WorldWideScience

Sample records for absorption spectroscopic study

  1. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Absorption and emission spectroscopic characterization of 10-phenyl-isoalloxazine derivatives

    International Nuclear Information System (INIS)

    Shirdel, J.; Penzkofer, A.; Prochazka, R.; Daub, J.; Hochmuth, E.; Deutzmann, R.

    2006-01-01

    The flavoquinone dyes 10-phenyl-isoalloxazine-3-acetic acid ethyl ester (1) and 10-(4-bromo-phenyl)-3-methyl-isoalloxazine (2) in dichloromethane, acetonitrile, and methanol are characterized by absorption and emission spectroscopy. Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence quantum distributions, quantum yields, lifetimes, and degrees of fluorescence polarization are determined. The blue-light photo-degradation of the dyes is studied. Mass spectroscopic measurements reveal the formation of phenyl-benzo-pteridine (isoalloxazine) derivatives, tetraaza-benzo-aceanthrylene derivatives, dihydro-quinooxaline derivatives, and pyrazino-carbazole derivatives. An enhancement of photo-degradation is observed by the formed photo-fragments

  3. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Massimiliano, E-mail: m.anselmi@caspur.it [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Marocchi, Simone [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Aschi, Massimiliano [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Via Vetoio (Coppito 1), 67100 Coppito, L' Aquila (Italy); Amadei, Andrea [Department of Chemistry, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2012-01-02

    Highlights: Black-Right-Pointing-Pointer The calculated absorption spectra were compared with experimental data. Black-Right-Pointing-Pointer Shapes and absorption maxima were reproduced for luciferin and oxyluciferin spectra. Black-Right-Pointing-Pointer The effect of the solvent largely changes the electronic transition probabilities. Black-Right-Pointing-Pointer Higher excitations provide an important contribution to the main absorption peak. - Abstract: Firefly luciferin and its oxidated form, oxyluciferin, are two heterocyclic compounds involved in the enzymatic reaction, catalyzed by redox proteins called luciferases, which provides the bioluminescence in a wide group of arthropods. Whereas the electronic absorption spectra of D-luciferin in water at different pHs are known since 1960s, only recently reliable experimental electronic spectra of oxyluciferin have become available. In addition oxyluciferin is involved in a triple chemical equilibria (deprotonation of the two hydroxyl groups and keto-enol tautomerism of the 4-hydroxythiazole ring), that obligates to select during an experiment a predominant species, tuning pH or solvent polarity besides introducing chemical modifications. In this study we report the absorption spectra of luciferin and oxyluciferin in each principal chemical form, calculated by means of perturbed matrix method (PMM), which allowed us to successfully introduce the effect of the solvent on the spectroscopic absorption properties, and compare the result with available experimental data.

  4. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  5. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    International Nuclear Information System (INIS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-01-01

    In this paper spectroscopic investigation of Cu 2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu 2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu 2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds

  6. Spectroscopic study of low-temperature hydrogen absorption in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Ienaga, K., E-mail: ienaga@issp.u-tokyo.ac.jp; Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T. [Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395 (Japan); Tsujii, H. [Department of Physics, Faculty of Education, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Kimura, T. [Department of Physics, Kyushu University, Hakozaki, Higashi-Ku, Fukuoka 812-8581 (Japan)

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  7. Infrared absorption spectroscopic study of Nd substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Unknown

    20, 0⋅40, 0⋅60, 0⋅80 and 1⋅00; y = 0⋅00, 0⋅05 and 0⋅10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption.

  8. X-ray absorption near-edge spectroscopic study of nickel catalysts

    International Nuclear Information System (INIS)

    Soldatov, Alexander V.; Smolentsev, Grigory; Kravtsova, Antonina; Yalovega, Galina; Feiters, Martin C.; Metselaar, Gerald A.; Joly, Yves

    2006-01-01

    Ni-isocyanide and Ni-acac complexes have been studied by X-ray absorption spectroscopy. Theoretical analysis has been done using self-consistent full multiple scattering (MS) approach within both muffin-tin (MT) model of the potential and non-MT finite deference method. For the isocyanide complex, it was shown that MS theoretical spectra reproduce all structural details of the X-ray absorption near-edge structure (XANES), but also that it is important to consider the non-MT effects in the potential for a correct simulation of the shape of the pre-edge structures. The contribution of a non-constant potential in the interstitial regions is extremely important for the interpretation of the XANES of Ni(acac) 2

  9. A spectroscopic study of absorption and emission features of interstellar dust components

    International Nuclear Information System (INIS)

    Zwet, G.P. van der.

    1986-01-01

    The spectroscopic properties of silicate interstellar dust grains are the subject of this thesis. The process of accretion and photolysis is simulated in the laboratory by condensing mixtures of gases onto a cold substrate (T ∼ 12 K) in a vacuum chamber and photolyzing these mixtures with a vacuum ultraviolet source. Alternatively, the gas mixtures may be passed through a microwave discharge first, before deposition. The spectroscopic properties of the ices are investigated using ultraviolet, visible and infrared spectroscopy. (Auth.)

  10. Infrared absorption spectroscopic study of Nd 3+ substituted Zn–Mg ...

    Indian Academy of Sciences (India)

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show ...

  11. Spectroscopic study on the stability of morin in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Bark, Ki Min [Dept. of Chemical Education and Research Institute of Life Science, Gyeongsang National University, Chinju (Korea, Republic of); Im, Seo Eun; Seo, Jung Ja; Park, Ok Hyun; Park, Hyoung Ryun [Dept. of Chemistry, Chonnam National University, Gwangju (Korea, Republic of); Park, Chul Ho [Dept. of Cosmetic Science, Nambu University, Gwangju (Korea, Republic of)

    2015-02-15

    Morin (3,2,4,5,7-pentahydroxyflavone) is a flavonol conjugated to a resorcinol moiety at the C-2 position, different from many other flavonoids. The UV–vis spectrum of morin in neat water reveals two major absorption bands with maxima at 265 and 387 nm. The substance is stable in acidic solution and neat water. However, its absorption maximum at 387 nm continuously shifts to longer wavelengths and new peaks appeared at wavelengths of 312 nm with increasing pH of the solution. The shape of the absorption spectrum of morin depends on the storage time at a given pH, indicating the occurrence of other successive chemical reactions. The fluorescence spectroscopic results also prove that new conjugated double bonds are formed in the deaerated basic solution at the initial state and decompose with time. This behavior indicates that morin is very unstable, and therefore its decomposition occurs by a sequence of multistep reactions in basic solution. Probable reaction pathways for the reaction are suggested based on the spectroscopic results.

  12. Reactivity of Chromium(III) Nutritional Supplements in Biological Media: An X-Ray Absorption Spectroscopic Study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, A.; Mulyani, I.; Levina, A.; Lay, P.A.

    2009-05-22

    Chromium(III) nutritional supplements are widely used due to their purported ability to enhance glucose metabolism, despite growing evidence on low activity and the potential genotoxicity of these compounds. Reactivities of Cr(III) complexes used in nutritional formulations, including [Cr3O(OCOEt)6(OH2)3]+ (A), [Cr(pic)3] (pic) = 2-pyridinecarboxylato(-) (B), and trans-[CrCl2(OH2)4]+ (CrCl3 {center_dot} 6H2O; C), in a range of natural and simulated biological media (artificial digestion systems, blood and its components, cell culture media, and intact L6 rat skeletal muscle cells) were studied by X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectroscopic data were processed by multiple linear-regression analyses with the use of a library of model Cr(III) compounds, and the results were corroborated by the results of X-ray absorption fine structure spectroscopy and electrospray mass spectrometry. Complexes A and B underwent extensive ligand-exchange reactions under conditions of combined gastric and intestinal digestion (in the presence of a semisynthetic meal, 3 h at 310 K), as well as in blood serum and in a cell culture medium (1-24 h at 310 K), with the formation of Cr(III) complexes with hydroxo and amino acid/protein ligands. Reactions of compounds A-C with cultured muscle cells led to similar ligand-exchange products, with at least part of Cr(III) bound to the surface of the cells. The reactions of B with serum greatly enhanced its propensity to be converted to Cr(VI) by biological oxidants (H2O2 or glucose oxidase system), which is proposed to be a major cause of both the insulin-enhancing activity and toxicity of Cr(III) compounds (Mulyani, I.; Levina, A.; Lay, P. A. Angew. Chem. Int. Ed. 2004, 43, 4504-4507). This finding enhances the current concern over the safety of consumption of large doses of Cr(III) supplements, particularly [Cr(pic)3].

  13. Absorption and emission spectroscopic characterisation of combined wildtype LOV1-LOV2 domain of phot from Chlamydomonas reinhardtii.

