-out as well as the multi-dimensional thermal hydraulics in downcomer, where condensation effect is excluded. (authors)

  7. Study of an electrical heating system with ductless air supply and shape-stabilized PCM for thermal storage

    International Nuclear Information System (INIS)

    Lin, Kunping; Zhang, Yinping; Di, Hongfa; Yang, Rui

    2007-01-01

    A kind of electrical floor heating system with a shape-stabilized phase change material (PCM) which has been studied at Tsinghua University in our previous studies, can provide space heating during the whole day and can be controlled conventionally. However, this is not suitable for office buildings where no space heating is needed at night. The effective control is very important for the heating system in such buildings. In this paper, we studied a kind of new electrical floor heating system with ductless air supply and shape-stabilized PCM for thermal storage in order to overcome the shortcomings of the passive under-floor electric heating system with thermal storage. In this paper, we investigated its thermal performance by experiments and simulation, calculated the effects of various factors and discussed the application feasibility in different climate regions. The results show that the total electrical energy consumption was shifted from the peak period to the off-peak period, which would provide significant economic benefits because of the different day and night electricity tariffs. The system can be designed by choosing PCM with proper melting temperature and be controlled by varying velocity of air supply in different conditions

  8. Numerical modelling and experimental studies of thermal behaviour of building integrated thermal energy storage unit in a form of a ceiling panel

    International Nuclear Information System (INIS)

    Jaworski, Maciej; Łapka, Piotr; Furmański, Piotr

    2014-01-01

    Highlights: • A new concept of heat storage in ventilation ducts is described. • Ceiling panel as a part of ventilation system is made of a composite with PCM. • A set-up for experimental investigation of heat storage unit was built. • Numerical model of heat transfer in the storage unit was developed. • Numerical code was validated on the base of experimental measurements. - Abstract: Objective: The paper presents a new concept of building integrated thermal energy storage unit and novel mathematical and numerical models of its operation. This building element is made of gypsum based composite with microencapsulated PCM. The proposed heat storage unit has a form of a ceiling panel with internal channels and is, by assumption, incorporated in a ventilation system. Its task is to reduce daily variations of ambient air temperature through the absorption (and subsequent release) of heat in PCM, without additional consumption of energy. Methods: The operation of the ceiling panel was investigated experimentally on a special set-up equipped with temperature sensors, air flow meter and air temperature control system. Mathematical and numerical models of heat transfer and fluid flow in the panel account for air flow in the panel as well as real thermal properties of the PCM composite, i.e.: thermal conductivity variation with temperature and hysteresis of enthalpy vs. temperature curves for heating and cooling. Proposed novel numerical simulator consists of two strongly coupled sub models: the first one – 1D – which deals with air flowing through the U-shaped channel and the second one – 3D – which deals with heat transfer in the body of the panel. Results: Spatial and temporal air temperature variations, measured on the experimental set-up, were used to validate numerical model as well as to get knowledge of thermal performance of the panel operating in different conditions. Conclusion: Preliminary results of experimental tests confirmed the ability of

  9. Tuning the surface chemistry of lubricant-derived phosphate thermal films: The effect of boron

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, F. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Rossi, A., E-mail: antonella.rossi@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland); Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria di Monserrato, I-09100, Cagliari (Italy); Lainé, E.; Woodward, P. [Enabling Research, Infineum UK Ltd., Milton Hill, Steventon, Oxfordshire OX13 6BD (United Kingdom); Spencer, N.D., E-mail: nicholas.spencer@mat.ethz.ch [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich (Switzerland)

    2017-02-28

    Highlights: • The additives bulk interactions in “neat” blends at high temperatures is evaluated. • The competition among the different additives to react with air-oxidized steel surfaces under pure thermal condition is investigated. • Different thermal films are grown, their in depth-composition and thickness is determined by ARXPS. • A reaction mechanism is proposed for elucidating the composition of the thermals films. - Abstract: Understanding the interactions among the various additives in a lubricant is important because they can have a major influence on the performance of blends under tribological conditions. The present investigation is focused on the interactions occurring between ZnDTP and dispersant molecules in an oil formulation, and on their reactivity under purely thermal conditions in the presence of air-oxidized iron surfaces. Nuclear magnetic resonance spectroscopy (NMR) was performed on undiluted blends at different temperatures, while angle-resolved X-ray photoelectron spectroscopy (ARXPS) was exploited to investigate the surface reactivity on oxidized iron surfaces. The results indicate that the dispersant, generally added to blends for preventing the deposition of sludge, varnish and soot on the surface, might also inhibit the reaction of all other additives with the steel surface.

  10. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  11. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  12. Field study of thermal comfort in non-air-conditioned buildings in a tropical island climate.

    Science.gov (United States)

    Lu, Shilei; Pang, Bo; Qi, Yunfang; Fang, Kun

    2018-01-01

    The unique geographical location of Hainan makes its climate characteristics different from inland areas in China. The thermal comfort of Hainan also owes its uniqueness to its tropical island climate. In the past decades, there have been very few studies on thermal comfort of the residents in tropical island areas in China. A thermal environment test for different types of buildings in Hainan and a thermal comfort field investigation of 1944 subjects were conducted over a period of about two months. The results of the survey data show that a high humidity environment did not have a significant impact on human comfort. The neutral temperature for the residents in tropical island areas was 26.1 °C, and the acceptable temperature range of thermal comfort was from 23.1 °C to 29.1 °C. Residents living in tropical island areas showed higher heat resistance capacity, but lower cold tolerance than predicted. The neutral temperature for females (26.3 °C) was higher than for males (25.8 °C). Additionally, females were more sensitive to air temperature than males. The research conclusions can play a guiding role in the thermal environment design of green buildings in Hainan Province. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Thermal performance of climber greenwalls: Effects of solar irradiance and orientation

    International Nuclear Information System (INIS)

    Jim, C.Y.

    2015-01-01

    Highlights: • Field experiment tested solar irradiance effect on greenwall thermal performance. • Climber greenwalls were planted on four orientations of circular concrete tank. • High solar-energy input had high bare-surface temperature but maximum cooling. • Threshold solar intensity of 300 Wm −2 was needed for effective greenwall cooling. • Transpiration cooled anterior air better than shading and thermal insulation. - Abstract: Thermal performance of greenwalls, a critical and common concern, is regulated by solar irradiance vis-à-vis orientation and shading. A field experiment was conducted in humid-tropical Hong Kong to address the research question under typical summer-weather scenarios: sunny, cloudy and rainy. On a large circular concrete tank, climber-greenwall experimental plots were established with duplication in four cardinal compass directions. Air and infrared-radiometer surface temperature sensors monitored at different greenwall positions: ambient-air (control), bare-concrete-surface (control), vegetation-surface, behind-mesh-airgap, and behind-mesh-concrete surface. Pyranometers were installed vertically at four orientations and horizontally at tank-top (control) to monitor solar-energy input. Habitat verticality induces notable variations in solar-energy capture at four orientations by daily total, peak level, intensity, duration and timing. On sunny day, solar fraction reaching east side was only 37.1% of tank-top. Early morning sunshine striking east side nearly perpendicularly brings maximum intensity. South side facing the sun but at tangential incident angle has only 23.3% reception. Strong irradiance drives high control-surface temperature, but also induces notable vegetation-surface and adjacent ambient-air cooling by transpiration. A threshold solar intensity of about 300 Wm −2 is necessary to impart notable cooling-effect. Summer-sunny day and rainy-day sunshine-burst episodes could satisfy this condition; cloudy day and

  14. An Investigation On Air and Thermal Transmission Through Knitted Fabric Structures Using the Taguchi Method

    Directory of Open Access Journals (Sweden)

    Ghosh Anindya

    2017-06-01

    Full Text Available Knitted fabrics have excellent comfort properties because of their typical porous structure. Different comfort properties of knitted fabrics such as air permeability, thermal absorptivity, and thermal conductivity depend on the properties of raw material and knitting parameters. In this paper, an investigation was done to observe the effect of yarn count, loop length, knitting speed, and yarn input tension in the presence of two uncontrollable noise factors on selected comfort properties of single jersey and 1×1 rib knitted fabrics using the Taguchi experimental design. The results show that yarn count and loop length have significant influence on the thermo-physiological comfort properties of knitted fabrics.

  15. Exergetic analysis of a double stage LiBr-H2O thermal compressor cooled by air/water and driven by low grade heat

    International Nuclear Information System (INIS)

    Izquierdo, M.; Venegas, M.; Garcia, N.; Palacios, E.

    2005-01-01

    In the present paper, an exergetic analysis of a double stage thermal compressor using the lithium bromide-water solution is performed. The double stage system considered allows obtaining evaporation temperatures equal to 5 deg. C using solar heat coming from flat plate collectors and other low grade thermal sources. In this study, ambient air and water are alternatively used as cooling fluids without crystallization problems up to condensation-absorption temperatures equal to 50 deg. C. The results obtained give the entropy generated, the exergy destroyed and the exergetic efficiency of the double stage thermal compressor as a function of the absorption temperature. The conclusions obtained show that the irreversibilities generated by the double stage thermal compressor will tend to increase with the absorption temperature up to 45 deg. C. The maximum value corresponds to 1.35 kJ kg -1 K -1 . The entropy generated and the exergy destroyed by the air cooled system are higher than those by the water cooled one. The difference between the values increases when the absorption temperature increases. For an absorption temperature equal to 50 deg. C, the air cooled mode generates 14% more entropy and destroys 14% more exergy than the water cooled one. Also, the results are compared with those of previous studies for single and double effect air cooled and water cooled thermal compressors. The conclusions show that the double stage system has about 22% less exergetic efficiency than the single effect one and 32% less exergetic efficiency than the double effect one

  16. Experimental study of an air conditioning system to control a greenhouse microclimate

    International Nuclear Information System (INIS)

    Attar, I.; Naili, N.; Khalifa, N.; Hazami, M.; Lazaar, M.; Farhat, A.

    2014-01-01

    Highlights: • Contribution in the control of the greenhouse microclimate for pepper cultivation. • The energy storing in the ground and in the water ensure the greenhouse heating. • The circulation of the cold water in the exchangers ensures the greenhouse cooling. • The system makes the greenhouse appropriate for the pepper cultivation whole year. - Abstract: In this papper, a thermal model is developed to investigate the possibility to use the ground thermal energy for the greenhouse heating or cooling. A control system of the ground heat storing is integrated in a chapel greenhouse located in the premises of the Technology and Research Energy Center, Tunis, Tunisia. Polypropylene capillary heat exchangers, suspended in the air and buried into the ground of the greenhouse, are used to store or destore solar energy excess. During the day, the air-suspended exchangers recuperate the solar energy in excess. This recuperated energy is then stored into the ground through the buried exchangers. At night the stored thermal energy is brought back by the suspended exchangers to heat the greenhouse air. The purpose of this study is to contribute in the greenhouse microclimate control. In order to maintain the greenhouse air temperature at 20 °C, suitable for a defined agriculture, the solar energy and the cold water are respectively used for heating and cooling the greenhouse inside air. The design and construction of a chapel greenhouse equipped with the control system is carried out. The studied system is used, at the same time for; heating, cooling the greenhouse air and storing the solar energy in excess. Experiments were conducted during the years 2012–2013, to evaluate the effectiveness of the control system achieved. The measured values of the greenhouse air temperatures with and without the control system are discussed

  17. Thermal performance analysis of a phase change thermal storage unit for space heating

    Energy Technology Data Exchange (ETDEWEB)

    Halawa, E.; Saman, W. [Institute for Sustainable Systems and Technologies School of Advanced Manufacturing and Mechanical Engineering, University of South Australia, Mawson Lakes SA 5095 (Australia)

    2011-01-15

    This paper presents the results of a comprehensive numerical study on the thermal performance of an air based phase change thermal storage unit (TSU) for space heating. The unit is designed for integration into space heating and cooling systems. The unit consists of a number of one dimensional phase change material (PCM) slabs contained in a rectangular duct where air passes between the slabs. The numerical analysis was based on an experimentally validated model. A parametric study has been carried out including the study on the effects of charge and discharge temperature differences, air mass flow rate, slab thicknesses, air gaps and slab dimensions on the air outlet temperatures and heat transfer rates of the thermal storage unit. The paper introduces and discusses quantities called charge and discharge temperature differences which play an important role in the melting and freezing processes. (author)

  18. Temperature Mapping of Air Film-Cooled Thermal Barrier Coated Surfaces Using Cr-Doped GdAlO3 Phosphor Thermography

    Science.gov (United States)

    Eldridge, Jeffrey I.; Shyam, Vikram; Wroblewski, Adam C.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.

    2016-01-01

    It has been recently shown that the high luminescence intensity from a Cr-doped GdAlO3 (Cr:GdAlO3) thermographic phosphor enables non-rastered full-field temperature mapping of thermal barrier coating (TBC) surfaces to temperatures above 1000C. In this presentation, temperature mapping by Cr:GdAlO3 based phosphor thermometry of air film-cooled TBC-coated surfaces is demonstrated for both scaled-up cooling hole geometries as well as for actual components in a burner rig test environment. The effects of thermal background radiation and flame chemiluminescence on the measurements are investigated, and advantages of this method over infrared thermography as well as the limitations of this method for studying air film cooling are discussed.

  19. AN IMPACT OF THE EFFICIENT FUNCTIONING OF THE VENTILATION AND AIR-CONDITIONING SYSTEM ON THERMAL COMFORT OF THE MEDICAL STAFF IN THE OPERATING ROOM

    Directory of Open Access Journals (Sweden)

    Tomasz Jankowski

    2016-11-01

    Full Text Available Ventilation and air conditioning systems are necessary for developing proper parameters of indoor envi-ronment in operating rooms. The main task of ventilation and air conditioning in those specific areas consists in creating desirable temperature, reducing the number of microorganisms and the concen-trations of hazardous gases and substances in the air, as well as ensuring the proper direction of airflow. In Poland, indoor environment in operating rooms has to comply with the requirements set out in three regulations (Journal of Laws of 2002 No. 75, item 690, as amended, Journal of Laws of 2002 No. 217, item 1833, Journal of Laws of 2011 No. 31, item 158, as amended and the document entitled "Guidelines for the design of general hospitals". Given insufficient accuracy of the abovementioned national documents, it is a common practice to use foreign standards, i.e. ASHRAE Standard 170-2013, DIN 1946-4: 2008 and FprCEN TR 16244: 2011. When considering the conditions for thermal comfort, it is important to bear in mind a close link between air flow velocity and air temperature. Air in the zone occupied by patients and medical staff must not cause the sensation of draft. Furthermore, air velocity should be sufficient to eliminate interference caused by the presence of people and other sources of heat. It should also reduce the turbulence level in the air in the operating room. Efficient functioning of ventilation and air conditioning was tested during treatments and operations carried out on three wards of a Warsaw hospital. Tests were performed with the participation of medical staff from various surgical units. They were asked to perform minor manual tasks to simulate work on the op-erating table, and to complete a questionnaire on subjective thermal sensation. The applied methodology is widely used during testing of general and local ventilation in public buildings. Air temperature, relative humidity, air flow supply and exhaust air from the

  20. Study on the thermal ignition of gasoline-air mixture in underground oil depots based on experiment and numerical simulation

    Science.gov (United States)

    Ou, Yihong; Du, Yang; Jiang, Xingsheng; Wang, Dong; Liang, Jianjun

    2010-04-01

    The study on the special phenomenon, occurrence process and control mechanism of gasoline-air mixture thermal ignition in underground oil depots is of important academic and applied value for enriching scientific theories of explosion safety, developing protective technology against fire and decreasing the number of fire accidents. In this paper, the research on thermal ignition process of gasoline-air mixture in model underground oil depots tunnel has been carried out by using experiment and numerical simulation methods. The calculation result has been demonstrated by the experiment data. The five stages of thermal ignition course, which are slow oxidation stage, rapid oxidation stage, fire stage, flameout stage and quench stage, have been firstly defined and accurately descried. According to the magnitude order of concentration, the species have been divided into six categories, which lay the foundation for explosion-proof design based on the role of different species. The influence of space scale on thermal ignition in small-scale space has been found, and the mechanism for not easy to fire is that the wall reflection causes the reflux of fluids and changes the distribution of heat and mass, so that the progress of chemical reactions in the whole space are also changed. The novel mathematical model on the basis of unification chemical kinetics and thermodynamics established in this paper provides supplementary means for the analysis of process and mechanism of thermal ignition.

  1. Study on the Thermal Effects and Air Quality Improvement of Green Roof

    Directory of Open Access Journals (Sweden)

    Heng Luo

    2015-03-01

    Full Text Available Heat island phenomenon and air quality deterioration issues are two major problems that have occurred during the process of urbanization, especially in developing countries. A number of measures have been proposed, among which roof greening is considered as a promising one due to its outstanding performance in thermal effects as well as air quality improvement. A self-maintenance system, termed the Green Roof Manager (GRM, which comprises the irrigation and shadowing subsystems, is proposed in this paper, focusing on the automatic and reliable operation of the roof greening system rather than exploiting new plant species. A three month long experiment was set up, resulting in the observation that a 14.7% of, on average, temperature reduction can be achieved in summer after deploying the GRM system. During a 24-hour monitoring experiment the PM2.5 concentrations above the GRM was reduced by up to 14.1% over the bare roof.

  2. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    DEFF Research Database (Denmark)

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  3. Thermal behavior studies in building using artificial neural network for non air conditioned terrace house in Malaysia

    International Nuclear Information System (INIS)

    Zainazlan Md Zain; Mohd Nasir Taib; Shahrizam Mohd Shah Baki

    2006-01-01

    Strategies to improve energy efficiency in buildings have continuously being improved and becoming more effective as new knowledge on the building behavior and technology continue to develop. Nevertheless, effort to explore for further improvement must continuously undertake to seek more energy efficient and cost effective systems. Artificial Neural Network (ANN) is currently one of the most popular mechanisms to forecast any form of behavior and phenomena. Building thermal behavior can be studied and potential for energy utilization improvement without compromising thermal comfort can be explored using ANN. This paper explores the possibility of monitoring, predicting and forecasting the thermal behavior inside a building space and the optimization of building design. Typical result of experimental data and simulated data is presented. The sample house used adopted various thermal comfort strategies like cross ventilation and space air flow consideration

  4. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment...... floor heating system was simulated, the cooler ventilation air introduced to the room mixed well and created uniform conditions with a ventilation effectiveness of about 1.......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices...

  5. Thermal comfort following immersion.

    Science.gov (United States)

    Guéritée, Julien; Redortier, Bernard; House, James R; Tipton, Michael J

    2015-02-01

    Unlike thermal comfort in air, little research has been undertaken exploring thermal comfort around water sports. We investigated the impact of swimming and cooling in air after swimming on thermal comfort. After 10 min of swimming-and-resting cycles in 28°C water, volunteers wearing two types of garments or in swim briefs, faced winds in 24°C air, at rest or when stepping. Thermal comfort was significantly higher during swimming than resting. Post-immersion, following maximum discomfort, in 45 of 65 tests thermal comfort improved although mean skin temperature was still cooling (0.26 [SD 0.19] °C·min(-1) - max was 0.89°C·min(-1)). When thermal comfort was re-established mean skin temperature was lower than at maximal discomfort in 39 of 54 tests (0.81 [SD 0.58] °C - max difference was 2.68°C). The reduction in thermal discomfort in this scenario could be due to the adaptation of thermoreceptors, or to reductions in cooling rates to levels where discomfort was less stimulated. The relief from the recent discomfort may explain why, later, thermal comfort returned to initial levels in spite of poorer thermal profiles. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    Directory of Open Access Journals (Sweden)

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  7. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    International Nuclear Information System (INIS)

    Efimova, Anastasia; Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia; Ruck, Michael; Schmidt, Peer

    2014-01-01

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO 3 ) 2 ·6H 2 O, Mn(NO 3 ) 2 ·4H 2 O, and KNO 3 with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg −1 . Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation

  8. Improved oxidation of air pollutants in a non-thermal plasma

    International Nuclear Information System (INIS)

    Roland, U.; Holzer, F.; Kopinke, F.-D.

    2002-01-01

    The performance of non-thermal plasma (NTP) for the removal of organic air pollutants (especially in low concentrations) is improved by the introduction of ferroelectric and catalytically active materials into the discharge zone of an NTP reactor. Experiments with model systems (various contaminants and packed-bed materials) have shown that such a modification of a homogeneous gas-phase plasma can overcome the most serious restrictions of the NTP technique at its present state of the art: the incomplete total oxidation (i.e. the low selectivity to CO 2 ) and the energetic inefficiency. Placing a ferroelectric packed-bed material in the discharge zone was shown to result in a lowering of the energy input required. The main effects of plasma catalysis enabled by the introduction of a catalytically active material were an enhanced conversion of pollutants and a higher CO 2 selectivity. These improvements are based on the presence of short-lived oxidising species in the inner volume of porous catalysts. Additionally, the formation of a reservoir of adsorbed oxidants in the NTP zone could be shown. The combination of both modifications (ferroelectric packed-bed materials and plasma catalysis) is a promising method to support the NTP-initiated oxidation of air pollutants

  9. Air Pollution Translations: A Bibliography With Abstracts - Volume 1.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Cited are 558 references with abstracts translated from the original foreign languages, including 511 from Russian, 129 from German, and 18 from other countries. The entries are generally of a technical or advanced nature and are grouped into 13 subject areas: General, Emission Sources, Atmospheric Interaction, Measurement Methods, Control…

  10. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    International Nuclear Information System (INIS)

    Brault, A.; Chevalier, G.; Kerfanto, M.; Loyer, H.

    1983-04-01

    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 850 0 C [fr

  11. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages.

    Science.gov (United States)

    Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  12. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    Science.gov (United States)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  13. The urban air; L'air de la ville

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This paper presents the abstracts of conferences proposed during the meeting on the urban air, organized by the French Meteorological Society in november 2002. These conferences dealt with the air quality monitoring, the public health impacts, the air pollution in function of the meteorological effects, the pollutants, the main factors of the air quality and the models of the meteorology. (A.L.B.)

  14. Exergetic analysis of a double stage LiBr-H{sub 2}O thermal compressor cooled by air/water and driven by low grade heat

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, M. [Instituto C.C. Eduardo Torroja (CSIC), Edificacion y Habitabilidad, Madrid (Spain); Venegas, M.; Garcia, N. [Universidad Carlos III de Madrid (Spain). Departamento de Ingenieria Termica y Fluidos; Palacios, E. [Universidad Politecnica de Madrid (Spain). Departamento de Mecanica Industrial

    2005-05-01

    In the present paper, an exergetic analysis of a double stage thermal compressor using the lithium bromide-water solution is performed. The double stage system considered allows obtaining evaporation temperatures equal to 5{sup o} C using solar heat coming from flat plate collectors and other low grade thermal sources. In this study, ambient air and water are alternatively used as cooling fluids without crystallization problems up to condensation-absorption temperatures equal to 50 {sup o}C. The results obtained give the entropy generated, the exergy destroyed and the exergetic efficiency of the double stage thermal compressor as a function of the absorption temperature. The conclusions obtained show that the irreversibilities generated by the double stage thermal compressor will tend to increase with the absorption temperature up to 45 {sup o}C. The maximum value corresponds to 1.35 kJ kg{sup -}1{sup K-1}. The entropy generated and the exergy destroyed by the air cooled system are higher than those by the water cooled one. The difference between the values increases when the absorption temperature increases. For an absorption temperature equal to 50 {sup o}C, the air cooled mode generates 14% more entropy and destroys 14% more exergy than the water cooled one. Also, the results are compared with those of previous studies for single and double effect air cooled and water cooled thermal compressors. The conclusions show that the double stage system has about 22% less exergetic efficiency than the single effect one and 32% less exergetic efficiency than the double effect one. (author)

  15. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    Science.gov (United States)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  16. Characterization of melting and solidification in a real scale PCM-air heat exchanger: Numerical model and experimental validation

    International Nuclear Information System (INIS)

    Dolado, Pablo; Lazaro, Ana; Marin, Jose M.; Zalba, Belen

    2011-01-01

    Research highlights: → A mathematical model of a PCM-air heat exchanger is developed and validated. → Validation range is 0.7-2.1 m/s for airflow and 8-45 o C for air inlet temperature. → Better λPCM lead to minor improvement as the main resistance is mostly on air side. → 1 o C mismatch in the PCM h-T curve could lead to errors of up to 20% in power. → The accuracy of material properties' data used as inputs in the model is stressed. -- Abstract: This paper describes the models developed to simulate the performance of a thermal energy storage (TES) unit in a real scale PCM-air heat exchanger, analyzing the heat transfer between the air and a commercially available and slab macroencapsulated phase change material (PCM). The models are based on one-dimensional conduction analysis, utilizing finite differences method, and implicit formulation, using the thermo-physical data of the PCM measured in the laboratory: enthalpy and thermal conductivity as functions of temperature. The models can take into account the hysteresis of the enthalpy curve and the convection inside the PCM, using effective conductivity when necessary. Two main paths are followed to accomplish the modeling: the thermal analysis of a single plate, and the thermal behavior of the entire TES unit. Comparisons between measurements and simulations are undertaken to evaluate the models. Average errors of less than 12% on thermal power are obtained for the entire cycle. Once the model is validated, a series of parameters and variables is studied to verify their influence on the behavior and design of the TES unit.

  17. Six years of ground–air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Petr; Rajver, D.; Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2013-01-01

    Roč. 10, č. 2 (2013), 025012/1-025012/9 ISSN 1742-2132 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ground-air temperature coupling * thermal diffusivity * conductive-convective heat transfer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.895, year: 2013

  18. Effectiveness of thermal ignition devices in lean hydrogen-air-steam mixtures

    International Nuclear Information System (INIS)

    Tamm, H.; McFarlane, R.; Liu, D.D.S.

    1985-03-01

    Deliberate ignition of hydrogen at low concentrations in reactor containment systems is one method of controlling hydrogen during degraded core accidents. Since many postulated accident conditions have substantial amounts of steam present, experiments have been performed to determine the hydrogen-air-steam concentration regimes in which ignitors would be effective. In these experiments, both a GM AC 7G thermal flow plug and a Tayco Model 3442 ignitor have been used. These ignitors have been installed in PWR containments with ice condensers and in BWR Mark III containments. This report presents the results of these ignitor effectiveness experiments, and gives the ignition limits and the effect of steam on the ignitor surface temperatures required for ignition

  19. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    KAUST Repository

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  20. Effect of wind speed on human thermal sensation and thermal comfort

    Science.gov (United States)

    Hou, Yuhan

    2018-06-01

    In this experiment, a method of questionnaire survey was adopted. By changing the air flow rate under the indoor and outdoor natural conditions, the subjective Thermal Sensation Vote (TSV) and the Thermal Comfort Vote (TCV) were recorded. The draft sensation can reduce the thermal sensation, but the draft sensation can cause discomfort, and the thermal comfort in a windy environment is lower than in a windless environment. When the temperature rises or the level of human metabolism increases, the person feels heat, the demand for draft sensation increases, and the uncomfortable feeling caused by the draft sensation may be reduced. Increasing the air flow within a certain range can be used to compensate for the increase in temperature.

  1. Passenger thermal perceptions, thermal comfort requirements, and adaptations in short- and long-haul vehicles.

    Science.gov (United States)

    Lin, Tzu-Ping; Hwang, Ruey-Lung; Huang, Kuo-Tsang; Sun, Chen-Yi; Huang, Ying-Che

    2010-05-01

    While thermal comfort in mass transportation vehicles is relevant to service quality and energy consumption, benchmarks for such comfort that reflect the thermal adaptations of passengers are currently lacking. This study reports a field experiment involving simultaneous physical measurements and a questionnaire survey, collecting data from 2,129 respondents, that evaluated thermal comfort in short- and long-haul buses and trains. Experimental results indicate that high air temperature, strong solar radiation, and low air movement explain why passengers feel thermally uncomfortable. The overall insulation of clothing worn by passengers and thermal adaptive behaviour in vehicles differ from those in their living and working spaces. Passengers in short-haul vehicles habitually adjust the air outlets to increase thermal comfort, while passengers in long-haul vehicles prefer to draw the drapes to reduce discomfort from extended exposure to solar radiation. The neutral temperatures for short- and long-haul vehicles are 26.2 degrees C and 27.4 degrees C, while the comfort zones are 22.4-28.9 degrees C and 22.4-30.1 degrees C, respectively. The results of this study provide a valuable reference for practitioners involved in determining the adequate control and management of in-vehicle thermal environments, as well as facilitating design of buses and trains, ultimately contributing to efforts to achieve a balance between the thermal comfort satisfaction of passengers and energy conserving measures for air-conditioning in mass transportation vehicles.

