WorldWideScience

Sample records for absorption spectroscopy

  1. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  2. Graphene intracavity spaser absorption spectroscopy

    Science.gov (United States)

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  3. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    Science.gov (United States)

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  4. X-ray absorption spectroscopy of metalloproteins.

    Science.gov (United States)

    Ward, Jesse; Ollmann, Emily; Maxey, Evan; Finney, Lydia A

    2014-01-01

    Metalloproteins are enormously important in biology. While a variety of techniques exist for studying metals in biology, X-ray absorption spectroscopy is particularly useful in that it can determine the local electronic and physical structure around the metal center, and is one of the few avenues for studying "spectroscopically silent" metal ions like Zn(II) and Cu(I) that have completely filled valence bands. While X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) are useful for studying metalloprotein structure, they suffer the limitation that the detected signal is an average of all the various metal centers in the sample, which limits its usefulness for studying metal centers in situ or in cell lysates. It would be desirable to be able to separate the various proteins in a mixture prior to performing X-ray absorption studies, so that the derived signal is from one species only. Here we describe a method for performing X-ray absorption spectroscopy on protein bands following electrophoretic separation and western blotting.

  5. Triplet absorption spectroscopy and electromagnetically induced transparency

    Science.gov (United States)

    Ghafoor, F.; Nazmitdinov, R. G.

    2016-09-01

    Coherence phenomena in a four-level atomic system, cyclically driven by three coherent fields, are investigated thoroughly at zero and weak magnetic fields. Each strongly interacting atomic state is converted to a triplet due to a dynamical Stark effect. Two dark lines with a Fano-like profile arise in the triplet absorption spectrum with anomalous dispersions. We provide conditions to control the widths of the transparency windows by means of the relative phase of the driving fields and the intensity of the microwave field, which closes the optical system loop. The effect of Doppler broadening on the results of the triplet absorption spectroscopy is analysed in detail.

  6. Theory of attosecond absorption spectroscopy in krypton

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Lindroth, Eva; Madsen, Lars Bojer

    2012-01-01

    A theory for time-domain attosecond pump–attosecond probe photoabsorption spectroscopy is formulated and related to the atomic response. The theory is illustrated through a study of attosecond absorption spectroscopy in krypton. The atomic parameters entering the formulation such as energies and...... Auger widths, as well as wave functions and dipole coupling matrix elements, are determined by accurate many-body structure calculations. We create a hole in a valence shell by an attosecond pump, couple an inner-shell electron to the hole by an attosecond probe, and then monitor the formation of the...

  7. Absorption effects in diffusing wave spectroscopy.

    Science.gov (United States)

    Sarmiento-Gomez, Erick; Morales-Cruzado, Beatriz; Castillo, Rolando

    2014-07-20

    The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided. PMID:25090203

  8. Cavity-Enhanced Ultrafast Transient Absorption Spectroscopy

    CERN Document Server

    Reber, Melanie A R; Allison, Thomas K

    2015-01-01

    We present a new technique using a frequency comb laser and optical cavities for performing ultrafast transient absorption spectroscopy with improved sensitivity. Resonantly enhancing the probe pulses, we demonstrate a sensitivity of $\\Delta$OD $ = 1 \\times 10^{-9}/\\sqrt{\\mbox{Hz}}$ for averaging times as long as 30 s per delay point ($\\Delta$OD$_{min} = 2 \\times 10^{-10}$). Resonantly enhancing the pump pulses allows us to produce a high excitation fraction at high repetition-rate, so that signals can be recorded from samples with optical densities as low as OD $\\approx 10^{-8}$, or column densities $< 10^{10}$ molecules/cm$^2$. This high sensitivity enables new directions for ultrafast spectroscopy.

  9. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  10. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper;

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...

  11. Absorption and fluorescence spectroscopy on a smartphone

    Science.gov (United States)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  12. Photonic sensing of the atmosphere by absorption spectroscopy

    International Nuclear Information System (INIS)

    Chemically reactive atmospheric species play a crucial role in tropospheric processes which affect regional air quality and global climate change. Contrary to long-lived species such as greenhouse gases, interference-free accurate and precise concentration assessments of strongly reactive short-lived species represent a real challenge. In this paper, we report on the recent progress in spectroscopic instrumental developments for monitoring of OH, NO3, HONO and NO2 by using modern photonic sources (Quantum Cascade Laser, distributed feedback diode laser, light emitting diode) in conjunction with high-sensitivity spectroscopic measurement techniques such as multi-pass cell based long optical path length absorption spectroscopy, wavelength-modulation enhanced off-axis integrated cavity output spectroscopy, Faraday rotation spectroscopy, incoherent broadband cavity enhanced absorption spectroscopy. The main techniques available for routine atmospheric measurements of OH, NO3 and HONO are overviewed, in comparison with the emerging modern photonic spectroscopy techniques.

  13. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    Science.gov (United States)

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  14. Differential optical absorption spectroscopy principles and applications

    CERN Document Server

    Platt, Ulrich; Imboden, Dieter

    2008-01-01

    Measurement techniques form the basis of our knowledge about atmospheric composition and chemistry. Presently, important questions of atmospheric chemistry center on urban pollution, free-radical chemistry, degradation of greenhouse gases and the budgets of tropospheric and stratospheric ozone. Among the many different optical spectroscopic methods that are in use, DOAS has emerged as a universal technique to measure the concentrations of atmospheric trace gases by making use of the characteristic absorption features of gas molecules along a path of known length in the open atmosphere. This bo

  15. Diode laser absorption spectroscopy of lithium isotopes

    Science.gov (United States)

    Olivares, Ignacio E.; González, Iván A.

    2016-10-01

    We study Doppler-limited laser intensity absorption, in a thermal lithium vapor containing 7Li and 6Li atoms in a 9 to 1 ratio, using a narrow-linewidth single-longitudinal-mode tunable external cavity diode laser at the wavelength of 670.8 nm. The lithium vapor was embedded in helium or argon buffer gas. The spectral lineshapes were rigorously predicted for D_1 and D_2 for the lithium 6 and 7 isotope lines using reduced optical Bloch equations, specifically derived, from a density matrix analysis. Here, a detailed comparison is provided of the predicted lineshapes with the measured 7Li-D_2, 7Li-D_1, 6Li-D_2 and 6Li-D_1 lines, in the case of high vapor density and with intensity above the saturation intensity. To our knowledge, this is the first time that such detailed comparison is reported in the open literature. The calculations were also extended to saturated absorption spectra and compared to measured Doppler-free 7Li-D_2 and 6Li-D_2 hyperfine lines.

  16. Absorption spectroscopy of laser excited europium vapour

    International Nuclear Information System (INIS)

    Absorption spectra of europium vapour irradiated by intense, monochromatic resonance radiation at the wavelengths of the three principal resonance lines, 4f76s2, 8S(J=7/2)→4f76s6p, y 8P(J=5/2, 7/2 and 9/2) at 466.2, 462.7 and 459.4 nm respectively, have been photographed at high resolution. Pulsed resonance radiation was obtained from a tunable, narrow-band dye laser pumped by a nitrogen laser: a broad-band dye laser pumped by the same nitrogen laser provided background radiation. Our spectra covered the ranges 380-400 nm, and 410-450 nm, each one showing transitions from a single resonance level to upper levels in the region of either the 4f76s, 7S or the 4f76s, 9S ionization limit of EuII. In the shorter wavelength range the spectra consisted of weak autoionized series converging towards the 7S limit. In the longer wavelength range the three spectra were surprisingly dissimilar. The majority of the upper levels could be arranged into five highly-perturbed series, one corresponding to each of the J values 3/2, 5/2, 7/2, 9/2 and 11/2. These series arose from excitation of the 6p electron to high lying d-orbitals. The absorption transitions to the series members are only prominent in regions where the series are strongly perturbed, indicating that most of the line strength is derived from the perturbing levels. Possible origins for the perturbing levels are discussed. Little evidence was found for a series arising from excitation of the 6p electron to high lying s-orbitals. (author)

  17. Molecular shock response of explosives: electronic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrne, Shawn D [Los Alamos National Laboratory; Moore, David S [Los Alamos National Laboratory; Whitley, Von H [Los Alamos National Laboratory; Bolme, Cindy A [Los Alamos National Laboratory; Eakins, Daniel E [Los Alamos National Laboratory

    2009-01-01

    Electronic absorption spectroscopy in the range 400-800 nm was coupled to ultrafast laser generated shocks to begin addressing the question of the extent to which electronic excitations are involved in shock induced reactions. Data are presented on shocked polymethylmethacrylate (PMMA) thin films and single crystal pentaerythritol tetranitrate (PETN). Shocked PMMA exhibited thin film interference effects from the shock front. Shocked PETN exhibited interference from the shock front as well as broadband increased absorption. Relation to shock initiation hypotheses and the need for time dependent absorption data (future experiments) is briefly discussed.

  18. Absorption and Emission Spectroscopy of a Lasing Material: Ruby

    Science.gov (United States)

    Esposti, C. Degli; Bizzocchi, L.

    2007-01-01

    Ruby is a crystalline material, which comes very expensive and is of great significance, as it helped in the creation of first laser. An experiment to determine the absorption and emission spectroscopy, in addition to the determination of the room-temperature lifetime of the substance is being described.

  19. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  20. Communication: XUV transient absorption spectroscopy of iodomethane and iodobenzene photodissociation

    Science.gov (United States)

    Drescher, L.; Galbraith, M. C. E.; Reitsma, G.; Dura, J.; Zhavoronkov, N.; Patchkovskii, S.; Vrakking, M. J. J.; Mikosch, J.

    2016-07-01

    Time-resolved extreme ultraviolet (XUV) transient absorption spectroscopy of iodomethane and iodobenzene photodissociation at the iodine pre-N4,5 edge is presented, using femtosecond UV pump pulses and XUV probe pulses from high harmonic generation. For both molecules the molecular core-to-valence absorption lines fade immediately, within the pump-probe time-resolution. Absorption lines converging to the atomic iodine product emerge promptly in CH3I but are time-delayed in C6H5I. We attribute this delay to the initial π → σ* excitation in iodobenzene, which is distant from the iodine reporter atom. We measure a continuous shift in energy of the emerging atomic absorption lines in CH3I, attributed to relaxation of the excited valence shell. An independent particle model is used to rationalize the observed experimental findings.

  1. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    Science.gov (United States)

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  2. Infrared absorption spectroscopy and chemical kinetics of free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

    1993-12-01

    This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

  3. $\\beta$-decay studies using total-absorption spectroscopy

    CERN Document Server

    Algora, A; García-Borge, M J; Cano-Ott, D; Collatz, R; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Gadea, A; Gelletly, W; Hellström, M; Janas, Z; Jungclaus, A; Kirchner, R; Karny, M; Le Scornet, G; Miehé, C; Maréchal, F; Moroz, F; Nacher, E; Poirier, E; Roeckl, E; Rubio, B; Rykaczewski, K; Taín, J L; Tengblad, O; Wittmann, V

    2004-01-01

    $\\beta$-decay experiments are a primary source of information for nuclear-structure studies and at the same time complementary to in- beam investigations of nuclei far from stability. Although both types of experiment are mainly based on $\\gamma$-ray spectroscopy, they face different experimental problems. The so-called " Pandemonium effect " is a critical problem in $\\beta$-decay if we are to test theoretically calculated transition probabilities. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the Total Absorption Spectrometer (TAS) at GSI and describe a new device LUCRECIA recently installed at CERN.

  4. CO2 Spectroscopy Evaluation Using Atmospheric Solar Absorption Spectra

    OpenAIRE

    Sen, Bhaswar; Brown, Linda R.; Miller, Charles E.; Toon, Geoffrey C.; Toth, Robert A.; Washenfelder, Rebecca A.; Wennberg, Paul O

    2006-01-01

    We evaluated the improvements in successive versions (1996 - 2004) of HITRAN (1) and other molecular line parameter data set (2) to correctly simulate infrared (IR) and near-infrared (NIR) CO 2 transmittance spectra. Understanding the global sources and sinks of CO 2 requires highly accurate measurements (ó 0.3%) and makes extreme de- mands on the spectroscopy. We evaluated the line parameter data sets by fitting solar absorption spectra measured by the JPL MkIV FTIR spectrometer (3) and the ...

  5. Multi axis differential optical absorption spectroscopy (MAX-DOAS)

    OpenAIRE

    Hönninger, G.; C. von Friedeburg; U. Platt

    2004-01-01

    Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining several viewing directions. Ground...

  6. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    OpenAIRE

    Hönninger, G.; Friedeburg, C.; U. Platt

    2003-01-01

    Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining sev...

  7. APPLICATION OF ABSORPTION SPECTROSCOPY TO ACTINIDE PROCESS ANALYSIS AND MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Lascola, R.; Sharma, V.

    2010-06-03

    The characteristic strong colors of aqueous actinide solutions form the basis of analytical techniques for actinides based on absorption spectroscopy. Colorimetric measurements of samples from processing activities have been used for at least half a century. This seemingly mature technology has been recently revitalized by developments in chemometric data analysis. Where reliable measurements could formerly only be obtained under well-defined conditions, modern methods are robust with respect to variations in acidity, concentration of complexants and spectral interferents, and temperature. This paper describes two examples of the use of process absorption spectroscopy for Pu analysis at the Savannah River Site, in Aiken, SC. In one example, custom optical filters allow accurate colorimetric measurements of Pu in a stream with rapid nitric acid variation. The second example demonstrates simultaneous measurement of Pu and U by chemometric treatment of absorption spectra. The paper concludes with a description of the use of these analyzers to supplement existing technologies in nuclear materials monitoring in processing, reprocessing, and storage facilities.

  8. Pathlength Determination for Gas in Scattering Media Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Liang Mei

    2014-02-01

    Full Text Available Gas in scattering media absorption spectroscopy (GASMAS has been extensively studied and applied during recent years in, e.g., food packaging, human sinus monitoring, gas diffusion studies, and pharmaceutical tablet characterization. The focus has been on the evaluation of the gas absorption pathlength in porous media, which a priori is unknown due to heavy light scattering. In this paper, three different approaches are summarized. One possibility is to simultaneously monitor another gas with known concentration (e.g., water vapor, the pathlength of which can then be obtained and used for the target gas (e.g., oxygen to retrieve its concentration. The second approach is to measure the mean optical pathlength or physical pathlength with other methods, including time-of-flight spectroscopy, frequency-modulated light scattering interferometry and the frequency domain photon migration method. By utilizing these methods, an average concentration can be obtained and the porosities of the material are studied. The last method retrieves the gas concentration without knowing its pathlength by analyzing the gas absorption line shape, which depends upon the concentration of buffer gases due to intermolecular collisions. The pathlength enhancement effect due to multiple scattering enables also the use of porous media as multipass gas cells for trace gas monitoring. All these efforts open up a multitude of different applications for the GASMAS technique.

  9. Absorption spectroscopy with sub-angstrom beams: ELS in STEM

    Science.gov (United States)

    Spence, John C. H.

    2006-03-01

    Electron-energy loss spectroscopy (EELS) performed using a modern transmission scanning electron microscope (STEM) now offers sub-nanometre spatial resolution and an energy resolution down to 200 meV or less, in favourable cases. The absorption spectra, which probe empty states, cover the soft x-ray region and may be obtained under conditions of well-defined momentum transfer (angle-resolved), providing a double projection onto crystallographic site and symmetry within the density of states. By combining the very high brightness of field-emission electron sources (brighter than a synchrotron) with the high cross-section of electron scattering, together with parallel detection (not possible with scanning x-ray absorption spectroscopy), a form of spectroscopy ideally suited to the study of nanostructures, interfacial states and defects in materials is obtained with uniquely high spatial resolution. We review the basic theory, the relationship of EELS to optical properties and the dielectric response function, the removal of multiple scattering artefacts and channelling effects. We consider applications in the light of recent developments in aberration corrector and electron monochromator design. Examples are cited of inner-shell spectra obtained from individual atoms within thin crystals, of the detection of interfacial electronic states in semiconductors, of inner-shell near edge structure mapped with sub-nanometre spatial resolution in glasses and of spectra obtained from individual carbon nanotubes, amongst many others.

  10. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    Science.gov (United States)

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  11. Diagnostic potential of cosmic-neutrino absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab

    2004-12-01

    Annihilation of extremely energetic cosmic neutrinos on the relic-neutrino background can give rise to absorption lines at energies corresponding to formation of the electroweak gauge boson Z{sup 0}. The positions of the absorption dips are set by the masses of the relic neutrinos. Suitably intense sources of extremely energetic (10{sup 21} - 10{sup 25}-eV) cosmic neutrinos might therefore enable the determination of the absolute neutrino masses and the flavor composition of the mass eigenstates. Several factors--other than neutrino mass and composition--distort the absorption lines, however. We analyze the influence of the time-evolution of the relic-neutrino density and the consequences of neutrino decay. We consider the sensitivity of the lineshape to the age and character of extremely energetic neutrino sources, and to the thermal history of the Universe, reflected in the expansion rate. We take into account Fermi motion arising from the thermal distribution of the relic-neutrino gas. We also note the implications of Dirac vs. Majorana relics, and briefly consider unconventional neutrino histories. We ask what kinds of external information would enhance the potential of cosmic-neutrino absorption spectroscopy, and estimate the sensitivity required to make the technique a reality.

  12. Operando X-ray absorption and infrared fuel cell spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Emily A.; Kendrick, Ian; Jia, Qingying; Grice, Corey; Segre, Carlo U.; Smotkin, Eugene S. (NuVant); (IIT); (NEU)

    2011-11-17

    A polymer electrolyte fuel cell enables operando X-ray absorption and infrared spectroscopy of the membrane electrode assembly catalytic layer with flowing fuel and air streams at controlled temperature. Time-dependent X-ray absorption near edge structure spectra of the Pt and Ni edge of Pt based catalysts of an air-breathing cathode show that catalyst restructuring, after a potential step, has time constants from minutes to hours. The infrared Stark tuning plots of CO adsorbed on Pt at 100, 200, 300 and 400 mV vs. hydrogen reference electrode were obtained. The Stark tuning plots of CO adsorbed at 400 mV exhibit a precipitous drop in frequency coincident with the adsorption potential. The turn-down potential decreases relative to the adsorption potential and is approximately constant after 300 mV. These Stark tuning characteristics are attributed to potential dependent adsorption site selection by CO and competitive adsorption processes.

  13. Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy

    Science.gov (United States)

    Tommasini, Matteo; Lucotti, Andrea; Alfè, Michela; Ciajolo, Anna; Zerbi, Giuseppe

    2016-01-01

    We have analyzed a set of 51 PAHs whose structures have been hypothesized from mass spectrometry data collected on samples extracted from carbon particles of combustion origin. We have obtained relationships between infrared absorption signals in the fingerprint region (mid-IR) and the chemical structures of PAHs, thus proving the potential of IR spectroscopy for the characterization of the molecular structure of aromatic combustion products. The results obtained here for the spectroscopic characterization of PAHs can be also of interest in Materials Science and Astrophysics.

  14. High Resolution Spectroscopy on an X-ray Absorption Beamline

    OpenAIRE

    Hazemann, Jean-Louis; Proux, Olivier; Nassif, Vivian; Palancher, Hervé; Lahera, Eric; Da Silva, Cécile; Braillard, Aurélien; Testemale, Denis; Diot, Marie-Ange; Alliot, Isabelle; Delnet, William; Manceau, A.; Gélébart, Frédéric; Morand, Marc; Dermigny, Quentin

    2008-01-01

    Abstract A bent crystal spectrometer based on the Rowland circle geometry has been tested on the BM30b/FAME beamline at the European Synchrotron Radiation Facility. The energy resolution of the spectrometer (1.3eV at the Cu K1 energy, i.e. 8047.78eV) allows to perform different kinds of measurements, including X-ray Absorption Spectroscopy, Resonant Inelastic X-ray Scattering and X-ray Raman Scattering experiments. The simplicity of the experimental device makes it easily implemented on a cl...

  15. Study on Differential Optical Absorption Spectroscopy : Technique and its Applications

    OpenAIRE

    Liu, Jianguo

    2002-01-01

    ln the first part of speech, with a description of the principle of DOAS (Differential Optical Absorption Spectroscopy), the design and realization of two different kinds of DOAS systems are nresented. 0ne is using a slotted disc raoid scanning device with a photomultiplier, which is suitable for ambient air quality measurement. It can measure total 16 kinds of pollutants such as SO_2, NO, N02, NH_3, O_3, C_6H_6, C_7H_8 and CH_2O etc., with detection limits of 1-2ppb. The other is using a UV ...

  16. Laser absorption spectroscopy system for vaporization process characterization and control

    Science.gov (United States)

    Galkowski, Joseph J.; Hagans, Karla G.

    1994-03-01

    In support of the Lawrence Livermore National Laboratory's (LLNL's) Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) Program, a laser atomic absorption spectroscopy (LAS) system has been developed. This multilaser system is capable of simultaneously measuring the line densities of 238U ground and metastable states, 235U ground and metastable states, iron, and ions at up to nine locations within the separator vessel. Supporting enrichment experiments that last over one hundred hours, this laser spectroscopy system is employed to diagnose and optimize separator system performance, control the electron beam vaporizer and metal feed systems, and provide physics data for the validation of computer models. As a tool for spectroscopic research, vapor plume characterization, vapor deposition monitoring, and vaporizer development, LLNL's LAS laboratory with its six argon-ion-pumped ring dye lasers and recently added Ti:Sapphire and external-cavity diode- lasers has capabilities far beyond the requirements of its primary mission.

  17. Mid-infrared absorption spectroscopy using quantum cascade lasers

    Science.gov (United States)

    Haibach, Fred; Erlich, Adam; Deutsch, Erik

    2011-06-01

    Block Engineering has developed an absorption spectroscopy system based on widely tunable Quantum Cascade Lasers (QCL). The QCL spectrometer rapidly cycles through a user-selected range in the mid-infrared spectrum, between 6 to 12 μm (1667 to 833 cm-1), to detect and identify substances on surfaces based on their absorption characteristics from a standoff distance of up to 2 feet with an eye-safe laser. It can also analyze vapors and liquids in a single device. For military applications, the QCL spectrometer has demonstrated trace explosive, chemical warfare agent (CWA), and toxic industrial chemical (TIC) detection and analysis. The QCL's higher power density enables measurements from diffuse and highly absorbing materials and substrates. Other advantages over Fourier Transform Infrared (FTIR) spectroscopy include portability, ruggedness, rapid analysis, and the ability to function from a distance through free space or a fiber optic probe. This paper will discuss the basic technology behind the system and the empirical data on various safety and security applications.

  18. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    Science.gov (United States)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  19. [Retrieval of monocyclic aromatic hydrocarbons with differential optical absorption spectroscopy].

    Science.gov (United States)

    Xie, Pin-Hua; Fu, Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Qin, Min; Li, Ang; Liu, Shi-Sheng; Wei, Qing-Nong

    2006-09-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, e. g. SO2, NO2, O3 etc. However, unlike the absorption spectra of SO2 and NO2, the analysis of aromatic compounds is difficult and strongly suffers from the cross interference of other absorbers (Herzberg bands of oxygen, ozone and sulfur dioxide), especially with relatively low concentrations of aromatic compounds in the atmosphere. In the present paper, the DOAS evaluation of aromatic compounds was performed by nonlinear least square fit with two interpolated oxygen optical density spectra at different path lengths and reference spectra of ozone at different temperature and SO2 cross section to correct the interference from absorbers of O2, O3 and SO2. The measurement of toluene, benzene, (m, p, o) xylene and phenol with a DOAS system showed that DOAS method is suitable for monocyclic aromatic compounds monitoring in the atmosphere. PMID:17112022

  20. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10-5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 104 atoms cm-3. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  1. Optical re-injection in cavity-enhanced absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leen, J. Brian, E-mail: b.leen@lgrinc.com; O’Keefe, Anthony [Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041 (United States)

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  2. Investigating Actinide Molecular Adducts From Absorption Edge Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Conradson, S.D.; Guilbaud, P.; Moisy, P.; Mustre de Leon, J.; Simoni, E.; /SLAC, SSRL

    2006-10-27

    Although Absorption Edge Spectroscopy has been widely applied to the speciation of actinide elements, specifically at the L{sub III} edge, understanding and interpretation of actinide edge spectra are not complete. In that sense, semi-quantitative analysis is scarce. In this paper, different aspects of edge simulation are presented, including semi-quantitative approaches. Comparison is made between various actinyl (U, Np) aquo or hydroxy compounds. An excursion into transition metal osmium chemistry allows us to compare the structurally related osmyl and uranyl hydroxides. The edge shape and characteristic features are discussed within the multiple scattering picture and the role of the first coordination sphere as well as contributions from the water solvent are described.

  3. Simultaneous Surface Plasmon Resonance and X-ray Absorption Spectroscopy

    CERN Document Server

    Serrano, A; Collado, V; Rubio-Zuazo, J; Monton, C; Castro, G; García, M A

    2012-01-01

    We present here an experimental set-up to perform simultaneously measurements of surface plasmon resonance (SPR) and X-ray absorption spectroscopy (XAS) in a synchrotron beamline. The system allows measuring in situ and in real time the effect of X-ray irradiation on the SPR curves to explore the interaction of X-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to detect the changes in the electronic configuration of thin films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be carried out. The relative variations in the SPR and XAS spectra that can be detected with this set-up ranges from 10-3 to 10-5, depending on the particular experiment.

  4. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Rodriguez de la Fuente, O. [Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Collado, V.; Rubio-Zuazo, J.; Castro, G. R. [SpLine, Spanish CRG Beamline at the ESRF, F-38043 Grenoble, Cedex 09, France and Instituto de Ciencia de Materiales de Madrid, (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Monton, C. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093 (United States); Garcia, M. A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); IMDEA Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  5. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Science.gov (United States)

    Serrano, A.; Rodríguez de la Fuente, O.; Collado, V.; Rubio-Zuazo, J.; Monton, C.; Castro, G. R.; García, M. A.

    2012-08-01

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10-3 to 10-5, depending on the particular experiment.

  6. Arsenic speciation in solids using X-ray absorption spectroscopy

    Science.gov (United States)

    Foster, Andrea L.; Kim, Chris S.

    2014-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS) is an in situ, minimally-destructive, element-specific, molecular-scale structural probe that has been employed to study the chemical forms (species) of arsenic (As) in solid and aqueous phases (including rocks, soils, sediment, synthetic compounds, and numerous types of biota including humans) for more than 20 years. Although several excellent reviews of As geochemistry and As speciation in the environment have been published previously (including recent contributions in this volume), the explosion of As-XAS studies over the past decade (especially studies employing microfocused X-ray beams) warrants this new review of the literature and of data analysis methods.

  7. High Dispersion Absorption-line Spectroscopy of AE Aqr

    CERN Document Server

    Echevarria, J; Costero, R; Zharikov, S; Michel, R

    2008-01-01

    High-dispersion time-resolved spectroscopy of the unique magnetic cataclysmic variable AE Aqr is presented. A radial velocity analysis of the absorption lines yields K_2 = 168.7+/- 1 km/s. Substantial deviations of the radial velocity curve from a sinusoid are interpreted in terms of intensity variations over the secondary star's surface. A complex rotational velocity curve as a function of orbital phase is detected which has a modulation frequency of twice the orbital frequency, leading to an estimate of the binary inclination angle that is close to 70^o. The minimum and maximum rotational velocities are used to indirectly derive a mass ratio of q= 0.6 and a radial velocity semi-amplitude of the white dwarf of K_1 = 101+/-3 km/s. We present an atmospheric temperature indicator, based on the absorption line ratio of Fe I and Cr I lines, whose variation indicates that the secondary star varies from K0 to K4 as a function of orbital phase. The ephemeris of the system has been revised, using more than one thousa...

  8. Sulfur K-edge absorption spectroscopy on selected biological systems

    International Nuclear Information System (INIS)

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H2S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  9. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  10. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    Science.gov (United States)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  11. Multi axis differential optical absorption spectroscopy (MAX-DOAS

    Directory of Open Access Journals (Sweden)

    G. Hönninger

    2004-01-01

    Full Text Available Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining several viewing directions. Ground based MAX-DOAS is highly sensitive to absorbers in the lowest few kilometres of the atmosphere and vertical profile information can be retrieved by combining the measurements with Radiative Transfer Model (RTM calculations. The potential of the technique for a wide variety of studies of tropospheric trace species and its (few limitations are discussed. A Monte Carlo RTM is applied to calculate Airmass Factors (AMF for the various viewing geometries of MAX-DOAS. Airmass Factors can be used to quantify the light path length within the absorber layers. The airmass factor dependencies on the viewing direction and the influence of several parameters (trace gas profile, ground albedo, aerosol profile and type, solar zenith and azimuth angles are investigated. In addition we give a brief description of the instrumental MAX-DOAS systems realised and deployed so far. The results of the RTM studies are compared to several examples of recent MAX-DOAS field experiments and an outlook for future possible applications is given.

  12. Characteristic absorption peak of the human blood measured with differential photoacoustic spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new highly sensitive spectroscopy technique- differential photoacoustic spectroscopy (PAS) is presented in this paper. The blood samples from 3 healthy persons, patients with leukemia, patients with pregnancy-induced hypertension (PIH), and 40 patients with nasopharyngeal carcinoma were measured by the PAS technique. The normalized, the first order, and the second order differential photoacoustic spectroscopy of the blood were gained. The results show that (ⅰ) weak absorption peaks or shoulder peaks, which could not be found using conventional photoacoustic spectroscopy, were determined by the first order and the second order differential photoacoustic spectroscopy which significantly improve the sensitivity of detection; and (ii) that two characteristic absorption peaks were found at the wavelength of 637 and 664 nm in all persons' blood samples by the differential photoacoustic spectroscopy technique. This experiment concludes that the differential photoacoustic spectroscopy technique is superior to the conventional photoacoustic spectroscopy technique in detecting photoacoustic spectroscopy of biological samples.

  13. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    Science.gov (United States)

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  14. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption pro

  15. Multiple scattering approach to X-ray absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. We also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach.

  16. Ultrafast terahertz conductivity and transient optical absorption spectroscopy of silicon nanocrystal thin films

    DEFF Research Database (Denmark)

    Titova, Lyubov V.; Harthy, Rahma Al; Cooke, David;

    We use time-resolved THz spectroscopy and transient optical absorption spectroscopy as two complementary techniques to study ultrafast carrier dynamics in silicon nanocrystal thin films. We find that the photoconductive dynamics in these materials is dominated by interface trapping, and we observe...... several different relaxation mechanisms for photoexcited carriers...

  17. Two-wavelength absorption modulation spectroscopy of bandtail absorption in GaAs quantum wells

    International Nuclear Information System (INIS)

    We have discovered that below-band-gap photoexcitation produces large bleaching of the exciton absorption in GaAs quantum well heterostructures. We have used this effect to perform the first investigation of room-temperature bandtail absorption in these structures. We find that the below-band-gap absorption follows a spectral Urbach's rule. In addition, proton-bombarded samples show an Urbach energy correlated with bombardment-induced defects. This sensitive technique has enabled us to study samples as thin as 1 μm at energies where the absorption coefficient is approx.10 cm-1

  18. Direct and quantitative broadband absorptance spectroscopy with multilayer cantilever probes

    Science.gov (United States)

    Hsu, Wei-Chun; Tong, Jonathan Kien-Kwok; Liao, Bolin; Chen, Gang

    2015-04-21

    A system for measuring the absorption spectrum of a sample is provided that includes a broadband light source that produces broadband light defined within a range of an absorptance spectrum. An interferometer modulates the intensity of the broadband light source for a range of modulation frequencies. A bi-layer cantilever probe arm is thermally connected to a sample arm having at most two layers of materials. The broadband light modulated by the interferometer is directed towards the sample and absorbed by the sample and converted into heat, which causes a temperature rise and bending of the bi-layer cantilever probe arm. A detector mechanism measures and records the deflection of the probe arm so as to obtain the absorptance spectrum of the sample.

  19. Diode-Laser Induced Fluorescence Spectroscopy of an Optically Thick Plasma in Combination with Laser Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    S. Nomura

    2013-01-01

    Full Text Available Distortion of laser-induced fluorescence profiles attributable to optical absorption and saturation broadening was corrected in combination with laser absorption spectroscopy in argon plasma flow. At high probe-laser intensity, saturated absorption profiles were measured to correct probe-laser absorption. At low laser intensity, nonsaturated absorption profiles were measured to correct fluorescence reabsorption. Saturation broadening at the measurement point was corrected using a ratio of saturated to non-saturated broadening. Observed LIF broadening and corresponding translational temperature without correction were, respectively, 2.20±0.05 GHz and 2510±100 K and corrected broadening and temperature were, respectively, 1.96±0.07 GHz and 1990±150 K. Although this correction is applicable only at the center of symmetry, the deduced temperature agreed well with that obtained by LAS with Abel inversion.

  20. In situ gas temperature measurements by UV-absorption spectroscopy

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    2009-01-01

    The absorption spectrum of the NO A(2)Sigma(+) <- X(2)Pi gamma-system can be used for in situ evaluation of gas temperature. Experiments were performed with a newly developed atmospheric-pressure high-temperature flow gas cell at highly uniform and stable gas temperatures over a 0.533 m path in t....... The accuracy of both methods is discussed. Validation of the classical Lambert-Beer law has been demonstrated at NO concentrations up to 500 ppm and gas temperatures up to 1,500 degrees C over an optical absorption path length of 0.533 m....

  1. Time-resolved diffuse optical spectroscopy: a differential absorption approach

    Science.gov (United States)

    Taroni, Paola; Bassi, Andrea; Spinelli, Lorenzo; Cubeddu, Rinaldo; Pifferi, Antonio

    2009-07-01

    A method was developed to estimate spectral changes of the absorption properties of turbid media from time-resolved reflectance/transmittance measurements. It was derived directly from the microscopic Beer-Lambert law, and tested against simulations and phantom measurements.

  2. [The Research for Trace Ammonia Escape Monitoring System Based on Tunable Diode Laser Absorption Spectroscopy].

    Science.gov (United States)

    Zhang, Li-fang; Wang, Fei; Yu, Li-bin; Yan, Jian-hua; Cen, Ke-fa

    2015-06-01

    In order to on-line measure the trace ammonia slip of the commercial power plant in the future, this research seeks to measure the trace ammonia by using tunable diode laser absorption spectroscopy under ambient temperature and pressure, and at different temperatures, and the measuring temperature is about 650 K in the power plant. In recent years lasers have become commercially available in the near-infrared where the transitions are much stronger, and ammonia's spectroscopy is pretty complicated and the overlapping lines are difficult to resolve. A group of ammonia transitions near 4 433.5 cm(-1) in the v2 +v3 combination band have been thoroughly selected for detecting lower concentration by analyzing its absorption characteristic and considering other absorption interference in combustion gases where H2O and CO2 mole fraction are very large. To illustrate the potential for NH3 concentration measurements, predictions for NH3, H2O and CO2 are simultaneously simulated, NH3 absorption lines near 4 433.5 cm(-1) wavelength meet weaker H2O absorption than the commercial NH3 lines, and there is almost no CO2 absorption, all the parameters are based on the HITRAN database, and an improved detection limit was obtained for interference-free NH3 monitoring, this 2.25 μm band has line strengths several times larger than absorption lines in the 1.53 μm band which was often used by NH3 sensors for emission monitoring and analyzing. The measurement system was developed with a new Herriott cell and a heated gas cell realizing fast absorption measurements of high resolution, and combined with direct absorption and wavelenguh modulation based on tunable diode laser absorption spectroscopy at different temperatures. The lorentzian line shape is dominant at ambient temperature and pressure, and the estimated detectivity is approximately 0.225 x 10(-6) (SNR = 1) for the directed absorption spectroscopy, assuming a noise-equivalent absorbance of 1 x 10(-4). The heated cell

  3. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    OpenAIRE

    de Groot, F. M. F.

    2001-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption process. Section II discusses 1s X-ray absorption, i.e., the K edges, and section III deals with 2p X-ray absorption, the L edges. X-ray emission is discussed in, respectively, the L edges. X-ray emis...

  4. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    Science.gov (United States)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  5. Two-photon absorption spectroscopy of rubrene single crystals

    Science.gov (United States)

    Irkhin, Pavel; Biaggio, Ivan

    2014-05-01

    We determine the wavelength dependence of the two-photon absorption cross section in rubrene single crystals both by direct measurement of nonlinear transmission and from the two-photon excitation spectrum of the photoluminescence. The peak two-photon absorption coefficient for b-polarized light was found to be (4.6±1)×10-11 m/W at a wavelength of 850±10 nm. It is 2.3 times larger for c-polarized light. The lowest energy two-photon excitation peak corresponds to an excited state energy of 2.92±0.04 eV and it is followed by a vibronic progression of higher energy peaks separated by ˜0.14 eV.

  6. Stark absorption spectroscopy of peridinin and allene-modified analogues

    Energy Technology Data Exchange (ETDEWEB)

    Kusumoto, Toshiyuki; Horibe, Tomoko [Department of Physics and CREST-JST, Graduated School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kajikawa, Takayuki; Hasegawa, Shinji [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337 (Japan); Iwashita, Takashi [Suntory Institute for Bioorganic Research, Wakayamadai 1-1-1, Shimamoto, Mishimagunn, Osaka 618-8503 (Japan); Cogdell, Richard J. [Glasgow Biomedical Research Centre, University of Glasgow, 120 University Place, Glasgow G12 8QQ, Scotland (United Kingdom); Birge, Robert R.; Frank, Harry A. [Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, CT 06269-3060 (United States); Katsumura, Shigeo [Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Gakuen 2-1, Sanda, Hyogo 669-1337 (Japan); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.jp [Department of Physics and CREST-JST, Graduated School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2010-07-19

    Stark absorption spectra of peridinin (Per) and five allene-modified analogues and their angular dependence as a function of an externally applied electric field were measured in methyl methacrylate polymer at 77 K. In all cases, the energetically lowest absorption band has a significant change of static dipole-moment upon photoexcitation ({Delta}{mu}). In particular, Per has the largest value of |{Delta}{mu}|. The angles between {Delta}{mu} and the transition dipole-moment of all the analogues were determined. It is suggested that the allene group in Per plays a key role as the electron donor in the charge transfer process following photoexcitation. The results of MNDO-PSDCI calculations support this idea.

  7. Non-coincident multi-wavelength emission absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, L.E.

    1995-02-01

    An analysis is presented of the effect of noncoincident sampling on the measurement of atomic number density and temperature by multiwavelength emission absorption. The assumption is made that the two signals, emission and transmitted lamp, are time resolved but not coincident. The analysis demonstrates the validity of averages of such measurements despite fluctuations in temperature and optical depth. At potassium-seeded MHD conditions, the fluctuations introduce additional uncertainty into measurements of potassium atom number density and temperature but do not significantly bias the average results. Experimental measurements in the CFFF aerodynamic duct with coincident and noncoincident sampling support the analysis.

  8. [Retrieval of tropospheric NO2 by multi axis differential optical absorption spectroscopy].

    Science.gov (United States)

    Xu, Jin; Xie, Pin-hua; Si, Fu-qi; Dou, Ke; Li, Ang; Liu, Yu; Liu, Wen-qing

    2010-09-01

    A method of retrieving NO2 in troposphere based on multi axis differential optical absorption spectroscopy (MAX-DOAS) was introduced. The differential slant column density (dSCD) of NO2 was evaluated by differential optical absorption spectroscopy (DOAS), removing the Fraunhofer structure and Ring effect. Combining the results of different observing directions, the tropospheric NO2 differential slant column density (deltaSCD) was evaluated, and the air mass factor (AMF) was calculated with the radiative transfer model SCIATRAN and the tropospheric NO2 vertical column density (VCD) was retrieved. To ensure the accuracy of the results, it was compared with the results of long path differential optical absorption spectroscopy (LP-DOAS), a good accordance was shown with the correlation coefficients of 0.94027 and 0.96924. PMID:21105419

  9. Absorption spectroscopy in the ultraviolet and visible spectral range of hexavalent chromium aqueous solutions

    Science.gov (United States)

    Mignani, Anna G.; Spadoni, Lorenzo

    1999-09-01

    In order to demonstrate the possibility of performing direct absorption spectroscopy of Hexavalent Chromium aqueous solutions, absorption measurements were performed at the dual- beam spectrophotometer in the 250 - 850 nm spectral range, with 10 mm and 100 mm path lengths. Low concentration (26 - 520 (mu) g/l) (and high concentration (2.6 - 52 mg/l) solutions were analyzed, showing that it is possible to implement a basic instrumentation for risk condition monitoring and a more advanced instrumentation for quantitative measurements.

  10. Polarization dependent interface properties of ferroelectric Schottky barriers studied by soft X-ray absorption spectroscopy

    OpenAIRE

    Kohlstedt, H.; Petraru, A.; Denlinger, M. Meier J.; Guo, J.; Wanli, Y.; A. Scholl; Freelon, B.; Schneller, T.; Waser, R.; Yu, P; Ramesh, R.; Learmonth, T.; Glans, P.-A.; Smith, K. E.

    2008-01-01

    We applied soft X-ray absorption spectroscopy to study the Ti L-edge in ferroelectric capacitors using a modified total electron yield method. The inner photo currents and the X-ray absorption spectra were polarization state dependent. The results are explained on the basis of photo electric effects and the inner potential in the ferroelectric capacitors as a result of back-to-back Schottky barriers superimposed by the potential due to the depolarization field. In general, the presented metho...

  11. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) – applicability and corrections

    OpenAIRE

    U. Platt; J. Meinen; D. Pöhler; T. Leisner

    2008-01-01

    Atmospheric trace gas measurements by cavity assisted long-path absorption spectroscopy are an emerging technology. An interesting approach is the combination of CEAS with broadband light sources, the broadband CEAS (BB-CEAS). BB-CEAS lends itself to the application of the DOAS technique to analyse the derived absorption spectra. While the DOAS approach has enormous advantages in terms of sensitivity and specificity of the measurement, an important implication is the reduction of the light pa...

  12. Non-intrusive sensing of air velocity, humidity, and temperature using tunable diode laser absorption spectroscopy

    OpenAIRE

    Park, Suhyeon

    2015-01-01

    This work will report the non-intrusive sensing of air velocity, humidity, and temperature using tunable diode laser absorption spectroscopy (TDLAS), and discuss the potential applications of such sensors for in situ monitoring and active control for wind energy. The sensing technique utilizes the absorption features of water vapor in ambient air to monitor multiple flow parameters including velocity, humidity, and temperature simultaneously and non-intrusively [1-3]. The TDLAS technique does...

  13. Total absorption spectroscopy of N = 51 nucleus 85Se

    Science.gov (United States)

    Goetz, K. C.; Grzywacz, R. K.; Rykaczewski, K. P.; Karny, M.; Fialkowska, A.; Wolinska-Cichocka, M.; Rasco, B. C.; Zganjar, E. F.; Johnson, J. W.; Gross, C. J.

    2014-09-01

    An experimental campaign utilizing the Modular Total Absorption Spectrometer (MTAS) was conducted at the HRIBF facility in January of 2012. The campaign studied 22 isotopes, many of which were identified as the highest priority for decay heat analysis during a nuclear fuel cycle, see the report by the OECD-IAEA Nuclear Energy Agency in 2007. The case of 85Se will be discussed. 85Se is a Z = 34, N = 51 nucleus with the valence neutron located in the positive parity sd single particle state. Therefore, its decay properties are determined by interplay between first forbidden decays of the valence neutron and Gamow-Teller decay of a 78Ni core. Analysis of the data obtained during the January 2012 run indicates a significant increase of the beta strength function when compared with previous measurements, see Ref..

  14. The influence of magnetic fields on absorption and emission spectroscopy

    CERN Document Server

    Zhang, Heshou; Richter, Philipp

    2016-01-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H\\,{\\sc ii} Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show...

  15. Thyroid lesions diagnosis by Fourier transformed infrared absorption spectroscopy (FTIR)

    International Nuclear Information System (INIS)

    Thyroid nodules are a common disorder, with 4-7% of incidence in the Brazilian population. Although the fine needle aspiration (FNA) is an accurate method for thyroid tumors diagnosis, the discrimination between benign and malignant neoplasm is currently not possible in some cases with high incidence of false negative diagnosis, leading to a surgical intervention due to the risk of carcinomas. The aim of this study was to verify if the Fourier Transform infrared spectroscopy (FTIR) can contribute to the diagnosis of thyroid carcinomas and goiters, using samples of tissue and aspirates. Samples of FNA, homogenates and tissues of thyroid nodules with histopathological diagnosis were obtained and prepared for FTIR spectroscopy analysis. The FNA and homogenates samples were measured by μ-FTIR (between 950 . 1750 cm-1), at a nominal resolution of 4 cm-1 and 120 scans). Tissue samples were analyzed directly by ATR-FTIR technique, at a resolution 2 cm-1, with 60 scans in the same region. All spectra were corrected by the baseline and normalized by amides area (1550-1640 cm-1) in order to minimize variations of sample homogeneity. Then, spectra were converted into second derivatives using the Savitzk-Golay algorithm with a 13 points window. The Ward's minimum variance algorithm and Euclidean distances among the points were used for cluster analysis. Some FNA samples showed complex spectral pattern. All samples showed some cell pellets and large amount of hormone, represented by the bands of 1545 and 1655 cm-1. Bands in 1409, 1412, 1414, 1578 and 1579 cm-1 were also found, indicating possible presence of sugar, DNA, citric acid or metabolic products. In this study, it was obtained an excellent separation between goiter and malign lesion for the samples of tissues, with 100% of specificity in specific cluster and 67% sensibility and 50 of specificity. In homogenate and FNA samples this sensibility and specificity were lower, because among these samples, it were included

  16. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  17. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  18. Absorption and Scattering Coefficients: A Biophysical-Chemistry Experiment Using Reflectance Spectroscopy

    Science.gov (United States)

    Cordon, Gabriela B.; Lagorio, M. Gabriela

    2007-01-01

    A biophysical-chemistry experiment, based on the reflectance spectroscopy for calculating the absorption and scattering coefficients of leaves is described. The results show that different plants species exhibit different values for both the coefficients because of their different pigment composition.

  19. Determination of atmospheric corrosion of coated steel surfaces by in situ infrared reflection absorption spectroscopy (IRRAS)

    International Nuclear Information System (INIS)

    Full text: Infrared reflection absorption spectroscopy (IRRAS) is a sensitive technique for measuring thin layers on metallic surfaces. The principal goal of this IRRAS study was the development of a reproducible and reliable in situ measurement procedure for the determination of corrosion of coated steel surfaces. (author)

  20. Oxidation of plutonium dioxide: an X-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy experiments were conducted in order to characterise plutonium dioxide oxidation. It is shown that the sample preparation adopted does not enable elaboration of hyperstoichiometric plutonium dioxide. These results could mean that plutonium dioxide oxidation only occurs under very specific conditions

  1. Study of cancer cell lines with Fourier transform infrared (FTIR)/vibrational absorption (VA) spectroscopy

    DEFF Research Database (Denmark)

    Uceda Otero, E. P.; Eliel, G. S. N.; Fonseca, E. J. S.;

    2013-01-01

    In this work we have used Fourier transform infrared (FTIR) / vibrational absorption (VA) spectroscopy to study two cancer cell lines: the Henrietta Lacks (HeLa) human cervix carcinoma and 5637 human bladder carcinoma cell lines. Our goal is to experimentally investigate biochemical changes and d...

  2. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    Science.gov (United States)

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  3. Silicon oxide particle formation in RF plasmas investigated by infrared absorption spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    In situ Fourier transform infrared absorption spectroscopy has been used to study the composition of particles formed and suspended in radio-frequency discharges of silane-oxygen-argon gas mixtures. The silane gas consumption was observed by infrared absorption. The stoichiometry of the produced particles depends on the silane flow rate and was compared with commercial colloidal silica. A small proportion of silane gas produces nanometric stoichiometric particles whereas a large proportion produces larger under-stoichiometric particles. Absorption spectroscopy was sufficiently sensitive to reveal particles too small to be visually observed by laser light scattering. Post-oxidation of hydrogenated silicon particles trapped in an argon plasma by adding oxygen was demonstrated. Mass spectrometry of negative and positive ions showed an extensive range of ionic clusters which may be at the origin of particle formation. A model based on an iterative reaction sequence gives a good agreement with the measured positive ion mass spectrum. (author) 7 figs., 1 tab., 34 refs

  4. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Mitchell, G.E.; Dekoven, B.M. [Dow Chemical Co., Midland, MI (United States); Yeh, A.T.; Gland, J.L. [Michigan Univ., Ann Arbor, MI (United States); Moodenbaugh, A.R. [Brookhaven National Lab., Upton, NY (United States)

    1993-06-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  5. Ultra-soft x-ray absorption spectroscopy: A bulk and surface probe of materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.A. (National Institute of Standards and Technology, Gaithersburg, MD (United States)); Mitchell, G.E.; Dekoven, B.M. (Dow Chemical Co., Midland, MI (United States)); Yeh, A.T.; Gland, J.L. (Michigan Univ., Ann Arbor, MI (United States)); Moodenbaugh, A.R. (Brookhaven National Lab., Upton, NY (United States))

    1993-01-01

    Direct comparisons between surface and bulk of diverse materials can be made by simultaneous electron yield (5 nm depth sensitivity) and fluorescence yield (200 nm) ultra soft x-ray absorption spectroscopy measurements utilizing a rapid sample interchange apparatus. For example the orientations of functional groups have been characterized at and near the surface of a series of model polymeric materials highlighting the chemical and molecular sensitivity of ultra soft x-ray absorption spectroscopy. In addition we discuss a bulk sensitive use of fluorescence yield to non destructively study a buried metal polymer interface. A second bulk sensitive example is the use of fluorescence yield oxygen K near edge x-ray spectroscopy as a method to determine the hole state density of high Tc materials.