    Science.gov (United States)

    Song, S-H; Dick, B; Zirak, P; Penzkofer, A; Schiereis, T; Hegemann, P

    2005-10-03

    An absorption and emission spectroscopic characterisation of the combined wild-type LOV1-LOV2 domain string (abbreviated LOV1/2) of phot from the green alga Chlamydomonas reinhardtii is carried out at pH 8. A LOV1/2-MBP fusion protein (MBP=maltose binding protein) and LOV1/2 with a His-tag at the C-terminus (LOV1/2-His) expressed in an Escherichia coli strain are investigated. Blue-light photo-excitation generates a non-fluorescent intermediate photoproduct (flavin-C(4a)-cysteinyl adduct with absorption peak at 390 nm). The photo-cycle dynamics is studied by dark-state absorption and fluorescence measurement, by following the temporal absorption and emission changes under blue and violet light exposure, and by measuring the temporal absorption and fluorescence recovery after light exposure. The fluorescence quantum yield, phi(F), of the dark adapted samples is phi(F)(LOV1/2-His) approximately 0.15 and phi(F)(LOV1/2-MBP) approximately 0.17. A bi-exponential absorption recovery after light exposure with a fast (in the several 10-s range) and a slow component (in the near 10-min range) are resolved. The quantum yield of photo-adduct formation, phi(Ad), is extracted from excitation intensity dependent absorption measurements. It decreases somewhat with rising excitation intensity. The behaviour of the combined wildtype LOV1-LOV2 double domains is compared with the behaviour of the separate LOV1 and LOV2 domains.

  14. Theoretical studies on CH+ ion molecule using configuration interaction method and its spectroscopic properties

    International Nuclear Information System (INIS)

    Machado, F.B.C.

    1985-01-01

    The use of the configuration (CI) method for the calculation of very accurate potential energy curves and dipole moment functions, and then their use in the comprehension of spectroscopic properties of diatomic molecules is presented. The spectroscopic properties of CH + and CD + such as: vibrational levels, spectroscopic constants, averaged dipole moments for all vibrational levels, radiative transition probabilities for emission and absorption, and radiative lifetimes are verificated. (M.J.C.) [pt

  15. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  16. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    Science.gov (United States)

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  17. Determination of Pu Oxidation states in the HCl Media Using with UV-Visible Absorption Spectroscopic Techniques

    International Nuclear Information System (INIS)

    Lee, Myung Ho; Suh, Mu Yeol; Park, Kyoung Kyun; Park, Yeong Jae; Kim, Won Ho

    2006-01-01

    The spectroscopic characteristics of Pu (III, IV, V, VI) in the HCl media were investigated by measuring Pu oxidation states using a UV-Vis-NIR spectrophotometer (400-1200 nm) after adjusting Pu oxidation states with oxidation/reduction reagents. Pu in stock solution was reduced to Pu(III) with NH 2 OH · HCl, and oxidized to Pu(IV) and Pu(VI) with NaNO 2 and HCIO 4 , respectively. Also, Pu(V) was adjusted in the Pu(VI) solution with NH 2 OH · HCl. The major absorption peaks of Pu (IV) and Pu(III) were measured in the 470 nm and 600 nm, respectively. The major absorption peaks of Pu (VI) and Pu(V) were measured in the 830 nm and 1135 nm, respectively. There was not found to be significant changes of UV-V is absorption spectra for Pu(III), Pu(IV) and Pu(VI) with aging time, except that an unstable Pu(V) immediately reduced to Pu(III).

  18. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu

    2006-01-01

    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  19. Submillimeter Spectroscopic Study of Semiconductor Processing Plasmas

    Science.gov (United States)

    Helal, Yaser H.

    Plasmas used for manufacturing processes of semiconductor devices are complex and challenging to characterize. The development and improvement of plasma processes and models rely on feedback from experimental measurements. Current diagnostic methods are not capable of measuring absolute densities of plasma species with high resolution without altering the plasma, or without input from other measurements. At pressures below 100 mTorr, spectroscopic measurements of rotational transitions in the submillimeter/terahertz (SMM) spectral region are narrow enough in relation to the sparsity of spectral lines that absolute specificity of measurement is possible. The frequency resolution of SMM sources is such that spectral absorption features can be fully resolved. Processing plasmas are a similar pressure and temperature to the environment used to study astrophysical species in the SMM spectral region. Many of the molecular neutrals, radicals, and ions present in processing plasmas have been studied in the laboratory and their absorption spectra have been cataloged or are in the literature for the purpose of astrophysical study. Recent developments in SMM devices have made its technology commercially available for applications outside of specialized laboratories. The methods developed over several decades in the SMM spectral region for these laboratory studies are directly applicable for diagnostic measurements in the semiconductor manufacturing industry. In this work, a continuous wave, intensity calibrated SMM absorption spectrometer was developed as a remote sensor of gas and plasma species. A major advantage of intensity calibrated rotational absorption spectroscopy is its ability to determine absolute concentrations and temperatures of plasma species from first principles without altering the plasma environment. An important part of this work was the design of the optical components which couple 500 - 750 GHz radiation through a commercial inductively coupled plasma

  20. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  1. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.; Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Mack, M. [Institut fuer Technische Mikrobiologie, Hochschule Mannheim, Paul-Wittsack-Str. 10, D-68163 Mannheim (Germany); Ghisla, S. [Universitaet Konstanz, Fakultaet fuer Biologie, P.O. Box 5560-M644, D-78457 Konstanz (Germany)

    2009-10-16

    The flavin dye 8-amino-8-demethyl-D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  2. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Science.gov (United States)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  3. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    International Nuclear Information System (INIS)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-01-01

    The flavin dye 8-amino-8-demethyl-D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  4. Preparation and spectroscopic studies of PbS/nanoMCM-41 nanocomposite

    Directory of Open Access Journals (Sweden)

    A. Pourahmad

    2014-11-01

    Full Text Available The present work describes the preparation and characterization of nanosized PbS particles inside the mesopore channels of nanoMCM-41 silicate molecular sieves. The encapsulation of the lead sulfide was carried out at room temperature by ion-exchange method. Diffuse reflectance ultraviolet–visible spectroscopic studies showed a significant shift in the absorption band for the entrapped metal sulfide as compared to corresponding bulk sulfide. Thus, confirming the quantum confinement of the incorporated nanoparticles in nanoMCM-41.

  5. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Spectroscopic properties for identifying sapphire samples from Ban Bo Kaew, Phrae Province, Thailand

    Science.gov (United States)

    Mogmued, J.; Monarumit, N.; Won-in, K.; Satitkune, S.

    2017-09-01

    Gemstone commercial is a high revenue for Thailand especially ruby and sapphire. Moreover, Phrae is a potential gem field located in the northern part of Thailand. The studies of spectroscopic properties are mainly to identify gemstone using advanced techniques (e.g. UV-Vis-NIR spectrophotometry, FTIR spectrometry and Raman spectroscopy). Typically, UV-Vis-NIR spectrophotometry is a technique to study the cause of color in gemstones. FTIR spectrometry is a technique to study the functional groups in gem-materials. Raman pattern can be applied to identify the mineral inclusions in gemstones. In this study, the natural sapphires from Ban Bo Kaew were divided into two groups based on colors including blue and green. The samples were analyzed by UV-Vis-NIR spectrophotometer, FTIR spectrometer and Raman spectroscope for studying spectroscopic properties. According to UV-Vis-NIR spectra, the blue sapphires show higher Fe3+/Ti4+ and Fe2+/Fe3+ absorption peaks than those of green sapphires. Otherwise, green sapphires display higher Fe3+/Fe3+ absorption peaks than blue sapphires. The FTIR spectra of both blue and green sapphire samples show the absorption peaks of -OH,-CH and CO2. The mineral inclusions such as ferrocolumbite and rutile in sapphires from this area were observed by Raman spectroscope. The spectroscopic properties of sapphire samples from Ban Bo Kaew, Phrae Province, Thailand are applied to be the specific evidence for gemstone identification.

  7. The HITRAN2016 molecular spectroscopic database

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, I. E.; Rothman, L. S.; Hill, C.; Kochanov, R. V.; Tan, Y.; Bernath, P. F.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K. V.; Drouin, B. J.; Flaud, J. -M.; Gamache, R. R.; Hodges, J. T.; Jacquemart, D.; Perevalov, V. I.; Perrin, A.; Shine, K. P.; Smith, M. -A. H.; Tennyson, J.; Toon, G. C.; Tran, H.; Tyuterev, V. G.; Barbe, A.; Császár, A. G.; Devi, V. M.; Furtenbacher, T.; Harrison, J. J.; Hartmann, J. -M.; Jolly, A.; Johnson, T. J.; Karman, T.; Kleiner, I.; Kyuberis, A. A.; Loos, J.; Lyulin, O. M.; Massie, S. T.; Mikhailenko, S. N.; Moazzen-Ahmadi, N.; Müller, H. S. P.; Naumenko, O. V.; Nikitin, A. V.; Polyansky, O. L.; Rey, M.; Rotger, M.; Sharpe, S. W.; Sung, K.; Starikova, E.; Tashkun, S. A.; Auwera, J. Vander; Wagner, G.; Wilzewski, J.; Wcisło, P.; Yu, S.; Zak, E. J.