  2. Thermal conductivity and latent heat thermal energy storage properties of LDPE/wax as a shape-stabilized composite phase change material

    International Nuclear Information System (INIS)

    Trigui, Abdelwaheb; Karkri, Mustapha; Krupa, Igor

    2014-01-01

    Highlights: • This study deals with the comparison of experimental results for different PCM composite to be used in passive solar walls. • This paper reports on the successful use of a specific experimental method in order to characterize the phase change effects. • The results have shown that most important thermal properties of these composites at the solid and liquid states. • Results indicate the thermal effectiveness of phase change material and significant amount of energy saving can be achieved. • Heat flux measurements are a very interesting experimental source of data which comes to complete the calorimetric device (DSC). - Abstract: Phase change material (PCM) composites based on low-density polyethylene (LDPE) with paraffin waxes were investigated in this study. The composites were prepared using a meltmixing method with a Brabender-Plastograph. The LDPE as the supporting matrix kept the molten waxes in compact shape during its phase transition from solid to liquid. Immiscibility of the PCMs (waxes) and the supporting matrix (LDPE) is a necessary property for effective energy storage. Therefore, this type paraffin can be used in a latent heat storage system without encapsulation. The objective of this research is to use PCM composite as integrated components in a passive solar wall. The proposed composite TROMBE wall allows daily storage of the solar energy in a building envelope and restitution in the evening, with a possible control of the air flux in a ventilated air layer. An experimental set-up was built to determine the thermal response of these composites to thermal solicitations. In addition, a DSC analysis was carried out. The results have shown that most important thermal properties of these composites at the solid and liquid states, like the “apparent” thermal conductivity, the heat storage capacity and the latent heat of fusion. Results indicate the performance of the proposed system is affected by the thermal effectiveness of

  3. The role of clothing in thermal comfort: how people dress in a temperate and humid climate in Brazil

    Directory of Open Access Journals (Sweden)

    Renata De Vecchi

    Full Text Available Abstract Thermal insulation from clothing is one of the most important input variables used to predict the thermal comfort of a building's occupants. This paper investigates the clothing pattern in buildings with different configurations located in a temperate and humid climate in Brazil. Occupants of two kinds of buildings (three offices and two university classrooms assessed their thermal environment through 'right-here-right-now' questionnaires, while at the same time indoor climatic measurements were carried out in situ (air temperature and radiant temperature, air speed and humidity. A total of 5,036 votes from 1,161 occupants were collected. Results suggest that the clothing values adopted by occupants inside buildings were influenced by: 1 climate and seasons of the year; 2 different configurations and indoor thermal conditions; and 3 occupants' age and gender. Significant intergenerational and gender differences were found, which might be explained by differences in metabolic rates and fashion. The results also indicate that there is a great opportunity to exceed the clothing interval of the thermal comfort zones proposed by international standards such as ASHRAE 55 (2013 - 0.5 to 1.0 clo - and thereby save energy from cooling and heating systems, without compromising the occupants' indoor thermal comfort.

  4. Thermal and spectroscopic study to investigate p-aminobenzoic acid, sodium p-aminobenzoate and its compounds with some lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Teixeira, J.A.; Nunes, W.D.G.; Colman, T.A.D.; Nascimento, A.L.C.S do; Caires, F.J.; Campos, F.X.; Gálico, D.A.; Ionashiro, M.

    2016-01-01

    Highlights: • The p-aminobenzoic acid melts followed partial evaporation. • The stoichiometry of compounds was established by TG, EA and complexometry. • The TG–DTA curves provided previously unreported information about thermal behavior. - Abstract: The characterization, thermal stability and thermal decomposition of some lighter trivalent lanthanide p-aminobenzoates, Ln(C 7 H 6 NO 2 ) 3 ·H 2 O (Ln = La, Ce, Pr, Nd, Sm), as well as the thermal behavior and spectroscopic study of p-aminobenzoic acid C 7 H 7 NO 2 and its sodium salt were investigated. The following methods were utilized: simultaneous thermogravimetry and differential thermal analysis (TG–DTA) in dynamic dry air and nitrogen atmospheres; differential scanning calorimetry (DSC); middle (MIR) and near (NIR) infrared region spectroscopy; evolved gas analysis (EGA); elemental analysis; complexometry; X-ray diffraction (XRD); and diffuse reflectance spectroscopy (DR) in the ultraviolet and visible regions. All the compounds were obtained monohydrated and the thermal decomposition occurred in two, three or four steps in an air atmosphere, and three or four steps in N 2 atmosphere. In both atmospheres (air and N 2 ) the final residues were CeO 2 , Pr 6 O 11 , Ln 2 O 3 (Ln = La, Nd, Sm). The results also provided information concerning the coordination mode and thermal behavior, as well as the identification of the gaseous products which evolved during the thermal decomposition of these compounds. The DR and NIR spectra provided information about the ligand absorption bands and the f–f transitions of the Nd 3+ , Pr 3+ and Sm 3+ ions.

  5. Experimental and numerical study of the thermal performance of a new type of phase change material room

    International Nuclear Information System (INIS)

    Meng, Erlin; Yu, Hang; Zhan, Guangyi; He, Yang

    2013-01-01

    Highlights: • A new type of PCM room is proposed, two kinds of PCM were used in the room. • The new room can decrease the indoor air temperature fluctuation by 4.3 °C in summer. • Indoor air temperature fluctuation was decreased by 14.2 °C in winter for the new room. • Important factors that affect the thermal performance of the new room were studied. - Abstract: A new type of phase change material (PCM) room was proposed in this paper to control the indoor air temperature for a better thermal comfort for human beings. That is to place two different kinds of PCM into room envelopes of different orientations. Both experimental and numerical studies were carried out for rooms with/without PCM. Indoor air temperature and interior surface heat flux of the two rooms were studied in typical summer and winter climate of Shanghai (31.2N, 121.5E). Important factors that affect the thermal performance of the PCM were studied, such as phase change temperature, thickness of the PCM and the arrangement of the two kinds of PCM in the room. Results showed that this new type of PCM room can decrease the indoor air temperature fluctuation by 4.3 °C in summer and 14.2 °C in winter. Different arrangements of the two kinds of PCM in the room can cause an indoor air temperature difference to be 6.9 °C in summer and 2.7 °C in winter

  6. Thermal comfort and indoor air quality in the lecture room with 4-way cassette air-conditioner and mixing ventilation system

    International Nuclear Information System (INIS)

    Noh, Kwang-Chul; Jang, Jae-Soo; Oh, Myung-Do

    2007-01-01

    We performed the experimental and the numerical studies on thermal comfort (TC) and indoor air quality (IAQ) in the lecture room with cooling loads when the operating conditions are changed. Predicted mean vote (PMV) value and CO 2 concentration of the lecture room were measured and compared to the numerical results. Both of them showed a reasonable agreement with each other and then we applied the numerical model to analyze TC and IAQ for a couple of different operating conditions. From the results we found that the increment of the discharge angle of 4-way cassette air-conditioner makes uniformity of TC worse, but rarely affects IAQ. It turned out that TC and IAQ are hardly affected by the variation of the discharge airflow. Finally TC was merely affected by the increment of the ventilation rate, but when the ventilation rate is more than 800m 3 /h, the average CO 2 concentration can be satisfied with the standard limits of Japanese in our case studies. (author)

  7. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Directory of Open Access Journals (Sweden)

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  8. Cumulative effects of using pin fin heat sink and porous metal foam on thermal management of lithium-ion batteries

    International Nuclear Information System (INIS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2017-01-01

    Highlights: • 3D transient thermal analysis of a pouch Li-ion cell has been carried out. • Using pin fin heat sink improves the temperature reduction at low pumping powers. • Using pin fin heat sink enhances the temperature uniformity at low air flow rates. • Porous aluminum foam insertion with pin fins improves temperature reduction. • Porous aluminum foam insertion with pin fins enhances temperature uniformity. - Abstract: Three-dimensional transient thermal analysis of an air-cooled module was carried out to investigate cumulative effects of using pin fin heat sink and porous metal foam on thermal management of a Li-ion (lithium-ion) battery pack. Five different cases were designed as Case 1: flow channel without any pin fin or porous metal foam insertion, Case 2: flow channel with aluminum pin fins, Case 3: flow channel with porous aluminum foam pin fins, Case 4: fully inserted flow channel with porous aluminum foam, and Case 5: fully inserted flow channel with porous aluminum foam and aluminum pin fins. The effects of porous aluminum insertions, pin fin types, air flow inlet temperature, and air flow inlet velocity on the temperature uniformity and maximum temperature inside the battery pack were systematically investigated. The results showed that using pin fin heat sink (Case 2) is appropriate only for low air flow velocities. In addition, the use of porous aluminum pin fins or embedding porous aluminum foam inside the air flow channel (Cases 3 and 4) are not beneficial for thermal management improvement. The combination of aluminum pin fins and porous aluminum foam insertion inside the air flow channel (Case 5) is a proper option that improves both temperature reduction and temperature uniformity inside the battery cell.

  9. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Science.gov (United States)

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  10. Human preference for air movement

    DEFF Research Database (Denmark)

    Toftum, Jørn; Melikov, Arsen Krikor; Tynel, A.

    2002-01-01

    Human preference for air movement was studied at slightly cool, neutral, and slightly warm overall thermal sensations and at temperatures ranging from 18 deg.C to 28 deg.C. Air movement preference depended on both thermal sensation and temperature, but large inter-individual differences existed...... between subjects. Preference for less air movement was linearly correlated with draught discomfort, but the percentage of subjects who felt draught was lower than the percentage who preferred less air movement....

  11. Development of salt hydrate eutectics as latent heat storage for air conditioning and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Efimova, Anastasia [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany); Pinnau, Sebastian; Mischke, Matthias; Breitkopf, Cornelia [Technische Universität Dresden, Chair of Technical Thermodynamics, Helmholtzstr. 14, 01069 Dresden (Germany); Ruck, Michael [Technische Universität Dresden, Chair of Inorganic Chemistry, Bergstr. 66, 01062 Dresden (Germany); Schmidt, Peer, E-mail: peer.schmidt@hs-lausitz.de [Brandenburgische Technische Universität (BTU) Cottbus – Senftenberg, Chair of Inorganic Chemistry, Großenhainer Str. 57, 01968 Senftenberg (Germany)

    2014-01-10

    Graphical abstract: - Highlights: • Inorganic salt hydrates. • Latent heat thermal energy storage. • Thermal behavior of melting and crystallization. • Cycling stability. • Nucleation. - Abstract: Sustainable air conditioning systems require heat reservoirs that operate between 4 and 20 °C. A systematic search for binary and ternary eutectics of inorganic salts and salt hydrates with melting temperatures in this temperature regime and with high enthalpies of fusion has been performed by means of differential scanning calorimetry (DSC). Promising results were obtained for the pseudo-ternary system Zn(NO{sub 3}){sub 2}·6H{sub 2}O, Mn(NO{sub 3}){sub 2}·4H{sub 2}O, and KNO{sub 3} with the melting temperature range 18–21 °C and the enthalpy of fusion of about 110 kJ kg{sup −1}. Suitable nucleating and thickening agents have been found and tested to prevent the mixture from supercooling and phase separation.

  12. Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Uçkan, İrfan; Yılmaz, Tuncay; Hürdoğan, Ertaç; Büyükalaca, Orhan

    2013-01-01

    Highlights: ► A novel desiccant based evaporative cooling system is developed and tested. ► Cooling capacity, COP and energy consumption of the system are evaluated. ► Indoor air conditions are in the range of thermal comfort zone and expanded comfort zone. ► Designing of the system have considerable effect on the energy consumption. - Abstract: A novel configuration of desiccant based evaporative cooling system for air conditioning application is developed and tested. At the beginning of the design stage of the system, an analysis is carried out in order to maximize the performance of the system. It is found based on configuration that outdoor air must be used for regeneration to increase performance of the system and so three air channels are used. Experiments are carried out to investigate the total performance of the system and performance of the components used during summer season in a hot and humid climate. Effectiveness values for both heat exchangers and evaporative coolers are calculated through this work. In addition to the cooling capacity, coefficient of performance (COP) and energy consumption of the system are also evaluated. Results show that the effectiveness for the heat exchangers and evaporative coolers are very high under different outdoor conditions. It is also shown from the results that indoor air conditions are in the range of thermal comfort zone defined by ASHRAE and expanded comfort zone for evaporative air conditioning applications.

  13. SolAir. Innovative solar collectors for efficient and cost-effective solar thermal power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barbato, M. C.; Haueter, Ph.; Bader, R.; Steinfeld, A.; Pedretti, A.

    2008-12-15

    This report presents the main results of the project. The project has been started at the end of 2007 and has been successfully finished in December 2008. The present project of ALE AirLight Energy aims at the engineering investigation and design of a novel concept of a solar collector system for efficient and cost-effective solar thermal power generation. The technology exploits an air-inflated reflective structure to concentrate solar radiation. This new arrangement reduces investment costs of the collector field and promises to be economically competitive. A first prototype, built in 2007, has been redesigned and heavily modified during this project. In the new configuration, by using secondary mirrors, the focal area is located close to the main structure and allows the integration of the receiver into the inflated structure. The topics developed in this document are as follows: (i) Design solutions for the concentrated energy receiver suitable for the revised SolAir concentrator concept. (ii) Solar flux simulation via Monte Carlo method. (iii) New version of the ALE AirLight Energy concentrator prototype. (iv) Prototype radiative flux measurements. (author)

  14. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  15. Energy saving by means of air conditioning equipment replacement and the household application of thermal insulation; Ahorro de energia electrica por reemplazo de equipos de aire acondicionado y aplicacion de aislamiento termico en viviendas

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de la Energia (Mexico)

    2005-07-15

    An extension study of the Financing Program for Energy Saving looked for the evaluation of the electric energy saving potential obtained by the replacement of air conditioning equipment and the application of thermal insulation in 30 houses of two Mexican cities with warmth climate. In a joint effort with Comision Federal de Electricidad the consumption files of the users were analyzed and field measurements of electric demand and of refrigeration were made. As a following step the change of the refrigeration necessities derived from the application of thermal insulation were evaluated as well as the energy efficiency improvement obtained by the substitution of the air conditioning equipment and the favorable results obtained by the implementation of both measures - thermal insulation and change of air conditioning equipment in a joint form. This way, as a conclusion, the optimum sequence of application of these measures is revealed. [Spanish] Un estudio extension del Programa de Financiamiento para el Ahorro de Energia Electrica busco evaluar el potencial de ahorro de energia electrica alcanzado por el reemplazo de equipos de aire acondicionado y la aplicacion de aislamiento termico en 30 viviendas de dos ciudades mexicanas con clima calido. En un esfuerzo conjunto con la Comision Federal de Electricidad se analizaron los historiales de consumo de los usuarios y se efectuaron las mediciones de campo de demanda electrica y de refrigeracion. Como paso siguiente se valoro el cambio en las necesidades de refrigeracion derivado de la aplicacion de aislamiento termico al igual que la mejora en eficiencia energetica obtenida por la sustitucion de aire acondicionado y se identificaron los resultados favorecedores arrojados por la implementacion de ambas medidas -aislamiento termico y cambio de equipo de aire acondicionado- en forma conjunta. De esta manera, como conclusion, se devela la mas optima secuencia de aplicacion de estas medidas.

  16. Numerical analysis and experimental validation of heat transfer characteristic for flat-plate solar air collector

    International Nuclear Information System (INIS)

    Hung, Tzu-Chen; Huang, Tsung-Jie; Lee, Duen-Sheng; Lin, Chih-Hung; Pei, Bau-Shei; Li, Zeng-Yao

    2017-01-01

    Highlights: • Various types of solar air collectors are discussed. • CFD has been used to validate the characteristics of heat transfer. • Solar Ray Tracing has been successfully used for thermal radiation flux. - Abstract: This study combines both concepts of solar ventilation technology and solar air collector. This is a quite innovative and potential facility to effectively use thermal energy and reduce the accumulation of heat in the indoor space simultaneously. The purpose of this study is to create a prototype and implement the experiments. Computational fluid dynamics (CFD) approach is employed to validate the characteristics of the flow and heat transfer. For the accuracy of numerical predictions, the method of Solar Ray Tracing was used for thermal radiation flux as boundary condition on the wall. The local heat transfer correlation was investigated to predict surrounding wind speed upon device cover. Three sorts of glasses and several aspect ratios of flow channels have been compared to conclude the optimal configuration. In addition, four important factors, such as the stagnant layer thickness, emissivity on the illustrated surface, mass flow rate and the height of the device, are also considered and discussed in detail. The result showed that the optimal design is dominated by the combination of an aspect ratio of 50 mm:10 mm, and appropriate mass flow rate to the height of the device. The present work on thermal energy collection can assist us in designing a powerful solar air collector in some potential applications.

  17. Experimental Study of the Slit Spacing and Bed Height on the Thermal Performance of Slit-Glazed Solar Air Heater

    Directory of Open Access Journals (Sweden)

    Seyyed Mahdi Taheri Mousavi

    2017-01-01

    Full Text Available The thermal performances of three slit-glazed solar air heaters (SGSAHs were investigated experimentally. Three SGSAHs with different bed heights (7 cm, 5 cm, and 3 cm were fabricated with multiple glass panes used for glazing. The length, width, and thickness of each pane were 154 cm, 6 cm, and 0.4 cm, respectively. Ambient air was continuously withdrawn through the gaps between the glass panes by fans. The experiments were conducted for four different gap distances between the glass panes (0.5 mm, 1 mm, 2 mm, and 3 mm and the air mass flow rate was varied between 0.014 kg/s and 0.057 kg/s. The effects of air mass flux on the outlet temperature and thermal efficiency were studied. For the SGSAH with bed height of 7 cm and glass pane gap distance of 0.5 mm, the highest efficiency was obtained as 82% at a mass flow rate of 0.057 kg/s and the air temperature difference between the inlet and the outlet (∆T was maximum (27°C when the mass flow rate was least. The results demonstrate that for lower mass flow rates and larger gaps, the performance of SGSAH with a bed height of 3 cm was better compared to that of others. However, for higher mass flow rates, the SGSAH with 7 cm bed height performed better.

  18. A method of exploration of the atmosphere of Titan. [hot air balloon heated by solar radiation or planetary thermal flux

    Science.gov (United States)

    Blamont, J.

    1978-01-01

    A hot-air balloon, with the air heated by natural sources, is described. Buoyancy is accomplished by either solar heating or by utilizing the IR thermal flux of the planet to heat the gas in the balloon. Altitude control is provided by a valve which is opened and closed by a barometer. The balloon is made of an organic material which has to absorb radiant energy and to emit as little as possible.

  19. Numerical investigation of thermal behaviors in lithium-ion battery stack discharge

    International Nuclear Information System (INIS)

    Liu, Rui; Chen, Jixin; Xun, Jingzhi; Jiao, Kui; Du, Qing

    2014-01-01

    Highlights: • The thermal behaviors of a Li-ion battery stack have been investigated by modeling. • Parametric studies have been performed focusing on three different cooling materials. • Effects of discharge rate, ambient temperature and Reynolds number are examined. • General guidelines are proposed for the thermal management of a Li-ion battery stack. - Abstract: Thermal management is critically important to maintain the performance and prolong the lifetime of a lithium-ion (Li-ion) battery. In this paper, a two-dimensional and transient model has been developed for the thermal management of a 20-flat-plate-battery stack, followed by comprehensive numerical simulations to study the influences of ambient temperature, Reynolds number, and discharge rate on the temperature distribution in the stack with different cooling materials. The simulation results indicate that liquid cooling is generally more effective in reducing temperature compared to phase-change material, while the latter can lead to more homogeneous temperature distribution. Fast and deep discharge should be avoided, which generally yields high temperature beyond the acceptable range regardless of cooling materials. At low or even subzero ambient temperatures, air cooling is preferred over liquid cooling because heat needs to be retained rather than removed. Such difference becomes small when the ambient temperature increases to a mild level. The effects of Reynolds number are apparent in liquid cooling but negligible in air cooling. Choosing appropriate cooling material and strategy is particularly important in low ambient temperature and fast discharge cases. These findings improve the understanding of battery stack thermal behaviors and provide the general guidelines for thermal management system. The present model can also be used in developing control system to optimize battery stack thermal behaviors

  20. Performance of cylindrical plastic solar collectors for air heating

    International Nuclear Information System (INIS)

    Abdullah, A.S.; Bassiouny, M.K.

    2014-01-01

    Highlights: • The study including the combined convective and radiative heat transfer analysis. • The solar collector is manufactured from LDPE films acting as a black absorber. • Comparisons between the experimental data and the theoretical methods have been made. • The thermal efficiency increases with decreasing the major axes of elliptic shape. • The Nusselt number between the absorber and the heated air is determined. - Abstract: A theoretical and experimental study including the combined convective and radiative heat transfer analysis of a flexible cylindrical type solar air-heater for agriculture crops dehydration as well as heating processes is presented. The solar collector is manufactured from LDPE films acting as a black absorber with a back insulation and double transparent covers sealed together along its edges. The collector is to be blown with a flow of pressurized air. The experiments are carried out with solar collectors of circular shapes having 0.5 m diameter and solar collectors of elliptic shapes having 0.55 m and 0.65 m major axis. Energy balance of the cover, absorber and air yield three simultaneous quadratic algebraic equations in the three unknowns namely, cover, absorber and outlet air temperatures. A computer program is written for calculating the outlet temperature using the Newton–Raphson method and the collector thermal efficiency in terms of its diameter, length, mass flow rate, inlet temperature and solar insolation. Moreover the Nusselt number between the absorber and the heated air is determined experimentally in relation with the Reynolds number. Comparisons between the experimental data and the theoretical methods for the collector efficiency demonstrate a good agreement. In addition of this, the present experimental results of Nusselt number are correlated and compared with a correlation of another authors

  1. Studies on the air distribution and thermal performance of the air circulation wall. Part 4. Study on the thermal emissivity of the air circulation layer`s surfaces; Gaidannetsu tsuki koho ni okeru tsuki sonai no netsu tsuki tokusei ni kansuru kenkyu. 4. Tsuki sonai hyomen no hosha tokusei ni kansuru kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kamimori, K; Sakai, K; Ishihara, O [Kumamoto University, Kumamoto (Japan)

    1996-10-27

    The thermal and air distribution characteristics of the air circulation wall in a heat-insulated system were grasped using an experimental model. In this paper, the difference in the heat exchange between the wall and air was confirmed based on the radiation on the circulation layer`s surface. In this system, thin air circulation layers with ventilating holes at the top and bottom are attached to the south and north outer walls of a wooden building. This system is a kind of passive solar house that achieves the insolation screening effect and the temperature rising effect based on solar collection. The heat flow in a circulation layer is eliminated by the natural convection heat transfer on the outer wall. The heat flow passing through insulating materials is the heat transfer by radiation. The heat flow based on the in-layer natural convection is increasingly eliminated by the decrease in temperature on the air circulation layer`s surface. The decrease in room surface temperature using aluminum foil and the reflective heat-insulated effect showed that the heat passing through the wall surface decreases as the convection heat transfer in an air circulation layer increases. 6 refs., 20 figs., 3 tabs.

  2. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  3. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  4. Thermal and spectroscopic study to investigate p-aminobenzoic acid, sodium p-aminobenzoate and its compounds with some lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, J.A.; Nunes, W.D.G.; Colman, T.A.D.; Nascimento, A.L.C.S do [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil); Caires, F.J. [Faculdade de Ciências, UNESP—Universidade Estadual Paulista, Campus Bauru, Departamento de Química, Bauru 17033-260, SP (Brazil); Campos, F.X. [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil); Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso, Primavera do Leste 78850-000, MT (Brazil); Gálico, D.A. [Instituto de Química, UNICAMP—Universidade Estadual de Campinas, Campinas 13083-970, SP (Brazil); Ionashiro, M., E-mail: massaoi@yahoo.com.br [Instituto de Química, UNESP—Universidade Estadual Paulista, Campus Araraquara, Departamento de Química Analítica, Araraquara 14801-970, SP (Brazil)

    2016-01-20

    Highlights: • The p-aminobenzoic acid melts followed partial evaporation. • The stoichiometry of compounds was established by TG, EA and complexometry. • The TG–DTA curves provided previously unreported information about thermal behavior. - Abstract: The characterization, thermal stability and thermal decomposition of some lighter trivalent lanthanide p-aminobenzoates, Ln(C{sub 7}H{sub 6}NO{sub 2}){sub 3}·H{sub 2}O (Ln = La, Ce, Pr, Nd, Sm), as well as the thermal behavior and spectroscopic study of p-aminobenzoic acid C{sub 7}H{sub 7}NO{sub 2} and its sodium salt were investigated. The following methods were utilized: simultaneous thermogravimetry and differential thermal analysis (TG–DTA) in dynamic dry air and nitrogen atmospheres; differential scanning calorimetry (DSC); middle (MIR) and near (NIR) infrared region spectroscopy; evolved gas analysis (EGA); elemental analysis; complexometry; X-ray diffraction (XRD); and diffuse reflectance spectroscopy (DR) in the ultraviolet and visible regions. All the compounds were obtained monohydrated and the thermal decomposition occurred in two, three or four steps in an air atmosphere, and three or four steps in N{sub 2} atmosphere. In both atmospheres (air and N{sub 2}) the final residues were CeO{sub 2}, Pr{sub 6}O{sub 11}, Ln{sub 2}O{sub 3} (Ln = La, Nd, Sm). The results also provided information concerning the coordination mode and thermal behavior, as well as the identification of the gaseous products which evolved during the thermal decomposition of these compounds. The DR and NIR spectra provided information about the ligand absorption bands and the f–f transitions of the Nd{sup 3+}, Pr{sup 3+} and Sm{sup 3+} ions.

  5. Providing better thermal and air quality conditions in school classrooms would be cost-effective

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter

    2013-01-01

    codes stipulate that they should be. This is sometimes because financial resources for the maintenance and upgrade of school buildings are inadequate, but it is also because schools are increasingly allowing classroom temperatures to drift above the recommended range of 20–22 °C in warm weather......This paper is an overall summary of research by the authors on how classroom conditions affect the performance of schoolwork by children, motivated by the fact that the thermal and air quality conditions in school classrooms are now almost universally worse than the relevant standards and building...... and allowing outdoor air supply rates to remain so low that carbon dioxide (CO2) levels during school hours exceed 1000 ppm for long periods, in order to conserve energy. The research that is summarized in this paper shows that the indoor environmental consequences of either of these investment-free but ill...

  6. A thermal engine for underwater glider driven by ocean thermal energy

    International Nuclear Information System (INIS)

    Yang, Yanan; Wang, Yanhui; Ma, Zhesong; Wang, Shuxin

    2016-01-01

    Highlights: • Thermal engine with a double-tube structure is developed for underwater glider. • Isostatic pressing technology is effective to increase volumetric change rate. • Actual volumetric change rate reaches 89.2% of the theoretical value. • Long term sailing of 677 km and 27 days is achieved by thermal underwater glider. - Graphical Abstract: - Abstract: Underwater glider is one of the most popular platforms for long term ocean observation. Underwater glider driven by ocean thermal energy extends the duration and range of underwater glider powered by battery. Thermal engine is the core device of underwater glider to harvest ocean thermal energy. In this paper, (1) model of thermal engine was raised by thermodynamics method and the performance of thermal engine was investigated, (2) thermal engine with a double-tube structure was developed and isostatic pressing technology was applied to improve the performance for buoyancy driven, referencing powder pressing theory, (3) wall thickness of thermal engine was optimized to reduce the overall weight of thermal engine, (4) material selection and dimension determination were discussed for a faster heat transfer design, by thermal resistance analysis, (5) laboratory test and long term sea trail were carried out to test the performance of thermal engine. The study shows that volumetric change rate is the most important indicator to evaluating buoyancy-driven performance of a thermal engine, isostatic pressing technology is effective to improve volumetric change rate, actual volumetric change rate can reach 89.2% of the theoretical value and the average power is about 124 W in a typical diving profile. Thermal engine developed by Tianjin University is a superior thermal energy conversion device for underwater glider. Additionally, application of thermal engine provides a new solution for miniaturization of ocean thermal energy conversion.

  7. Thermal cyclic oxidation behavior of the developed compositionally gradient graphite material of SiC/C in air environment

    International Nuclear Information System (INIS)

    Nakano, Junichi; Fujii, Kimio; Shindo, Masami

    1993-08-01

    For the developed compositionally gradient graphite material composed of surface SiC coating layer, middle SiC/C layer and graphite matrix, the thermal cyclic oxidation test was performed together with two kinds of the SiC coated graphite materials in air environment. It was made clear that the developed material exhibited high performance under severe thermal cyclic condition independent of the morphology of middle SiC/C layers and had the longer time or the more cycle margins from crack initiation to failure for surface SiC coating layer compared with the SiC coated graphite materials. (author)

  8. Solar Air Heaters with Thermal Heat Storages

    OpenAIRE

    Saxena, Abhishek; Goel, Varun

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  9. Modelling LiBr-H2O solution concentration/crystallization of low thermal-powered absorption air conditioning system

    International Nuclear Information System (INIS)

    Abdullah, M.O.

    2000-01-01

    A computer model is developed to predict the concentration of lithium bromide - water (LiBr-H 2 O) solution for used in low thermal energy-driven absorption air conditioning plants design. The computer program is capable to alert the users from undesirable solidification or crystallization zones. Good agreements between simulated concentration and experimental data from standard chart/table have been obtained. (Author)

  10. Hybrid model predictive control of a residential HVAC system with on-site thermal energy generation and storage

    International Nuclear Information System (INIS)

    Fiorentini, Massimo; Wall, Josh; Ma, Zhenjun; Braslavsky, Julio H.; Cooper, Paul

    2017-01-01

    Highlights: • A comprehensive approach to managing thermal energy in residential buildings. • Solar-assisted HVAC system with on-site energy generation and storage. • Mixed logic-dynamical building model identified using experimental data. • Design and implementation of a logic-dynamical model predictive control strategy. • MPC applied to the Net-Zero Energy house winner of the Solar Decathlon China 2013. - Abstract: This paper describes the development, implementation and experimental investigation of a Hybrid Model Predictive Control (HMPC) strategy to control solar-assisted heating, ventilation and air-conditioning (HVAC) systems with on-site thermal energy generation and storage. A comprehensive approach to the thermal energy management of a residential building is presented to optimise the scheduling of the available thermal energy resources to meet a comfort objective. The system has a hybrid nature with both continuous variables and discrete, logic-driven operating modes. The proposed control strategy is organized in two hierarchical levels. At the high-level, an HMPC controller with a 24-h prediction horizon and a 1-h control step is used to select the operating mode of the HVAC system. At the low-level, each operating mode is optimised using a 1-h rolling prediction horizon with a 5-min control step. The proposed control strategy has been practically implemented on the Building Management and Control System (BMCS) of a Net Zero-Energy Solar Decathlon house. This house features a sophisticated HVAC system comprising of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal storage integrated with the air-handling unit (AHU) of a ducted reverse-cycle heat pump system. The simulation and experimental results demonstrated the high performance achievable using an HMPC approach to optimising complex multimode HVAC systems in residential buildings, illustrating efficient selection of the appropriate operating modes

  11. (abstract) Simple Spreadsheet Thermal Models for Cryogenic Applications

    Science.gov (United States)

    Nash, A. E.