  6. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    Science.gov (United States)

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  7. [The Diagnostics of Detonation Flow External Field Based on Multispectral Absorption Spectroscopy Technology].

    Science.gov (United States)

    Lü, Xiao-jing; Li, Ning; Weng, Chun-sheng

    2016-03-01

    Compared with traditional sampling-based sensing method, absorption spectroscopy technology is well suitable for detonation flow diagnostics, since it can provide with us fast response, nonintrusive, sensitive solution for situ measurements of multiple flow-field parameters. The temperature and concentration test results are the average values along the laser path with traditional absorption spectroscopy technology, while the boundary of detonation flow external field is unknown and it changes all the time during the detonation engine works, traditional absorption spectroscopy technology is no longer suitable for detonation diagnostics. The trend of line strength with temperature varies with different absorption lines. By increasing the number of absorption lines in the test path, more information of the non-uniform flow field can be obtained. In this paper, based on multispectral absorption technology, the reconstructed model of detonation flow external field distribution was established according to the simulation results of space-time conservation element and solution element method, and a diagnostic method of detonation flow external field was given. The model deviation and calculation error of the least squares method adopted were studied by simulation, and the maximum concentration and temperature calculation error was 20.1% and 3.2%, respectively. Four absorption lines of H2O were chosen and detonation flow was scanned at the same time. The detonation external flow testing system was set up for the valveless gas-liquid continuous pulse detonation engine with the diameter of 80 mm. Through scanning H2O absorption lines with a high frequency of 10 kHz, the on-line detection of detonation external flow was realized by direct absorption method combined with time-division multiplexing technology, and the reconstruction of dynamic temperature distribution was realized as well for the first time, both verifying the feasibility of the test method. The test results

  8. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy

    Science.gov (United States)

    Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A.

    2013-11-01

    Soot particles are a major absorber of shortwave radiation in the atmosphere. The mass absorption cross section is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption cross section of soot particles in the troposphere over Central Europe. Mass absorption cross sections were derived as the ratio between the light absorption coefficient determined by multiangle absorption photometry (MAAP) and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples and was calibrated in the laboratory using Printex®90 model particles. Mass absorption cross sections were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m2 g-1depending on measurement site and observational period. The highest values were found in a continentally aged air mass in winter, where soot particles were assumed to be mainly internally mixed. Our values are in the lower range of previously reported values, possibly due to instrumental differences to the former photometer and mass measurements. Overall, a value of 5.3m2 g-1from orthogonal regression over all samples is considered to be representative for the soot mass absorption cross section in the troposphere over Central Europe.

  9. Development and application of UV-visible and mid-IR differential absorption spectroscopy techniques for pollutant trace gas monitoring

    OpenAIRE

    Jiménez Pizarro, Rodrigo; Calpini, Bertrand

    2005-01-01

    Spatial representativeness is an important quality criterion in trace gas monitoring, especially if measurements are intended for regulatory and model validation purposes. Open-path absorption spectroscopy techniques meet the representativeness requirement by providing concentrations averaged over atmospheric paths ranging from some hundred meters to some kilometers. This research concerns the characterization and application of a UV-visible differential optical absorption spectroscopy (DOAS)...

  10. Development and application of UV-visible and mid-IR differential absorption spectroscopy techniques for pollutant trace gas monitoring

    OpenAIRE

    Jiménez Pizarro, Rodrigo

    2004-01-01

    Spatial representativeness is an important quality criterion in trace gas monitoring, especially if measurements are intended for regulatory and model validation purposes. Open-path absorption spectroscopy techniques meet the representativeness requirement by providing concentrations averaged over atmospheric paths ranging from some hundred meters to some kilometers. This research concerns the characterization and application of a UV-visible differential optical absorption spectroscopy (DOAS)...

  11. Picosecond absorption spectroscopy of an intense ultrafast laser produced plasma; Spectroscopie d'absorption picoseconde d'un plasma produit par un laser intense ultra bref

    Energy Technology Data Exchange (ETDEWEB)

    Renaudin, P.; Gary, S. [CEA Bruyeres-le-Chatel, 91 (France); Audebert, P.; Bastiani-Ceccotti, S.; Chenais-Popovics, C.; Geindre, J.P. [Laboratoire pour l' Utilisation des Lasers Intenses (LULI), Unite Mixte de recherche n. 7605 CNRS - CEA - Ecole Polytechnique - Universite Pierre et Marie Curie (France); Gauthier, J.C. [Le Centre Laser Intense et application (CELIA) est une unite mixte de recherche CNRS-CEA-UB1, 33 - Talence (France); Shepherd, R. [Lawrence Livermore National Lab., CA (United States)

    2008-11-15

    By using high-intensity sub-picosecond lasers, it is possible to heat a solid up to million degrees with very shallow gradients. We present an experiment where a thin foil is irradiated by a sub-picosecond laser. Frequency domain interferometry measures the velocity of the rear critical density using a pomp-probe method. The recombination dynamics of the transient plasma is measured by point-projection absorption spectroscopy. The good agreement between the experimental data, atomic physics calculations, and hydrodynamic modelling demonstrates the capability of the codes to reproduce the ultra fast evolution of plasmas in the sub-picosecond regime. (authors)

  12. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alexander Klein

    2014-11-01

    Full Text Available We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS with the enhanced noise rejection of wavelength modulation spectroscopy (WMS. In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS and an additional 20 kHz sinusoidal modulation (WMS. The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 µm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K. A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer.

  13. [The principle and technical analysis of methane detection using infrared absorption spectroscopy].

    Science.gov (United States)

    Zhang, Yu; Wang, Yi-Ding; Li, Li; Zheng, Chuan-Tao; An, Yu-Peng; Song, Zhen-Yu

    2008-11-01

    There has been considerable interest recently in methane sensor based on infrared absorption spectroscopy for industrial detection and environment monitoring. The present paper presents the intensites of methane mid-infrared fundamental absorption bands, near-infrared combination band of v2 + 2v3 and overtone band of 2v3, and it was found that the absorption strengths of fundamental bands are two orders of magnitude higher than those of overtone bands and three orders of magnitude higher than those of the combinations. Theoretically, mid-infrared detection system is much better. However, because the near-infrared source and detector are more maturely developed and cheaper, near-infrared technology is widely used. Furthermore, the near-infrared radiation can be transmitted through ordinary low-loss silica fiber, suitable for long-distance methane sensing system, meeting the needs of industrial mining and other aspects. But with the development of mid-infrared detector and high-power high-sensitivity devices, low priced micro sensor modules will be more and more developed. The development of optical methane sensors is reported in this paper. Several detection technologies were investigated such as differential absorption, harmonic detection, cavity spectroscopy enhancement and photoacoustic spectroscopy. The theoretical formula, sensitivity and system structure of these technologies are presented. PMID:19271479

  14. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    Science.gov (United States)

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-06-01

    We propose a method to measure the densities of vibrationally excited Cl2(v) molecules in levels up to v  =  3 in pure chlorine inductively coupled plasmas (ICPs). The absorption continuum of Cl2 in the 250-450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mechanism of the Cl2 feedstock in the plasma. In these line-integrated absorption measurements, the absorption by the hot (and therefore rarefied) Cl2 gas in the reactor centre is masked by the cooler (and therefore denser) Cl2 near the walls. These radial gradients in temperature and density make it difficult to assess the degree of vibrational excitation in the centre of the reactor. The observed line-averaged vibrational distributions, when analyzed taking into account the radial temperature gradient, suggest that vibrational and translational degrees of freedom in the plasma are close to local equilibrium. This can be explained by efficient vibrational-translational (VT) relaxation between Cl2 and Cl atoms. Besides the Cl2(v) absorption band, a weak continuum absorption is observed at shorter wavelengths, and is attributed to photodetachment of Cl- negative ions. Thus, line-integrated densities of negative ions in chlorine plasmas can be directly measured using broad-band absorption spectroscopy.

  15. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    OpenAIRE

    Chan, K. L.; Pöhler, D.; G. Kuhlmann; Hartl, A.; Platt, U.; M. O. Wenig

    2012-01-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into t...

  16. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.;

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (time-resolved studies. Here we show that, despite the inherent instabilities of current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  17. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C0), C-, C+ and C2+ ions were observed. The absorption peak from C0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  18. Spectroscopy of PTCDA attached to rare gas samples: clusters vs. bulk matrices. I. Absorption spectroscopy

    OpenAIRE

    Dvorak, M.; Müller, M; Knoblauch, T.; Bünermann, O.; Rydlo, A.; Minniberger, S.; Harbich, W.; Stienkemeier, F.

    2012-01-01

    The interaction between PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) and rare gas or para-hydrogen samples is studied by means of laser-induced fluorescence excitation spectroscopy. The comparison between spectra of PTCDA embedded in a neon matrix and spectra attached to large neon clusters shows that these large organic molecules reside on the surface of the clusters when doped by the pick-up technique. PTCDA molecules can adopt different conformations when attached to argon, neon a...

  19. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    OpenAIRE

    Dongxing Wang; Wenqi Zhu; Michael D Best; Camden, Jon P.; Kenneth B. Crozier

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostruc...

  20. Procedure for intercomparison study for trace elements determination in soil samples by absorption spectroscopy

    International Nuclear Information System (INIS)

    In the environmental sampling analysis there is very important to establish an adequate methodologies on the laboratories for improvement the quality of the results obtained, so the establishment of a qualified laboratories network for environmental analysis. The objective of this work is to show the working plan for the analysis of eight elements on a Russian soil sample for an interlaboratory comparison with IAEA, by the Absorption spectroscopy technique using flame. (Author)

  1. Application of FTIR Absorption Spectroscopy to Characterize Waste and Biofuels for Pyrolysis and Gasification

    OpenAIRE

    KALISZ Sylwester; Svoboda, Karel; ROBAK Zbigniew; Baxter, David; Andersen, Lars

    2008-01-01

    The paper discusses the various applications of FTIR absorption spectroscopy as a tool for characterizing waste biofuels for pyrolysis and gasification. The FTIR spectrometer used in the study allows for analysis of solid and liquid waste and biofuel samples. Further, an attached dedicated gas cell is used in the characterization of gases evolving during pyrolysis in a versatile pyrolyser/gasifier attached to the FTIR. The pyrolyser operates in a batch mode and generates large quantities o...

  2. Energy-dispersive X-ray absorption spectroscopy at LNLS: investigation on strongly correlated metal oxides

    OpenAIRE

    Cezar, Julio C.; Souza-Neto, Narcizo,; Piamonteze, Cınthia; Tamura, Edilson; Garcia, Flavio; Carvalho, Edson J.; Neueschwander, Régis T.; Ramos, Aline Y.; Tolentino, Hélio; Caneiro, Alberto; Massa, Nestor E.; Jesus Martinez-Lope, Maria; Antonio Alonso, Jose; Itié, Jean-Paul

    2010-01-01

    An energy-dispersive X-ray absorption spectroscopy beamline mainly dedicated to X-ray magnetic circular dichroism (XMCD) and material science under extreme conditions has been implemented in a bending-magnet port at the Brazilian Synchrotron Light Laboratory. Here the beamline technical characteristics are described, including the most important aspects of the mechanics, optical elements and detection set-up. The beamline performance is then illustrated through two case studies on strongly co...

  3. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  4. Theory of Attosecond Transient Absorption Spectroscopy of Krypton for Overlapping Pump and Probe Pulses

    OpenAIRE

    Pabst, Stefan; Sytcheva, Arina; Moulet, Antoine; Wirth, Adrian; Goulielmakis, Eleftherios; Santra, Robin

    2012-01-01

    We present the first fully ab initio calculations for attosecond transient absorption spectroscopy of atomic krypton with overlapping pump and probe pulses. Within the time-dependent configuration interaction singles (TDCIS) approach, we describe the pump step (strong-field ionization using a near-infrared pulse) as well as the probe step (resonant electron excitation using an extreme- ultraviolet pulse) from first principles. We extent our TDCIS model and account for the spin-orbit splitting...

  5. Ultrafast Strong-Field Vibrational Dynamics Studied by Femtosecond Extreme-Ultraviolet Transient Absorption Spectroscopy

    OpenAIRE

    Hosler, Erik Robert

    2013-01-01

    Femtosecond time-resolved extreme-ultraviolet core-level absorption spectroscopy has developed into a powerful tool for investigating chemical dynamics due to its sensitivity for detecting changes in electronic structure. By probing the core-levels of atoms and molecules, dynamics may be monitored with elemental specificity, as well as localized sensitivity to the oxidation state around the atomic absorber. Previous experiments with this technique demonstrated the capability to quantitatively...

  6. Differential Optical-absorption Spectroscopy (doas) System For Urban Atmospheric-pollution Monitoring

    OpenAIRE

    Edner, H; Ragnarson, P; Spannare, S; Svanberg, Sune

    1993-01-01

    We describe a fully computer-controlled differential optical absorption spectroscopy system for atmospheric air pollution monitoring. A receiving optical telescope can sequentially tune in to light beams from a number of distant high-pressure Xe lamp light sources to cover the area of a medium-sized city. A beam-finding servosystem and automatic gain control permit unattended long-time monitoring. Using an astronomical code, we can also search and track celestial sources. Selected wavelength ...

  7. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  8. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    International Nuclear Information System (INIS)

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  9. Determination of vanadium in food and traditional Chinese medicine by graphite furnace atomic absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Various experimental conditions were described for the vanadium determination by graphite furnace atomic ab-sorption spectroscopy (GFAAS). The experiments showed that when atomization took place under the conditions where thecombination of a pyrolytic coating graphite tube and fast raising temperature were used and the temperature was stable, thesignal peak shapes could be improved, the sensitivity was enhanced, and the memory effect was removed. The vanadium infood and traditional Chinese medicinal herbs can be accurately determined using the standard curve method.

  10. Nile blue shows its true colors in gas-phase absorption and luminescence ion spectroscopy

    Science.gov (United States)

    Stockett, M. H.; Houmøller, J.; Brøndsted Nielsen, S.

    2016-09-01

    Nile blue is used extensively in biology as a histological stain and fluorescent probe. Its absorption and emission spectra are strongly solvent dependent, with variations larger than 100 nm. The molecule is charged due to an iminium group, and it is therefore an obvious target for gas-phase ion spectroscopy. Here we report the absorption and emission spectra of the mass-selected bare ions isolated in vacuo, and based on our results we revisit the interpretation of solution-phase spectra. An accelerator mass spectrometer was used for absorption spectroscopy where the absorption is represented by the yield of photofragment ions versus excitation wavelength (action spectroscopy). The luminescence experiments were done with a newly built ion trap setup equipped with an electrospray ion source, and some details on the mass selection technique will be given which have not been described before. In vacuo, the absorption and emission maxima are at 580 ± 10 nm and 628 ± 1 nm. These values are somewhat blue-shifted relative to those obtained in most solvents; however, they are much further to the red than those in some of the most non-polar solvents. Furthermore, the Stokes shift in the gas phase (1300 cm-1) is much smaller than that in these non-polar solvents but similar to that in polar ones. An explanation based on charge localization by solvent dipoles, or by counterions in some non-polar solvents, can fully account for these findings. Hence in the case of ions, it is nontrivial to establish intrinsic electronic transition energies from solvatochromic shifts alone.

  11. In situ x-ray-absorption spectroscopy study of hydrogen absorption by nickel-magnesium thin films

    International Nuclear Information System (INIS)

    Structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions. Codeposition of the metals led to increased disorder and decreased coordination around Ni and Mg compared to pure metal films. Exposure of the metallic films to hydrogen resulted in formation of hydrides and increased disorder. The presence of hydrogen as a near neighbor around Mg caused a drastic reduction in the intensities of multiple scattering resonances at higher energies. The optical switching behavior and changes in the x-ray spectra varied with Ni to Mg atomic ratio. Pure Mg films with Pd overlayers were converted to MgH2: The H atoms occupy regular sites as in bulk MgH2. Although optical switching was slow in the absence of Ni, the amount of H2 absorption was large. Incorporation of Ni in Mg films led to an increase in the speed of optical switching but decreased maximum transparency. Significant shifts in the Ni L3 and L2 peaks are consistent with strong interaction with hydrogen in the mixed films

  12. An approach of open-path gas sensor based on tunable diode laser absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Hui Xia; Wenqing Liu; Yujun Zhang; Ruifeng Kan; Min Wang; Ying He; Yiben Cui; Jun Ruan; Hui Geng

    2008-01-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a new method to detect trace-gas qualitatively or quantificationally based on the scan characteristic of the diode laser to obtain the absorption spectroscopy in the characteristic absorption region. A time-sharing scanning open-path TDLAS system using two near infrared distributed feedback (DFB) tunable diode lasers is designed to detect CH4 and H2S in leakage of natural gas. A low-cost Fresnel lens is used in this system as receiving optics which receives the laser beam reflected by a solid corner cube reflector with a distance of up to about 60 m. High sensitivity is achieved by means of wavelength-modulation spectroscopy with second-harmonic detection. The minimum detection limits of 1.1 ppm·m for CH4 and 15 ppm·m for H2S are demonstrated with a total optical path of 120 m. The simulation monitoring experiment of nature gas leakage was carried out with this system. According to the receiving light efficiency of optical system and detectable minimum light intensity of detection, the detectable optical path of the system can achieve 1 - 2 km. The sensor is suitable for natural gas leakage monitoring application.

  13. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  14. Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds

    International Nuclear Information System (INIS)

    The utility of sulfur K-edge X-ray absorption spectroscopy for the determination and quantification of sulfur forms in petroleum asphaltenes has been investigated. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra were obtained for a selected group of model compounds and for several petroleum asphaltene samples. For the model compounds the sulfur XANES was found to vary widely from compound to compound and to provide a fingerprint for the form of sulfur involved. The use of third derivatives of the spectra enabled discrimination of mixtures of sulfidic and thiophenic model compounds and allowed approximate quantification of the amount of each component in the mixtures and in the asphaltene samples. These results represent the first demonstration that nonvolatile sulfur forms can be distinguished and approximately quantified by direct measurement

  15. Wafer-scale metasurface for total power absorption, local field enhancement and single molecule Raman spectroscopy

    Science.gov (United States)

    Wang, Dongxing; Zhu, Wenqi; Best, Michael D.; Camden, Jon P.; Crozier, Kenneth B.

    2013-01-01

    The ability to detect molecules at low concentrations is highly desired for applications that range from basic science to healthcare. Considerable interest also exists for ultrathin materials with high optical absorption, e.g. for microbolometers and thermal emitters. Metal nanostructures present opportunities to achieve both purposes. Metal nanoparticles can generate gigantic field enhancements, sufficient for the Raman spectroscopy of single molecules. Thin layers containing metal nanostructures (“metasurfaces”) can achieve near-total power absorption at visible and near-infrared wavelengths. Thus far, however, both aims (i.e. single molecule Raman and total power absorption) have only been achieved using metal nanostructures produced by techniques (high resolution lithography or colloidal synthesis) that are complex and/or difficult to implement over large areas. Here, we demonstrate a metasurface that achieves the near-perfect absorption of visible-wavelength light and enables the Raman spectroscopy of single molecules. Our metasurface is fabricated using thin film depositions, and is of unprecedented (wafer-scale) extent. PMID:24091825

  16. The potential of UV-VIS-NIR absorption spectroscopy in glass studies

    Science.gov (United States)

    Meulebroeck, Wendy; Baert, Kitty; Ceglia, Andrea; Cosyns, Peter; Wouters, Hilde; Nys, Karin; Terryn, Herman; Thienpont, Hugo

    Absorption spectroscopy is the technique that measures the absorption of radiation as a function of wavelength, due to its interaction with the material. During a research project funded by our home university, we were able to investigate the possibilities of this technique to study ancient glasses. One of our main conclusions is that UV-VIS-NIR absorption spectroscopy is especially suited to characterize colored artifacts in terms of composition and furnace conditions. Moreover, for naturally colored window glasses, we have shown that this technique allows us to classify fragments based on differences in iron impurity levels. It is a semi-quantitative analysis tool that can be applied for a first-line analysis of (large) glass collections. Thanks to the commercial available portable instruments, these measurements can be performed at relative high speed and this in-situ if necessary. To illustrate the possibilities of this technique, we describe in this paper two case-studies. In a first test-case we analyze 63 naturally colored window glasses and demonstrate how groups with different iron concentrations can be identified by calculating the absorption edge position from the measured optical spectrum. In a second case-study 8 modern naturally colored and 31 intentionally colored Roman glass fragments are the point of focus. For these samples we first estimate which samples are potentially fabricated under the same furnace conditions. This is done based on the calculated color values. Finally we identify the type of applied colorants.

  17. Photo-induced absorption in the pump probe spectroscopy of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Zhu Zi-Peng

    2013-01-01

    Femtosecond pump probe spectroscopy is employed to study the photo-induced absorption feature in the singlewalled carbon nanotube transient spectrum.The two advantages of the experiment,a chirality enriched sample and tuning the pump wavelength to the resonance of a specific nanotube species,greatly facilitate the identification of the photoinduced absorption signal of one tube species.It is found that a photo-induced absorption feature is located at one radial breathing mode to the blue side of the Eii state.This finding prompts a new explanation for the origin of the photoinduced absorption:the transition from the ground state to a phonon coupled state near the Eii state.The explanation suggests a superposition mechanism of the photo-bleach and photo-induced absorption signals,which may serve as a key to the interpretation of the complex pump probe transient spectrum of carbon nanotubes.The finding sheds some light on the understanding of the complex non-radiative relaxation process and the electronic structure of single-walled carbon nanotubes.

  18. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    Science.gov (United States)

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants. PMID:21284148

  19. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS – applicability and corrections

    Directory of Open Access Journals (Sweden)

    D. Pöhler

    2008-12-01

    Full Text Available Atmospheric trace gas measurements by cavity assisted long-path absorption spectroscopy are an emerging technology. An interesting approach is the combination of CEAS with broad band light sources, the broad-band CEAS (BB-CEAS. BB-CEAS lends itself to the application of the DOAS technique to analyse the derived absorption spectra. While the DOAS approach has enormous advantages in terms of sensitivity and specificity of the measurement, an important implication is the reduction of the light path by the trace gas absorption, since cavity losses due to absorption by gases reduce the quality (Q of the cavity. In fact, at wavelength, where the quality of the BB-CEAS cavity is dominated by the trace gas absorption (esp. at very high mirror reflectivity, the light path will vary inversely with the trace gas concentration and the strength of the band will become nearly independent of the trace gas concentration c in the cavity, rendering the CEAS Method useless for trace gas measurements. Only in the limiting case where the mirror reflectivity determines Q at all wavelength, the strength of the band as seen by the BB-CEAS instrument becomes proportional to the concentration c. We investigate these relationships in detail and present methods to correct for the cases between the two above extremes, which are of course the important ones in practice.

  20. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS – applicability and corrections

    Directory of Open Access Journals (Sweden)

    D. Pöhler

    2009-11-01

    Full Text Available Atmospheric trace gas measurements by cavity assisted long-path absorption spectroscopy are an emerging technology. An interesting approach is the combination of CEAS with broadband light sources, the broadband CEAS (BB-CEAS. BB-CEAS lends itself to the application of the DOAS technique to analyse the derived absorption spectra. While the DOAS approach has enormous advantages in terms of sensitivity and specificity of the measurement, an important implication is the reduction of the light path by the trace gas absorption, since cavity losses due to absorption by gases reduce the quality (Q of the cavity. In fact, at wavelength, where the quality of the BB-CEAS cavity is dominated by the trace gas absorption (especially at very high mirror reflectivity, the average light path will vary nearly inversely with the trace gas concentration and the strength of the band will become only weakly dependent on the trace gas concentration c in the cavity, (the differential optical density being proportional to the logarithm of the trace gas concentration. Only in the limiting case where the mirror reflectivity determines Q at all wavelength, the strength of the band as seen by the CE-DOAS instrument becomes directly proportional to the concentration c. We investigate these relationships in detail and present methods to correct for the cases between the two above extremes, which are of course the important ones in practice.

  1. Spectroscopy of PTCDA attached to rare gas samples: clusters vs. bulk matrices. I. Absorption spectroscopy

    CERN Document Server

    Dvorak, M; Knoblauch, T; Bünermann, O; Rydlo, A; Minniberger, S; Harbich, W; Stienkemeier, F

    2012-01-01

    The interaction between PTCDA (3,4,9,10-perylene-tetracarboxylic-dianhydride) and rare gas or para-hydrogen samples is studied by means of laser-induced fluorescence excitation spectroscopy. The comparison between spectra of PTCDA embedded in a neon matrix and spectra attached to large neon clusters shows that these large organic molecules reside on the surface of the clusters when doped by the pick-up technique. PTCDA molecules can adopt different conformations when attached to argon, neon and para-hydrogen clusters which implies that the surface of such clusters has a well-defined structure and has not liquid or fluxional properties. Moreover, a precise analysis of the doping process of these clusters reveals that the mobility of large molecules on the cluster surface is quenched, preventing agglomeration and complex formation.

  2. Use of X-ray absorption spectroscopy in the search for the best LIGO mirror coatings

    Science.gov (United States)

    McGuire, Stephen C.

    2008-03-01

    The Laser Interferometer Gravitational-wave Observatory (LIGO) seeks to improve its sensitivity for gravity-wave detection by a factor of ten during its next phase of operation, Advanced LIGO. In order to achieve this goal it is necessary to design and fabricate test mass mirrors that help minimize the noise in the interferometers and in doing so maximize gravity-wave detection capability. In this talk we will present recent results from our program of X-ray absorption spectroscopy measurements to obtain detailed chemical composition and structure of titania (TiO2)-doped tantala (Ta2O5) multilayers fabricated via ion beam sputtering on SiO2 substrates. Our investigations focus on how the microscopic features of the coatings influence their macroscopic mechanical loss properties. Our goal is to obtain correlations between chemical impurities and/or dopants and the optical absorption and mechanical loss characteristics of these multilayer coatings. To examine our samples we use synchrotron-based X-ray absorption Spectroscopy (XAS) techniques including Extended X-ray Absorption Fine Structure (EXAFS), X-ray Absorption Near Edge Structure (XANES) and X-ray Fluorescence (XRF). We present chemical and structural data obtained at the titanium K-edge and tantalum LIII-edge as well as relative elemental distribution information (Ti/Ta, Fe/Ta, and Cr/Ta) obtained via XRF. Following a brief description of the LIGO experiment, our program of research in optical materials for use in advanced versions of the interferometer will be described.

  3. Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS

    OpenAIRE

    J. Meinen; J. Thieser; U. Platt; T. Leisner

    2008-01-01

    Cavity enhanced methods in absorption spectroscopy have seen a considerable increase in popularity during the past decade. Especially Cavity Enhanced Absorption Spectroscopy (CEAS) established itself in atmospheric trace gas detection by providing tens of kilometers of effective light path length using a cavity as short as 1 m. In this paper we report on the construction and testing of a compact and power efficient light emitting diode based broadband Cavity Enhanced Differential Optical Abso...

  4. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    OpenAIRE

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    X-ray-induced photo-chemistry of metal sites within biological molecules is a concern for X-ray absorption spectroscopy, X-ray crystallography and other techniques in which samples are illuminated with X-rays. The effects of X-ray-induced photo-chemistry are reviewed and the methods used to mitigate these in X-ray absorption spectroscopy are outlined.

  5. Surface Arsenic Speciation of a Drinking-Water Treatment Residual Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Makris, K.C.; Sarkar, D.; Parsons, J.G.; Datta, R.; Gardea-Torresdey, J.L.

    2009-06-03

    Drinking-water treatment residuals (WTRs) present a low-cost geosorbent for As-contaminated waters and soils. Previous work has demonstrated the high affinity of WTRs for As, but data pertaining to the stability of sorbed As is missing. Sorption/desorption and X-ray absorption spectroscopy (XAS), both XANES (X-ray absorption near edge structure) and EXAFS (extended X-ray absorption fine structure) studies, were combined to determine the stability of As sorbed by an Fe-based WTR. Arsenic(V) and As(III) sorption kinetics were biphasic in nature, sorbing <90% of the initial added As (15,000 mg kg{sup -1}) after 48 h of reaction. Subsequent desorption experiments with a high P load (7500 mg kg{sup -1}) showed negligible As desorption for both As species, approximately <3.5% of sorbed As; the small amount of desorbed As was attributed to the abundance of sorption sites. XANES data showed that sorption kinetics for either As(III) or As(V) initially added to solution had no effect on the sorbed As oxidation state. EXAFS spectroscopy suggested that As added either as As(III) or as As(V) formed inner-sphere mononuclear, bidentate complexes, suggesting the stability of the sorbed As, which was further corroborated by the minimum As desorption from the Fe-WTR.

  6. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    Science.gov (United States)

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  7. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  8. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    Science.gov (United States)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  9. Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Ståhl, Kenny

    2014-01-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X......-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35–45 % of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying...... highly ordered sites, and at least 30 % is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is sur- rounded by only oxygen atoms similar to Sr2? in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher...

  10. [Measurement and retrieval of indicators for fast VOCs atmospheric photochemistry with differential optical absorption spectroscopy].

    Science.gov (United States)

    Peng, Fu-Min; Xie, Pin-Hua; Shao, Shi-Yong; Li, Yu-Jin; Lin, Yi-Hui; Li, Su-Wen; Qin, Min; Liu, Wen-Qing

    2008-03-01

    Featuring excellent response characteristics and detection sensitivity and with much lower operational cost, differential optical absorption spectroscopy (DOAS) can be a powerful tool to trace concentration variation of trace indicators -O3, Ox (O3 + NO2) and HCHO for fast VOCs atmospheric photochemistry. But it's difficult to measure those gases accurately because of trace concentration. Here using a self-made DOAS system, the accurate measurement of those indicators was achieved through improving the ratio of signal to noise ratio and correcting the background scattering light; the retrieving method of those indicators was developed through eliminating the temperature effect of absorption cross section, accurately removing the intrinsic structure and lamp structure of spectrum. The preference of different spectral windows that could be used for the concentration retrieval of those indicators was analyzed and compared including interfering factors, results retrieved and the accuracy. PMID:18536400

  11. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases.

    Science.gov (United States)

    Lohberger, Falko; Hönninger, Gerd; Platt, Ulrich

    2004-08-20

    We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror. PMID:15352396

  12. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    Science.gov (United States)

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  13. Space Launch System Base Heating Test: Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Parker, Ron; Carr, Zak; MacLean, Matthew; Dufrene, Aaron; Mehta, Manish

    2016-01-01

    This paper describes the Tunable Diode Laser Absorption Spectroscopy (TDLAS) measurement of several water transitions that were interrogated during a hot-fire testing of the Space Launch Systems (SLS) sub-scale vehicle installed in LENS II. The temperature of the recirculating gas flow over the base plate was found to increase with altitude and is consistent with CFD results. It was also observed that the gas above the base plate has significant velocity along the optical path of the sensor at the higher altitudes. The line-by-line analysis of the H2O absorption features must include the effects of the Doppler shift phenomena particularly at high altitude. The TDLAS experimental measurements and the analysis procedure which incorporates the velocity dependent flow will be described.

  14. Picosecond time-resolved X-ray absorption spectroscopy of ultrafast aluminum plasmas.

    Science.gov (United States)

    Audebert, P; Renaudin, P; Bastiani-Ceccotti, S; Geindre, J-P; Chenais-Popovics, C; Tzortzakis, S; Nagels-Silvert, V; Shepherd, R; Matsushima, I; Gary, S; Girard, F; Peyrusse, O; Gauthier, J-C

    2005-01-21

    We have used point-projection K-shell absorption spectroscopy to infer the ionization and recombination dynamics of transient aluminum plasmas. Two femtosecond beams of the 100 TW laser at the LULI facility were used to produce an aluminum plasma on a thin aluminum foil (83 or 50 nm), and a picosecond x-ray backlighter source. The short-pulse backlighter probed the aluminum plasma at different times by adjusting the delay between the two femtosecond driving beams. Absorption x-ray spectra at early times are characteristic of a dense and rather homogeneous plasma. Collisional-radiative atomic physics coupled with hydrodynamic simulations reproduce fairly well the measured average ionization as a function of time. PMID:15698184

  15. Measurement of exhaled nitric oxide in beef cattle using tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Roller, C. B.; Holland, B. P.; McMillen, G.; Step, D. L.; Krehbiel, C. R.; Namjou, K.; McCann, P. J.

    2007-03-01

    Measurement of nitric oxide (NO) in the expired breath of crossbred calves received at a research facility was performed using tunable diode laser absorption spectroscopy. Exhaled NO (eNO) concentrations were measured using NO absorption lines at 1912.07 cm-1 and employing background subtraction. The lower detection limit and measurement precision were determined to be ˜330 parts in 1012 per unit volume. A custom breath collection system was designed to collect lower airway breath of spontaneously breathing calves while in a restraint chute. Breath was collected and analyzed from calves upon arrival and periodically during a 42 day receiving period. There was a statistically significant relationship between eNO, severity of bovine respiratory disease (BRD) in terms of number of times treated, and average daily weight gain over the first 15 days postarrival. In addition, breathing patterns and exhaled CO2 showed a statistically significant relationship with BRD morbidity.

  16. STRUCTURAL DETERMINATION OF TITANIUM-OXIDE NANOPARTICLES BY X-RAY ABSORPTION SPECTROSCOPY

    Institute of Scientific and Technical Information of China (English)

    Z.Y.Wu; Y.N.Xie; Q.H.Zhang; L.Gao; Z.Z.Chen; J.Zhang; K.Ibrahim; M.I.Abbas; G.Li; Y.Tao; T.D.Hu; F.Q.Liu; H.J.Qian

    2002-01-01

    As a potential application of titanium-oxide nanoparticles, it is extremely importantto investigate a detailed picture of the surface and interior structural properties ofnanocrystalline materials, such as rutile and anatase with diameters 7.0 and 4.5nm,respectively. X-ray absorption spectroscopy has been used to identify the local Ti envi-ronment and related electronic structure. We combine the experimental results at theTi edge in both bulk and nano-crystals to determine the lattice distortion in terms ofdifferently characteristic preedge features and the variation in the multiple-scatteringregion of X-ray absorption near-edge structure (XANES) spectra. The relationshipbetween the transition peaks and the surface-to volume ratio is also discussed.

  17. Saturation dynamics and working limits of saturated absorption cavity ringdown spectroscopy.

    Science.gov (United States)

    Sadiek, Ibrahim; Friedrichs, Gernot

    2016-08-17

    Cavity ringdown spectroscopy (CRDS) in the linear absorption regime is a well-established method for sensitive trace gas detection, but only a few studies have addressed quantitative measurements in the presence of a saturated sample. In fact, saturation is usually avoided in order to escape from the required complex modeling of the saturation process that depends on the characteristics of the absorbing species, its interaction with the surrounding gas as well as on the temporal and spectral characteristics of the cavity excitation. Conversely, the novel saturated-absorption cavity ringdown spectroscopy approach (SCAR/Sat-CRDS) takes advantage of sample saturation in order to allow one to extract both the gas absorption and the empty cavity loss rates from a single ringdown event. Using a new continuous-wave infrared CRD spectrometer equipped with a tunable narrow-bandwidth high-power OPO laser system and a 18 bit digitizer, the transient dynamics of absorption saturation and the working limits of the Sat-CRDS approach in terms of its ability to extract reliable trace gas concentrations have been experimentally studied in this work. Using a strong methane transition as a test case, the excitation power P0 and saturation power PS have been systematically varied to explore a wide range of saturation regimes. At pressures 5 μbar γc, a pronounced coupling between the two parameters has been observed. Finally, a standard error analysis was performed revealing that the Sat-CRDS approach holds its advantages over conventional CRDS implementations in particular when the attainable ultimate detection sensitivity is limited by uncertainties in the empty cavity ringdown constant. PMID:27488884

  18. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy.

    Science.gov (United States)

    Miaja-Avila, L; O'Neil, G C; Uhlig, J; Cromer, C L; Dowell, M L; Jimenez, R; Hoover, A S; Silverman, K L; Ullom, J N

    2015-03-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼10(6) photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >10(7) laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  19. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  20. Absorption spectroscopy of oxygen, carbon dioxide and water species for applications in combustion diagnostics

    Science.gov (United States)

    Mei, Anhua

    Laser absorption spectroscopy has been a useful tool applied in combustion diagnostics because of its capability to measure the species' concentration, particularly to measure concentration, temperature, and pressure simultaneously. These measurements provide the necessary information for dynamic combustion control. Due to its advantages such as fast response, non-intrusive nature and applicability under harsh environment like high temperature and high pressure, absorption laser spectroscopy makes it possible to monitor combustion system on-line and in situ. Since its development for more than thirty years, laser spectroscopy has matured, and the novel and advanced laser sensors have pushed it to be applied fast. On the other hand, industry still needs cheaper and more operable spectroscopy, which becomes an important consideration in the development and application of modern laser spectroscopy. This study presents an instrumental structure including the algorithm of the spectrum computation and the hardware configuration. The algorithm applied the central maximum value of the spectrum to simplify the computation. The whole calculation was done extensively using Beer-Lambert theory and HITRAN database which makes it efficient and applicable. This research conducted the simulations of high temperature species, such as CO2, H2O to carry out the algorithm, which were compared with published data. Also, this research designed and performed the experiments of measuring oxygen and its mixture with Helium by using a 760 nm diode laser and a 655 nm Helium/Neon laser sensor with fixed wavelength structures. The results of this research also conclude the following: (1) extensive literature survey, field research and laboratory work; (2) studying the significant theories and experimental methods of the laser spectroscopy; (3) developing efficient and simplified algorithm for spectrum calculation; (4) simulating high temperature species H2O and CO2; (5) designing and building

  1. Two attosecond pulse transient absorption spectroscopy and extraction of the instantaneous AC Stark shift in helium

    Science.gov (United States)

    Bækhøj, Jens E.; Bojer Madsen, Lars

    2016-07-01

    In two attosecond pulse absorption spectroscopy (TAPAS) the use of two attosecond XUV pulses allows the extraction of atomic and molecular quantum mechanical dipole phases from spectroscopic measurements. TAPAS relies on interference between processes that individually only include a single XUV photon, and therefore does not rely on high intensity attosecond pulses. To show the usefulness and limitations of the TAPAS method we investigate its capability of capturing the instantaneous AC Stark shift induced by a midinfrared 3200 nm pulse in the | 1{{s}}2{{p}}> state of helium.

  2. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  3. A quality control technique based on UV-VIS absorption spectroscopy for tequila distillery factories

    Science.gov (United States)

    Barbosa Garcia, O.; Ramos Ortiz, G.; Maldonado, J. L.; Pichardo Molina, J.; Meneses Nava, M. A.; Landgrave, Enrique; Cervantes, M. J.

    2006-02-01

    A low cost technique based on the UV-VIS absorption spectroscopy is presented for the quality control of the spirit drink known as tequila. It is shown that such spectra offer enough information to discriminate a given spirit drink from a group of bottled commercial tequilas. The technique was applied to white tequilas. Contrary to the reference analytic methods, such as chromatography, for this technique neither special personal training nor sophisticated instrumentations is required. By using hand-held instrumentation this technique can be applied in situ during the production process.

  4. A new cell for X-ray absorption spectroscopy study under high pressure

    Institute of Scientific and Technical Information of China (English)

    ZHENG Li-Rong; CHE Rong-Zheng; LIU Jing; DU Yong-Hua; ZHOU Ying-Li; HU Tian-Dou

    2009-01-01

    X-ray absorption fine structure (XAFS) spectroscopy is a powerful technique for the investigation of the local environment around selected atoms in condensed matter. XAFS under pressure is an important method for the synchrotron source. We design a cell for a high pressure XAFS experiment. Sintered boron carbide is used as the anvils of this high pressure cell in order to obtain a full XAFS spectrum free from diffraction peaks. In addition, a hydraulic pump was adopted to make in-suit pressure modulation. High quality XAFS spectra of ZrH2 under high pressure (up to 13 Gpa) were obtained by this cell.

  5. Vacuum UV broad-band absorption spectroscopy: a powerful diagnostic tool for reactive plasma monitoring

    OpenAIRE

    Cunge, G; Fouchier, M; Brihoum, M; Bodart, P.; Touzeau, M.; N. Sadeghi

    2011-01-01

    Abstract Broad band UV-visible absorption spectroscopy is widely used to measure the concentration of radicals in reactive plasmas. We extended the applicability of this technique to the VUV (115 nm to 200 nm), the spectral range in which the electronic transitions from the ground state to the Rydberg or pre-dissociated states of many closed shell molecules are located. This gives access to the absolute densities of species which do not, or weakly absorb in the UV/visible range. The techni...

  6. Behaviors of harmonic signals in wavelength-modulated spectroscopy under high absorption strength

    Institute of Scientific and Technical Information of China (English)

    Yuntao Wang; Haiwen Cai; Jianxin Geng; Zhengqing Pan; Dijun Chen; Zujie Fang

    2007-01-01

    @@ Behaviors of harmonic signals in wavelength modulation spectroscopy (WMS) for gas detection with Lorentzian line under high absorption strength are investigated. Approximate analytic expressions of the second, fourth, and sixth harmonics on the strength are presented in concise forms. Simulations show that the expressions are in agreement with the Fourier expansion by numerical integration. It is expected theoretically and experimentally in a WMS system for methane detection that there are not only a maximum, but also a null point in the harmonics versus strength relations, which should be of practical importance in methane sensing applications.

  7. Optical Absorption and Raman Spectroscopy Study of the Fluorinated Double-Wall Carbon Nanotubes

    OpenAIRE

    Gevko, Pavel N.; Bulusheva, Lyubov Gennadievna; Okotrub, Alexander Vladimirovich; Yudanov, Nikolay Fedorovich; Yushina, I. V.; Grachev, K. A.; Pugachev, A. M.; Surovtsev, N. V.; Flahaut, Emmanuel

    2006-01-01

    Double-wall carbon nanotube (DWNT) samples have been fluorinated at room temperature with varied concentration of a fluorinating agent BrF3. Content of the products estimated from X-ray photoelectron data was equal to CF0.20 and CF0.29 in the case of deficit and excess of BrF3. Raman spectroscopy showed considerable decrease of carbon nanotube amount in the fluorinated samples. Analysis of optical absorption spectra measured for pristine and fluorinated DWNT samples revealed a selectivity of ...

  8. Wavelength modulation spectroscopy--digital detection of gas absorption harmonics based on Fourier analysis.

    Science.gov (United States)

    Mei, Liang; Svanberg, Sune

    2015-03-20

    This work presents a detailed study of the theoretical aspects of the Fourier analysis method, which has been utilized for gas absorption harmonic detection in wavelength modulation spectroscopy (WMS). The lock-in detection of the harmonic signal is accomplished by studying the phase term of the inverse Fourier transform of the Fourier spectrum that corresponds to the harmonic signal. The mathematics and the corresponding simulation results are given for each procedure when applying the Fourier analysis method. The present work provides a detailed view of the WMS technique when applying the Fourier analysis method.

  9. Picosecond X-ray absorption spectroscopy: application to coordination chemistry compounds in solution

    OpenAIRE

    Saes, Melanie

    2004-01-01

    The photocycle of aqueous ruthenium-(trisbipyridine) [Ru(bpy)3]2+ was studied under high laser excitation intensities and high sample concentrations with picosecond resolved x-ray absorption spectroscopy. In a pump-probe scheme a femtosecond laser pulse promotes a 4d electron from the ruthenium to the ligand orbitals, thus creating a metal-to-ligand-charge-transfer (MLCT) complex. A hard x-ray pulse from a synchrotron source probes the ruthenium L3 and L2 edges, monitoring the electronic and ...

  10. Picosecond X-ray absorption spectroscopy: application to coordination chemistry compounds in solution

    OpenAIRE

    Saes, Melanie; Chergui, Majed

    2005-01-01

    The photocycle of aqueous ruthenium-(trisbipyridine) [Ru(bpy)3]2+ was studied under high laser excitation intensities and high sample concentrations with picosecond resolved x-ray absorption spectroscopy. In a pump-probe scheme a femtosecond laser pulse promotes a 4d electron from the ruthenium to the ligand orbitals, thus creating a metal-to-ligand-charge-transfer (MLCT) complex. A hard x-ray pulse from a synchrotron source probes the ruthenium L3 and L2 edges, monitoring the electronic and ...

  11. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    Science.gov (United States)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  12. Logarithmic conversion of absorption detection in wavelength modulation spectroscopy with a current-modulated diode laser.

    Science.gov (United States)

    Wang, Yuntao; Cai, Haiwen; Geng, Jianxin; Fang, Zujie

    2009-07-20

    Logarithmic-conversion data processing used in wavelength modulation spectroscopy (WMS) with a current-modulated diode laser as its source is analyzed and compared with second-to-first ratio detection. Analytic Fourier coefficients of logarithmic-converted residual amplitude modulation (RAM) of a light source are given. An experimental setup for methane absorption detection at 1650 nm is described. It is shown theoretically and experimentally that logarithmic-converted WMS cannot only eliminate the fluctuation of received light power, but also improve the signal-to-noise ratio significantly. PMID:19623220

  13. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    OpenAIRE

    Miaja-Avila, L.; G. C. O'Neil; Uhlig, J.; C. L. Cromer; Dowell, M. L.; Jimenez, R.; Hoover, A. S.; Silverman, K. L.; Ullom, J. N.

    2015-01-01

    We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary opti...

  14. Utilization of synchrotron radiation in analytical chemistry. Hard X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    This paper takes up X-ray absorption fine structure (XAFS) method, which has widely spread due to the energy selectivity of radiation, and fluorescent X-ray spectroscopy, which is utilized in non-destructive screening analysis and high precision quantitative analysis method for bulk materials due to the popularity of commercialized devices that usually use X-ray sources, and explains their devices, measurement principle, and applications. As the device, it introduces X-ray fluorescence spectrometer that was installed in SPring-8 beamline (BL05SS). As the application examples of fluorescent X-ray spectroscopy, it introduces the analysis of heavy elements due to high-energy X-ray excitation, and fluorescent X-ray analysis using microbeams. As the example of the use of XAFS method, it introduces the in-situ observation of the charging/discharging process of lithium battery. (A.O.)

  15. Microscale X-ray Absorption Spectroscopy on the GSECARS Sector 13 at the APS

    CERN Document Server

    Stephen-Sutto

    2000-01-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotrons radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotrons light source. The research conducted at this facility will advance our knowledge of the composition, structure and properties of earth materials, the processes they control and the processes that produce them. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) x-ray absorption fine structure (XAFS) spectroscopy; (5) x-ray fluorescence microprobe analysis and microspectroscopy; and (6) mic...

  16. IDENTIFICATION OF ADULTERANT AND ALCOHOL ROUTE IN BIODIESEL USING MID-INFRARED ABSORPTION SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Maryleide Ventura da Silva

    2014-01-01

    Full Text Available Mid-infrared absorption spectroscopy was used to analyze soybean oil, ethylic and methylic soybean biodiesel, and blends prepared with soybean oil mixed with biodiesel, in order to evaluate this method as an alternative to assess oil as impurities or adulterant in biodiesel. We also aimed to determine whether the biodiesel was prepared by the ethyl or methyl routes, by inspecting the infrared spectra. The C-O functional groups between 1100 and 1200 cm-1 are different for oil and biodiesel, which allows them to be used to distinguish impurities (residual oil in biofuel. The peak C-O-C at 1017 cm-1 is characteristic for methylic biodiesel, and the peak O-C-C at 1035 cm-1 for ethylic biodiesel. These vibrational modes can therefore be used to indicate the route used to prepare the biofuel. Results indicated that infrared spectroscopy is appropriate for monitoring the quality of biofuel for commercial sale.