    2017-12-01

    This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is comprised of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 200 additional significant molecules have been added to the database.

  8. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    International Nuclear Information System (INIS)

    Chan, K.L.; Jiang, S.Y.N.; Ning, Z.

    2016-01-01

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R 2  > 0.999) and low detection limit (0.06 μg L −1 ) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  9. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  10. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-01-01

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  11. Spectroscopic Tools for Quantitative Studies of DNA Structure and Dynamics

    DEFF Research Database (Denmark)

    Preus, Søren

    The main objective of this thesis is to develop quantitative fluorescence-based, spectroscopic tools for probing the 3D structure and dynamics of DNA and RNA. The thesis is founded on six peer-reviewed papers covering mainly the development, characterization and use of fluorescent nucleobase...... analogues. In addition, four software packages is presented for the simulation and quantitative analysis of time-resolved and steady-state UV-Vis absorption and fluorescence experiments....

  12. Multi-spectroscopic studies on the interaction of human serum albumin with astilbin: Binding characteristics and structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin; Li, Shuang; Peng, Xialian; Yu, Qing [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Bian, Hedong, E-mail: gxnuchem312@yahoo.com.cn [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Huang, Fuping [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China); Liang, Hong, E-mail: lianghongby@yahoo.com.cn [Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Department Chemistry and Chemical Engineering, Guangxi Normal University, Ministry of Education of China, Guilin 541004 (China)

    2013-04-15

    Five spectroscopic techniques were used to investigate the interaction of astilbin (ASN) with human serum albumin (HSA). UV–vis absorption measurements prove that ASN–HSA complex can be formed. The analysis of fluorescence spectra reveal that in the presence of ASN, quenching mechanism of HSA is considered as static quenching. The quenching rate constant k{sub q}, K{sub SV} and the binding constant K were estimated. According to the van't Hoff equation, the thermodynamic parameters enthalpy change (ΔΗ) and entropy change (ΔS) were calculated to be −12.94 kJ mol{sup −1} and 35.92 J mol{sup −1} K{sup −1}, respectively. These indicate that the hydrophobic interaction is the major forces between ASN and HSA, but the hydrogen bond interaction cannot be excluded. The changes in the secondary structure of HSA which was induced by ASN were determined by circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. -- Graphical abstract: In this paper, the interaction of HSA with ASN was systematically studied under simulated physiological conditions by using UV–vis absorption, CD, FT-IR, fluorescence and Raman spectroscopic approaches. The quenching constant k{sub q}, K{sub SV} and the binding constant K were estimated. The changes in the secondary structure of HSA were studied by Circular dichroism (CD), Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. The UV–visible absorption spectra of HSA in the absence and presence of different concentration of ASN (1) and fluorescence spectra of HSA in the absence and the presence of ASN (2). Highlights: ► Interaction of ASN and HSA has been studied by five spectroscopic techniques. ► Hydrophobic interaction is the major forces between ASN and HSA. ► Binding of ASN induced the changes in the secondary structure of HSA.

  13. Spectroscopic studies of 2-thenoyltrifluoro acetonate of uranyl salts doped with europium

    International Nuclear Information System (INIS)

    Nakagawa, F.T.; Luiz, J.E.M. de Sa; Felinto, M.C.F.C.; Brito, H.F.; Teotonio, E.E.S.

    2006-01-01

    Uranyl compounds present a great potential as luminescence materials. Some examples of applications are: in laser technology, cathode ray tube, X-rays diagnostic. In this work it was studied the synthesis, characterization and spectroscopic properties study of uranyl 2-thenoyl trifluoroacetonate and uranyl 2- thenoyl trifluoroacetonate doped with europium. The compounds were synthesized and characterized by infrared absorption spectroscopy, thermal analysis, scanning electronic microscopy, and electronic spectroscopy of emission and excitation. The Eu 3+ ion acted as an effective luminescent probe, however the process of energy transfer from UO 2 2+ to Eu 3+ ion has not been efficient. (author)

  14. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [Meteorological Institute, Ludwig Maximilian University of Munich, Munich (Germany); School of Energy and Environment, City University of Hong Kong (Hong Kong); Jiang, S.Y.N. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong)

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R{sup 2} > 0.999) and low detection limit (0.06 μg L{sup −1}) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  15. X-ray absorption in GaGdN: A study of local structure

    Science.gov (United States)

    Martínez-Criado, G.; Sancho-Juan, O.; Garro, N.; Sans, J. A.; Cantarero, A.; Susini, J.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-07-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure.

  16. X-ray absorption in GaGdN: A study of local structure

    International Nuclear Information System (INIS)

    Martinez-Criado, G.; Sans, J. A.; Susini, J.; Sancho-Juan, O.; Cantarero, A.; Garro, N.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-01-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure

  17. Studies on the binding behavior of prodigiosin with bovine hemoglobin by multi-spectroscopic techniques

    Science.gov (United States)

    Tang, Jing; Yang, Chao; Zhou, Lin; Ma, Fei; Liu, Shuchao; Wei, Shaohua; Zhou, Jiahong; Zhou, Yanhuai

    2012-10-01

    In this article, the interaction mechanism of prodigiosin (PG) with bovine hemoglobin (BHb) is studied in detail using various spectroscopic technologies. UV-vis absorption and fluorescence spectra demonstrate the interaction process. The Stern-Volmer plot and the time-resolved fluorescence study suggest the quenching mechanism of fluorescence of BHb by PG is a static quenching procedure, and the hydrophobic interactions play a major role in binding of PG to BHb. Furthermore, synchronous fluorescence studies, Fourier transform infrared (FTIR) and circular dichroism (CD) spectra reveal that the conformation of BHb is changed after conjugation with PG.

  18. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  19. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  20. Protection of stainless-steels against corrosion in sulphidizing environments by Ce oxide coatings: X-ray absorption and thermogravimetric studies

    NARCIS (Netherlands)

    Fransen, T.; Gellings, P.J.; Fuggle, J.C.; van der Laan, G.; Esteva, J.-M.; Karnatak, R.C.

    1985-01-01

    In this paper a study is reported concerning ceramic coatings containing cerium oxide, prepared by the sol-gel method, used to protect Incoloy 800H against sulphidation. When the coating is sintered in air at 850°C good protection is obtained. In an X-ray absorption spectroscopic study of the

  1. Photoacoustic spectroscopic studies of polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Zaidi, Zahid H.; Kumar, Pardeep; Garg, R. K.

    1999-02-01

    Because of their involvement in environmental pollutants, in carcinogenic activity, plastics, pharmaceuticals, synthesis of some laser dyes and presence in interstellar space etc., Polycyclic aromatic hydrocarbons (PAHs) are important. As their structure and properties can be varied systematically, they form a beautiful class of molecules for experimental and quantum chemical investigations. These molecules are being studied for last several years by using conventional spectroscopy. In recent years, Photoacoustic (PA) spectroscopy has emerged as a new non-destructive technique with unique capability and sensitivity. The PA effect is the process of generation of acoustic waves in a sample resulting from the absorption of photons. This technique not only reveals non- radiative transitions but also provides information about forbidden singlet-triplet transitions which are not observed normally by the conventional spectroscopy. The present paper deals with the spectroscopic studies of some PAH molecules by PA spectroscopy in the region 250 - 400 nm. The CNDO/S-CI method is used to calculate the electronic transitions with the optimized geometries. A good agreement is found between the experimental and calculated results.

  2. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    International Nuclear Information System (INIS)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here

  3. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  4. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-01-01

    -known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform

  5. Application of spectroscopic techniques for the study of paper documents: A survey

    International Nuclear Information System (INIS)

    Manso, M.; Carvalho, M.L.

    2009-01-01

    For many centuries paper was the main material for recording cultural achievements all over the world. Paper is mostly made from cellulose with small amounts of organic and inorganic additives, which allow its identification and characterization and may also contribute to its degradation. Prior to 1850, paper was made entirely from rags, using hemp, flax and cotton fibres. After this period, due to the enormous increase in demand, wood pulp began to be commonly used as raw material, resulting in rapid degradation of paper. Spectroscopic techniques represent one of the most powerful tools to investigate the constituents of paper documents in order to establish its identification and its state of degradation. This review describes the application of selected spectroscopic techniques used for paper characterization and conservation. The spectroscopic techniques that have been used and will be reviewed include: Fourier-Transform Infrared spectroscopy, Raman spectroscopy, Nuclear Magnetic Resonance spectroscopy, X-Ray spectroscopy, Laser-based Spectroscopy, Inductively Coupled Mass Spectroscopy, Laser ablation, Atomic Absorption Spectroscopy and X-Ray Photoelectron Spectroscopy.

  6. Structural and spectroscopic studies on Er3+ doped boro-tellurite glasses

    Science.gov (United States)

    Selvaraju, K.; Marimuthu, K.