    1994-01-01

    Self consistent circuit analog thermal models, that can be run in commercial spreadsheet programs on personal computers, have been created to calculate the cooldown and steady state performance of cryogen cooled Dewars. The models include temperature dependent conduction and radiation effects. The outputs of the models provide temperature distribution and Dewar performance information. These models have been used to analyze the Cryogenic Telescope Test Facility (CTTF). The facility will be on line in early 1995 for its first user, the Infrared Telescope Technology Testbed (ITTT), for the Space Infrared Telescope Facility (SIRTF) at JPL. The model algorithm as well as a comparison of the model predictions and actual performance of this facility will be presented.

  12. EBS Radionuclide Transport Abstraction

    International Nuclear Information System (INIS)

    Schreiner, R.

    2001-01-01

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  13. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  14. Effect of the insulation materials filling on the thermal performance of sintered hollow bricks under the air-conditioning intermittent operation

    Directory of Open Access Journals (Sweden)

    Chaoping Hou

    2018-06-01

    Full Text Available Wall insulation performance is an important factor affecting building energy consumption and indoor comfortable level. This study proposes that the insulation materials are filled into the cavities of the sintered hollow brick to replace the single insulation layer. The physical models of typical walls were built by the hollow bricks filled with expanding polystyrene board (EPS in cavities and wall thermal performance is numerically analyzed by the Finite Volume Method under air-conditioning intermittent operation, which conforms to the actual operation rules of air-conditioning. Results show that filling EPS in cavities is beneficial to improve the thermal performance of the bricks, and the larger the EPS filling ratio, the higher the thermal performance improvement. The EPS filling ratio increase has the higher sensitivity on inner surface heat flow under the low EPS filling ratio, and filling EPS in the external cavities is optimum with the decrement rate 5.92% higher than filling EPS in internal cavities for the EPS filling ratio of 20%, while filling EPS in internal and external cavities simultaneously is optimum with decrement rate 2.45%–6.87% higher than that with filling EPS in the internal cavities for the EPS filling ratio of 40%–80%. Keywords: Insulation filling ratio, Insulation filling location, Thermal performance, Sintered hollow bricks

  15. The Transmission of Thermal and Fast Neutrons in Air Filled Annular Ducts through Slabs of Iron and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J; Sandlin, R

    1964-12-15

    An investigation has been carried out concerning the transmission of thermal and fast neutrons in air filled annular ducts through laminated Fe-D{sub 2}O shields. Measurements have been made with annular air gaps of 0.5, 1.0, 1.5 and 2.0 cm, at a duct length of half a meter. The neutron fluxes were determined with a foil activation technique. The thermal flux was theoretically and experimentally divided into three components, a streaming, a leakage and an albedo component. The fast flux was similarly divided into a streaming component and a 'leakage' component. A calculational model to predict the components was then developed and fitted, to the data obtained by experiments. The model reported here for prediction of neutron attenuation in ducted configurations may be applied to straight annular ducts of arbitrary dimensions and material configurations but is especially designed for the problems met with in short ducts.

  16. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  17. Fabrication and characterization of poly (bisphenol A borate) with high thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shujuan [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Xiao [Department of Chemical Engineering, School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Jia, Beibei [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); Jing, Xinli, E-mail: xljing@mail.xjtu.edu.cn [Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049 (China); MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an, 710049 (China)

    2017-01-15

    Highlights: • PBAB with excellent thermal resistance and high char yield was synthesized. • The chemical reaction of BPA with BA, and chemical structure of PBAB were studied. • PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. • The thermal stability of PBAB is greatly influenced by boron content. • Boron oxide and boron carbide are formed during the pyrolysis of PBAB. - Abstract: In this work, poly (bisphenol A borate) (PBAB), which has excellent thermal resistance and a high char yield, was synthesized via a convenient A{sub 2} + B{sub 3} strategy by using bisphenol A (BPA) and boric acid (BA). The chemical reaction between BPA and BA and the chemical structure of PBAB were investigated. The results demonstrate that PBAB consists of aromatic, Ph–O–B and B–O–B structures, as well as a small number of boron hydroxyl groups and phenolic hydroxyl groups. The thermal properties of PBAB were studied by DMA and TGA. The results indicate that the glass transition temperature and char yield are gradually enhanced by increasing the boron content, where the char yield of PBAB at 800 °C in nitrogen (N{sub 2}) reaches up to 71.3%. It is of particular importance that PBAB show excellent thermal resistance in N{sub 2} and air atmospheres. By analysing the pyrolysis of PBAB, the high char yield of PBAB can be attributed to the formation of boron oxide and boron carbide at high temperatures, which reduced the release of volatile carbon dioxide and improved the thermal stability of the carbonization products. This study provides a new perspective on the design of novel boron-containing polymers and possesses significant potential for the improvement of the comprehensive performance of thermosetting resins to broaden their applicability in the field of advanced composites.

  18. Experimental study of effective thermal conductivity of stainless steel fiber felt

    International Nuclear Information System (INIS)

    Li, W.Q.; Qu, Z.G.

    2015-01-01

    An experimental apparatus was designed to measure the effective thermal conductivity of porous stainless steel fiber felt under different operating pressures. The total effective thermal conductivity was studied by analyzing matrix heat conduction, air natural convection, and matrix thermal radiation at ambient pressure. The contribution of air natural convection was experimentally obtained by changing the ambient pressure to vacuum condition and the solid matrix heat conduction was evaluated using a theoretical model. The ratios of the three mechanisms to the total effective thermal conductivity were approximately 40%, 37.9%, and 22.1%, respectively. In addition, the effects of fiber diameter and porosity on the three mechanisms and on the total effective thermal conductivity were studied. The air natural convection was found to gradually intensify when the operating pressure increases from vacuum condition (15 Pa) to ambient pressure (1.0 × 10 5  Pa). With an increase in fiber diameter under fixed porosity, the solid matrix heat conduction remained unchanged, and air natural convection and thermal radiation decreased, thereby resulting in reduced effective thermal conductivity. With an increase in porosity under fixed fiber diameter, the air natural convection was almost unchanged, and solid matrix heat conduction and thermal radiation were reduced, thereby resulting in reduced effective thermal conductivity. - Highlights: • Matrix conduction, radiation and air convection were in the same order of magnitude. • Air natural convection was suppressed by reducing operating pressure. • Intensity of air convection was more sensitive to fiber diameter than porosity. • Surface area and permeability was comparable in air convection as fiber diameter fixed. • Interfacial area exerted dominant role in radiation and air convection as porosity fixed

  19. Experimental Study Abour How the Thermal Plume Affects the Air Quality a Person Breathes

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel

    2011-01-01

    of this research is to increase the knowledge of how the thermal plume generated by a person affects the PME and therefore the concentration of contaminants in the inhalation area. An experimental study in a displacement ventilation room was carried out. Experiments were developed in a full scale test chamber 4.......10 m (length), 3.2 m (width), 2.7 m (height). The incoming air is distributed through a wall-mounted displacement diffuser. A breathing thermal manikin exhaling through the mouth and inhaling through the nose was used. A tracer gas, N2O, was used to simulate the gaseous substances, which might...... be considered as biological contaminants, exhaled by the manikin. The manikin was operated in three different heat fluxes with a value of: 0W, 94 W and 120 W. During the experiments six concentration probes were situated in the room. Three concentration tubes were fixed on the surface of the manikin at three...

  20. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, Kenan, E-mail: kyakut@atauni.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Atatürk University, 25100, Erzurum (Turkey); Yeşildal, Faruk, E-mail: fayesildal@agri.edu.tr [Department of Mechanical Engineering, Faculty of Patnos Sultan Alparslan Natural Sciences and Engineering, Ağrı İbrahim Çeçen University, 04100, Ağrı (Turkey); Karabey, Altuğ, E-mail: akarabey@yyu.edu.tr [Department of Machinery and Metal Technology, Erciş Vocational High School, Yüzüncü Yıl University, 65400, Van (Turkey); Yakut, Rıdvan, E-mail: ryakut@kafkas.edu.tr [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars (Turkey)

    2016-04-18

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L{sub 18}(2{sup 1*}3{sup 6}) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η–Re graphics.

  1. Hygienic assessment of asbestos containing dust in the air of the working zone at thermal power plants

    Directory of Open Access Journals (Sweden)

    Moshkovskiy V.E.

    2016-09-01

    Full Text Available Asbestos and artificial mineral fibers were used actively at thermal power plants (TPP as heat insulation of pipes, seal plates, electrical insulation, etc. But content of asbestos fibers in the air of working zone at TPP was not registered to date. Therefore, aim of the work was to assess asbestos containing dust in the air of working zone at steam turbine and gas turbine TPP in the east region of the country. It was found that old insulation at TPP is mixture of asbestoses that contains chrysotile asbestos and traces of amphibole asbestoses – crocidolite and anthophyllite. In the majority of investigated workplaces at the steam turbine TPP significant dust generation with exceed of maximum one-time exposure limits (2 mg/m3 was observed. Concentration of respirable fibers in the air of working zone in all workplaces did not exceed actual hygienic standard (1 fiber/cm3.

  2. Design of a DCS Based Model for Continuous Leakage Monitoring System of Rotary Air Preheater of a Thermal Power Plant

    Directory of Open Access Journals (Sweden)

    Madan BHOWMICK

    2011-01-01

    Full Text Available The leakage in rotary air preheater makes a considerable contribution to the reduced overall efficiency of fossil-fuel-fired thermal power plants and increase the effect on environment. Since it is normal phenomenon, continuous monitoring of leakage is generally omitted in most power plants. But for accurate analysis of the operation of the thermal power plant, this leakage monitoring plays a vital role. In the present paper, design of a DCS based model for continuous leakages monitoring of rotary air preheater has been described. In the proposed model, the existing DCS based instrumentation system has been modified and online leakage monitoring system has been developed. This model has been installed in a captive power plant with high capacity boilers and very much satisfactory operation of this system has been observed. The observed online data along with their analysis results are presented in this paper.

  3. Robustness of tungsten single atom tips to thermal treatment and air exposure

    Energy Technology Data Exchange (ETDEWEB)

    Vesa, Cristian; Urban, Radovan [Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 (Canada); National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada); Pitters, Jason L., E-mail: jason.pitters@nrc-cnrc.gc.ca [National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada); Wolkow, Robert A. [Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2G7 (Canada); National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Alberta, Canada T6G 2M9 (Canada)

    2014-05-01

    Highlights: • W(1 1 1) single atom tips (SATs) were exposed to air. • SATs could be regenerated by field assisted chemical etching after exposure. • Warming procedures to minimize tip contamination were developed. • Degassing temperatures for air exposed tips were established. • Tip faceting occurred when SATs and unetched tips were annealed above 1200 °C. - Abstract: Experiments aimed at assessing the robustness of nitrogen-etched, single-atom tips (SATs) prepared using W(1 1 1) single crystal wire were performed. Our experiments showed that single-atoms tips sustain minimal damage when exposed to atmospheric conditions and can be readily and quickly nitrogen-etched to single-atom tips thereafter. The SATs can be annealed at temperatures up to 1100 °C with minimal shape changes. Moreover, annealing temperatures in excess of 1200 °C resulted in an apex faceting which may prove important in further single-atom tip creation. Procedures for warming of the SATs from operating temperatures of 80 K were also evaluated to determine conditions that limit tip contamination. These results show that SATS could be fabricated in a dedicated vacuum system and subsequently transferred to other instruments where they would undergo a brief conditioning procedure to recover the single-atom apex configuration prior to being subjected to operating conditions.

  4. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  5. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  6. Thermal treatment of solid residues from WtE units: A review

    International Nuclear Information System (INIS)

    Lindberg, Daniel; Molin, Camilla; Hupa, Mikko

    2015-01-01

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field

  7. Thermal treatment of solid residues from WtE units: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, Daniel, E-mail: daniel.lindberg@abo.fi; Molin, Camilla, E-mail: camilla.molin@abo.fi; Hupa, Mikko, E-mail: mikko.hupa@abo.fi

    2015-03-15

    Highlights: • We review the thermal treatment methods for ashes and residues from WtE plants. • We review the results from extensive laboratory work on vitrification, melting and vaporization of ash. • We analyze the results from the extensive patent literature on thermal treatment. • We review industrial concepts for thermal treatment of ash. - Abstract: Thermal treatment methods of bottom ash, fly ash and various types of APC (air pollution control) residues from waste-to-energy plants can be used to obtain environmentally stable material. The thermal treatment processes are meant to reduce the leachability of harmful residue constituents, destroy toxic organic compounds, reduce residue volume, and produce material suitable for utilization. Fly ash and APC residues often have high levels of soluble salts, particularly chlorides, metals such as cadmium, lead, copper and zinc, and trace levels of organic pollutants such as dioxins and furans. Different thermal treatment methods can be used to either decompose or stabilize harmful elements and compounds in the ash, or separate them from the ash to get a material that can be safely stored or used as products or raw materials. In the present paper, thermal treatment methods, such as sintering, vitrification, and melting have been reviewed. In addition to a review of the scientific literature, a survey has been made of the extensive patent literature in the field.

  8. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  9. Thermal conductivity issues of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, U.; Raetzer-Scheibe, H.J.; Saruhan, B. [DLR - German Aerospace Center, Institute of Materials Research, 51170 Cologne (Germany); Renteria, A.F. [BTU, Physical Metallurgy and Materials Technology, Cottbus (Germany)

    2007-09-15

    The thermal conductivity of electron-beam physical vapor deposited (EB-PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB-PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Waermeleitfaehigkeit von elektronenstrahl-aufgedampften (EB-PVD) Waermedaemmschichten (TBCs) wurde mittels Laser-Flash untersucht. Probentyp, Messmethodik und die Atmosphaere waehrend der Messung haben einen Einfluss auf die Ergebnisse. Aenderungen in der Mikrostruktur der TBC fuehrten zu grossen Unterschieden der Waermeleitfaehigkeit. Eine Hochtemperaturbelastung verursachte Sintervorgaenge in der poroesen Mikrostruktur, was die Waermeleitfaehigkeit um bis zu 30 % ansteigen liess. EB-PVD TBCs zeigen eine deutliche Dickenabhaengigkeit der Waermeleitfaehigkeit durch die Anisotropie der Mikrostruktur in dieser Richtung. Duenne TBCs haben eine um 20 % geringere Waermeleitfaehigkeit als dicke Schichten. Neue Zusammensetzungen der keramischen Deckschicht bieten die groessten Moeglichkeiten fuer eine Reduktion der Waermeleitfaehigkeit. Werte bis zu 0,8 W/(mK) wurden damit bereits erreicht. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  10. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  11. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  12. A numerical study on the effects of exhaust locations on energy consumption and thermal environment in an office room served by displacement ventilation

    International Nuclear Information System (INIS)

    Ahmed, Ahmed Qasim; Gao, Shian; Kareem, Ali Khaleel

    2016-01-01

    Highlights: • An advanced CFD program was developed and validated successfully. • The relation between the exhaust positions and heat sources was analysed. • Energy saving, thermal comfort and inhaled air quality were studied for 5 cases. • By combining the exhaust with office lamps, a 25% of energy saving was achieved. - Abstract: In an office room, many factors affect the pattern of airflow, thermal comfort, indoor air quality and energy saving. In this study, the effects of the location of exhaust diffusers where the warm and contaminant air is extracted and their relation to room heat sources on thermal comfort and energy saving were investigated numerically for an office served by a displacement ventilation system. The indoor air quality in the breathing level and the inhaled zone were also evaluated. The contaminants were released from window and door frames in order to simulate the contaminants coming from outside. The amount of energy consumption and the indoor thermal environment for various exhaust locations were investigated numerically using the computational fluid dynamics techniques. The results showed that the thermal indoor environment, thermal comfort, quality of indoor air and energy saving were greatly improved by combining the exhaust outlets with some of the room’s heat sources such as ceiling lamps and external walls. In particular, a 25.0% of energy saving was achieved by combining the exhaust diffuser with room’s ceiling lamps. In addition, locating the exhaust diffuser near the heat sources also reduced the cooling coil load by 13.8%. The risk of a large difference in temperature between the head and foot levels, increased particle concentration in the occupied zone, as well as increased energy consumption was also clearly demonstrated when the exhaust and recirculated air outlet (return opening) were combined in one unit in the occupied boundary area that is located at 2 m away from the occupants. Thus, for the optimum energy

  13. ABSTRACTION OF DRIFT SEEPAGE

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    probability distributions of seepage. These are all discussed in detail in this report. In addition, the work plan calls for evaluation of effects of episodic flow and thermal-hydrologic-chemical alteration of hydrologic properties. As discussed in Section 5, these effects are not addressed in detail in this report because they can be argued to be insignificant. Effects of thermal-mechanical alteration of hydrologic properties are also not addressed in detail in this report because suitable process-model results are not available at this time. If these effects are found to be important, they should be included in the seepage abstraction in a future revision

  14. [Comparison of the effects of the intervention with electric thermal bian stone and air suction cup on blood perfusion at meridian points].

    Science.gov (United States)

    Zhao, Pengna; Wang, Yanping; Gu, Feifei; Li, Chaozheng; Wei, Yulong; Wang, Guangjun; Zhang, Weibo

    2018-02-12

    To observe the impacts of the intervention with electric thermal bian stone and air suction cup on blood perfusion (BP) at meridian points and explore the approach of accurate measurement and regulation of meridian qi and blood balance in "precise acupuncture". The laser Doppler line scanner (LDLS) was used to measure BP at bilateral yua n-primary points at the pericardium meridian, the triple energizer meridian, the gallbladder meridian and the liver meridian (small cycle of jueyin to shaoyang meridians) at 31 healthy receptors. The bias ratio of blood perfusion (BPBR) deviated to the reference value was calculated. The electric thermal bian stone and air suction cup were used in the intervention at the he -sea points of the affected meridians in which BPBR was relatively higher at the yuan -primary points. The electric thermal bian stone therapy was used when BPBR was less than -30% and the air suction cupping therapy was used when BPBR was higher than 30%. BP was measured twice before intervention and it was measured separately at the moment after intervention and in 20 min after intervention. The means of BP before and after intervention and the change ratio of blood perfusion (BPCR) before intervention, at the moment after intervention and 20 min after intervention were calculated. 1. After the intervention of electric thermal bian stone, BP mean was increased from (103.51±41.21) PU to (121.97±56.22) PU ( P 0.05), but the change ratio was highly remained. 2. After intervention with air suction cup, BP mean was reduced from (194.83±81.14) PU to (173.88±88.26) PU. Before intervention, at the moment after intervention and 20 min after intervention, separately, BPCR were (7.62±30.49)%, (-12.12±18.20)% and (-14.35±21.25)%. BPCR at the moment after intervention and in 20 min after intervention were significantly different from that before intervention (both P cup is opposite.

  15. Heat exchange studies on coconut oil cells as thermal energy storage for room thermal conditioning

    Science.gov (United States)

    Sutjahja, I. M.; Putri, Widya A.; Fahmi, Z.; Wonorahardjo, S.; Kurnia, D.

    2017-07-01

    As reported by many thermal environment experts, room air conditioning might be controlled by thermal mass system. In this paper we discuss the performance of coconut oil cells as room thermal energy storage. The heat exchange mechanism of coconut oil (CO) which is one of potential organic Phase Change Material (PCM) is studied based on the results of temperature measurements in the perimeter and core parts of cells. We found that the heat exchange performance, i.e. heat absorption and heat release processes of CO cells are dominated by heat conduction in the sensible solid from the higher temperature perimeter part to the lower temperature core part and heat convection during the solid-liquid phase transition and sensible liquid phase. The capability of heat absorption as measured by the reduction of air temperature is not influenced by CO cell size. Besides that, the application of CO as the thermal mass has to be accompanied by air circulation to get the cool sensation of the room’s occupants.

  16. Preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeon-Hye [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Han, Woong [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of); Lee, Hae-seong [Nano& Advanced Materials Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Min, Byung-Gak [Department of Polymer Science & Engineering, Korea National University of Transportation, Chungju 380-702 (Korea, Republic of); Kim, Byung-Joo, E-mail: ap2-kbj@hanmail.net [R& D Division, Korea Institute of Carbon Convergence Technology, Jeonju 561-844 (Korea, Republic of)

    2015-10-15

    Graphical abstract: We report preparation and characterization of silicon nitride (Si−N)-coated carbon fibers and their effects on thermal properties in composites. Thermally composites showed enhanced thermal conductivity increasing from up to 59% by the thermal network. - Highlights: • A new method of Si−N coating on carbon fibers was reported. • Silane layer were successfully converted to Si−N layer on carbon fiber surface. • Si−N formation was confirmed by FT-IR, XPS, and EDX. • Thermal conductivity of Si−N coated CF composites were enhanced to 0.59 W/mK. - Abstract: This study investigates the effect of silicon nitride (Si−N)-coated carbon fibers on the thermal conductivity of carbon-fiber-reinforced epoxy composite. The surface properties of the Si−N-coated carbon fibers (SiNCFs) were observe using Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy, and the thermal stability was analyzed using thermogravimetric analysis. SiNCFs were fabricated through the wet thermal treatment of carbon fibers (Step 1: silane finishing of the carbon fibers; Step 2: high-temperature thermal treatment in a N{sub 2}/NH{sub 3} environment). As a result, the Si−N belt was exhibited by SEM. The average thickness of the belt were 450–500 nm. The composition of Si−N was the mixture of Si−N, Si−O, and C−Si−N as confirmed by XPS. Thermal residue of the SiNCFs in air was enhanced from 3% to 50%. Thermal conductivity of the composites increased from 0.35 to 0.59 W/mK after Si−N coating on carbon surfaces.

  17. Solar air heaters and their applications

    Science.gov (United States)

    Selcuk, M. K.

    1977-01-01

    The solar air heater appears to be the most logical choice, as far as the ultimate application of heating air to maintain a comfortable environment is concerned. One disadvantage of solar air heaters is the need for handling larger volumes of air than liquids due to the low density of air as a working substance. Another disadvantage is the low thermal capacity of air. In cases where thermal storage is needed, water is superior to air. Design variations of solar air heaters are discussed along with the calculation of the efficiency of a flat plate solar air heater, the performance of various collector types, and the applications of solar air heaters. Attention is given to collectors with nonporous absorber plates, collectors with porous absorbers, the performance of flat plate collectors with finned absorbers, a wire mesh absorber, and an overlapped glass plate air heater.

  18. From thermal boredom to thermal pleasure: a brief literature review

    Directory of Open Access Journals (Sweden)

    Christhina Candido

    Full Text Available The most recent review of the ASHRAE Standard 55 (2010 incorporates the dialectic between static and adaptive approaches to thermal comfort by proposing different recommendations for airconditioned and naturally ventilated buildings. Particularly in naturally ventilated buildings, this standard aligns with three important topics in research field of thermal comfort during the last decades: (i air movement enhancement versus draft, (ii control availability and its impact on occupants' satisfaction, and (iii the search for thermal pleasure. This paper presents the rationale behind these three research topics and discusses its positive influence when moving from thermal comfort towards thermal pleasure.

  19. Joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids

    International Nuclear Information System (INIS)

    Baldi, Simone; Karagevrekis, Athanasios; Michailidis, Iakovos T.; Kosmatopoulos, Elias B.

    2015-01-01

    Highlights: • Energy efficient operation of photovoltaic-equipped interconnected microgrids. • Optimized energy demand for a block of heterogeneous buildings with different sizes. • Multiobjective optimization: matching demand and supply taking into account thermal comfort. • Intelligent control mechanism for heating, ventilating, and air conditioning units. • Optimization of energy consumption and thermal comfort at the aggregate microgrid level. - Abstract: Electrical smart microgrids equipped with small-scale renewable-energy generation systems are emerging progressively as an alternative or an enhancement to the central electrical grid: due to the intermittent nature of the renewable energy sources, appropriate algorithms are required to integrate these two typologies of grids and, in particular, to perform efficiently dynamic energy demand and distributed generation management, while guaranteeing satisfactory thermal comfort for the occupants. This paper presents a novel control algorithm for joint energy demand and thermal comfort optimization in photovoltaic-equipped interconnected microgrids. Energy demand shaping is achieved via an intelligent control mechanism for heating, ventilating, and air conditioning units. The intelligent control mechanism takes into account the available solar energy, the building dynamics and the thermal comfort of the buildings’ occupants. The control design is accomplished in a simulation-based fashion using an energy simulation model, developed in EnergyPlus, of an interconnected microgrid. Rather than focusing only on how each building behaves individually, the optimization algorithm employs a central controller that allows interaction among the buildings of the microgrid. The control objective is to optimize the aggregate microgrid performance. Simulation results demonstrate that the optimization algorithm efficiently integrates the microgrid with the photovoltaic system that provides free electric energy: in

  20. Microtexture of the thermally grown alumina in commercial thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karadge, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Zhao, X. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Preuss, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Xiao, P. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)]. E-mail: Ping.Xiao@manchester.ac.uk

    2006-02-15

    otextures of the thermally grown {alpha}-alumina (TGO) in isothermally treated and thermal cycled electron beam physical vapor deposited thermal barrier coatings (EB-PVD-TBC) and isothermally treated air plasma sprayed (APS-TBC) specimens were studied by high resolution electron back-scattered diffraction. The TGO in EB-PVD specimens exhibited a basal microtexture. The TGO in APS specimens, however, did not show any significant microtexture development.

  1. Measurement of volatile plant compounds in field ambient air by thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Cai, Xiao-Ming; Xu, Xiu-Xiu; Bian, Lei; Luo, Zong-Xiu; Chen, Zong-Mao

    2015-12-01

    Determination of volatile plant compounds in field ambient air is important to understand chemical communication between plants and insects and will aid the development of semiochemicals from plants for pest control. In this study, a thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method was developed to measure ultra-trace levels of volatile plant compounds in field ambient air. The desorption parameters of TD, including sorbent tube material, tube desorption temperature, desorption time, and cold trap temperature, were selected and optimized. In GC-MS analysis, the selected ion monitoring mode was used for enhanced sensitivity and selectivity. This method was sufficiently sensitive to detect part-per-trillion levels of volatile plant compounds in field ambient air. Laboratory and field evaluation revealed that the method presented high precision and accuracy. Field studies indicated that the background odor of tea plantations contained some common volatile plant compounds, such as (Z)-3-hexenol, methyl salicylate, and (E)-ocimene, at concentrations ranging from 1 to 3400 ng m(-3). In addition, the background odor in summer was more abundant in quality and quantity than in autumn. Relative to previous methods, the TD-GC-MS method is more sensitive, permitting accurate qualitative and quantitative measurements of volatile plant compounds in field ambient air.

  2. Energy and economic analysis of a building air-conditioner with a phase change material (PCM)

    International Nuclear Information System (INIS)

    Chaiyat, Nattaporn

    2015-01-01

    Highlights: • Phase change material of Rubitherm20 was applied with the air-conditioner under the climate of Thailand. • PCM was used to reduce cooling load and electrical power of the air-conditioner. • Mathematical model of the packed ball bed of PCM was presented to predict the thermal performance. - Abstract: In this study, a concept of using phase change material (PCM) for improving cooling efficiency of an air-conditioner had been presented under Thailand climate. Rubitherm20 (RT-20) was selected to evaluate the thermal performance by reducing the air temperature entering the evaporating coil. The model of PCM celluloid balls had been performed with the air-conditioner. For the experiment, 2 TR of R-134a air-conditioner was chosen to test a pack bed of PCM balls with thickness 40 cm. The pressure drops of the air flowing through the bed were considered with and without a set of by-pass tubes along the height of the storage bed. The mathematical model of the air-conditioner with the PCM storage was developed and verified with the testing results. From the study results, it could be seen that pressure drops of the bed with and without bypass tubes were nearly the same results. Thus, PCM ball pack bed using RT-20 without bypass tubes was used to improve the cooling efficiency of the air-conditioner. The experimental result of the modified unit was compared and verified with the mathematical model, which agreed quite well with the simulation result. Finally, the model was used to analyze the economic result, which found that the electrical consumption of the modified air-conditioner could be decreased around 3.09 kW h/d. The saving cost from the PCM bed could be 9.10% of 170.03 USD/y and the payback period was around 4.15 y

  3. Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES

    Directory of Open Access Journals (Sweden)

    Zhongguang Fu

    2015-08-01

    Full Text Available As an important solution to issues regarding peak load and renewable energy resources on grids, large-scale compressed air energy storage (CAES power generation technology has recently become a popular research topic in the area of large-scale industrial energy storage. At present, the combination of high-expansion ratio turbines with advanced gas turbine technology is an important breakthrough in energy storage technology. In this study, a new gas turbine power generation system is coupled with current CAES technology. Moreover, a thermodynamic cycle system is optimized by calculating for the parameters of a thermodynamic system. Results show that the thermal efficiency of the new system increases by at least 5% over that of the existing system.