  17. In situ characterization of few-cycle laser pulses in transient absorption spectroscopy

    CERN Document Server

    Blättermann, Alexander; Kaldun, Andreas; Ding, Thomas; Stooß, Veit; Laux, Martin; Rebholz, Marc; Pfeifer, Thomas

    2016-01-01

    Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

  18. In situ characterization of few-cycle laser pulses in transient absorption spectroscopy.

    Science.gov (United States)

    Blättermann, Alexander; Ott, Christian; Kaldun, Andreas; Ding, Thomas; Stooß, Veit; Laux, Martin; Rebholz, Marc; Pfeifer, Thomas

    2015-08-01

    Attosecond transient absorption spectroscopy has thus far been lacking the capability to simultaneously characterize the intense laser pulses at work within a time-resolved quantum-dynamics experiment. However, precise knowledge of these pulses is key to extracting quantitative information in strong-field highly nonlinear light-matter interactions. Here, we introduce and experimentally demonstrate an ultrafast metrology tool based on the time-delay-dependent phase shift imprinted on a strong-field-driven resonance. Since we analyze the signature of the laser pulse interacting with the absorbing spectroscopy target, the laser pulse duration and intensity are determined in situ. As we also show, this approach allows for the quantification of time-dependent bound-state dynamics in one and the same experiment. In the future, such experimental data will facilitate more precise tests of strong-field dynamics theories.

  19. A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu.

    Science.gov (United States)

    Ewels, Philip; Sikora, Thierry; Serin, Virginie; Ewels, Chris P; Lajaunie, Luc

    2016-06-01

    The electron energy-loss spectroscopy (EELS) and X-ray absorption spectroscopy (XAS) database has been completely rewritten, with an improved design, user interface, and a number of new tools. The database is accessible at https://eelsdb.eu/ and can now be used without registration. The submission process has been streamlined to encourage spectrum submissions and the new design gives greater emphasis on contributors' original work by highlighting their papers. With numerous new filters and a powerful search function, it is now simple to explore the database of several hundred EELS and XAS spectra. Interactive plots allow spectra to be overlaid, facilitating online comparison. An application-programming interface has been created, allowing external tools and software to easily access the information held within the database. In addition to the database itself, users can post and manage job adverts and read the latest news and events regarding the EELS and XAS communities. In accordance with the ongoing drive toward open access data increasingly demanded by funding bodies, the database will facilitate open access data sharing of EELS and XAS spectra. PMID:26899024

  20. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu1+ and Cu2+) and Fe (Fe2+ and Fe3+) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn2+ and Mn3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu1+) and sixfold (Cu2+) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3He2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  1. Novel focal point multipass cell for absorption spectroscopy on small sized atmospheric pressure plasmas

    Science.gov (United States)

    Winter, Jörn; Hänel, Mattis; Reuter, Stephan

    2016-04-01

    A novel focal point multipass cell (FPMPC) was developed, in which all laser beams propagate through a common focal point. It is exclusively constructed from standard optical elements. Main functional elements are two 90∘ off-axis parabolic mirrors and two retroreflectors. Up to 17 laser passes are demonstrated with a near-infrared laser beam. The number of laser passes is precisely adjustable by changing the retroreflector distance. At the focal point beams are constricted to fit through an aperture of 0.8 mm. This is shown for 11 beam passes. Moreover, the fast temporal response of the cell permits investigation of transient processes with frequencies up to 10 MHz. In order to demonstrate the applicability of the FPMPC for atmospheric pressure plasma jets, laser absorption spectroscopy on the lowest excited argon state (1s5) was performed on a 1 MHz argon atmospheric pressure plasma jet. From the obtained optical depth profiles, the signal-to-noise ratio was deduced. It is shown that an elevation of the laser pass number results in an proportional increase of the signal-to-noise ratio making the FPMPC an appropriate tool for absorption spectroscopy on plasmas of small dimensions.

  2. Chemometric analysis of femtosecond transient absorption spectroscopy data:Study of the photochromism of anils

    Institute of Scientific and Technical Information of China (English)

    Cyril; RUCKEBUSCH; Nicolas; MOUTON; Thomas; GLADYTZ; Anika; RENDELMANN; Guy; BUNTINX; Michel; SLIWA

    2010-01-01

    Chemometric methods are applied for the purpose of extracting relevant information from transient absorption spectroscopy data probing the photochromism of molecules from the family of salicylidene aniline. The process consists of an ultrafast excited state intramolecular proton transfer occurring from an enol form which is then followed by a cis-trans isomerization to finally reach a trans-keto photo-product. This work focuses on the potential of combining multivariate curve resolution for modeling pure profiles and two dimensional correlation spectroscopy data analysis for providing information on the dynamics of spectral features. The results obtained for one derivative of salicylidene aniline provide information regarding the number of species created after the proton transfer and characterization of their absorption spectra and their kinetics in the picosecond time scale. The spectral resolution of two cis-keto* forms is proposed for the first time. It is also found that both cis-keto* species are involved in the formation of the trans-keto photo-product. The main precursor of the trans-keto photo-product is the cis-keto* form which has the shortest characteristic time.

  3. Characterization of the Pore Filling of Solid State Dye Sensitized Solar Cells with Photoinduced Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Carol Olson

    2011-01-01

    Full Text Available Near steady-state photoinduced absorption (PIA and UV-Vis absorption spectroscopy are used to characterize the pore filling of spiro-MeOTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine9,9′-spirobifluorene into the nanoparticulate TiO2 electrode of a solid-state dye-sensitized solar cell (ssDSC. The volumetric ratio of filled to unfilled pore volumes, as well as the optical signature of interacting chemical species, that is, the hole-transfer yield (HTY, are investigated. PIA spectroscopy is used to measure the HTY, relative to the amount of spiro-MeOTAD present, without needing to determine the extinction coefficients of the dye and spiro-MeOTAD cation species. The Beer-Lambert law is used to relate the relative PIA signal to the penetration length of the hole-conductor in the TiO2 film. For the sample thickness range of 1.4–5 μm investigated here, the optimum characteristic penetration length is determined to be 3.1+0.46 μm, which is compared to 1.4 μm for the 200 mg mL−1 concentration of spiro-MeOTAD conventionally used. Therefore, doubling the effective penetration of spiro-MeOTAD is necessary to functionalize all the dye molecules in a ssDSC.

  4. X-ray absorption spectroscopy on magnetic nanoscale systems for modern applications.

    Science.gov (United States)

    Schmitz-Antoniak, Carolin

    2015-06-01

    X-ray absorption spectroscopy facilitated by state-of-the-art synchrotron radiation technology is presented as a powerful tool to study nanoscale systems, in particular revealing their static element-specific magnetic and electronic properties on a microscopic level. A survey is given on the properties of nanoparticles, nanocomposites and thin films covering a broad range of possible applications. It ranges from the ageing effects of iron oxide nanoparticles in dispersion for biomedical applications to the characterisation on a microscopic level of nanoscale systems for data storage devices. In this respect, new concepts for electrically addressable magnetic data storage devices are highlighted by characterising the coupling in a BaTiO(3)/CoFe(2)O(4) nanocomposite as prototypical model system. But classical magnetically addressable devices are also discussed on the basis of tailoring the magnetic properties of self-assembled ensembles of FePt nanoparticles for data storage and the high-moment material Fe/Cr/Gd for write heads. For the latter cases, the importance is emphasised of combining experimental approaches in x-ray absorption spectroscopy with density functional theory to gain a more fundamental understanding. PMID:26029938

  5. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  6. Exhaust gas monitoring based on absorption spectroscopy in the process industry

    Science.gov (United States)

    Zhang, Shuai; Liu, Wen-qing; Zhang, Yu-jun; Shu, Xiao-wen; Kan, Rui-feng; Cui, Yi-ben; He, Ying; Xu, Zhen-yu; Geng, Hui; Liu, Jian-guo

    2009-07-01

    This non-invasive gas monitor for exhaust gas monitoring must has high reliability and requires little maintenance. Monitor for in-situ measurements using tunable diode laser absorption spectroscopy (TDLAS) in the near infrared, can meet these requirements. TDLAS has evolved over the past decade from a laboratory especially to an accepted, robust and reliable technology for trace gas sensing. With the features of tunability and narrow linewidth of the distributed feedback (DFB) diode laser and by precisely tuning the laser output wavelength to a single isolated absorption line of the gas, TDLAS technique can be utilized to measure gas concentration with high sensitivity. Typical applications for monitoring of H2S, NH3, HC1 and HF are described here together by wavelength modulation spectroscopy with second-harmonic(WMS-2F) detection. This paper will illustrate the problems related to on-line applications, in particular, the overfall effects, automatic light intensity correction, temperature correction, which impacted on absorption coefficient and give details of how effect of automatic correction is necessary. The system mainly includes optics and electronics, optical system mainly composed of fiber, fiber coupler and beam expander, the electron part has been placed in safe analysis room not together with the optical part. Laser merely passes through one-meter-long pipes by the fiber coupling technology, so the system itself has anti-explosion. The results of the system are also presented in the end, the system's response time is only 0.5s, and can be achieved below 1×10-5 the detection limit at the volume fraction, it can entirely replace the traditional methods of detection exhaust gas in the process industry.

  7. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    Science.gov (United States)

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  8. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  9. Improvement of differential optical absorption spectroscopy with a multichannel scanning technique.

    Science.gov (United States)

    Brauers, T; Hausmann, M; Brandenburger, U; Dorn, H P

    1995-07-20

    Differential optical absorption spectroscopy (DOAS) of atmospheric trace gases requires the detection of optical densities below 0.1%. Photodiode arrays are used more and more as detectors for DOAS because they allow one to record larger spectral intervals simultaneously. This type of optical multichannel analyzer (OMA), however, shows sensitivity differences among the individual photodiodes (pixels), which are of the order of 1%. To correct for this a sensitivity reference spectrum is usually recorded separately from the trace-gas measurements. Because of atmospheric turbulence the illumination of the detector while an atmospheric absorption spectrum is being recorded is different from the conditions during the reference measurement. As a result the sensitivity patterns do not exactly match, and the corrected spectra still show a residual structure that is due to the sensitivity difference. This effect usually limits the detection of optical densities to approximately 3 × 10(-4). A new method for the removal of the sensitivity pattern is presented in this paper: Scanning the spectrometer by small wavelength increments after each readout of the OMA allows one to separate the OMA-fixed pattern and the wavelength-fixed structures (absorption lines). The properties of the new method and its applicability are demonstrated with simulated spectra. Finally, first atmospheric measurements with a laser long-path instrument demonstrate a detection limit of 3 × 10(-5) of a DOAS experiment. PMID:21052280

  10. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.; Smith, Steven C.; McNamara, Bruce K.; Buck, Edgar C.; Eiden, Gregory C.; Duffin, Andrew M.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS to study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.

  11. Microscale X-ray Absorption Spectroscopy on the GSECARS Sector 13 at the APS

    International Nuclear Information System (INIS)

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotrons radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotrons light source. The research conducted at this facility will advance our knowledge of the composition, structure and properties of earth materials, the processes they control and the processes that produce them. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) x-ray absorption fine structure (XAFS) spectroscopy; (5) x-ray fluorescence microprobe analysis and microspectroscopy; and (6) microtomography. This grant supported the design and construction of dedicated microspectroscopy instrumentation (x-ray absorption fine structure (XAFS) spectroscopy techniques, e.g., EXAFS and XANES, applied with ∼ micrometer spatial resolution) as part of the GeoSoilEnviroCARS national user facility. This new APS instrumentation offers dramatically improved capabilities over existing facilities in terms of spatial resolution and elemental sensitivity. MicroXAFS is essential in cases where sample size is limited (such as fluid inclusions in minerals, fine-grained minerals and samples in diamond anvil, high pressure cells) and/or chemical speciation is heterogeneous (fine-grained, polymineralic sediments and rocks, zoned crystals, and products of non-equilibrium reactions). The new instrumentation is applicable to studies of hydrothermal fluid processes, migration and encapsulation of toxic and radioactive wastes, for example. The availability of quantitative

  12. Molecular characterization of brominated persistent pollutants using extended X-ray absorption fine structure (EXAFS) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bergknut, Magnus; Skyllberg, Ulf [Swedish University of Agricultural Sciences (SLU), Department of Forest Ecology and Management, Umeaa (Sweden); Persson, Per [Umeaa University, Department of Chemistry, Umeaa (Sweden)

    2008-02-15

    X-ray absorption fine structure (EXAFS) spectroscopy spectra were collected for three brominated persistent pollutants: 6-bromo-2,4,5-trichlorophenol (BrTriClP), pentabromophenol (PentaBrP) and 3,3',5,5'-tetrabromobisphenol A (TBBA). The substances were selected to be symmetrical (BrTriClP and TBBA) or asymmetrical (PentaBrP) with respect to the atomic Br positions and to differ in the number of bromine and other halide atoms, as well as their relative positions. The asymmetrical PentaBrP was modelled with special detail as not all bromine atoms have identical coordination environments. The studied substances displayed unique EXAFS spectra, which could be used to determine the molecular structure in fair detail. We conclude that EXAFS spectroscopy is a suitable technique for molecular characterization of the comparatively complex molecules within the class of compounds of brominated organic persistent pollutants. A detailed understanding of the EXAFS spectra of the pure compounds opens up possibilities to study the interactions with soil and sediment matrices by means of EXAFS spectroscopy. (orig.)

  13. Quantitative treatment of coarsely binned low-resolution recordings in molecular absorption spectroscopy

    Science.gov (United States)

    Spietz, Peter; Martín, Juan Carlos Gómez; Burrows, John P.

    2006-06-01

    Optical multichannel detectors like photodiode arrays or CCD cameras combined with grating spectrometers are commonly used as detection systems in quantitative absorption spectroscopy. As a trade-off to broad spectral coverage, banded spectral features are sometimes recorded with insufficient spectral resolution and/or insufficiently fine detector binning. This renders the true physical spectrum of recorded intensities changed by instrumental and spectrum specific artefacts thus impeding comparability between results from different set-ups. In this work, it is demonstrated that in the case of a "well-behaved" - i.e. free of ro-vibronic structure - absorption band like the iodine monoxide IO(4 ← 0) transition, these effects can easily change the apparent peak absorption by up to 50%. Also deviations from the strict linearity (Beer-Lambert's law) between absorber concentration and apparent, i.e. pixelwise optical density occur. This can be critical in studies of chemical kinetics. It is shown that the observed non-linearity can cause errors of up to 50% in the determination of a second order rate coefficient for the IO self reaction. To overcome the problem, a consistent and rigorous integral approach for the treatment of intensity recordings is developed. Linearity between optical density and absorber concentration thereby is re-established. The method is validated using artificial test data as well as experimental data of the IO(4 ← 0) absorption transition, obtained in the context of I 2/O 3 photochemistry studies. The agreement is accurate to within ±2% (test data) and ±3% (experimental data) supporting the validity of the approach. Possible consequences for other spectroscopic work are indicated.

  14. Absorption spectroscopy characterization measurements of a laser-produced Na atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Ching, C.H.; Bailey, J.E.; Lake, P.W.; Filuk, A.B.; Adams, R.G.; McKenney, J.

    1996-06-01

    This work describes a pulsed Na atomic beam source developed for spectroscopic diagnosis of a high-power ion diode on the Particle Beam Fusion Accelerator II. The goal is to produce a {approximately} 10{sup 12}-cm{sup {minus}3}-density Na atomic beam that can be injected into the diode acceleration gap to measure electric and magnetic fields from the Stark and Zeeman effects through laser-induced-fluorescence or absorption spectroscopy. A {approximately} 10 ns fwhm, 1.06 {micro}m, 0.6 J/cm{sup 2} laser incident through a glass slide heats a Na-bearing thin film, creating a plasma that generates a sodium vapor plume. A {approximately} 1 {micro}sec fwhm dye laser beam tuned to 5,890 {angstrom} is used for absorption measurement of the Na I resonant doublet by viewing parallel to the film surface. The dye laser light is coupled through a fiber to a spectrograph with a time-integrated CCD camera. A two-dimensional mapping of the Na vapor density is obtained through absorption measurements at different spatial locations. Time-of-flight and Doppler broadening of the absorption with {approximately} 0.1 {angstrom} spectral resolution indicate that the Na neutral vapor temperature is about 0.5 to 2 eV. Laser-induced-fluorescence from {approximately} 1 {times} 10{sup 12}-cm{sup {minus}3} Na I 3s-3p lines observed with a streaked spectrograph provides a signal level sufficient for {approximately} 0.06 {angstrom} wavelength shift measurements in a mock-up of an ion diode experiment.

  15. INTEGRAL FIELD SPECTROSCOPY OF AGN ABSORPTION OUTFLOWS: MRK 509 AND IRAS F04250–5718

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guilin; Arav, Nahum [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Rupke, David S. N., E-mail: glliu@vt.edu [Department of Physics, Rhodes College, Memphis, TN 38112 (United States)

    2015-11-15

    Ultraviolet (UV) absorption lines provide abundant spectroscopic information enabling the probe of the physical conditions in active galactic nucleus (AGN) outflows, but the outflow radii (and the energetics consequently) can only be determined indirectly. We present the first direct test of these determinations using integral field unit (IFU) spectroscopy. We have conducted Gemini IFU mapping of the ionized gas nebulae surrounding two AGNs, whose outflow radii have been constrained by UV absorption line analyses. In Mrk 509, we find a quasi-spherical outflow with a radius of 1.2 kpc and a velocity of ∼290 km s{sup −1}, while IRAS F04250–5718 is driving a biconical outflow extending out to 2.9 kpc, with a velocity of ∼580 km s{sup −1} and an opening angle of ∼70°. The derived mass flow rate ∼5 and >1 M{sub ⊙} yr{sup −1}, respectively, and the kinetic luminosity ≳1 × 10{sup 41} erg s{sup −1} for both. Adopting the outflow radii and geometric parameters measured from IFU, absorption line analyses would yield mass flow rates and kinetic luminosities in agreement with the above results within a factor of ∼2. We conclude that the spatial locations, kinematics, and energetics revealed by this IFU emission-line study are consistent with pre-existing UV absorption line analyses, providing a long-awaited direct confirmation of the latter as an effective approach for characterizing outflow properties.

  16. Laser absorption spectroscopy using lead salt and quantum cascade tunable lasers

    Science.gov (United States)

    Namjou-Khales, Khosrow

    A new class of analytic instruments based on the detection of chemical species through their spectroscopic absorption 'fingerprint' is emerging based on the use of tunable semiconductor lasers as the excitation source. Advantages of this approach include compact device size, in-line measurement capability, and large signal-bandwidth product. To realize these advantages will require the marriage of laser devices with broad tunability in the infrared spectral range with sophisticated signal processing techniques. Currently, commercial devices based on short wavelength telecommunications type lasers exist but there is potential for much more versatile instruments based on longer wavelength operation. This thesis is divided into two parts. In the first part I present a theoretical analysis and experimental characterization of frequency and wavelength modulation spectroscopy using long wavelength infrared tunable lasers. The experimental measurements were carried out using commercially available lead salt lasers and excellent agreement is found between theoretically predicted performance and experimental verification. The lead salt laser has several important drawbacks as a source in practical instrumentation. In the second part of the thesis I report on the use of the quantum cascade (QC) laser for use in sensitive absorption spectroscopy. The QC laser is a new type of tunable device developed at Bell Laboratories. It features broad infrared tunability, single mode distributed feedback operation, and near room temperature lasing. Using the modulation techniques developed originally for the lead salt lasers, the QC laser was used to detect Nsb2O and other small molecules with absorption features near 8 mum wavelength. The noise equivalent absorption for our measurements was 5× 10sp{-5}/sqrt{Hz} which corresponds to a detection limit of ˜0.25 ppm-m/sqrt{Hz} for Nsb2O. The QC laser sensitivity was found to be limited by excess amplitude modulation in the detection

  17. Pump-flow-probe x-ray absorption spectroscopy as a tool for studying aintermediate states of photocatalytic systems

    DEFF Research Database (Denmark)

    Smolentsev, Grigory; Guda, Alexander; Zhang, Xiaoyi;

    2013-01-01

    A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-millimolar concentr......A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub......-millimolar concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed profile define the time resolution. This method is compared with the alternative...

  18. Dual-laser absorption spectroscopy of C2H2 at 1.4 μ m

    Science.gov (United States)

    Fasci, E.; Odintsova, T. A.; Castrillo, A.; De Vizia, M. D.; Merlone, A.; Bertiglia, F.; Moretti, L.; Gianfrani, L.

    2016-04-01

    Spectroscopic parameters (line intensity factor, pressure self-broadening, and shifting coefficients) of C2H2 at 1.4 μ m were accurately measured using a dual-laser approach, based upon the technique of optical phase locking. This generated an absolute frequency scale underneath the absorption spectra. A pair of extended-cavity diode lasers was used. One of them, the probe laser, is forced to maintain a precise frequency offset from a reference laser, which is an optical frequency standard based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Laser-gas interaction takes place inside an isothermal multipass cell that is stabilized at the temperature of the triple point of water. The fidelity in the observation of the shape associated to the Pe(14) line of the 2 ν3+ν5 band allowed us to measure the spectroscopic parameters, with a global uncertainty for the line strength of 0.22%.

  19. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    Science.gov (United States)

    Aquilanti, G.; Trapananti, A.; Minicucci, M.; Liscio, F.; Twaróg, A.; Principi, E.; Pascarelli, S.

    2007-10-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used.

  20. The application of synchrotron x-ray absorption spectroscopy to problems of industrial heterogeneous catalysis

    International Nuclear Information System (INIS)

    A fundamental understanding of catalytic chemistry is valuable for fine-tuning existing processes and for inventing new ones. However, active phases are hard to study, being typically dilute species in amorphous solids comprising many elements. X-ray Absorption Spectroscopy (XAS) can be applied to most catalysts under the appropriate in situ conditions. The ability is unique in observing all the trace elements in the catalysts forming active phases, poisons, and catalysts for unwanted side reactions. Every spectrum contains independent information on the average chemical state, and physical environment, of absorbing atoms. This information can yield new processes, and improvements in existing ones, after the rate of empirical advances in a technology has diminished. The authors discuss XAS studies of metallic and non-metallic components in industrial heterogeneous catalysts. The novel observations made possible by in situ measurement conditions are emphasized

  1. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO3 in propene and in propene and oxygen

  2. Laser absorption spectroscopy diagnostics of helium metastable atoms generated in dielectric barrier discharge cryoplasmas

    Science.gov (United States)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Sakai, Osamu; Terashima, Kazuo

    2015-10-01

    Cryoplasmas, which are plasmas whose gas temperatures are below room temperature (RT), have shown dynamic changes in their physical and chemical characteristics when the gas temperature in the plasmas (Tgp) was decreased from RT. In this study, we measured the temporal behavior of helium metastable (Hem) atoms generated in a parallel-plate dielectric barrier discharge at ambient gas temperatures (Tga) of 300, 100, and 14 K and with a gas density similar to atmospheric conditions by laser absorption spectroscopy. The increments of Tgp to Tga were less than 20 K. We found from the results that the Hem lifetime and maximum density become longer and larger over one order of magnitude for lower Tga. The reasons for the long Hem lifetime at low Tga are decreases in the rate coefficients of three-body Hem quenching reactions and in the amounts of molecular impurities with boiling points higher than that of He.

  3. Relaxation dynamics of photoexcited excitons in rubrene single crystals using femtosecond absorption spectroscopy.

    Science.gov (United States)

    Tao, S; Ohtani, N; Uchida, R; Miyamoto, T; Matsui, Y; Yada, H; Uemura, H; Matsuzaki, H; Uemura, T; Takeya, J; Okamoto, H

    2012-08-31

    The relaxation dynamics of an exciton in rubrene was investigated by femtosecond absorption spectroscopy. Exciton relaxation to a self-trapped state occurs via the coherent oscillation with 78 cm(-1) due to a coupled mode of molecular deformations with phenyl-side-group motions and molecular displacements. From the temperature dependence of the decay time of excitons, the energy necessary for an exciton to escape from a self-trapped state is evaluated to be ~35 meV (~400 K). As a result, a self-trapped exciton is stable at low temperatures. At room temperature, excitons can escape from a self-trapped state and, subsequently, they are dissociated to charged species. The exciton dissociation mechanism is discussed on the basis of the results. PMID:23002882

  4. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)

    Science.gov (United States)

    Choi, Doo-Won; Jeon, Min-Gyu; Cho, Gyeong-Rae; Kamimoto, Takahiro; Deguchi, Yoshihiro; Doh, Deog-Hee

    2016-02-01

    Performance improvement was attained in data reconstructions of 2-dimensional tunable diode laser absorption spectroscopy (TDLAS). Multiplicative Algebraic Reconstruction Technique (MART) algorithm was adopted for data reconstruction. The data obtained in an experiment for the measurement of temperature and concentration fields of gas flows were used. The measurement theory is based upon the Beer-Lambert law, and the measurement system consists of a tunable laser, collimators, detectors, and an analyzer. Methane was used as a fuel for combustion with air in the Bunsen-type burner. The data used for the reconstruction are from the optical signals of 8-laser beams passed on a cross-section of the methane flame. The performances of MART algorithm in data reconstruction were validated and compared with those obtained by Algebraic Reconstruction Technique (ART) algorithm.

  5. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    Science.gov (United States)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-09-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms.

  6. Natural gas pipeline leak detector based on NIR diode laser absorption spectroscopy

    Science.gov (United States)

    Gao, Xiaoming; Fan, Hong; Huang, Teng; Wang, Xia; Bao, Jian; Li, Xiaoyun; Huang, Wei; Zhang, Weijun

    2006-09-01

    The paper reports on the development of an integrated natural gas pipeline leak detector based on diode laser absorption spectroscopy. The detector transmits a 1.653 μm DFB diode laser with 10 mW and detects a fraction of the backscatter reflected from the topographic targets. To eliminate the effect of topographic scatter targets, a ratio detection technique was used. Wavelength modulation and harmonic detection were used to improve the detection sensitivity. The experimental detection limit is 50 ppm m, remote detection for a distance up to 20 m away topographic scatter target is demonstrated. Using a known simulative leak pipe, minimum detectable pipe leak flux is less than 10 ml/min.

  7. X-ray absorption spectroscopy in electrical fields: An element-selective probe of atomic polarization

    Science.gov (United States)

    Ney, V.; Wilhelm, F.; Ollefs, K.; Rogalev, A.; Ney, A.

    2016-01-01

    We have studied a range of polar and nonpolar materials using x-ray absorption near-edge spectroscopy (XANES) in external electric fields. An energy shift of the XANES by a few meV/kV is found which scales linearly with the applied voltage, thus being reminiscent of the linear Stark effect. This is corroborated by the consistent presence of this energy shift in polar thin films and bulk crystals and its absence in nonpolar materials as well as in conducting films. The observed energy shift of the XANES is different between two atomic species in one specimen and appears to scale linearly with the atomic number of the studied element. Therefore, XANES in electrical fields opens the perspective to study atomic polarization with element specificity in a range of functional materials.

  8. Infra-red absorption spectroscopy of Nd:YAG and Nd:GSGG surface contaminants

    International Nuclear Information System (INIS)

    Neodymium doped yttrium aluminum garnet (Nd:YAG) is a commonly used laser material for solid-state high power, high PRF lasers. Gadolinium scandium gallium garnet doubled doped with neodymium and chromium (Nd:Cr:GSGG) shows higher efficiency than the Nd:YAG laser. The authors previously reported the bulk and surface damage thresholds of the Nd:Cr:GSGG crystal. The surface damage threshold measurements for the Nd:YAG and the Nd:Cr:GSGG are reported in this paper. Infrared absorption spectroscopy was used to analyze surface contaminants. The data show that the organic contaminants, CHn, derived from hydrocarbon (skin oil) associated with improper parts handling, significantly reduce the surface damage threshold

  9. Time-resolved broadband cavity-enhanced absorption spectroscopy for chemical kinetics.

    Energy Technology Data Exchange (ETDEWEB)

    Sheps, Leonid; Chandler, David W.

    2013-04-01

    Experimental measurements of elementary reaction rate coefficients and product branching ratios are essential to our understanding of many fundamentally important processes in Combustion Chemistry. However, such measurements are often impossible because of a lack of adequate detection techniques. Some of the largest gaps in our knowledge concern some of the most important radical species, because their short lifetimes and low steady-state concentrations make them particularly difficult to detect. To address this challenge, we propose a novel general detection method for gas-phase chemical kinetics: time-resolved broadband cavity-enhanced absorption spectroscopy (TR-BB-CEAS). This all-optical, non-intrusive, multiplexed method enables sensitive direct probing of transient reaction intermediates in a simple, inexpensive, and robust experimental package.

  10. X-ray Absorption Spectroscopy Characterization of a Li/S Cell

    Directory of Open Access Journals (Sweden)

    Yifan Ye

    2016-01-01

    Full Text Available The X-ray absorption spectroscopy technique has been applied to study different stages of the lithium/sulfur (Li/S cell life cycle. We have investigated how speciation of S in Li/S cathodes changes upon the introduction of CTAB (cetyltrimethylammonium bromide, CH3(CH215N+(CH33Br− and with charge/discharge cycling. The introduction of CTAB changes the synthesis reaction pathway dramatically due to the interaction of CTAB with the terminal S atoms of the polysulfide ions in the Na2Sx solution. For the cycled Li/S cell, the loss of electrochemically active sulfur and the accumulation of a compact blocking insulating layer of unexpected sulfur reaction products on the cathode surface during the charge/discharge processes make the capacity decay. A modified coin cell and a vacuum-compatible three-electrode electro-chemical cell have been introduced for further in-situ/in-operando studies.

  11. Infrared reflection-absorption spectroscopy: principles and applications to lipid-protein interaction in Langmuir films.

    Science.gov (United States)

    Mendelsohn, Richard; Mao, Guangru; Flach, Carol R

    2010-04-01

    Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered. PMID:20004639

  12. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    CERN Document Server

    Karhu, J; Vainio, M; Metsälä, M; Hoekstra, S; Halonen, L

    2016-01-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, $\

  13. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide.

    Science.gov (United States)

    Leigh, Roland J; Corlett, Gary K; Friess, Udo; Monks, Paul S

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2. PMID:16983440

  14. [Air pollutants study by differential optical absorption spectroscopy with transmit-receive fibers].

    Science.gov (United States)

    Wei, Yong-Jie; Geng, Xiao-Juan; Chen, Bo; Liu, Cui-Cui; Chen, Wen-Liang

    2013-10-01

    The differential optical absorption spectroscopy system is presented to monitor air pollutants, such as SO2, NO2, etc. The system employs a reflective telescope to collimate light source and focus absorbed light. A combined transmitting and receiving fiber bundle is set to the focus of a concave mirror. A Xenon lamp works as the light source. The light is coupled into the transmitting fiber, and then collimated by the reflective telescope system. After absorbed by the pollutants, the light is reflected by a pyramid mirror far away the telescope. Then the absorbed light is incident on the concave mirror the second time, and focused on the focal plane again. The receiving fiber induces the light which carries the information of the measured gas into a spectrometer. We can get the concentration of the pollutants by DOAS algorithm. Experimental results show that the proposed method can be adopted to measure some pollutants in air quality monitoring. PMID:24409736

  15. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    Science.gov (United States)

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  16. [Studies on the remote measurement of the emission of formaldehyde by mobile differential optical absorption spectroscopy].

    Science.gov (United States)

    Wu, Feng-Cheng; Xie, Pin-Hua; Li, Ang; Si, Fu-Qi; Dou, Ke; Liu, Yu; Xu, Jin; Wang, Jie

    2011-11-01

    Formaldehyde (HCHO) is the most abundant carbonyl compounds that play an important role in atmospheric chemistry and photochemical reactions. Formaldehyde is an important indicator of atmospheric reactivity and urban atmospheric aerosol precursors. In the present paper, the emission of formaldehyde from chemical area was measured using the mobile differential optical absorption spectroscopy (DOAS). This instrument uses the zenith scattered sunlight as the light source with successful sampling in the area loop. Vertical column density was retrieved by this system, combined with the meteorological wind field and car speed information, the emission of formaldehyde in the area was estimated. The authors carried out the measuring experiment in one chemical plant in Beijing using this technology. The result showed that the average value of the flux of formaldehyde in this area was 605 kg x h(-1) during the measuring period. PMID:22242505

  17. Elemental characterisation of melanin in feathers via synchrotron X-ray imaging and absorption spectroscopy

    Science.gov (United States)

    Edwards, Nicholas P.; van Veelen, Arjen; Anné, Jennifer; Manning, Phillip L.; Bergmann, Uwe; Sellers, William I.; Egerton, Victoria M.; Sokaras, Dimosthenis; Alonso-Mori, Roberto; Wakamatsu, Kazumasa; Ito, Shosuke; Wogelius, Roy A.

    2016-01-01

    Melanin is a critical component of biological systems, but the exact chemistry of melanin is still imprecisely known. This is partly due to melanin’s complex heterogeneous nature and partly because many studies use synthetic analogues and/or pigments extracted from their natural biological setting, which may display important differences from endogenous pigments. Here we demonstrate how synchrotron X-ray analyses can non-destructively characterise the elements associated with melanin pigment in situ within extant feathers. Elemental imaging shows that the distributions of Ca, Cu and Zn are almost exclusively controlled by melanin pigment distribution. X-ray absorption spectroscopy demonstrates that the atomic coordination of zinc and sulfur is different within eumelanised regions compared to pheomelanised regions. This not only impacts our fundamental understanding of pigmentation in extant organisms but also provides a significant contribution to the evidence-based colour palette available for reconstructing the appearance of fossil organisms. PMID:27658854

  18. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals, Final Technical Report

    Science.gov (United States)

    Curl, Robert F.; Glass, Graham P.

    2004-11-01

    This research was directed at the detection, monitoring, and study of the chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. Work on the reaction of OH with acetaldehyde has been completed and published and work on the reaction of O({sup 1}D) with CH{sub 4} has been completed and submitted for publication. In the course of our investigation of branching ratios of the reactions of O({sup 1}D) with acetaldehyde and methane, we discovered that hot atom chemistry effects are not negligible at the gas pressures (13 Torr) initially used. Branching ratios of the reaction of O({sup 1}D) with CH{sub 4} have been measured at a tenfold higher He flow and fivefold higher pressure.

  19. A multi-channel monolithic Ge detector system for fluorescence x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Construction and performance of a monolithic quad-pixel Ge detector for fluorescence x-ray absorption spectroscopy (XAS) at synchrotron radiation sources are described. The detector semiconductor element has an active surface area of 4.0 cm2 which is electrically separated into four 1.0 cm2 pixels, with little interfacial dead volume. Spatial response of the array shows that cross-talk between adjacent pixels is 55Fe test source (MnKα, 5.9 keV), energy resolution of better than 200 eV is achieved with a 4 μsec peaking time. At 0.5 μsec peaking time, pulse pileup results in a 75% throughput efficiency for an incoming count rate of 100 kHz. Initial XAS fluoresncece measurements at the beamline 4 wiggler end stations at SSRL show that the detector system has several advantages over commercial x-ray spectrometers for low-concentration counting

  20. Study on the surface hydroxyl group on solid breeding materials by infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Satoru; Taniguchi, Masaki [Tokyo Univ. (Japan). Faculty of Engineering

    1996-10-01

    Hydroxyl groups on the surface of Li{sub 2}O were studied by using a diffuse reflectance method with Fourier transform infrared absorption spectroscopy at high temperature up to 973K under controlled D{sub 2}O or D{sub 2} partial pressure. It was found that hydroxyl groups could exist on Li{sub 2}O surface up to 973K under Ar atmosphere. Under D{sub 2}O containing atmosphere, only the sharp peak at 2520cm{sup -1} was observed at 973K in the O-D stretching vibration region. Below 973K, multiple peaks due to the surface -OD were observed and they showed different behavior with temperature or atmosphere. Multiple peaks mean that surface is not homogeneous for D{sub 2}O adsorption. Assignment of the observed peaks to the surface bonding structure was also discussed. (author)

  1. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    Science.gov (United States)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  2. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    OpenAIRE

    Lea Nowack; Daniel Grolimund; Vallerie Samson; Federica Marone; Vanessa Wood

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition...

  3. Study on the Interaction between CdSe Quantum Dots and Bovine Serum Albumin with Ultraviolet Visible Absorption Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    He You HAN; De Hong HU; Jian Gong LIANG; Zong Hai SHENG

    2006-01-01

    The interaction of CdSe quantum dots (QDs) with bovine serum albumin (BSA) has been investigated with ultraviolet visible absorption spectroscopy (UVAS). It was found that the absorption intensity of CdSe QDs significantly decreased after adding BSA solution, showing that CdSe QDs were bonded to BSA. The binding molar ratio was 1:1 and the binding constant was 9.7 × 106 L mol-1.

  4. Spectral Studies of Ocean Water with Space-borne Sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS).

    OpenAIRE

    M. Vountas; Dinter, T.; Bracher, A.; Burrows, J.P.; Sierk, B.

    2007-01-01

    Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY) using Differential Optical Absorption Spectroscopy (DOAS) are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm). The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS) in...

  5. Adsorption of mercury on lignin: Combined surface complexation modeling and X-ray absorption spectroscopy studies

    International Nuclear Information System (INIS)

    Adsorption of mercury (Hg) on lignin was studied at a range of pH values using a combination of batch adsorption experiments, a surface complexation model (SCM) and synchrotron X-ray absorption spectroscopy (XAS). Surface complexation modeling indicates that three types of acid sites on lignin surfaces, namely aliphatic carboxylic-, aromatic carboxylic- and phenolic-type surface groups, contributed to Hg(II) adsorption. The bond distance and coordination number of Hg(II) adsorption samples at pH 3.0, 4.0 and 5.5 were obtained from extended X-ray absorption fine structure (EXAFS) spectroscopy analysis. The results of SCM and XAS combined reveal that the predominant adsorption species of Hg(II) on lignin changes from HgCl20 to monodentate complex –C–O–HgCl and then bidentate complex –C–O–Hg–O–C– with increasing pH value from 2.0 to 6.0. The good agreement between SCM and XAS results provides new insight into understanding the mechanisms of Hg(II) adsorption on lignin. - Highlights: ► Lignin exhibits a high Hg(II) adsorption capability. ► Adsorption of Hg(II) on lignin is strongly pH-dependent. ► HgCl20, –C–O–HgCl and –C–O–Hg–O–C– are the main adsorption species of Hg(II). - Adsorption of Hg(II) on lignin is strongly pH-dependent, and the main adsorption Hg(II) species change from HgCl20 to –C–O–HgCl and –C–O–Hg–O–C– as pH increases from 2.0 to 6.0.

  6. Application of X-ray absorption spectroscopy and anomalous small angle scattering to RNA polymerase

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy is ideally suited for the investigation of the electronic structure and the local environment (≤∝5 A) of specific atoms in biomolecules. While the edge region provides information about the valence state of the absorbing atom, the chemical identity of neighboring atoms, and the coordination geometry, the EXAFS region contains information about the number and average distance of neighboring atoms and their relative disorder. The development of sensitive detection methods has allowed studies using near-physiological concentrations (as low as ∝100 μM). With careful choice of model compounds, judicious use of fitting procedures, and consideration of the results of biochemical and other spectrOScopic results, this data has provided pivotal information about the structures of these active sites which store energy in their conformation changes or ligand exchanges. Although the application of anomalous small angle scattering to biomolecules has occurred more recently, it clearly provides a method of determining distances between active sites that are outside the range of X-ray absorption spectroscopy. The wavelength dependence of the X-ray scattering power varies rapidly near the edge of the absorbing atom in both amplitude and phase. This behavior selectively alters the contribution of the absorbing atom to the scattering pattern. The structure-function relationship of the intermediate states provide the key to understanding the mechanisms of these complex molecules. It is this precise structural information about the active sites that is not obtainable by other spectroscopic techniques. Combination of these techniques offers a unique approach to the determination of the organization of active sites in biomolecules, especially metalloenzymes. Application of these methods to the substrate and template binding sites of RNA polymerase which contain zinc atoms demonstrates the versatility of this approach. (orig.)

  7. Americium characterization by X-ray fluorescence and absorption spectroscopy in plutonium uranium mixed oxide

    International Nuclear Information System (INIS)

    Plutonium uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The actinides in these fuels need to be analyzed after irradiation for assessing their behaviour with regard to their environment and the coolant. In this work the study of the atomic structure and next-neighbour environment of Am in the (Pu,U)O2 lattice in an irradiated (60 MW d kg−1) MOX sample was performed employing micro-X-ray fluorescence (µ-XRF) and micro-X-ray absorption fine structure (µ-XAFS) spectroscopy. The chemical bonds, valences and stoichiometry of Am (∼0.66 wt%) are determined from the experimental data gained for the irradiated fuel material examined in its peripheral zone (rim) of the fuel. In the irradiated sample Am builds up as Am3+ species within an [AmO8]13− coordination environment (e.g. >90%) and no (III XAFS spectra recorded for the irradiated MOX sub-sample in the rim zone for a 300 μm×300 μm beam size area investigated over six scans of 4 h. The records remain constant during multi-scan. The analysis of the XAFS signal shows that Am is found as trivalent in the UO2 matrix. This analytical work shall open the door of very challenging analysis (speciation of fission product and actinides) in irradiated nuclear fuels. - Highlights: • Americium was characterized by microX-ray absorption spectroscopy in irradiated MOX fuel. • The americium redox state as determined from XAS data of irradiated fuel material was Am(III). • In the sample, the Am3+ face an AmO813− coordination environment in the (Pu,U)O2 matrix. • The americium dioxide is reduced by the uranium dioxide matrix

  8. Quantum cascade laser absorption spectroscopy of UF6 at 7.74 μm for analytical uranium enrichment measurements

    Science.gov (United States)

    Lewicki, Rafal; Kosterev, Anatoliy A.; Toor, Fatima; Yao, Yu; Gmachl, Claire; Tsai, Tracy; Wysocki, Gerard; Wang, Xiaojun; Troccoli, Mariano; Fong, Mary; Tittel, Frank K.

    2010-01-01

    The ν1+ν3 combination band of uranium hexafluoride (UF6) is targeted to perform analytical enrichment measurements using laser absorption spectroscopy. A high performance widely tunable EC-QCL sources emitting radiation at 7.74 μm (1291 cm-1) is employed as an UF6-LAS optical source to measure the unresolved rotational-vibrational spectral structure of several tens of wavenumbers (cm-1). A preliminary spectroscopic measurement based on a direct laser absorption spectroscopy of methane (CH4) as an appropriate UF6 analyte simulant, was demonstrated.

  9. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2009-11-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. Therefore they are strictly valid for weak absorptions and narrow wavelength intervals (strictly only for monochromatic radiation. For medium and strong absorption (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is not linear anymore. As well, for large wavelength intervals the wavelength dependent differences in the travelled light-paths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, by taking into account these dependencies, the applicability of the DOAS method can be extended also to cases with medium to strong absorptions and for broader wavelength intervals.

    Common approaches for this correction are the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a-priori knowledge for the air mass factor or the weighting function calculation by radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as additional fitting parameters in the DOAS analysis. Thus the variability of the SCD in the fit window is determined by the retrieval itself.

    This new approach gives a description of the SCD that is as close to reality as desired (depending on the order of the Taylor expansion, and is independent from any assumptions or a-priori knowledge

  10. Extending differential optical absorption spectroscopy for limb measurements in the UV

    Directory of Open Access Journals (Sweden)

    J. Puķīte

    2010-05-01

    Full Text Available Methods of UV/VIS absorption spectroscopy to determine the constituents in the Earth's atmosphere from measurements of scattered light are often based on the Beer-Lambert law, like e.g. Differential Optical Absorption Spectroscopy (DOAS. While the Beer-Lambert law is strictly valid for a single light path only, the relation between the optical depth and the concentration of any absorber can be approximated as linear also for scattered light observations at a single wavelength if the absorption is weak. If the light path distribution is approximated not to vary with wavelength, also linearity between the optical depth and the product of the cross-section and the concentration of an absorber can be assumed. These assumptions are widely made for DOAS applications for scattered light observations.

    For medium and strong absorption of scattered light (e.g. along very long light-paths like in limb geometry the relation between the optical depth and the concentration of an absorber is no longer linear. In addition, for broad wavelength intervals the differences in the travelled light-paths at different wavelengths become important, especially in the UV, where the probability for scattering increases strongly with decreasing wavelength.

    However, the DOAS method can be extended to cases with medium to strong absorptions and for broader wavelength intervals by the so called air mass factor modified (or extended DOAS and the weighting function modified DOAS. These approaches take into account the wavelength dependency of the slant column densities (SCDs, but also require a priori knowledge for the air mass factor or the weighting function from radiative transfer modelling.

    We describe an approach that considers the fitting results obtained from DOAS, the SCDs, as a function of wavelength and vertical optical depth and expands this function into a Taylor series of both quantities. The Taylor coefficients are then applied as

  11. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    Science.gov (United States)

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, YoungPak; Nagao, Tadaaki; Hoang, Chung V.

    2016-01-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3′-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes. PMID:27555217

  12. Vacuum-UV absorption spectroscopy of interstellar ice analogues. III. Isotopic effects

    CERN Document Server

    Cruz-Diaz, G A; Chen, Y -J

    2014-01-01

    This paper reports the first measurements of solid-phase vacuum-ultraviolet (VUV) absorption cross-sections of heavy isotopologues present in icy dust grain mantles of dense interstellar clouds and cold circumstellar environments. Pure ices composed of D2O, CD3OD, 13CO2, and 15N15N were deposited at 8 K, a value similar to the coldest dust temperatures in space. The column density of the ice samples was measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave discharged hydrogen flow lamp as the VUV source. Prior to this work, we have recently submitted a similar study of the light isotopologues (Cruz-Diaz, Mu\\~noz Caro and Chen). The VUV spectra are compared to those of the light isotopologues in the solid phase, and to the gas phase spectra of the same molecules. Our study is expected to improve very significantly the models that estimate the VUV absorption of ice mantles in space, which hav...

  13. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Energy Technology Data Exchange (ETDEWEB)

    Milne, Chris J; Pham, Van-Thai; Veen, Renske M van der; El Nahhas, Amal; Lima, Frederico; Vithanage, Dimali A; Chergui, Majed [Laboratoire de Spectroscopie Ultrarapide, Ecole Polytechnique Federale de Lausanne (Switzerland); Gawelda, Wojciech [Laser Processing Group, Instituto de Optica, CSIC (Spain); Johnson, Steven L; Beaud, Paul; Ingold, Gerhard; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Abela, Rafael [Swiss Light Source, Paul Scherrer Institut (Switzerland); Benfatto, Maurizio [Laboratori Nazionali di Frascati, INFN (Italy); Hauser, Andreas [Departement de Chimie Physique, Universite de Geneve (Switzerland); Bressler, Christian, E-mail: majed.chergui@epfl.c, E-mail: chris.milne@psi.c [European XFEL Project Team, Deutsches Elektronen Synchrotron (Germany)

    2009-11-15

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [Fe{sup II}(bpy){sub 3}]{sup 2+}, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced {chi}{sup 2} goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  14. New niobium and rhenium halides synthesis routes by atomic vaporization. X-ray absorption spectroscopy characterization

    International Nuclear Information System (INIS)

    New synthetic route as the so called 'chimie douce' or MVS (Metal Vapor Synthesis) has been an increasing field lately to synthesize new kind of solid state structures. Our interest is the assembly of small molecular building blocks of early transition metal halides. We illustrate the use of vaporized rare earth metals to condense NbCls units. We probed the local order around the Nb atom with X-Ray Absorption Spectroscopy, far Infra-Red and XPS in order to better understand the mechanisms involved. A first EXAFS, IR and XPS study on solid state products has shown the evolution of the NbCl5 dimer towards a chain like structure. However, the condensation patterns depends on the rare earth atoms vaporized. These results have been confirmed by X-ray Absorption ab initio calculations. Because our compounds are extremely air sensitive we have developed in situ MVS reactor to take 'snapshots' of the structural intermediates by EXAFS. This study showed the condensation of the initial NbCl5 building blocks by reduction of the Nb oxidation state by rare earth vaporization. This method is a new way of looking at condensation mechanisms via structural evolution observed by EXAFS. (author)

  15. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    International Nuclear Information System (INIS)

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 A. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  16. Electronic absorption spectroscopy probed side-chain movement in chromic transitions of polydiacetylene vesicles.