    2012-04-01

    Er3+ doped boro-tellurite glasses with the chemical composition (69-x)B2O3-xTeO2-15MgO-15K2O-1Er2O3 (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er3+ ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters (βbar and δ) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters Ωλ (λ=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio (βR) and peak stimulated emission cross-section (σPE) for the excited state transitions 2H9/2→4I15/2 and 2H11/2 and 4S3/2→4I15/2 of the Er3+ ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (Eopt) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er3+ doped boro-tellurite glasses in the present study. The optical properties of the prepared glasses with the change in tellurium dioxide have been studied and compared with similar results.

  7. Spectroscopic identification of rare earth elements in phosphate glass

    Science.gov (United States)

    Devangad, Praveen; Tamboli, Maktum; Muhammed Shameem, K. M.; Nayak, Rajesh; Patil, Ajeetkumar; Unnikrishnan, V. K.; Santhosh, C.; Kumar, G. A.

    2018-01-01

    In this work, rare earth-doped phosphate glasses were synthesized and characterized using three different spectroscopic techniques. The absorption spectra of the prepared praseodymium (Pr) and samarium (Sm) doped glasses, recorded by a UV-VIS-NIR spectrophotometer, show the characteristic absorption bands of these elements. To confirm this inference, laser-induced fluorescence spectra of Pr and Sm were obtained at a laser excitation of 442 nm. Their emission bands are reported here. The elemental analysis of these samples was carried out using a laser-induced breakdown spectroscopy (LIBS) system. Characteristic emission lines of Pr and Sm have been identified and reported by the recorded LIBS spectra of glass samples. Results prove that using these three complimentary spectroscopic techniques (absorption, fluorescence and LIBS), we can meaningfully characterize rare earth-doped glass samples.

  8. Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques

    International Nuclear Information System (INIS)

    Welzel, S; Rousseau, A; Davies, P B; Roepcke, J

    2007-01-01

    Within the last decade mid infrared absorption spectroscopy between 3 and 20 μm, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present article is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals, and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid infrared

  9. Spectroscopic study of photo and thermal destruction of riboflavin

    Science.gov (United States)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  10. The HITRAN 2008 molecular spectroscopic database

    International Nuclear Information System (INIS)

    Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.Chris; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.-P.; Chance, K.; Coudert, L.H.; Dana, V.; Devi, V.M.; Fally, S.; Flaud, J.-M.

    2009-01-01

    This paper describes the status of the 2008 edition of the HITRAN molecular spectroscopic database. The new edition is the first official public release since the 2004 edition, although a number of crucial updates had been made available online since 2004. The HITRAN compilation consists of several components that serve as input for radiative-transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e. spectra in which the individual lines are not resolved; individual line parameters and absorption cross-sections for bands in the ultraviolet; refractive indices of aerosols, tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 42 molecules including many of their isotopologues.

  11. Biophysical influence of coumarin 35 on bovine serum albumin: Spectroscopic study

    Science.gov (United States)

    Bayraktutan, Tuğba; Onganer, Yavuz

    2017-01-01

    The binding mechanism and protein-fluorescence probe interactions between bovine serum albumin (BSA) and coumarin 35 (C35) was investigated by using UV-Vis absorption and fluorescence spectroscopies since they remain major research topics in biophysics. The spectroscopic data indicated that a fluorescence quenching process for BSA-C35 system was occurred. The fluorescence quenching processes were analyzed using Stern-Volmer method. In this regard, Stern-Volmer quenching constants (KSV) and binding constants were calculated at different temperatures. The distance r between BSA (donor) and C35 (acceptor) was determined by exploiting fluorescence resonance energy transfer (FRET) method. Synchronous fluorescence spectra were also studied to observe information about conformational changes. Moreover, thermodynamics parameters were calculated for better understanding of interactions and conformational changes of the system.

  12. Spectroscopic Studies on Complex Formation of U(VI)-thiosalicylate

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wan Sik; Cho, Hye Ryun; Park, Kyoung Kyun; Jung, Euo Chang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The dynamic interaction between radionuclides and organic ligands is largely dependent on the composition of functional groups in a ligand chemical structure. Therefore, the structural mimics of natural ligands possessing specific functional groups, such as hydroxy, phenol, carboxyl, thiol and amine groups, have been studied to understand their influence on the migration of radionuclides including actinide species under geological groundwater conditions. In previous studies, we demonstrated that the fraction of hydrolyzed U(VI) species occurring in weak acidic solutions (pH {approx}4.5) is significantly influenced by the presence of salicylate (Sal) ligand due to the simultaneous participation of both phenol and carboxyl groups in the formation of U(VI)-complexes. Thiosalicylic acid (TSalH{sub 2}) is a good model compound for studying the effects of both carboxyl and thiol (-SH) groups. The fraction of di-anionic ligand form (TSal{sup 2-}) is higher at near neutral pH due to the lower pKa ({approx} 8) of the thiol group than the case of salicylic acid (pKa, {approx}13 for salicylic -OH), despite the structural similarity. In addition, the redox capability of the thiol group is expected to influence the reducible radiouclides and the chemical structures of natural ligands by creating cross-linkage (-S-S-) upon oxidation. The goal of the present study is to investigate aqueous U(VI)-TSal complexation equilibrium via laser-based spectroscopic techniques including time resolved laser-induced fluorescence spectroscopy (TRLFS). In this preliminary work, we report the results of spectroscopic studies using conventional UVVis absorbance and fluorescence (FL) measurement methods. The photo-stability of U(VI)-TSal complex or ligand itself upon exposure to a series of laser pulses is estimated by monitoring the change in their absorption bands. Additionally, TSal FL-quenching effect by U(VI) ions is discussed in comparison with that of Sal FL-quenching

  13. Gas phase absorption studies of photoactive yellow protein chromophore derivatives.

    Science.gov (United States)

    Rocha-Rinza, Toms; Christiansen, Ove; Rajput, Jyoti; Gopalan, Aravind; Rahbek, Dennis B; Andersen, Lars H; Bochenkova, Anastasia V; Granovsky, Alexander A; Bravaya, Ksenia B; Nemukhin, Alexander V; Christiansen, Kasper Lincke; Nielsen, Mogens Brøndsted

    2009-08-27

    Photoabsorption spectra of deprotonated trans p-coumaric acid and two of its methyl substituted derivatives have been studied in gas phase both experimentally and theoretically. We have focused on the spectroscopic effect of the location of the two possible deprotonation sites on the trans p-coumaric acid which originate to either a phenoxide or a carboxylate. Surprisingly, the three chromophores were found to have the same absorption maximum at 430 nm, in spite of having different deprotonation positions. However, the absorption of the chromophore in polar solution is substantially different for the distinct deprotonation locations. We also report on the time scales and pathways of relaxation after photoexcitation for the three photoactive yellow protein chromophore derivatives. As a result of these experiments, we could detect the phenoxide isomer within the deprotonated trans p-coumaric acid in gas phase; however, the occurrence of the carboxylate is uncertain. Several computational methods were used simultaneously to provide insights and assistance in the interpretation of our experimental results. The calculated excitation energies S(0)-S(1) are in good agreement with experiment for those systems having a negative charge on a phenoxide moiety. Although our augmented multiconfigurational quasidegenerate perturbation theory calculations agree with experiment in the description of the absorption spectrum of anions with a carboxylate functional group, there are some puzzling disagreements between experiment and some calculational methods in the description of these systems.

  14. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  15. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  16. Absorption and emission spectroscopic characterisation of a pyrene-flavin dyad

    International Nuclear Information System (INIS)

    Shirdel, J.; Penzkofer, A.; Prochazka, R.; Shen, Z.; Strauss, J.; Daub, J.

    2007-01-01

    The pyrene-flavin (isoalloxazine) dyad, PFD {C 44 H 31 N 5 O 5 ; CA Index name: 1-pyrenepropanoic acid, α-[[4,10-dihydro-2,4-dioxo-10- phenylbenzo[g]pteridin-3(2H)-yl)acetyl]amino]-, phenylmethyl ester (αR)-(9Cl); CA Registry number: 618907-57-6}, dissolved in either dichloromethane or acetonitrile is characterized by absorption and emission spectroscopy. Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence quantum distributions, quantum yields, and degrees of fluorescence polarisation are determined. The fluorescence decay after femtosecond pulse excitation is determined by fluorescence up-conversion. The ground-state absorption recovery is determined by picosecond pump and probe transmission measurements. The dye photo-stability is investigated by observation of absorption spectral changes due to prolonged blue-light excitation. The absorption spectrum of PFD dyad resembles the superposition of the absorption of isoalloxazine (flavin) and 1-methylpyrene. Long-wavelength photo-excitation of the flavin moiety causes fluorescence quenching by ground-state electron transfer from pyrene to isoalloxazine. Short-wavelength photo-excitation of the pyrene moiety causes (i) excited-state electron transfer from pyrene to isoalloxazine, and (ii) Foerster-type energy transfer from pyrene to flavin followed by ground-state electron transfer from pyrene to flavin.

  17. The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database

    International Nuclear Information System (INIS)

    Campargue, A.; Mikhailenko, S.N.; Vasilchenko, S.; Reynaud, C.; Béguier, S.; Čermák, P.; Mondelain, D.; Kassi, S.; Romanini, D.