  4. Simulation and parameter analysis of a two-stage desiccant cooing/heating system driven by solar air collectors

    International Nuclear Information System (INIS)

    Li, H.; Dai, Y.J.; Köhler, M.; Wang, R.Z.

    2013-01-01

    Highlights: ► A solar desiccant cooling/heating system is simulation studied. ► The mean deviation is about 10.5% for temperature and 9.6% for humidity ratio. ► The 51.7% of humidity load and 76% of the total cooling can be handled. ► About 49.0% of heating load can be handled by solar energy. ► An optimization of solar air collector has been investigated. - Abstract: To increase the fraction of solar energy might be used in supplying energy for the operation of a building, a solar desiccant cooling and heating system was modeled in Simulink. First, base case performance models were programmed according to the configuration of the installed solar desiccant system and verified by the experimental data. Then, the year-round performance about the system was simulated. Last, design parameters of solar air collectors were optimized that include collector area, air leakage and thermal insulation. Comparison between numerical and experimental results shows good agreement. During the simulation, the humidity load for 63 days (51.7%) can be totally handled by the two-stage desiccant cooling unit. For seasonal total heating load, about 49.0% can be handled by solar energy. Based on optimized results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage

  5. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    Science.gov (United States)

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  6. Operational features and air plasma characteristics of a thermal plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Hur, Min; Kim, Keun Su; Hong, Sang Hee

    2003-01-01

    The operational features and thermal plasma characteristics of a plasma torch with hollow electrodes are investigated based on their dependence on input current, gas flow rate and electrode diameter when air is used as a plasma gas. A plasma torch with a hollow cathode and anode has been designed and fabricated, and the arc voltages and thermal efficiencies are measured from its discharge. The newly modified similarity criteria are derived from the measured data related to torch performances. From the fact that these criteria successfully describe both the arc voltage and thermal efficiency behaviour of the torch, depending on its operating and geometrical parameters, it is proved that they can be usefully applied to the design and operation of high power torches. For the numerical modelling of the interior region of the torch, a cold flow analysis is employed along with a simplified balance equation of the Lorentz and gas dynamic drag forces in order to determine a cathode spot position on the cathode surface. The validity of this method is confirmed by comparison of the calculated and measured net powers. As a practically useful result of this analysis, carried out through this numerical and experimental work, it is suggested that low input current, high gas flow rate and relatively large electrode diameter are more favourable as appropriate operating conditions of the torch for the efficient treatment of hazardous organic wastes

  7. Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, Y.W.

    1996-12-01

    The heater in the Single Heater Test (SHT) in alcove 5 of the Exploratory Studies Facility (ESF) was turned on August 26, 1996. A large number of sensors are installed in the various instrumented boreholes to monitor the coupled thermal-hydrological-mechanical-chemical responses of the rock mass to the heat generated in the single heater. In this report the authors present the results of the modeling of both the heating and cooling phases of the Single Heater Test (SHT), with focus on the thermal-hydrological aspect of the coupled processes. Also in this report, the authors present simulations of air injection tests will be performed at different stages of the heating and cooling phase of the SHT

  8. Thermal comfort in urban transitional spaces

    Energy Technology Data Exchange (ETDEWEB)

    Chungyoon Chun [Yonsei University, Seoul (Korea). College of Human Ecology, Department of Housing and Interior Design; Tamura, A. [Yokohama National University (Japan). Department of Architecture and Building Science

    2005-05-15

    This paper deals with thermal comfort in urban transitional spaces. This topic investigates thermal comfort during walking activities through transitional spaces-urban corridors, shopping streets, and open-ended passageways. The study involves a field study and a laboratory study with a sequenced walk through an environmental control chamber. Subjects in both studies wore the same clothing ensembles, walked the same speed, and evaluated their thermal comfort at 20 designated point in the field and in specific rooms in the control chamber. Air temperature, relative humidity, and air velocity were measured concurrently as the thermal comfort votes completed. Findings revealed that the previously experienced temperatures determined thermal comfort at the following point in the sequence. Because thermal comfort at a point can be influenced widely by relative placement of temperatures in sequence, thermal comfort in transitional spaces can be adapted very widely compared to comfort inside of buildings. Thermal comfort along the experimental courses was evaluated by averaging the temperature of a course. (author)

  9. [Thermal comfort and indoor air quality in some of the italian state police workplaces.

    Science.gov (United States)

    Chirico, Francesco; Rulli, Giuseppina

    2017-12-01

    Little can be found in the literature about thermal comfort and indoor air quality (IAQ) in law enforcement workplaces. This study, based on environmental surveys carried out by the Centro Sanitario Polifunzionale of Milan (Italian State Police Health Service Department), aims to assess the thermal comfort and IAQ in some of the Italian State Police workplaces. Measurements were performed in some indoor workplaces such as offices, archives, laboratories and guard-houses in various regions (Lombardia, Emilia Romagna, Liguria, Veneto, Trentino Alto-Adige) of Northern Italy. The PMV/PPD model developed by Fangar for the evaluation of the thermal comfort was used. We measured both CO2 concentration and relative humidity indoor levels for the evaluation of IAQ. We used Chi square and t Student tests to study both prevalence of thermal discomfort and low IAQ, and their differences between summer and winter. For the purposes of the present study we carried out 488 measurements in 36 buildings (260 in winter and 228 in summer). Our results showed that thermal comfort was reached in 95% and 68% of environmental measurements (in winter and summer, respectively). In summer, we measured different types of thermal discomfort. As regard to IAQ, CO2 exceeded the threshold limit value (1000 ppm) in 39% (winter) and 9% (summer) of our measurements. Chi-square test showed a statistically significant difference between summer and winter for all outcomes considered. Indeed, thermal comfort was better in winter than summer (X2 = 61.0795), while IAQ was found to be better in the summer than winter considering both the CO2 1000 ppm and 1200 ppm threshold values (X2 = 56.9004 and X2 = 8.8845 respectively). Prevalence of low relative humidity in winter was higher than in summer (X2 = 124.7764). Even though this study did not report any situation of risk to Italian police officers health and safety, it has highlighted some potential issues in some of the examined workplaces, concerning

  10. Thermal management optimization of an air-cooled hydrogen fuel cell system in an extreme environmental condition

    DEFF Research Database (Denmark)

    Gao, Xin; Olesen, Anders Christian; Kær, Søren Knudsen

    2018-01-01

    An air-cooled proton exchange membrane (PEM) fuel cell system is designed and under manufacture for telecommunication back-up power. To enhance its competence in various environments, the system thermal feature is optimized in this work via simulation based on a computational fluid dynamics (CFD......, the intake airflow magnitude, is also studied for a more uniform airflow and in turn a suppressed temperature disparity inside the system. Following the guidelines drawn by this work on the system design and the operation setting, the air-cooled fuel cell system can be expected with better performances......) model. The model is three-dimensional (3D) and built in the commercial CFD package Fluent (ANSYS Inc.). It makes the full-scale system-level study feasible by only considering the system essences with adequate accuracy. Through the model, the optimization is attained in several aspects. Firstly...

  11. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    International Nuclear Information System (INIS)

    Fang, Weizhen; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-01-01

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and 1 H nuclear magnetic resonance spectrometry ( 1 H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization

  12. Thermal degradation mechanism of addition-cure liquid silicone rubber with urea-containing silane

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weizhen; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Lai, Xuejun; Li, Hongqiang; Chen, Wanjuan; Zhang, Yajun

    2015-04-10

    Highlights: • The urea-containing silane was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. • The thermal stability of the ALSR was improved by DEUPAS both in nitrogen and air • The TG–FTIR of evolved gases during degradation was performed. • The possible degradation mechanism of the ALSR samples was proposed. - Abstract: The reactive urea-containing silane, (γ-diethylureidopropyl) allyloxyethoxysilane (DEUPAS), was synthesized by the trans-etherification reaction. The chemical structure was characterized by Fourier transform infrared spectrometry (FTIR) and {sup 1}H nuclear magnetic resonance spectrometry ({sup 1}H NMR). Subsequently, DEUPAS was incorporated into addition-cure liquid silicone rubber (ALSR) via hydrosilylation reaction. The thermal stability of the ALSR samples was investigated by thermogravimetry (TG) and thermogravimetry–Fourier transform infrared spectrometry (TG–FTIR). When DEUPAS was incorporated, the temperature of 10% weight loss and 20% weight loss under air atmosphere were respectively increased by 31 °C and 60 °C compared with those of the ALSR without DEUPAS. Meanwhile, the residual weight at 800 °C increased from 33.5% to 58.7%. It was found that the striking enhancement in thermal stability of the ALSR samples was likely attributed to the decomposition of the urea groups to isocyanic acid, which reacted with hydroxyl groups to inhibit the unzipping depolymerization.

  13. Performance characteristics of solar air heater with surface mounted obstacles

    International Nuclear Information System (INIS)

    Bekele, Adisu; Mishra, Manish; Dutta, Sushanta

    2014-01-01

    Highlights: • Solar air heater with delta shaped obstacles have been studied. • Obstacle angle of incidence strongly affects the thermo-hydraulic performance. • Thermal performance of obstacle mounted collectors is superior to smooth collectors. • Thermo-hydraulic performance of the present SAH is higher than those in previous studies. - Abstract: The performance of conventional solar air heaters (SAHs) can be improved by providing obstacles on the heated wall (i.e. on the absorber plate). Experiments have been performed to collect heat transfer and flow-friction data from an air heater duct with delta-shaped obstacles mounted on the absorber surface and having an aspect ratio 6:1 resembling the conditions close to the solar air heaters. This study encompassed for the range of Reynolds number (Re) from 2100 to 30,000, relative obstacle height (e/H) from 0.25 to 0.75, relative obstacle longitudinal pitch (P l /e) from 3/2 to 11/2, relative obstacle transverse pitch (P t /b) from 1 to 7/3 and the angle of incidence (α) varied from 30° to 90°. The thermo-hydraulic performance characteristics of SAH have been compared with the previous published works and the optimum range of the geometries have been explored for the better performance of such air-heaters compared to the other designs of solar air heaters

  14. Cryogenic cooler thermal coupler

    International Nuclear Information System (INIS)

    Green, K.E.; Talbourdet, J.A.

    1984-01-01

    A thermal coupler assembly mounted to the coldfinger of a cryogenic cooler which provides improved thermal transfer between the coldfinger and the detector assembly mounted on the dewar endwell. The thermal coupler design comprises a stud and spring-loaded cap mounted on the coldfinger assembly. Thermal transfer is made primarily through the air space between the cap and coldwell walls along the radial surfaces. The cap is spring loaded to provide thermal contact between the cap and endwell end surfaces

  15. Optimization of air conditioning systems utilizing low temperature thermal storage; Optimizacion de sistemas de acondicionamiento de aire utilizando sistemas de almacenamiento termico de baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Ramirez, J.; Dorantes Rodriguez, R. [Departamento de Energia, Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1997-12-31

    In the last few years the different projects on the saving and efficient use of energy in the tertiary sector have been demonstrating the existing great potential in the air conditioning systems and equipment, whose intensive use is due to the predominance of hot and dry and hot and humid climate prevailing in a large part of the Mexican territory. Without any doubts one of the most serious problems facing the complex management and optimization of these systems is related to the variability of the thermal load and the regulation possibilities of the thermal machines, so as to attain, along the day an appropriate use and optimization of the total installed load, with the best possible economic benefits. Among the strategies that allow the optimization of the installed capacity and the variability of the thermal load is the low temperature thermal storage, for instance, the storage of ice, which is produced and stored to be used when the cooling machines are in standby in order to use this stored energy during the peak hours and during the normal operation of the equipment, but diminishing in a significant amount the electrical demand of the system to satisfy the thermal load with a combination thermal storage-cooling machine. This paper presents some case histories and the type of thermal storage commonly used; a methodology is discussed that allows to determine technically as well as economically the size of a thermal storage room. Some problems in the control and operation of these thermal systems are also presented. [Espanol] En los ultimos anos los diversos proyectos sobre ahorro y uso eficiente de la energia en el sector terciario han venido mostrando el gran potencial existente en los sistemas y equipos de aire acondicionado, cuyo uso intensivo se debe al predominio de los climas calidos seco y calido humedo en buena parte del territorio nacional. Sin lugar a dudas uno de los problemas mas serios que enfrenta la compleja gestion y optimizacion de estos

  16. Optimization of air conditioning systems utilizing low temperature thermal storage; Optimizacion de sistemas de acondicionamiento de aire utilizando sistemas de almacenamiento termico de baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Ramirez, J; Dorantes Rodriguez, R [Departamento de Energia, Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1998-12-31

    In the last few years the different projects on the saving and efficient use of energy in the tertiary sector have been demonstrating the existing great potential in the air conditioning systems and equipment, whose intensive use is due to the predominance of hot and dry and hot and humid climate prevailing in a large part of the Mexican territory. Without any doubts one of the most serious problems facing the complex management and optimization of these systems is related to the variability of the thermal load and the regulation possibilities of the thermal machines, so as to attain, along the day an appropriate use and optimization of the total installed load, with the best possible economic benefits. Among the strategies that allow the optimization of the installed capacity and the variability of the thermal load is the low temperature thermal storage, for instance, the storage of ice, which is produced and stored to be used when the cooling machines are in standby in order to use this stored energy during the peak hours and during the normal operation of the equipment, but diminishing in a significant amount the electrical demand of the system to satisfy the thermal load with a combination thermal storage-cooling machine. This paper presents some case histories and the type of thermal storage commonly used; a methodology is discussed that allows to determine technically as well as economically the size of a thermal storage room. Some problems in the control and operation of these thermal systems are also presented. [Espanol] En los ultimos anos los diversos proyectos sobre ahorro y uso eficiente de la energia en el sector terciario han venido mostrando el gran potencial existente en los sistemas y equipos de aire acondicionado, cuyo uso intensivo se debe al predominio de los climas calidos seco y calido humedo en buena parte del territorio nacional. Sin lugar a dudas uno de los problemas mas serios que enfrenta la compleja gestion y optimizacion de estos

  17. Laser-induced damage thresholds of gold, silver and their alloys in air and water

    Energy Technology Data Exchange (ETDEWEB)

    Starinskiy, Sergey V.; Shukhov, Yuri G.; Bulgakov, Alexander V., E-mail: bulgakov@itp.nsc.ru

    2017-02-28

    Highlights: • Laser damage thresholds of Ag, Au and Ag-Au alloys in air and water are measured. • Alloy thresholds are lower than those of Ag and Au due to low thermal conductivity. • Laser damage thresholds in water are ∼1.5 times higher than those in air. • Light scattering mechanisms responsible for high thresholds in water are suggested. • Light scattering mechanisms are supported by optical reflectance measurements. - Abstract: The nanosecond-laser-induced damage thresholds of gold, silver and gold-silver alloys of various compositions in air and water have been measured for single-shot irradiation conditions. The experimental results are analyzed theoretically by solving the heat flow equation for the samples irradiated in air and in water taking into account vapor nucleation at the solid-water interface. The damage thresholds of Au-Ag alloys are systematically lower than those for pure metals, both in air and water that is explained by lower thermal conductivities of the alloys. The thresholds measured in air agree well with the calculated melting thresholds for all samples. The damage thresholds in water are found to be considerably higher, by a factor of ∼1.5, than the corresponding thresholds in air. This cannot be explained, in the framework of the used model, neither by the conductive heat transfer to water nor by the vapor pressure effect. Possible reasons for the high damage thresholds in water such as scattering of the incident laser light by the vapor-liquid interface and the critical opalescence in the superheated water are suggested. Optical pump-probe measurements have been performed to study the reflectance dynamics of the surface irradiated in air and water. Comparison of the transient reflectance signal with the calculated nucleation dynamics provides evidence that the both suggested scattering mechanisms are likely to occur during metal ablation in water.

  18. Abstracts of the 2. Meeting on Medical Physics in the Northeastern Region

    International Nuclear Information System (INIS)

    Melo, H.C.

    1985-01-01

    Abstracts from experimental works on medical physics are presented, especially about: calibration and thermal behaviour of personnel monitoring dosemeters, radioactive sources appliers for the treatment of patological diseases. (C.L.B.) [pt

  19. Neural computing thermal comfort index for HVAC systems

    International Nuclear Information System (INIS)

    Atthajariyakul, S.; Leephakpreeda, T.

    2005-01-01

    The primary purpose of a heating, ventilating and air conditioning (HVAC) system within a building is to make occupants comfortable. Without real time determination of human thermal comfort, it is not feasible for the HVAC system to yield controlled conditions of the air for human comfort all the time. This paper presents a practical approach to determine human thermal comfort quantitatively via neural computing. The neural network model allows real time determination of the thermal comfort index, where it is not practical to compute the conventional predicted mean vote (PMV) index itself in real time. The feed forward neural network model is proposed as an explicit function of the relation of the PMV index to accessible variables, i.e. the air temperature, wet bulb temperature, globe temperature, air velocity, clothing insulation and human activity. An experiment in an air conditioned office room was done to demonstrate the effectiveness of the proposed methodology. The results show good agreement between the thermal comfort index calculated from the neural network model in real time and those calculated from the conventional PMV model

  20. Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use

    International Nuclear Information System (INIS)

    Bouadila, Salwa; Kooli, Sami; Lazaar, Mariem; Skouri, Safa; Farhat, Abdelhamid

    2013-01-01

    Highlights: • A new solar air heater collector using a phase change material. • Experimental study of the new solar air heater collector with latent storage. • Energy and exergy analysis of the solar heater with latent storage collector. • Nocturnal use of solar air heater collector. - Abstract: An experimental study was conducted to evaluate the thermal performance of a new solar air heater collector using a packed bed of spherical capsules with a latent heat storage system. Using both first and second law of thermodynamics, the energetic and exegetic daily efficiencies were calculated in Closed/Opened and Opened cycle mode. The solar energy was stored in the packed bed through the diurnal period and extracted at night. The experimentally obtained results are used to analyze the performance of the system, based on temperature distribution in different localization of the collectors. The daily energy efficiency varied between 32% and 45%. While the daily exergy efficiency varied between 13% and 25%

  1. Lighting system with thermal management system

    Science.gov (United States)

    Arik, Mehmet; Weaver, Stanton; Stecher, Thomas; Seeley, Charles; Kuenzler, Glenn; Wolfe, Jr., Charles; Utturkar, Yogen; Sharma, Rajdeep; Prabhakaran, Satish; Icoz, Tunc

    2013-05-07

    Lighting systems having unique configurations are provided. For instance, the lighting system may include a light source, a thermal management system and driver electronics, each contained within a housing structure. The light source is configured to provide illumination visible through an opening in the housing structure. The thermal management system is configured to provide an air flow, such as a unidirectional air flow, through the housing structure in order to cool the light source. The driver electronics are configured to provide power to each of the light source and the thermal management system.

  2. Analysis of Thermal Comfort in an Intelligent Building

    Science.gov (United States)

    Majewski, Grzegorz; Telejko, Marek; Orman, Łukasz J.

    2017-06-01

    Analysis of thermal comfort in the ENERGIS Building, an intelligent building in the campus of the Kielce University of Technology, Poland is the focus of this paper. For this purpose, air temperature, air relative humidity, air flow rate and carbon dioxide concentration were measured and the mean radiant temperature was determined. Thermal sensations of the students occupying the rooms of the building were evaluated with the use of a questionnaire. The students used a seven-point scale of thermal comfort. The microclimate measurement results were used to determine the Predicted Mean Vote and the Predicted Percentage Dissatisfied indices.

  3. Air and fuel supercharge in the performance of a diesel cycle engine

    Directory of Open Access Journals (Sweden)

    Marcelo Silveira de Farias

    Full Text Available ABSTRACT: This paper aimed to evaluate the performance of a Diesel cycle engine, changing the configurations for the air and fuel supply system. Variables analyzed were torque, power, specific fuel consumption and thermal efficiency in four different engine configurations (aspirated, aspirated + service, turbocharged + service and turbocharged. For that, there were dynamometer experiments by power take-off of an agricultural tractor. The experimental outline used was entirely randomized, in a bifatorial design with three repetitions. Results indicated that the engine supercharge, compared to its original configuration, provided a significant increase of torque and power. Only the addition of turbo does not caused a significant effect in the engine performance. Application of turbocharger provides an improvement in the burning of the air/fuel mixture, which favors the increase of engine power and; consequently, reduced the specific fuel consumption.

  4. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  5. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, Filiz; Esen, Mehmet; Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-11-15

    This study experimentally investigates a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate solar air heater (SAH). This method substantially improves the collector efficiency by increasing the fluid velocity and enhancing the heat-transfer coefficient between the absorber plate and air. These types of collectors had been designed as a proposal to use aluminium materials to build absorber plates of SAHs at a suitable cost. The collector had been covered with a 4-mm single glass plate, in order to reduce convective loses to the atmosphere. Three different absorber plates had been designed and tested for experimental study. In the first type (Type I), cans had been staggered as zigzag on absorber plate, while in Type II they were arranged in order. Type III is a flat plate (without cans). Experiments had been performed for air mass flow rates of 0.03 kg/s and 0.05 kg/s. The highest efficiency had been obtained for Type I at 0.05 kg/s. Also, comparison between the thermal efficiency of the SAH tested in this study with the ones reported in the literature had been presented, and a good agreement had been found. (author)

  6. Thermal performance of an innovative roof component

    Energy Technology Data Exchange (ETDEWEB)

    Dimoudi, A. [Department of Environmental Engineering, Democritus University of Thrace, Vassilisis Sofias 12, 67 100 Xanthi (Greece); Lykoudis, S. [Institute for Environmental Research and Sustainable Development, National Observatory of Athens, I. Metaxa and B. Pavlou, 152 36 Penteli (Greece); Androutsopoulos, A. [Buildings Department, Division of Energy Efficiency, Centre for Renewable Energy Sources (CRES), 19th km Marathonos Aven., 190 09 Pikermi (Greece)

    2006-11-15

    In this paper, the thermal performance of a ventilated roof component is investigated during the winter period. The ventilated roof component consists of a conventional roof structure - reinforced concrete with a layer of thermal insulation - an air gap that allows the movement of the ambient air and an external layer made of a prefabricated concrete slab. The experimental results of the ventilated roof component during the winter period are presented and its thermal performance is analysed. The effect of key construction parameters like the height of the air gap and the use of a radiant barrier in the air gap is also investigated. Analysis of the results showed that the performance of a ventilated roof component is comparable to a conventional structure during winter. The ventilated component is shown to be in compliance with Greek regulatory requirements in terms of U-value. (author)

  7. Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package

    International Nuclear Information System (INIS)

    Wang, Jing; Zhao, Xin-Jie; Cai, Yi-Xi; Zhang, Chun; Bao, Wei-Wei

    2015-01-01

    Highlights: • A novel TEC cooling system for multi-chip LED module was successfully developed. • Influences of liquid velocity on the system thermal performance were investigated. • TEC system is more sensitive to the input current than that of the mere air cooling. • The junction temperature can be maintained below 61.8 °C (liquid cooling & TEC). - Abstract: In view of the characteristics of high power light-emitting diodes (LEDs), such as strict junction temperature (T j ) control, the enhanced cooling models based on the thermoelectric cooler (TEC) were presented to meet the thermal demand of high-power LED headlight. The cooling performance of different devices (air cooling & TEC, liquid cooling & TEC) was evaluated and compared by measuring the LED case temperature. Details of the heat transfer performance, particularly, the start-up performances of the TEC cooler, as well as the influence of the fan rotate speed or liquid velocity on the system thermal performance were obtained. It was found that the thermal performance had been elevated dramatically due to the reduction of the hot side temperature, and the thermoelectric cooler was more sensitive to the external fan speed or liquid velocity than purely air cooling or liquid cooling. In addition, the optimal current for air cooling & TEC was 3A, and 5A for liquid cooling + TEC. Investigations of the simulated ambient temperature on junction temperature, forward voltage, and output light were conducted. Results indicated that the case temperature changed linear basically with the increase in heating power or the simulated ambient temperature. When the ambient temperature was within its severe level (60–65 °C), the junction temperature could be calculated to 59.5 °C, and the corresponding output light was 1607.3 lm

  8. Rise time reduction of thermal actuators operated in air and water through optimized pre-shaped open-loop driving

    International Nuclear Information System (INIS)

    Larsen, T; Doll, J C; Loizeau, F; Pruitt, B L; Hosseini, N; Fantner, G E; Peng, A W; Ricci, A J

    2017-01-01

    Electrothermal actuators have many advantages compared to other actuators used in micro-electro-mechanical systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10–90% rise time of 85 μ s in air and 234 μ s in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10–90% rise time from 85 μ s to 3 μ s in air and from 234 μ s to 5 μ s in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate. (paper)

  9. Rise Time Reduction of Thermal Actuators Operated in Air and Water through Optimized Pre-Shaped Open-Loop Driving.

    Science.gov (United States)

    Larsen, T; Doll, J C; Loizeau, F; Hosseini, N; Peng, A W; Fantner, G; Ricci, A J; Pruitt, B L

    2017-01-01

    Electrothermal actuators have many advantages compared to other actuators used in Micro-Electro-Mechanical Systems (MEMS). They are simple to design, easy to fabricate and provide large displacements at low voltages. Low voltages enable less stringent passivation requirements for operation in liquid. Despite these advantages, thermal actuation is typically limited to a few kHz bandwidth when using step inputs due to its intrinsic thermal time constant. However, the use of pre-shaped input signals offers a route for reducing the rise time of these actuators by orders of magnitude. We started with an electrothermally actuated cantilever having an initial 10-90% rise time of 85 μs in air and 234 μs in water for a standard open-loop step input. We experimentally characterized the linearity and frequency response of the cantilever when operated in air and water, allowing us to obtain transfer functions for the two cases. We used these transfer functions, along with functions describing desired reduced rise-time system responses, to numerically simulate the required input signals. Using these pre-shaped input signals, we improved the open-loop 10-90% rise time from 85 μs to 3 μs in air and from 234 μs to 5 μs in water, an improvement by a factor of 28 and 47, respectively. Using this simple control strategy for MEMS electrothermal actuators makes them an attractive alternative to other high speed micromechanical actuators such as piezoelectric stacks or electrostatic comb structures which are more complex to design, fabricate, or operate.

  10. Proposals to enhance thermal efficiency programs and air pollution control in south-central Chile

    International Nuclear Information System (INIS)

    Schueftan, Alejandra; González, Alejandro D.

    2015-01-01

    Major cities in South-central Chile suffer high levels of particulate matter PM 10 and PM 2.5 due to combustion of solid fuels for heating. Exposure to these air pollutants is recognized as a major contribution to ill health in the region. Here we discuss new strategies to reduce air pollution. Regulations and subsidies focusing on improved combustion by providing drier wood fuel and better stoves have been in effect since 2007. However, air pollution due to combustion of wood fuel has been steadily rising, along with reports on health consequences. The paper analyzes a survey of 2025 households in the city of Valdivia, which found that wood fuel quality, stove renewal, and awareness of programs are strongly affected by income level, and that higher consumption of wood fuel is found in households already having better stoves and drier wood fuel. The analysis suggests that regulations intended to improve combustion are influenced by user's behavior and have limited potential for lowering pollution. We conclude that thermal refurbishment has a larger potential for improvement, not yet been implemented as an energy policy for the majority. Here we propose improvements and additions to current programs to enhance effectiveness and cover the whole social spectrum. - Highlights: • High levels of PM 2.5 from wood combustion affect cities of south-central Chile. • Current programs on dry wood fuel and stoves renewal have not reduced air pollution. • Real operation of wood stoves strongly depends on user's behavior. • Buildings' energy efficiency has greater potential for reducing emissions. • Retrofit prevents degradation of native forest and improves indoor temperature

  11. Numerical analysis of heat propagation in a battery pack using a novel technology for triggering thermal runaway

    International Nuclear Information System (INIS)

    Coman, Paul T.; Darcy, Eric C.; Veje, Christian T.; White, Ralph E.

    2017-01-01

    Highlights: •Heat propagation during thermal runaway (TR) in a battery pack with aluminum heat sink was analyzed. •TR in the battery pack, triggered by a novel internal short circuit device (ISCD) was modeled. •A 2D geometry and model couplings reduce computation time significantly. •Small air gaps and mica paper in combination with a thermally conductive matrix increase safety in battery packs. -- Abstract: This paper presents a numerical model used for analyzing heat propagation as a safety feature in a custom-made battery pack. The pack uses a novel technology consisting of an internal short circuit device implanted in a cell to trigger thermal runaway. The goal of the study is to investigate the importance of wrapping cylindrical battery cells (18650 type) in a thermally and electrically insulating mica sleeve, to fix the cells in a thermally conductive aluminum heat sink. By modeling the full-scale pack using a 2D model and coupling the thermal model with an electrochemical model, good agreement with a 3D model and experimental data was found (less than 6%). The 2D modeling approach also reduces the computation time considerably (from 11 h to 25 min) compared to using a 3D model. The results showed that the air trapped between the cell and the boreholes of the heat sink provides a good insulation which reduces the temperature of the adjacent cells during thermal runaway. At the same time, a highly conductive matrix dissipates the heat throughout its thermal mass, reducing the temperature even further. It was found that for designing a safe battery pack which mitigates thermal runaway propagation, a combination of small insulating layers wrapped around the cells, and a conductive heat sink is beneficial.