    Science.gov (United States)

    Potisatityuenyong, Anupat; Rojanathanes, Rojrit; Tumcharern, Gamolwan; Sukwattanasinitt, Mongkol

    2008-05-01

    Thermochromism, solvatochromism, and alkalinochromism of a poly-10,12-pentacosadiynoic acid (poly(PCDA)) vesicle solution are studied by electronic absorption spectroscopy. The spectroscopic profiles reveal different sequences of side-chain movement during the chromic transitions. The gradual hypsochromic shift and reversibility of the purple solution at low temperature in the thermochromic transition indicates that the transition starts with reversible conformational alteration of methylene side chains leading to metastable purple vesicles. Further heating to 80 degrees C or higher eventually causes the hydrogen bonds at the carboxylic head groups to break and turns the vesicle solution to red. The irreversibility of the red vesicles indicates that it is the most thermodynamically stable form. In the ethanolochromism and alkalinochromism, the processes are however induced at the vesicle-media interface, directly bringing about the hydrogen bond breaking. The purple solutions observed in the ethanolochromism and alkalinochromism cannot reverse back to the blue one. The absorption spectra clearly demonstrate that they are mixtures of the blue and red vesicles. PMID:18366237

  17. High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    CERN Document Server

    Wiesemeyer, Helmut; Heyminck, Stefan; Karl, Jacobs; Menten, Karl; Neufeld, David; Requena-Torres, Miguel Angel; Stutzki, Jürgen; 10.1051/0004-6361/201218915

    2012-01-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption spectroscopy against bright background sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5 THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius spiral arm. OH column densities in the spiral arm clouds along the sightlines to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2, which corresponds to a fractional abundance of 10^-7 to 10^-8, which is comparable to that of H_2O. The absorption spectra of both species have similar velocity components, and the...

  18. In Situ X-Ray Absorption Spectroscopy Study of the LiNiO2 Electrode

    Science.gov (United States)

    Mansour, A. N.; McBreen, J.; Melendres, C. A.

    1997-03-01

    LiNiO2 is one of the most promising active material for the development of novel 4V rechargeable lithium batteries. Recent x-ray diffraction studies showed that the electrochemical reactivity of this electrode is sensitive to the structure of the starting material as well as the charged products. To further examine this material, we have conducted an x-ray absorption spectroscopy (XAS) study to determine the structure of this electrode as a function of its charge state. Specifically, the x-ray absorption Ni K-edge energy, the pre-edge structure, and local structure parameters such as bond lengths, coordination numbers and disorders were investigated at various states of charge corresponding to Li_(1-x)NiO2 for x values of 0.0, 0.11, 0.23, 0.34, 0.45, 0.82, and 0.99. The charging which proceeds via lithium de-intercalation was conducted using constant current anodization at 0.5 mA in a non aqueous electrolyte consisting of 1M LiPF6 in 1:1:3 propylene ! carbonate, ethylene carbonate and dimethyl carbonate. The XAS results for this electrode will be compared with those of γ-NiOOH and KNiIO_6, the latter being used as a reference for quadrivalent nickel.

  19. FeS-Quantum-Dot Sensitized Metal Oxide Photoelectrodes: Photoelectrochemistry and Photoinduced Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Idriss Bedja

    2011-01-01

    Full Text Available TiO2, ZnO nanoparticulate(-np, and ZnO-nanorod(-nr electrodes have been modified with FeS2 (pyrite nanoparticles. Quantum size effect is manifested by a blue shift in both absorption and photocurrent action spectra. PIA (photoinduced absorption spectroscopy, a multipurpose tool in the study of dye-sensitized solar cells, is used to study quantum-dot modified metal oxide (MO nanostructured electrodes. The PIA spectra showed an evidence for long-lived photoinduced charge separation. Time-resolved PIA showed that recombination between electrons and holes occurs on a millisecond timescale. Incident-photon-to-current efficiencies at 400 nm are ranged between 13% and 25%. The better solar cell performance of FeS2 on ZnO-nr over ZnO-np can be ascribed to the faster, unidirectional e-transport channels through the ZnO-nr as well as the longer electron lifetimes. The lower performances of electrodes can be explained by the presence of FeS2 phases other than the photoactive pyrite phase, as evidenced from XRD study.

  20. Photo-induced dynamics in heterocyclic aromatic molecules probed by femtosecond XUV transient absorption spectroscopy

    Science.gov (United States)

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, Chaitanya D.; Neumark, Daniel M.; Leone, Stephen R.; Gessner, Oliver

    2016-05-01

    We report on the ring-opening and dissociation dynamics of strong-field ionized selenophene (C4 H4 Se), studied by transient XUV absorption spectroscopy at the Se 3d edge. The table-top experiments are facilitated by high-order harmonic generation coupled with a gas phase transient XUV absorption setup that is optimized for the study of organic compounds. Employing element-specific core-to-valence transitions, the ultrafast molecular dynamics are monitored from the perspective of the well-localized Se atoms. Spectral features are assigned based on first principles TDDFT calculations for a large manifold of electronic states. We observe signatures of rapidly (~ 35 fs) decaying highly excited molecular cations, the formation of ring-opened products on a 100 fs time scale and, most notably, the elimination of bare Se+ ions in a very rapid multi-step process. A delayed onset of the Se+ ions provides direct evidence that both selenium-carbon bonds are broken within only ~ 130 fs and that a sequential mechanism, presumably an initial ring-opening followed by a subsequent breaking of the second bond, is required to eliminate the atomic fragments.

  1. Strontium localization in bone tissue studied by X-ray absorption spectroscopy.

    Science.gov (United States)

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Stahl, Kenny

    2014-02-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X-ray absorption spectra resulted in a compositional model and allowed the relative distribution of strontium in the different bone components to be estimated. Approximately 35-45% of the strontium present is incorporated into calcium hydroxyapatite (CaHA) by substitution of some of the calcium ions occupying highly ordered sites, and at least 30% is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is surrounded by only oxygen atoms similar to Sr(2+) in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher structural order than when present in serum but less order than when it is incorporated into CaHA. The total amount of strontium in the samples was determined by inductively coupled plasma mass spectrometry, and the amount of Sr was found to increase with increasing dose levels and treatment periods, whereas the relative distribution of strontium among the different components appears to be independent of treatment period and dose level. PMID:24101232

  2. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    Science.gov (United States)

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  3. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  4. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 2. Closure study.

    Science.gov (United States)

    Müller, Thomas; Müller, Detlef; Dubois, René

    2006-04-01

    Spectral particle extinction coefficients of atmospheric aerosols were measured with, to the best of our knowledge, a newly designed differential optical absorption spectroscopy (DOAS) instrument. A closure study was carried out on the basis of optical and microphysical aerosol properties obtained from nephelometer, particle soot/absorption photometer, hygroscopic tandem differential mobility analyzer, twin differential mobility particle sizer, aerodynamic particle sizer, and Berner impactors. The data were collected at the urban site of Leipzig during a period of 10 days in March 2000. The performance test also includes a comparison of the optical properties measured with DOAS to particle optical properties calculated with a Mie-scattering code. The computations take into account dry and ambient particle conditions. Under dry particle conditions the linear regression and the correlation coefficient for particle extinction are 0.95 and 0.90, respectively. At ambient conditions these parameters are 0.89 and 0.97, respectively. An inversion algorithm was used to retrieve microphysical particle properties from the extinction coefficients measured with DOAS. We found excellent agreement within the retrieval uncertainties. PMID:16607998

  5. Particle extinction measured at ambient conditions with differential optical absorption spectroscopy. 1. system setup and characterization.

    Science.gov (United States)

    Müller, Thomas; Müller, Detlef; Dubois, René

    2005-03-20

    We describe an instrument for measuring the particle extinction coefficient at ambient conditions in the spectral range from 270 to 1000 nm. It is based on a differential optical absorption spectroscopy (DOAS) system, which was originally used for measuring trace-gas concentrations of atmospheric absorbers in the ultraviolet-visible wavelength range. One obtains the particle extinction spectrum by measuring the total atmospheric extinction and subtracting trace-gas absorption and Rayleigh scattering. The instrument consists of two nested Newton-type telescopes, which are simultaneously used for emitting and detecting light, and two arrays of retroreflectors at the ends of the two light paths. The design of this new instrument solves crucial problems usually encountered in the design of such instruments. The telescope is actively repositioned during the measurement cycle. Particle extinction is simultaneously measured at several wavelengths by the use of two grating spectrometers. Optical turbulence causes lateral movement of the spot of light in the receiver telescope. Monitoring of the return signals with a diode permits correction for this effect. Phase-sensitive detection efficiently suppresses background signals from the atmosphere as well as from the instrument itself. The performance of the instrument was tested during a measurement period of 3 months from January to March 2000. The instrument ran without significant interruption during that period. A mean accuracy of 0.032 km(-1) was found for the extinction coefficient for an 11-day period in March. PMID:15813269

  6. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    Science.gov (United States)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  7. Metamaterial-enhanced vibrational absorption spectroscopy for the detection of protein molecules

    Science.gov (United States)

    Bui, Tung S.; Dao, Thang D.; Dang, Luu H.; Vu, Lam D.; Ohi, Akihiko; Nabatame, Toshihide; Lee, Youngpak; Nagao, Tadaaki; Hoang, Chung V.

    2016-08-01

    From visible to mid-infrared frequencies, molecular sensing has been a major successful application of plasmonics because of the enormous enhancement of the surface electromagnetic nearfield associated with the induced collective motion of surface free carriers excited by the probe light. However, in the lower-energy terahertz (THz) region, sensing by detecting molecular vibrations is still challenging because of low sensitivity, complicated spectral features, and relatively little accumulated knowledge of molecules. Here, we report the use of a micron-scale thin-slab metamaterial (MM) architecture, which functions as an amplifier for enhancing the absorption signal of the THz vibration of an ultrathin adsorbed layer of large organic molecules. We examined bovine serum albumin (BSA) as a prototype large protein molecule and Rhodamine 6G (Rh6G) and 3,3‧-diethylthiatricarbocyanine iodide (DTTCI) as examples of small molecules. Among them, our MM significantly magnified only the signal strength of bulky BSA. On the other hand, DTTCI and Rh6G are inactive, as they lack low-frequency vibrational modes in this frequency region. The results obtained here clearly demonstrate the promise of MM-enhanced absorption spectroscopy in the THz region for detection and structural monitoring of large biomolecules such as proteins or pathogenic enzymes.

  8. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    Science.gov (United States)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  9. Time-resolved tunable diode laser absorption spectroscopy of pulsed plasma.

    Science.gov (United States)

    Adámek, P; Olejníček, J; Čada, M; Kment, Š; Hubička, Z

    2013-07-15

    A method for time-resolved tunable diode laser absorption spectroscopy (LAS) has been developed. In this Letter, we describe in detail a developed electronic module that controls the time resolution of the LAS system. The transistor-transistor logic signal triggering the plasma pulse is used for generation of two signals: the first one triggers fine tuning of the laser wavelength and the second one controls time-defined signal sampling from the absorption detector. The described method and electronic system enable investigation of the temporal evolution of the density and temperature of selected particles in technological plasma systems. The high-power impulse magnetron sputtering system with a period of 10 ms and a duty cycle of 1% has been used to verify this method. The temporal evolution of argon metastable density was measured in the active part of the pulse and in the afterglow. The resulting density of Ar* displays a double-peak structure with a first peak in the plasma "ON" phase and a second peak in the afterglow approximately 1 ms after the end of the pulse.

  10. [Retrieval of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy].

    Science.gov (United States)

    Wang, Yang; Xie, Pin-hua; Li, Ang; Xu, Jin; Zeng, Yi; Si, Fu-qi; Wu, Feng-cheng

    2012-04-01

    An appropriate reference spectrum is essential for the direct-sun differential optical absorption spectroscopy (DS-DOAS). It depends on the real reference spectrum to retrieve the total vertical column density (VCD). The spectrum detected at the time with minimum sun zenith angle under the relative clear atmospheric condition in the measurement period was conventionally selected as the reference spectrum. Because there is still untracked NO2 absorption structure in the reference spectrum, the VCD retrieved based on the above spectrum is actually relative VCD, which results in larger error. To solve this problem, a new method was investigated. A convolution of extraterrestrial high-precision solar Fraunhofer spectrum and the instrumental function of the spectrometer was computed and chosen as the reference spectrum. The error induced by NO2 absorption structure in the reference spectrum was removed. Then the fitting error of slant column density (SCD) retrieved by this method was analyzed. The correlation between the absolute SCD and the differential slant column density (dSCD) was calculated. The result shows that the error of SCD retrieved by this new method is below 1.6 x 10(16) molecules x cm(-2) on March 7, 2011, while the error generated by the normal method is about 4.25 x 10(16) molecules x cm(-2). The new method decreased more than 62% error. In addition, the results throughout the day were compared to the troposphere VCD from MAX-DOAS and they are in good agreement. It indicates that the new method could effectively reduce the VCD error of the common way. PMID:22715747

  11. Measurement of tropospheric OH by laser long-path absorption spectroscopy

    Science.gov (United States)

    Kraft, Michael; Perner, D.

    1994-01-01

    OH-radicals are measured by laser long-path absorption spectroscopy. A tunable Nd:YAG/dye laser system provides broadbanded light at 308 nm. The beam is expanded to 0.3 m and pointed to an array of retroreflectors placed at a distance of 2800 m. The returning beam is separated from the outgoing beam and focused into a spectrometer of 0.3 pm resolution. A 1024 element diode array is used as a detector. The signal is digitized by a 14 bit analog to digital converter. The ultimate aim is a detection limit of 10(exp 5) molecules cm(exp -3) of OH. However the measurements in 1991 allowed only the recognition of OH absorptions corresponding to 3 x 10(exp 6) OH cm(exp -3) with a signal to noise ratio of two. Improvements of the instrument are under way. The advantages of the DOAS method are: the accuracy of detection is guaranteed because loss of OH radicals within the device is avoided, the rate of OH production by the device is negligible, and absorptions of other trace gases could be corrected for; and the calibration procedure for the device is fast and easy. The disadvantages of the system are: time resolution is about minutes because about ten spectra had to be added to keep the noise level down, the OH concentration is averaged along the whole light path, weight (500 kg) and size (4x4 m) of the device; and approximately 10 l/min of coolant and supply of 8 kW electrical power are necessary.

  12. Evaluation wavelength range mapping, a tool to optimize the evaluation window in differential absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-04-01

    Optical remote sensing via Differential Optical Absorption Spectroscopy (DOAS) has become a standard technique to assess various trace gases in the atmosphere. Measurement instruments are usually classified into active instruments applying an artificial light source and passive instruments using natural light sources, e.g., scattered or direct sunlight. Platforms range from ground based to satellites and trace gases are studied in all kinds of different environments. Naturally, the evaluation of gathered spectra needs to be tuned to each specific case and trace gas of interest due to the wide range of measurement conditions, atmospheric compositions and instruments used. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should be as large as possible and include the largest differential absorption features of the trace gas of interest in order to maximize sensitivity. However, the differential optical densities of other absorbers should be minimized in order to prevent interferences between different absorption cross sections. Furthermore, instrumental specific features and wavelength dependent radiative transfer effects may have malicious effects and lead to erroneous values. Usually a compromise needs to be found depending on the conditions at hand. Evaluation wavelength range mapping is an easily applied tool to visualize wavelength depending evaluation features of DOAS and to find the optimal retrieval wavelength range. As an example, synthetic spectra are studied which simulate passive DOAS measurements of stratospheric bromine monoxide (BrO) by Zenith-DOAS and Multi-Axis DOAS (MAX-DOAS) measurements of BrO in volcanic plumes. The influence of the I0-effect and the Ring-effect on the respective retrievals are demonstrated. However, due to the general nature of the tool it is applicable to any DOAS measurement and the technique also allows to study any other wavelength dependent influences on retrieved trace gas columns.

  13. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  14. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    Science.gov (United States)

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-01

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. PMID:27262277

  15. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy

    Science.gov (United States)

    Douglass, K. O.; Olson, D. A.

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5% with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12% for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5% on average. The pressures measured using WMS have an average difference of 0.6% from the absolute pressure measured with a capacitance diaphragm sensor.

  16. Studies of solvent effects on reaction dynamics using ultrafast transient absorption spectroscopy

    Science.gov (United States)

    Harris, Don Ahmasi

    Ultrafast transient absorption spectroscopy was used to investigate the solvent dependent reaction dynamics of two prototypical chemical systems: (1) The ring-opening reaction of 1,3-cyclohexadiene, the isolated chromophore in Provitamin D, and (2) The photolysis of various Vitamin B12 cofactors. We investigated the influence of solvent polarity on the ground state conformational relaxation of 1,3,5-cis hexatriene subsequent to the ring opening of 1,3-cyclohexadiene in methanol and 1-propanol solvents. Comparisons to the conformational relaxation in alkane solvents studied earlier demonstrated a surprising influence of solvent polarity on single bond isomerization. Temperature dependent transient absorption measurements were performed on 1,3,5-cis hexatriene in cyclohexane and 1-propanol to determine the effect of solvent polarity on the activation energy barrier for ground state single bond isomerization. These measurements conclude that the polar solvent lowers the energy barrier for single bond isomerization allowing conformational relaxation to proceed faster in alcohol solvents compared to alkane solvents. With no perceived polar transition state for single bond isomerization, this result disagrees with the conventional view of solvation and differentiates the single bond isomerization dynamics of polyenes from alkanes. Transient absorption spectroscopy was also utilized to study the solvent effects in the photolysis of various B12 cofactors in different environments. We investigated the solvent dependent photolysis of adenosylcobalamin, methylcobalamin, and cyanocobalamin in water and ethylene glycol as a function of solvent temperature. In comparing the radical cage escape of adenosylcobalamin and cyanocobalamin, we determined a larger than expected hydrodynamic radii for the diffusing radicals in water compared to ethylene glycol, thus making necessary a revised perspective of solvent interaction with the diffusing radical. In addition, we investigated the

  17. Synchrotron soft X-ray absorption spectroscopy study of carbon and silicon nanostructures for energy applications.

    Science.gov (United States)

    Zhong, Jun; Zhang, Hui; Sun, Xuhui; Lee, Shuit-Tong

    2014-12-10

    Carbon and silicon materials are two of the most important materials involved in the history of the science and technology development. In the last two decades, C and Si nanoscale materials, e.g., carbon nanotubes, graphene, and silicon nanowires, and quantum dots, have also emerged as the most interesting nanomaterials in nanoscience and nanotechnology for their myriad promising applications such as for electronics, sensors, biotechnology, etc. In particular, carbon and silicon nanostructures are being utilized in energy-related applications such as catalysis, batteries, solar cells, etc., with significant advances. Understanding of the nature of surface and electronic structures of nanostructures plays a key role in the development and improvement of energy conversion and storage nanosystems. Synchrotron soft X-ray absorption spectroscopy (XAS) and related techniques, such as X-ray emission spectroscopy (XES) and scanning transmission X-ray microscopy (STXM), show unique capability in revealing the surface and electronic structures of C and Si nanomaterials. In this review, XAS is demonstrated as a powerful technique for probing chemical bonding, the electronic structure, and the surface chemistry of carbon and silicon nanomaterials, which can greatly enhance the fundamental understanding and also applicability of these nanomaterials in energy applications. The focus is on the unique advantages of XAS as a complementary tool to conventional microscopy and spectroscopy for effectively providing chemical and structural information about carbon and silicon nanostructures. The employment of XAS for in situ, real-time study of property evolution of C and Si nanostructures to elucidate the mechanisms in energy conversion or storage processes is also discussed.

  18. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    Science.gov (United States)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  19. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Science.gov (United States)

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  20. Investigation Of Li{sub X}CoO{sub 2} Li- Intercalation Electrodes Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haas, O.; Holzapfel, M.; Yang, X.Q. [BNL Lab (United States); Yoon, W.-S. [BNL Lab (United States); Chung, K.-Y. [BNL Lab (United States)

    2005-03-01

    Li{sub X}CoO{sub 2} was investigated with X-ray absorption spectroscopy using hard and soft X-rays and compared with some results obtained in previous investigations of La{sub (1-x)}-Ca{sub x}CoO{sub 3}, which has a similar electron configuration. (author)

  1. Nanosecond photochromic molecular switching of a biphenyl-bridged imidazole dimer revealed by wide range transient absorption spectroscopy

    NARCIS (Netherlands)

    T. Yamaguchi; M.F. Hilbers; P.P. Reinders; Y. Kobayashi; A.M. Brouwer; J. Abe

    2015-01-01

    We demonstrate that a biphenyl-bridged imidazole dimer exhibits fast photochromism with a thermal recovery time constant of similar to 100 ns, which is the fastest thermal back reaction in all reported imidazole dimers. Sub-ps transient absorption spectroscopy reveals that the generation process of

  2. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    NARCIS (Netherlands)

    Volten, H.; Bergwerff, J.B.; Haaima, M.; Lolkema, D.E.; Berkhout, A.J.C.; Hoff, G.R.; Potma, C.J.M.; Wichink Kruit, R.J.; Pul, van W.A.J.; Swart, D.P.J.

    2012-01-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet

  3. A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy

    Science.gov (United States)

    Kristian, Kathleen E.; Friedbauer, Scott; Kabashi, Donika; Ferencz, Kristen M.; Barajas, Jennifer C.; O'Brien, Kelly

    2015-01-01

    Analysis of mercury in fish is an interesting problem with the potential to motivate students in chemistry laboratory courses. The recommended method for mercury analysis in fish is cold vapor atomic absorption spectroscopy (CVAAS), which requires homogeneous analyte solutions, typically prepared by acid digestion. Previously published digestion…

  4. Electronic absorption spectroscopy of PAHs in supersonic jets and ultracold liquid helium droplets

    Science.gov (United States)

    Huisken, Friedrich; Staicu, Angela; Krasnokutski, Serge; Henning, Thomas

    Neutral and cationic polycyclic aromatic hydrocarbons (PAHs) are discussed as possible carriers of the diffuse interstellar bands (DIBs), still unassigned astrophysical absorption features observed in the spectra of reddened stars (Salama et al. 1999). Despite the importance of this class of molecules for astrophysics and nanophysics (PAHs can be regarded as nanoscale fragments of a sheet of graphite), the spectroscopic characterization of PAHs under well-defined conditions (low temperature and collision-free environment) has remained a challenge. Recently we have set up a cavity ring-down spectrometer combined with a pulsed supersonic jet expansion to study neutral and cationic PAHs under astrophysical conditions. PAHs studied so far include the neutral molecules anthracene (Staicu et al. 2004) and pyrene (Rouillé et al. 2004) as well as the cationic species naphthalene+ and anthracene+ (Sukhorukov et al. 2004). Employing another molecular beam apparatus, the same molecules (except of the cationic species) were also studied in liquid helium droplets (Krasnokutski et al. 2005, Rouillé et al. 2004). This novel technique combines several advantages of conventional matrix spectroscopy with those of gas phase spectroscopy. Notable advantages are the possibility to study molecules with low vapor pressure and to use a mass spectrometer facilitating spectral assignments. The most recent studies were devoted to phenanthrene and the more complicated (2,3)-benzofluorene. These molecules were investigated in the gas phase by cavity ring-down spectroscopy and in liquid helium droplets using depletion spectroscopy. For benzofluorene the present studies constitute the first reported measurements both in the gas phase and in helium droplets. The origin of the S1 ← S0 gas phase transition could be located at 29 894.3 cm-1, and a series of vibronic bands was recorded below 31 500 cm-1. In contrast to previously studied PAHs, the shift induced by the helium droplets was very

  5. Investigation of band gap narrowing in nitrogen-doped La2Ti2O7 with transient absorption spectroscopy.

    Science.gov (United States)

    Yost, Brandon T; Cushing, Scott K; Meng, Fanke; Bright, Joeseph; Bas, Derek A; Wu, Nianqiang; Bristow, Alan D

    2015-12-14

    Doping a semiconductor can extend the light absorption range, however, it usually introduces mid-gap states, reducing the charge carrier lifetime. This report shows that doping lanthanum dititinate (La2Ti2O7) with nitrogen extends the valence band edge by creating a continuum of dopant states, increasing the light absorption edge from 380 nm to 550 nm without adding mid-gap states. The dopant states are experimentally resolved in the excited state by correlating transient absorption spectroscopy with a supercontinuum probe and DFT prediction. The lack of mid-gap states is further confirmed by measuring the excited state lifetimes, which reveal the shifted band edge only increased carrier thermalization rates to the band edge and not interband charge recombination under both ultraviolet and visible excitation. Terahertz (time-domain) spectroscopy also reveals that the conduction mechanism remains unchanged after doping, suggesting the states are delocalized. PMID:26531849

  6. Charge Carrier Dynamics of Quantum Confined Semiconductor Nanoparticles Analyzed via Transient Absorption Spectroscopy

    Science.gov (United States)

    Thibert, Arthur Joseph, III

    Semiconductor nanoparticles are tiny crystalline structures (typically range from 1 - 100 nm) whose shape in many cases can be dictated through tailored chemical synthesis with atomic scale precision. The small size of these nanoparticles often results in quantum confinement (spatial confinement of wave functions), which imparts the ability to manipulate band-gap energies thus allowing them to be optimally engineered for different applications (i.e., photovoltaics, photocatalysis, imaging). However, charge carriers excited within these nanoparticles are often involved in many different processes: trapping, trap migration, Auger recombination, non-radiative relaxation, radiative relaxation, oxidation / reduction, or multiple exciton generation. Broadband ultrafast transient absorption laser spectroscopy is used to spectrally resolve the fate of excited charge carriers in both wavelength and time, providing insight as to what synthetic developments or operating conditions will be necessary to optimize their efficiency for certain applications. This thesis outlines the effort of resolving the dynamics of excited charge carriers for several Cd and Si based nanoparticle systems using this experimental technique. The thesis is organized into five chapters and two appendices as indicated below. Chapter 1 provides a brief introduction to the photophysics of semiconductor nanoparticles. It begins by defining what nanoparticles, semiconductors, charge carriers, and quantum confinement are. From there it details how the study of charge carrier dynamics within nanoparticles can lead to increased efficiency in applications such as photocatalysis. Finally, the experimental methodology associated with ultrafast transient absorption spectroscopy is introduced and its power in mapping charge carrier dynamics is established. Chapter 2 (JPCC, 19647, 2011) introduces the first of the studied samples: water-solubilized 2D CdSe nanoribbons (NRs), which were synthesized in the Osterloh

  7. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L3- and Ag L3-XANES spectra with regard to their chemical environment. It was shown that Pb L3- and Ag L3-XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  8. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Bovenkamp, Gudrun Lisa

    2013-05-15

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L{sub 3}- and Ag L{sub 3}-XANES spectra with regard to their chemical environment. It was shown that Pb L{sub 3}- and Ag L{sub 3}-XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  9. Ultrafast Excited State Relaxation of a Metalloporphyrin Revealed by Femtosecond X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Shelby, Megan L; Lestrange, Patrick J; Jackson, Nicholas E; Haldrup, Kristoffer; Mara, Michael W; Stickrath, Andrew B; Zhu, Diling; Lemke, Henrik T; Chollet, Matthieu; Hoffman, Brian M; Li, Xiaosong; Chen, Lin X

    2016-07-20

    Photoexcited Nickel(II) tetramesitylporphyrin (NiTMP), like many open-shell metalloporphyrins, relaxes rapidly through multiple electronic states following an initial porphyrin-based excitation, some involving metal centered electronic configuration changes that could be harnessed catalytically before excited state relaxation. While a NiTMP excited state present at 100 ps was previously identified by X-ray transient absorption (XTA) spectroscopy at a synchrotron source as a relaxed (d,d) state, the lowest energy excited state (J. Am. Chem. Soc., 2007, 129, 9616 and Chem. Sci., 2010, 1, 642), structural dynamics before thermalization were not resolved due to the ∼100 ps duration of the available X-ray probe pulse. Using the femtosecond (fs) X-ray pulses of the Linac Coherent Light Source (LCLS), the Ni center electronic configuration from the initial excited state to the relaxed (d,d) state has been obtained via ultrafast Ni K-edge XANES (X-ray absorption near edge structure) on a time scale from hundreds of femtoseconds to 100 ps. This enabled the identification of a short-lived Ni(I) species aided by time-dependent density functional theory (TDDFT) methods. Computed electronic and nuclear structure for critical excited electronic states in the relaxation pathway characterize the dependence of the complex's geometry on the electron occupation of the 3d orbitals. Calculated XANES transitions for these excited states assign a short-lived transient signal to the spectroscopic signature of the Ni(I) species, resulting from intramolecular charge transfer on a time scale that has eluded previous synchrotron studies. These combined results enable us to examine the excited state structural dynamics of NiTMP prior to thermal relaxation and to capture intermediates of potential photocatalytic significance. PMID:27286410

  10. Characterization of Metalloproteins by High-throughput X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    W Shi; M Punta; J Bohon; J Sauder; R DMello; M Sullivan; J Toomey; D Abel; M Lippi; et al.

    2011-12-31

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing <70% sequence identity and having at least one His or Cys. As the HT-XAS identifies metal type and protein binding, while the bioinformatics analysis identifies metal-binding residues, the results were combined to identify putative metal-binding sites in the proteins and their associated families. We explored the combination of this data with homology models to generate detailed structure models of metal-binding sites for representative proteins. Finally, we used extended X-ray absorption fine structure data from two of the purified Zn metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.

  11. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].

    Science.gov (United States)

    Li, Ang; Xie, Pin-hua; Liu, Wen-qing; Liu, Jian-guo; Dou, Ke; Lin, Yi-hui

    2008-10-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure various trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range. Passive DOAS using the zenith scattered sunlight as the light source can obtain the continuous column density distribution of air pollutants (such as SO2 and NO2) by scanning the plume emitted from sources on a mobile platform, then with the plume velocity information the total emission value can be ultimately estimated. In practice it is hard to calculate the total emission because there is no efficient way to accurately get the plume velocity which is the most important parameter. Usually the wind speed near ground is used as the actual plume speed, which constitutes the greatest source of uncertainty in the passive DOAS measurements for the total emission calculation. A passive DOAS method for the determination of plume velocity of pollution source was studied in the present paper. Two passive DOAS systems were placed under the plume along the plume transmission direction to observed the scattered sunlight at one fixed sepasation angle, and then the plume velocity was derived from the time delay resulting from the plume moving a certain distance, and also the plume height needed in the plume velocity calculation was measured by the same two passive DOAS systems. Measurement of the plume emitted from a certain power plant was carried out by the two passive DOAS systems and the plume velocities of 3.6 and 5.4 m x s(-1) at two separate moments were derived. The comparison with the wind speed measured at the same time by the single theodolite wind observation method indicates that this optical remote sensing method based on passive DOAS can be used to determine the plume velocity by monitoring the total emission from sources. PMID:19123375

  12. Application of X-ray Absorption Spectroscopy to the study of nuclear structural materials

    Science.gov (United States)

    Liu, Shanshan

    One of key technologies for the next generation nuclear systems are advanced materials, including high temperature structural materials, fast neutron resistance core materials and so on. Local structure determination in these systems, which often are crystallographically intractable, is critical to gaining an understanding of their properties. In this thesis, X-ray Absorption Spectroscopy (XAS), including Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES), is used to examine the geometric and electronic structure of nuclear structural materials under varying conditions. The thesis is divided into two main sections. The first examines the structural analysis of nanostructured ferritic alloys (NFA) which are dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features, resulting in remarkable high temperature creep strength and radiation damage resistance. Titanium and Yttrium K-edge XAS shows commercial alloys MA957 and J12YWT more closely resemble the as received Fe-14Cr-3W-0.4Ti (wt. %) powders, and mechanically alloyed (MA) powders with 0.25Y2O3 (wt. %). It shows that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix. In contrast, annealed powders and hot isostatic press (HIP) consolidated alloys show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. The second section describes corrosion studies of Pb with 316L stainless steel, molybdenum and spinet (MgAl2O4) at high temperature by XAS. The corrosion of fuel cladding and structural materials by liquid lead at elevated temperatures is an issue that must be considered when designing advanced nuclear systems and high-power spallation neutron targets. The results of ex-situ studies show that a Mo substrate retained a smooth and less corroded surface than 316L stainless steel sample at elevated temperature. In

  13. Microbeam x-ray absorption spectroscopy study of chromium in large-grain uranium dioxide fuel

    Science.gov (United States)

    Mieszczynski, C.; Kuri, G.; Bertsch, J.; Martin, M.; Borca, C. N.; Delafoy, Ch; Simoni, E.

    2014-09-01

    Synchrotron-based microprobe x-ray absorption spectroscopy (XAS) has been used to study the local atomic structure of chromium in chromia-doped uranium dioxide (UO2) grains. The specimens investigated were a commercial grade chromia-doped UO2 fresh fuel pellet, and materials from a spent fuel pellet of the same batch, irradiated with an average burnup of ~40 MW d kg-1. Uranium L3-edge and chromium K-edge XAS have been measured, and the structural environments of central uranium and chromium atoms have been elucidated. The Fourier transform of uranium L3-edge extended x-ray absorption fine structure shows two well-defined peaks of U-O and U-U bonds at average distances of 2.36 and 3.83 Å. Their coordination numbers are determined as 8 and 11, respectively. The chromium Fourier transform extended x-ray absorption fine structure of the pristine UO2 matrix shows similar structural features with the corresponding spectrum of the irradiated spent fuel, indicative of analogous chromium environments in the two samples studied. From the chromium XAS experimental data, detectable next neighbor atoms are oxygen and uranium of the cation-substituted UO2 lattice, and two distinct subshells of chromium and oxygen neighbors, possibly because of undissolved chromia particles present in the doped fuels. Curve-fitting analyses using theoretical amplitude and phase-shift functions of the closest Cr-O shell and calculations with ab initio computer code FEFF and atomic clusters generated from the chromium-dissolved UO2 structure have been carried out. There is a prominent reduction in the length of the adjacent Cr-O bond of about 0.3 Å in chromia-doped UO2 compared with the ideal U-O bond length in standard UO2 that would be expected because of the change in effective Coulomb interactions resulting from replacing U4+ with Cr3+ and their ionic size differences. The contraction of shortest Cr-U bond is ~0.1 Å relative to the U-U bond length in bulk UO2. The difference in the

  14. Concentration measurement of NO using self-absorption spectroscopy of the γ band system in a pulsed corona discharge.

    Science.gov (United States)

    Zhai, Xiaodong; Ding, Yanjun; Peng, Zhimin; Luo, Rui

    2012-07-10

    Nitric oxide (NO) concentrations were measured using the γ band system spectrum based on the strong self-absorption effect of NO in pulsed corona discharges. The radiative transitional intensities of the NO γ band were simulated based on the theory of molecular spectroscopy. The intensities of some bands, especially γ(0,0) and γ(1,0), are weakened by the self-absorption. The correlations between the spectral self-absorption intensities and NO concentration were validated using a modified Beer-Lambert law with a combined factor K relating the branching ratio and the NO concentration, and a nonlinear index α that is applicable to the broadband system. Optical emissive spectra in pulsed corona discharges in NO and N2/He mixtures were used to evaluate the two parameters for various conditions. Good agreement between the experimental and theoretical results verifies the self-absorption behavior seen in the UV spectra of the NO γ bands. PMID:22781235

  15. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO3− and NO2−. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing

  16. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Science.gov (United States)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  17. Ultradast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Felicie [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-12

    This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, and institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.

  18. Identification of lead chemical form in mine waste materials by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy (XAS) provides a direct means for measuring lead chemical forms in complex samples. In this study, XAS was used to identify the presence of plumbojarosite (PbFe6(SO4)4(OH)12) by lead L3-edge XANES spectra in mine waste from a small gold mining operation in Fiji. The presence of plumbojarosite in tailings was confirmed by XRD but XANES gave better resolution. The potential for human uptake of Pb from tailings was measured using a physiologically based extract test (PBET), an in-vitro bioaccessibility (BAc) method. The BAc of Pb was 55%. Particle size distribution of tailings indicated that 40% of PM10 particulates exist which could be a potential risk for respiratory effects via the inhalation route. Food items collected in the proximity of the mine site had lead concentrations which exceed food standard guidelines. Lead within the mining lease exceeded sediment guidelines. The results from this study are used to investigate exposure pathways via ingestion and inhalation for potential risk exposure pathways of Pb in that locality. The highest Pb concentration in soil and tailings was 25,839 mg/kg, exceeding the Australian National Environment Protection Measure (NEPM) soil health investigation levels.

  19. X-ray absorption spectroscopy of lithium sulfur battery reaction intermediates

    Science.gov (United States)

    Wujcik, Kevin; Pascal, Tod; Prendergast, David; Balsara, Nitash

    2015-03-01

    Lithium sulfur batteries have a theoretical energy density nearly five times greater than current lithium ion battery standards, but questions still remain regarding the reaction pathways through which soluble lithium polysulfide (Li2Sx, ``x'' ranging from 2 to 8) reaction intermediates are formed. Complicating spectroelectrochemical approaches to elucidate redox pathways is the challenge of obtaining spectral standards for individual Li2Sx species. Lithium polysulfides cannot be isolated as individual component and exist only in solution as a distribution of different Li2Sx molecules formed via disproportionation reactions (e.g. 2Li2S4 goes to Li2S3 + Li2S5). X-ray absorption spectroscopy (XAS) at the sulfur K-edge has recently been employed as a technique to study Li-S chemistry. We have recently obtained XAS standards for individual Li2Sx species via first principles DFT simulations and the excited electron and core hole approach. Here, experimental sulfur K-edge XAS of Li2Sx species dissolved in poly(ethylene oxide) are compared to spectra obtained from analogous theoretical calculations. The impact that polysulfide solution concentration and the presence of other lithium salts (e.g. LiNO3) have on X-ray spectra of Li2Sx species is explored via experiment and theory.

  20. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Science.gov (United States)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  1. Non-invasive gas monitoring in newborn infants using diode laser absorption spectroscopy: a case study

    Science.gov (United States)

    Lundin, Patrik; Svanberg, Emilie K.; Cocola, Lorenzo; Lewander, Märta; Andersson-Engels, Stefan; Jahr, John; Fellman, Vineta; Svanberg, Katarina; Svanberg, Sune

    2012-03-01

    Non-invasive diode laser spectroscopy was, for the first time, used to assess gas content in the intestines and the lungs of a new-born, 4 kg, baby. Two gases, water vapor and oxygen, were studied with two low-power tunable diode lasers, illuminating the surface skin tissue and detecting the diffusely emerging light a few centimeters away. The light, having penetrated into the tissue, had experienced absorption by gas located in the lungs and in the intestines. Very distinct water vapor signals were obtained from the intestines while imprint from oxygen was lacking, as expected. Detectable, but minor, signals of water vapor were also obtained from the lungs, illuminating the armpit area and detecting below the collar bone. Water vapor signals were seen but again oxygen signals were lacking, now due to the difficulties of penetration of the oxygen probing light into the lungs of this full-term baby. Ultra-sound images were obtained both from the lungs and from the stomach of the baby. Based on dimensions and our experimental findings, we conclude, that for early pre-term babies, also oxygen should be detectable in the lungs, in addition to intestine and lung detection of water vapor. The present paper focuses on the studies of the intestines while the lung studies will be covered in a forthcoming paper.

  2. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy.

    Science.gov (United States)

    Lam, Royce K; Smith, Jacob W; Saykally, Richard J

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility. PMID:27208929

  3. Interaction of ester functional groups with aluminum oxide surfaces studied using infrared reflection absorption spectroscopy.

    Science.gov (United States)

    van den Brand, J; Blajiev, O; Beentjes, P C J; Terryn, H; de Wit, J H W

    2004-07-20

    The bonding of two types of ester group-containing molecules with a set of different oxide layers on aluminum has been investigated using infrared reflection absorption spectroscopy. The different oxide layers were made by giving typical surface treatments to the aluminum substrate. The purpose of the investigation was to find out what type of ester-oxide bond is formed and whether this is influenced by changes in the composition and chemistry of the oxide. The extent by which these bonded ester molecules resisted disbondment in water or substitution by molecules capable of chemisorption was also investigated. The ester groups were found to show hydrogen bonding with hydroxyls on the oxide surfaces through their carbonyl oxygens. For all oxides, the ester groups showed the same nu(C = O) carbonyl stretching vibration after adsorption, indicating very similar bonding occurs. However, the oxides showed differences in the amount of molecules bonded to the oxide surface, and a clear relation was observed with the hydroxyl concentration present on the oxide surface, which was determined from XPS measurements. The two compounds showed differences in the free to bonded nu(C = O) infrared peak shift, indicating differences in bonding strength with the oxide surface between the two types of molecules. The bonding of the ester groups with the oxide surfaces was found to be not stable in the presence of water and also not in the presence of a compound capable of chemisorption with the aluminum oxide surface. PMID:15248718

  4. Standoff gas leak detectors based on tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Frish, M. B.; Wainner, R. T.; Green, B. D.; Laderer, M. C.; Allen, M. G.

    2005-11-01

    Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.

  5. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Whyte

    2009-12-01

    Full Text Available A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  6. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    C. Whyte

    2009-08-01

    Full Text Available A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS applications particularly from space (LEO, GEO orbits and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.

  7. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Rizzuto, Anthony M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  8. The high-resolution absorption spectroscopy branch on the VUV beamline DESIRS at SOLEIL.

    Science.gov (United States)

    de Oliveira, Nelson; Joyeux, Denis; Roudjane, Mourad; Gil, Jean François; Pilette, Bertrand; Archer, Lucy; Ito, Kenji; Nahon, Laurent

    2016-07-01

    A VUV absorption spectroscopy facility designed for ultra-high spectral resolution is in operation as a dedicated branch on the DESIRS beamline at Synchrotron SOLEIL. This branch includes a unique VUV Fourier transform spectrometer (FTS) and a dedicated versatile gas sample chamber. The FTS instrument can cover a large UV-VUV spectral range from 4 to 30 eV, with an ultimate line width of 0.08 cm(-1) on a large spectral window, ΔE/E = 7%, over which all spectral features can be acquired in a multiplex way. The performance can be considered to be a middle ground between broadband moderate-resolution spectrometers based on gratings and ultra-high-spectral-resolution VUV tunable-laser-based techniques over very narrow spectral windows. The various available gaseous-sample-handling setups, which function over a wide range of pressures and temperatures, and the acquisition methodology are described. A selection of experimental results illustrates the performance and limitations of the FTS-based facility. PMID:27359137

  9. Evaluation on corrosively dissolved gold induced by alkanethiol monolayer with atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    We have monitored a gold corrosive dissolution behavior accompanied in n-alkanethiol like n-dodecanethiol assembled process with in situ quartz crystal microbalance (QCM), and then observed it with atomic force microscopy (AFM) which showed an evident image of corrosive defects or holes produced on gold substrate, corresponding to gold dissolution induced by the alkanethiol molecules in the presence of oxygen. For detection of the dissolved gold defects during alkanethiol assembled process, an atomic absorption spectroscopy (AAS) has been carried out in this paper, and the detection limit for the dissolved gold could be evaluated to be 15.4 ng/mL. The amount of dissolved gold from the substrates of gold plates as functions of immersion time, acid media, solvents and thiol concentration has been examined in the oxygen saturated solutions. In comparison with in situ QCM method, the kinetics behavior of the long-term gold corrosion on the gold plates in 1.0 mmol/L of n-dodecanethiol solution determined with AAS method was a slow process, and its corrosion rate on gold dissolution could be evaluated to be about 4.4 x 10-5 ng.cm-2.s-1, corresponding to 1.3 x 108 Au atoms.cm-2.s-1, that was much smaller than that of initial rate monitored with in situ QCM. Both kinetics equations obtained with QCM and AAS showed a consistent corrosion behavior on gold surfaces.

  10. Fabry-Perot Absorption Line Spectroscopy of the Galactic Bar. I. Kinematics

    CERN Document Server

    Rangwala, Naseem; Stanek, K Z

    2008-01-01

    We use Fabry-Perot absorption line imaging spectroscopy to measure radial velocities using the Ca II 8542 line in 3360 stars towards three lines of sight in the Milky Way's bar: Baade's Window and offset position at (l,b) ~ (+-5.0, -3.5). This sample includes 2488 bar red clump giants, 339 bar M/K-giants, and 318 disk main sequence stars. We measure the first four moments of the stellar velocity distribution of the red clump giants, and find it to be symmetric and flat-topped. We also measure the line-of-sight average velocity and dispersion of the red clump giants as a function of distance in the bar. We detect stellar streams at the near and far side of the bar with velocity difference > 30 km/s at l = +-5, but we do not detect two separate streams in Baade's Window. Our M-giants kinematics agree well with previous studies, but have dispersions systematically lower than those of the red clump giants by ~ 10 km/s. For the disk main sequence stars we measure a velocity dispersion of ~ 45 km/s for all three li...

  11. X-ray absorption spectroscopy study of a copper-containing material after thermal treatment

    International Nuclear Information System (INIS)

    Thermal immobilization of copper contaminant in a copper-containing solid material collected from local copper smelting and foundry area is investigated in the present work. X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) are employed for copper speciation. XAS results indicate that cupric hydroxide is the major copper species in the solid material dried at 105 deg. C. After being subjected to a 500 deg. C thermal process, cupric hydroxide still remains as the main copper species, but some Cu(II) is chemically reduced to Cu(I). More cupric hydroxide is progressively converted to Cu(I) as the sample was heated at 1100 deg. C than that heated at 500 deg. C. The sample heated at 500 deg. C is in its original powder form. However, thermal treatment at 1100 deg. C transforms the powder into a hardened granule-like form that is much bigger in size and difficult to be ground into powders. The sample is sintered with the sparingly soluble cuprous oxide and elemental copper being encapsulated inside. Toxicity characteristic leaching procedure (TCLP) results depict that amount of copper leached from the sample (containing 133,000 mg copper kg-1) heated at 1100 deg. C for 2 h is considerably minor, being 367 mg copper kg-1

  12. The Chemistry of Spent Nuclear Fuel From X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Present and future nuclear fuel cycles will require an understanding of the complex chemistry of trace fission products and transuranium actinides in spent nuclear fuel (SNF). Because of the unique analytical challenges presented by SNF to the materials scientist, many of its fundamental physical and chemical properties remain poorly understood, especially on the microscopic scale. Such an understanding of the chemical states of radionuclides in SNF would benefit development of technologies for fuel monitoring, fuel performance improvement and modeling, fuel reprocessing, and spent fuel storage and disposal. We have recently demonstrated the use of synchrotron x-ray absorption spectroscopy (XAS) to examine crystal chemical properties of actinides and fission products in extracted specimens of SNF. Information obtained includes oxidation state, chemical bond coordination, and quantitative elemental concentration and distribution. We have also used XAS in a scanning mode to obtain x-ray spectral micrographs with resolution approaching 1 micron. A brief overview of the technique will be presented, along with findings on uranium, plutonium, neptunium, technetium, and molybdenum in commercial PWR SNF specimens

  13. Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy.

    Science.gov (United States)

    Shi, Wuxian; Punta, Marco; Bohon, Jen; Sauder, J Michael; D'Mello, Rhijuta; Sullivan, Mike; Toomey, John; Abel, Don; Lippi, Marco; Passerini, Andrea; Frasconi, Paolo; Burley, Stephen K; Rost, Burkhard; Chance, Mark R

    2011-06-01

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families generated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable based on comparison of the results to crystal structure data derived from the same protein set. To leverage the experimental metalloprotein annotations, we used a sequence-based de novo prediction method, MetalDetector, to identify Cys and His residues that bind to transition metals for the redundancy reduced subset of 2411 sequences sharing metalloproteins to validate predicted metalloprotein binding site structures. This combination of experimental and bioinformatics approaches provides comprehensive active site analysis on the genome scale for metalloproteins as a class, revealing new insights into metalloprotein structure and function.

  14. Identification of lead chemical form in mine waste materials by X-ray absorption spectroscopy

    Science.gov (United States)

    Taga, Raijeli L.; Zheng, Jiajia; Huynh, Trang; Ng, Jack; Harris, Hugh H.; Noller, Barry

    2010-06-01

    X-ray absorption spectroscopy (XAS) provides a direct means for measuring lead chemical forms in complex samples. In this study, XAS was used to identify the presence of plumbojarosite (PbFe6(SO4)4(OH)12) by lead L3-edge XANES spectra in mine waste from a small gold mining operation in Fiji. The presence of plumbojarosite in tailings was confirmed by XRD but XANES gave better resolution. The potential for human uptake of Pb from tailings was measured using a physiologically based extract test (PBET), an in-vitro bioaccessibility (BAc) method. The BAc of Pb was 55%. Particle size distribution of tailings indicated that 40% of PM10 particulates exist which could be a potential risk for respiratory effects via the inhalation route. Food items collected in the proximity of the mine site had lead concentrations which exceed food standard guidelines. Lead within the mining lease exceeded sediment guidelines. The results from this study are used to investigate exposure pathways via ingestion and inhalation for potential risk exposure pathways of Pb in that locality. The highest Pb concentration in soil and tailings was 25,839 mg/kg, exceeding the Australian National Environment Protection Measure (NEPM) soil health investigation levels.

  15. Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system.