    2017-01-01

    The weak absorption spectrum of water vapor in the important 2.2 μm transparency window is investigated with very high sensitivity. Overall, about 400 absorption lines were measured by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) in five spectral intervals: 4248.2–4257.3, 4298.4–4302.6, 4336.8.5-4367.5, 4422.4-4441.2 and 4514.6-4533.7 cm"−"1. The achieved sensitivity of the recordings (noise equivalent absorption, α_m_i_n, on the order of 2×10"−"1"0 cm"−"1) allowed detecting transitions with intensity values down to 1×10"−"2"8 cm/molecule, more than one order of magnitude better than previous studies by Fourier Transform spectroscopy. The rovibrational assignment was performed on the basis of variational calculations and of previously determined empirical energy values. Most of the newly assigned lines correspond to transitions of the ν_1, ν_3 and 3ν_2 bands of H_2"1"7O in natural isotopic abundance. Fourteen energy levels of H_2"1"7O, H_2"1"8O and HD"1"8O are newly determined. An accurate and complete spectroscopic database is constructed for natural water in the 4190–4550 cm"−"1 region (2.39–2.20 µm). The list includes about 4500 transitions with intensity greater than 1×10"−"2"9 cm/molecule, for the six most abundant isotopologues in natural isotopic abundance. Line positions were obtained by difference of empirical energy values determined from literature data and complemented with the present CRDS results. The list is made mostly complete by including weak transitions not yet detected, with positions calculated from empirical levels and variational intensities. The variational intensities computed by a collaboration between the University College London and the Institute of Applied Physics in Nizhny Novgorod are found to improve significantly previous results by Schwenke and Partridge. Examples of comparison of the constructed line list to CRDS spectra and to simulations

  18. Spectroscopic studies of the transplutonium elements

    International Nuclear Information System (INIS)

    Carnall, W.T.; Conway, J.G.

    1983-01-01

    The challenging opportunity to develop insights into both atomic structure and the effects of bonding in compounds makes the study of actinide spectroscopy a particularly fruitful and exciting area of scientific endeavor. It is also the interpretation of f-element spectra that has stimulated the development of the most sophisticated theoretical modeling attempted for any elements in the periodic table. The unique nature of the spectra and the wealth of fine detail revealed make possible sensitive tests of both physical models and the results of Hartree-Fock type ab initio calculations. This paper focuses on the unique character of heavy actinide spectroscopy. It discusses how it differs from that of the lighter member of the series and what are the special properties that are manifested. Following the introduction, the paper covers the following: (1) the role of systematic studies and the relationships of heavy-actinide spectroscopy to ongoing spectroscopic investigations of the lighter members of the series; (2) atomic (free-ion) spectra which covers the present status of spectroscopic studies with transplutonium elements, and future needs and directions in atomic spectroscopy; (3) the spectra of actinide compounds which covers the present status and future directions of spectroscopic studies with compounds of the transplutonium elements; and other spectroscopies. 1 figure, 2 tables

  19. Interaction between serum albumins and sonochemically synthesized cadmium sulphide nanoparticles: a spectroscopic study

    International Nuclear Information System (INIS)

    Naveenraj, Selvaraj; Asiri, Abdullah M.; Anandan, Sambandam

    2013-01-01

    Cadmium Sulphide nanoparticles approximately 5–10 nm in size range were synthesized by sonochemical technique, which follows acoustic cavitation phenomenon and generates nanoparticles with a smaller size range and higher surface area. The in vitro binding interaction of these sonochemically synthesized CdS nanoparticles with serum albumins (SA) were investigated using UV–Vis absorption, fluorescence and circular dichroism (CD) spectroscopic techniques since CdS nanoparticles has biological applications such as cellular labelling and deep-tissue imaging. UV–Vis absorption and fluorescence studies confirm that CdS nanoparticles bind with SA through ground state complex formation (static quenching mechanism). The results suggest that sonochemically synthesized CdS nanoparticles interact with HSA more than that of BSA and these nanoparticles can be easily transported and rapidly released to the targets by serum albumins. CD studies confirmed the conformational change of serum albumins on the interaction of CdS nanoparticles.Graphical AbstractThis paper investigates the in vitro binding interaction of Cadmium Sulphide (CdS) nanoparticles with serum albumins (HSA and BSA) using the UV-vis, steady-state fluorescence, time-resolved fluorescence, synchronous fluorescence and circular dichroism (CD) spectral techniques.

  20. Spectroscopic observations of AG Dra

    International Nuclear Information System (INIS)

    Chang-Chun, H.

    1982-01-01

    During summer 1981, spectroscopic observations of AG Dra were performed at the Haute-Provence Observatory using the Marly spectrograph with a dispersion of 80 A mm -1 at the 120 cm telescope and using the Coude spectrograph of the 193 cm telescope with a dispersion of 40 A mm -1 . The actual outlook of the spectrum of AG Dra is very different from what it was in 1966 in the sense that only a few intense absorption lines remain, the heavy emission continuum masking the absorption spectrum, while on the 1966 plate, about 140 absorption lines have been measured. Numerous emission lines have been measured, most of them, present in 1981, could also be detected in 1966. They are due to H, HeI and HeII. (Auth.)

  1. Binding Studies of Andrographolide with Human serum albumin: Molecular Docking, Chromatographic and Spectroscopic studies.

    Science.gov (United States)

    Godugu, Deepika; Rupula, Karuna; Beedu, Sashidhar Rao

    2018-02-11

    Andrographolide, sourced from Andrographis paniculata, is an established therapeutic agent with variety of pharmacological properties in treatment of various diseases. The present study is designed to evaluate the interaction and binding affinity of andrographolide with HSA by docking and spectral studies. The docking study for screening the interaction of andrographolide with HSA protein was carried out using Auto Dock Vina software and the binding score of andrographolide was -8.7 kcal mol-1 and formed one hydrogen bond with Arg 218 residue of HSA in sub-domains IIA region. The formation of HSA-andrographolide complex was characterized by spectroscopic methods - UV absorption, HPLC, CD and FTIR analysis. The UV spectral analysis revealed a decrease in the absorption peak of HSA due to its interaction with andrographolide. A new peak was observed at retention time 7.45 min by HPLC analysis and the Bmax was found to be 7.5 ± 0.4 mg protein with a Kd value of 1.89 mM, indicating interaction of andrographolide with HSA. The CD spectra results suggested, a marginal decrease in the negative ellipticity without any significant shift in peak, indicating the stabilization of the HSA-andrographolide complex. The FTIR analysis further confirmed, a shift of amide I groups from 1646 to 1637 cm-1 and a peak at 1016 cm-1 in andrographolide, was observed in the complex, indicating the interaction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Study on the interaction between gold nanoparticles and papain by spectroscopic methods

    International Nuclear Information System (INIS)

    Wang, Gongke; Chen, Ye; Yan, Changling; Lu, Yan

    2015-01-01

    The interaction between gold nanoparticles and papain was studied by fluorescence, UV–vis absorption and synchronous fluorescence spectroscopic techniques under the physiological conditions. The results showed that the binding of gold nanoparticles to papain was a spontaneous binding process. The fluorescence of papain was strongly quenched by gold nanoparticles. The quenching mechanism was probably a static quenching type with the formation of a ground state complex. The Stern–Volmer quenching constants, the binding constants and the number of binding sites in different temperatures were calculated. The corresponding thermodynamic parameters ΔH,ΔS and ΔG indicated that hydrogen bonding and Van der Waals forces played a key role in the interaction process. Additionally, the conformational change of papain induced by gold nanoparticles was analyzed by UV–vis absorption and synchronous fluorescence spectra. - Highlights: • Spherical and monodispersed gold nanoparticles are synthesized. • The fluorescence of papain is quenched by gold nanoparticles under physiological conditions. • Hydrogen bonding and Van der Waals forces may play an essential role in the binding of gold nanoparticles with papain. • This binding interaction is predominantly enthalpy driven

  3. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  4. Structural and spectroscopic studies on Er{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2012-04-01

    Er{sup 3+} doped boro-tellurite glasses with the chemical composition (69-x)B{sub 2}O{sub 3}-xTeO{sub 2}-15MgO-15K{sub 2}O-1Er{sub 2}O{sub 3} (where x=0, 10, 20, 30 and 40 wt%) have been prepared and their structural and spectroscopic behavior were studied and reported. The varying tellurium dioxide content in the host matrix that results, changes in structural and spectroscopic behavior around Er{sup 3+} ions are explored through XRD, FTIR, UV-VIS-NIR and luminescence measurements. The XRD pattern confirms the amorphous nature of the prepared glasses and the FTIR spectra explore the fundamental groups and the local structural units in the prepared boro-tellurite glasses. The bonding parameters ({beta}{sup Macron} and {delta}) have been calculated from the observed band positions of the absorption spectra to claim the ionic/covalent nature of the prepared glasses. The Judd-Ofelt (JO) intensity parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) were determined through experimental and calculated oscillator strengths obtained from the absorption spectra and their results are studied and compared with reported literature. The variation in the JO parameters {Omega}{sub {lambda}} ({lambda}=2, 4 and 6) with the change in chemical composition have been discussed in detail. The JO parameters have also been used to derive the important radiative properties like transition probability (A), branching ratio ({beta}{sub R}) and peak stimulated emission cross-section ({sigma}{sub P}{sup E}) for the excited state transitions {sup 2}H{sub 9/2}{yields}{sup 4}I{sub 15/2} and {sup 2}H{sub 11/2} and {sup 4}S3{sub /2}{yields}{sup 4}I{sub 15/2} of the Er{sup 3+} ions and the results were studied and reported. Using Davis and Mott theory, optical band gap energy (E{sub opt}) values for the direct and indirect allowed transitions have been calculated and discussed along with the Urbach energy values for the prepared Er{sup 3+} doped boro-tellurite glasses in the present study. The

  5. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    Science.gov (United States)

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Spectroscopic method for determination of the absorption coefficient in brain tissue

    Science.gov (United States)

    Johansson, Johannes D.