  12. Beyond the dichotomy of figurative and abstract art in hospitals

    DEFF Research Database (Denmark)

    Nielsen, Stine Maria Louring; Mullins, Michael Finbarr

    2017-01-01

    from two experimental case studies on 98 patients’ well-being in relation to their experience and use of visual art during hospitalization. The case studies employed a mixed-method approach, including interviews and observations informed by thermal video recording, surveys and psychophysiological......Within the evidence-based design discourse, and deriving particularly from the theory of emotional congruence, abstract art has been indicated as unsuitable for hospitals. As patients may often experience unfamiliarity, vulnerability, stress, unpredictability and uneasiness in hospitals......, these negative factors in terms of patients’ well-being are predicted to be detrimentally reinforced by abstract art, but alleviated by particular forms of figurative art. The present paper focuses particularly on this question of the suitability of abstract art in Danish hospital settings and presents findings...

  13. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    Science.gov (United States)

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Analyzing the effects of thermal comfort and indoor air quality in design studios and classrooms on student performance

    OpenAIRE

    Ranjbar, Ali

    2017-01-01

    Cataloged from PDF version of article. Thesis (M.S.): Bilkent University, Department of Interior Architecture and Environmental Design, İhsan Doğramacı Bilkent University, 2017 Includes bibliographical references (leaves 101-106). The present study aims to evaluate the effects of the different ventilation modes on thermal comfort and indoor air quality in design studios and classrooms. It also investigates its associations with student performance. For this purpose, experimenta...

  15. Development and evaluation of a ceiling ventilation system enhanced by solar photovoltaic thermal collectors and phase change materials

    International Nuclear Information System (INIS)

    Lin, Wenye; Ma, Zhenjun; Sohel, M. Imroz; Cooper, Paul

    2014-01-01

    Highlights: • A novel ceiling ventilation system enhanced by PVT and PCMs was proposed. • PCM was used to increase the local thermal mass and to serve as a storage unit. • The proposed system can enhance indoor thermal comfort in winter and summer. - Abstract: This paper presents the development and performance evaluation of a novel ceiling ventilation system integrated with solar photovoltaic thermal (PVT) collectors and phase change materials (PCMs). The PVT collectors are used to generate electricity and provide low grade heating and cooling energy for buildings by using winter daytime solar radiation and summer night-time sky radiative cooling, respectively. The PCM is integrated into the building ceiling as a part of the ceiling insulation and at the same time, as a centralized thermal energy storage to temporally store low grade energy collected from the PVT collectors. The performance of the proposed system was numerically evaluated based on a Solar Decathlon house using TRNSYS. The results showed that, in winter conditions, the proposed PVT–PCM integrated ventilation system can significantly improve the indoor thermal comfort of passive buildings without using air-conditioning systems with a maximum air temperature rise of 23.1 °C from the PVT collectors. Compared with the system using PCM but without using PVT collectors, the coefficient of thermal comfort enhancement in the kitchen, dining room and living room of the case building studied using the proposed system improved from almost zero to 0.9823 while the coefficient of thermal comfort enhancement in the study room improved from 0.0060 to 0.9921. In summer conditions, the proposed system can also enhance indoor thermal comfort through night-time sky radiative cooling

  16. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    Science.gov (United States)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  17. A simplified method for evaluating thermal performance of unglazed transpired solar collectors under steady state

    International Nuclear Information System (INIS)

    Wang, Xiaoliang; Lei, Bo; Bi, Haiquan; Yu, Tao

    2017-01-01

    Highlights: • A simplified method for evaluating thermal performance of UTC is developed. • Experiments, numerical simulations, dimensional analysis and data fitting are used. • The correlation of absorber plate temperature for UTC is established. • The empirical correlation of heat exchange effectiveness for UTC is proposed. - Abstract: Due to the advantages of low investment and high energy efficiency, unglazed transpired solar collectors (UTC) have been widely used for heating in buildings. However, it is difficult for designers to quickly evaluate the thermal performance of UTC based on the conventional methods such as experiments and numerical simulations. Therefore, a simple and fast method to determine the thermal performance of UTC is indispensable. The objective of this work is to provide a simplified calculation method to easily evaluate the thermal performance of UTC under steady state. Different parameters are considered in the simplified method, including pitch, perforation diameter, solar radiation, solar absorptivity, approach velocity, ambient air temperature, absorber plate temperature, and so on. Based on existing design parameters and operating conditions, correlations for the absorber plate temperature and the heat exchange effectiveness are developed using dimensional analysis and data fitting, respectively. Results show that the proposed simplified method has a high accuracy and can be employed to evaluate the collector efficiency, the heat exchange effectiveness and the air temperature rise. The proposed method in this paper is beneficial to directly determine design parameters and operating status for UTC.

  18. Determination of thermal and acoustic comfort inside a vehicle's cabin

    Science.gov (United States)

    Ene, Alexandra; Catalina, Tiberiu; Vartires, Andreea

    2018-02-01

    Thermal and acoustic comfort, inside a vehicle's cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  19. Experimental investigation of radiation effect on human thermal comfort by Taguchi method

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah; Yigit, Abdulvahap

    2016-01-01

    Highlights: • Radiation heat flux from lighting lamps on human thermal comfort is studied. • The effect of posture position on thermal comfort is investigated. • The effect of clothing color on thermal comfort is examined. • Radiation heat flux from halogen reflector lamp increase skin temperature more. • Posture position effect on thermal comfort is less than the other parameters. - Abstract: In this study, the effect of radiation heat flux of lighting lamps on human thermal comfort was investigated by using Taguchi method. In addition, at indoor conditions, clothing color and posture position under the radiation effect on thermal comfort were also investigated. For this purpose, experiments were performed in an air conditioned laboratory room in summer and autumn seasons. The amount of temperature rise on the back was considered as performance parameter. An L8 orthogonal array was selected as an experimental plan for the third parameters mentioned above for summer and autumn seasons. The results were analyzed for the optimum conditions using signal-to-noise (S/N) ratio and ANOVA method. The optimum results were found to be clear halogen lamp as lighting lamp, white as t-shirt color, standing as posture position, in summer season. The optimum levels of the lighting lamp, t-shirt color and posture position were found to be clear halogen lamp, white, sitting in autumn season, respectively.

  20. From Abstract Art to Abstracted Artists

    Directory of Open Access Journals (Sweden)

    Romi Mikulinsky

    2016-11-01

    Full Text Available What lineage connects early abstract films and machine-generated YouTube videos? Hans Richter’s famous piece Rhythmus 21 is considered to be the first abstract film in the experimental tradition. The Webdriver Torso YouTube channel is composed of hundreds of thousands of machine-generated test patterns designed to check frequency signals on YouTube. This article discusses geometric abstraction vis-à-vis new vision, conceptual art and algorithmic art. It argues that the Webdriver Torso is an artistic marvel indicative of a form we call mathematical abstraction, which is art performed by computers and, quite possibly, for computers.

  1. Energy analysis of under-floor air distribution (UFAD) system: An office building case study

    International Nuclear Information System (INIS)

    Alajmi, Ali F.; Abou-Ziyan, Hosny Z.; El-Amer, Wid

    2013-01-01

    Highlights: • The key issue for efficient performance of UFAD system is to ensure the thermal stratification establishment. • The unnecessarily excess air supplied to the room deteriorates the thermal stratification. • Improper UFAD operation increases the fan power and HVAC electric demand. • The proper UFAD system is typically more efficient than the existed UFAD system with energy savings of about 23–37%. • UFAD system shows over the CBAD system saving by about 37–39% during the peak months and 51% during October. - Abstract: This paper presents the results of an experimental and theoretical investigation to evaluate an under-floor air distribution (UFAD) system existed in an office building working on hot climate. Air temperature a distribution and supply air velocity are measured in two measuring stations; each consists of eight temperature sensors which were installed to measure room air temperatures along zone height. The obtained data shows an inefficient operation of the UFAD system which deteriorates the advantages of energy saving that presumed by UFAD system. The building energy simulation program, EnergyPlus, was used to identify the best setting of UFAD system and compare it with the existed UFAD and the conventional ceiling based air distribution (CBAD) system. The simulation results show that setting of room thermostat at 26 °C and supply air temperature at 18 °C provides the best efficient UFAD system. Due to improper operation of the tested UFAD system, its actual consumption is found to be higher than the best simulated UFAD by 23–37% during July to October. Also, the simulation results show that the HVAC demand of UFAD is lower than CBAD by 37–39% during July–September and 51% in October

  2. Evaluating of air flow movements and thermal comfort in a model room with Euler equation: Two dimensional study

    Energy Technology Data Exchange (ETDEWEB)

    Chafi, Fatima Zohra; Halle, Stephane [Mechanical engineering department, Ecole de technologie superieure, Quebec university, 1100 rue Notre-Dame Ouest, Montreal, Quebec H3C 1K3 (Canada)

    2011-02-15

    This paper presents the results of a study that consists of estimating the temperature distribution and air flow movement in a model room with a numerical model based on the Euler equations. Numerical results obtained for two scenarios of ventilation and heating are compared with the predictions of a Navier-Stokes model, as well as with experimental results. A comparison of the local thermal comfort indices PMV and PPD obtained experimentally and numerically is also presented. Results show that the Euler model is capable of properly estimating the temperature distribution, the air movement and the comfort indices in the room. Furthermore, the use of Euler equations allows a reduction of computational time in the order of 30% compared to the Navier-Stokes modeling. (author)

  3. Thermal equilibrium of goats.

    Science.gov (United States)

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Experimental evaluation of air distribution in mechanically ventilated residential rooms

    DEFF Research Database (Denmark)

    Tomasi, R.; Krajčík, M.; Simone, A.

    2013-01-01

    The effect of low ventilation rates (1 or 0.5 air change per hour) on thermal comfort and ventilation effectiveness was experimentally studied in a simulated residential room equipped with radiant floor heating/cooling and mixing ventilation systems. The tests were performed for various positions...... of supply and extract air terminals and different winter and summer boundary conditions. Vertical air temperature, operative temperature and air velocity profiles were measured in different positions in the room, and equivalent temperatures were derived, in order to characterize thermal comfort. Contaminant...... with unconditioned outdoor air supply, i.e. at the supply air temperatures higher than the room air temperature. Moreover, low floor temperatures were needed to maintain the desired reference temperature in the stratified thermal environment. Mainly in cooling conditions the ventilation effectiveness depended...

  5. Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration

    International Nuclear Information System (INIS)

    Shen, Jingchun; Zhang, Xingxing; Yang, Tong; Tang, Llewellyn; Cheshmehzangi, Ali; Wu, Yupeng; Huang, Guiqin; Zhong, Dan; Xu, Peng; Liu, Shengchun

    2016-01-01

    Highlights: • A novel compact STF with internally extruded pin–fin flow channel is proposed. • Thermal performance of the STF is characterized in different operation modes. • This STF is with simple structure, low cost and high feasibility in building design. • Such STF can achieve better thermal performance as conventional ones. - Abstract: The fully building integrated Solar Thermal Facade (STF) systems can become potential solutions for aesthetics architectural design, as well as for the enhancement of energy efficiency and reduction of operational cost in the contemporary built environment. As a result, this article introduces a novel compact STF with internally extruded pin–fin flow channel that is particularly suitable for the building integration. A dedicated simulation model was developed on basis of the heat transfer and the flow mechanics. A prototype of this STF was fabricated and then it was tested under a series of controlled environmental conditions. The experimental validation illustrated a good agreement with the simulation results, indicating the established model was able to predict the STF’s thermal performance at a reasonable accuracy (i.e. mean deviation of less than 5.46%). The impacts of several operational parameters, i.e. equivalent solar radiation, air temperature, air velocity, water mass flow rate and inlet water temperature, on the STF thermal performance were then discussed respectively. Given the baseline testing condition, the collector efficiency factor F′ is almost 0.9930, leading to a relatively high nominal thermal efficiency at about 63.21%, which demonstrates such STF, with simpler structure, lower cost and higher feasibility in architectural design, can achieve an equivalent or better thermal performance than recent bionic STF or the conventional ones. It is also concluded that the thermal efficiency varies proportionally with solar radiation, air temperature, and mass flow rate of water, but oppositely to air

  6. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  7. Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air

    International Nuclear Information System (INIS)

    Zhang Jun; Liu Yanru; Wei Zhiyang; Zhang Junyan

    2013-01-01

    Highlights: ► Oxygen vacancy is the key factor in accounting for the change in morphology of the ZnO nanorod arrays. ► We firstly investigated the wettability alteration of ZnO nanorod arrays annealed in vacuum at different temperature. ► The hydrophilicity of the ZnO nanorod arrays annealed in air is not related to the oxygen vacancy but ascribed to the O adatom on the nanorod surface. - Abstract: The ZnO nanorod arrays were synthesized via a simple hydrothermal process followed by annealing in vacuum and air respectively at different temperature. The wettability of samples was controlled by adjusting the annealing atmosphere and temperature. To investigate the mechanism of wettability alteration, the chemical composition and surface morphology of nanorod arrays were analyzed by X-ray photoelectron spectroscopy (XPS) and field emission scanning electron microscopy (FE-SEM), respectively. Increasing oxygen vacancy concentration by increasing annealing temperature in vacuum resulted in a great change of surface morphology, which played the major role in wettability change. Under annealing in air, oxygen vacancy concentration reduced and the surface morphology of nanorod arrays showed little change with increasing annealing temperature. The wettability alteration is ascribed to the O adatom on the nanorods surface.

  8. Effect of warm air supplied facially on occupants' comfort

    DEFF Research Database (Denmark)

    Kaczmarczyk, J.; Melikov, Arsen Krikor; Sliva,, D.

    2010-01-01

    was supplied with a constant velocity of 0.4 m/s by means of personalized ventilation towards the face of the subjects. The airflow at 21 °C decreased the subjects' thermal sensation and increased draught discomfort, but improved slightly the perceived air quality. Heating of the supplied air by 6 K...... (temperature increase by 4 K at the target area) above the room air temperature decreased the draught discomfort, improved subjects' thermal comfort and only slightly decreased the perceived air quality. Elevated velocity and temperature of the localized airflow caused an increase of nose dryness intensity...... and number of eye irritation reports. Results suggest that increasing the temperature of the air locally supplied to the breathing zone by only a few degrees above the room air temperature will improve occupants' thermal comfort and will diminish draught discomfort. This strategy will extend...

  9. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  10. Assessment of the thermal environment effects on human comfort and health for the development of novel air conditioning system in tropical regions

    Energy Technology Data Exchange (ETDEWEB)

    Sookchaiya, Thammanoon; Monyakul, Veerapol; Thepa, Sirichai [Division of Energy Technology, School of Energy Environment and Materials, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand)

    2010-10-15

    This research shows the result of a brainstorming by medical experts in the first ranking university medical school and hospital of Thailand. It was based on Delphi technique. The objective of this research was to study both direct and indirect effects of humidity and temperature on human health in air-conditioned buildings in Thailand. Afterwards, the result was used to design and develop split type air conditioner (conventional air conditioner) which could control relative humidity and temperature with precision air conditioning system to comply with the climate and the suitability of the people living in Thailand building. The result of operation with precision inverter air conditioning system showed that the temperature inside the room changed from the default value around {+-}0.2 C (Case 1) and around {+-}0.35 C (Case 2) and it could control relative humidity as a desired condition between 50-60% (both cases) which was the appropriate range for Thai climate. Moreover, energy consumption of precision inverter air conditioning system was still less than conventional air conditioning system for about 7.5%. This research could provide people living in Thailand air conditioned building with human thermal comfort and health. (author)

  11. Seventeenth symposium on biotechnology for fuels and chemicals. Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This volume contains the abstracts of oral and poster presentations made at the Seventeenth Symposium on Biotechnology for Fuels and Chemicals. Session titles include Thermal, Chemical, and Biological Processing; Applied Biological Research; Bioprocessing Research; Special Topics Discussion Groups; Process Economics and Commercialization; and Environmental Biotechnology.

  12. Effects of the selection of heat transfer fluid and condenser type on the performance of a solar thermal power plant with technoeconomic approach

    International Nuclear Information System (INIS)

    Yilmazoglu, M. Zeki

    2016-01-01

    Highlights: • The effects of the selection of HTF and condenser type on STPs were examined. • Levelized cost of energy (LCOE) for STP was investigated. • LCOE for STP compared with gas turbine and combined cycle. • CSP with thermal storage can be competitive technology with carbon tax/credits. - Abstract: Renewable electricity generation systems have an increasing trend in terms of usage due to aiming to decrease greenhouse gas emissions and energy source diversification strategies of countries. Parabolic trough, Fresnel, and solar tower systems have been used to generate solar thermal electricity around the world. In this study, the effects of the selection of collector heat transfer fluid (HTF) and condenser type on a concentrated solar thermal power plant were analyzed. Net power, net electrical efficiency, and economic analysis were carried out for the selected HTFs for different collector outlet temperature cases. In the case of condenser type selection four different systems were considered; water cooled, air cooled (dry air) and air cooled with water spraying (spraying before fan and spraying before and after fan). Levelized cost of energy (LCOE) and specific investment cost were calculated. According to the results, specific investment cost and LCOE were found to be 4000 USD/kW_e_l and 0.207 USD/kW h, respectively. Carbon tax/credit was also included to the calculations of LCOE and a comparison study was carried out for gas turbine, combined cycle and solar thermal power plant with thermal storage. Including carbon tax/credit to the LCOE shows that solar thermal power plant with heat storage can be competitive when compared to gas turbines.

  13. Thermal Hydraulic Performance in a Solar Air Heater Channel with Multi V-Type Perforated Baffles

    Directory of Open Access Journals (Sweden)

    Anil Kumar

    2016-07-01

    Full Text Available This article presents heat transfer and fluid flow characteristics in a solar air heater (SAH channel with multi V-type perforated baffles. The flow passage has an aspect ratio of 10. The relative baffle height, relative pitch, relative baffle hole position, flow attack angle, and baffle open area ratio are 0.6, 8.0, 0.42, 60°, and 12%, respectively. The Reynolds numbers considered in the study was in the range of 3000–10,000. The re-normalization group (RNG k-ε turbulence model has been used for numerical analysis, and the optimum relative baffle width has been investigated considering relative baffle widths of 1.0–7.0.The numerical results are in good agreement with the experimental data for the range considered in the study. Multi V-type perforated baffles are shown to have better thermal performance as compared to other baffle shapes in a rectangular passage. The overall thermal hydraulic performance shows the maximum value at the relative baffle width of 5.0.

  14. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  15. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  16. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    Science.gov (United States)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  17. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  18. Numerical Analysis on the Influence of Thermal Effects on Oil Flow Characteristic in High-Pressure Air Injection (HPAI Process

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2012-01-01

    Full Text Available In previous laboratory study, we have shown the thermal behavior of Keke Ya light crude oil (Tarim oilfield, branch of CNPC for high-pressure air injection (HPAI application potential study. To clarify the influences of thermal effects on oil production, in this paper, we derived a mathematical model for calculating oil flow rate, which is based on the heat conduction property in porous media from the combustion tube experiment. Based on remarkably limited knowledge consisting of very global balance arguments and disregarding all the details of the mechanisms in the reaction zone, the local governing equations are formulated in a dimensionless form. We use finite difference method to solve this model and address the study by way of qualitative analysis. The time-space dimensionless oil flow rate (qD profiles are established for comprehensive studies on the oil flow rate characteristic affected by thermal effects. It also discusses how these findings will impact HPAI project performances, and several guidelines are suggested.

  19. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  20. Effects of thermal underwear on thermal and subjective responses in winter.

    Science.gov (United States)

    Choi, Jeong-Wha; Lee, Joo-Young; Kim, So-Young

    2003-01-01

    This study was conducted to obtain basic data in improving the health of Koreans, saving energy and protecting environments. This study investigated the effects of wearing thermal underwear for keeping warm in the office in winter where temperature is not as low as affecting work efficiency, on thermoregulatory responses and subjective sensations. In order to create an environment where every subject feels the same thermal sensation, two experimental conditions were selected through preliminary experiments: wearing thermal underwear in 18 degrees C air (18-condition) and not wearing thermal underwear in 23 degrees C air (23-condition). Six healthy male students participated in this study as experiment subjects. Measurement items included rectal temperature (T(re)), skin temperature (T(sk)), clothing microclimate temperature (T(cm)), thermal sensation and thermal comfort. The results are as follows: (1) T(re) of all subjects was maintained constant at 37.1 degrees C under both conditions, indicating no significant differences. (2) (T)(sk) under the 18-condition and the 23-condition were 32.9 degrees C and 33.7 degrees C, respectively, indicating a significant level of difference (pcomfortable under both conditions. It was found (T)(sk) decreased due to a drop in the skin temperature of hands and feet, and the subjects felt cooler wearing only one layer of normal thermal underwear at 18 degrees C. Yet, the thermal comfort level, T(re) and T(cm) of chest part under the 18-condition were the same as those under the 23-condition. These results show that the same level of comfort, T(re) and T(cm) can be maintained as that of an environment about 5 degrees C higher in the office in winter, by wearing one layer of thermal underwear. In this regard, this study suggests that lowering indoor temperature by wearing thermal underwear in winter can contribute to saving energy and improving health.

  1. Thermal Comfort: An Index for Hot, Humid Asia. Educational Building Digest 12.

    Science.gov (United States)

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand). Regional Office for Education in Asia and Oceania.

    The sensation of thermal comfort is determined by a combination of air temperature, humidity of the air, rate of movement of the air, and radiant heat. This digest is intended to assist architects to design educational facilities that are as thermally comfortable as is possible without recourse to mechanical air conditioning. A nomogram is…

  2. TEAMBLOCKS: HYBRID ABSTRACTIONS FOR PROVABLE MULTI-AGENT AUTONOMY

    Science.gov (United States)

    2017-07-28

    ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory/RISC 525 Brooks Road Rome NY 13441-4505...SUPPLEMENTARY NOTES 14. ABSTRACT In this report, we describe TeamBlocks, a software library and underlying theory for the construction , analysis, and execution...synthesis [13]. The contribution of this paper is the TeamBlocks framework that facilitates the correct construction of cyber-physical systems from

  3. Determination of thermal and acoustic comfort inside a vehicle’s cabin

    Directory of Open Access Journals (Sweden)

    2018-01-01

    Full Text Available Thermal and acoustic comfort, inside a vehicle’s cabin, are highly interconnected and can greatly influence the health of the passengers. On one hand, the H.V.A.C. system brings the interior air parameters to a comfortable value while on the other hand, it is the main source of noise. It is an intriguing task to find a balance between the two. In this paper, several types of air diffusers were used in order to optimize the ratio between thermal and acoustic interior comfort. Using complex measurements of noise and thermal comfort parameters we have determined for each type of air diffuser the sound pressure level and its impact on air temperature and air velocity.

  4. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    International Nuclear Information System (INIS)

    Oró, Eduard; Depoorter, Victor; Pflugradt, Noah; Salom, Jaume

    2015-01-01

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO 2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  5. Modelling and monitoring of Aquifer Thermal Energy Storage : impacts of soil heterogeneity, thermal interference and bioremediation

    NARCIS (Netherlands)

    Sommer, W.T.

    2015-01-01

    Modelling and monitoring of Aquifer Thermal Energy Storage

    Impacts of heterogeneity, thermal interference and bioremediation

    Wijbrand Sommer
    PhD thesis, Wageningen University, Wageningen, NL (2015)
    ISBN 978-94-6257-294-2

    Abstract

    Aquifer

  6. Effects of thermal activated building systems in schools on thermal comfort in winter

    NARCIS (Netherlands)

    Zeiler, W.; Boxem, G.

    2009-01-01

    There is a growing attention for the Indoor Air Quality problems in schools, but there is far less attention for the thermal comfort aspects within schools. A literature review is done to clear the effects of thermal quality in schools on the learning performance of the students: it clearly shows

  7. Temperature distribution and thermal stress

    Indian Academy of Sciences (India)

    Abstract. Thermal effects of a double-end-pumped cubic Nd:YVO4 laser crystal are investigated in this paper. A detailed analysis of temperature distribution and thermal stress in cubic crystal with circular shape pumping is discussed. It has been shown that by considering the total input powers as constant, the ...

  8. Abstracts of the 1. Brazilian Meeting on Analytical Chemistry

    International Nuclear Information System (INIS)

    Curtius, A.J.

    1982-01-01

    Abstracts from experimental studies on analytical chemistry are presented. Several techniques have been used, such as: neutron activation analysis, potentiometry, optical emission spectroscopy, alpha and gamma spectroscopy, atomic absorption spectrophotometry, radiometric analysis, fission track detection, complexometry and others. Samples analysed are of various kinds: environmental materials (soil, water, air), rocks, coal, lanthanide complexes, polycarbonates and synthetic quartz. (C.L.B.) [pt

  9. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  10. Thermal resistance analysis and optimization of photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Yin, Ershuai; Li, Qiang; Xuan, Yimin

    2017-01-01

    Highlights: • A detailed thermal resistance analysis of the PV-TE hybrid system is proposed. • c-Si PV and p-Si PV cells are proved to be inapplicable for the PV-TE hybrid system. • Some criteria for selecting coupling devices and optimal design are obtained. • A detailed process of designing the practical PV-TE hybrid system is provided. - Abstract: The thermal resistance theory is introduced into the theoretical model of the photovoltaic-thermoelectric (PV-TE) hybrid system. A detailed thermal resistance analysis is proposed to optimize the design of the coupled system in terms of optimal total conversion efficiency. Systems using four types of photovoltaic cells are investigated, including monocrystalline silicon photovoltaic cell, polycrystalline silicon photovoltaic cell, amorphous silicon photovoltaic cell and polymer photovoltaic cell. Three cooling methods, including natural cooling, forced air cooling and water cooling, are compared, which demonstrates a significant superiority of water cooling for the concentrating photovoltaic-thermoelectric hybrid system. Influences of the optical concentrating ratio and velocity of water are studied together and the optimal values are revealed. The impacts of the thermal resistances of the contact surface, TE generator and the upper heat loss thermal resistance on the property of the coupled system are investigated, respectively. The results indicate that amorphous silicon PV cell and polymer PV cell are more appropriate for the concentrating hybrid system. Enlarging the thermal resistance of the thermoelectric generator can significantly increase the performance of the coupled system using amorphous silicon PV cell or polymer PV cell.

  11. Influence of the air cavities on thermal conductivity of selected wood based materials and their application for building industry; Einfluss von Hohlraeumen auf die Waermeleitfaehigkeit von ausgewaehlten Holzwerkstoffen fuer den Baueinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Joscak, Matus [Dascanova GmbH, Wien (Austria); Sonderegger, Walter; Niemz, Peter; Schnider, Thomas [ETH Zuerich (Switzerland). Institut fuer Baustoffe, Arbeitsgruppe Holzphysik; Oppikofer, Reinhard [MSc ETH, Zuerich (Switzerland); Lammar, Laura [Synaxis AG Zuerich, Zuerich (Switzerland)

    2012-02-15

    On selected wood-based materials (beech veneer, MDF and particle board), the influence of inserting air cavities on the thermal conductivity was investigated. For the tests, the particular boards (board thickness: 2.7 to 5 mm according to the material) were layered in multiple layers by varying the assemblies and using boards with and without cavities. Additionally, aluminium foils (low emissivity) were inserted to investigate the influence of heat radiation in the cavities. It can be stated that inserting air cavities (approximately 46 % of core material) results in a reduction of thermal conductivity up to 51 %. An additional insertion of aluminium foils perpendicular to the direction of heat flow reduces the thermal conductivity once more significantly (up to 64 %) due to a strong reduced heat radiation within the cavities. This is particularly pronounced in the constructions with larger air cavity thicknesses. Additionally, a proposal of a new product based on wood has been presented to develop the potential of inserting cavities for timber construction.

  12. Thermal degradation of CR-39 polymer in an inert atmosphere

    International Nuclear Information System (INIS)

    Kalsi, P.C.; Pandey, A.K.; Iyer, R.H.; Singh Mudher, K.D.

    1995-01-01

    The thermal degradation of CR-39 (allyl diglycol carbonate), a polymer widely used in nuclear science and technology, in an inert atmosphere has been studied using thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. The results are compared with the thermal degradation data of the polymer in an air atmosphere. The present studies showed that the thermal degradation of the polymer proceeds in two steps in an argon atmosphere as compared to three steps in air atmosphere. The mass losses in air are higher than that in argon due to the oxidative decomposition of the residue. The kinetics of the different stages of degradation were also evaluated from the TG curves. (author). 7 refs., 1 tab

  13. Thermal Properties of Carbon Nanotube–Copper Composites for Thermal Management Applications

    Directory of Open Access Journals (Sweden)

    Jia Chengchang

    2010-01-01

    Full Text Available Abstract Carbon nanotube–copper (CNT/Cu composites have been successfully synthesized by means of a novel particles-compositing process followed by spark plasma sintering (SPS technique. The thermal conductivity of the composites was measured by a laser flash technique and theoretical analyzed using an effective medium approach. The experimental results showed that the thermal conductivity unusually decreased after the incorporation of CNTs. Theoretical analyses revealed that the interfacial thermal resistance between the CNTs and the Cu matrix plays a crucial role in determining the thermal conductivity of bulk composites, and only small interfacial thermal resistance can induce a significant degradation in thermal conductivity for CNT/Cu composites. The influence of sintering condition on the thermal conductivity depended on the combined effects of multiple factors, i.e. porosity, CNTs distribution and CNT kinks or twists. The composites sintered at 600°C for 5 min under 50 MPa showed the maximum thermal conductivity. CNT/Cu composites are considered to be a promising material for thermal management applications.

  14. On non-extensive nature of thermal conductivity

    Indian Academy of Sciences (India)

    Abstract. In this paper we study non-extensive nature of thermal conductivity. It is observed that there is similarity between non-extensive entropic index and fractal dimension obtained for the silica aerogel thermal conductivity data at low temperature.