    Science.gov (United States)

    Petrakis, Michael; Psiloglou, Basil; Kassomenos, Pavlos A; Cartalis, Costas

    2003-09-01

    In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene. PMID:13678363

  16. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    Science.gov (United States)

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  17. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  18. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  19. Studies of ionic liquid solutions by soft X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Fabio [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, CP 26.077, CEP 05513-970, Sao Paulo, SP (Brazil); Nascimento, Gustavo M. do [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, CP 26.077, CEP 05513-970, Sao Paulo, SP (Brazil)], E-mail: morari@yahoo.com; Santos, Paulo S. [Departamento de Quimica Fundamental, Instituto de Quimica, Universidade de Sao Paulo, CP 26.077, CEP 05513-970, Sao Paulo, SP (Brazil)

    2007-03-15

    Soft X-ray spectroscopies give specific information about the electronic structure around light elements. The high absorption of soft X-rays by almost every molecule, including air, requires studies under vacuum, which represents a great limitation. Solids with high vapor pressure and liquids are very difficult to be studied, making solution chemistry almost neglected. This work explores the use of ionic liquids, organic liquids with very low vapor pressure, as media to study chemical solutions using soft X-ray. N 1s spectra are reported of ionic liquid solutions of 1-methyl-3alkyl-imidazolium cation with different anions and chain lengths, and urea/choline chloride mixtures (a deep eutectic solvent) with several solutes including dyes (Janus Green B and Congo Red), synthetic polymers (polyaniline) and nitrate salts. While there are significant problems with the signal of the solvent, the results do show that it is possible to detect solute signals, and further to see spectral changes attributed to solvent-solute interactions.

  20. Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics.

    Science.gov (United States)

    Merten, André; Tschritter, Jens; Platt, Ulrich

    2011-02-10

    We present a new design principle of telescopes for use in the spectral investigation of the atmosphere and the detection of atmospheric trace gases with the long-path differential optical absorption spectroscopy (DOAS) technique. A combination of emitting and receiving fibers in a single bundle replaces the commonly used coaxial-Newton-type combination of receiving and transmitting telescope. This very simplified setup offers a higher light throughput and simpler adjustment and allows smaller instruments, which are easier to handle and more portable. The higher transmittance was verified by ray-tracing calculations, which result in a theoretical factor threefold improvement in signal intensity compared with the old setup. In practice, due to the easier alignment and higher stability, up to factor of 10 higher signal intensities were found. In addition, the use of a fiber optic light source provides a better spectral characterization of the light source, which results in a lower detection limit for trace gases studied with this instrument. This new design will greatly enhance the usability and the range of applications of active DOAS instruments. PMID:21343997

  1. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.

    Science.gov (United States)

    Nawahda, Amin

    2015-08-01

    Ground level ozone (O3) concentrations were measured across Sohar highway in Oman during a four-month period from September to December 2014 by using an open-path deferential optical absorption spectroscopy (DOAS) instrument. The monthly average concentrations of O3 varied from 19.6 to 29.4 ppb. The measurements of O3 are compared with the measurements of a non-open-path UV photometry analyzer (UVP). The percent difference (PD) concept and linear regression methods were used to compare the readings of the two instruments. The findings show high correlation coefficients between the measurements of the DOAS and UVP instruments. The DOAS measurements of O3 are found to be less than those measured by the UVP instrument; the correlation coefficients between absolute PD values and meteorological parameters and PM2.5 were very low indicating a minor effect; therefore, titrations of O3 by traffic emissions and difference in elevation could be the reason for the difference in the measurements of the two instruments. PMID:26138853

  2. X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Isabelle; Solari, Pier Lorenzo; Sitaud, Bruno [Synchrotron SOLEIL - l' Orme des Merisiers Saint Aubin, Gif-sur-Yvette (France); and others

    2014-07-01

    The MARS beamline at the SOLEIL synchrotron is dedicated to the characterization of radioactive material samples. One great advantage of the beamline is the possibility to characterize about 380 radionuclides by different X-ray techniques in the same place. This facility is unique in Europe. A wide energy range from around 3.5 keV to 36 keV K-edges from K to Cs, and L3 edges from Cd to Am and beyond can be used. The MARS beamline is optimized for X-ray absorption spectroscopy techniques (XANES/EXAFS), powder diffraction (XRD) but X-ray fluorescence (XRF) analysis, High Energy Resolution Fluorescence Detected-XAS (HERFD-XAS), X-ray Emission (XES) and μ-XAS/XRD are also possible. A description of the beamline as well as its performances are given in a first part. Then some scientific examples of XAS studies from users are presented which cover a wide variety of topics in radiochemistry and nuclear materials.

  3. Some problems connected with boron determination by atomic absorption spectroscopy and the sensitivity improvement

    Directory of Open Access Journals (Sweden)

    JELENA J. SAVOVIC

    2001-08-01

    Full Text Available Two atomizers were compared: an N2O–C2H2 flame and a stabilized U-shaped DC arc with aerosol supply. Both the high plasma temperature and the reducing atmosphere obtained by acetylene addition to the argon stream substantially increase the sensitivity of boron determination by atomic absorption spectroscopy (AAS when the arc atomizer is used. The results were compared with those for silicon as a control element. The experimental characteristic concentrations for both elements were compared with the computed values. The experimentally obtained characteristic concentration for boron when using the arc atomizer was in better agreement with the calculated value. It was estimated that the influence of stable monoxide formation on the sensitivity for both elements was about the same, but reduction of analyte and formation of non-volatile carbide particles was more important for boron, which is the main reason for the low sensitivity of boron determination using a flame atomizer. The use of an arc atomizer suppresses this interference and significantly improves the sensitivity of the determination.

  4. A Semi-Blind Source Separation Method for Differential Optical Absorption Spectroscopy of Atmospheric Gas Mixtures

    CERN Document Server

    Sun, Y; Finlayson-Pitts, B J; Xin, J

    2011-01-01

    Differential optical absorption spectroscopy (DOAS) is a powerful tool for detecting and quantifying trace gases in atmospheric chemistry \\cite{Platt_Stutz08}. DOAS spectra consist of a linear combination of complex multi-peak multi-scale structures. Most DOAS analysis routines in use today are based on least squares techniques, for example, the approach developed in the 1970s uses polynomial fits to remove a slowly varying background, and known reference spectra to retrieve the identity and concentrations of reference gases. An open problem is to identify unknown gases in the fitting residuals for complex atmospheric mixtures. In this work, we develop a novel three step semi-blind source separation method. The first step uses a multi-resolution analysis to remove the slow-varying and fast-varying components in the DOAS spectral data matrix $X$. The second step decomposes the preprocessed data $\\hat{X}$ in the first step into a linear combination of the reference spectra plus a remainder, or $\\hat{X} = A\\,S +...

  5. Vibration-rotational overtones absorption of solid hydrogens using optoacoustic spectroscopy technique

    International Nuclear Information System (INIS)

    Vibrational-rotational overtones absorption solid hydrogens (H2, D2, HD) is studied using pulsed laser piezoeletric transducer (PULPIT) optoacoustic spectroscopy is studied. A general downward shift in energy from isolated molecular energies is observed. Studying normal-hydrogen it was observed that the phonon excitations associated with double-molecular transitions are predominantly transverse-optical phonons, whereas the excitations associated with single-molecular transitions are predominantly longitudinal - optical phonons. Multiplet structures were observed for certain double transitions in parahydrogen and orthodeuterium. The HD spectrum, besides presenting the sharp zero-phonon lines and the associated phonon side bands, like H2 and D2, showed also two different features. This observation was common to all the transitions involving pure rotational excitation in H2 and D2, which showed broad linewidths. This, together with some other facts (fluorescence lifetime *approx*105 sec; weak internal vibration and lattice coupling), led to the proposition of a mechanism for the fast nonradiative relaxation in solid hydrogens, implied from some observed experimental evidences. This relaxation, due to strong coupling, would happen in two steps: the internal vibration modes would relax to the rotational modes of the molecules, and then this rotational modes would relax to the lattice vibration modes. (Author)

  6. High-resolution x-ray absorption spectroscopy studies of metal compounds in neurodegenerative brain tissue

    Energy Technology Data Exchange (ETDEWEB)

    Collingwood, J.F.; Mikhaylova, A.; Davidson, M.R.; Batich, C.; Streit, W.J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R.S.; Dobson, J. (IIT); (Keele); (Florida); (DRDC)

    2008-06-16

    Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (< 5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterize anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution {approx} 5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.

  7. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Science.gov (United States)

    Smith, Jacob W.; Lam, Royce K.; Shih, Orion; Rizzuto, Anthony M.; Prendergast, David; Saykally, Richard J.

    2015-08-01

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO3- and NO2-. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  8. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  9. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  10. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  11. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  12. Formation of host–guest complexes on gold surface investigated by surface-enhanced IR absorption spectroscopy

    OpenAIRE

    Inokuchi, Yoshiya; Mizuuchi, Takahiro; Ebata, Takayuki; Ikeda, Toshiaki; Haino, Takeharu; Kimura, Tetsunari; Guo, Hao; Furutani, Yuji

    2014-01-01

    We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to host-guest complexes in liquid phase to examine the structural change in the complex formation. Two thiol derivatives of 18-crown-6 (18C6) are chemisorbed on a gold surface, and aqueous solutions of MCl salts (M = Li, Na, K, Rb, and Cs) are put to form M+・18C6 complexes. Infrared spectra of these complexes in the 900-2000 cm-1 region are obtained by SEIRA spectroscopy. The observed IR spectra show noticeable peaks due to th...

  13. Voltage-controlled magnetic anisotropy in Fe|MgO tunnel junctions studied by x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miwa, Shinji, E-mail: miwa@mp.es.osaka-u.ac.jp; Matsuda, Kensho; Tanaka, Kazuhito; Goto, Minori; Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kotani, Yoshinori; Nakamura, Tetsuya [Japan Synchrotron Radiation Research Institute/SPring-8, Sayo, Hyogo 679-5198 (Japan)

    2015-10-19

    In this study, voltage-controlled magnetic anisotropy (VCMA) in Fe|MgO tunnel junctions was investigated via the magneto-optical Kerr effect, soft x-ray absorption spectroscopy, and magnetic circular dichroism spectroscopy. The Fe|MgO tunnel junctions showed enhanced perpendicular magnetic anisotropy under external negative voltage, which induced charge depletion at the Fe|MgO interface. Despite the application of voltages of opposite polarity, no trace of chemical reaction such as a redox reaction attributed to O{sup 2−} migration was detected in the x-ray absorption spectra of the Fe. The VCMA reported in the Fe|MgO-based magnetic tunnel junctions must therefore originate from phenomena associated with the purely electric effect, that is, surface electron doping and/or redistribution induced by an external electric field.

  14. Direct correlation of charge transfer absorption with molecular donor:acceptor interfacial area via photothermal deflection spectroscopy

    KAUST Repository

    Domingo, Ester

    2015-04-09

    We show that the Charge Transfer (CT) absorption signal in bulk-heterojunction (BHJ) solar cell blends, measured by photothermal deflection spectroscopy (PDS), is directly proportional to the density of molecular donor/acceptor interfaces. Since the optical transitions from ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer-fullerene interface. The latter is ~100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment (0.3 D) and the electronic coupling between ground state and CT state to be on the order of 30 meV.

  15. A study of structural differences between TBM patients' and non-TBM persons' CSF using UV-Vis absorption spectroscopy

    Science.gov (United States)

    Xu, Fangcheng; Wang, Xin; Xu, Huajia; Wang, Kai

    2016-01-01

    Tuberculous meningitis (TBM) is a very common infectious disease in the central nervous system. The delay of diagnosing and treating TBM will lead to high disability and mortality of TBM. Hence, it is very important to promptly diagnose TBM early. In this work, we proposed a new method for diagnosing TBM with CSF samples by using UV-Vis absorption spectroscopy. CSF samples from TBM patients and non-TBM persons were compared, and the sensitivity, specificity, accuracy, positive predictive value reached 83.6%, 69.8%, 77.2%, 76.1% respectively. Our work indicated investigation of CSF using UV-Vis absorption spectroscopy might become a potentially useful method for TBM diagnosis.

  16. Double resonant absorption measurement of acetylene symmetric vibrational states probed with cavity ring down spectroscopy

    Science.gov (United States)

    Karhu, J.; Nauta, J.; Vainio, M.; Metsälä, M.; Hoekstra, S.; Halonen, L.

    2016-06-01

    A novel mid-infrared/near-infrared double resonant absorption setup for studying infrared-inactive vibrational states is presented. A strong vibrational transition in the mid-infrared region is excited using an idler beam from a singly resonant continuous-wave optical parametric oscillator, to populate an intermediate vibrational state. High output power of the optical parametric oscillator and the strength of the mid-infrared transition result in efficient population transfer to the intermediate state, which allows measuring secondary transitions from this state with a high signal-to-noise ratio. A secondary, near-infrared transition from the intermediate state is probed using cavity ring-down spectroscopy, which provides high sensitivity in this wavelength region. Due to the narrow linewidths of the excitation sources, the rovibrational lines of the secondary transition are measured with sub-Doppler resolution. The setup is used to access a previously unreported symmetric vibrational state of acetylene, ν 1 + ν 2 + ν 3 + ν4 1 + ν5 - 1 in the normal mode notation. Single-photon transitions to this state from the vibrational ground state are forbidden. Ten lines of the newly measured state are observed and fitted with the linear least-squares method to extract the band parameters. The vibrational term value was measured to be at 9775.0018(45) cm-1, the rotational parameter B was 1.162 222(37) cm-1, and the quartic centrifugal distortion parameter D was 3.998(62) × 10-6 cm-1, where the numbers in the parenthesis are one-standard errors in the least significant digits.

  17. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    OpenAIRE

    Vita, F.; C. Kern; Inguaggiato, S

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, po...

  18. Performance assessment and signal processing for range-integrated concentration measurement of gas species using supercontinuum absorption spectroscopy.

    Science.gov (United States)

    Dobroc, Alexandre; Cézard, Nicolas

    2012-12-10

    In this paper, we propose signal-processing tools adapted to supercontinuum absorption spectroscopy, in order to predict the precision of gas species concentration estimation. These tools are based on Cramer-Rao bounds computations. A baseline-insensitive concentration estimation algorithm is proposed. These calculations are validated by statistical tests on simulated supercontinuum signals as well as experimental data using a near-infrared supercontinuum laser and a grating spectrometer.

  19. State of Ni in catalysts for glycerol hydrogenation and methane steam reforming as studied by X-ray absorption spectroscopy

    Science.gov (United States)

    Tkachenko, O. P.; Kustov, L. M.

    2013-06-01

    X-ray absorption spectroscopy is used to study 1% Ni/Al2O3, 5% Ni/Al2O3, and 5% Ni/TiO2 catalysts for glycerol and methane conversion. The effect of treatment in H2 under microwave irradiation on the reduction of part of the nickel to the metallic state in the titanium oxide-supported catalyst is demonstrated.

  20. Study of Charge, Spin and Orbital States in Novel Transition-Metal Oxides Using X-Ray Absorption Spectroscopy

    OpenAIRE

    Burnus, Tobias

    2008-01-01

    Transition-metal compounds show a wealth of intriguing properties such as superconductivity, piezoelectricity, giant magnetoresistance, spin and metal-insulator transitions, which are governed by the interplay of charge, spin, and orbital degrees of freedom. The knowledge of their electronic structure is crucial for understanding and predicting the fascinating properties of these often strongly correlated materials. In this thesis x-ray absorption spectroscopy including x-ray magnetic circula...

  1. Retrieval of trace gases vertical profile in the lower atmosphere combining. Differential Optical Absorption Spectroscopy with radiative transfer models

    OpenAIRE

    Palazzi, Elisa

    2008-01-01

    The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of...

  2. Retrieval of Atmospheric Aerosol and Trace Gas Vertical Profiles using Multi-Axis Differential Optical Absorption Spectroscopy

    OpenAIRE

    Yilmaz, Selami

    2012-01-01

    In this thesis, the vertical distribution of atmospheric trace gases and aerosols were retrieved using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). Various inversion methods were used to retrieve the profiles from the MAX-DOAS measurements. A new MAX-DOAS instrument optimized for the measurement of aerosol and trace gas profiles was developed. The retrieval methods were tested and advanced in the scope of the EUSAAR (European Supersites for Atmospheric Aerosol Research)...

  3. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    OpenAIRE

    Rozanov, V.V.; Rozanov, A.V.

    2010-01-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical...

  4. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    OpenAIRE

    H. Volten; Bergwerff, J.B.; M. Haaima; Lolkema, D. E.; A. J. C. Berkhout; G. R. van der Hoff; C. J. M. Potma; R. J. Wichink Kruit; W. A. J. van Pul; D. P. J. Swart

    2011-01-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m−3, have a ...

  5. Investigation on an evanescent wave fiber-optic absorption sensor based on fiber loop cavity ring-down spectroscopy

    Science.gov (United States)

    Jiang, Meng; Zhang, Weigang; Zhang, Qi; Liu, Yaping; Liu, Bo

    2010-01-01

    An improved ring-down measurement principle for optical waveguides is presented. Fiber loop ring-down spectroscopy allows for measurement of minute optical losses in high-finesse fiber-optic cavities and immunity to the fluctuation of laser source. The evanescent wave absorption losses dependent on the absorption and the refractive index of ambient solution have been theoretically analyzed. The complex refractive index is introduced into our model and extinction coefficient can be calculated accurately through finite element analysis by setting the boundaries of the fiber and the ambient conditions. Using this method, the refractive index of environment can be taken into consideration. Our principle is validated by the highly-sensitive measurement of evanescent wave absorption loss. By chemically processing the surface of sensing segment along an extending ring-down cavity, the concentration of small volume Diethyl Sulphoxide solution where the etched fiber immersed into has been successfully measured and discussed.

  6. Time- and space-resolved X-ray absorption spectroscopy of aluminum irradiated by a subpicosecond high-power laser

    Science.gov (United States)

    Tzortzakis, S.; Audebert, P.; Renaudin, P.; Bastiani-Ceccotti, S.; Geindre, J. P.; Chenais-Popovics, C.; Nagels, V.; Gary, S.; Shepherd, R.; Girard, F.; Matsushima, I.; Peyrusse, O.; Gauthier, J.-C.

    2006-05-01

    The ionization and recombination dynamics of transient aluminum plasmas was measured using point projection K-shell absorption spectroscopy. An aluminum plasma was produced with a subpicosecond beam of the 100-TW laser at the LULI facility and probed at different times with a picosecond X-ray backlighter created with a synchronized subpicosecond laser beam. Fourier-Domain-Interferometry (FDI) was used to measure the electron temperature at the peak of the heating laser pulse. Absorption X-ray spectra at early times are characteristic of a dense and rather homogeneous plasma, with limited longitudinal gradients as shown by hydrodynamic simulations. The shift of the Al K-edge was measured in the cold dense plasma located at the edge of the heated plasma. From the 1s 2p absorption spectra, the average ionization was measured as a function of time and was also modeled with a collisional-radiative atomic physics code coupled with hydrodynamic simulations.

  7. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  8. Reconstruction of combustion temperature and gas concentration distributions using line-of-sight tunable diode laser absorption spectroscopy

    Science.gov (United States)

    Zhang, Zhirong; Sun, Pengshuai; Pang, Tao; Xia, Hua; Cui, Xiaojuan; Li, Zhe; Han, Luo; Wu, Bian; Wang, Yu; Sigrist, Markus W.; Dong, Fengzhong

    2016-07-01

    Spatial temperature and gas concentration distributions are crucial for combustion studies to characterize the combustion position and to evaluate the combustion regime and the released heat quantity. Optical computer tomography (CT) enables the reconstruction of temperature and gas concentration fields in a flame on the basis of line-of-sight tunable diode laser absorption spectroscopy (LOS-TDLAS). A pair of H2O absorption lines at wavelengths 1395.51 and 1395.69 nm is selected. Temperature and H2O concentration distributions for a flat flame furnace are calculated by superimposing two absorption peaks with a discrete algebraic iterative algorithm and a mathematical fitting algorithm. By comparison, direct absorption spectroscopy measurements agree well with the thermocouple measurements and yield a good correlation. The CT reconstruction data of different air-to-fuel ratio combustion conditions (incomplete combustion and full combustion) and three different types of burners (one, two, and three flat flame furnaces) demonstrate that TDLAS has the potential of short response time and enables real-time temperature and gas concentration distribution measurements for combustion diagnosis.

  9. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer.

    Science.gov (United States)

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-20

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg. PMID:16892129

  10. Formation of host-guest complexes on gold surface investigated by surface-enhanced IR absorption spectroscopy

    Science.gov (United States)

    Inokuchi, Yoshiya; Mizuuchi, Takahiro; Ebata, Takayuki; Ikeda, Toshiaki; Haino, Takeharu; Kimura, Tetsunari; Guo, Hao; Furutani, Yuji

    2014-01-01

    We apply surface-enhanced infrared absorption (SEIRA) spectroscopy to host-guest complexes in liquid phase to examine the structural change in the complex formation. Two thiol derivatives of 18-crown-6 (18C6) are chemisorbed on a gold surface, and aqueous solutions of MCl salts (M = Li, Na, K, Rb, and Cs) are put to form M+·18C6 complexes. Infrared spectra of these complexes in the 900-2000 cm-1 region are obtained by SEIRA spectroscopy. The observed IR spectra show noticeable peaks due to the complex formation, demonstrating that SEIRA spectroscopy will be a powerful method to investigate the structure of host-guest complexes in supramolecular chemistry.

  11. Band edge identification and carrier dynamics of CVD MoS2 monolayer measured by broadband Femtosecond Transient Absorption Spectroscopy

    Science.gov (United States)

    Aleithan, Shrouq; Livshits, Maksim; Rack, Jeffrey; Kordesch, Martin; Stinaff, Eric

    Two-dimensional atomic crystals of transition metal dichalcogenides are considered promising candidates for optoelectronics, valleytronics, and energy harvesting devices. These materials exhibit excitonic features with high binding energy as a result of confinement effect and reduced screening when the material is thinned to monolayer. However, previous theoretical and experimental studies report different binding energy results. This work further examines the electronic structure and binding energy in this material using broadband Femtosecond Transient Absorption Spectroscopy. Samples of MoS2 were grown by chemical vapor deposition, pumped with femtosecond laser, and probed by femtosecond white light resulting in broadband differential absorption spectra with three distinct features related to the three dominant absorption peaks in the material: A, B, and C. The dependence of the transient absorption spectra on excitation wavelength and layer number provides evidence of a band gap located at C (2.9 eV) and therefore an excitonic binding energy of 1 eV. Additional features in the spectra identified as a broadening of the absorption features caused by carrier scattering, surface defects and trap states.

  12. Detection of harmonics and recovery of the absorption line profile using logarithmic-transformed wavelength modulation spectroscopy

    Science.gov (United States)

    Cong, Menglong; Sun, Dandan

    2016-07-01

    A versatile signal processing strategy for eliminating the residual amplitude modulation (RAM) and distortion in tunable diode laser wavelength modulation spectroscopy is theoretically demonstrated and experimentally validated. The strategy involves logarithmic transformation and differential detection, which are achieved using a homemade circuit. Through the logarithmic transformation, the optical intensity modulation of the laser, which performs as the source of RAM and distortion, is separated from the absorption-induced power attenuation and further balanced during the differential detection. The first harmonic, which is proportional to the first-order derivative of the absorption line profile in the case of a small modulation index, is extracted along with the second harmonic and is integrated for the recovery of the absorption line profile. The experiments are carried out for CH4 at its R(3) absorption line of the 2ν3 overtone for validation of the system, and the derived results are found to be in good agreement with the theoretical simulations. These promising results indicate the high potential of the strategy for absorption spectrum-based determination of gas properties.

  13. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  14. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Grunwaldt, Jan-Dierk; Kimmerle, Bertram; Baiker, Alfons; Boye, Pit; Schroer, Christian G.; Glatzel, Pieter; Borca, Camelia N.; Beckmann, Felix; (TUD); (SLS); (IMR-GAC); (ETH Zurich); (ESRF); (TU Dresden)

    2009-09-25

    Spectroscopic studies on heterogeneous catalysts have mostly been done in an integral mode. However, in many cases spatial variations in catalyst structure can occur, e.g. during impregnation of pre-shaped particles, during reaction in a catalytic reactor, or in microstructured reactors as the present overview shows. Therefore, spatially resolved molecular information on a microscale is required for a comprehensive understanding of theses systems, partly in ex situ studies, partly under stationary reaction conditions and in some cases even under dynamic reaction conditions. Among the different available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure and the distribution of Cu(0), Cu(I), Cu(II) species in a Cu/ZnO catalyst loaded in a quartz capillary microreactor could be reconstructed quantitatively on a virtual section through the reactor. An illustrating example for spatially resolved XAS under reaction conditions is the partial oxidation of methane over noble metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used to efficiently determine the distribution of the oxidation state of a catalyst inside a reactor under reaction conditions. The new technical approaches together with quantitative data

  15. New Homogeneous Standards by Atomic Layer Deposition for Synchrotron X-ray Fluorescence and Absorption Spectroscopies.

    Energy Technology Data Exchange (ETDEWEB)

    Butterworth, A.L.; Becker, N.; Gainsforth, Z.; Lanzirotti, A.; Newville, M.; Proslier, T.; Stodolna, J.; Sutton, S.; Tyliszczak, T.; Westphal, A.J.; Zasadzinski, J. (UCB)

    2012-03-13

    Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotron techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution

  16. Estimation of lead, cadmium and nickel content by means of Atomic Absorption Spectroscopy in dry fruit bodies of some macromycetes growing in Poland. II.

    Directory of Open Access Journals (Sweden)

    Jan Grzybek

    2014-08-01

    Full Text Available The content of lead, cadmium, and nickel in dry fruit bodies of 34 species of macromyoetes collected in Poland from 72 natural babitats by means of Atomic Absorption Spectroscopy (AAS was estimated.

  17. Electronic structure of ReO3Me by variable photon energy photoelectron spectroscopy, absorption spectroscopy and density functional calculations.

    Science.gov (United States)

    de Simone, Monica; Coreno, Marcello; Green, Jennifer C; McGrady, Sean; Pritchard, Helen

    2003-03-24

    Valence photoelectron (PE) spectra have been measured for ReO(3)Me using a synchrotron source for photon energies ranging between 20 and 110 eV. Derived branching ratios (BR) and relative partial photoionization cross sections (RPPICS) are interpreted in the context of a bonding model calculated using density functional theory (DFT). Agreement between calculated and observed ionization energies (IE) is excellent. The 5d character of the orbitals correlates with the 5p --> 5d resonances of the associated RPPICS; these resonances commence around 47 eV. Bands with 5d character also show a RPPICS maximum at 35 eV. The RPPICS associated with the totally symmetric 4a(1) orbital, which has s-like character, shows an additional shape resonance with an onset of 43 eV. The PE spectrum of the inner valence and core region measured with photon energies of 108 and 210 eV shows ionization associated with C 2s, O 2s, and Re 4f and 5p electrons. Absorption spectra measured in the region of the O1s edge showed structure assignable to excitation to the low lying empty "d" orbitals of this d(0) molecule. The separation of the absorption bands corresponded with the calculated orbital splitting and their intensity with the calculated O 2p character. Broad bands associated with Re 4d absorption were assigned to (2)D(5/2) and (2)D(3/2) hole states. Structure was observed associated with the C1s edge but instrumental factors prevented firm assignment. At the Re 5p edge, structure was observed on the (2)P(3/2) absorption band resulting from excitation to the empty "d" levels. The intensity ratios differed from that of the O 1s edge structure but were in good agreement with the calculated 5d character of these orbitals. An absorption was observed at 45 eV, which, in the light of the resonance in the 4a(1) RPPICS, is assigned to a 4a(1) --> ne, na(2) transition. The electronic structure established for ReO(3)Me differs substantially from that of TiCl(3)Me and accounts for the difference in

  18. Ultra-fast X-ray absorption spectroscopy for the study of matter in transient regime; Spectroscopie d'absorption ultra-rapide de rayonnement X pour l'etude de la matiere en regime transitoire

    Energy Technology Data Exchange (ETDEWEB)

    Lecherbourg, L

    2007-12-15

    In this work, we study the physics of dense matter, plasmas or solids, using X-ray absorption spectroscopy. Through the use of sources produced by laser-matter interaction, we have measured the absorption spectra of aluminum and bromine plasmas, as well as those of vanadium dioxide (VO{sub 2}). The measurement of absorption coefficients allows us to probe the dense matter and to study its properties. The experiments are carried out following the same principle: they use the same experimental set-up, called pump-probe. When the matter is dense, the absorption properties of an atom are modified by the surrounding environment. In a plasma, it is mainly the bound- bound transitions which are altered: the shapes of those spectral rays are modified. In a solid, the position of the neighbouring atoms in relation to the absorbing atom modify the structure of absorption levels (bound-free transition). The study of this structure allows us to measure the parameters of the material, and provides information such as the state of the electronic band or the interatomic gaps. The experiments carried out at the LULI have allowed us to probe plasmas in the relatively unknown regime of the Warm Dense Matter. One of the key parameters is that the plasma is characterised independently (FDI diagnostic). It allows for a better comparison of the measured absorption against a calculation made with the numerical model OPA-S. The experiments carried out at INRS have led to the realisation of an experimental system having the characteristics which allow the study of the dynamics of solids showing ultra-fast phase transition. For those experiments, we have used vanadium dioxide as a model system allowing us to test the feasibility of the method. (author)

  19. Technical Note: Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS

    OpenAIRE

    J. Meinen; J. Thieser; U. Platt; T. Leisner

    2010-01-01

    Cavity enhanced methods in absorption spectroscopy have seen a considerable increase in popularity during the past decade. Especially Cavity Enhanced Absorption Spectroscopy (CEAS) established itself in atmospheric trace gas detection by providing tens of kilometers of effective light path length using a cavity as short as 1 m. In this paper we report on the construction and testing of a compact and power efficient light emitting diode based broadband Cavity Enhanced Differential Optical Abso...

  20. Quantum cascade laser absorption sensor for carbon monoxide in high-pressure gases using wavelength modulation spectroscopy.

    Science.gov (United States)

    Spearrin, R M; Goldenstein, C S; Jeffries, J B; Hanson, R K

    2014-03-20

    A tunable quantum cascade laser sensor, based on wavelength modulation absorption spectroscopy near 4.8 μm, was developed to measure CO concentration in harsh, high-pressure combustion gases. The sensor employs a normalized second harmonic detection technique (WMS-2f/1f) at a modulation frequency of 50 kHz. Wavelength selection at 2059.91  cm⁻¹ targets the P(20) transition within the fundamental vibrational band of CO, chosen for absorption strength and relative isolation from infrared water and carbon dioxide absorption. The CO spectral model is defined by the Voigt line-shape function, and key line-strength and line-broadening spectroscopic parameters were taken from the literature or measured. Sensitivity analysis identified the CO-N₂ collisional broadening coefficient as most critical for uncertainty mitigation in hydrocarbon/air combustion exhaust measurements, and this parameter was experimentally derived over a range of combustion temperatures (1100-2600 K) produced in a shock tube. Accuracy of the wavelength-modulation-spectroscopy-based sensor, using the refined spectral model, was validated at pressures greater than 40 atm in nonreactive shock-heated gas mixtures. The laser was then free-space coupled to an indium-fluoride single-mode fiber for remote light delivery. The fiber-coupled sensor was demonstrated on an ethylene/air pulse detonation combustor, providing time-resolved (~20  kHz), in situ measurements of CO concentration in a harsh flow field. PMID:24663473

  1. Detection of hydrogen peroxide based on long-path absorption spectroscopy using a CW EC-QCL

    Science.gov (United States)

    Sanchez, N. P.; Yu, Y.; Dong, L.; Griffin, R.; Tittel, F. K.

    2016-02-01

    A sensor system based on a CW EC-QCL (mode-hop-free range 1225-1285 cm-1) coupled with long-path absorption spectroscopy was developed for the monitoring of gas-phase hydrogen peroxide (H2O2) using an interference-free absorption line located at 1234.055 cm-1. Wavelength modulation spectroscopy (WMS) with second harmonic detection was implemented for data processing. Optimum levels of pressure and modulation amplitude of the sensor system led to a minimum detection limit (MDL) of 25 ppb using an integration time of 280 sec. The selected absorption line for H2O2, which exhibits no interference from H2O, makes this sensor system suitable for sensitive and selective monitoring of H2O2 levels in decontamination and sterilization processes based on Vapor Phase Hydrogen Peroxide (VPHP) units, in which a mixture of H2O and H2O2 is generated. Furthermore, continuous realtime monitoring of H2O2 concentrations in industrial facilities employing this species can be achieved with this sensing system in order to evaluate average permissible exposure levels (PELs) and potential exceedances of guidelines established by the US Occupational Safety and Health Administration for H2O2.

  2. Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS

    Directory of Open Access Journals (Sweden)

    J. Meinen

    2008-06-01

    Full Text Available Cavity enhanced methods in absorption spectroscopy have seen a considerable increase in popularity during the past decade. Especially Cavity Enhanced Absorption Spectroscopy (CEAS established itself in atmospheric trace gas detection by providing tens of kilometers of effective light path length using a cavity as short as 1 m. In this paper we report on the construction and testing of a compact and power efficient light emitting diode based broadband Cavity Enhanced Differential Optical Absorption Spectrometer (CE-DOAS for in situ field observation of atmospheric NO3. This device combines the small size of the cavity with the enormous advantages of the DOAS approach in terms of sensitivity and specificity. In particular, no selective removal of the analyte (here NO3 is necessary, thus the CE-DOAS technique can – in principle – measure any gas detectable by DOAS. We will discuss the advantages of using a light emitting diode (LED as light source particularly the precautions which have to be satisfied for the use of LEDs. The instrument was tested in the lab by detecting NO3 in a mixture of NO2 and O3 in air. It was then compared to other trace gas detection techniques in an intercomparison campaign in the atmosphere simulation chamber SAPHIR at NO3 concentrations as low as 6.3 ppt.

  3. Adsorption of cytochrome c to silica surfaces studied using evanescent wave broadband cavity-enhanced absorption spectroscopy

    Science.gov (United States)

    Moore, L. J.; van der Sneppen, L.; Peverall, R.; Hancock, G.; Ritchie, G. A. D.

    2010-08-01

    The adsorption of cytochrome c (cyt c) to a silica surface has been studied by use of evanescent wave broadband cavityenhanced absorption spectroscopy (EW-BBCEAS). Visible radiation from a supercontinuum source is coupled into an optical cavity consisting of a pair of broadband high reflectivity mirrors, and a total internal reflection (TIR) event at the prism/water interface. Aqueous solutions of cyt c are placed onto the TIR footprint on the prism surface and the subsequent protein adsorption is probed by the resulting evanescent wave. The time integrated cavity output is directed into a spectrometer, where it is dispersed and analysed. The high spectral brilliance of the SC affords a baseline noise comparable to evanescent wave cavity ring-down spectroscopy (EW-CRDS), and the broadband nature of the source allows observation of a wide spectral range (ca 250 nm in the visible). The system is calibrated by measuring the absorption spectra of dyes of a known absorbance. Absorption spectra of cyt c are obtained for both S and P polarized radiation, allowing information about the orientation of the adsorbed protein to be extracted.

  4. Ultrafast Transient Absorption Spectroscopy Investigation of Photoinduced Dynamics in Novel Donor-Acceptor Core-Shell Nanostructures for Organic Photovoltaics

    Science.gov (United States)

    Strain, Jacob; Jamhawi, Abdelqader; Abeywickrama, Thulitha M.; Loomis, Wendy; Rathnayake, Hemali; Liu, Jinjun

    2016-06-01

    Novel donor-acceptor nanostructures were synthesized via covalent synthesis and/or UV cross-linking method. Their photoinduced dynamics were investigated with ultrafast transient absorption (TA) spectroscopy. These new nanostructures are made with the strategy in mind to reduce manufacturing steps in the process of fabricating an organic photovoltaic cell. By imitating the heterojunction interface within a fixed particle domain, several fabrication steps can be bypassed reducing cost and giving more applicability to other film deposition methods. Such applications include aerosol deposition and ink-jet printing. The systems that were studied by TA spectroscopy include PDIB core, PDIB-P3HT core-shell, and PDIB-PANT core-shell which range in size from 60 to 130 nm. Within the experimentally accessible spectra range there resides a region of ground state bleaching, stimulated emission, and excited-state absorption of both neutrals and anions. Control experiments have been carried out to assign these features. At high pump fluences the TA spectra of PDIB core alone also indicate an intramolecular charge separation. The TA spectroscopy results thus far suggest that the core-shells resemble the photoinduced dynamics of a standard film although the particles are dispersed in solution, which indicates the desired outcome of the work.

  5. Time-resolved characterization of a filamentary argon discharge at atmospheric pressure in a capillary using emission and absorption spectroscopy

    Science.gov (United States)

    Schröter, Sandra; Pothiraja, Ramasamy; Awakowicz, Peter; Bibinov, Nikita; Böke, Marc; Niermann, Benedikt; Winter, Jörg

    2013-11-01

    An argon/nitrogen (0.999/0.001) filamentary pulsed discharge operated at atmospheric pressure in a quartz tube is characterized using voltage-current measurements, microphotography, optical emission spectroscopy (OES) and absorption spectroscopy. Nitrogen is applied as a sensor gas for the purpose of OES diagnostic. The density of argon metastable atoms Ar(3P2) is determined using tunable diode laser absorption spectroscopy (TDLAS). Using a plasma chemical model the measured OES data are applied for the characterization of the plasma conditions. Between intense positive pulses the discharge current oscillates with a damped amplitude. It is established that an electric current flows in this discharge not only through a thin plasma filament that is observed in the discharge image but also through the whole cross section of the quartz tube. A diffuse plasma fills the quartz tube during a time between intense current pulses. Ionization waves are propagating in this plasma between the spike and the grounded area of the tube producing thin plasma channels. The diameter of these channels increases during the pause between the propagation of ionization waves probably because of thermal expansion and diffusion. Inside the channels electron densities of ˜2 × 1013 cm-3, argon metastable densities ˜1014 cm-3 and a reduced electric field about 10 Td are determined.

  6. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Science.gov (United States)

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  7. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  8. Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Yan Shu-Bin; Liu Tao; Geng Tao; Zhang Tian-Cai; Peng Kun-Chi; Wang Jun-Min

    2004-01-01

    Absorption spectra of cold caesium atoms confined in a magneto-optical trap are measured around D2 line at 852nm with a weak probe beam. Absorption reduction dip due to electromagnetically induced transparency (EIT)effect induced by the cooling/trapping field in a V-type three-level system and a gain peak near the cycling transition are clearly observed. Several mechanisms mixed with EIT effect in a normal V-type three-level system are briefly discussed. A simple theoretical analysis based on a dressed-state model is presented for interpretation of the absorption spectra.

  9. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    Science.gov (United States)

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  10. High sensitivity ultra-broad-band absorption spectroscopy of inductively coupled chlorine plasma

    OpenAIRE

    Marinov, Daniil; Foucher, Mickaël; Campbell, Ewen; Brouard, Mark; Chabert, Pascal; Booth, Jean-Paul

    2016-01-01

    International audience We propose a method to measure the densities of vibrationally excited Cl 2 (v) molecules in levels up to v = 3 in pure chlorine inductively coupled plasmas. The absorption continuum of Cl 2 in the 250 – 450 nm spectral range is deconvoluted into the individual components originating from the different vibrational levels of the ground state, using a set of ab-initio absorption cross sections. It is shown that gas heating at constant pressure is the major depletion mec...

  11. Actinides in molecules: exotic properties probed by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Den Auwer, C.; Moisy, P.; Guilbaud, P.; Guillaumont, D.; Simoni, E.; Conradson, S.D

    2004-07-01

    Dealing with actinide elements in molecular chemistry may result in particularly attractive and exotic physico-chemical properties. In solution, one of the spectroscopic tools able to selectively probe the structural or electronic properties of these molecules is the X-ray absorption process. Different aspects of absorption edge or EXAFS analysis related to actinide studies are presented, including phenomenological and semi-quantitative approaches. (authors)

  12. Vacuum-UV spectroscopy of interstellar ice analogs. II. Absorption cross-sections of nonpolar ice molecules

    CERN Document Server

    Cruz-Diaz, G A; Chen, Y -J; Yih, T -S

    2014-01-01

    Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cros...

  13. VUV absorption spectroscopy measurements of the role of fast neutral atoms in high-power gap breakdown

    Energy Technology Data Exchange (ETDEWEB)

    FILUK,A.B.; BAILEY,JAMES E.; CUNEO,MICHAEL E.; LAKE,PATRICK WAYNE; NASH,THOMAS J.; NOACK,DONALD D.; MARON,Y.

    2000-03-20

    The maximum power achieved in a wide variety of high-power devices, including electron and ion diodes, z pinches, and microwave generators, is presently limited by anode-cathode gap breakdown. A frequently-discussed hypothesis for this effect is ionization of fast neutral atoms injected throughout the anode-cathode gap during the power pulse. The authors describe a newly-developed diagnostic tool that provides the first direct test of this hypothesis. Time-resolved vacuum-ultraviolet absorption spectroscopy is used to directly probe fast neutral atoms with 1 mm spatial resolution in the 10 mm anode-cathode gap of the SABRE 5 MV, 1 TW applied-B ion diode. Absorption spectra collected during Ar RF glow discharges and with CO{sub 2} gas fills confirm the reliability of the diagnostic technique. Throughout the 50--100 ns ion diode pulses no measurable neutral absorption is seen, setting upper limits of 0.12--1.5 x 10{sup 14} cm{sup {minus}3} for ground state fast neutral atom densities of H, C, N, O, F. The absence of molecular absorption bands also sets upper limits of 0.16--1.2 x 10{sup 15} cm{sup {minus}3} for common simple molecules. These limits are low enough to rule out ionization throughout the gap as a breakdown mechanism. This technique can now be applied to quantify the role of neutral atoms in other high-power devices.

  14. Challenges for energy dispersive X-ray absorption spectroscopy at the ESRF: microsecond time resolution and Mega-bar pressures

    International Nuclear Information System (INIS)

    This Thesis concerns the development of two different applications of energy-dispersive X-ray absorption spectroscopy at the ESRF: time-resolved studies pushed to the microsecond time resolution and high-pressure studies at the limit of the Mega-bar pressures. The work has been developed in two distinct parts, and the underlying theme has been the exploitation of the capabilities of an X-ray absorption spectrometer in dispersive geometry on a third generation synchrotron source. For time-resolved studies, the study of the triplet excited state following a laser excitation of Pt2(P2O5H2)44- has been chosen to push the technique to the microsecond time resolution. In the high-pressure part, the suitability of the energy dispersive X-ray absorption spectrometer for high-pressure studies using diamond anvils cell is stressed. Some technical developments carried out on beamline ID24 are discussed. Finally, the most extensive scientific part concerns a combined X-ray absorption and diffraction study of InAs under pressure. (author)

  15. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author)

  16. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    Directory of Open Access Journals (Sweden)

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  17. Microsecond X-ray Absorption Spectroscopy Identification of Co(I) Intermediates in Cobaloxime-Catalyzed Hydrogen Evolution.

    Science.gov (United States)

    Smolentsev, Grigory; Cecconi, Bianca; Guda, Alexander; Chavarot-Kerlidou, Murielle; van Bokhoven, Jeroen A; Nachtegaal, Maarten; Artero, Vincent

    2015-10-19

    Rational development of efficient photocatalytic systems for hydrogen production requires understanding the catalytic mechanism and detailed information about the structure of intermediates in the catalytic cycle. We demonstrate how time-resolved X-ray absorption spectroscopy in the microsecond time range can be used to identify such intermediates and to determine their local geometric structure. This method was used to obtain the solution structure of the Co(I) intermediate of cobaloxime, which is a non-noble metal catalyst for solar hydrogen production from water. Distances between cobalt and the nearest ligands including two solvent molecules and displacement of the cobalt atom out of plane formed by the planar ligands have been determined. Combining in situ X-ray absorption and UV/Vis data, we demonstrate how slight modification of the catalyst structure can lead to the formation of a catalytically inactive Co(I) state under similar conditions. Possible deactivation mechanisms are discussed. PMID:26388205

  18. [The retrieval of ozone column densities by passive differential optical absorption spectroscopy during summer at Zhongshan Station, Antarctic].

    Science.gov (United States)

    Luo, Yu-Han; Liu, Wen-Qing; Bian, Lin-Gen; Lu, Chang-Gui; Xie, Pin-Hua; Si, Fu-Qi; Sun, Li-Guang

    2011-02-01

    Daily ozone column densities were monitored by Passive DOAS (differential optical absorption spectroscopy) from December 10th, 2008 to Feb 19th, 2009 at Zhongshan Station, Antarctic (69 degrees 22'24" S, 76 degrees 22'14" E). Considering the absorption of O3, OClO, NO2, O4, BrO and the Ring effect, ozone slant column densities were retrieved using the zenith scattered sunlight as the light source. The results showed that there was no obvious "ozone hole" during the monitoring period, but ozone VCD (vertical column density) had greatly changed within short time scale, especially in middle December and early February. The analysis of passive DOAS and Brewer measurements of ozone VCD showed good agreement with the correlative coefficient of 0.863, while satellite board OMI measurements with the correlative coefficient of 0.840, which confirmed the validity of the monitoring of Passive DOAS. PMID:21510403

  19. Metalloprotein active site structure determination: synergy between X-ray absorption spectroscopy and X-ray crystallography.

    Science.gov (United States)

    Cotelesage, Julien J H; Pushie, M Jake; Grochulski, Pawel; Pickering, Ingrid J; George, Graham N

    2012-10-01

    Structures of metalloprotein active sites derived from X-ray crystallography frequently contain chemical anomalies such as unexpected atomic geometries or elongated bond-lengths. Such anomalies are expected from the known errors inherent in macromolecular crystallography (ca. 0.1-0.2Å) and from the lack of appropriate restraints for metal sites which are often without precedent in the small molecule structure literature. Here we review the potential of X-ray absorption spectroscopy to provide information and perspective which could aid in improving the accuracy of metalloprotein crystal structure solutions. We also review the potential problem areas in analysis of the extended X-ray absorption fine structure (EXAFS) and discuss the use of density functional theory as another possible source of geometrical restraints for crystal structure analysis of metalloprotein active sites.

  20. Sub-Doppler direct infrared laser absorption spectroscopy in fast ion beams: The fluorine hyperfine structure of HF +

    Science.gov (United States)

    Coe, J. V.; Owrutsky, J. C.; Keim, E. R.; Agman, N. V.; Hovde, D. C.; Saykally, R. J.

    1989-04-01

    We report the development of a new general technique for measuring vibration-rotation spectra of molecular ions with sub-Doppler resolution and with accurate determination of the mass and number density of the carriers of all spectral features. With this method, called direct laser absorption spectroscopy in fast ion beams (DLASFIB), we have carried out the first observation of direct absorption of photons by ions in a fast ion beam. Hyperfine-resolved vibration-rotation transitions of HF+ have been measured, and along with optical combination differences and laser magnetic resonance data, have been analyzed to yield the fluorine hyperfine parameters a, b, c and d for both v=0 and v=1 in the X 2Π state. Comparisons with many-body perturbation theory results are presented.

  1. Sub-Doppler direct infrared laser absorption spectroscopy in fast ion beams: The fluorine hyperfine structure of HF/sup +/

    Energy Technology Data Exchange (ETDEWEB)

    Coe, J.V.; Owrutsky, J.C.; Keim, E.R.; Agman, N.V.; Hovde, D.C.; Saykally, R.J.

    1989-04-15

    We report the development of a new general technique for measuring vibration--rotation spectra of molecular ions with sub-Doppler resolution and with accurate determination of the mass and number density of the carriers of all spectral features. With this method, called direct laser absorption spectroscopy in fast ion beams (DLASFIB), we have carried out the first observation of direct absorption of photons by ions in a fast ion beam. Hyperfine-resolved vibration--rotation transitions of HF/sup +/ have been measured, and along with optical combination differences and laser magnetic resonance data, have been analyzed to yield the fluorine hyperfine parameters a, b, c and d for both v = 0 and v = 1 in the X /sup 2/Pi state. Comparisons with many-body perturbation theory results are presented.