    2010-09-01

    I use Monte Carlo simulations and phantom measurements to characterize a probe with adjacent optical fibres for diffuse reflectance spectroscopy during stereotactic surgery in the brain. Simulations and measurements have been fitted to a modified Beer-Lambert model for light transport in order to be able to quantify chromophore content based on clinically measured spectra in brain tissue. It was found that it is important to take the impact of the light absorption into account when calculating the apparent optical path length, lp, for the photons in order to get good estimates of the absorption coefficient, μa. The optical path length was found to be well fitted to the equation lp=a+b ln(Is)+c ln(μa)+d ln(Is)ln(μa), where Is is the reflected light intensity for scattering alone (i.e., zero absorption). Although coefficients a-d calculated in this study are specific to the probe used here, the general form of the equation should be applicable to similar probes.

  7. X-Ray Beam Studies of Charge Sharing in Small Pixel, Spectroscopic, CdZnTe Detectors

    Science.gov (United States)

    Allwork, Christopher; Kitou, Dimitris; Chaudhuri, Sandeep; Sellin, Paul J.; Seller, Paul; Veale, Matthew C.; Tartoni, Nicola; Veeramani, Perumal

    2012-08-01

    Recent advances in the growth of CdZnTe material have allowed the development of small pixel, spectroscopic, X-ray imaging detectors. These detectors have applications in a diverse range of fields such as medical, security and industrial sectors. As the size of the pixels decreases relative to the detector thickness, the probability that charge is shared between multiple pixels increases due to the non zero width of the charge clouds drifting through the detector. These charge sharing events will result in a degradation of the spectroscopic performance of detectors and must be considered when analyzing the detector response. In this paper charge sharing and charge loss in a 250 μm pitch CdZnTe pixel detector has been investigated using a mono-chromatic X-ray beam at the Diamond Light Source, U.K. Using a 20 μm beam diameter the detector response has been mapped for X-ray energies both above (40 keV) and below (26 keV) the material K-shell absorption energies to study charge sharing and the role of fluorescence X-rays in these events.

  8. Absorption and emission spectroscopic characterization of BLUF protein Slr1694 from Synechocystis sp. PCC6803 with roseoflavin cofactor.

    Science.gov (United States)

    Zirak, P; Penzkofer, A; Mathes, T; Hegemann, P

    2009-11-09

    The wild-type BLUF protein Slr1694 from Synechocystis sp. PCC6803 (BLUF=blue-light sensor using FAD) has flavin adenosine dinucleotide (FAD) as natural cofactor. This light sensor causes positive phototaxis of the marine cyanobacterium. In this study the FAD cofactor of the wild-type Slr1694 was replaced by roseoflavin (RoF) and the roseoflavin derivatives RoFMN and RoFAD during heterologous expression in a riboflavin auxotrophic E. coli strain. An absorption and emission spectroscopic characterization of the cofactor-exchanged-Slr1694 (RoSlr) was carried out both under dark conditions and under illuminated conditions. The behaviour of RoF embedded in RoSlr in aqueous solution at pH 8 is compared with the behaviour of RoF in aqueous solution. The fluorescence of RoF and RoSlr is quenched by photo-induced twisted intra-molecular charge transfer at room temperature with stronger effect for RoF. The fluorescence quenching is diminished at liquid nitrogen temperature. Light exposure of RoSlr causes irreversible conversion of the protein embedded roseoflavins to 8-methylamino-flavins, 8-dimethylamino-lumichrome and 8-methylamino-lumichrome.

  9. Ultraviolet-Absorption Spectroscopic Biofilm Monitor

    Science.gov (United States)

    Micheels, Ronald H.

    2004-01-01

    An ultraviolet-absorption spectrometer system has been developed as a prototype instrument to be used in continuous, real-time monitoring to detect the growth of biofilms. Such monitoring is desirable because biofilms are often harmful. For example, biofilms in potable-water and hydroponic systems act as both sources of pathogenic bacteria that resist biocides and as a mechanism for deterioration (including corrosion) of pipes. Biofilms formed from several types of hazardous bacteria can thrive in both plant-growth solutions and low-nutrient media like distilled water. Biofilms can also form in condensate tanks in air-conditioning systems and in industrial heat exchangers. At present, bacteria in potable-water and plant-growth systems aboard the space shuttle (and previously on the Mir space station) are monitored by culture-plate counting, which entails an incubation period of 24 to 48 hours for each sample. At present, there are no commercially available instruments for continuous monitoring of biofilms in terrestrial or spaceborne settings.

  10. Nonplanar property study of antifungal agent tolnaftate-spectroscopic approach

    Science.gov (United States)

    Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.

    2011-09-01

    Vibrational analysis of the thionocarbamate fungicide tolnaftate which is antidermatophytic, antitrichophytic and antimycotic agent, primarily inhibits the ergosterol biosynthesis in the fungus, was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features, harmonic vibrational wavenumbers and torsional potential energy surface (PES) scan studies have been computed using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bonding orbital (NBO) analysis and optimized molecular structure show the clear evidence for electronic interaction of thionocarbamate group with aromatic ring. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Vibrational analysis reveals that the simultaneous IR and Raman activation of the C-C stretching mode in the phenyl and naphthalene ring provide evidence for the charge transfer interaction between the donor and acceptor groups and is responsible for its bioactivity as a fungicide.

  11. Study of radiation heating (part 1). UR spectroscopic characteristics of radiant heat source

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Yoshikazu; Ajisaka, Kazuhiro; Toyonaga, Hajime; Kitahata, Hiroki; Oshida, Shun' ichi; Sugihara, Tomonori

    1987-09-01

    There are many IR permeable substances. When this is heated with IR beam, UR beam penetrated into the substance and heat up the substance from the inside. In this case, the inside gets hot quicker than the surface which gives much difference in the finish of the product. Characteristics of permeation and absorption of the IR beam vary by the type of the substance and the wave-length of the UR beam. Examples of effectiveness of far infra-red heater are: Baking of rice cake. Baking of PVC granules as a slip-stop for a working gloves. Far infra-red sauna (sweating effect around 50/sup 0/C). Tokyo Gas Co., Ltd. and other companies introduced an IR spectroscopic radiometer of Minarad Systems of USA to establish a data exchange system in 1984. The spectroscopic radio-meter system consists of 3 components, i.e., a spectrophotometric radiometer, a black body furnace, and a computer for data processing. (14 figs, 5 tabs)

  12. Spectroscopic study on a thermoelectron-enhanced microplasma jet

    International Nuclear Information System (INIS)

    Ito, Tsuyohito; Nishiyama, Hiroyuki; Terashima, Kazuo; Sugimoto, Kyozo; Yoshikawa, Hirohisa; Takahashi, Hideaki; Sakurai, Takeki

    2004-01-01

    An Ar thermoelectron-enhanced microplasma (TEMP) jet was characterized by spectroscopic study. The 1s 5 lowest metastable densities at the core of the plasma and very close to the substrate, about 4 mm apart from the torch, were obtained successfully using laser absorption spectroscopy (LAS) and laser induced evanescent-mode fluorescence spectroscopy (LIEF). For TEMP generated with 450 MHz, 5 W and 60 Torr, these densities were estimated to be about 3 x 10 12 cm -3 and about 10 10 cm -3 , by the LAS and LIEF methods, respectively. Moreover, gaseous temperature was also estimated as about 700 K by the LAS method. Depopulation of the 1s 5 metastable atoms might be caused primarily by gaseous diffusion between the torch and the substrate. Finally, we report a device with a TEMP generator at the top of a flexible fibre called the 'plasma fibre', which allows plasma processing in any location, as with laser processing using an optical fibre. This article was due to be published in issue 23 of 2003. To access this special issue, please follow this link: http://www.iop.org/EJ/toc/0022-3727/36/23

  13. Spectroscopic ellipsometry study of Cu2ZnSnS4 bulk poly-crystals

    Science.gov (United States)

    Levcenko, S.; Hajdeu-Chicarosh, E.; Garcia-Llamas, E.; Caballero, R.; Serna, R.; Bodnar, I. V.; Victorov, I. A.; Guc, M.; Merino, J. M.; Pérez-Rodriguez, A.; Arushanov, E.; León, M.