  15. Thermal energy analysis of a lime production process: Rotary kiln, preheater and cooler

    International Nuclear Information System (INIS)

    Shahin, Hamed; Hassanpour, Saeid; Saboonchi, Ahmad

    2016-01-01

    Highlights: • The integrated model for lime production unit which includes cooler, preheater and rotary kiln is developed. • The effect of residence time in each section on efficiency is investigated. • Influence of material feed rate and excess air on specific fuel consumption is analyzed. • The significant effect of particle size on efficiency and specific fuel consumption is shown. - Abstract: In this paper, thermal energy analysis of three zones of a lime production process, which are preheater, rotary kiln and cooler, is performed. In order to perform a proper quantitative estimation, the system was modeled using energy balance equations including coupled heat transfer and chemical reaction mechanisms. A mathematical model was developed, and consequently, the thermal and chemical behavior of limestone was investigated. The model was verified using empirical data. After model confirmation, the variation of Specific Fuel Consumption (SFC) versus production rate was predicted and the optimum condition was determined. Subsequently, fuel consumption was calculated regarding to altered residence time inside each zone of lime production process, for a constant output. Results indicate that increasing the residence time inside each zone of lime production process, will enhance thermal efficiency and saves fuel consumption. Relative enhancement will be the same for different sizes of limestone. It was found that a 10-min increase in material residence time inside the preheater or rotary kiln can reduce fuel consumption by around two percent. Whereas, a 5-min increase in material residence time inside the cooler would be enough to obtain a similar result. Finally, the ratio of air-to-fuel and production rate are changed in such a way that the same product is achieved. The model predicts that lowering excess air from 15% to 10% leads to a 2.5% reduction of Specific Fuel Consumption (SFC).

  16. A portable solar-powered air-cooling system based on phase-change materials for a vehicle cabin

    International Nuclear Information System (INIS)

    Qi, Lingfei; Pan, Hongye; Zhu, Xin; Zhang, Xingtian; Salman, Waleed; Zhang, Zutao; Li, Li; Zhu, Miankuan; Yuan, Yanping; Xiang, Bo

    2017-01-01

    Graphical abstract: This paper proposed a portable solar-powered air cooling system for a vehicle cabin based on Phase-change Materials. The cooling system contains three main parts: a solar-energy collection module, an energy-storage module and a phase-change cooling module. The operating principle can be described as follows. For energy input, the solar-energy-collection module harvests solar energy and converts it to electricity. The power-storage module stores the electrical energy in the supercapacitor to power the electrical equipment, mainly the air pump (AP) and water pump (WP) of the phase-change cooling module. Finally, the phase-change cooling module provides cold air for the vehicle cabin to create a comfortable vehicle interior in a hot summer. The proposed system is demonstrated through thermal simulations, which show the long-duration cooling effect of the system. Temperature drops of were obtained in field tests, predicting that the proposed cooling system is beneficial and practical for cooling vehicle cabins. - Highlights: • A novel portable air cooling system based on PCMs is presented. • Solar energy was adopted to power the proposed air cooling system. • This proposed system is used for cooling vehicle cabins exposed to the sun. • Experimental results show that the proposed system has a good cooling effect. - Abstract: In summer, the temperature is very high inside vehicles parked under the hot sun. This causes consuming more fossil energy to power the air conditioner and generation of harmful gases. There is currently no effective method to address this problem in an energy-saving and environmentally friendly manner. In this paper, a novel solar-powered air-cooling system for vehicle cabins is proposed based on Phase-change Materials (PCMs); the system prevents the temperature inside a vehicle cabin from rising too high when the vehicle is parked outdoor exposure to the sun. The proposed system consists of three main parts: a solar

  17. Compressed Air Production Using Vehicle Suspension

    OpenAIRE

    Ninad Arun Malpure; Sanket Nandlal Bhansali

    2015-01-01

    Abstract Generally compressed air is produced using different types of air compressors which consumes lot of electric energy and is noisy. In this paper an innovative idea is put forth for production of compressed air using movement of vehicle suspension which normal is wasted. The conversion of the force energy into the compressed air is carried out by the mechanism which consists of the vehicle suspension system hydraulic cylinder Non-return valve air compressor and air receiver. We are co...

  18. Inflight dissociation of zircon in air plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yugeswaran, S; Selvarajan, V [Bharathiar University, Coimbatore 641046 (India); Ananthapadmanabhan, P V; Thiyagarajan, T K [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai - 400 085 (India); Nair, Janardhanan [Ion Arc Technologies Pvt Ltd, Coimbatore (India)

    2010-02-01

    Thermal dissociation of zircon can be conveniently carried out in a plasma reactor, which is characterized by high temperature, high energy density and high quench rate. Zirconia is recovered from this partially dissociated zircon by alkali leaching. Dissociation of zircon has been conventionally carried out in argon gas, which is expensive. The present paper reports experimental results on thermal dissociation of zircon in air plasma medium. Process simulation for 'inflight' dissociation of zircon in air plasma medium is also presented. The experimental system consists of a central hollow graphite electrode, which acts as the cathode and a graphite anode. The material to be processed is fed centrally through the cathode. The unique feature of the system is that it uses air as the working gas to generate the thermal plasma. The system has been used to study in-flight dissociation of zircon in the thermal plasma jet. Dissociation was carried out over 10-25 kW power range. Results of the study indicate that complete dissociation of zircon to ZrO{sub 2} and silica could be accomplished at 25 kW in air plasma.

  19. Inflight dissociation of zircon in air plasma

    International Nuclear Information System (INIS)

    Yugeswaran, S; Selvarajan, V; Ananthapadmanabhan, P V; Thiyagarajan, T K; Nair, Janardhanan

    2010-01-01

    Thermal dissociation of zircon can be conveniently carried out in a plasma reactor, which is characterized by high temperature, high energy density and high quench rate. Zirconia is recovered from this partially dissociated zircon by alkali leaching. Dissociation of zircon has been conventionally carried out in argon gas, which is expensive. The present paper reports experimental results on thermal dissociation of zircon in air plasma medium. Process simulation for 'inflight' dissociation of zircon in air plasma medium is also presented. The experimental system consists of a central hollow graphite electrode, which acts as the cathode and a graphite anode. The material to be processed is fed centrally through the cathode. The unique feature of the system is that it uses air as the working gas to generate the thermal plasma. The system has been used to study in-flight dissociation of zircon in the thermal plasma jet. Dissociation was carried out over 10-25 kW power range. Results of the study indicate that complete dissociation of zircon to ZrO 2 and silica could be accomplished at 25 kW in air plasma.

  20. Activation measurements for thermal neutrons. Part J. Evaluation of thermal neutron transmission factors

    International Nuclear Information System (INIS)

    Egbert, Stephen D.

    2005-01-01

    In order to relate thermal neutron activation measurements in samples to the calculated free-in-air thermal neutron activation levels given in Chapter 3, use is made of sample transmission factors. Transmission factors account for the modification of the fluence and activation at each sample's in situ location. For the purposes of this discussion, the transmission factor (TF) is defined as the ratio of the in situ sample activation divided by the free-in-air (FIA) activation at a height of 1 m above ground at the same ground range. The procedures for calculation of TF's and example results are presented in this section. (author)

  1. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    International Nuclear Information System (INIS)

    Komori, S.

    1996-01-01

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  2. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  3. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  4. Effective thermal conductivity of advanced ceramic breeder pebble beds

    Energy Technology Data Exchange (ETDEWEB)

    Pupeschi, S., E-mail: simone.pupeschi@kit.edu; Knitter, R.; Kamlah, M.

    2017-03-15

    As the knowledge of the effective thermal conductivity of ceramic breeder pebble beds under fusion relevant conditions is essential for the development of solid breeder blanket concepts, the EU advanced and reference lithium orthosilicate material were investigated with a newly developed experimental setup based on the transient hot wire method. The effective thermal conductivity was investigated in the temperature range RT–700 °C. Experiments were performed in helium and air atmospheres in the pressure range 0.12–0.4 MPa (abs.) under a compressive load up to 6 MPa. Results show a negligible influence of the chemical composition of the solid material on the bed’s effective thermal conductivity. A severe reduction of the effective thermal conductivity was observed in air. In both atmospheres an increase of the effective thermal conductivity with the temperature was detected, while the influence of the compressive load was found to be small. A clear dependence of the effective thermal conductivity on the pressure of the filling gas was observed in helium in contrast to air, where the pressure dependence was drastically reduced.

  5. The new research centre of the Brazilian Petroleum Company in Rio de Janeiro, Brazil: The achievements in the thermal performance of air-conditioned buildings in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rafael; Marcondes, Monica Pereira; De Benedetto, Gisele S.; Goncalves, Joana Carla Soares; Duarte, Denise Helena Silva; Ramos, Jose Ovidio [Laboratorio de Conforto Ambiental e Eficiencia Energetica (LABAUT), Departamento de Tecnologia da Arquitetura (AUT), Faculdade de Arquitetura e Urbanismo, Universidade de Sao Paulo (FAUUSP), Sao Paulo, Brasil, Rua do Lago, 876, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil)

    2008-07-01

    The study on the thermal performance of the air-conditioned buildings of the new research centre of the Brazilian Petroleum Company, in the tropical climate of Rio de Janeiro, was part of a bigger research and consultancy project involving environmental issues. The architectural design was the subject of a national competition in 2004, encompassing over 100,000 m{sup 2}. According to the design brief, out of the 10 buildings of the new research centre, 7 have to be either completely or partially air-conditioned, due to specific occupation requirements. The challenge for better thermal performance was related to systems' energy efficiency, to the introduction of natural ventilation and to the notion of adaptive comfort, which were verified with the support of thermal dynamic simulations. At the early stages of the assessments, the potential for natural ventilation in the working spaces considering the mixed-mode strategy achieved 30% of occupation hours. However, the development of the design project led to fully air-conditioned working spaces, due to users' references regarding the conventional culture of the office environment. Nevertheless, the overall architectural approach in accordance to the climatic conditions still showed a contribution to the buildings' energy efficiency. (author)

  6. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  7. Synergistic effect and mechanism of platinum catalyst and nitrogen-containing silane on the thermal stability of silicone rubber

    International Nuclear Information System (INIS)

    Chen, Wanjuan; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Fang, Weizhen; Liu, Tian

    2016-01-01

    Highlights: • Platinum (Pt) and nitrogen-containing silane (NS) were introduced into silicone rubber. • The thermal stability was improved by Pt/NS both under nitrogen and air atmosphere. • The TG-FTIR of evolved gases during degradation was performed. • The synergistic effect and mechanism of Pt and NS were proposed. - Abstract: Platinum (Pt) catalyst and nitrogen-containing silane (NS) were introduced to improve the thermal stability of silicone rubber. The effects of Pt and NS on thermal stability and degradation mechanism of silicone rubber were investigated by thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDXS) and Fourier transform infrared spectrometry (FTIR). A significant synergism was found between Pt and NS for improving the thermal stability of silicone rubber. When 6.67 ppm of Pt and 1.4 phr of NS were introduced, the temperature of 10% and 20% weight loss under nitrogen atmosphere were respectively increased by 36 °C and 119 °C. Meanwhile, the residue weight at 900 °C was doubled to 68% in the presence of Pt/NS. The synergistic mechanism might be that the nitrogen atom coordinated with Pt and improved the catalytic efficiency of Pt. Additionally, NS preserved the catalytic activity of Pt under air atmosphere. Hence, Pt/NS efficiently catalyzed thermal crosslinking and suppressed degradation of silicone chains. Moreover, it revealed that the presence of Pt/NS protected silicone chains from oxidation. Thus, the unzipping depolymerization by silanol groups was reduced significantly.

  8. Synergistic effect and mechanism of platinum catalyst and nitrogen-containing silane on the thermal stability of silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanjuan; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Lai, Xuejun; Li, Hongqiang; Fang, Weizhen; Liu, Tian

    2016-05-20

    Highlights: • Platinum (Pt) and nitrogen-containing silane (NS) were introduced into silicone rubber. • The thermal stability was improved by Pt/NS both under nitrogen and air atmosphere. • The TG-FTIR of evolved gases during degradation was performed. • The synergistic effect and mechanism of Pt and NS were proposed. - Abstract: Platinum (Pt) catalyst and nitrogen-containing silane (NS) were introduced to improve the thermal stability of silicone rubber. The effects of Pt and NS on thermal stability and degradation mechanism of silicone rubber were investigated by thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDXS) and Fourier transform infrared spectrometry (FTIR). A significant synergism was found between Pt and NS for improving the thermal stability of silicone rubber. When 6.67 ppm of Pt and 1.4 phr of NS were introduced, the temperature of 10% and 20% weight loss under nitrogen atmosphere were respectively increased by 36 °C and 119 °C. Meanwhile, the residue weight at 900 °C was doubled to 68% in the presence of Pt/NS. The synergistic mechanism might be that the nitrogen atom coordinated with Pt and improved the catalytic efficiency of Pt. Additionally, NS preserved the catalytic activity of Pt under air atmosphere. Hence, Pt/NS efficiently catalyzed thermal crosslinking and suppressed degradation of silicone chains. Moreover, it revealed that the presence of Pt/NS protected silicone chains from oxidation. Thus, the unzipping depolymerization by silanol groups was reduced significantly.

  9. CFD Analysis of Thermal Control System Using NX Thermal and Flow

    Science.gov (United States)

    Fortier, C. R.; Harris, M. F. (Editor); McConnell, S. (Editor)

    2014-01-01

    The Thermal Control Subsystem (TCS) is a key part of the Advanced Plant Habitat (APH) for the International Space Station (ISS). The purpose of this subsystem is to provide thermal control, mainly cooling, to the other APH subsystems. One of these subsystems, the Environmental Control Subsystem (ECS), controls the temperature and humidity of the growth chamber (GC) air to optimize the growth of plants in the habitat. The TCS provides thermal control to the ECS with three cold plates, which use Thermoelectric Coolers (TECs) to heat or cool water as needed to control the air temperature in the ECS system. In order to optimize the TCS design, pressure drop and heat transfer analyses were needed. The analysis for this system was performed in Siemens NX Thermal/Flow software (Version 8.5). NX Thermal/Flow has the ability to perform 1D or 3D flow solutions. The 1D flow solver can be used to represent simple geometries, such as pipes and tubes. The 1D flow method also has the ability to simulate either fluid only or fluid and wall regions. The 3D flow solver is similar to other Computational Fluid Dynamic (CFD) software. TCS performance was analyzed using both the 1D and 3D solvers. Each method produced different results, which will be evaluated and discussed.

  10. Effects of thermal ageing on HMS-PP crystallinity

    International Nuclear Information System (INIS)

    Oliani, Washington L.; Parra, Duclerc F.; Lima, Luis F.C.P.; Lugao, Ademar B.

    2009-01-01

    The isotactic polypropylene is a linear polymer which exhibits low melt strength. Irradiation of PP under inert atmosphere causes a combination of chain scissioning and long-chain branching, and results in a material with significant enhanced melt strength. This process, which is sometimes termed visbreaking, thus provides improvement of rheological properties. HMS-PP (High Melt Strength Polypropylene) was obtained by the irradiation in atmosphere of acetylene as crosslinker agent. It was employed doses of 12.5 and 20 kGy of gamma radiation. The objective of this study is to investigate the effects of thermal ageing on the crystallinity level and chemical structure of HMS-PP. The thermal stability of the HMS-PP was evaluated after thermal ageing of samples using a stove at temperature of 90 deg C, in presence of air at different periods of time. The samples submitted to the thermal ageing were characterized by: thermogravimetry (TGA), differential scanning calorimetry (DSC), infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Since the long-term engineering properties of HMS-PP are intrinsically linked with the polymer microstructure, there is significant interest in understanding the effects of ageing, particularly due to prolonged exposure at service temperatures. In thermo-oxidative conditions, the formation of the oxidation products essentially involves a hydrogen abstraction by the peroxyl radicals, leading to hydroperoxides as primary products and chemical degradation in the immediate crack tips. Oxidative degradation on the network of HMS-PP, created by radiation process of PP, was revealed by the analytical results showing the susceptibility of HMS-PP to thermal oxidative degradation. Yellowing of the samples surface and oxidative products of degradation among other evidences were observed. (author)

  11. Experimental investigation of a building integrated photovoltaic/thermal roof collector combined with a liquid desiccant enhanced indirect evaporative cooling system

    International Nuclear Information System (INIS)

    Buker, Mahmut Sami; Mempouo, Blaise; Riffat, Saffa B.

    2015-01-01

    Highlights: • Novel solar thermal collector for liquid desiccant air conditioning was introduced. • Low cost poly heat exchanger loop underneath the photovoltaic modules was proposed. • The ability of the combined system was experimentally investigated. • Water temperature in the loop could reach up to 35.5 °C during the tests. • This tri-gen system can supply 3 kW heating, 5.2 kW cooling and 10.3 MW h/year power. - Abstract: Large consumption of limited conventional fossil fuel resources, economic and environmental problems associated with the global warming and climate change have emphasized the immediate need to transition to renewable energy resources. Solar thermal applications along with renewable energy based cooling practices have attracted considerable interest towards sustainable solutions promising various technical, economic and environmental benefits. This study introduces a new concept on solar thermal energy driven liquid desiccant based dew point cooling system that integrates several green technologies; including photovoltaic modules, polyethylene heat exchanger loop and a combined liquid desiccant dehumidification-indirect evaporative air conditioning unit. A pilot scale experimental set-up was developed and tested to investigate the performance of the proposed system and influence of the various parameters such as weather condition, air flow and regeneration temperature. A cost effective, easy-to-make polyethylene heat exchanger loop was employed underneath PV panels for heat generation. In addition, a liquid desiccant enhanced dew point cooling unit was utilized to provide air conditioning through dehumidification of humid air and indirect evaporative cooling. The experimental results show that the proposed tri-generation system is capable of providing about 3 kW of heating, 5.2 kW of cooling power and 10.3 MW h/year power generation, respectively. The findings confirm the potential of the examined technology, and elucidate the

  12. Thermal performance of a room with a double glazing window using glazing available in Mexican market

    International Nuclear Information System (INIS)

    Aguilar, J.O.; Xamán, J.; Olazo-Gómez, Y.; Hernández-López, I.; Becerra, G.; Jaramillo, O.A.

    2017-01-01

    Highlights: • Thermal evaluation of a Room coupled with different types of Double Glazing Window (DGW) is analyzed. • Four cases were simulated: Case 1: DGW (clear); Case 2: DGW (absorbent), Case 3: DGW (Low-e) and Case 4: DGW (reflective). • Case 4 presents the better energy saving of all cases analyzed, ∼73% lower than Case 1. • Cases 2 and 3 have a similar thermal behavior, almost 34% less than Case 1. • The global balance costs indicate that Case 4 is the better option for energy saving in warm climate. • Case 4 allows us to save up to $20.29 USD per kW h in a year in comparison to Case 1. - Abstract: A thermal evaluation of a four configurations of double glass window (DGW) coupling to a room is presented. The DGW consists of two vertical semitransparent walls separated by a 12 mm air gap. The effect of varying the ambient temperature and the incident solar radiation in the warm climate conditions in México is analyzed. Numerical simulations were conducted for four configurations; Case 1: clear glass + air gap + clear glass (Reference); Case 2: clear glass + air gap + absorbent glass; Case 3: clear glass + air gap + Low-e glass; and Case 4: clear glass + air gap + reflective glass. Optical transmittance and specular reflectance were measured individually and in one sample piece for each case. The results showed that Case 4 reduces the heat flux to the indoors by up to 73%, with respect to Case 1. Moreover, Cases 2 and 3 had a similar behavior, obtaining a reduction of indoor heat flow close to 33.5% with respect to Case 1. Case 4 is the best option for energy savings in a warm climate, where it is possible to save up to $20.29 USD per kW h per year, in comparison to Case 1. In addition, the payback period for Case 4 is 3.7 years. Therefore, the use of reflective double pane window is highly recommended in Mexican warm climates.

  13. On the determination of the thermal comfort conditions of a metropolitan city underground railway.

    Science.gov (United States)

    Katavoutas, George; Assimakopoulos, Margarita N; Asimakopoulos, Dimosthenis N

    2016-10-01

    Although the indoor thermal comfort concept has received increasing research attention, the vast majority of published work has been focused on the building environment, such as offices, residential and non-residential buildings. The present study aims to investigate the thermal comfort conditions in the unique and complex underground railway environment. Field measurements of air temperature, air humidity, air velocity, globe temperature and the number of passengers were conducted in the modern underground railway of Athens, Greece. Environmental monitoring was performed in the interior of two types of trains (air-conditioned and forced air ventilation cabins) and on selected platforms during the summer period. The thermal comfort was estimated using the PMV (predicted mean vote) and the PPD (predicted percentage dissatisfied) scales. The results reveal that the recommended thermal comfort requirements, although at relatively low percentages are met only in air-conditioned cabins. It is found that only 33% of the PPD values in air-conditioned cabins can be classified in the less restrictive comfort class C, as proposed by ISO-7730. The thermal environment is "slightly warm" in air-conditioned cabins and "warm" in forced air ventilation cabins. In addition, differences of the thermal comfort conditions on the platforms are shown to be associated with the depth and the design characteristics of the stations. The average PMV at the station with small depth is 0.9 scale points higher than that of the station with great depth. The number of passengers who are waiting at the platforms during daytime reveals a U-shaped pattern for a deep level station and an inverted course of PMV for a small depth station. Further, preliminary observations are made on the distribution of air velocity on the platforms and on the impact of air velocity on the thermal comfort conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Proceedings of the 8. Brazilian meeting on analytical chemistry. Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    Abstracts from theoretical and experimental works on qualitative and quantitative analytical chemistry are presented. Several nuclear and non nuclear techniques have been used, such as neutron activation analysis, absorption spectroscopy, x-ray fluorescence analysis and others. The materials analysed were rocks, rare earths, environmental materials (soil, water, air), complexes and so on. Synthesis, kinetics and radiochemistry were also discussed

  15. An experimental investigation of a novel design air humidifier using direct solar thermal heating

    International Nuclear Information System (INIS)

    Abd-ur-Rehman, Hafiz M.; Al-Sulaiman, Fahad A.

    2016-01-01

    Highlights: • A novel solar driven multi-stage bubble column humidifier is developed and tested. • Single stage, two stage, and three stage configuration were tested. • Average day round absolute humidity is increased by 9% for 2 stage configuration. • Average day round absolute humidity is increased by 23% for 3 stage configuration. • Air absolute humidity increases up to 26% with the integration of Fresnel lens. - Abstract: In this study, a novel solar heated multi-stage bubble column humidifier is designed and tested. The overall objective of this work is to investigate the main operating parameters of the new humidifier. The study addresses the significance of the perforated plate geometric features, optimum balance of air superficial velocity and water column height, and the influence of inlet water temperature and inlet air relative humidity on the performance of the humidifier. The day round performance of the humidifier is investigated in single stage, two stage, and three stage configuration, in which each configuration was tested with and without the integration of the Fresnel lens. Findings show that the average day round absolute humidity, without Fresnel lens, increased up to 9% for the two stage configuration and 23% for the three stage configuration as compared to the single stage configuration of the humidifier. The integration of the Fresnel lens further increased the absolute humidity up to 25% as compared to the results obtained without the integration of the Fresnel lens under the same prevailing conditions, which is significant. Moreover, the current humidifier shows a higher humidification efficiency in the climatic conditions that have a lower inlet air relative humidity. Furthermore, the finding demonstrates that the newly developed multi-stage bubble column humidifier has better performance as compared to the conventional single stage bubble column humidifier. The findings from this study are of pivotal importance to understand

  16. Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition

    International Nuclear Information System (INIS)

    Park, Young Sung; Jeong, Ji Hwan; Ahn, Byoung Ha

    2014-01-01

    Highlights: • New heat pump control method was developed. • Experimental investigation on performance of heat pump with various control method. • New control method appeared to improve the stability of indoor air temperature. • New control method appeared to have a potential to reduce power consumption. - Abstract: The control systems of conventional heat pumps have an input of refrigerant temperature at the evaporator outlet to maintain superheat at proper level. In order to develop a control method that can be used to achieve better indoor thermal comfort and energy efficiency at a low cooling load condition than the current control method, a new method of the evaporation pressure control based on the evaporator outlet pressure reading (EPCP) was developed. The changes in the stability of indoor air temperature and power consumption were measured while changing the compressor frequency in accordance with the new control method. Compared with the evaporation pressure control based on the evaporator outlet temperature reading, the EPCP control method appeared to improve the stability of room air temperature or occupant thermal comfort significantly

  17. Optimal control of building storage systems using both ice storage and thermal mass – Part I: Simulation environment

    International Nuclear Information System (INIS)

    Hajiah, Ali; Krarti, Moncef

    2012-01-01

    Highlights: ► A simulation environment is described to account for both passive and active thermal energy storage (TES) systems. ► Laboratory testing results have been used to validate the predictions from the simulation environment. ► Optimal control strategies for TES systems have been developed as part of the simulation environment. - Abstract: This paper presents a simulation environment that can evaluate the benefits of using simultaneously building thermal capacitance and ice storage system to reduce total operating costs including energy and demand charges while maintaining adequate occupant comfort conditions within commercial buildings. The building thermal storage is controlled through pre-cooling strategies by setting space indoor air temperatures. The ice storage system is controlled by charging the ice tank and operating the chiller during low electrical charge periods and melting the ice during on-peak periods. Optimal controls for both building thermal storage and ice storage are developed to minimize energy charges, demand charges, or combined energy and demand charges. The results obtained from the simulation environment are validated using laboratory testing for an optimal controller.

  18. An energy performance assessment for indoor environmental quality (IEQ) acceptance in air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    Maintaining an acceptable indoor environmental quality (IEQ) for air-conditioned office buildings consumes a considerable amount of thermal energy. This study correlates thermal energy consumption with the overall occupant acceptance of IEQ in some air-conditioned offices. An empirical expression of an IEQ index associated with thermal comfort, indoor air quality, aural and visual comfort is used to benchmark the offices. Employing input parameters obtained from the building stocks of Hong Kong, the office portfolios regarding the thermal energy consumption and the IEQ index are determined by Monte Carlo simulations. In particular, an energy-to-acceptance ratio and an energy-to-IEQ improvement ratio are proposed to measure the performance of energy consumption for the IEQ in the air-conditioned offices. The ratios give the thermal energy consumption corresponding to a desirable percentage of IEQ acceptances and to an IEQ upgrade, respectively. The results showed a non-linear increasing trend of annual thermal energy consumption for IEQ improvement at the offices of higher IEQ benchmarks. The thermal energy consumption for visual comfort and indoor air quality would also be significant in these offices. This study provides useful information that incorporates the IEQ in air-conditioned offices into the development of performance evaluation measures for thermal energy consumption.

  19. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  20. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    Science.gov (United States)

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  1. Thermal comfort in naturally ventilated buildings in Maceio, Brazil

    Science.gov (United States)

    Djamila, Harimi

    2017-11-01

    This article presents the results from thermal comfort survey carried out in classrooms over two different seasons in Maceio, Brazil. The secondary data were collected from thermal comfort field study conducted in naturally ventilated classrooms. Objective and subjective parameters were explored to evaluate thermal comfort conditions. The potential effect of air movement on subjects' vote under neutrality was evaluated. Overall, the indoor climate of the surveyed location was classified warm and humid. Conflicting results were depicted when analyzing the effect of air movements on subjects' vote. The mean air temperature for subjects feeling hot was found to be lower than those feeling warm. A reasonable approach to tackle these two unpredictable results was suggested. Correlation matrix between selected thermal comfort variables was developed. Globe temperature recorded the highest correlation with subjects' response on ASHRAE seven-point scale. The correlation was significant at the 0.01 level. On the other hand, the correlation between air movement and subjects' response on ASHRAE seven-point scale was weak but significant. Further field studies on the current topic were recommended.

  2. Comparative analyses on dynamic performances of photovoltaic–thermal solar collectors integrated with phase change materials

    International Nuclear Information System (INIS)

    Su, Di; Jia, Yuting; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2017-01-01

    Highlights: • The dynamic model of photovoltaic–thermal collector with phase change material was developed. • The performances of photovoltaic–thermal collector are performed comparative analyses. • The performances of photovoltaic–thermal collector with phase change material were evaluated. • Upper phase change material mode can improve performances of photovoltaic–thermal collector. - Abstract: The operating conditions (especially temperature) of photovoltaic–thermal solar collectors have significant influence on dynamic performance of the hybrid photovoltaic–thermal solar collectors. Only a small percentage of incoming solar radiation can be converted into electricity, and the rest is converted into heat. This heat leads to a decrease in efficiency of the photovoltaic module. In order to improve the performance of the hybrid photovoltaic–thermal solar collector, we performed comparative analyses on a hybrid photovoltaic–thermal solar collector integrated with phase change material. Electrical and thermal parameters like solar cell temperature, outlet temperature of air, electrical power, thermal power, electrical efficiency, thermal efficiency and overall efficiency are simulated and analyzed to evaluate the dynamic performance of the hybrid photovoltaic–thermal collector. It is found that the position of phase change material layer in the photovoltaic–thermal collector has a significant effect on the performance of the photovoltaic–thermal collector. The results indicate that upper phase change material mode in the photovoltaic–thermal collector can significantly improve the thermal and electrical performance of photovoltaic–thermal collector. It is found that overall efficiency of photovoltaic–thermal collector in ‘upper phase change material’ mode is 10.7% higher than that in ‘no phase change material’ mode. Further, for a photovoltaic–thermal collector with upper phase change material, it is verified that 3 cm

  3. Economics of compressed air energy storage employing thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.; Reilly, R.W.