  2. Sub-Doppler direct infrared laser absorption spectroscopy in fast ion beams: The fluorine hyperfine structure of HF+

    International Nuclear Information System (INIS)

    We report the development of a new general technique for measuring vibration--rotation spectra of molecular ions with sub-Doppler resolution and with accurate determination of the mass and number density of the carriers of all spectral features. With this method, called direct laser absorption spectroscopy in fast ion beams (DLASFIB), we have carried out the first observation of direct absorption of photons by ions in a fast ion beam. Hyperfine-resolved vibration--rotation transitions of HF+ have been measured, and along with optical combination differences and laser magnetic resonance data, have been analyzed to yield the fluorine hyperfine parameters a, b, c and d for both v = 0 and v = 1 in the X 2Pi state. Comparisons with many-body perturbation theory results are presented

  3. High energy resolution five-crystal spectrometer for high quality fluorescence and absorption measurements on an x-ray absorption spectroscopy beamline

    International Nuclear Information System (INIS)

    Fluorescence detection is classically achieved with a solid state detector (SSD) on x-ray absorption spectroscopy (XAS) beamlines. This kind of detection however presents some limitations related to the limited energy resolution and saturation. Crystal analyzer spectrometers (CAS) based on a Johann-type geometry have been developed to overcome these limitations. We have tested and installed such a system on the BM30B/CRG-FAME XAS beamline at the ESRF dedicated to the structural investigation of very dilute systems in environmental, material and biological sciences. The spectrometer has been designed to be a mobile device for easy integration in multi-purpose hard x-ray synchrotron beamlines or even with a laboratory x-ray source. The CAS allows to collect x-ray photons from a large solid angle with five spherically bent crystals. It will cover a large energy range allowing to probe fluorescence lines characteristic of all the elements from Ca (Z = 20) to U (Z = 92). It provides an energy resolution of 1–2 eV. XAS spectroscopy is the main application of this device even if other spectroscopic techniques (RIXS, XES, XRS, etc.) can be also achieved with it. The performances of the CAS are illustrated by two experiments that are difficult or impossible to perform with SSD and the complementarity of the CAS vs SSD detectors is discussed.

  4. Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X.-ray absorption and Raman spectroscopy

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; van Vegten, Niels; Baiker, Alfons;

    2009-01-01

    The structure of palladium during the total combustion of methane has been studied by a combination of the complementary in situ techniques X-ray absorption spectroscopy, Raman spectroscopy and X-ray diffraction. The study demonstrates that finely dispersed and oxidized palladium is most active f...

  5. Line-Parameter Measurements and Stringent Tests of Line-Shape Models Based on Cavity-Enhanced Absorption Spectroscopy

    Science.gov (United States)

    Bielska, Katarzyna; Fleisher, Adam J.; Hodges, Joseph T.; Lin, Hong; Long, David A.; Reed, Zachary D.; Sironneau, Vincent; Truong, Gar-Wing; Wójtewicz, Szymon

    2014-06-01

    Laser methods that are based on cavity-enhanced absorption spectroscopy (CEAS) are well-suited for measuring molecular line parameters under conditions of low optical density, and as such they are complementary to broadband Fourier-transform spectroscopy (FTS) techniques. Attributes of CEAS include relatively low detection limits, accurate and precise detuning axes and high fidelity measurements of line shape. In many cases these performance criteria are superior to those obtained using direct laser absorption spectroscopy and FTS-based systems. In this presentation we will survey several examples of frequency-stabilized cavity ring-down spectroscopy (FS-CRDS)1 measurements obtained with laser spectrometers developed at the National Institute of Standards and Technology (NIST) in Gaithersburg Maryland. These experiments, which are motivated by atmospheric monitoring and remote-sensing applications that require high-precision and accuracy, involve nearinfrared transitions of carbon dioxide, water, oxygen and methane. We discuss spectra with signal-to-noise ratios exceeding 106, frequency axes with absolute uncertainties in the 10 kHz to 100 kHz range and linked to a Cs clock, line parameters with relative uncertainties at the 0.2 % level and isotopic ratios measured with a precision of 0.03 %. We also present FS-CRDS measurements of CO2 line intensities which are measured at atmospheric concentration levels and linked to gravimetric standards for CO2 in air, and we quantify pressure-dependent deviations between various theoretical line profiles and measured line shapes. Finally we also present recent efforts to increase data throughput and spectral coverage in CEAS experiments. We describe three new high-bandwidth CEAS techniques including frequency-agile, rapid scanning spectroscopy (FARS)2, which enables continuous-wave measurements of cavity mode linewidth and acquisition of ringdown decays with no dead time during laser frequency tuning, heterodyne

  6. X-Ray Absorption Spectroscopy as a Probe of Microbial Sulfur Biochemistry: the Nature of Bacterial Sulfur Globules Revisited ▿

    OpenAIRE

    George, Graham N.; Gnida, Manuel; Dennis A Bazylinski; Prince, Roger C.; Pickering, Ingrid J.

    2008-01-01

    The chemical nature of the sulfur in bacterial sulfur globules has been the subject of controversy for a number of years. Sulfur K-edge X-ray absorption spectroscopy (XAS) is a powerful technique for probing the chemical forms of sulfur in situ, but two groups have used it with very different conclusions. The root of the controversy lies with the different detection strategies used by the two groups, which result in very different spectra. This paper seeks to resolve the controversy. We exper...

  7. Evaluation of emery dust on the manufacture of abrasives by neutron activation analysis and atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    In this work it is presented an evaluation on the degree of contamination by emery dust in a working area where abrasives are manufactured, in a factory located in the industrial area of Toluca City by neutron activation analysis and atomic absorption spectroscopy. The samples were collected on Whatman filters and attacked with hot concentrated HCl. The elements founded were: Al, Si, V, Mg, Br, Mn, Ni, Zn, Fe, Cr, Ca and Pb. They are a risk for the health of the workers. (Author)

  8. A Scanning Multi-Axis Differential Optical Absorption Spectroscopy System for Measurement of Tropospheric NO2 in Beijing

    Institute of Scientific and Technical Information of China (English)

    LI Ang; XIE Pin-Hua; LIU Cheng; LIU Jian-Guo; LIU Wen-Qing

    2007-01-01

    A scanning multi-axis differential optical absorption spectroscopy (DOAS) system is developed for monitoring tropospheric NO2 abundance. Measurements at different viewing angles near the horizon can be performed sequentially with one telescope collecting scattered sunlight reflected by a moving mirror. Tropospheric NO2 diurnal variations can be derived from slant column densities (SCDs) of different elevation angles. The result from a field campaign in Beijing in summer of 2005 reveals potential possibility for the monitoring of tropospheric NO2 by multi-axis DOAS technique.

  9. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    Science.gov (United States)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    Formaldehyde (CH2O) is the most abundant aldehyde in the atmosphere, and it strongly affects photochemistry through its photolysis. We describe simultaneous measurements of CH2O and nitrogen dioxide (NO2) using broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region. The light source consists of a continuous-wave diode laser focused into a Xenon bulb to produce a plasma that emits high-intensity, broadband light. The plasma discharge is optically filtered and coupled into a 1 m optical cavity. The reflectivity of the cavity mirrors is 0.99930 ± 0.00003 (1- reflectivity = 700 ppm loss) at 338 nm, as determined from the known Rayleigh scattering of He and zero air. This mirror reflectivity corresponds to an effective path length of 1.43 km within the 1 m cell. We measure the cavity output over the 315-350 nm spectral region using a grating monochromator and charge-coupled device array detector. We use published reference spectra with spectral fitting software to simultaneously retrieve CH2O and NO2 concentrations. Independent measurements of NO2 standard additions by broadband cavity-enhanced absorption spectroscopy and cavity ring-down spectroscopy agree within 2 % (slope for linear fit = 1.02 ± 0.03 with r2 = 0.998). Standard additions of CH2O measured by broadband cavity-enhanced absorption spectroscopy and calculated based on flow dilution are also well correlated, with r2 = 0.9998. During constant mixed additions of NO2 and CH2O, the 30 s measurement precisions (1σ) of the current configuration were 140 and 210 pptv, respectively. The current 1 min detection limit for extinction measurements at 315-350 nm provides sufficient sensitivity for measurement of trace gases in laboratory experiments and ground-based field experiments. Additionally, the instrument provides highly accurate, spectroscopically based trace gas detection that may complement higher precision techniques based on non-absolute detection methods. In addition to

  10. X-ray absorption spectroscopy and atomic force microscopy study of bias-enhanced nucleation of diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.M.; Jimenez, I.; Vazquez, L.; Gomez-Aleixandre, C.; Albella, J.M.; Sanchez, O. [Instituto de Ciencia de Materiales, C.S.I.C., Cantoblanco28049, Madrid (Spain); Terminello, L.J. [Lawrence Livermore National Laboratory, Livermore, California94551 (United States); Himpsel, F.J. [Department of Physics, University of Wisconsin--Madison, Madison, Wisconsin53706 (United States)

    1998-04-01

    The bias-enhanced nucleation of diamond on Si(100) has been studied by x-ray absorption near-edge spectroscopy (XANES) and atomic force microscopy, two techniques well suited to characterize nanometric crystallites. Diamond nuclei of {approximately}15nm are formed after 5 min of bias-enhanced treatment. The number of nuclei and its size increases with the time of application of the bias voltage. A nanocrystalline diamond film is attained after 20 min of bias-enhanced nucleation. At the initial nucleation stages, the Si substrate appears covered with diamond crystallites and graphite, without SiC being detected by XANES. {copyright} {ital 1998 American Institute of Physics.}

  11. Fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Dong Chen; Wenqing Liu; Yujun Zhang; Jianguo Liu; Ruifeng Kan; Min Wang; Xi Fang; Yiben Cui

    2007-01-01

    Tunable diode laser based gas detectors are now being used in a wide variety of applications for safety and environmental interest. A fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy (TDLAS) is developed, the laser used is a telecommunication near infrared distributed feed-back (DFB) tunable diode laser, combining with wavelength modulation specby combining optical fiber technique. An on-board reference cell provides on-line sensor calibration and almost maintenance-free operation. The sensor is suitable for large area field H2S monitoring application.

  12. A flow-through x-ray absorption spectroscopy cell for characterization of powder catalysts in the working state

    Science.gov (United States)

    Odzak, J. F.; Argo, A. M.; Lai, F. S.; Gates, B. C.; Pandya, K.; Feraria, L.

    2001-10-01

    We report the design and demonstration of an x-ray absorption spectroscopy (XAS) cell used for the characterization of solid (powder) catalysts in operation with gas-phase reactants. The use of powder samples removes complications arising from mass transfer limitations in pressed wafer samples, the typical form of catalyst used in other in situ XAS cells. The new cell allows collection of XAS data at temperatures ranging from about 230 to 470 K, gas flow rates ranging from about 10 to 500 ml min-1, and pressures ranging from about 1 to 3 atm. The cell is designed to function nearly as a plug flow reactor.

  13. Electronic Absorption Spectroscopy and Franck-Condon Simulations for HC7H and MeC7H

    Science.gov (United States)

    Haenni, Benjamin C.; Shaffer, Christopher J.; Stanton, John F.; McMahon, Robert J.

    2014-06-01

    Highly unsaturated carbon chains of the HCnH family are important to the studies of combustion chemistry and the interstellar medium (ISM). Several members of this family (n=2,4,6) have been detected in the ISM by infrared spectroscopy. We have successfully matrix-isolated HC7H and MeC7H species and studied them using electronic absorption, FTIR, and EPR spectroscopy. The ground state potential energy surface was explored using ab initio (CCSD(T)/cc-pVTZ (fc)) methods to discover triplet minima for both species. Equation of motion coupled cluster calculations (EOM-CCSD/ANO1) of low-lying excited states allowed for Franck-Condon simulations. The comparison of the simulated spectra to the vibronic progression observed experimentally in the UV/Vis spectra permits assignment of a linear ground state triplet structure for both HC7H and MeC7H.

  14. Compact supercontinuum sources based on tellurite suspended core fibers for absorption spectroscopy beyond 2 μm

    Science.gov (United States)

    Strutynski, Clément; Picot-Clémente, Jérémy; Désévédavy, Frédéric; Jules, Jean-Charles; Gadret, Grégory; Kibler, Bertrand; Smektala, Frédéric

    2016-07-01

    We present the experimental development of two compact supercontinuum laser sources based on tellurite suspended core fibers with and without tapering post-processing. The pumping scheme makes use of commercially-available nJ-level femtosecond and picosecond fiber lasers at 1.56 and 2.06 μm respectively. The resulting spectral broadening that occurs in a few tens-of-centimeters of tellurite fiber allows coverage of the convenient molecular fingerprint region between 2 and 3 μm. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements in the mid-infrared by means of the supercontinuum absorption spectroscopy technique. Experimental results are in fairly good agreement with both numerical simulations of supercontinuum generation and spectroscopic predictions of the HITRAN database.

  15. Optical absorption, 31P NMR, and photoluminescence spectroscopy study of copper and tin co-doped barium–phosphate glasses

    International Nuclear Information System (INIS)

    The optical and structural properties of 50P2O5:50BaO glasses prepared by melting have been investigated for additive concentrations of 10 and 1 mol% of CuO and SnO dopants. Absorption and photoluminescence spectroscopies were employed in the optical characterization, whereas structural properties were assessed by 31P nuclear magnetic resonance (NMR) spectroscopy. Residual Cu2+ was detectable by absorption spectroscopy for the highest concentration of CuO and SnO. More prominently, the optical data suggests contributions from both twofold-coordinated Sn centers and Cu+ ions to light absorption and emission in the glasses. The luminescence depends strongly on excitation wavelength for the highest concentration of dopants where a blue–white emission is observed under short-wavelength excitation (e.g., 260 nm) largely due to tin, while an orange luminescence is exhibited for longer excitation wavelengths (e.g., 360 nm) essentially due to Cu+ ions. On the other hand, dissimilar luminescent properties were observed in connection to Cu+ ions for the lowest concentration studied, as the copper ions were preferentially excited in a narrower range at shorter wavelengths near tin centers absorption. The structural analyses revealed the glass matrix to be composed essentially of Q2 (two bridging oxygens) and Q1 (one bridging oxygen) phosphate tetrahedra. A slight increase in the Q1/Q2 ratio reflected upon SnO doping alone suggests a major incorporation of tin into the glass network via P–O–Sn bonds, compatible with the 2-coordinated state attributed to the luminescent Sn centers. However, a significant increase in the Q1/Q2 ratio was indicated with the incorporation of copper at the highest concentration, consistent with a key role of the metal ions as network modifiers. Thus, the change in Cu+ optical properties concurs with different distributions of local environments around the ions induced by variation in metal ion concentration. Luminescence decay curve

  16. Interstellar X-Ray Absorption Spectroscopy of the Crab Pulsar with the LETGS

    Science.gov (United States)

    Paerels, Frits; Weisskopf, Martin C.; Tennant, Allyn F.; ODell, Stephen L.; Swartz, Douglas A.; Kahn, Steven M.; Behar, Ehud; Becker, Werner; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We study the interstellar X-ray absorption along the line of sight to the Crab Pulsar. The Crab was observed with the Low Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory, and the pulsar, a point source, produces a full resolution spectrum. The continuum spectrum appears smooth, and we compare its parameters with other measurements of the pulsar spectrum. The spectrum clearly shows absorption edges due to interstellar Ne, Fe, and O. The O edge shows spectral structure that is probably due to O bound in molecules or dust. We search for near-edge structure (EXAFS) in the O absorption spectrum. The Fe L absorption spectrum is largely due to a set of unresolved discrete n=2-3 transitions in neutral or near-neutral Fe, and we analyze it using a new set of dedicated atomic structure calculations, which provide absolute cross sections. In addition to being interesting in its own right, the ISM absorption needs to be understood in quantitative detail in order to derive spectroscopic constraints on possible soft thermal radiation from the pulsar.

  17. Simultaneous and continuous multiple wavelength absorption spectroscopy on nanoliter volumes based on frequency-division multiplexing fiber-loop cavity ring-down spectroscopy.

    Science.gov (United States)

    Waechter, Helen; Munzke, Dorit; Jang, Angela; Loock, Hans-Peter

    2011-04-01

    We demonstrate a method for measuring optical loss simultaneously at multiple wavelengths with cavity ring-down spectroscopy (CRD). Phase-shift CRD spectroscopy is used to obtain the absorption of a sample from the phase lag of intensity modulated light that is entering and exiting an optical cavity. We performed dual-wavelength detection by using two different laser light sources and frequency-division multiplexing. Each wavelength is modulated at a separate frequency, and a broadband detector records the total signal. This signal is then demodulated by lock-in amplifiers at the corresponding two frequencies allowing us to obtain the phase-shift and therefore the optical loss at several wavelengths simultaneously without the use of a dispersive element. In applying this method to fiber-loop cavity ring-down spectroscopy, we achieve detection at low micromolar concentrations in a 100 nL liquid volume. Measurements at two wavelengths (405 and 810 nm) were performed simultaneously on two dyes each absorbing at mainly one of the wavelengths. The respective concentrations could be quantified independently in pure samples as well as in mixtures. No crosstalk between the two channels was observed, and a minimal detectable absorbance of 0.02 cm(-1) was achieved at 405 nm. PMID:21355542

  18. Vanadium K-edge X-ray absorption spectroscopy of bromoperoxidase from Ascophyllum nodosum

    Energy Technology Data Exchange (ETDEWEB)

    Arber, J.M.; de Boer, E.; Garner, C.D.; Hasnain, S.S.; Wever, R. (Univ. of Manchester (England))

    1989-09-19

    Bromoperoxidase from Ascophyllum nodusum was the first vanadium-containing enzyme to be isolated. X-ray absorption spectra have now been collected in order to investigate the coordination of vanadium in the native, native plus bromide, native plus hydrogen peroxide, and dithionite-reduced forms of the enzyme. The edge and X-ray absorption near-edge structures show that, in the four samples studied, it is only on reduction of the native enzyme that the metal site is substantially altered. In addition, these data are consistent with the presence of vanadium(IV) in the reduced enzyme and vanadium(V) in the other samples. Extended X-ray absorption fine structure data confirm that there are structural changes at the metal site on reduction of the native enzyme, notably a lengthening of the average inner-shell distance, and the presence of terminal oxygen together with histidine and oxygen-donating residues.

  19. Absorption spectroscopy of adenine, 9-methyladenine, and 2-aminopurine in helium nanodroplets

    NARCIS (Netherlands)

    S. Smolarek; A.M. Rijs; W.J. Buma; M. Drabbels

    2010-01-01

    High-resolution absorption spectra of adenine, 9-methyladenine and 2-aminopurine in helium nanodroplets have been recorded. In contrast to molecular beam experiments, large variations in linewidths are observed for adenine and 9-methyladenine. At the same time, the spectrum of 2-aminopurine remains

  20. Grazing incidence reflectivity and total electron yield effects in soft x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Alders, D; Hibma, T; Sawatzky, G.A; Cheung, K.C.; van Dorssen, G.E.; Roper, M.D.; Padmore, H.A.; van der Laan, G.; Vogel, J; Sacchi, M.

    1997-01-01

    We report on a study of grazing incidence absorption and reflection spectra of NiO in the region of the Ni 2p edge. The aim is to evaluate the distortion of the near edge spectrum by the critical angle behavior of individual components within the spectrum. This can be used to improve the separation

  1. Mid- and far-infrared absorption spectroscopy of Titan’s aerosols analogues

    Science.gov (United States)

    Gautier, Thomas; Carrasco, Nathalie; Mahjoub, Ahmed; Vinatier, Sandrine; Giuliani, Alexandre; Szopa, Cyril; Anderson, Carrie M.; Correia, Jean-Jacques; Dumas, Paul; Cernogora, Guy

    2012-09-01

    In this work we present mid- and far-infrared absorption spectra of Titan’s aerosol analogues produced in the PAMPRE experimental setup. The evolution of the linear absorption coefficient ε (cm-1) is given as a function of the wavenumber. We provide a complete dataset regarding the influence that the concentration of methane vapor in the gas mixture has on the tholin spectra. Among other effects, the intensity of the 2900 cm-1 (3.4 μm) pattern (attributed to methyl stretching modes) increases when the methane concentration increases. More generally, tholins produced with low methane concentrations seem to be more amine based polymers, whereas tholins produced with higher methane concentrations contains more aliphatic carbon based structures. Moreover, it is shown that the position of the bands around 2900 cm-1 depends on the chemical environment of the methyl functional group. We conclude that the presence of these absorption bands in Titan’s atmosphere, as measured with the VIMS instrument onboard Cassini is in agreement with an aerosol contribution. We also compare the far-infrared spectrum of tholin to spectra of Titan’s aerosols derived from recent Cassini-CIRS observations displaying many similarities, particularly with absorption bands at 325 cm-1, 515 cm-1, and the methyl attributed 1380 cm-1 and 1450 cm-1 bands.

  2. Infrared reflection absorption spectroscopy study of radiation-heterogeneous processes in the system of aluminum-hexane

    International Nuclear Information System (INIS)

    Full text: Infrared reflection absorption spectroscopy (IRRAS) was applied to study the regularities of radiation conversion of hexane on the surface of aluminum. The research object was the thin polished aluminum plate by mark of AD-00 with reflection coefficient R=0.8†0.85 in infrared range λ=2.2†15 μ . As adsorbate unsaturated vapors of spectroscopy clear hexane were used. The absorption of hexane (C2H14) was being studied manometric at pressures P=(0.1†1.0)·102 Pa , what corresponded to monolayer value of 1-10. The samples were irradiated with γ-quanta of 60Co with D=1.03 Gy·s-1 doze rate. Infrared reflection spectrum when linear-polarized radiation fall on the sample under angle ψ=10o was measured by spectrophotometer 'Specord 71 JR' in diapason of 4000-650cm-1 at the temperature by mean of special reflecting arrangements. Formation of molecular hydrogen (H2) and other gaseous products of decomposition were controlled by chromotographical and infrared spectroscopical methods. The analysis of hexane infrared absorption spectra after radiation-stimulated adsorption on the surface of aluminum, points out the formation of H-bonded hydrocarbon complex ( ν∼2680cm-1) with much loosening of C-H bond (the molecular form of absorption) and the possibility of proceeding dissociative absorption with formation of metal-alkyls (ν∼2880, 2920, 2970 cm-1). Probability of the last mentioned process, which proceeds in the most defective centers, increases with increasing of γ-radiation doze. It was established that the radiation processes in hetero system Al-ads.C6H14 accelerate the radiolysis of hexane. At all these the radiation decomposition of hexane in hetero system Al-ads.C6H14 is accompanied by formation the surface hydrides (ν∼1700-2000 cm-1), acetylene (ν∼3200-3300 cm-1), ethylene (ν∼980 cm-1), and also gaseous products of molecular hydrogen decomposition (H2) and hydrocarbons C1-C5 (bands with maxima 770, 790, 825, 900 and 950 cm-1 concern

  3. Near-edge X-ray absorption fine-structure spectroscopy of naphthalene diimide-thiophene co-polymers

    International Nuclear Information System (INIS)

    Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy is an important tool for probing the structure of conjugated polymer films used in organic electronic devices. High-performance conjugated polymers are often donor-acceptor co-polymers which feature a repeat unit with multiple functional groups. To facilitate better application of NEXAFS spectroscopy to the study of such materials, improved understanding of the observed NEXAFS spectral features is required. In order to examine how the NEXAFS spectrum of a donor-acceptor co-polymer relates to the properties of the sub-units, a series of naphthalene diimide-thiophene-based co-polymers have been studied where the nature and length of the donor co-monomer has been systematically varied. The spectra of these materials are compared with that of a thiophene homopolymer and naphthalene diimide monomer enabling peak assignment and the influence of inter-unit electronic coupling to be assessed. We find that while it is possible to attribute peaks within the π* manifold as arising primarily due to the naphthalene diimide or thiophene sub-units, very similar dichroism of these peaks is observed indicating that it may not be possible to separately probe the molecular orientation of the separate sub-units with carbon K-edge NEXAFS spectroscopy

  4. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    Energy Technology Data Exchange (ETDEWEB)

    Tseplin, E.E. [Institute of Molecular and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, October Prospect 151, Ufa 450075 (Russian Federation)], E-mail: tzeplin@mail.ru; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G. [Institute of Molecular and Crystal Physics, Ufa Research Centre, Russian Academy of Sciences, October Prospect 151, Ufa 450075 (Russian Federation)

    2009-04-15

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  5. Multireference X-Ray Emission and Absorption Spectroscopy calculations from Monte Carlo Configuration Interaction

    CERN Document Server

    Coe, J P

    2015-01-01

    We adapt the method of Monte Carlo configuration interaction to calculate core-hole states and use this for the computation of X-ray emission and absorption values. We consider CO, CH$_{4}$, NH$_{3}$, H$_{2}$O, HF, HCN, CH$_{3}$OH, CH$_{3}$F, HCl and NO using a 6-311G** basis. We also look at carbon monoxide with a stretched geometry and discuss the dependence of its results on the cutoff used. The Monte Carlo configuration interaction results are compared with EOM-CCSD values for X-ray emission and with experiment for X-ray absorption. Oscillator strengths are also computed and we quantify the multireference nature of the wavefunctions to suggest when approaches based on a single reference would be expected to be successful.

  6. Determination of metallic impurities in raw materials for radioisotope production by atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Atomic absorption spectrometry has been used for the determination of traces of calcium in scandium oxide, copper in zinc, iron in cobalt oxide, manganese In ferric oxide, nickel in copper and zinc in gallium oxide. The influences on the sensitivities arising from the hollow cathode currents, the gas pressures and the acid concentrations have been considered. A study of the interferences from the metallic matrices has also been performed, the interference due to the absorption of the manganese radiation by the atoms of iron being the most outstanding . In order to remove the interfering elements and increase sensitivity, pre-concentration methods have been tested. The addition methods has also been used. (Author) 14 refs

  7. Single shot near edge x-ray absorption fine structure spectroscopy in the laboratory

    Science.gov (United States)

    Mantouvalou, I.; Witte, K.; Martyanov, W.; Jonas, A.; Grötzsch, D.; Streeck, C.; Löchel, H.; Rudolph, I.; Erko, A.; Stiel, H.; Kanngießer, B.

    2016-05-01

    With the help of adapted off-axis reflection zone plates, near edge X-ray absorption fine structure spectra at the C and N K-absorption edge have been recorded using a single 1.2 ns long soft X-ray pulse. The transmission experiments were performed with a laser-produced plasma source in the laboratory rendering time resolved measurements feasible independent on large scale facilities. A resolving power of E/ΔE ˜ 950 at the respective edges could be demonstrated. A comparison of single shot spectra with those collected with longer measuring time proves that all features of the used reference samples (silicon nitrate and polyimide) can be resolved in 1.2 ns. Hence, investigations of radiation sensitive biological specimen become possible due to the high efficiency of the optical elements enabling low dose experiments.

  8. Excited-State Dynamics of Carotenoids Studied by Femtosecond Transient Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ingu; Pang, Yoonsoo [Department of Physics and Photon Science, Gwangju (Korea, Republic of); Lee, Sebok [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2014-03-15

    Carotenoids, natural antenna pigments in photosynthesis share a symmetric backbone of conjugated polyenes. Contrary to the symmetric and almost planar geometries of carotenoids, excited state structure and dynamics of carotenoids are exceedingly complex. In this paper, recent infrared and visible transient absorption measurements and excitation dependent dynamics of 8'-apo-β-caroten-8'-al and 7',7'-dicyano-7'-apo-β-carotene will be reviewed. The recent visible transient absorption measurements of 8'-apo-β-caroten-8'-al in polar and nonpolar solvents will also be introduced to emphasize the complex excited-state dynamics and unsolved problems in the S{sub 2} and S{sub 1} excited states.

  9. Observation of Charged Excitons in Hole-Doped Carbon Nanotubes Using Photoluminescence and Absorption Spectroscopy

    OpenAIRE

    Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2011-01-01

    We report the first observation of trions (charged excitons), three-particle bound states consisting of one electron and two holes, in hole-doped carbon nanotubes at room temperature. When p-type dopants are added to carbon nanotube solutions, the photoluminescence and absorption peaks of the trions appear far below the E11 bright exciton peak, regardless of the dopant species. The unexpectedly large energy separation between the bright excitons and the trions is attributed to the strong elec...

  10. Observation of charged excitons in hole-doped carbon nanotubes using photoluminescence and absorption spectroscopy

    OpenAIRE

    Matsunaga, Ryusuke; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2010-01-01

    We report the first observation of trions (charged excitons), three-particle bound states consisting of one electron and two holes, in hole-doped carbon nanotubes at room temperature. When p-type dopants are added to carbon nanotube solutions, the photoluminescence and absorption peaks of the trions appear far below the E11 bright exciton peak, regardless of the dopant species. The unexpectedly large energy separation between the bright excitons and the trions is attributed to the strong elec...

  11. Total absorption γ-ray spectroscopy of beta delayed neutron emitters

    Science.gov (United States)

    Valencia, E.; Algora, A.; Tain, J. L.; Rice, S.; Agramunt, J.; Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Jordan, M. D.; Molina, F.; Estevez, E.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Eronen, T.; Garcia, A.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Kondev, F. G.; Martinez, T.; Moore, I.; Rissanen, J.; Ńystö, J.; Penttilä, H.; Kankainen, A.; Rubio, B.; Gelletly, W.; Perez, A.; Podolyak, Zs.; Regan, P. H.; Farrelly, G. F.; Weber, C.; Mendoza, E.; Igisol People

    2013-06-01

    Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.

  12. High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line

    OpenAIRE

    Wiesemeyer, Helmut; Güsten, Rolf; Heyminck, Stefan; Jacobs, Karl; Menten, Karl; Neufeld, David; Requena-Torres, Miguel Angel; Stutzki, Jürgen

    2012-01-01

    The chemical composition of the interstellar medium is determined by gas phase chemistry, assisted by grain surface reactions, and by shock chemistry. The aim of this study is to measure the abundance of the hydroxyl radical (OH) in diffuse spiral arm clouds as a contribution to our understanding of the underlying network of chemical reactions. Owing to their high critical density, the ground states of light hydrides provide a tool to directly estimate column densities by means of absorption ...

  13. Computer programs in BASIC language for atomic absorption flame spectroscopy. Part 1. Operating instructions

    International Nuclear Information System (INIS)

    These instructions describe how to use three BASIC language programs to process data from atomic absorption spectrophotometers operated in the flame mode. These programs will also control an automatic sampler if desired. The instructions cover loading the programs, responding to computer prompts, choosing among various options for processing the data, operating the automatic sampler, and producing reports. How the programs differ is also explained. Examples of computer/operator dialogue are presented for typical cases

  14. New polarisation effects in saturated absorption spectroscopy in the field of counterpropagating light waves

    Science.gov (United States)

    Brazhnikov, D. V.; Novokreshchenov, V. K.; Ignatovich, S. M.; Taichenachev, A. V.; Yudin, V. I.

    2016-05-01

    The effect of a double structure of saturated absorption resonance in the field of counterpropagating light waves interacting with atomic gas is considered, which was first studied experimentally and theoretically by Vasil'ev et al. [V.V. Vasil'ev et al., J. Exp. Theor. Phys., 112, 770 (2011)]. The effect manifests itself as a new nonlinear resonance formed as a peak in the absorption spectrum of the probe wave. The resonance is observed inside a 'conventional' dip in the spectrum of saturated absorption. Previously, this effect was theoretically described only in the frameworks of the two-level atomic model, i.e., without making allowance for degeneracy of atomic energy levels with respect to the projection of the total angular momentum and for the vector nature of light. We extend the theory of the effect to the case of real atomic systems with degenerate energy levels and arbitrary polarisations of light waves. In particular, on an example of the simple transition Fg = 1 → Fe = 0 we show that polarisation parameters of light waves may significantly affect the contrast of the new effect and the possibility of observing it at all. Conclusions of the work are confirmed both analytically and bnumerically.

  15. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy

    Science.gov (United States)

    Müller, O.; Lützenkirchen-Hecht, D.; Frahm, R.

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å-1 have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements.

  16. Quick scanning monochromator for millisecond in situ and in operando X-ray absorption spectroscopy.

    Science.gov (United States)

    Müller, O; Lützenkirchen-Hecht, D; Frahm, R

    2015-09-01

    The design and capabilities of a novel Quick scanning Extended X-ray Absorption Fine Structure (QEXAFS) monochromator are presented. The oscillatory movement of the crystal stage is realized by means of a unique open-loop driving scheme operating a direct drive torque motor. The entire drive mechanics are installed inside of a goniometer located on the atmospheric side of the vacuum chamber. This design allows remote adjustment of the oscillation frequency and spectral range, giving complete control of QEXAFS measurements. It also features a real step-scanning mode, which operates without a control loop to prevent induced vibrations. Equipped with Si(111) and Si(311) crystals on a single stage, it facilitates an energy range from 4.0 keV to 43 keV. Extended X-ray absorption fine structure spectra up to k = 14.4 Å(-1) have been acquired within 17 ms and X-ray absorption near edge structure spectra covering more than 200 eV within 10 ms. The achieved data quality is excellent as shown by the presented measurements. PMID:26429455

  17. [Study on experiment of absorption spectroscopy detection of pesticide residues of carbendazim in orange juice].

    Science.gov (United States)

    Ji, Ren-Dong; Chen, Meng-Lan; Zhao, Zhi-Min; Zhu, Xing-Yue; Wang, Le-Xin; Liu, Quan-Jin

    2014-03-01

    Absorption spectra were studied for the carbendazim, in the mixed solution of orange juice and carbendazim using spectrophotometer. The most intensive characteristic peak (285 nm) was found in the spectrum of carbendazim standard solution. Compared with the carbendazim drug solution, the peak position of absorption spectrum has the blue shift (285-280 nm) when carbendazim (0.28 mg x mL(-1))was added in the orange juice. So that we can conclude that interaction happened between the orange juice and carbendazim. Through the method of least squares fitting, the prediction models between the absorbance of orange juice and carbendazim content was obtained with a good linear relationship. The linear function model was: I = 2.41 + 9.26x, the correlation coefficient was 0.996, and the recovery was: 81%-102%. According to the regression model, we can obtain the amount of carbendazim pesticide residues in orange juice. It was verified that the method of using ultraviolet-visible absorption spectra was feasible to detect the carbendazim residues in orange juice. The result proved that it is possible to detect pesticide residues of carbendazim in orange juice, and it can meet the needs of rapid analysis. This study provides a new way for the detection of pesticide residues.

  18. Terahertz Absorption Spectroscopy of Benzamide, Acrylamide, Caprolactam, Salicylamide, and Sulfanilamide in the Solid State

    Directory of Open Access Journals (Sweden)

    Ye Jiang

    2014-01-01

    Full Text Available Terahertz (THz absorption spectra of the similarly structured molecules with amide groups including benzamide, acrylamide, caprolactam, salicylamide, and sulfanilamide in the solid phase at room temperature and 7.8 K for salicylamide are reported and compared to infrared vibrational spectral calculations using density functional theory. The results of THz absorption spectra show that the molecules have characteristic bands in the region of 0.2–2.6 THz (~7–87 cm−1. THz technique can be used to distinguish different molecules with amide groups. In the THz region benzamide has three bands at 0.83, 1.63, and 1.73 THz; the bands are located at 1.44 and 2.00 THz for acrylamide; the bands at 1.24, 1.66 and 2.12 THz are observed for caprolactam. The absorption bands are located at 1.44, 1.63, and 2.39 THz at room temperature, and at 1.22, 1.46, 1.66, and 2.41 THz at low temperature for salicylamide. The bands at 1.63, 1.78, 2.00, and 2.20 THz appear for sulfanilamide. These bands in the THz region may be related to torsion, rocking, wagging, and other modes of different groups in the molecules.

  19. Speciation of copper in a range of food types by X-ray absorption spectroscopy.

    Science.gov (United States)

    Ceko, Melanie J; Aitken, Jade B; Harris, Hugh H

    2014-12-01

    Copper (Cu) is an essential element and the effects of diets deficient in it are well established. However, the effects of long-term high copper intake are less clear. The chemical form of copper from food sources and its resultant bioavailability is a potentially important factor in its biological activity. X-ray Absorption Near-Edge Structure (XANES) was used to determine the chemical forms of Cu in a range of foods that would make significant contributions to total copper absorption in a standard diet, as well as a chlorinated tap water sample. Analysis of the Cu K-edge XANES spectra suggested that Cu existed in both Cu(I) and Cu(II) forms, with the following five model compounds: Cu(I) acetate; Cu(II) acetate; Cu(I)-glutathione; Cu(I)-cysteine; and, Cu(II)-histidine being fitted to the sample spectra. This research suggested that the absorption of dietary copper could vary markedly dependent on the types of food consumed and the different bioavailability of the Cu species they contain. PMID:24996304

  20. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    Science.gov (United States)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  1. A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.

    Science.gov (United States)

    Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei

    2015-09-01

    A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.

  2. Solvation structure of the halides from x-ray absorption spectroscopy

    Science.gov (United States)

    Antalek, Matthew; Pace, Elisabetta; Hedman, Britt; Hodgson, Keith O.; Chillemi, Giovanni; Benfatto, Maurizio; Sarangi, Ritimukta; Frank, Patrick

    2016-07-01

    Three-dimensional models for the aqueous solvation structures of chloride, bromide, and iodide are reported. K-edge extended X-ray absorption fine structure (EXAFS) and Minuit X-ray absorption near edge (MXAN) analyses found well-defined single shell solvation spheres for bromide and iodide. However, dissolved chloride proved structurally distinct, with two solvation shells needed to explain its strikingly different X-ray absorption near edge structure (XANES) spectrum. Final solvation models were as follows: iodide, 8 water molecules at 3.60 ± 0.13 Å and bromide, 8 water molecules at 3.40 ± 0.14 Å, while chloride solvation included 7 water molecules at 3.15 ± 0.10 Å, and a second shell of 7 water molecules at 4.14 ± 0.30 Å. Each of the three derived solvation shells is approximately uniformly disposed about the halides, with no global asymmetry. Time-dependent density functional theory calculations simulating the chloride XANES spectra following from alternative solvation spheres revealed surprising sensitivity of the electronic state to 6-, 7-, or 8-coordination, implying a strongly bounded phase space for the correct structure during an MXAN fit. MXAN analysis further showed that the asymmetric solvation predicted from molecular dynamics simulations using halide polarization can play no significant part in bulk solvation. Classical molecular dynamics used to explore chloride solvation found a 7-water solvation shell at 3.12 (-0.04/+0.3) Å, supporting the experimental result. These experiments provide the first fully three-dimensional structures presenting to atomic resolution the aqueous solvation spheres of the larger halide ions.

  3. X-Ray Absorption Spectroscopy of Mo and Ni K-edge of Supported Hydrotreating Catalysts

    Institute of Scientific and Technical Information of China (English)

    DuanAijun; XuChunming; ZhaoZhen; DongPeng

    2005-01-01

    X-ray absorption fine structure (XAFS) and other techniques have been used to characterize Ni-Mo/Al2O3 supported catalysts. The analysis of Mo K-edge spetrum shows that the active species over sulfide catalysts are MoS2-alike and the dispersion of Mo is high at the level of nanometer particles. There may exist some distortion of the local environment of MoS2, which has an influence on the hydrotreating activities of catalysts. Ni K-edge analysis shows that the coordination effects of Ni-Mo favor the dispersion state of active phase and imply a close relationship with catalyst activities.

  4. Comparison Between X-rays Absorption and Emission Spectroscopy Measurements on a Ceramic Envelop Lamp

    Institute of Scientific and Technical Information of China (English)

    Bruno LAFITTE; Michel AUBES; Georges ZISSIS

    2007-01-01

    Burners of metal halide lamps used for illumination are generally made of polycrystalline alumina ceramic (PCA) which is translucent to visible light.We show that the difficulty of selecting a line of sight through the lamp prevents the use of optical emission diagnostic.X-rays photons are mainly absorbed and not scattered by PCA.Absorption by mercury atoms contributing to the discharge allowed us to determine the density of mercury in the lamp.By comparing diagnostic methods,we put in evidence the difficulty of taking into account the scattering of light mathematically.

  5. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  6. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    Science.gov (United States)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  7. Electron volt spectroscopy on a pulsed neutron source using resonance absorption filters

    International Nuclear Information System (INIS)

    The design aspects of an inelastic neutron spectrometer based on energy selection by the resonance absorption filter difference method are discussed. Detailed calculations of the accessible dynamical range (Q, ω), energy and momentum transfer resolutions and representative count rates are presented for Sm and Ta resonance filters in an inverse geometry spectrometer on a high intensity pulsed source such as the RAL Spallation Neutron Source (SNS). A discussion is given of the double-difference method, which provides a means of improving the resonance attenuation peak shape. As a result of this study, as well as preliminary experimental results, recommendations are made for the future development of the technique. (author)

  8. Atomic structure of Mn-rich nanocolumns probed by x-ray absorption spectroscopy

    Science.gov (United States)

    Rovezzi, M.; Devillers, T.; Arras, E.; d'Acapito, F.; Barski, A.; Jamet, M.; Pochet, P.

    2008-06-01

    In this letter, we have used the extended x-ray-absorption fine-structure (EXAFS) technique to investigate the structure of Mn-rich self-organized nanocolumns grown by low temperature molecular beam epitaxy. The EXAFS analysis has shown that Mn-rich nanocolumns exhibit a complex local structure that cannot be described by a simple substitutional model. Additional interatomic distances had to be considered in the EXAFS model which are in excellent agreement with the structure of a Ge-3Mn building block tetrahedron of Ge3Mn5.

  9. Time-resolved nonlinear polarization spectroscopy for measuring transient absorption and refraction in isotropic materials

    Science.gov (United States)

    Taranenko, Victor B.; Bazhenov, Vladimir Y.; Kulikovskaya, Olga A.

    1995-11-01

    A novel time-resolved nonlinear spectroscopic technique is described, which is based on stroboscopic registration of optical polarization transformation taking place at a vector incoherent two-wave mixing interaction in a modified Mach-Zehnder interferometer. It allows an accurate measuring of the dynamics of excitation and relaxation for real and imaginary parts of complex nonlinearity tensor components. The technique is demonstrated for measuring the light-induced change of transient absorption (delta) (alpha) e(t), (delta) (alpha) o(t) and refraction (delta) ne(t), (delta) no(t) for bacteriorhodopsin- based film pumped by linearly polarized laser pulses.

  10. Multiple Absorption-Line Spectroscopy of the Intergalactic Medium. I. Model

    CERN Document Server

    Yao, Yangsen; Danforth, Charles W; Keeney, Brian A; Stocke, John T

    2011-01-01

    We present a physically-based absorption-line model for the spectroscopic study of the intergalactic medium (IGM). This model adopts results from Cloudy simulations and theoretical calculations by Gnat and Sternberg (2007) to examine the resulting observational signatures of the absorbing gas with the following ionization scenarios: collisional ionization equilibrium (CIE), photoionization equilibrium, hybrid (photo- plus collisional ionization), and non-equilibrium cooling. As a demonstration, we apply this model to new observations made with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope of the IGM absorbers at z~0.1877 along the 1ES 1553+113 sight line. We identify Ly alpha, C III, O VI, and N V absorption lines with two distinct velocity components (blue at z_b=0.18757; red at z_r=0.18772) separated by Delta(cz)/(1+z)~38 km/s. Joint analyses of these lines indicate that none of the examined ionization scenarios can be applied with confidence to the blue velocity component, although phot...

  11. Infrared absorption spectroscopy of carbon monoxide on nickel films: a low temperature thermal detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.B.

    1978-11-01

    Sensitive vibrational spectra of carbon monoxide molecules adsorbed on evaporated nickel films have been measured by attaching a thermometer to the sample, cooling the assembly to liquid helium temperatures, and recording the temperature changes which occur when infrared radiation is absorbed. The measurements are made in an ultrahigh vacuum chamber in which the sample surface can be cleaned, heated, exposed to gas molecules and cooled to 1.6 K for the infrared measurements. The spectra of chemisorbed CO molecules are interpreted in terms of the linear and bridge adsorption sites on the nickel surface, and they show how the distribution of molecules among these sites changes when the CO coverage increases and intermolecular forces become important. The spectra of physically adsorbed molecules in both monolayer and multilayer films are also reported. Absorptions as small as five parts in 10/sup 5/ of the incident radiation can presently be detected in spectra covering broad bands of infrared frequencies with a resolution of 2 cm/sup -1/. This high sensitivity is attributable to the low noise and reduced background signal of the thermal detection scheme, to the stability of the rapid scan Fourier transform infrared spectrometer, and to the automated computerized data acquisition electronics. Better performance is expected in future experiments on single crystal samples as well as evaporated films. This will make it possible to study molecules with weaker absorptions than CO and to look for evidence of chemical reactions between different adsorbed molecules.

  12. Binding of anti-prion agents to glycosaminoglycans: Evidence from electronic absorption and circular dichroism spectroscopy

    International Nuclear Information System (INIS)

    The polyanionic glycosaminoglycans (GAGs) are intimately involved in the pathogenesis of protein conformational disorders such as amyloidosis and prion diseases. Several cationic agents are known to exhibit anti-prion activity but their mechanism of action is poorly understood. In this study, UV absorption and circular dichroism (CD) spectroscopic techniques were used to investigate the interaction between heparin and chondroitin-6-sulfate and anti-prion drugs including acridine, quinoline, and phenothiazine derivatives. UV band hypochromism of (±)-quinacrine, (±)-primaquine, tacrine, quinidine, chlorpromazine, and induced CD spectra of (±)-quinacrine upon addition of GAGs provided evidence for the GAG binding of these compounds. The association constants (∼106-107 M-1) estimated from the UV titration curves show high-affinity drug-heparin interactions. Ionic strength-dependence of the absorption spectra suggested that the interaction between GAGs and the cationic drugs is principally electrostatic in nature. Drug binding differences of heparin and chondroitin-6-sulfate were attributed to their different negative charge density. These results call the attention to the alteration of GAG-prion/GAG-amyloid interactions by which these compounds might exert their anti-prion/anti-amyloidogenic activities

  13. Measurements of liquid film thickness, concentration, and temperature of aqueous urea solution by NIR absorption spectroscopy

    Science.gov (United States)

    Pan, R.; Jeffries, J. B.; Dreier, T.; Schulz, C.

    2016-01-01

    A multi-wavelength near-infrared (NIR) diode laser absorption sensor has been developed and demonstrated for real-time monitoring of the thickness, solute concentration, and temperature of thin films of urea-water solutions. The sensor monitors the transmittance of three near-infrared diode lasers through the thin liquid film. Film thickness, urea mass fraction, and liquid temperature were determined from measured transmittance ratios of suitable combinations of lasers. Available laser wavelengths were selected depending on the variation of the NIR absorption spectrum of the solution with temperature and solute concentration. The spectral database was measured by a Fourier transform infrared spectrometer in the range 5500-8000 cm-1 for urea solutions between 5 and 40 wt% and temperatures between 298 and 338 K. A prototype sensor was constructed, and the sensor concept was first validated with measurements using a calibration cell providing liquid layers of variable thickness (200-1500 µm), urea mass fraction (5-40 wt%) and temperature (298-318 K). Temporal variations of film thickness and urea concentration were captured during the constant-temperature evaporation of a liquid film deposited on an optically polished heated quartz flat.

  14. Relaxation dynamics in the excited states of a ketocyanine dye probed by femtosecond transient absorption spectroscopy

    Indian Academy of Sciences (India)

    Jahur A Mondal; Sandeep Verma; Hirendra N Ghosh; Dipak K Palit

    2008-01-01

    Relaxation dynamics of the excited singlet states of 2,5-bis-(N-methyl-N-1,3-propdienylaniline)-cyclopentanone (MPAC), a ketocyanine dye, have been investigated using steady-state absorption and emission as well as femtosecond time-resolved absorption spectroscopic techniques. Following photoexcitation using 400 nm light, the molecule is excited to the S2 state, which is fluorescent in rigid matrices at 77 K. S2 state is nearly non-fluorescent in solution and has a very short lifetime (0.5 ± 0.2 ps). In polar aprotic solvents, the S1 state follows a complex multi-exponential relaxation dynamics consisting of torsional motion of the donor groups, solvent re-organization as well as photoisomerization processes. However, in alcoholic solvents, solvent re-organization via intermolecular hydrogen-bonding interaction is the only relaxation process observed in the S1 state. In trifluoroethanol, a strong hydrogen bonding solvent, conversion of the non-hydrogen-bonded form, which is formed following photoexcitation, to the hydrogen-bonded complex has been clearly evident in the relaxation process of the S1 state.

  15. Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, Y. [Mitsubishi Electric Co., Hyogo (Japan); Underwood, J.H.; Gullikson, E.M.; Perera, R.C.C. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can be beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.

  16. X-ray absorption spectroscopy and imaging of heterogeneous hydrothermal mixtures using a diamond microreactor cell

    International Nuclear Information System (INIS)

    Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325oC. X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl2- species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures

  17. Measurement of free radical kinetics in pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam mass spectrometry

    International Nuclear Information System (INIS)

    This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge. (paper)

  18. Fixed-wavelength H2O absorption spectroscopy system enhanced by an on-board external-cavity diode laser

    International Nuclear Information System (INIS)

    We describe a system designed to perform fixed-wavelength absorption spectroscopy of H2O vapor in practical combustion devices. The system includes seven wavelength-stabilized distributed feedback (WSDFB) lasers, each with a spectral accuracy of  ±1 MHz. An on-board external cavity diode laser (ECDL) that tunes 1320–1365 nm extends the capabilities of the system. Five system operation modes are described. In one mode, a sweep of the ECDL is used to monitor each WSDFB laser wavelength with an accuracy of  ±30 MHz. Demonstrations of fixed-wavelength thermometry at 10 kHz bandwidth in near-room-temperature gases are presented; one test reveals a temperature measurement error of ∼0.43%. (paper)

  19. Chemical-state analysis of organic semiconductors using soft X-ray absorption spectroscopy combined with first-principles calculation.