    2018-04-01

    The linear optical properties of Cu2ZnSnS4 bulk poly-crystals have been investigated using spectroscopic ellipsometry in the range of 1.2-4.6 eV at room temperature. The characteristic features identified in the optical spectra are explained by using the Adachi analytical model for the interband transitions at the corresponding critical points in the Brillouin zone. The experimental data have been modeled over the entire spectral range taking into account the lowest E0 transition near the fundamental absorption edge and E1A and E1B higher energy interband transitions. In addition, the spectral dependences of the refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity values have been accurately determined and are provided since they are essential data for the design of Cu2ZnSnS4 based optoelectronic devices.

  14. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Science.gov (United States)

    Behm, P.; Hashemi, M.; Hoppe, S.; Wessel, S.; Hagens, R.; Jaspers, S.; Wenck, H.; Rübhausen, M.

    2017-11-01

    We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  15. Confocal spectroscopic imaging measurements of depth dependent hydration dynamics in human skin in-vivo

    Directory of Open Access Journals (Sweden)

    P. Behm

    2017-11-01

    Full Text Available We present confocal spectroscopic imaging measurements applied to in-vivo studies to determine the depth dependent hydration profiles of human skin. The observed spectroscopic signal covers the spectral range from 810 nm to 2100 nm allowing to probe relevant absorption signals that can be associated with e.g. lipid and water-absorption bands. We employ a spectrally sensitive autofocus mechanism that allows an ultrafast focusing of the measurement spot on the skin and subsequently probes the evolution of the absorption bands as a function of depth. We determine the change of the water concentration in m%. The water concentration follows a sigmoidal behavior with an increase of the water content of about 70% within 5 μm in a depth of about 14 μm. We have applied our technique to study the hydration dynamics of skin before and after treatment with different concentrations of glycerol indicating that an increase of the glycerol concentration leads to an enhanced water concentration in the stratum corneum. Moreover, in contrast to traditional corneometry we have found that the application of Aluminium Chlorohydrate has no impact to the hydration of skin.

  16. A cell for extended x-ray absorption fine structure studies of oxygen sensitive products of redox reactions

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Renner, M.W.; Fajer, J.

    1990-01-01

    We describe a cell suitable for extended x-ray absorption fine structure (EXAFS) studies of oxygen and/or water sensitive products of redox reactions. The cell utilizes aluminized Mylar windows that are transparent to x rays, provide low gas permeability, and allow vacuum to be maintained in the cell. The windows are attached to the glassware with an epoxy that resists attack by common organic solvents. Additional side arms allow multiple spectroscopic probes of the same sample under anaerobic and anhydrous conditions

  17. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA

    Science.gov (United States)

    Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad

    2018-03-01

    DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.

  18. Scavenging performance and antioxidant activity of γ-alumina nanoparticles towards DPPH free radical: Spectroscopic and DFT-D studies.

    Science.gov (United States)

    Zamani, Mehdi; Moradi Delfani, Ali; Jabbari, Morteza

    2018-05-03

    The radical scavenging performance and antioxidant activity of γ-alumina nanoparticles towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical were investigated by spectroscopic and computational methods. The radical scavenging ability of γ-alumina nanoparticles in the media with different polarity (i.e. i-propanol and n-hexane) was evaluated by measuring the DPPH absorbance in UV-Vis absorption spectra. The structure and morphology of γ-alumina nanoparticles before and after adsorption of DPPH were studied using XRD, FT-IR and UV-Vis spectroscopic techniques. The adsorption of DPPH free radical on the clean and hydrated γ-alumina (1 1 0) surface was examined by dispersion corrected density functional theory (DFT-D) and natural bond orbital (NBO) calculations. Also, time-dependent density functional theory (TD-DFT) was used to predict the absorption spectra. The adsorption was occurred through the interaction of radical nitrogen N and NO 2 groups of DPPH with the acidic and basic sites of γ-alumina surface. The high potential for the adsorption of DPPH radical on γ-alumina nanoparticles was investigated. Interaction of DPPH with Brønsted and Lewis acidic sites of γ-alumina was more favored than Brønsted basic sites. The following order for the adsorption of DPPH over the different active sites of γ-alumina was predicted: Brønsted base free radicals. Copyright © 2018. Published by Elsevier B.V.

  19. Evolution of containment facilities for spectroscopic analysis at Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    Hiller, J.M.

    1984-01-01

    The analysis of radioactive material requires much thought concerning getting the job done while still maintaining a safe working environment. A Rockwell Hanford Operations, several stages of evolution in instrumentation for spectroscopic elemental analysis have evolved, reflecting different philosophies respect to shielding and contamination control. Atomic absorption and inductively coupled plasma emission spectroscopic systems have been used for analyzing samples in support of a fission product recovery plant, nuclear waste processing and characterization programs, and U and Pu separation plants. Design thoughts, criticisms, and lessons learned in 20 years of containment for spectroscopic analysis are presented

  20. Linear photophysics, two-photon absorption and femtosecond transient absorption spectroscopy of styryl dye bases

    Energy Technology Data Exchange (ETDEWEB)

    Shaydyuk, Ye.O. [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine); Levchenko, S.M. [Institute of Molecular Biology and Genetics, 150, Akademika Zabolotnoho Str., Kyiv 036803 (Ukraine); Kurhuzenkau, S.A. [Department of Chemistry, University of Parma, Parco Area delle Scienze 17/A, Parma 43124 (Italy); Anderson, D. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); Masunov, A.E. [NanoScienece Technology Center, University of Central Florida, 12424 Research Parkway, PAV400, Orlando, FL 32826 (United States); Department of Chemistry, University of Central Florida, 4111 Libra Drive, PSB225, Orlando, FL 32816 (United States); South Ural State University, Lenin pr. 76, Chelyabinsk 454080 (Russian Federation); Department of Condensed Matter Physics, National Research Nuclear University MEPhI, Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Photochemistry Center RAS, ul. Novatorov 7a, Moscow 119421 (Russian Federation); Kachkovsky, O.D.; Slominsky, Yu.L.; Bricks, J.L. [Insitute of Organic Chemistry, Murmanskaya Street, 5, Kyiv 03094 (Ukraine); Belfield, K.D. [College of Science and Liberal Arts, New Jersey Institute of Technology, University Heights, Newark, NJ 07102 (United States); School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 (China); Bondar, M.V., E-mail: mbondar@mail.ucf.edu [Institute of Physics, Prospect Nauki, 46, Kyiv-28 03028 Ukraine (Ukraine)

    2017-03-15

    The steady-state and time-resolved linear spectral properties, two-photon absorption spectra and fast relaxation processes in the excited states of styryl base-type derivatives were investigated. The nature of linear absorption, fluorescence and excitation anisotropy spectra were analyzed in solvents of different polarity at room temperature and specific dependence of the solvatochromic behavior on the donor-acceptor strength of the terminal substituents was shown. Two-photon absorption (2PA) efficiency of styryl dye bases was determined in a broad spectral range using two-photon induced fluorescence technique, and cross-sections maxima of ~ 100 GM were found. The excited state absorption (ESA) and fast relaxation processes in the molecular structures were investigated by transient absorption femtosecond pump-probe methodology. The role of twisted intramolecular charge transfer (TICT) effect in the excited state of styryl dye base with dimethylamino substituent was shown. The experimental spectroscopic data were also verified by quantum chemical calculations at the Time Dependent Density Functional Theory level, combined with a polarizable continuum model.

  1. The HITRAN 2004 molecular spectroscopic database

    Energy Technology Data Exchange (ETDEWEB)

    Rothman, L.S. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138 (United States)]. E-mail: lrothman@cfa.harvard.edu; Jacquemart, D. [Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, MA 02138 (United States); Barbe, A. [Universite de Reims-Champagne-Ardenne, Groupe de Spectrometrie Moleculaire et Atmospherique, 51062 Reims (France)] (and others)

    2005-12-01

    This paper describes the status of the 2004 edition of the HITRAN molecular spectroscopic database. The HITRAN compilation consists of several components that serve as input for radiative transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are unresolvable; individual line parameters and absorption cross-sections for bands in the ultra-violet; refractive indices of aerosols; tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 39 molecules including many of their isotopologues. The format of the section of the database on individual line parameters of HITRAN has undergone the most extensive enhancement in almost two decades. It now lists the Einstein A-coefficients, statistical weights of the upper and lower levels of the transitions, a better system for the representation of quantum identifications, and enhanced referencing and uncertainty codes. In addition, there is a provision for making corrections to the broadening of line transitions due to line mixing.

  2. The HITRAN 2004 molecular spectroscopic database

    International Nuclear Information System (INIS)

    Rothman, L.S.; Jacquemart, D.; Barbe, A.