    1979-11-01

    The approach taken in this study is to adopt system design and capital cost estimates from three independent CAES studies (eight total designs) and, by supplying a common set of fuel/energy costs and economic assumptions in conjunction with a common methodology, to arrive at a series of levelized energy costs over the system's lifetime. In addition, some analyses are provided to gauge the sensitivity of these levelized energy costs to fuel and compression energy costs and to system capacity factors. The systems chosen for comparison are of four generic types: conventional CAES, hybrid CAES, adiabatic CAES, and an advanced-design gas turbine (GT). In conventional CAES systems the heat of compression generated during the storage operation is rejected to the environment, and later, during the energy-generation phase, turbine fuel must be burned to reheat the compressed air. In the hybrid systems some of the heat of compression is stored and reapplied later during the generation phase, thereby reducing turbine fuel requirements. The adiabatic systems store adequate thermal energy to eliminate the need for turbine fuel entirely. The gas turbine is included within the report for comparison purposes; it is an advanced-design turbine, one that is expected to be available by 1985.

  4. Measurement of a thermal neutron flux using air activation; Mesure de flux de neutrons thermiques par activation d'air

    Energy Technology Data Exchange (ETDEWEB)

    Guyonvarh, M; Lecomte, P; Le Meur, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    It is necessary to know, in irradiation loops, the thermal neutron flux after the irradiation device has been introduced and without being obliged to wait for the discharge of this device. In order to measure the flux and to control it continuously, one possible method is to place in the flux a coiled steel tube through which air passes. By measuring the activity of argon 41, and with a knowledge of the flow rate and the temperature of the air, it is possible to calculate the flux. An air-circulation flux controller is described and the relationship between the flux and the count rate is established The accuracy of an absolute measurement is about 14 per cent; that of a relative measurement is about 3 per cent. The measurement can be carried out equally well whether the reactor is operating at maximum or at low power. The measurement range goes from 10{sup 9} to lO{sup 15} n.cm{sup -2}.sec{sup -1}, and it would be possible after a few modifications to measure fluxes between 10{sup 5} and 10{sup 15} n.cm{sup -2}.sec{sup -1}. Finally, the method is very safe to operate: there is little risk of irradiation because of the low specific activity of the argon-41 formed, and no risk of contamination because the decay product of argon-41 is stable. This method, which is now being used in loops, is thus very practical. (authors) [French] Sur des boucles d'irradiation il est necessaire de connaitre le flux de neutrons thermiques apres mise en place du dispositif d'irradiation et sans etre oblige d'attendre le detournement de ce dispositif. Pour mesurer le flux et le controler en permanence, une methode consiste a placer sous flux un serpentin en acier dans lequel on fait circuler de l'air. La mesure d'activite d'argon 41 permet de calculer le flux, connaissant le debit et la temperature de l'air. Un controleur de flux par circulation d'air est decrit et la relation entre le flux et le taux de comptage est etablie. La precision d'une mesure absolue est de l'ordre de 14 pour

  5. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  6. 1. National Congress of Environmental Science: Abstracts

    International Nuclear Information System (INIS)

    1995-01-01

    The First National Congress of Environmental Sciences had a plural participation in the environmental thematic. The public universities and the research institutes of the different states of Mexico submitted papers containing proposals of scientific and technological solutions to the problems of management of hazardous wastes: water and land pollution; new methods of evaluation to pollutants of air and water; protection and conservation of relevant species of the ecology; control of genetic alterations; development and conservation of natural resources, and environmental education. Another part of the abstracts is dedicated to the posters session (Author)

  7. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  8. A novel PV/T-air dual source heat pump water heater system: Dynamic simulation and performance characterization

    International Nuclear Information System (INIS)

    Cai, Jingyong; Ji, Jie; Wang, Yunyun; Zhou, Fan; Yu, Bendong

    2017-01-01

    Highlights: • The PV/T evaporator and air source evaporator connect in parallel and operate simultaneously. • A dynamic model is developed to simulate the behavior of the system. • The thermal and electrical characteristics of the PV/T evaporator are evaluated. • The contribution of the air source evaporator and PV/T evaporator has been discussed. - Abstract: To enable the heat pump water heater maintain efficient operation under diverse circumstances, a novel PV/T-air dual source heat pump water heater (PV/T-AHPWH) has been proposed in this study. In the PV/T-AHPWH system, a PV/T evaporator and an air source evaporator connect in parallel and operate simultaneously to recover energy from both solar energy and environment. A dynamic model is presented to simulate the behavior of the PV/T-AHPWH system. On this basis, the influences of solar irradiation, ambient temperature and packing factor have been discussed, and the contributions of air source evaporator and PV/T evaporator are evaluated. The results reveal that the system can obtain efficient operation with the average COP above 2.0 under the ambient temperature of 10 °C and solar irradiation of 100 W/m 2 . The PV/T evaporator can compensate for the performance degradation of the air source evaporator caused by the increasing condensing temperature. As the evaporating capacity in PV/T evaporator remains at relatively low level under low irradiation, the air source evaporator can play the main role of recovering heat. Comparing the performance of dual source heat pump system employing PV/T collector with that utilizing normal solar thermal collector, the system utilizing PV/T evaporator is more efficient in energy saving and performance improvement.

  9. TEMPERATURE DEPENDENCE OF THE THERMAL ...

    African Journals Online (AJOL)

    Thermal conductivity values, in the temperature range 300 – 1200 K, have been measured in air and at atmospheric pressure for a Kenyan kaolinite refractory with 0% - 50% grog proportions. The experimental thermal conductivity values were then compared with those calculated using the Zumbrunnen et al [1] and the ...

  10. Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    To reduce carbon dioxide (CO 2 ) emissions through thermal energy conservation, air-conditioned offices in the subtropics are recommended to operate within specified ranges of indoor temperature, relative humidity and air velocity. As thermal discomfort leads to productivity loss, some indoor environmental policies for air-conditioned offices in Hong Kong are investigated in this study with relation to thermal energy consumption, CO 2 emissions from electricity use, and productivity loss due to thermal discomfort. Occupant thermal response is specifically considered as an adaptive factor in evaluating the energy consumption and productivity loss. The energy efficiency of an office is determined by the productivity which corresponds to the CO 2 generated. The results found that a policy with little impact on occupant thermal comfort and worker productivity would improve the office efficiency while the one with excessive energy consumption reduction would result in a substantial productivity loss. This study is a useful reference source for evaluating an indoor thermal environmental policy regarding the energy consumption, CO 2 emissions reduction, thermal comfort and productivity loss in air-conditioned offices in subtropical areas.

  11. The effect of air velocity on heat stress at increased air temperature

    DEFF Research Database (Denmark)

    Bjerg, B.; Wang, Xiaoshuai; Zhang, Guoqiang

    Increased air velocity is a frequently used method to reduce heat stress of farm animals housed in warm conditions. The main reason why the method works is that higher air velocity increases the convective heat release from the animals. Convective heat release from the animals is strongly related...... to the temperature difference between the surfaces of animals and the surrounding air, and this temperature difference declines when the air temperature approaches the animal body temperature. Consequently it can it by expected that the effect of air velocity decreases at increased air temperature. The literature...... on farm animals in warm conditions includes several thermal indices which incorporate the effect of air velocities. But, surprisingly none of them predicts a decreased influence of air velocity when the air temperature approaches the animal body temperature. This study reviewed published investigations...

  12. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  13. Effect of air ingress on the energy performance of coal fired thermal power plants

    International Nuclear Information System (INIS)

    Siddhartha Bhatt, M.

    2007-01-01

    Ingress of air in boilers leads to drops in energy efficiency. This paper presents the effects of air ingress in the combustion zone, post-combustion zone and air pre-heater (APH) on the energy efficiency and loading capacity of a coal fired thermal power plant operating on fuel with high ash (35-45%). The optimal O 2 in the flue gas for a pulverized coal fired system is 3.5% (corresponding to 20% excess air). The operating values are in the range of 4.2-6.0% in membrane type boilers and up to 10% in refractory type boilers (after sustained periods of operation). The leakage rate of boilers (up to the entrance of the APH) is designed at 0.2% while the average operating values are 7.25% for membrane type enclosures and 33.61% for refractory enclosures. The leakage rate of the APH is designed at 5.0% while the operating values range from 13.66% to 20.13% for rotary and tubular APHs. When the O 2 in the combustion zone varies from 3.5% to 8.0%, efficiency drops of 2.0% points are experienced in the boiler and turbine separately, and the gross overall efficiency drop is ∼3.0% points. The units do not experience any capacity drop up to an O 2 in the flue gas of 6.0% before the APH. At an O 2 in the flue gas (before APH) of 7.2%, a mild limitation on the unit capacity of around 2-3% is experienced. When O 2 in the flue gas (before APH) reaches a level of 9.0%, 20% capacity drop of the unit is experienced due to which the plant load cannot be raised higher than 80%. Beyond the level of 9.0% (rare occurrence), the unit is quite difficult to operate and has to be taken off for overhaul

  14. Thermal management in closed incubators: New software for assessing the impact of humidity on the optimal incubator air temperature.

    Science.gov (United States)

    Delanaud, Stéphane; Decima, Pauline; Pelletier, Amandine; Libert, Jean-Pierre; Durand, Estelle; Stephan-Blanchard, Erwan; Bach, Véronique; Tourneux, Pierre

    2017-08-01

    Low-birth-weight (LBW) neonates are nursed in closed incubators to prevent transcutaneous water loss. The RH's impact on the optimal incubator air temperature setting has not been studied. On the basis of a clinical cohort study, we modelled all the ambient parameters influencing body heat losses and gains. The algorithm quantifies the change in RH on the air temperature, to maintain optimal thermal conditions in the incubator. Twenty-three neonates (gestational age (GA): 30.0 [28.9-31.6] weeks) were included. A 20% increase and a 20% decrease in the RH induced a change in air temperature of between -1.51 and +1.85°C for a simulated 650g neonate (GA: 26 weeks), between -1.66 and +1.87°C for a 1000g neonate (GA: 31 weeks), and between -1.77 and +1.97°C for a 2000g neonate (GA: 33 weeks) (phumidity +c age +d weight (phumidity. The software constitutes a decision support tool for improving patient care in routine clinical practice. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. Thermal sensations and comfort investigations in transient conditions in tropical office.

    Science.gov (United States)

    Dahlan, Nur Dalilah; Gital, Yakubu Yau

    2016-05-01

    The study was done to identify affective and sensory responses observed as a result of hysteresis effects in transient thermal conditions consisting of warm-neutral and neutral - warm performed in a quasi-experiment setting. Air-conditioned building interiors in hot-humid areas have resulted in thermal discomfort and health risks for people moving into and out of buildings. Reports have shown that the instantaneous change in air temperature can cause abrupt thermoregulation responses. Thermal sensation vote (TSV) and thermal comfort vote (TCV) assessments as a consequence of moving through spaces with distinct thermal conditions were conducted in an existing single-story office in a hot-humid microclimate, maintained at an air temperature 24 °C (± 0.5), relative humidity 51% (± 7), air velocity 0.5 m/s (± 0.5), and mean radiant temperature (MRT) 26.6 °C (± 1.2). The measured office is connected to a veranda that showed the following semi-outdoor temperatures: air temperature 35 °C (± 2.1), relative humidity 43% (± 7), air velocity 0.4 m/s (± 0.4), and MRT 36.4 °C (± 2.9). Subjective assessments from 36 college-aged participants consisting of thermal sensations, preferences and comfort votes were correlated against a steady state predicted mean vote (PMV) model. Local skin temperatures on the forehead and dorsal left hand were included to observe physiological responses due to thermal transition. TSV for veranda-office transition showed that no significant means difference with TSV office-veranda transition were found. However, TCV collected from warm-neutral (-0.24, ± 1.2) and neutral-warm (-0.72, ± 1.3) conditions revealed statistically significant mean differences (p thermal transition after travel from warm-neutral-warm conditions did not replicate the hysteresis effects of brief, slightly cool, thermal sensations found in previous laboratory experiments. These findings also indicate that PMV is an acceptable alternative to predict thermal

  16. Thermal environment evaluation. Evaluation de l'ambiance thermique

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, B

    1988-01-01

    This document describes interior thermal environment analysis and the techniques involved at three applicable stages of evaluation. They range from the study of plans and archives to physical measurement with sophisticated instrumentation. Environmental factors that influence the thermal state of the building occupant are measured. The occupant's perception of the thermal environment may also be investigated. One of the most important building functions is to isolate the occupants from adverse exterior thermal conditions and provide a productive and healthy interior environment. The thermal environment is determined by clothing level, activity level, air velocity, ambient air temperature, mean radiant temperature and moisture level. Since an optimal thermal environment may not be optimal in terms of the building's energy efficiency, the evaluation process will have to draw upon expertise in energy use and other disciplines at the stage where solutions are recommended. 16 refs., 4 figs., 2 tabs.

  17. Air pollution control systems in WtE units: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Vehlow, J., E-mail: juergen.vehlow@partner.kit.edu

    2015-03-15

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made.

  18. Air pollution control systems in WtE units: An overview

    International Nuclear Information System (INIS)

    Vehlow, J.

    2015-01-01

    Highlights: • The paper describes in brief terms the development of gas cleaning in waste incineration. • The main technologies for pollutant removal are described including their basic mechanisms. • Their respective efficiencies and their application are discussed. • A cautious outlook regarding future developments is made. - Abstract: All WtE (waste-to-energy) plants, based on combustion or other thermal processes, need an efficient gas cleaning for compliance with legislative air emission standards. The development of gas cleaning technologies started along with environment protection regulations in the late 1960s. Modern APC (air pollution control) systems comprise multiple stages for the removal of fly ashes, inorganic and organic gases, heavy metals, and dioxins from the flue gas. The main technologies and devices used for abatement of the various pollutants are described and their basic principles, their peculiarities, and their application are discussed. Few systems for cleaning of synthesis gas from waste gasification plants are included. Examples of APC designs in full scale plants are shown and cautious prospects for the future development of APC systems are made

  19. Experimental investigation and feasibility analysis on a capillary radiant heating system based on solar and air source heat pump dual heat source

    International Nuclear Information System (INIS)

    Zhao, M.; Gu, Z.L.; Kang, W.B.; Liu, X.; Zhang, L.Y.; Jin, L.W.; Zhang, Q.L.

    2017-01-01

    Graphical abstract: (a) Vertical temperature gradient in Case 3, (b) PMV and PPD of the test room in Case 3, (c) operating time of SPCTS and ASHP systems in Case 3 and (d) the proportion of SPCTS operating time. - Highlights: • A capillary heating system based on solar and air source heat pump was developed. • Influence of supply water temperature on solar energy saving rate was investigated. • Heating performance and thermal comfort of capillary heating system were analyzed. • Low temperature heating with capillary is suitable for solar heating system. - Abstract: Due to sustainable development, solar energy has drawn much attention and been widely applied in buildings. However, the application of solar energy is limited because of its instability, intermittency and low energy density in winter. In order to use low density and instable solar energy source for heating and improve the utilization efficiency of solar energy, a solar phase change thermal storage (SPCTS) heating system using a radiant-capillary-terminal (RCT) to effectively match the low temperature hot water, a phase change thermal storage (PCTS) to store and continuously utilize the solar energy, and an air source heat pump (ASHP) as an alternate energy, was proposed and set up in this research. Series of experiments were conducted to obtain the relation between the solar radiation utilization rate and the heating supply temperatures, and to evaluate the performance of the RCT module and the indoor thermal environment of the system for its practical application in a residential building in the north-western City of Xi’an, China. The results show that energy saving of the solar heating system can be significantly improved by reducing the supplied water temperature, and the supplied water temperature of the RCT would be no more than 35 °C. The capillary radiation heating can adopt a lower water temperature and create a good thermal comfort environment as well. These results may lead to the

  20. A desiccant-enhanced evaporative air conditioner: Numerical model and experiments

    International Nuclear Information System (INIS)

    Woods, Jason; Kozubal, Eric

    2013-01-01

    Highlights: ► We studied a new process combining liquid desiccants and evaporative cooling. ► We modeled the process using a finite-difference numerical model. ► We measured the performance of the process with experimental prototypes. ► Results show agreement between model and experiment of ±10%. ► Results add confidence to previous modeled energy savings estimates of 40–85%. - Abstract: This article presents modeling and experimental results on a recently proposed liquid desiccant air conditioner, which consists of two stages: a liquid desiccant dehumidifier and an indirect evaporative cooler. Each stage is a stack of channel pairs, where a channel pair is a process air channel separated from an exhaust air channel with a thin plastic plate. In the first stage, a liquid desiccant film, which lines the process air channels, removes moisture from the air through a porous hydrophobic membrane. An evaporating water film wets the surface of the exhaust channels and transfers the enthalpy of vaporization from the liquid desiccant into an exhaust airstream, cooling the desiccant and enabling lower outlet humidity. The second stage is a counterflow indirect evaporative cooler that siphons off and uses a portion of the cool-dry air exiting the second stage as the evaporative sink. The objectives of this article are to (1) present fluid-thermal numerical models for each stage, (2) present experimental results of prototypes for each stage, and (3) compare the modeled and experimental results. Several experiments were performed on the prototypes over a range of inlet temperatures and humidities, process and exhaust air flow rates, and desiccant concentrations and flow rates. The model predicts the experiments within ±10%.

  1. An investigation on 800 nm femtosecond laser ablation of K9 glass in air and vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Shi-zhen, E-mail: xusz@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Yao, Cai-zhen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Dou, Hong-qiang [Department of Material Science and Engineering, Sichuan Engineering Technical College, Deyang 618000 (China); Liao, Wei, E-mail: liaowei@caep.cn [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Li, Xiao-yang; Ding, Ren-jie [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhang, Li-juan; Liu, Hao; Yuan, Xiao-dong [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zu, Xiao-tao [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2017-06-01

    Highlights: • The fs laser ablation of borosilicate glass (K9) were investigated under 35 and 500 fs pulses. • At high fluence regime, the ablation rate at 35 fs in air increased to a plateau, and 500 fs in air and vacuum decreased. • The mechanisms of multiple-photon ionization and impact ionization were included. • The ablation morphologies of smooth zone and laser-induced periodic surface structures were presented and illustrated. • The ablation mechanisms of non-thermal and thermal ablation were included. - Abstract: Ablation rates of K9 glass were studied as a function of femtosecond laser fluences. The central wavelength was 800 nm, and pulse durations of 35 fs and 500 fs in air and vacuum were employed. Ablation thresholds of 0.42 J/cm{sup 2} and 2.1 J/cm{sup 2} were obtained at 35 fs and 500 fs, respectively, which were independent with the ambient conditions and depend on the incident pulse numbers due to incubation effects. The ablation rate of 35 fs pulse laser increased with the increasing of laser fluence in vacuum, while in air condition, it slowly increased to a plateau at high fluence. The ablation rate of 500 fs pulse laser showed an increase at low fluence and a slow drop of ablation rate was observed at high fluence in air and vacuum, which may due to the strong defocusing effects associated with the non-equilibrium ionization of air, and/or the shielding effects of conduction band electrons (CBEs) produced by multi-photon ionization and impact ionization in K9 glass surface. The typical ablation morphologies, e.g. smooth zone and laser-induced periodic surface structures (LIPSS) were also presented and illustrated.

  2. Air flow distribution in and around a single-sided naturally ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, M.M.; Marjanovic, L.D.; Pinnock, D.J. [Loughborough University (United Kingdom). Dept. of Civil and Building Engineering

    2002-03-01

    The objective of this research is to compare calculated and measured air flow distributions inside a test room which is naturally ventilated. The test room is situated in a relatively sheltered location and to visualise the resultant local wind pattern around the room for all prevailing wind directions, wind tunnel trials were carried out. Both the wind tunnel and full-scale measurements show that the wind direction at the test cell was generally restricted to either a westerly or an easterly direction. To investigate air flow inside the room, the air pressures and velocities across the openings together with indoor air temperature and velocity at four locations and six different levels are measured. The experimental results demonstrate that for both winter and summer the air was entering the test room at bottom and leaving at the top louvre. Separate air flow and thermal modelling programs are used to predict the spatial distribution of the air flow and thermal comfort. The air flow distribution was predicted using a network air flow program. The predicted flow showed similar trends and the simulation results were in agreement with the measured data. An explicit finite-difference thermal modeling simulation package was used to predict the thermal comfort indices.(author)

  3. DETERMINING THE THERMAL RESISTANCE OF A VENTILATED HINGED FACADE SYSTEM LAYER

    Directory of Open Access Journals (Sweden)

    Gagarin Vladimir Gennad'evich

    2015-03-01

    Full Text Available Enveloping structures with hinged façade systems are nowadays widely used for moisture control of enveloping structures, prevention of overheating of the structures by insolation, saving the constructions from atmospheric moisture and also for correspondence with the raised requirements to thermal protection of the enveloping structures, aimed also at reducing energy consumption. In the winter conditions the influence of air layer on the thermal insulation parameters is usually neglected. In the article the thermal resistance of an air gap and is considered and its effect in the calculation of the heat resistance of a building envelope with hinged facade system is analyzed in the conditions of cold weather. The thermal resistance of the air layer determines how the heat losses decrease.

  4. Air quality perception of pedestrians in an urban outdoor Mediterranean environment: A field survey approach.

    Science.gov (United States)

    Pantavou, Katerina; Lykoudis, Spyridon; Psiloglou, Basil

    2017-01-01

    Perception plays a significant role on people's response to preventive measures. In the view of public awareness, the aim of this study was to explore factors that affect air quality perception and to reveal its potential patterns. Air quality perception of individuals, in terms of dust and overall air quality, was examined in relation to air pollutants concentrations, meteorological variables, personal characteristics as well as their thermal sensation and health condition. The data used were obtained from environmental measurements, in situ and from stations, and questionnaire surveys conducted in an outdoor urban Mediterranean area, Athens, Greece. The participants were asked to report their air quality perception and thermal sensation based on predefined scales. A thermal index, Physiological Equivalent Temperature (PET), was estimated to obtain an objective measure of thermal sensation. Particulate matter (PM 10 ) and nitrogen oxide (NO) were associated with dust perception. Nitrogen oxides (NO x ) and carbon monoxide (CO) were associated to air quality perception. Age, area of residence, health symptoms and thermal sensation also affected the perception of air quality. Dusty or poor air quality conditions were more likely to be reported when pollutants' concentrations were increased. Younger people, participants residing in the city center, experiencing health symptoms or warm thermal sensation showed a trend towards reporting more unfavorable air quality conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  6. Assessment of air quality benefits from the national pollution control policy of thermal power plants in China: A numerical simulation

    Science.gov (United States)

    Wang, Zhanshan; Pan, Libo; Li, Yunting; Zhang, Dawei; Ma, Jin; Sun, Feng; Xu, Wenshuai; Wang, Xingrun

    2015-04-01

    In 2010, an emission inventory of air pollutants in China was created using the Chinese Bulletin of the Environment, the INTEX-B program, the First National Pollution Source Census, the National Generator Set Manual, and domestic and international research studies. Two emission scenarios, the standard failed emission scenario (S1) and the standard successful emission scenario (S2), were constructed based upon the Instructions for the Preparation of Emission Standards for Air Pollutants from Thermal Power Plants (second draft). The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) and the U.S. EPA Models-3 Community Multiscale Air Quality (CMAQ) model were applied to China to study the air quality benefits from Emission Standards for Air Pollutants from Thermal Power Plants GB13223-2011. The performance of MM5 and CMAQ was evaluated with meteorological data from Global Surface Data from the National Climatic Data Center (NCDC) and the daily Air Pollution Index (API) reported by Chinese local governments. The results showed that the implementation of the new standards could reduce the concentration of air pollutants and acid deposition in China by varying degrees. The new standards could reduce NO2 pollution in China. By 2020, for the scenario S2, the area with an NO2 concentration higher than the second-level emission standard, and the average NO2 concentration in 31 selected provinces would be reduced by 55.2% and 24.3%, respectively. The new standards could further reduce the concentration of declining SO2 in China. By 2020, for S2, the area with an SO2 concentration higher than the second-level emission standard and the average SO2 concentration in the 31 selected provinces would be reduced by 40.0% and 31.6%, respectively. The new standards could also reduce PM2.5 pollution in China. By 2020, for S2, the area with a PM2.5 concentration higher than the second-level emission standard and the average concentration of PM2.5 in the 31 selected provinces would be

  7. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  8. A Breath of Fresh Air / Une boufée d’air frais: Abstracts from the 2012 Canadian Respiratory Conference

    Directory of Open Access Journals (Sweden)

    Pearce Wilcox

    2012-01-01

    Full Text Available The present online supplement highlights the poster abstracts selected for presentation at the 5th Annual Canadian Respiratory Conference (CRC held in Vancouver, British Columbia, in April 2012. The CRC is a partnership initiative of the Canadian Thoracic Society, Canadian Respiratory Health Professionals, The Lung Association and the Canadian COPD Alliance and has become the premiere national educational and scientific meeting for the respiratory community in Canada. I would like to acknowledge the leadership and expertise of the Scientific Committee, our conference speakers and abstract presenters, all of whom contributed to the delivery of an excellent program. The next Canadian Respiratory Conference will be held in Québec City, Quebec, April 11 to 13, 2012 (www.lung.ca/crc. We look forward to seeing you there!

  9. Effect of thermal conductivities of shape stabilized PCM on under-floor heating system

    International Nuclear Information System (INIS)

    Cheng, Wenlong; Xie, Biao; Zhang, Rongming; Xu, Zhiming; Xia, Yuting

    2015-01-01

    Highlights: • HCE-SSPCM was prepared and used in under-floor heating system. • Enhancing thermal conductivity improved the efficiency of energy and space. • Too high thermal conductivity over a range was meaningless. • The economic benefits of the phase change energy storage system were the best. - Abstract: A kind of heat conduction-enhanced shape-stabilized PCM (HCE-SSPCM) was utilized in the under-floor heating system for house heating in winter. This system charges heat by using cheap nighttime electricity and provides heating needs throughout all day. The effect of thermal conductivity of the PCM on energy savings and economic benefits of the system were theoretically and experimentally studied. HCE-SSPCM plates, made of (solid paraffin + liquid paraffin)/high density polyethylene/expanded graphite, were introduced to a test room with under-floor heating system. And the operating characteristics of the system were compared with that of the non-phase change energy storage system and the conventional air conditioning system. The results showed that enhancing the thermal conductivity of PCM in a certain range could significantly improve the energy efficiency of the heating system and reduce the thickness of thermal insulating materials. But the improving effect was not obvious when the thermal conductivity was beyond 1.0 W/m K. The phase change energy storage system had a comfortable temperature environment and the best economic benefits among the three different heating types especially when the ratio of peak-valley electric price was high. Therefore, increasing the thermal conductivity of SSPCM will be of great significance for house heating

  10. Indoor thermal environment of bedroom during sleep in Malaysia

    Science.gov (United States)

    Tsuzuki, Kazuyo; Mori, Ikue

    2017-10-01

    This study was conducted to investigate the indoor thermal environment and sleep of occupants in bedrooms where air conditioners (ACs) are preferentially installed. Field measurements and questionnaires were conducted for 22 houses, with a total of 28 occupants, located in the suburbs of Kuala Lumpur. The participants were requested to wear a wrist actigraphy on the non-dominant hand for three consecutive days, except while bathing or washing hands in order to evaluate sleep by the activity of the actigraphy. The average air temperatures in the bedrooms were 22.6-28.9 °C and 28.1-32.2 °C with and without AC, respectively. The observed lowest air temperature was below 21 °C in a bedroom with AC. Such low air temperatures are not considered appropriate in terms of energy consumption and the occupants' physiological condition during sleep. The wind velocity of fresh air coming through the open window was found as well as when the use of a fan. From the relations among the factors of thermal environment, increased wind velocity seems to compensate for increased air temperature and increased relative humidity. The sleep efficiency index (SEI) looks decreased in accordance with increased air temperature, increased air velocity, and increased relative humidity. However, no statistical significances were found in those relationships. New effective temperature (SET*) was calculated from measured thermal factors and relation was examined with SEI.

  11. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    International Nuclear Information System (INIS)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Abid; Mortensen, Henrik Hilleke

    2013-01-01

    Highlights: ► Developing a general zero dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model for a forklift. ► System performance with different cooling fluids. ► Water and thermal management of fuel cell system. ► Effect of inlet temperature, outlet temperature and temperature gradient on system performance. - Abstract: A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water–ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32–33% in the inner loop and 60–65% in the outer loop for all ranges of current. The system can then be started up at about −25 °C with negligible change in the efficiency

  12. Adaptive thermal comfort for buildings in Portugal based on occupants' thermal perception

    Energy Technology Data Exchange (ETDEWEB)

    Matias, L.; Pina Santos, C.; Rebelo, M. [LNEC National Laboratory for Civil Engineering, Lisbon (Portugal); Almeida, S. [FCT Foundation for Science and Technology, Lisbon (Portugal); Correia Guedes, M. [IST Higher Technical Inst., Lisbon (Portugal)

    2009-07-01

    The use of air conditioning systems in Portugal has increased in recent years. Most new service buildings are equipped with mechanical air conditioning systems, either due to commercial reasons, productivity, or due to high internal thermal loads, and solar gains through windows. However, a large percentage of older service buildings are still naturally ventilated. In ASHRAE 55 thermal comfort standard, an adaptive model was adopted as an optional method for determining acceptable thermal conditions in naturally conditioned spaces. Recently, Portugal's National Laboratory for Civil Engineering (LNEC) initiated an interdisciplinary research study in this field. The research team of physicists, social scientists, and civil engineers developed better modeling of adaptive thermal strategies. This paper described the adaptive approach that defined indoor thermal comfort requirements applicable to Portuguese buildings. The study focused on assessing, in real use conditions, indoor environments and the response of occupants of office and educational buildings, and homes for the elderly. The results were obtained from 285 field surveys carried out on 40 buildings and a set of 2367 questionnaires completed by occupants. Field surveys assessed and measured the main indoor environmental parameters during summer, winter and mid-season. This paper included the results of the analysis to the occupants' thermal perception and expectation, by relating them to both measured and collected indoor thermal environments and outdoor climate. The relation between the occupants' thermal sensation and preference was analysed for different types of activities, throughout different seasons. Results showed that occupants may tolerate broader temperature ranges than those indicated in current standards, particularly in the heating season. 10 refs., 3 tabs., 9 figs.