    Science.gov (United States)

    Natsume, Yutaka; Kohno, Teiichiro; Minakata, Takashi; Konishi, Tokuzo; Gullikson, Eric M; Muramatsu, Yasuji

    2012-02-16

    The chemical states of organic semiconductors were investigated by total-electron-yield soft X-ray absorption spectroscopy (TEY-XAS) and first-principles calculations. The organic semiconductors, pentacene (C(22)H(14)) and pentacenequinone (C(22)H(12)O(2)), were subjected to TEY-XAS and the experimental spectra obtained were compared with the 1s core-level excited spectra of C and O atoms, calculated by a first-principles planewave pseudopotential method. Excellent agreement between the measured and the calculated spectra were obtained for both materials. Using this methodology, we examined the chemical states of the aged pentacene, and confirmed that both C-OH and C═O chemical bonds are generated by exposure to air. This result implies that not only oxygen but also humidity causes pentacene oxidation.

  20. 3D-printed photo-spectroelectrochemical devices for in situ and in operando X-ray absorption spectroscopy investigation.

    Science.gov (United States)

    Achilli, Elisabetta; Minguzzi, Alessandro; Visibile, Alberto; Locatelli, Cristina; Vertova, Alberto; Naldoni, Alberto; Rondinini, Sandra; Auricchio, Ferdinando; Marconi, Stefania; Fracchia, Martina; Ghigna, Paolo

    2016-03-01

    Three-dimensional printed multi-purpose electrochemical devices for X-ray absorption spectroscopy are presented in this paper. The aim of this work is to show how three-dimensional printing can be a strategy for the creation of electrochemical cells for in situ and in operando experiments by means of synchrotron radiation. As a case study, the description of two cells which have been employed in experiments on photoanodes for photoelectrochemical water splitting are presented. The main advantages of these electrochemical devices are associated with their compactness and with the precision of the three-dimensional printing systems which allows details to be obtained that would otherwise be difficult. Thanks to these systems it was possible to combine synchrotron-based methods with complementary techniques in order to study the mechanism of the photoelectrocatalytic process. PMID:26917152

  1. Molecular ordering effect of regioregular poly(3-hexylthiophene) using sulfur K-edge X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    The electronic structure of the unoccupied conduction band of regioregular poly(3-hexylthiophene) (RR-P3HT) was investigated by X-ray absorption spectroscopy (XAS) near the sulfur K-edge. Angle-dependent XAS studies revealed that polymer chains in films are well aligned and oriented edge-on with respect to the Si substrate. It was clearly observed that the bottom of the conduction band near the Fermi level in a π-π stacking film is lower (0.3 eV) than that in a powder. It was demonstrated that π-π stacking interactions improve the power conversion efficiency through the reduction of the lowest unoccupied molecular orbital (LUMO) energy level. (author)

  2. In situ time-resolved X-ray near-edge absorption spectroscopy of selenite reduction by siderite

    International Nuclear Information System (INIS)

    The reduction oxidation-reaction between aqueous selenite (SeO32-) and siderite (FeCO3(s)) was monitored by in situ, time-resolved X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K edge in a controlled electrochemical environment. Spectral evolutions showed that more than 60% of selenite was reduced at the siderite surface after 20 h of experiment, at which time the reaction was still incomplete. Fitting of XANES spectra by linear combination of reference spectra showed that selenite reaction with siderite is essentially a two-step process, selenite ions being immobilized on siderite surface prior to their reduction. A kinetic model of the reduction step is proposed, allowing to identify the specific contribution of surface reduction. These results have strong implications for the retention of selenite by corrosion products in nuclear waste repositories and in a larger extent for the fate of selenium in the environment. (authors)

  3. Local structure of NiAl compounds investigated by extended X-ray absorption fine-structure spectroscopy.

    Science.gov (United States)

    Tian, J S; Han, G M; Wei, H; Jin, T; Dargusch, M S

    2012-07-01

    The local structures of pure NiAl and Ti-, Co-doped NiAl compounds have been obtained utilizing extended X-ray absorption fine-structure (EXAFS) spectroscopy. The results provide experimental evidence that Ni antisite defects exist in the Ni-rich NiAl compounds. The site preference of Ti and Co has been confirmed. Ti occupies the Al sublattice, while Co occupies the Ni sublattice. The structure parameters obtained by EXAFS were consistent with the X-ray diffraction results. Owing to the precipitation of α-Cr, the local structure of NiAl-Cr has not been obtained, making the site preference of Cr unclear. PMID:22713881

  4. Speciation of Adsorbed Phosphate at Gold Electrodes: A Combined Surface-Enhanced Infrared Absorption Spectroscopy and DFT Study.

    Science.gov (United States)

    Yaguchi, Momo; Uchida, Taro; Motobayashi, Kenta; Osawa, Masatoshi

    2016-08-18

    Despite the significance of phosphate buffer solutions in (bio)electrochemistry, detailed adsorption properties of phosphate anions at metal surfaces remain poorly understood. Herein, phosphate adsorption at quasi-Au(111) surfaces prepared by a chemical deposition technique has been systematically investigated over a wide range of pH by surface-enhanced infrared absorption spectroscopy in the ATR configuration (ATR-SEIRAS). Two different pH-dependent states of adsorbed phosphate are spectroscopically detected. Together with DFT calculations, the present study reveals that pKa for adsorbed phosphate species at the interface is much lower than that for phosphate species in the bulk solution; the dominant phosphate anion, H2PO4(-) at 2 solution interfaces. PMID:27453430

  5. Diagnostics of reactive pulsed plasmas by UV and VUV absorption spectroscopy and by modulated beam Mass spectrometry

    Science.gov (United States)

    Cunge, Gilles

    2011-10-01

    Pulsed plasmas are promising for etching applications in the microelectronic industry. However, many new phenomena are involved when a high density discharge is pulsed. To better understand these processes it is necessary to probe the radicals' kinetics with a microsecond resolution. We have developed several diagnostics to reach this goal including broad band absorption spectroscopy with UV LEDs to detect small polyatomic radicals and with a deuterium VUV source to detect larger closed shell molecules and the modulated mass spectrometry to monitor atomic species. We will discuss the impact of the plasma pulsing frequency and duty cycle on the radical densities in Cl2 based plasmas, and the consequences on plasma processes. Work done in collaboration with Paul Bodart, Melisa Brihoum, Maxime Darnon, Erwin Pargon, Olivier Joubert, and Nader Sadeghi, CNRS/LTM.

  6. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S.; Siddique, N.; Rahman, S. [Chemistry Div., Directorate of Science, Pakistan Inst. of Nuclear Science and Tech., Islamabad (Pakistan)

    2009-07-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  7. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcio F.; Camara, Giuseppe A., E-mail: giuseppe.silva@ufms.br [Departamento de Quimica, Universidade Federal do Mato Grosso do Sul, Campo Grande-MS (Brazil); Batista, Bruno C.; Boscheto, Emerson [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Sao Carlos-SP, (Brazil); Varela, Hamilton, E-mail: varela@iqsc.usp.br [Ertl Center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of)

    2012-05-15

    Herein, it was investigated for the first time the electro-oxidation of ethanol on Pt and PtRu electrodeposits in acidic media by using in situ surface enhanced infrared absorption spectroscopy with attenuated total reflection (ATR-SEIRAS). The experimental setup circumvents the weak absorbance signals related to adsorbed species, usually observed for rough, electrodeposited surfaces, and allows a full description of the CO coverage with the potential for both catalysts. The dynamics of adsorption-oxidation of CO was accessed by ATR-SEIRAS experiments (involving four ethanol concentrations) and correlated with expressions derived from a simple kinetic model. Kinetic analysis suggests that the growing of the CO adsorbed layer is nor influenced by the presence of Ru neither by the concentration of ethanol. The results suggest that the C-C scission is not related to the presence of Ru and probably happens at Pt sites. (author)

  8. Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    R. J. Leigh

    2006-12-01

    Full Text Available A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through, the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. The remote sensing and in-situ techniques show good agreement. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.

  9. Interaction of plasma-generated water cluster ions with chemically-modified Si surfaces investigated by infrared absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Ayumi Hirano-Iwata

    2016-03-01

    Full Text Available We have investigated the interaction of water cluster ions generated by discharge plasma, with chemically modified Si surfaces using infrared absorption spectroscopy in the multiple internal reflection geometry. We observe that water cluster ions readily adsorb on SiO2-covered Si surfaces to form water droplets. We demonstrate that positively- and negatively-charged cluster ions adsorb on the SiO2-covered Si surface in different manners, indicating ionic interaction of the water droplets with the negatively-charged SiO2 surface. Water droplets formed on the protein-coated surface rupture the amide bond of the proteins, suggesting the function of protein decomposition of water cluster ions.

  10. Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths.

    Science.gov (United States)

    Pundt, Irene; Mettendorf, Kai Uwe

    2005-08-10

    A novel long-path differential optical absorption spectroscopy (DOAS) apparatus for measuring tropospheric trace gases and the first results from its use are presented: We call it the multibeam instrument. It is the first active DOAS device that emits several light beams simultaneously through only one telescope and with only one lamp as a light source, allowing simultaneous measurement along multiple light paths. In contrast to conventional DOAS instruments, several small mirrors are positioned near the lamp, creating multiple virtual light sources that emit one light beam each in one specific direction. The possibility of error due to scattering between the light beams is negligible. The trace-gas detection limits of NO2, SO2, O3, and H2CO are similar to those of the traditional long-path DOAS instrument. PMID:16114540

  11. [Measurement of atmospheric NO3 radical with long path differential optical absorption spectroscopy based on red light emitting diodes].

    Science.gov (United States)

    Li, Su-Wen; Liu, Wen-Qing; Wang, Jiang-Tao; Xie, Pin-Hua; Wang, Xu-De

    2013-02-01

    Nitrate radical (NO3) is the most important oxidant in the tropospheric nighttime chemistry. Due to its high reactivity and low atmospheric concentrations, modern red light emitting diodes (LEDs) was proposed as light source in long path differential optical absorption spectroscopy (LP-DOAS) to measure NO3 radical in the atmosphere. The spectral properties of Luxeon LXHL-MD1D LEDs were analyzed in the present paper. The principle of LEDs-DOAS system to measure nitrate radical was studied in this paper. The experimental setup and retrieval method of NO3 radical were discussed in this paper. The retrieved example of NO3 was given and the time series of NO3 concentrations was performed for a week. The results showed that the detection limits of LEDs-DOAS system were 12 ppt for atmospheric NO3 radical when the optical path of LEDs-DOAS system was 2.8 km. PMID:23697129

  12. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    Science.gov (United States)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  13. The detection of carbon dioxide leaks using quasi-tomographic laser absorption spectroscopy measurements in variable wind

    Directory of Open Access Journals (Sweden)

    Z. H. Levine

    2015-11-01

    Full Text Available Laser Absorption Spectroscopy (LAS has been used over the last several decades for the measurement of trace gasses in the atmosphere. For over a decade, LAS measurements from multiple sources and tens of retroreflectors have been combined with sparse-sample tomography methods to estimate the 2-D distribution of trace gas concentrations and underlying fluxes from pointlike sources. In this work, we consider the ability of such a system to detect and estimate the position and rate of a single point leak which may arise as a failure mode for carbon dioxide storage. The leak is assumed to be at a constant rate giving rise to a plume with a concentration and distribution that depend on the wind velocity. We demonstrate the ability of our approach to detect a leak using numerical simulation and a preliminary measurement.

  14. Low-cost, heated, and/or cooled flow-through cell for transmission x-ray absorption spectroscopy

    Science.gov (United States)

    Jentoft, R. E.; Deutsch, S. E.; Gates, B. C.

    1996-06-01

    A transmission x-ray absorption spectroscopy cell that can be used for air-sensitive samples with in situ treatment is described. The cell is designed with a relatively small size for use with air-sensitive powdered catalyst samples that must be loaded in a glove box. Samples can be treated in situ with gas flow or vacuum and temperature control up to 500 °C. The cell is constructed of stainless steel and designed for durability as well as ease of repair. The cells are vacuum tight and equipped with beryllium windows sealed with vacuum O-ring flanges for easy loading. Each cell, with all parts excluding the windows, costs about 2700.

  15. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy.

    Science.gov (United States)

    Dorchies, F; Fedorov, N; Lecherbourg, L

    2015-07-01

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%-20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  16. Experimental station for laser-based picosecond time-resolved x-ray absorption near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr; Fedorov, N.; Lecherbourg, L. [Université Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, Talence F-33405 (France)

    2015-07-15

    We present an experimental station designed for time-resolved X-ray Absorption Near-Edge Spectroscopy (XANES). It is based on ultrashort laser-plasma x-ray pulses generated from a table-top 100 mJ-class laser at 10 Hz repetition rate. A high transmission (10%–20%) x-ray beam line transport using polycapillary optics allows us to set the sample in an independent vacuum chamber, providing high flexibility over a wide spectral range from 0.5 up to 4 keV. Some XANES spectra are presented, demonstrating 1% noise level in only ∼1 mn and ∼100 cumulated laser shots. Time-resolved measurements are reported, indicating that the time resolution of the entire experimental station is 3.3 ± 0.6 ps rms.

  17. Detection Limit of Glucose Concentration with Near-Infrared Absorption and Scattering Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LUO Yun-Han; HUANG Fu-Rong; LI Shi-Ping; CHEN Zhe

    2008-01-01

    @@ Theoretical analyses and Monte Carlo simulation are performed to investigate the detection limit of glucose concentration with near-infrared spectroscopy.The relation between detection limitation of glucose concentration and source-detector separation is derived.Monte Carlo simulation performed with a skin-layered model shows that the ratio of effective photons from the target layer could excess 50% by selecting proper source-detector separation,and that the detection limit of glucose concentration approaches to 0.28mM,which satisfies the requirement of food and drug administration for noninvasive glucose sensing.

  18. Characterization of silver nanoparticles in glasses by X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haug, Joerg; Dubiel, Manfred; Kruth, Holger; Chasse, Angelika [Department of Physics, Martin-Luther Univ., Halle-Wittenberg (Germany)

    2007-07-01

    Glasses containing metal nanoparticles are of interest because of their specific linear and non-linear optical properties. In the present work, there are represented structural investigations of Ag nanoparticles as well as of neighbourhood of Ag ions embedded in the glass matrix by means of EXAFS spectroscopy at the Ag K-edge. In a first step, EXAFS investigations are reported concerning the thermal expansion behaviour of bulk silver to test this method for investigations of nanoparticles. In a second step, in situ experiments at elevated temperatures of particle generation are described in order to evaluate the elementary processes of particle formation as well as the specific structure of nanoscaled particles.

  19. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    OpenAIRE

    Gorlin, Yelena; Lassalle-Kaiser, Benedikt; Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-r...

  20. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    OpenAIRE

    J. Puķīte; T. Wagner

    2016-01-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer–Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, ...

  1. Incorporation of Trace Elements in Ancient and Modern Human Bone: An X-Ray Absorption Spectroscopy Study

    Science.gov (United States)

    Pingitore, N. E.; Cruz-Jimenez, G.; Price, T. D.

    2001-12-01

    X-ray absorption spectroscopy (XAS) affords the opportunity to probe the atomic environment of trace elements in human bone. We are using XAS to investigate the mode(s) of incorporation of Sr, Zn, Pb, and Ba in both modern and ancient (and thus possibly altered) human and animal bone. Because burial and diagenesis may add trace elements to bone, we performed XAS analysis on samples of pristine contemporary and ancient, buried human and animal bone. We assume that deposition of these elements during burial occurs by processes distinct from those in vivo, and this will be reflected in their atomic environments. Archaeologists measure strontium in human and animal bone as a guide to diet. Carnivores show lower Sr/Ca ratios than their herbivore prey due to discrimination against Sr relative to Ca up the food chain. In an initial sample suite no difference was observed between modern and buried bone. Analysis of additional buried samples, using a more sensitive detector, revealed significant differences in the distance to the second and third neighbors of the Sr in some of the buried samples. Distances to the first neighbor, oxygen, were similar in all samples. Zinc is also used in paleo-diet studies. Initial x-ray absorption spectroscopy of a limited suite of bones did not reveal any differences between modern and buried samples. This may reflect the limited number of samples examined or the low levels of Zn in typical aqueous solutions in soils. Signals from barium and lead were too low to record useful XAS spectra. Additional samples will be studied for Zn, Ba, and Pb. We conducted our XAS experiments on beam lines 4-1 and 4-3 at the Stanford Synchrotron Radiation Laboratory. Data were collected in the fluorescence mode, using a Lytle detector and appropriate filter, and a solid state, 13-element Ge-detector.

  2. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge.

    Science.gov (United States)

    Schreck, Simon; Wernet, Philippe

    2016-09-14

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water. PMID:27634266

  3. Isotope effects in liquid water probed by transmission mode x-ray absorption spectroscopy at the oxygen K-edge

    Science.gov (United States)

    Schreck, Simon; Wernet, Philippe

    2016-09-01

    The effects of isotope substitution in liquid water are probed by x-ray absorption spectroscopy at the O K-edge as measured in transmission mode. Confirming earlier x-ray Raman scattering experiments, the D2O spectrum is found to be blue shifted with respect to H2O, and the D2O spectrum to be less broadened. Following the earlier interpretations of UV and x-ray Raman spectra, the shift is related to the difference in ground-state zero-point energies between D2O and H2O, while the difference in broadening is related to the difference in ground-state vibrational zero-point distributions. We demonstrate that the transmission-mode measurements allow for determining the spectral shapes with unprecedented accuracy. Owing in addition to the increased spectral resolution and signal to noise ratio compared to the earlier measurements, the new data enable the stringent determination of blue shift and broadening in the O K-edge x-ray absorption spectrum of liquid water upon isotope substitution. The results are compared to UV absorption data, and it is discussed to which extent they reflect the differences in zero-point energies and vibrational zero-point distributions in the ground-states of the liquids. The influence of the shape of the final-state potential, inclusion of the Franck-Condon structure, and differences between liquid H2O and D2O resulting from different hydrogen-bond environments in the liquids are addressed. The differences between the O K-edge absorption spectra of water from our transmission-mode measurements and from the state-of-the-art x-ray Raman scattering experiments are discussed in addition. The experimentally extracted values of blue shift and broadening are proposed to serve as a test for calculations of ground-state zero-point energies and vibrational zero-point distributions in liquid H2O and D2O. This clearly motivates the need for new calculations of the O K-edge x-ray absorption spectrum of liquid water.

  4. Filament-induced visible-to-mid-IR supercontinuum in a ZnSe crystal: Towards multi-octave supercontinuum absorption spectroscopy

    Science.gov (United States)

    Mouawad, O.; Béjot, P.; Billard, F.; Mathey, P.; Kibler, B.; Désévédavy, F.; Gadret, G.; Jules, J.-C.; Faucher, O.; Smektala, F.

    2016-10-01

    We report on the generation of multiple-octave supercontinuum laser source spanning from 0.5 μm to 11 μm induced by multi-filamentation in a ZnSe crystal. The generated supercontinuum is both spatially and spectrally characterized. It is then exploited in a proof-of-principle experiment for methane spectroscopy measurements by means of the supercontinuum absorption spectroscopy technique. The entire absorption spectrum is successfully recorded within the whole spectral bandwidth of the supercontinuum. Experimental results are in fairly good agreement with the HITRAN database, confirming the reliability and stability over several hours of the generated supercontinuum.

  5. X-ray absorption spectroscopy of hemes and hemeproteins in solution: multiple scattering analysis.

    Science.gov (United States)

    D'Angelo, Paola; Lapi, Andrea; Migliorati, Valentina; Arcovito, Alessandro; Benfatto, Maurizio; Roscioni, Otello Maria; Meyer-Klaucke, Wolfram; Della-Longa, Stefano

    2008-11-01

    A full quantitative analysis of Fe K-edge X-ray absorption spectra has been performed for hemes in two porphynato complexes, that is, iron(III) tetraphenylporphyrin chloride (Fe(III)TPPCl) and iron(III) tetraphenylporphyrin bis(imidazole) (Fe(III)TPP(Imid)2), in two protein complexes whose X-ray structure is known at atomic resolution (1.0 A), that is, ferrous deoxy-myoglobin (Fe(II)Mb) and ferric aquo-myoglobin (Fe(III)MbH2O), and in ferric cyano-myoglobin (Fe(III)MbCN), whose X-ray structure is known at lower resolution (1.4 A). The analysis has been performed via the multiple scattering approach, starting from a muffin tin approximation of the molecular potential. The Fe-heme structure has been obtained by analyzing independently the Extended X-ray Absorption Fine Structure (EXAFS) region and the X-ray Absorption Near Edge Structure (XANES) region. The EXAFS structural results are in full agreement with the crystallographic values of the models, with an accuracy of +/- 0.02 A for Fe-ligand distances, and +/-6 degrees for angular parameters. All the XANES features above the theoretical zero energy (in the lower rising edge) are well accounted for by single-channel calculations, for both Fe(II) and Fe(III) hemes, and the Fe-N p distance is determined with the same accuracy as EXAFS. XANES evaluations of Fe-5th and Fe-6th ligand distances are determined with 0.04-0.07 A accuracy; a small discrepancy with EXAFS (0.01 to 0.05 A beyond the statistical error), is found for protein compounds. Concerns from statistical correlation among parameters and multiple minima in the parameter space are discussed. As expected, the XANES accuracy is slightly lower than what was found for polarized XANES on Fe(III)MbCN single crystal (0.03-0.04 A), and states the actual state-of-the-art of XANES analysis when used to extract heme-normal parameters in a solution spectrum dominated by heme-plane scattering. PMID:18837548

  6. Advances in Methane Isotope Measurements via Direct Absorption Spectroscopy with Applications to Oil and Gas Source Characterization

    Science.gov (United States)

    Yacovitch, T. I.; Herndon, S. C.; Roscioli, J. R.; Petron, G.; Shorter, J. H.; Jervis, D.; McManus, J. B.; Nelson, D. D.; Zahniser, M. S.; Kolb, C. E., Jr.

    2015-12-01

    Instrumental developments in the measurement of multiple isotopes of methane (12CH4, 13CH4 and 12CH3D) are presented. A first generation 8-micron instrument quantifies 12CH4 and 13CH4 at a 1-second rate via tunable infrared direct absorption spectroscopy (TILDAS). A second generation instrument uses two 3-micron intraband cascade lasers in an Aerodyne dual laser chassis for simultaneous measurement of 12CH4, 13CH4 and 12CH3D. Sensitivity and noise performance improvements are examined. The isotopic signature of methane provides valuable information for emission source identification of this greenhouse gas. A first generation spectrometer has been deployed in the field on a mobile laboratory along with a sophisticated 4-tank calibration system. Calibrations are done on an agressive schedule, allowing for the correction of measured isotope ratios to an absolute isotope scale. Distinct isotopic signatures are found for a number of emission sources in the Denver-Julesburg Basin: oil and gas gathering stations, compressor stations and processing plants; a municipal landfill, and dairy/cattle operations. The isotopic signatures are compared with measured ethane/methane ratios. These direct absorption measurements have larger uncertainties than samples measured via gas chromatography-mass spectrometry, but have several advantages over canister sampling methods: individual sources of short duration are easier to isolate; calibrated isotope ratio results are available immediately; replicate measurements on a single source are easily performed; and the number of sources sampled is not limited by canister availability and processing time.

  7. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  8. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method

    Energy Technology Data Exchange (ETDEWEB)

    Nagasaka, Masanari, E-mail: nagasaka@ims.ac.jp; Kosugi, Nobuhiro [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan); The Graduate University for Advanced Studies, Myodaiji, Okazaki 444-8585 (Japan); Yuzawa, Hayato; Horigome, Toshio [Institute for Molecular Science, Myodaiji, Okazaki 444-8585 (Japan)

    2014-10-15

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates.

  9. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method

    Science.gov (United States)

    Nagasaka, Masanari; Yuzawa, Hayato; Horigome, Toshio; Kosugi, Nobuhiro

    2014-10-01

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates.

  10. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method

    International Nuclear Information System (INIS)

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates

  11. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method.

    Science.gov (United States)

    Nagasaka, Masanari; Yuzawa, Hayato; Horigome, Toshio; Kosugi, Nobuhiro

    2014-10-01

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates. PMID:25362423

  12. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy.

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-01-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198

  13. In situ examination of uranium contaminated soil particles by micro-X-ray absorption and micro-fluorescence spectroscopies

    International Nuclear Information System (INIS)

    Two complimentary spectroscopic techniques, X-ray absorption and fluorescence spectroscopy have been conducted at spatial scales of 1 to 25 μm on uranium contaminated soil sediments collected from two former nuclear materials processing facilities of the DOE: Fernald, OH and Savannah River Site, SC. A method of imbedding particles in a non-reactive Si polymer was developed such that individual particles could be examined before and after extraction with a wide range of chemicals typically used in sequential extraction techniques and others proposed for ex situ chemical intervention technologies. Using both the micro-X-ray fluorescence (XRF) and micro-X-ray Absorption Near Edge Structure (XANES) techniques, both elemental and oxidation state distribution maps were generated on individual particles before and following chemical extraction. XANES can determine the relative proportion of U(VI) and U(IV) in phases comprising individual particles before and after extraction and showed that greater than 85% of the uranium existed as hexavalent U(VI). Fluorescence spectra of contaminated particles containing mainly U(VI) revealed populations of uranyl hydroxide phases and demonstrated the relative efficacy and specificity of each extraction method. Correlation of XAS and fluorescence data at micron scales provides information of U oxidation state as well as chemical form in heterogeneous samples. (author)

  14. [Research on the influence of LED temperature shifts on differential optical absorption spectroscopy for measuring NO2].

    Science.gov (United States)

    Ling, Liu-Yi; Xie, Pin-Hua; Qin, Min; Zheng, Ni-Na; Ye, Cong-Lei; Li, Ang; Hu, Ren-Zhi

    2012-11-01

    Influences of LEDs (without etalon structure and center wavelengths are respectively 370 nm (near-UV), 452 nm (blue) and 660 nm(red)) temperature shifts on differential optical absorption spectroscopy(DOAS) for measuring NO2 were studied. NO2 absorption spectra were formed using LED emitting spectra at 10 degrees C. The measured LED spectra at other temperatures were used as reference spectra of DOAS. Thus, NO2 differential optical densities under different LED temperature shifts were acquired and then NO2 differential cross-sections were fitted to the acquired differential optical densities. From fitting results, the linear relations of 0.995, 0.945 and 0.989 correlation between delta of fitting residual and near-UV, blue and red LEDs temperature shifts were found and their slopes are respectively 1.12 x 10(-3), 5.25 x 10(-5) and 7.45 x 10(-4) degrees C(-1). The fitting results show that the influence of temperature shifts of blue LED on DOAS retrieval is negligible and the temperature shifts of near-UV and red LED are impressible to DOAS measurement resulting in degradation of detection sensitivity. The retrieval results of blue LED with and without etalon with similar temperature properties were compared and showed that etalon of LED will greatly increase the influence of temperature shifts of LED on DOAS retrieval. PMID:23387143

  15. Strong-field induced dissociation dynamics in 1,2-dibromoethane traced by femtosecond XUV transient absorption spectroscopy

    Science.gov (United States)

    Chatterley, A. S.; Lackner, F.; Neumark, D. M.; Leone, S. R.; Gessner, O.

    2016-05-01

    Strong field induced dissociation dynamics of the small haloalkane 1,2-dibromoethane (DBE) have been explored using femtosecond XUV transient absorption spectroscopy. Dynamics are initiated by a near IR pump pulse with intensities between 75 and 220 TW cm-2, and are probed by the atomic site specific XUV absorption of the Br 3d levels. Immediately upon ionization, the spectral signatures of molecular ions appear. These molecular peaks decay in tandem with the appearance of atomic Br peaks in charge states of 0, + 1 and + 2, which are all monitored simultaneously. Neutral Br atoms are eliminated in 300 fs, presumably from statistical dissociation of vibrationally hot DBE+ ions, Br+ ions are eliminated in 70 fs from a more energetic dissociative ionization pathway, and Br++ ions are eliminated within the duration of the 35 fs pump pulse. The simultaneous recording of multiple parent molecule and fragment ion traces enables new insight into predominant dissociation pathways induced by strong field ionization of organic molecules.

  16. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    Energy Technology Data Exchange (ETDEWEB)

    Grush, M.M.; Chen, J.; George, S.J. [Univ. of California, Davis, CA (United States)] [and others

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compound spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.

  17. X-ray Absorption Spectroscopy Characterization of Zn Underpotential Deposition on Au(111) from Phosphate Supporting Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J R; O' Malley, R L; O' Connell, T J; Vollmer, A; Rayment, T

    2009-12-11

    Zn K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the structure of Zn monolayers prepared on Au(111) electrodes via underpotential deposition (UPD) from phosphate supporting electrolyte. Theoretical modeling of the XAS data indicates that the Zn adatoms adopt a commensurate ({radical}3x{radical}3)R30{sup o} ({mu}{sub sc} = 0.33) adlayer structure and reside within the 3-fold hollow sites of the Au(111) surface. Meanwhile, phosphate counter-ions co-adsorb on the UPD adlayer and bridge between the Zn adatoms in a ({radical}3x{radical}3)R30{sup o} ({mu}{sub sc} = 0.33) configuration, with each phosphorous atom residing above a vacant 3-fold hollow site of the Au(111). Significantly, this surface structure is invariant between the electrochemical potential for UPD adlayer formation and the onset of bulk Zn electrodeposition. Analysis of the Zn K-edge absorption onset also presents the possibility that the Zn adatoms do not fully discharge during the process of UPD, which had been proposed in prior voltammetric studies of the phosphate/Zn(UPD)/Au(111) system.

  18. Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe

    Science.gov (United States)

    Torchio, Raffaella; Occelli, Florent; Mathon, Olivier; Sollier, Arnaud; Lescoute, Emilien; Videau, Laurent; Vinci, Tommaso; Benuzzi-Mounaix, Alessandra; Headspith, Jon; Helsby, William; Bland, Simon; Eakins, Daniel; Chapman, David; Pascarelli, Sakura; Loubeyre, Paul

    2016-06-01

    Understanding Warm Dense Matter (WDM), the state of planetary interiors, is a new frontier in scientific research. There exists very little experimental data probing WDM states at the atomic level to test current models and those performed up to now are limited in quality. Here, we report a proof-of-principle experiment that makes microscopic investigations of materials under dynamic compression easily accessible to users and with data quality close to that achievable at ambient. Using a single 100 ps synchrotron x-ray pulse, we have measured, by K-edge absorption spectroscopy, ns-lived equilibrium states of WDM Fe. Structural and electronic changes in Fe are clearly observed for the first time at such extreme conditions. The amplitude of the EXAFS oscillations persists up to 500 GPa and 17000 K, suggesting an enduring local order. Moreover, a discrepancy exists with respect to theoretical calculations in the value of the energy shift of the absorption onset and so this comparison should help to refine the approximations used in models.

  19. Long term NO2 measurements in Hong Kong using LED based Long Path Differential Optical Absorption Spectroscopy

    Science.gov (United States)

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2011-11-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 concentrations in the Kowloon Tong and Mong Kok district of Hong Kong and we compare the measurement results to concentrations reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time.

  20. UV-vis absorption spectroscopy and multivariate analysis as a method to discriminate tequila

    Science.gov (United States)

    Barbosa-García, O.; Ramos-Ortíz, G.; Maldonado, J. L.; Pichardo-Molina, J. L.; Meneses-Nava, M. A.; Landgrave, J. E. A.; Cervantes-Martínez, J.

    2007-01-01

    Based on the UV-vis absorption spectra of commercially bottled tequilas, and with the aid of multivariate analysis, it is proved that different brands of white tequila can be identified from such spectra, and that 100% agave and mixed tequilas can be discriminated as well. Our study was done with 60 tequilas, 58 of them purchased at liquor stores in various Mexican cities, and two directly acquired from a distillery. All the tequilas were of the "white" type, that is, no aged spirits were considered. For the purposes of discrimination and quality control of tequilas, the spectroscopic method that we present here offers an attractive alternative to the traditional methods, like gas chromatography, which is expensive and time-consuming.

  1. Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter

    CERN Document Server

    Vaisman, G; Shavit, R

    2015-01-01

    Study of interaction between high absorption matter and microwave radiated energy is a subject of great importance. Especially, this concerns microwave spectroscopic characterization of biological liquids. Use of effective testing methods to obtain information about physical properties of different liquids on the molecular level is one of the most important problems in biophysics. However, the standard methods based on the microwave resonant techniques are not sufficiently suitable for biological liquids because the resonance peak in a resonator with high-loss liquids is so broad that the material parameters cannot be measured correctly. Although molecular vibrations of biomolecules may have microwave frequencies, it is not thought that such resonant coupling is significant due to their low energy compared with thermal energy and the strongly dampening aqueous environment. This paper presents an innovative microwave sensing technique for different types of lossy materials, including biological liquids. The te...

  2. Exceptionally strong correlation-driven charge migration and attosecond transient absorption spectroscopy

    CERN Document Server

    Hollstein, Maximilian; Pfannkuche, Daniela

    2016-01-01

    We investigate theoretically charge migration following prompt double ionization of a polyatomic molecule (C$_2$H$_4$BrI) and find that for double ionization, correlation-driven charge migration appears to be particularly prominent, i.e., we observe exceptionally rich dynamics solely driven by the electron-electron interaction even in the situation when the electrons are emitted from outer-valence orbitals. These strongly correlated electron dynamics are witnessed in the theoretically determined time-resolved transient absorption cross section. Strikingly, features in the cross section can be traced back to electron hole populations and time-dependent partial charges and hence, can be interpreted with surprising ease. Remarkably, by taking advantage of element specific core-to-valence transitions, the hole population dynamics can be followed both in time and space. With this, not only do we report the high relevance of correlation-driven charge migration following double ionization but our findings also highl...

  3. Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Algora, A.; Sonzogni, A.; Algora, A.; Jordan, D.; Tain, J. L.; Rubio, B.; Agramunt, J.; Caballero, L.; Nacher, E.; Perez-Cerdan, A. B.; Molina, F.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyas, J.; Vitez, A.; Csatlos, M.; Csige, L.; Aysto, J.; Penttila, H.; Rinta-Antila, S.; Moore, I.; Eronen, T.; Jokinen, A.; Nieminen, A.; Hakala, J.; Karvonen, P.; Kankainen, A.; Hager, U.; Sonoda, T.; Saastamoinen, A.; Rissanen, J.; Kessler, T.; Weber, C.; Ronkainen, J.; Rahaman, S.; Elomaa, V.; Burkard, K.; Hueller, W.; Batist, L.; Gelletly, W.; Yoshida, T.; Nichols, A. L.; Sonzogni, A.; Perajarvi, K.

    2011-08-01

    The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaeskylae, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.

  4. Excited electronic structure of methylcyanoacetylene probed by VUV Fourier-transform absorption spectroscopy

    Science.gov (United States)

    Lamarre, N.; Gans, B.; Vieira Mendes, L. A.; Gronowski, M.; Guillemin, J.-C.; De Oliveira, N.; Douin, S.; Chevalier, M.; Crépin, C.; Kołos, R.; Boyé-Péronne, S.

    2016-10-01

    High resolution photoabsorption spectrum of gas-phase methylcyanoacetylene (CH3C3 N) has been recorded from 44 500 to 130 000 cm-1 at room temperature with a vacuum ultraviolet Fourier-transform spectrometer on the DESIRS synchrotron beamline (SOLEIL). The absolute photoabsorption cross section in this range is reported for the first time. Valence shell transitions and Rydberg series converging to the ground state X˜+2E of the cation as well as series converging to electronically excited states (A˜+A21 and C˜+) are observed and assigned. Time-dependent density-functional-theory calculations have been performed to support the assignment of the experimental spectrum in the low energy range. A tentative scaling of the previously measured CH3C3N+ ion yield by Lamarre et al. [17] is proposed, based on the comparison of the absorption data above the first ionization potential with the observed autoionization structures.

  5. Estimation of lead and cadmium in various food commodities by electrothermal atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    The determination of lead and cadmium was carried out in various types of food commodities including poultry farm chicken eggs, integrated diet of winter season for the inhabitants of Rawalpindi/Islamabad area and different brands of baby cereals, employing electrothermal atomic absorption spectrophotometric technique. The results showed that integrated diet contained the highest amount of lead whereas the maximum concentration of cadmium was observed in samples of baby cereals. The effect of mechanical food processing on the concentration levels of these elements was discussed. The results obtained were compared with the reported values for other countries. Intake values of these toxic elements through these food articles were calculated and compared with the tolerance levels of WHO. (author)

  6. Auto-oligomerization and hydration of pyrrole revealed by x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Light Source; Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; England, Alice H.; Prendergast, David; Saykally, Richard J

    2009-05-29

    Near edge x-ray absorption fine structure (NEXAFS) spectra have been measured at the carbon and nitrogen K-edges of the prototypical aromatic molecule, pyrrole, both in the gas phase and when solvated in water, and compared with spectra simulated using a combination of classical molecular dynamics and first principles density functional theory in the excited state core hole approximation. The excellent agreement enabled detailed assignments. Pyrrole is highly reactive, particularly in water, and reaction products formed by the auto-oligomerization of pyrrole are identified. The solvated spectra have been measured at two different temperatures, indicating that the final states remain largely unaffected by both hydration and temperature. This is somewhat unexpected, since the nitrogen in pyrrole can donate a hydrogen bond to water.

  7. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    M. Levantino

    2015-07-01

    Full Text Available We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (∼70 fs relaxation preceding a slower (∼400 fs one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  8. In-situ X-ray absorption spectroscopy study of Pt and Ru chemistry during methanol electrooxidation.

    Science.gov (United States)

    Holstein, William L; Rosenfeld, H David

    2005-02-17

    Methanol electrooxidation in a 0.5 M sulfuric acid electrolyte containing 1.0 M CH3OH was studied on 30% Pt/carbon and 30% PtRu/carbon (Pt/Ru = 1:1) catalysts using X-ray absorption spectroscopy (XAS). Absorption by Pt and Ru was measured at constant photon energy in the near edge region during linear potential sweeps of 10-50 mV/s between 0.01 and 1.36 V vs rhe. The absorption results were used to follow Pt and Ru oxidation and reduction under transient conditions as well as to monitor Ru dissolution. Both catalysts exhibited higher activity for methanol oxidation at high potential following multiple potential cycles. Correlation of XAS data with the potential sweeps indicates that Pt catalysts lose activity at high potentials due to Pt oxidation. The addition of Ru to Pt accelerates the rate of methanol oxidation at all potentials. Ru is more readily oxidized than Pt, but unlike Pt, its oxidation does not result in a decrease in catalytic activity. PtRu/carbon catalysts underwent significant changes during potential cycling due to Ru loss. Similar current density vs potential results were obtained using the same PtRu/carbon catalyst at the same loading in a membrane electrode assembly half cell with only a Nafion (DuPont) solid electrolyte. The results are interpreted in terms of a bifunctional catalyst mechanism in which Pt surface sites serve to chemisorb and dissociate methanol to protons and carbon monoxide, while Ru surface sites activate water and accelerate the oxidation of the chemisorbed CO intermediate. PtRu/carbon catalysts maintain their activity at very high potentials, which is attributed to the ability of the added Ru to keep Pt present in a reduced state, a necessary requirement for methanol chemisorption and dissociation. PMID:16851209

  9. High sensitivity liquid phase measurements using broadband cavity enhanced absorption spectroscopy (BBCEAS) featuring a low cost webcam based prism spectrometer.

    Science.gov (United States)

    Qu, Zhechao; Engstrom, Julia; Wong, Donald; Islam, Meez; Kaminski, Clemens F

    2013-11-01

    Cavity enhanced techniques enable high sensitivity absorption measurements in the liquid phase but are typically more complex, and much more expensive, to perform than conventional absorption methods. The latter attributes have so far prevented a wide spread use of these methods in the analytical sciences. In this study we demonstrate a novel BBCEAS instrument that is sensitive, yet simple and economical to set up and operate. We use a prism spectrometer with a low cost webcam as the detector in conjunction with an optical cavity consisting of two R = 0.99 dielectric mirrors and a white light LED source for illumination. High sensitivity liquid phase measurements were made on samples contained in 1 cm quartz cuvettes placed at normal incidence to the light beam in the optical cavity. The cavity enhancement factor (CEF) with water as the solvent was determined directly by phase shift cavity ring down spectroscopy (PS-CRDS) and also by calibration with Rhodamine 6G solutions. Both methods yielded closely matching CEF values of ~60. The minimum detectable change in absorption (αmin) was determined to be 6.5 × 10(-5) cm(-1) at 527 nm and was limited only by the 8 bit resolution of the particular webcam detector used, thus offering scope for further improvement. The instrument was used to make representative measurements on dye solutions and in the determination of nitrite concentrations in a variation of the widely used Griess Assay. Limits of detection (LOD) were ~850 pM for Rhodamine 6G and 3.7 nM for nitrite, respectively. The sensitivity of the instrument compares favourably with previous cavity based liquid phase studies whilst being achieved at a small fraction of the cost hitherto reported, thus opening the door to widespread use in the community. Further means of improving sensitivity are discussed in the paper. PMID:24049768

  10. [Ammonia gas concentration and velocity measurement using tunable diode laser absorption spectroscopy and optical signal cross-correlation method].

    Science.gov (United States)

    Zhang, Chun-Xiao; Wang, Fei; Li, Ning; Yan, Jian-Hua; Chi, Yong; Cen, Ke-Fa

    2009-10-01

    Simultaneous online measurement of gas concentration and velocity can be realized by tunable diode laser absorption spectroscopy (TDLAS) technique and optical signal cross-correlation method. The fundamental and relative factors of gas concentration and velocity measurement are described in the present paper. The spectral lines of NH3 used for gas sensing at communication band in near infrared range were selected and analyzed by the calculation based on the HITRAN database. In the verification experiment, NH3 and N2 were mixed by two mass flow meters and sent to flow through the quartz tube 0. 016 m in inner diameter and 1 m in length at normal temperature and pressure. The spectral line located at 6,548.7 cm(-1) was scanned at high frequency by the diode laser of 15 MHz linewidth and 1 cm' tunable range with no mode hoppings. The instantaneous NH3 absorbance was obtained using direct absorption method and the gas concentration was calculated. At the same time, the non-intrusive optical absorption signal cross-correlation method was utilized to obtain two concentration signals from two adjacent detectors mounted along the gas tube. The corresponding transit time of gas passing through the detectors was calculated by cross-correlation algorithm, and the average gas velocity was inferred according to the distance between the two detectors and the transit time. The relative errors were less than 7% for the gas concentration measurement, and less than 10% for the gas velocity measurement. Experimental results were proved to be of high precision and good repeatability in the lab. The feature of fast response and capacity immune to the in situ disturbance would lead to a potential in industry application for the real time measurement and control of gas pollutant emission in the future. PMID:20038016

  11. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  12. Ligand-field symmetry effects in Fe(II) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Kim, Tae Kyu; Groot, Frank M. F. de; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-02-28

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  13. X-ray absorption near-edge structure micro-spectroscopy study of vanadium speciation in Phycomyces blakesleeanus mycelium.

    Science.gov (United States)

    Žižić, Milan; Dučić, Tanja; Grolimund, Daniel; Bajuk-Bogdanović, Danica; Nikolic, Miroslav; Stanić, Marina; Križak, Strahinja; Zakrzewska, Joanna

    2015-09-01

    Vanadium speciation in the fungus Phycomyces blakesleeanus was examined by X-ray absorption near-edge structure (XANES) spectroscopy, enabling assessment of oxidation states and related molecular symmetries of this transition element in the fungus. The exposure of P. blakesleeanus to two physiologically important vanadium species (V(5+) and V(4+)) resulted in the accumulation of this metal in central compartments of 24 h old mycelia, most probably in vacuoles. Tetrahedral V(5+), octahedral V(4+), and proposed intracellular complexes of V(5+) were detected simultaneously after addition of a physiologically relevant concentration of V(5+) to the mycelium. A substantial fraction of the externally added V(4+) remained mostly in its original form. However, observable variations in the pre-edge-peak intensities in the XANES spectra indicated intracellular complexation and corresponding changes in the molecular coordination symmetry. Vanadate complexation was confirmed by (51)V NMR and Raman spectroscopy, and potential binding compounds including cell-wall constituents (chitosan and/or chitin), (poly)phosphates, DNA, and proteins are proposed. The evidenced vanadate complexation and reduction could also explain the resistance of P. blakesleeanus to high extracellular concentrations of vanadium. PMID:26253227

  14. Sulfur K-edge absorption spectroscopy on selected biological systems; Schwefel-K-Kanten-Absorptionsspektroskopie an ausgewaehlten biologischen Systemen

    Energy Technology Data Exchange (ETDEWEB)

    Lichtenberg, Henning

    2008-07-15

    Sulfur is an essential element in organisms. In this thesis investigations of sulfur compounds in selected biological systems by XANES (X-ray Absorption Near Edge Structure) spectroscopy are reported. XANES spectroscopy at the sulfur K-edge provides an excellent tool to gain information about the local environments of sulfur atoms in intact biological samples - no extraction processes are required. Spatially resolved measurements using a Kirkpatrick-Baez mirror focusing system were carried out to investigate the infection of wheat leaves by rust fungi. The results give information about changes in the sulfur metabolism of the host induced by the parasite and about the extension of the infection into visibly uninfected plant tissue. Furthermore, XANES spectra of microbial mats from sulfidic caves were measured. These mats are dominated by microbial groups involved in cycling sulfur. Additionally, the influence of sulfate deprivation and H{sub 2}S exposure on sulfur compounds in onion was investigated. To gain an insight into the thermal degradation of organic material the influence of roasting of sulfur compounds in coffee beans was studied. (orig.)

  15. Total Absorption Gamma-Ray Spectroscopy of 87Br, 88Br and 94Rb Beta-Delayed Neutron Emitters

    CERN Document Server

    Valencia, E; Algora, A; Agramunt, J; Rubio, B; Rice, S; Gelletly, W; Regan, P; Zakari-Issoufou, A -A; Fallot, M; Porta, A; Rissanen, J; Eronen, T; Aysto, J; Batist, L; Bowry, M; Bui, V M; Caballero-Folch, R; Cano-Ott, D; Elomaa, V -V; Estevez, E; Farrelly, G F; Garcia, A R; Gomez-Hornillos, B; Gorlychev, V; Hakala, J; Jordan, M D; Jokinen, A; Kolhinen, V S; Kondev, F G; Martinez, T; Mendoza, E; Moore, I; Penttila, H; Podolyak, Zs; Reponen, M; Sonnenschein, V; Sonzogni, A A

    2016-01-01

    We investigate the decay of 87Br, 88Br and 94Rb using total absorption gamma-ray spectroscopy. These important fission products are beta-delayed neutron emitters. Our data show considerable gamma-intensity, so far unobserved in high-resolution gamma-ray spectroscopy, from states at high excitation energy. We also find significant differences with the beta intensity that can be deduced from existing measurements of the beta spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the range 1 to 100 s. We also use summation calculations to evaluate the impact of present data on reactor antineutrino spectra. We find a significant effect at antineutrino energies in the range of 5 to 9 MeV. In addition, we observe an unexpected strong probability for gamma emission from neutron unbound s...

  16. Characterization of interfacially electronic structures of gold-magnetite heterostructures using X-ray absorption spectroscopy.

    Science.gov (United States)

    Lin, Fang-hsin; Doong, Ruey-an

    2014-03-01

    Gold-magnetite heterostructures are novel nanomaterials which can rapidly catalyze the reduction reaction of nitroaromatics. In this study, the interfacially structural and electronic properties of various morphologies of Au-Fe3O4 heterostructures were systematically investigated using X-ray absorbance spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The effect of change in electronic structure and charge transfer on electrochemically catalytic activity of Au-Fe3O4 heterostructures was further evaluated by oxygen reduction reaction (ORR). The shifts in binding energy of Au4f and Fe2p peaks in XPS spectra indicate the charge transfer between the Au and Fe3O4 nanoparticles. The increase in d-hole population of Au seeds after the conjugation with iron oxides follows the order flower-like Au-Fe3O4 (FLNPs)>dumbbell-like Au-Fe3O4 (DBNPs)>Au seeds. In addition, the Fe(2+) valence state increases in Au-Fe3O4 heterostructures, which provides evidence to support the hypothesis of charge transfer between Au and Fe3O4 nanoparticles. The theoretical simulation of Au L3-edge XAS further confirms the production of Au-Fe and Au-O bonds at the interface of Au/Fe3O4 and the epitaxial linkage relationship between Au and Fe3O4 nanoparticles. In addition, the electron deficient of Au seeds increases upon increasing Fe3O4 nanoparticles on a single Au seed, and subsequently decreases the catalytic activity of Au in the Au-Fe3O4 heterostructures. The catalytic activity of Au-Fe3O4 toward ORR follows the order Au seeds>Au-Fe3O4 DBNPs>Au-Fe3O4 FLNPs, which is positively correlated to the extent of electronic deficiency of Au in Au-Fe3O4 heterostructures.