  13. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    International Nuclear Information System (INIS)

    Qiu, Xiaolin; Song, Guolin; Chu, Xiaodong; Li, Xuezhu; Tang, Guoyi

    2013-01-01

    Highlights: ► n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). ► Microcapsules using divinylbenzene as crosslinking agent have better quality. ► Microcapsule with butyl methacrylate–divinylbenzene has highest latent heat. ► Microcapsule with butyl methacrylate–divinylbenzene has greatest thermal stability. ► Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA–DVB polymer was up to 248 °C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  14. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation

    International Nuclear Information System (INIS)

    Su, Yun; Li, Jun

    2016-01-01

    Steam burns severely threaten the life of firefighters in the course of their fire-ground activities. The aim of this paper was to characterize thermal protective performance of flame-retardant fabrics exposed to hot steam and low-level thermal radiation. An improved testing apparatus based on ASTM F2731-11 was developed in order to simulate the routine fire-ground conditions by controlling steam pressure, flow rate and temperature of steam box. The thermal protective performance of single-layer and multi-layer fabric system with/without an air gap was studied based on the calibrated tester. It was indicated that the new testing apparatus effectively evaluated thermal properties of fabric in hot steam and thermal radiation. Hot steam significantly exacerbated the skin burn injuries while the condensed water on the skin’s surface contributed to cool down the skin tissues during the cooling. Also, the absorbed thermal energy during the exposure and the cooling was mainly determined by the fabric’s configuration, the air gap size, the exposure time and the existence of hot steam. The research provides a effective method to characterize the thermal protection of fabric in complex conditions, which will help in optimization of thermal protection performance of clothing and reduction of steam burn. (paper)

  15. Thermally induced structural changes in Nomex fibres

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thermally aged Nomex fibres manifest several residual effects viz. reduction in X-ray crystallinity, weight loss and deterioration in tensile characteristics. Surface damages in the form of longi- tudinal openings, holes, material deposits etc have also been observed. Based on the data from thermally exposed fibres ...

  16. Thermal Performance Analysis of Staging Effect of Solar Thermal Absorber with Cross Design

    International Nuclear Information System (INIS)

    Amir Abdul Razak; Zafri Azran Abdul Majid; Mohd Hafidz Ruslan; Kamaruzzaman Sopian

    2015-01-01

    The type and shape of solar thermal absorber materials will impact on the operating temperature and thermal energy storage effect of a solar air thermal collector. For a standard flat-plate design, energy gain can be increased by expanding the thermal absorber area along the collector plane, subject to area limitation. This paper focuses on the staging effect of a metal hollow square rod absorber of aluminium, stainless steel, and a combination of the two with a cross design, for the heat gain and temperature characteristics of a solar air collector. Experiments were carried out with three cross design set-ups, with 30 minutes of heating and cooling, phase, respectively, under 485 W/ m 2 solar irradiance value, and at a constant air speed at 0.38 m/ s. One set aluminium set-up delivered the highest output temperature of 41.8 degree Celsius, followed by two-sets aluminium and one aluminium set + one stainless steel set at 39.3 and 38.2 degree Celsius, respectively. The lowest peak temperature is recorded on three sets of the aluminium absorber at 35 degree Celsius. The bi-metallic set-up performed better than the two aluminium set-up where each set-up obtained a temperature drop against heat gain gradient value of -0.4186 degree Celsius/ W and -0.4917 degree Celsius/ W, respectively. Results concluded that by increasing the number of sets, the volume and surface areas of the absorber material are also increased, and lead to a decrease in peak temperature output for each increase of sets. (author)

  17. Upper air thermal inversion and their impact on the summer monsoon rainfall over Goa - A case study

    Science.gov (United States)

    Swathi, M. S.; Muraleedharan, P. M.; Ramaswamy, V.; Rameshkumar, M. R.; Aswini, Anirudhan

    2018-04-01

    Profiles of periodic GPS Radiosonde ascends collected from a station at the west coast of India (Goa) during summer monsoon months (June to September) of 2009 and 2013 have been used to analyze the thermal inversion statistics at various heights and their repercussions on the regional weather is studied. The interaction of contrasting air masses over the northern Arabian Sea often produces a two layer structure in the lower 5000 m close to the coastal station with warm and dusty air (Summer Shamal) occupying the space above the cool and moist Low Level Jet (LLJ) by virtue of their density differences. The warm air intrusion creates low lapse rate pockets above LLJ and modifies the gravitational stability strong enough to inhibit convection. It is observed that the inversion occurring in the lower 3000 m layer with an optimum layer thickness of 100-200 m has profound influence on the weather beneath it. We demonstrated the validity of the proposed hypothesis by analyzing the collocated data from radiosonde, lidar and the rain gauge during 16th July 2013 as a case study. The lidar depolarization ratio provides evidence to support the two layer structure in the lidar backscatter image. The presence of dust noticed in the two layer interface hints the intrusion of warm air that makes the atmosphere stable enough to suppress convection. The daily rainfall record of 2013 surprisingly coincides with the patterns of a regional break like situation centered at 16th July 2013 in Goa.

  18. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  19. Assessing Thermal Comfort Due to a Ventilated Double Window

    Science.gov (United States)

    Carlos, Jorge S.; Corvacho, Helena

    2017-10-01

    Building design and its components are the result of a complex process, which should provide pleasant conditions to its inhabitants. Therefore, indoor acceptable comfort is influenced by the architectural design. ISO and ASHRAE standards define thermal comfort as the condition of mind that expresses satisfaction with the thermal environment. The energy demand for heating, beside the building’s physical properties, also depend on human behaviour, like opening or closing windows. Generally, windows are the weakest façade element concerning to thermal performance. A lower thermal resistance allows higher thermal conduction through it. When a window is very hot or cold, and the occupant is very close to it, it may result in thermal discomfort. The functionality of a ventilated double window introduces new physical considerations to a traditional window. In consequence, it is necessary to study the local effect on human comfort in function of the boundary conditions. Wind, solar availability, air temperature and therefore heating and indoor air quality conditions will affect the relationship between this passive system and the indoor environment. In the present paper, the influence of thermal performance and ventilation on human comfort resulting from the construction and geometry solutions is shown, helping to choose the best solution. The presented approach shows that in order to save energy it is possible to reduce the air changes of a room to the minimum, without compromising air quality, enhancing simultaneously local thermal performance and comfort. The results of the study on the effect of two parallel windows with a ventilated channel in the same fenestration on comfort conditions for several different room dimensions, are also presented. As the room dimensions’ rate changes so does the window to floor rate; therefore, under the same climatic conditions and same construction solution, different results are obtained.

  20. Personalized ventilation: evaluation of different air terminal devices

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Majer, M.

    2002-01-01

    Personalized ventilation (PV) aims to provide clean air to the breathing zone of occupants. Its performance depends to a large extent on the supply air terminal device (ATD). Five different ATDs were developed, tested and compared. A typical office workplace consisting of a desk with mounted ATDs...... was simulated in a climate chamber. A breathing thermal manikin was used to simulate a human being. Experiments at room air temperatures of 26 and 20 deg.C and personalized air temperatures of 20 deg.C supplied from the ATDs were performed. The flow rate of personalized air was changed from less than 5 up to 23...... l/s. Tracer gas was used to identify the amount of personalized air inhaled by the manikin as well as the amount of exhaled air re-inhaled. The heat loss from the body segments of the thermal manikin was measured and used to calculate the equivalent temperature for the whole body as well as segments...

  1. Air pollution: Impact and prevention

    OpenAIRE

    SIERRA-VARGAS, MARTHA PATRICIA; TERAN, LUIS M

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respirat...

  2. The evaluation of the overall thermal comfort inside a vehicle

    Science.gov (United States)

    Neacsu, Catalin; Tabacu, Ion; Ivanescu, Mariana; Vieru, Ionel

    2017-10-01

    The thermal comfort is one of the most important aspects of the modern vehicles that can influence the safety, the fuel consumption and the pollutions regulation. The objective of this paper is to compare the global and absolute thermal comfort indexes for two vehicles with different distribution air systems inside the car cockpit, one using only front air vents, and the other using both front and rear air vents. The methodology of calculus consists in using the 3D model of the interior vehicle, generally in a CAD format. Then, using a meshing software to create the finite element model of the interior surfaces inside the cockpit and the volume of internal air. Using the obtained finite element geometry, there will be conducted a Theseus FE calculus using the given boundary conditions. The results of the numerical simulation are presented in terms of graphs and figures and also PMV, PPD and DTS thermal comfort indexes. With the obtained results, we will then create the graphs that allows us to evaluate the global and absolute thermal comfort indexes. The results of the evaluation show us that the use of the method allow us to evaluate with a greater accuracy the thermal comfort for the whole vehicle, not only for each passenger, like the standard methods. This shows us that in terms of general and absolute thermal comfort, the vehicle that use front and rear systems is better than the version that use only a front system. The thermal comfort is an important aspect to be taken into account from the beginning of the design stage of a vehicle, by choosing the right air conditioning system. In addition, by using the numerical simulation, we are able to reduce the time needed for preliminary tests and be able to provide the vehicle to the market earlier, at a lower development cost.

  3. Theory and practice of near-field thermal probes for microscopy and thermal analysis

    International Nuclear Information System (INIS)

    Hodges, C.S.

    1999-03-01

    miniaturised version of Modulated Differential Scanning Calorimetry where two pans are used, one containing the sample and one containing air as a reference. In LTA, a second probe is used in air near to the sample as a reference and the difference between the voltages across the two probes is recorded, this difference being related to the thermal properties of the sample. LTA has been carried out on poly(ethylene terephthalate), bismuth, indium, and solder, with bismuth showing a sharp melting point. An attempt to understand the effect of the sample material on the heat flow out of the probe in SThM was made by constructing a simple two-layer semi-infinite planar mathematical model of the probe/air gap/sample setup used in SThM. The model showed that for large air gaps the effect of changing the sample was minimal, whereas for small air gaps considerable variation in the heat flow was observed that strongly depended on the thermal conductivity of the sample and the frequency of the applied current through the probe. A series of experiments were then carried out to verify the results of the model and the results agreed to within 50% despite the oversimplified nature of the model, due to the highly diffusive nature of the thermal waves. (author)

  4. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    Science.gov (United States)

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  5. Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Rohidas B., E-mail: rb_kale@yahoo.co.in [Department of Physics, Institute of Science, Mumbai 400032, M.S. (India); Lu, Shih-Yuan, E-mail: sylu@mx.nthu.edu.tw [Department of Chemical Engineering, National Tsing-Hua University, Hsin-Chu 30013, Taiwan (China)

    2015-08-15

    Highlights: • Nanocrystalline CdSe thin films were deposited using inexpensive CBD method. • Air annealing induced structural and interesting morphological transformation. • The as-deposited CdSe thin films showed a blue shift in its optical spectra. • The films showed a red shift in their optical spectra after annealing. - Abstract: CdSe thin films have been deposited onto glass substrates using a chemical bath deposition method at relatively low temperatures (40 °C). The precursors used for the deposition of the thin films are cadmium nitrate hexahydrate, freshly prepared sodium selenosulfate solution and aqueous ammonia solution as a complex as well as pH adjusting reagent. In order to study the influence of air annealing on their physicochemical properties, the as-deposited CdSe thin films were further annealed at 200 °C and 400 °C for 3 h in air atmosphere. Significant changes in the morphology and photonic properties were clearly observed after the thermal annealing of the CdSe thin films. The as-deposited CdSe films grow with the cubic phase that transforms into mixed cubic and hexagonal wurtzite phase with improved crystalline quality of the films after the air annealing. Morphological observation reveals that the as-deposited thin films grow with multilayer that consists of network or mesh like structure, uniformly deposited on the glass substrate over which microspheres are uniformly distributed. After air annealing, CdSe nanorods emerged from the microspheres along with conversion of few microspheres into micro-pyramids. The UV–visible study illustrates that the as-deposited thin film shows blue shifts in its optical spectrum and the spectrum was red-shifted after annealing the CdSe thin films. The band gap of the CdSe thin films were found to be decreased after the thermal treatment.

  6. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  7. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  8. UJI KONDUKTIVITAS TERMAL PADA DAUN BAYAM DENGAN MENGGUNAKAN THERMAL CONDUCTIVITY APPARATUS

    OpenAIRE

    Firmansyah, Firmansyah; Syafutra, Heriyanto; Sidikrubadi, Sidikrubadi; Irzaman, Irzaman

    2017-01-01

    Abstract Has successfully tested thermal conductivity on spinach leaves by using Thermal Conductivity Apparatus. Thermal conductivity Apparatus assisted with Steam generator, Caliper, Micrometer, and iron. The thermal conductivity value of spinach leaves is 0.5208 watts / (m.K). This thermal conductivity test on foliage, fruits using Thermal Conductivity Apparatus are very easy to do in Basic Physics Laboratory by physics study program students in Indonesia. Keywords: Thermal Conductivi...

  9. Synthesis, microstructure and thermal expansion studies

    Indian Academy of Sciences (India)

    Abstract. We report on the synthesis, microstructure and thermal expansion studies on Ca0.5+/2Sr0.5+/2Zr4P6−2Si2O24 ( = 0.00 to 1.00) system which belongs to NZP family of low thermal expansion ceramics. The ceramics synthesized by co-precipitation method at lower calcination and the sintering temperatures ...

  10. Modelling Venting and Pressure Build-up in a 18650 LCO Cell during Thermal Runaway (ABSTRACT)

    DEFF Research Database (Denmark)

    Coman, Paul Tiberiu; Veje, Christian; White, Ralph

    Li-ion batteries are a very popular type of electric storage devices that possess high energy density when compared to the other battery chemistries. Due to this property, when operating under abusive conditions such as high ambient temperature, the batteries can experience thermal runaway, which...... may lead to fires and explosions. To prevent this, it is therefore important to model thermal runaway considering different events such as venting and the pressure development inside the battery cell, which makes the main purpose of this paper. A model consisting of the different decomposition....... By fitting the activation energies, and measuring experimentally the mass of the ejecta during thermal runaway, the model is compared and validated against an extensive experiment performed by Golukbov et al. [1] during oven heating. When analysing the results, it is found that by including the venting...

  11. Thermal Performance Evaluation of the 200 kWth Sol Air Volumetric Solar Receiver

    International Nuclear Information System (INIS)

    Tellez Sufrategui, F. M.

    2003-01-01

    The goal of the Solair project is the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safely operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW HitRec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MW t h receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fluffy accomplished: Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 (±6)% for configuration 1 and 83 (±6) % for configuration 2 of the absorber. (Author) 20 refs

  12. Thermal Performance Evaluation of the 200kWth SolAir Volumetric Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Tellez Sufrategui, F. M.

    2003-07-01

    The goal of the Solair project the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safety operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW Hitrec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MWth receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fully accomplished. Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 ({+-}6)% for configuration 1 and 83({+-}6)% for configuration 2 of the absorber. (Author). 20 refs.

  13. Analysis of thermal water utilization in the northeastern Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Rman

    2012-12-01

    Full Text Available The presented research aims at identification of thermal water users in NE Slovenia, at finding type and amountof the produced thermal water as well as its utilization practice. The energetic overview has been upgradedby a description of current observational monitoring practice and thermal waste water management, but technologicalproblems of thermal water use and their mitigation are discussed also. We have ascertained that 14 of 26active geothermalwells tap the Mura Formation aquifer in which the only reinjection well is perforated also. Totalthermal water abstraction summed to 3.29 million m3 in 2011. Cascade use of thermal water is abundant, whereindividual space and sanitary water heating is followed by heating of spa infrastructure and balneology. Greenhouseheating systems and district heating were also identified. Operational monitoring of these geothermal wellsis generally insufficient, and geothermal aquifers are overexploited due to decades of historical water abstraction.All these facts indicate the need for applying appropriate measures which will improve their natural conditions aswell as simultaneously enable further and even higher thermal water utilization in the future.

  14. 40 CFR 240.205 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality. ...

  15. Analysis of plant function as bio-thermal-conditioner using Pothos (Epipremnum aureum)

    Energy Technology Data Exchange (ETDEWEB)

    Nakazato, Tadashi, E-mail: nack-art@y7.dion.ne.jp [Nakadai Junior High School, 1-56-23 Nakadai Itabashi-ku, Tokyo 174-0064 (Japan); Inagaki, Terumi, E-mail: hotaru@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4 Chome, Nakanarusawa 12-1, Hitachi, Ibaraki 316-8511 (Japan)

    2012-03-20

    Plants absorb carbon dioxide by photosynthesis using solar energy and use thermal energy in the atmosphere by transpiration. Paying attention to the excellent functions that plants perform, we have measured the daily variation of the temperature and humidity on plant circumference of an individual level using Pothos (Epipremnum aureum), and have investigated the thermal conditioning effect of the plant irradiated white LED in a closed space covered with thermal insulation at the incubator adjusted temperature. The air-cooling effect of Pothos in a closed space at the incubator adjusted 23 Degree-Sign C was about 1 Degree-Sign C. High correlation between air temperature and that of soil was shown in the air-cooling effect, and long-time white light irradiation increased the air-cooling effect.

  16. Analysis of plant function as bio-thermal-conditioner using Pothos (Epipremnum aureum)

    International Nuclear Information System (INIS)

    Nakazato, Tadashi; Inagaki, Terumi

    2012-01-01

    Plants absorb carbon dioxide by photosynthesis using solar energy and use thermal energy in the atmosphere by transpiration. Paying attention to the excellent functions that plants perform, we have measured the daily variation of the temperature and humidity on plant circumference of an individual level using Pothos (Epipremnum aureum), and have investigated the thermal conditioning effect of the plant irradiated white LED in a closed space covered with thermal insulation at the incubator adjusted temperature. The air-cooling effect of Pothos in a closed space at the incubator adjusted 23 °C was about 1 °C. High correlation between air temperature and that of soil was shown in the air-cooling effect, and long-time white light irradiation increased the air-cooling effect.

  17. USSR and Eastern Europe Scientific Abstracts Geophysics, Astronomy and Space No. 409

    Science.gov (United States)

    1977-11-15

    flow, which is computed from the gradient of temperature and thermal conductivity of the rocks. Under such conditions thermometric sen- sors give...34Reaktsiya" instruments. The "Kristall" instrument is an air thermostat with three crystallizers in which aluminum -potassium sulfate was formed from

  18. Non-steady experimental investigation on an integrated thermal management system for power battery with phase change materials

    International Nuclear Information System (INIS)

    Shi, Shang; Xie, Yongqi; Li, Ming; Yuan, Yanping; Yu, Jianzu; Wu, Hongwei; Liu, Bin; Liu, Nan

    2017-01-01

    Highlights: • An integrated thermal management system for power battery is designed. • The battery temperature rise is a non-steady process for charge and discharge. • A mathematical model can accurately represent temperature rise characteristics. • The heat generation power of the battery is calculated theoretically. • The excess temperatures and thermal resistances affect the system performance. - Abstract: A large amount of heat inside the power battery must be dissipated to maintain the temperature in a safe range for the hybrid power train during high-current charging/discharging processes. In this article, a combined experimental and theoretical study has been conducted to investigate a newly designed thermal management system integrating phase change material with air cooling. An unsteady mathematical model was developed for the battery with the integrated thermal management system. Meanwhile, the heat generation power, thermal resistance, and time constant were calculated. The effect of several control parameters, such as thermal resistance, initial temperature, melting temperature and ambient temperature, on the performance of the integrated thermal management system were analyzed. The results indicated that: (1) the calculated temperature rise of the battery was in good agreement with the experimental data. The appropriate operation temperature of the battery was attained by the action of the phase change storage energy unit which is composed of copper foam and n-Eicosane, (2) the remarkable decrease of the battery temperature can be achieved by reducing the convection thermal resistance or increasing the conductivity of the phase change storage energy unit, where the latter could be the better option due to no additional energy consumption. When convective resistance and thermal resistance between the battery surface and the phase change storage energy unit are less than 2.03 K/W and 1.85 K/W, respectively, the battery will not exceed the

  19. A metric for characterizing the effectiveness of thermal mass in building materials

    International Nuclear Information System (INIS)

    Talyor, Robert A.; Miner, Mark

    2014-01-01

    Highlights: • Proposes a metric for interior thermal mass materials (floors, walls, counters). • Simple, yet effective, metric composed of easily calculated ‘local’ and ‘global’ variables. • Like Energy Star, the proposed metric gives a single number to aid consumer choice. • The metric is calculated and compared for selected, readily available data. • Drywall, concrete flooring, and wood paneling are quite effective thermal mass. - Abstract: Building energy use represents approximately 25% of the average total global energy consumption (for both residential and commercial buildings). Heating, ventilation, and air conditioning (HVAC) – in most climates – embodies the single largest draw inside our buildings. In many countries around the world a concerted effort is being made towards retrofitting existing buildings to improve energy efficiency. Better windows, insulation, and ducting can make drastic differences in the energy consumption of a building HVAC system. Even with these improvements, HVAC systems are still required to compensate for daily and seasonal temperature swings of the surrounding environment. Thermal mass inside the thermal envelope can help to alleviate these swings. While it is possible to add specialty thermal mass products to buildings for this purpose, commercial uptake of these products is low. Common building interior building materials (e.g. flooring, walls, countertops) are often overlooked as thermal mass products, but herein we propose and analyze non-dimensional metrics for the ‘benefit’ of selected commonly available products. It was found that location-specific variables (climate, electricity price, material price, insolation) can have more than an order of magnitude influence in the calculated metrics for the same building material. Overall, this paper provides guidance on the most significant contributors to indoor thermal mass, and presents a builder- and consumer-friendly metric to inform decisions about

  20. Indoor air and human health: major indoor air pollutants and their health implications

    International Nuclear Information System (INIS)

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion

  1. Indoor air and human health: major indoor air pollutants and their health implications

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This publication is a collection of abstracts of papers presented at the Indoor Air and Human Health symposium. Session titles include: Radon, Microorganisms, Passive Cigarette Smoke, Combustion Products, Organics, and Panel and Audience Discussion.

  2. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xiaolin [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China); Song, Guolin; Chu, Xiaodong; Li, Xuezhu [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@tsinghua.edu.cn [Advanced Materials Institute and Clearer Production Key Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Haidian District, Beijing 100084 (China)

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer n-Octadecane was encapsulated by p(butyl methacrylate) (PBMA) and p(butyl acrylate). Black-Right-Pointing-Pointer Microcapsules using divinylbenzene as crosslinking agent have better quality. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has highest latent heat. Black-Right-Pointing-Pointer Microcapsule with butyl methacrylate-divinylbenzene has greatest thermal stability. Black-Right-Pointing-Pointer Phase change temperatures and enthalpies of the microcapsules varied little after thermal cycle. - Abstract: Microencapsulation of n-octadecane with crosslinked p(butyl methacrylate) (PBMA) and p(butyl acrylate) (PBA) as shells for thermal energy storage was carried out by a suspension-like polymerization. Divinylbenzene (DVB) and pentaerythritol triacrylate (PETA) were employed as crosslinking agents. The surface morphologies of the microencapsulated phase change materials (microPCMs) were studied by scanning electron microscopy (SEM). Thermal properties, thermal reliabilities and thermal stabilities of the as-prepared microPCMs were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). The microPCMs prepared by using DVB exhibit greater heat capacities and higher thermal stabilities compared with those prepared by using PETA. The thermal resistant temperature of the microPCM with BMA-DVB polymer was up to 248 Degree-Sign C. The phase change temperatures and latent heats of all the as-prepared microcapsules varied little after 1000 thermal cycles.

  3. Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature

    International Nuclear Information System (INIS)

    Aurangzeb; Ali, Zulqurnain; Gurmani, Samia Faiz; Maqsood, Asghari

    2006-01-01

    Thermal conductivity, thermal diffusivity and heat capacity per unit volume of porous consolidated igneous rocks have been measured, simultaneously by Gustafsson's probe at room temperature and normal pressure using air as saturant. Data are presented for eleven samples of dunite, ranging in porosity from 0.130 to 0.665% by volume, taken from Chillas near Gilgit, Pakistan. The porosity and density parameters have been measured using American Society of Testing and Materials (ASTM) standards at ambient conditions. The mineral composition of samples has been analysed from their thin sections (petrography). An empirical model to predict the thermal conductivity of porous consolidated igneous rocks is also proposed. The thermal conductivities are predicted by some of the existing models along with the proposed one. It is observed that the values of effective thermal conductivity predicted by the proposed model are in agreement with the experimental thermal conductivity data within 6%

  4. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  5. Grounding abstractness: Abstract concepts and the activation of the mouth

    Directory of Open Access Journals (Sweden)

    Anna M Borghi

    2016-10-01

    Full Text Available One key issue for theories of cognition is how abstract concepts, such as freedom, are represented. According to the WAT (Words As social Tools proposal, abstract concepts activate both sensorimotor and linguistic/social information, and their acquisition modality involves the linguistic experience more than the acquisition of concrete concepts. We report an experiment in which participants were presented with abstract and concrete definitions followed by concrete and abstract target-words. When the definition and the word matched, participants were required to press a key, either with the hand or with the mouth. Response times and accuracy were recorded. As predicted, we found that abstract definitions and abstract words yielded slower responses and more errors compared to concrete definitions and concrete words. More crucially, there was an interaction between the target-words and the effector used to respond (hand, mouth. While responses with the mouth were overall slower, the advantage of the hand over the mouth responses was more marked with concrete than with abstract concepts. The results are in keeping with grounded and embodied theories of cognition and support the WAT proposal, according to which abstract concepts evoke linguistic-social information, hence activate the mouth. The mechanisms underlying the mouth activation with abstract concepts (re-enactment of acquisition experience, or re-explanation of the word meaning, possibly through inner talk are discussed. To our knowledge this is the first behavioral study demonstrating with real words that the advantage of the hand over the mouth is more marked with concrete than with abstract concepts, likely because of the activation of linguistic information with abstract concepts.

  6. A Study of Demand Response Effect of Thermal Storage Air-Conditioning Systems in Consideration of Electricity Market Prices

    Science.gov (United States)

    Omagari, Yuko; Sugihara, Hideharu; Tsuji, Kiichiro

    This paper evaluates the economic impact of the introduction of customer-owned Thermal Storage Air-conditioning (TSA) systems, in an electricity market, from the viewpoint of the load service entity. We perform simulations on the condition that several thousand customers install TSA systems and shift peak demand in an electricity market by one percent. Our numerical results indicate that the purchase cost of the LSE was reduced through load management of customers with TSA systems. The introduction of TSA systems also reduced the volatility of market clearing price and reduced the whole-trade cost in an electricity market.

  7. Life cycle cost analysis of HPVT air collector under different Indian climatic conditions

    International Nuclear Information System (INIS)

    Raman, Vivek; Tiwari, G.N.

    2008-01-01

    In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical

  8. Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China

    Directory of Open Access Journals (Sweden)

    Qian Zhou

    2017-09-01

    Full Text Available The cost of environmental degradation has already had a dramatic impact on the Chinese economy. In order to curb these trends, the government of China has introduced stricter regulations. With this in mind, it is important to quantify the potential co-benefits of introducing air pollution and climate change mitigation policies. This study proposes relevant scenarios ranging from the current trends (baseline to the introduction of different policies in the thermal power sector, including different carbon tax rates, technology innovation promotion, and technology cost reduction methods. We aim to comparatively evaluate the impact of the proposed policies within the thermal sector and within the entire socio-economic system. To this end, we used a dynamic input–output (I-O model, into which high-efficiency technologies were incorporated as new thermal power industries in order to estimate policy impact during the time period 2010–2025. The results of this study demonstrated that the introduction of one or more of the following policies: carbon taxes, subsidies, technology innovation, and technology cost reduction, has no notable impact on the environment or the economy without the implementation of environment regulations. In contrast, the strong support of a government subsidy coupled with strict environmental regulations will promote technological innovation, for example through the natural gas combined cycle (NGCC and the integrated coal gasification combined cycle (IGCC. Our study also showed that the reduction of air pollution and greenhouse gas emissions as well as energy consumption would curb economic development to a certain extent. Taking this into consideration, innovation must also be promoted in other economic sectors. This research provides a strong reference for policy-makers to identify effective polices under different types of environmental regulations.

  9. Air flows in big cavity, building aeraulics; ecoulements de l`air en grande cavite, aeraulique des batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was jointly organized by the French society of thermal engineers (SFT) and the university group of thermal engineers (GUT). This compilation of proceedings comprises 10 papers dealing with: the use of zonal models for the prediction of the temperature field inside buildings; prediction of the natural ventilation air renewing inside a cavity with a single big aperture using a finite-difference code; experimental validation of the EOL-3D code in industrial ventilating; precise numerical modeling of flows inside ventilated or not-ventilated cavities with pollutant species using a finite difference