  17. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    Science.gov (United States)

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  18. Segmented Monolithic Germanium Detector Arrays for X-ray Absorption Spectroscopy. Final Report

    International Nuclear Information System (INIS)

    The experimental results from the Phase I effort were extremely encouraging. During Phase I PHDs Co. made the first strides toward a new detector technology that could have great impact on synchrotron x-ray absorption (XAS) measurements, and x-ray detector technology in general. Detector hardware that allowed critical demonstration measurements of our technology was designed and fabricated. This new technology allows good charge collection from many pixels on a single side of a multi-element monolithic germanium planar detector. The detector technology provides 'dot-like' collection electrodes having very low capacitance. The detector technology appears to perform as anticipated in the Phase I proposal. In particular, the 7-pixel detector studied showed remarkable properties; making it an interesting example of detector physics. The technology is enabled by the use of amorphous germanium contact technology on germanium planar detectors. Because of the scalability associated with the fabrication of these technologies at PHDs Co., we anticipate being able to supply larger detector systems at significantly lower cost than systems made in the conventional manner.

  19. Diamond-coated ATR prism for infrared absorption spectroscopy of surface-modified diamond nanoparticles

    International Nuclear Information System (INIS)

    Linear antenna microwave chemical vapor deposition process was used to homogeneously coat a 7 cm long silicon prism by 85 nm thin nanocrystalline diamond (NCD) layer. To show the advantages of the NCD-coated prism for attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) of nanoparticles, we apply diamond nanoparticles (DNPs) of 5 nm nominal size with various surface modifications by a drop-casting of their methanol dispersions. ATR-FTIR spectra of as-received, air-annealed, plasma-oxidized, and plasma-hydrogenated DNPs were measured in the 4000–1500 cm−1 spectral range. The spectra show high spectral resolution, high sensitivity to specific DNP surface moieties, and repeatability. The NCD coating provides mechanical protection against scratching and chemical stability of the surface. Moreover, unlike on bare Si surface, NCD hydrophilic properties enable optically homogeneous coverage by DNPs with some aggregation on submicron scale as evidenced by scanning electron microscopy and atomic force microscopy. Compared to transmission FTIR regime with KBr pellets, direct and uniform deposition of DNPs on NCD-ATR prism significantly simplifies and speeds up the analysis (from days to minutes). We discuss prospects for in situ monitoring of surface modifications and molecular grafting.

  20. A novel measurement method of microorganism growth by tunable diode laser-absorption spectroscopy

    Science.gov (United States)

    Xiang, Jindong; Shao, Jie; Ying, Chaofu; Wang, Liming; Guo, Jie

    2015-05-01

    The objective of this work was to attain essential parameters by using a Gompertz model that employed a new approach of wavelength modulation spectroscopy (WMS) to describe the microorganism growth. The measurement method of WMS introduces noninvasive technique instead of complicated invasive microorganism operation analysis and quickly obtains the accurate real-time measurement results. By using the WMS measurement, the specific growth curve of microorganism growth clearly displayed every three minute, which has characteristics of high sensitivity, high spectral resolution, fast time response and overcomes the randomness and error operation of traditional analysis methods. The measurement value of BF and AF in the range of 1.008 to 1.043 and the lower MSE showed that Gompertz model can fit the data well and be capable of describing bacteria growth rate and lag time. The results of experiment data suggested that the specific growth rate of microorganism depends on the temperature. With the increase of temperature ranging from 25 °C to 42 °C , the lag time of bacteria growth has been shortened. And the suitable temperature of bacteria growth is about 37 °C . Judging from the growth rate of microorganisms, we can identify the microbial species, not only to improve the precision and efficiency, but also to provides a rapidly sensitive way for microbial detection. The lag time of microorganism growth also provides a great application prospect for shelf life of the food safety.

  1. Absorption Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Ajloo, Davood; Ghadamgahi, Maryam; Shaheri, Freshte; Zarei, Kobra [Damghan Univ., Damghan (Iran, Islamic Republic of)

    2014-05-15

    Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 μM in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and 65 .deg. C and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.

  2. Applications of X-ray absorption spectroscopy and low temperature XMCD to metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H. [Univ. of California, Davis, CA (United States). Dept. of Applied Science]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-01-01

    The author has used the extended X-ray absorption fine structure (EXAFS) and ultra-low temperature X-ray magnetic circular dichroism (XMCD) to study the environments of the metal sites in metalloproteins. EXAFS has been used to study the Zn site in spinach carbonic anhydrase. The EXAFS, in parallel with site directed mutagenesis studies, indicate that the active site Zn is in a cys-cys-his-H{sub 2}O environment, very different from the mammalian carbonic anhydrase active site. Nitrogenase, the primary enzyme in biological nitrogen fixation, contains two complex metal clusters of unique structure. EXAFS studies at the Fe and Mo K-edges of nitrogenase solutions and crystals yielded information about the various metal-metal distances in these two clusters. The author assigned 4 Fe and 3 Mo interactions >4 {angstrom}. Single crystal Mo K-edge EXAFS then found a very long Fe-Fe distance of {approximately}5.1 {angstrom}. These distances were then used to further refine the proposed crystallographic models to their highest accuracy yet. Studies were carried further by examining nitrogenas in oxidized and reduced forms--states for which there is no crystallographic information. Small structural changes were observed and an EXAFS model was put forth that attempts to deconvolute the EXAFS distances of the two metal clusters. Nitrogenase Apo I, a genetic mutant of nitrogenase which is though to contain only one of the two different metal clusters, was also examined using EXAFS. These studies showed results consistent with current models, yet the metal clusters were very disordered. Finally, ultra-low temperature methods were used to further the development of XMCD as a technique for studying biological systems. Experiments were performed on the copper in plastocyanin. Data was collected that definitively proves that the sample surface was at 0.55 {+-} 0.05 K. This result opens the door to further study of more complex biological metal clusters.

  3. Intermediate Coupling For Core-Level Excited States: Consequences For X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bagus, Paul S.; Sassi, Michel JPC; Rosso, Kevin M.

    2015-04-15

    The origin of the complex NEXAFS features of X-Ray Absorption, XAS, spectra in transition metal complexes is analyzed and interpreted in terms of the angular momentum coupling of the open shell electrons. Especially for excited configurations where a core-electron is promoted to an open valence shell, the angular momentum coupling is intermediate between the two limits of Russell- Saunders, RS, coupling where spin-orbit splitting of the electron shells is neglected and j-j coupling where this splitting is taken as dominant. The XAS intensities can be understood in terms of two factors: (1) The dipole selection rules that give the allowed excited RS multiplets and (2) The contributions of these allowed multiplets to the wavefunctions of the intermediate coupled levels. It is shown that the origin of the complex XAS spectra is due to the distribution of the RS allowed multiplets over several different intermediate coupled excited levels. The specific case that is analyzed is the L2,3 edge XAS of an Fe3+ cation, because this cation allows a focus on the angular momentum coupling to the exclusion of other effects; e.g., chemical bonding. Arguments are made that the properties identified for this atomic case are relevant for more complex materials. The analysis is based on the properties of fully relativistic, ab initio, many-body wavefunctions for the initial and final states of the XAS process. The wavefunction properties considered include the composition of the wavefunctions in terms of RS multiplets and the occupations of the spin-orbit split open shells; the latter vividly show whether the coupling is j-j or not.

  4. Probing Warm Dense Matter electronic structure using X-ray absorption Near Edge Spectroscopy (XANES)

    Science.gov (United States)

    Benuzzi Mounaix, Alessandra

    2011-06-01

    The behavior and physical properties of warm dense matter, fundamental for various branches of physics including planetology and Inertial Confinement Fusion, are non trivial to simulate either theoretically, numerically or experimentally. Despite important progress obtained in the last decade on macroscopic characterization (e.g. equations of state), microscopic studies are today necessary to investigate finely the WDM structure changes, the phase transitions and to test physical hypothesis and approximations commonly used in calculations. In this work, highly compressed aluminum has been investigated with the aim of bringing information on the evolution of its electronic structure by using K-edge shift and XANES. The experiment was performed at LULI laboratory where we used one long pulse (500 ps, IL ~ 8 1013 W/cm2) to create a uniform shock and a second ps beam (IL ~ 1017 W/cm2) to generate an ultra-short broadband X-ray source near the Al K-edge. The spectra were registered by using two conical KAP Bragg crystals. The main target was designed to probe the Aluminum in reshocked conditions allowing us to probe and to test theories in an extreme regime up to now unexplored (ρ ~ 3 ρ0 and T ~ 8 eV). The hydrodynamical Al conditions were measured by using VISARs interferometers and self-emission diagnostics. By increasing the delay between the two beams, we have been able to observe the modification of absorption spectra for unloading Al conditions (ρ >= 0.5 g/cc), and to put in evidence the relocalization of the 3p valence electrons occurring in the metal-non metal transition. All data have been compared to ab initio and dense plasma calculations.

  5. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  6. USEPA METHOD STUDY 38 - SW-846 METHOD 3010, ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TRACE METALS BY FLAME ATOMIC ABSORPTION SPECTROSCOPY

    Science.gov (United States)

    An interlaboratory collaborative study was conducted on SW-846 Method 3010, "Acid Digestion of Aqueous Samples and Extracts for Total Metals for Analysis by Flame Atomic Absorption Spectroscopy", to determine the mean recovery and precision for analyses of 21 trace metals in surf...

  7. Electronic Excited State and Vibrational Dynamics of Water Solution of Cytosine Observed by Time-resolved Transient Absorption Spectroscopy with Sub-10fs Deep Ultraviolet Laser Pules

    Directory of Open Access Journals (Sweden)

    Kobayashi Takayoshi.

    2013-03-01

    Full Text Available Time-resolved transient absorption spectroscopy for water solution of cytosine with sub-10fs deep ultraviolet laser pulse is reported. Ultrafast electronic excited state dynamics and coherent molecular vibrational dynamics are simultaneously observed and their relaxation mechanisms are discussed.

  8. Ultrafast time-resolved absorption spectroscopy of geometric isomers of carotenoids

    Science.gov (United States)

    Niedzwiedzki, Dariusz M.; Sandberg, Daniel J.; Cong, Hong; Sandberg, Megan N.; Gibson, George N.; Birge, Robert R.; Frank, Harry A.

    2009-02-01

    The structures of a number of stereoisomers of carotenoids have been revealed in three-dimensional X-ray crystallographic investigations of pigment-protein complexes from photosynthetic organisms. Despite these structural elucidations, the reason for the presence of stereoisomers in these systems is not well understood. An important unresolved issue is whether the natural selection of geometric isomers of carotenoids in photosynthetic pigment-protein complexes is determined by the structure of the protein binding site or by the need for the organism to accomplish a specific physiological task. The association of cis isomers of a carotenoid with reaction centers and trans isomers of the same carotenoid with light-harvesting pigment-protein complexes has led to the hypothesis that the stereoisomers play distinctly different physiological roles. A systematic investigation of the photophysics and photochemistry of purified, stable geometric isomers of carotenoids is needed to understand if a relationship between stereochemistry and biological function exists. In this work we present a comparative study of the spectroscopy and excited state dynamics of cis and trans isomers of three different open-chain carotenoids in solution. The molecules are neurosporene ( n = 9), spheroidene ( n = 10), and spirilloxanthin ( n = 13), where n is the number of conjugated π-electron double bonds. The spectroscopic experiments were carried out on geometric isomers of the carotenoids purified by high performance liquid chromatography (HPLC) and then frozen to 77 K to inhibit isomerization. The spectral data taken at 77 K provide a high resolution view of the spectroscopic differences between geometric isomers. The kinetic data reveal that the lifetime of the lowest excited singlet state of a cis-isomer is consistently shorter than that of its corresponding all- trans counterpart despite the fact that the excited state energy of the cis molecule is typically higher than that of the trans

  9. The use of atomic absorption spectroscopy to measure arsenic, selenium, molybdenum, and vanadium in water and soil samples from uranium mill tailings sites

    Energy Technology Data Exchange (ETDEWEB)

    Hollenbach, M.H.

    1988-01-01

    The Technical Measurements Center (TMC) was established to support the environmental measurement needs of the various DOE remedial action programs. A laboratory intercomparison study conducted by the TMC, using soil and water samples from sites contaminated by uranium mill tailings, indicated large discrepancies in analytical results reported by participating laboratories for arsenic, selenium, molybdenum, and vanadium. The present study was undertaken to investigate the most commonly used analytical techniques for measuring these four elements, ascertain routine and reliable quantification, and assess problems and successes of analysts. Based on a survey of the technical literature, the analytical technique of atomic absorption spectroscopy was selected for detailed study. The application of flame atomic absorption, graphite furnace atomic absorption, and hydride generation atomic absorption to the analysis of tailings-contaminated samples is discussed. Additionally, laboratory sample preparation methods for atomic absorption spectroscopy are presented. The conclusion of this report is that atomic absorption can be used effectively for the determination of arsenic, selenium, molybdenum, and vanadium in water and soil samples if the analyst understands the measurement process and is aware of potential problems. The problem of accurate quantification of arsenic, selenium, molybdenum, and vanadium in water and soil contaminated by waste products from uranium milling operations affects all DOE remedial action programs (Surplus Facilities Management Program (SFMP), Formerly Utilized Site Remedial Action Program (FUSRAP), and Uranium Mill Tailings Remedial Action Program (UMTRAP)), since all include sites where uranium was processed. 96 refs., 9 figs.

  10. Pulse laser photolysis of aqueous ozone in the microsecond range studied by time-resolved far-ultraviolet absorption spectroscopy.

    Science.gov (United States)

    Goto, Takeyoshi; Morisawa, Yusuke; Higashi, Noboru; Ikehata, Akifumi; Ozaki, Yukihiro

    2013-05-01

    Chemical dynamics of an ozone (O3) pulse-photolytic reaction in aqueous solutions were studied with pump-probe transient far-ultraviolet (FUV) absorption spectroscopy. With a nanosecond pulse laser of 266 nm as pump light, transient spectra of O3 aqueous solutions (78-480 μM, pH 2.5-11.3) were acquired in the time range from -50 to 50 μs in the wavelength region from 190 to 225 nm. The measured transient spectra were linearly decomposed into the molar absorption coefficients and the concentration-time profiles of constituted chemical components with a multivariate curve resolution method. From the dependences of the time-averaged concentrations for 20 μs of the constituted chemicals on the initial concentration of O3, it was found that the transient spectra involve the decomposition of O3 and the formation of hydrogen peroxide (H2O2) and a third component that is assigned to hydroxyl radical (OH) or perhydroxyl radical (HO2). Furthermore, the pH dependence of the time-averaged concentration of the third components indicates that HO2 is more probable than OH as the third component. The time-averaged concentration ratio of each chemical component to the initial O3 concentration depends on the pH conditions from -0.95 to -0.60 for O3, 0.98 to 1.2 for H2O2, 0.002 to 0.29 for OH, and 0.012 to 0.069 for HO2.

  11. Electronic Absorption Spectroscopy of H2X (X=O, Te, Po): Theoretical Teatment of Spin-Orbit Effects

    Institute of Scientific and Technical Information of China (English)

    Chérif A. A. Ndoye; Chantal Daniel

    2009-01-01

    The electronic spectroscopy of H2X (X=O, Te, Po) was investigated by means of spinorbit configuration interaction (EPCISO) and restricted active space state interaction (SORASSI). The transition energies to the low-lying singlet and triplet states of H2O, in which the SO interaction is zero, compare rather well with the experimental data as well as to other theoretical values. The theoretical electronic absorption spectrum is characterized by three allowed transitions A1B1 (2px (O)→σ*g//3s(O)), B1 A1 (σg→σ*g/3s(O)) and A1 B2 (σg→σ*u) calculated at 7.68, 9.94, and 11.72 eV, respectively. The theoretical absorption spectra of H2X (X=Te, Po) are shifted to the red with the A1B1 (npx(X)→σ*g) states calculated at 5.06 eV (H2Te) and 4.40 eV (H2Po) and the A1B2 (σg→σ*u) states calculated at 7.89 eV (H2Te) and 7.77 eV (H2Po). The largest SO splitting amounts to 0.34 eV and is found for the lowest a3A1 of H2Po. In H2Te the SO effects are still negligible with a maximum splitting of 0.04 eV for the lowest a3B2. The two methods lead to comparable results but the EPCISO approach depends strongly on the reference wavefunction.

  12. Quantitative probe of the transition metal redox in battery electrodes through soft x-ray absorption spectroscopy

    Science.gov (United States)

    Li, Qinghao; Qiao, Ruimin; Wray, L. Andrew; Chen, Jun; Zhuo, Zengqing; Chen, Yanxue; Yan, Shishen; Pan, Feng; Hussain, Zahid; Yang, Wanli

    2016-10-01

    Most battery positive electrodes operate with a 3d transition-metal (TM) reaction centre. A direct and quantitative probe of the TM states upon electrochemical cycling is valuable for understanding the detailed cycling mechanism and charge diffusion in the electrodes, which is related with many practical parameters of a battery. This review includes a comprehensive summary of our recent demonstrations of five different types of quantitative analysis of the TM states in battery electrodes based on soft x-ray absorption spectroscopy and multiplet calculations. In LiFePO4, a system of a well-known two-phase transformation type, the TM redox could be strictly determined through a simple linear combination of the two end-members. In Mn-based compounds, the Mn states could also be quantitatively evaluated, but a set of reference spectra with all the three possible Mn valences needs to be deliberately selected and considered in the fitting. Although the fluorescence signals suffer the self-absorption distortion, the multiplet calculations could consider the distortion effect, which allows a quantitative determination of the overall Ni oxidation state in the bulk. With the aid of multiplet calculations, one could also achieve a quasi-quantitative analysis of the Co redox evolution in LiCoO2 based on the energy position of the spectroscopic peak. The benefit of multiplet calculations is more important for studying electrode materials with TMs of mixed spin states, as exemplified by the quantitative analysis of the mixed spin Na2-x Fe2(CN)6 system. At the end, we showcase that such quantitative analysis could provide valuable information for optimizing the electrochemical performance of Na0.44MnO2 electrodes for Na-ion batteries. The methodology summarized in this review could be extended to other energy application systems with TM redox centre for detailed analysis, for example, fuel cell and catalytic materials.

  13. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    Science.gov (United States)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  14. Electrosynthesis of ZnO nanorods and nanotowers: Morphology and X-ray Absorption Near Edge Spectroscopy studies

    Science.gov (United States)

    Sigircik, Gokmen; Erken, Ozge; Tuken, Tunc; Gumus, Cebrail; Ozkendir, Osman M.; Ufuktepe, Yuksel

    2015-06-01

    Deposition mechanism of nano-structured ZnO films has been investigated in the absence and presence of chloride ions from aqueous solution. The resulting opto-electronic properties were interpreted extensively, using X-ray diffraction (XRD), X-ray Absorption Near Edge Spectroscopy (XANES), field emission scanning electron microscopy (FE-SEM), UV-Visible spectroscopy and four probe techniques. The ZnO deposition is mass transport controlled process and the interaction of chloride ions with the surface has great influence on diffusion kinetics, considering the substantial species (Zn2+ and OH-) involved in the construction of ZnO film. This effect does not change major lattice parameters, as shown with detailed analysis of XRD data. However, the texture coefficient (Tc) (0 0 2) value is higher in presence of chloride ions containing synthesis solution which gave vertically aligned, well defined and uniformly dispersed nanorods structure. The calculated Eg values are in the range 3.28-3.41 eV and 3.22-3.31 eV for ZnO nanorods and nanotowers synthesized at different deposition periods, respectively. Furthermore, the charge mobility values regarding the deposition periods were measured to be in the ranges from 130.4 to 449.2 cm2 V-1 s-1 and 126.2 to 204.7 cm2 V-1 s-1 for nanorods and nanotowers, respectively. From XANES results, it was shown that the Zn K-edge spectrum is dominated by the transition of Zn 1s core electrons into the unoccupied Zn 4p states of the conduction band. Comparing the rod and tower nano-structured ZnO thin films, the excitation behavior of valence band electrons is different. Moreover, the density states of Zn 4p are higher for ZnO nanorods.

  15. Adsorption and deposition of anthraquinone-2-carboxylic acid on alumina studied by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Higo, Morihide [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan)], E-mail: higo@apc.kagoshima-u.ac.jp; Miake, Takeshi; Mitsushio, Masaru; Yoshidome, Toshifumi [Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Ozono, Yoshihisa [Center for Instrumental analysis, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan)

    2008-04-30

    The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01-1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy. The oxide was prepared on evaporated Al films at room temperature in an oxygen-dc glow discharge. The morphology of the deposited AQ-2-COOH on the oxide surfaces was observed and analyzed by atomic force microscopy. These surface analyses showed that AQ-2-COOH is adsorbed predominantly as a uniform nanometer-scale film of carboxylate anions on the oxide surfaces deposited from solutions with concentrations lower than or equal to 0.02 mg/ml. It was found that AQ-2-COOH is adsorbed as both a uniform film of anions and as micron-sized particles of neutral molecules with heights of a few tens of nanometers when AQ-2-COOH is deposited from solutions with concentrations higher than 0.02 mg/ml. A comparison of the results obtained by these surface analytical techniques clearly shows the features and advantages of these analytical techniques.

  16. Adsorption and deposition of anthraquinone-2-carboxylic acid on alumina studied by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy

    International Nuclear Information System (INIS)

    The adsorption state of anthraquinone-2-carboxylic acid (AQ-2-COOH) deposited from acetone solutions (0.01-1.00 mg/ml) on native oxide surfaces of Al films was characterized by inelastic electron tunneling spectroscopy, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy. The oxide was prepared on evaporated Al films at room temperature in an oxygen-dc glow discharge. The morphology of the deposited AQ-2-COOH on the oxide surfaces was observed and analyzed by atomic force microscopy. These surface analyses showed that AQ-2-COOH is adsorbed predominantly as a uniform nanometer-scale film of carboxylate anions on the oxide surfaces deposited from solutions with concentrations lower than or equal to 0.02 mg/ml. It was found that AQ-2-COOH is adsorbed as both a uniform film of anions and as micron-sized particles of neutral molecules with heights of a few tens of nanometers when AQ-2-COOH is deposited from solutions with concentrations higher than 0.02 mg/ml. A comparison of the results obtained by these surface analytical techniques clearly shows the features and advantages of these analytical techniques

  17. Differential optical absorption spectroscopy (DOAS and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    Directory of Open Access Journals (Sweden)

    V. V. Rozanov

    2010-06-01

    Full Text Available The Differential Optical Absorption Spectroscopy (DOAS technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering.

    Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS, the modified (MDOAS, and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption.

    The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as

  18. X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cinco, Roehl M.

    1999-12-16

    Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH{sub 2}OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees {+-} 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn{sub 4}O{sub 3}X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn{sub 4}O{sub 3}Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and glutathione show distinct

  19. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  20. Defects in silicon after B+ implantation: A study using a positron-beam technique, Rutherford backscattering, secondary neutral mass spectroscopy, and infrared absorption spectroscopy

    Science.gov (United States)

    Eichler, S.; Gebauer, J.; Börner, F.; Polity, A.; Krause-Rehberg, R.; Wendler, E.; Weber, B.; Wesch, W.; Börner, H.

    1997-07-01

    The distribution of defects in Si (100), (110), and (111) after boron implantation and annealing processes was measured by means of different methods. Boron implantation was carried out at 300 K with three energies (50, 150, and 300 keV or 30, 90, and 180 keV) in multiple mode to obtain a homogeneously damaged layer. Ion fluences ranged from 1014 to 1016 B+ cm-2. The profile of vacancy-type defects was detected by variable-energy positron annihilation spectroscopy (VEPAS). The defect concentration increases proportionally to Φ, where Φ is the ion fluence. It was found that the line-shape parameter S of the positron-electron annihilation peak in the implanted layer increases with Φ. The divacancy (2v) concentration observed by infrared absorption spectroscopy (IRAS) was nearly constant in all samples (about 1.8×1019 cm-3). It can be concluded that divacancies are not the main vacancy-type defect and the increasing S parameter must be attributed to additional defects of larger open volume. A value Sdefect/Sbulk=1.048 was fitted for the dominating defect, where S2v/Sbulk=1.04. Rutherford backscattering (RBS) measurements were carried out to detect the distribution of displaced lattice atoms. The defect-production rate was proportional to Φ again. The concentration profiles of implanted ions were measured with sputtered neutral mass spectrometry (SNMS). In addition, Monte Carlo calculations were done with the TRIM code. The nearly homogenous defect distributions up to a depth of 1 μm found by VEPAS, TRIM, and RBS are in very good accordance. The samples were annealed up to 1150 K. It was found that the annealing behavior of vacancylike defects depends on the implantation dose and on the sample material under investigation. The divacancies are annealed at 470 K as measured by IRAS. An annealing stage of vacancy clusters at 725 K was observed in all samples by VEPAS. In Czochralski material, a decrease of the S parameter below the value of defect-free Si was

  1. [Determination of trace elements in Lophatherum gracile brongn from different habitat by microwave digestion-atomic absorption spectroscopy].

    Science.gov (United States)

    Yuan, Ke; Xue, Yue-Qin; Gui, Ren-Yi; Sun, Su-Qin; Yin, Ming-Wen

    2010-03-01

    A method of microwave digestion technique was proposed to determine the content of Zn, Fe, Cu, Mn, K, Ca, Mg, Ni, Cd, Pb, Cr, Co, Al, Se and As in Lophatherum gracile brongn of different habitat by atomic absorption spectroscopy. The RSD of the method was between 1.23% and 3.32%, and the recovery rates obtained by standard addition method were between 95.8% and 104.20%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of metal elements in Lophatherum gracile brongn. The experimental results also indicated that different areas' Lophantherum gracile brongn had different trace elements content. The content of trace elements K, Mg, Ca, Fe and Mn beneficial to the human body was rich. The content of the heavy metal trace element Pb in Lophantherum gracile brongn of Hunan province was slightly high. The content of the heavy metal trace element Cu in Lophantherum gracile brongn of Guangdong province and Anhui province is also slightly higher. Beside, the contents of harmful trace heavy metal elements Cd, Cu, Cr, Pb and As in Lophatherum gracile brongn of different habitat are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation and National Food Sanitation Standard. These determination results provided the scientific data for further discussing the relationship between the content of trace elements in Lophantherum gracile brongn and the medicine efficacy.

  2. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Meire, Mieke [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Tack, Pieter [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); De Keukeleere, Katrien [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Balcaen, Lieve [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); Pollefeyt, Glenn [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Vanhaecke, Frank; Vincze, Laszlo [Ghent University, Department of Analytical Chemistry, Krijgslaan 281-S12, 9000 Ghent (Belgium); Van Der Voort, Pascal; Van Driessche, Isabel [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium); Lommens, Petra, E-mail: Petra.Lommens@UGent.be [Ghent University, Department of Inorganic and Physical Chemistry, Krijgslaan 281-S3, 9000 Ghent (Belgium)

    2015-08-01

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence the efficiency of these materials. We have impregnated a mesoporous titania powder with a gold salt and used different synthesis routes to reduce the gold ions. A structural analysis was performed using electron microscopy and nitrogen sorption. An X-ray absorption near edge structure spectroscopy study, in both high and low resolution, was performed to investigate the influence of the different reduction methods on the oxidation state of the gold atoms. This technique can also provide information on the local environment of the gold atoms and their interaction with the titanium dioxide host. We found that varying the reduction method has a significant impact on the oxidation state of the gold cocatalysts. This lead to varying interactions with the titania support and charging of the gold nanoparticles. - Highlights: • Influence of reduction method on Au/TiO{sub 2} was studied. • Hydrogen reduction of gold salt results in the smallest particles of 2.4 nm. • XANES is used to determine the oxidation state of gold atoms. • Hydrogen and microwave synthesis produce completely reduced gold particles. • UV reduction of gold salt leads to positively charged particles.

  3. Immersed single-drop microextraction-electrothermal vaporization atomic absorption spectroscopy for the trace determination of mercury in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of); Naderi, Mehrnoush [Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran (Iran, Islamic Republic of)

    2009-06-15

    A new method based on single-drop microextraction (SDME) combined with electrothermal vaporization atomic absorption spectroscopy (ETV-AAS) was developed for the trace determination of mercury in water samples. A microdrop of m-xylene was applied as the extraction solvent. After extraction, the microdrop was introduced, directly, into a graphite furnace of AAS. Some important extraction parameters such as type of solvent, volume of solvent, sample stirring, ionic strength, sample pH, chelating agent concentration, sample temperature, and extraction time were investigated and optimized. The highest possible microdrop volume of 10 {mu}L, a sampling temperature of 27 {sup o}C, and use of m-xylene containing dithizone, as complexing agent, are major parameters led to achieve a high enrichment factor of 970. Under the optimized conditions, the detection limit of the method was 0.01 {mu}g L{sup -1} and the relative standard deviation was 6.1% (n = 7). The proposed method has been successfully applied to the determination of Hg in two river water samples. The effects of interfering species such as Pt, Pd, Cu, Au, and Bi, having the tendency to form complexes with dithizone, at two concentration levels of 100 and 1000 {mu}g L{sup -1} were also studied.

  4. Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure

    International Nuclear Information System (INIS)

    Solid sample graphite furnace atomic absorption spectroscopy (SS-GFAAS) has been proposed since its appearance as a good alternative to wet methods of analysis in many matrices. Here, we examine the use of SS-GFAAS for total and leachable arsenic determination in sediments from distinct origins. Our direct analysis of seven selected sediments was not always free of spectral matrix interference, but the spectroscopic technique gave very good results for (a) direct arsenic measurement in solid residues from a range of leaching processes, (b) total arsenic determination (HNO3 leaching test) and (c) the evaluation of its potential remobilisation (modified BCR three-step sequential extraction scheme). For the optimised instrumental conditions, the analysis limit was 0.44 mg kg-1 and long-term reproducibility was between 10-15%. The sum of leachable arsenic in HNO3 65% and the residual fraction, gave recoveries from 72 to 118% of total arsenic content. These results are a good alternative to other cumbersome wet methods involving HF

  5. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    Science.gov (United States)

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  6. Speciation of sulfur in humic and fulvic acids using X-ray Absorption Near-Edge Structures (XANES) spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morra, M.J.; Fendorf, S.E.; Brown, P.D. [Univ. of Idaho, Moscow, ID (United States)

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils. 27 refs., 4 figs., 3 tabs.

  7. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS₂ by hyperspectral imaging.

    Science.gov (United States)

    Castellanos-Gomez, Andres; Quereda, Jorge; van der Meulen, Herko P; Agraït, Nicolás; Rubio-Bollinger, Gabino

    2016-03-18

    The possibility of spatially resolving the optical properties of atomically thin materials is especially appealing as they can be modulated at the micro- and nanoscale by reducing their thickness, changing the doping level or applying a mechanical deformation. Therefore, optical spectroscopy techniques with high spatial resolution are necessary to get a deeper insight into the properties of two-dimensional (2D) materials. Here we study the optical absorption of single- and few-layer molybdenum disulfide (MoS2) in the spectral range from 1.24 eV to 3.22 eV (385 nm to 1000 nm) by developing a hyperspectral imaging technique that allows one to probe the optical properties with diffraction limited spatial resolution. We find hyperspectral imaging very suited to study indirect bandgap semiconductors, unlike photoluminescence which only provides high luminescence yield for direct gap semiconductors. Moreover, this work opens the door to study the spatial variation of the optical properties of other 2D systems, including non-semiconducting materials where scanning photoluminescence cannot be employed. PMID:26876671

  8. Reaction-driven restructuring of Pt and Pd catalysts: In operando X-ray absorption spectroscopy study

    Science.gov (United States)

    Elsen, Annika; Jung, Ulrich; Li, Yuanyuan; Frenkel, Anatoly; Nuzzo, Ralph

    2014-03-01

    The catalyzed hydrogenation of ethylene on supported metal catalysts has been intensively investigated, mainly because this reaction lies at the heart of many industrial processes. Most previous studies have been performed using surface science techniques in UHV. Therefor little is known about the nature of the active state of the catalyst at ambient pressure where the kinetics is very different. We employed operando X-ray absorption spectroscopy (XAS) to correlate the structural changes of SiO2-supported Pt and Pd catalysts with their activity for ethylene hydrogenation. The XAS experiments were performed at the beamlines X19A and X18B, NSLS, BNL. For both catalysts, strong and largely reversible transformations of the metal bonding were identified at about the maximum ethane conversion. The changes were different for Pt/SiO2 and Pd/SiO2 due to the ability of the latter to form bulk hydride, while the former can only adsorb hydrogen on the surface. As a result, Pt/SiO2 undergoes disordering of the surface, leading to a strong reduction of the Pt-Pt coordination number under H2-deficient conditions, while the main effect for Pd/SiO2 is the hydrogen uptake with concomitant increase in Pd-Pd bond length. The correlation between these different kinds of order transitions and differences in rates for these catalysts will be discussed.

  9. Chemical speciation of uranium in contaminated and chemically remediated soils by micro X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Spatially resolved XAS and X-ray fluorescence spectroscopic studies were conducted to investigate the distribution and chemical speciation of uranium (U) in contaminated soils and sediments prior to and following chemical extraction. This approach provided direct information on the chemical speciation of uranium in micro-regions of contaminated soils and sediments sampled at the Fernald Environmental Management Project Site and the Savannah River Site. Using X-ray absorption near edge structure (XANES) spectroscopy, the predominant oxidation state of uranium in the contaminated sediments was determined. A calibration method was developed which enhanced the ability to collect oxidation state information at much lower concentrations in a reasonable time frame and allowed for the generation of oxidation state distribution maps at a 20 μm spatial resolution. Additional experiments conducted on mixed uranium containing mineral phases confirmed the ability of the method to accurately delineate proportions of uranium in different oxidation states. Furthermore, a method of imbedding particles in a nonreactive silicon polymer was developed such that individual particles could be examined before and after extraction with a wide range of chemicals used in sequential extraction techniques and others proposed for chemical intervention technologies. Studies revealed that the sodium carbonate treatment proposed to extract U from soils efficiently removed U(VI), except when present as a phosphate phase, and was inefficient at extracting U(IV) phases. The results of these studies demonstrated the utility of spatially resolved XAS methods for in situ chemical speciation of U and other metals and metalloids

  10. Digital signal processor-based high-precision on-line Voigt lineshape fitting for direct absorption spectroscopy

    Science.gov (United States)

    Xu, Lijun; Liu, Chang; Zheng, Deyan; Cao, Zhang; Cai, Weiwei

    2014-12-01

    To realize on-line high-accuracy measurement in direct absorption spectroscopy (DAS), a system-on-chip, high-precision digital signal processor-based on-line Voigt lineshape fitting implementation is introduced in this paper. Given that the Voigt lineshape is determined by the Gauss full width at half maximum (FWHM) and Lorentz FWHM, a look-up table, which covers a range of combinations of both, is first built to achieve rapid and accurate calculation of Voigt lineshape. With the look-up table and raw absorbance data in hand, Gauss-Newton nonlinear fitting module is implemented to obtain the parameters including both the Gauss and Lorentz FWHMs, which can be used to calculate the integrated absorbance. To realize the proposed method in hardware, a digital signal processor (DSP) is adopted to fit the Voigt lineshape in a real-time DAS measurement system. In experiment, temperature and H2O concentration of a flat flame are recovered from the transitions of 7444.36 cm-1 and 7185.6 cm-1 by the DSP-based on-line Voigt lineshape fitting and on-line integral of the raw absorbance, respectively. The results show that the proposed method can not only fit the Voigt lineshape on-line but also improve the measurement accuracy compared with those obtained from the direct integral of the raw absorbance.

  11. Anisotropy of chemical bonding in semifluorinated graphite C2F revealed with angle-resolved X-ray absorption spectroscopy.

    Science.gov (United States)

    Okotrub, Alexander V; Yudanov, Nikolay F; Asanov, Igor P; Vyalikh, Denis V; Bulusheva, Lyubov G

    2013-01-22

    Highly oriented pyrolytic graphite characterized by a low misorientation of crystallites is fluorinated using a gaseous mixture of BrF(3) with Br(2) at room temperature. The golden-colored product, easily delaminating into micrometer-size transparent flakes, is an intercalation compound where Br(2) molecules are hosted between fluorinated graphene layers of approximate C(2)F composition. To unravel the chemical bonding in semifluorinated graphite, we apply angle-resolved near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and quantum-chemical modeling. The strong angular dependence of the CK and FK edge NEXAFS spectra on the incident radiation indicates that room-temperature-produced graphite fluoride is a highly anisotropic material, where half of the carbon atoms are covalently bonded with fluorine, while the rest of the carbon atoms preserve π electrons. Comparison of the experimental CK edge spectrum with theoretical spectra plotted for C(2)F models reveals that fluorine atoms are more likely to form chains. This conclusion agrees with the atomic force microscopy observation of a chain-like pattern on the surface of graphite fluoride layers. PMID:23214423

  12. ''Live'' Prussian blue fading by time-resolved X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Claire [Smithsonian Institution Museum Conservation Institute, Suitland, MD (United States); Bern University of the Arts, Bern (Switzerland); Languille, Marie-Angelique [Synchrotron SOLEIL, IPANEMA, USR 3461 CNRS/MCC, Gif-sur-Yvette (France); Reguer, Solenn [Synchrotron SOLEIL, DiffAbs beamline, Gif-sur-Yvette (France); Gillet, Martine [Museum national d' histoire naturelle, Centre de Recherche sur la Conservation des Collections, Paris (France); Vicenzi, Edward P. [Smithsonian Institution Museum Conservation Institute, Suitland, MD (United States); Chagnot, Sebastien; Baudelet, Francois [Synchrotron SOLEIL, ODE beamline, Gif-sur-Yvette (France); Bertrand, Loic [Synchrotron SOLEIL, IPANEMA, USR 3461 CNRS/MCC, Gif-sur-Yvette (France); Synchrotron SOLEIL, Gif-sur-Yvette (France)

    2013-04-15

    Prussian blue (PB) is an artists' pigment that has been frequently used in many artworks but poses several problems of conservation because of its fading under light and anoxia treatment. PB fading is due to the reduction of iron(III) into iron(II) and depends a lot on the object investigated. Due to the complexity of the structure, the precise physico-chemical mechanisms behind the redox process remain obscure. In this paper, we present a procedure to investigate light- and anoxia-induced fading of PB-paper samples by means of time resolved X-ray absorption spectroscopy performed at the Fe K-edge. A system composed of a visible light source and a flux-controlled environmental cell allowed light, gas and humidity to be modified in situ. The synchrotron X-ray beam was evidenced to induce a reduction of PB and to play a major role in the kinetics. The analysis of the PB fading kinetics of a sample submitted to various gas and light environments showed that both synchrotron beam and anoxia were influencing PB reduction in a correlated way. In comparison, light was found to play a minor role. Finally, we have demonstrated that the type of paper substrate could influence significantly the kinetics of reduction. Several hypotheses to explain the correlation between PB reduction mechanism and substrate are presented. (orig.)

  13. Multi-species sensing using multi-mode absorption spectroscopy with mid-infrared interband cascade lasers

    Science.gov (United States)

    O'Hagan, S.; Northern, J. H.; Gras, B.; Ewart, P.; Kim, C. S.; Kim, M.; Merritt, C. D.; Bewley, W. W.; Canedy, C. L.; Vurgaftman, I.; Meyer, J. R.

    2016-06-01

    The application of an interband cascade laser, ICL, to multi-mode absorption spectroscopy, MUMAS, in the mid-infrared region is reported. Measurements of individual mode linewidths of the ICL, derived from the pressure dependence of lineshapes in MUMAS signatures of single, isolated, lines in the spectrum of HCl, were found to be in the range 10-80 MHz. Multi-line spectra of methane were recorded using spectrally limited bandwidths, of approximate width 27 cm-1, defined by an interference filter, and consist of approximately 80 modes at spectral locations spanning the 100 cm-1 bandwidth of the ICL output. Calibration of the methane pressures derived from MUMAS data using a capacitance manometer provided measurements with an uncertainty of 1.1 %. Multi-species sensing is demonstrated by the simultaneous detection of methane, acetylene and formaldehyde in a gas mixture. Individual partial pressures of the three gases are derived from best fits of model MUMAS signatures to the data with an experimental error of 10 %. Using an ICL, with an inter-mode interval of ~10 GHz, MUMAS spectra were recorded at pressures in the range 1-10 mbar, and, based on the data, a potential minimum detection limit of the order of 100 ppmv is estimated for MUMAS at atmospheric pressure using an inter-mode interval of 80 GHz.

  14. Ultrafast Carrier Trapping of a Metal-Doped Titanium Dioxide Semiconductor Revealed by Femtosecond Transient Absorption Spectroscopy

    KAUST Repository

    Sun, Jingya

    2014-06-11

    We explored for the first time the ultrafast carrier trapping of a metal-doped titanium dioxide (TiO2) semiconductor using broad-band transient absorption (TA) spectroscopy with 120 fs temporal resolution. Titanium dioxide was successfully doped layer-by-layer with two metal ions, namely tungsten and cobalt. The time-resolved data demonstrate clearly that the carrier trapping time decreases progressively as the doping concentration increases. A global-fitting procedure for the carrier trapping suggests the appearance of two time components: a fast one that is directly associated with carrier trapping to the defect state in the vicinity of the conduction band and a slow one that is attributed to carrier trapping to the deep-level state from the conduction band. With a relatively long doping deposition time on the order of 30 s, a carrier lifetime of about 1 ps is obtained. To confirm that the measured ultrafast carrier dynamics are associated with electron trapping by metal doping, we explored the carrier dynamics of undoped TiO2. The findings reported here may be useful for the implementation of high-speed optoelectronic applications and fast switching devices.

  15. Dopant activation in Sn-doped Ga2O3 investigated by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Doping activity in both beta-phase (β-) and amorphous (a-) Sn-doped gallium oxide (Ga2O3:Sn) is investigated by X-ray absorption spectroscopy (XAS). A single crystal of β-Ga2O3:Sn grown using edge-defined film-fed growth at 1725 °C is compared with amorphous Ga2O3:Sn films deposited at low temperature (<300 °C). Our XAS analyses indicate that activated Sn dopant atoms in conductive single crystal β-Ga2O3:Sn are present as Sn4+, preferentially substituting for Ga at the octahedral site, as predicted by theoretical calculations. In contrast, inactive Sn atoms in resistive a-Ga2O3:Sn are present in either +2 or +4 charge states depending on growth conditions. These observations suggest the importance of growing Ga2O3:Sn at high temperature to obtain a crystalline phase and controlling the oxidation state of Sn during growth to achieve dopant activation

  16. Structural characterization of vanadium oxide catalysts supported on nanostructured silica SBA-15 using X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    Walter Anke

    2010-02-01

    Full Text Available Abstract The local structure of vanadium oxide supported on nanostructured SiO2 (VxOy/SBA-15 was investigated by in situ X-ray absorption spectroscopy (XAS. Because the number of potential parameters in XAS data analysis often exceeds the number of "independent" parameters, evaluating the reliability and significance of a particular fitting procedure is mandatory. The number of independent parameters (Nyquist may not be sufficient. Hence, in addition to the number of independent parameters, a novel approach to evaluate the significance of structural fitting parameters in XAS data analysis is introduced. Three samples with different V loadings (i.e. 2.7 wt %, 5.4 wt %, and 10.8 wt % were employed. Thermal treatment in air at 623 K resulted in characteristic structural changes of the V oxide species. Independent of the V loading, the local structure around V centers in dehydrated VxOy/SBA-15 corresponded to an ordered arrangement of adjacent V2O7 units. Moreover, the V2O7 units were found to persist under selective oxidation reaction conditions.

  17. Investigation of copper(I) oxide quantum dots by near edge X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Copper(I) oxide quantum dots (OQDs) were grown in various thicknesses on different SrTiO3(001) surfaces and were investigated by near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The experimental growth conditions for the OQDs were optimized to obtain Cu2O as the major phase. The OQDs grown on clean SrTiO3(001) surfaces at 825 K and higher with p(O-2) of 9.0 x 10(-7) Torr or greater contain mostly CuO, contrasting to OQDs grown at 800 K with p(O-2) of similar to 7.0 x10(-7) Torr that contain primarily Cu2O. Furthermore, there is a strong interaction between the SrTiO3(001) surface and the first few monolayers of the OQDs, which induces the formation of Cu(II). However, this interaction is mitigated with increasing thickness of OQDs, resulting in the exclusive formation of Cu2O in the top most layers. The influence of the SrTiO3(001) substrate on the formation of OQDs can be minimized by modifying the substrate surface using chemical treatment and/or energetic Au2+ ion-beam irradiation. Examination of the photochemical properties of these OQDs shows that prolonged soft X-ray irradiation under vacuum reduces Cu(II), which is present as a minor impurity in the Cu(I)OQDs

  18. Compartmentalization of trace elements in guinea pig tissues by INAA [instrumental neutron activation analysis] and AAS [atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Human scalp hair analysis has received considerable attention from a variety of disciplines over the last 20 yr or so. Trace element levels of hair have been used in environmental, epidemiological, forensic, nutritional, predictive, and preventive medicine studies. There still exist confusion, skepticism, and controversy, however, among the experts as well as lay persons in the interpretation of hair trace element data. Much of the criticism stems from the lack of quantitative and reliable data on the ability of hair to accurately reflect dose-response relationships. To better define the significance or hair trace element levels (under the auspices of the International Atomic Energy Agency), the authors have undertaken a controlled set of animal experiments in which trace element levels in hair and other tissues have been measured after a mild state of systemic intoxication by chronic, low-does exposure to cadmium and selenium. Instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) methods have been developed for the determination of several elements with a high degree of precision and accuracy

  19. Determining copper and lead binding in Larrea tridentata through chemical modification and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Polette, L.; Gardea-Torresdey, J.L.; Chianelli, R. [Univ. of Texas, El Paso, TX (United States). Dept. of Chemistry; Pickering, I.J.; George, G.N. [Stanford Synchrotron Radiation Lab., Menlo Park, CA (United States)

    1997-12-31

    Metal contamination in soils has become a widespread problem. Emerging technologies, such as phytoremediation, may offer low cost cleanup methods. The authors have identified a desert plant, Larrea tridentata (creosote bush), which naturally grows and uptakes copper and lead from a contaminated area near a smelting operation. They determined, through chemical modification of carboxyl groups with methanol, that these functional groups may be responsible for a portion of copper(II) binding. In contrast, lead binding was minimally affected by modification of carboxyl groups. X-ray absorption spectroscopy studies conducted at Stanford Synchrotron Radiation Laboratory (SSRL) further support copper binding to oxygen-coordinated ligands and also imply that the binding is not solely due to phytochelatins. The EXAFS data indicate the presence of both Cu-O and Cu-S back scatters, no short Cu-Cu interactions, but with significant Cu-Cu back scattering at 3.7 {angstrom} (unlike phytochelatins with predominantly Cu-S coordination and short Cu-Cu interactions at 2.7 {angstrom}). Cu EXAFS of roots and leaves also vary depending on the level of heavy metal contamination in the environment from which the various creosote samples were obtained. In contrast, Pb XANES data of roots and leaves of creosote collected from different contaminated sites indicate no difference in valence states or ligand coordination.

  20. Gold/titania composites: An X-ray absorption spectroscopy study on the influence of the reduction method

    International Nuclear Information System (INIS)

    The functionalization of titania based materials with noble metal cocatalysts such as gold or platinum is a well known procedure to improve the catalytic activity of these materials in for example the degradation of organic pollutants or CO conversion. Parameters such as cocatalyst load, noble metal particle size and oxidation state influence the efficiency of these materials. We have impregnated a mesoporous titania powder with a gold salt and used different synthesis routes to reduce the gold ions. A structural analysis was performed using electron microscopy and nitrogen sorption. An X-ray absorption near edge structure spectroscopy study, in both high and low resolution, was performed to investigate the influence of the different reduction methods on the oxidation state of the gold atoms. This technique can also provide information on the local environment of the gold atoms and their interaction with the titanium dioxide host. We found that varying the reduction method has a significant impact on the oxidation state of the gold cocatalysts. This lead to varying interactions with the titania support and charging of the gold nanoparticles. - Highlights: • Influence of reduction method on Au/TiO2 was studied. • Hydrogen reduction of gold salt results in the smallest particles of 2.4 nm. • XANES is used to determine the oxidation state of gold atoms. • Hydrogen and microwave synthesis produce completely reduced gold particles. • UV reduction of gold salt leads to positively charged particles