    2005-01-01

    This paper describes the status of the 2004 edition of the HITRAN molecular spectroscopic database. The HITRAN compilation consists of several components that serve as input for radiative transfer calculation codes: individual line parameters for the microwave through visible spectra of molecules in the gas phase; absorption cross-sections for molecules having dense spectral features, i.e., spectra in which the individual lines are unresolvable; individual line parameters and absorption cross-sections for bands in the ultra-violet; refractive indices of aerosols; tables and files of general properties associated with the database; and database management software. The line-by-line portion of the database contains spectroscopic parameters for 39 molecules including many of their isotopologues. The format of the section of the database on individual line parameters of HITRAN has undergone the most extensive enhancement in almost two decades. It now lists the Einstein A-coefficients, statistical weights of the upper and lower levels of the transitions, a better system for the representation of quantum identifications, and enhanced referencing and uncertainty codes. In addition, there is a provision for making corrections to the broadening of line transitions due to line mixing

  3. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  4. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  5. A spectroscopic study of uranium(VI) interaction with magnetite

    International Nuclear Information System (INIS)

    El Aamrani, S.; Gimenez, J.; Rovira, M.; Seco, F.; Grive, M.; Bruno, J.; Duro, L.; Pablo, J. de

    2007-01-01

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO 2 and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI)

  6. Mid-IR Absorption Cross-Section Measurements of Hydrocarbons

    KAUST Repository

    Alrefae, Majed Abdullah

    2013-05-01

    Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength

  7. A comparative spectroscopic and kinetic study of photoexcitations in detergent-isolated and membrane-embedded LH2 light-harvesting complexes.

    Science.gov (United States)

    Freiberg, Arvi; Rätsep, Margus; Timpmann, Kõu

    2012-08-01

    Integral membrane proteins constitute more than third of the total number of proteins present in organisms. Solubilization with mild detergents is a common technique to study the structure, dynamics, and catalytic activity of these proteins in purified form. However beneficial the use of detergents may be for protein extraction, the membrane proteins are often denatured by detergent solubilization as a result of native lipid membrane interactions having been modified. Versatile investigations of the properties of membrane-embedded and detergent-isolated proteins are, therefore, required to evaluate the consequences of the solubilization procedure. Herein, the spectroscopic and kinetic fingerprints have been established that distinguish excitons in individual detergent-solubilized LH2 light-harvesting pigment-protein complexes from them in the membrane-embedded complexes of purple photosynthetic bacteria Rhodobacter sphaeroides. A wide arsenal of spectroscopic techniques in visible optical range that include conventional broadband absorption-fluorescence, fluorescence anisotropy excitation, spectrally selective hole burning and fluorescence line-narrowing, and transient absorption-fluorescence have been applied over broad temperature range between physiological and liquid He temperatures. Significant changes in energetics and dynamics of the antenna excitons upon self-assembly of the proteins into intracytoplasmic membranes are observed, analyzed, and discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial. Copyright © 2011. Published by Elsevier B.V.

  8. Evolution of containment facilities for spectroscopic analysis at Rockwell Hanford Operations

    International Nuclear Information System (INIS)

    Hiller, J.M.

    1984-01-01

    The analysis of radioactive material requires much thought concerning getting the job done while still maintaining a safe working environment. At Rockwell Hanford Operations, we have gone through several stages of evolution in instrumentation for spectroscopic elemental analysis, reflecting different philosophies with respect to shielding and contamination control. Atomic absorption and inductively coupled plasma emission spectroscopic systems have been used for analyzing samples in support of a fission product recovery plant, nuclear waste processing and characterization programs, and U and Pu separation plants. Design thoughts, criticisms, and lessons learned in 20 years of containment for spectroscopic analysis are presented. 3 refs., 6 figs., 2 tabs

  9. Polarized spectroscopic properties of Nd3+-doped KGd(WO4)2 single crystal

    International Nuclear Information System (INIS)

    Chen Yujin; Lin Yanfu; Gong Xinghong; Tan Qiguang; Zhuang Jian; Luo Zundu; Huang Yidong

    2007-01-01

    The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd 3+ :KGd(WO 4 ) 2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd 3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd 3+ :KGd(WO 4 ) 2 crystal was discussed

  10. Technical report for fabrication and performance test of electrochemical/spectroscopic measurement system

    International Nuclear Information System (INIS)

    Park, Yong Joon; Cho, Young Hwan; Bae, Sang Eun; Im, Hee Jung; Song, Kyu Seok

    2010-01-01

    Development of evaluation technology of electrochemical reactions is very essential to understand chemical behavior of actinides and lanthanides in molten salt media in relation to the development of Pyrochemical process. The on-line electrochemical/spectroscopic measurement system is to produce electrochemical parameters and thermodynamic parameters of actinides and lanthanides in molten salts by using spectroscopic techniques such as UV-VIS absorption as well as electrochemical in-situ measurement techniques. The on-line electrochemical/spectroscopic measurement system can be applied to understand the chemical reactions and oxidation states of actinides and lanthanides in molten salts eventually for the Pyrochemical process

  11. Multi-pass spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Stehle, Jean-Louis; Samartzis, Peter C.; Stamataki, Katerina; Piel, Jean-Philippe; Katsoprinakis, George E.; Papadakis, Vassilis; Schimowski, Xavier; Rakitzis, T. Peter; Loppinet, Benoit

    2014-01-01

    Spectroscopic ellipsometry is an established technique, particularly useful for thickness measurements of thin films. It measures polarization rotation after a single reflection of a beam of light on the measured substrate at a given incidence angle. In this paper, we report the development of multi-pass spectroscopic ellipsometry where the light beam reflects multiple times on the sample. We have investigated both theoretically and experimentally the effect of sample reflectivity, number of reflections (passes), angles of incidence and detector dynamic range on ellipsometric observables tanΨ and cosΔ. The multiple pass approach provides increased sensitivity to small changes in Ψ and Δ, opening the way for single measurement determination of optical thickness T, refractive index n and absorption coefficient k of thin films, a significant improvement over the existing techniques. Based on our results, we discuss the strengths, the weaknesses and possible applications of this technique. - Highlights: • We present multi-pass spectroscopic ellipsometry (MPSE), a multi-pass approach to ellipsometry. • Different detectors, samples, angles of incidence and number of passes were tested. • N passes improve polarization ratio sensitivity to the power of N. • N reflections improve phase shift sensitivity by a factor of N. • MPSE can significantly improve thickness measurements in thin films

  12. Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction

    Science.gov (United States)

    Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim

    2017-09-01

    Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.

  13. A spectroscopic study of uranium species formed in chloride melts

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Bhatt, Anand I.; May, Iain; Griffiths, Trevor R.; Thied, Robert C.

    2002-01-01

    The chlorination of uranium metal or uranium oxides in chloride melts offers an acceptable process for the head-end of pyrochemical reprocessing of spent nuclear fuels. The reactions of uranium metal and ceramic uranium dioxide with chlorine and with hydrogen chloride were studied in the alkali metal chloride melts, NaCl-KCl at 973K, NaCl-CsCl between 873 and 923K and LiCl-KCl at 873K. The uranium species formed therein were characterized from their electronic absorption spectra measured in situ. The kinetic parameters of the reactions depend on melt composition, temperature and chlorinating agent used. The reaction of uranium dioxide with oxygen in the presence of alkali metal chlorides results in the formation of alkali metal uranates. A spectroscopic study, between 723 and 973K, on their formation and their solutions was undertaken in LiCl, LiCl-KCl eutectic and NaCl-CsCl eutectic melts. The dissolution of uranium dioxide in LiCl-KCl eutectic at 923K containing added aluminium trichloride in the presence of oxygen has also been investigated. In this case, the reaction leads to the formation of uranyl chloride species. (author)

  14. Low-Absorption Liquid Crystals for Infrared Beam Steering

    Science.gov (United States)

    2015-09-30

    controlled the curing temperature at 0oC to obtain small domain size and fast response time is expected. Here, a UV light-emitting diode ( LED ) lamp ...absorption; def.=deformation; w =weak absorption; v.=variable intensity) [B. D. Mistry, A Handbook of Spectroscopic Data: Chemistry- UV , IR, PMR, CNMR and...contributed by the core structure and terminal groups. Due to UV instability of double bonds and carbon-carbon triple bonds, conjugated phenyl rings have

  15. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  16. Breath Analysis Using Laser Spectroscopic Techniques: Breath Biomarkers, Spectral Fingerprints, and Detection Limits

    Directory of Open Access Journals (Sweden)

    Peeyush Sahay

    2009-10-01

    Full Text Available Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS, cavity ringdown spectroscopy (CRDS, integrated cavity output spectroscopy (ICOS, cavity enhanced absorption spectroscopy (CEAS, cavity leak-out spectroscopy (CALOS, photoacoustic spectroscopy (PAS, quartz-enhanced photoacoustic spectroscopy (QEPAS, and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS. Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis.

  17. Theoretical modeling of the absorption spectrum of aqueous riboflavin

    Science.gov (United States)

    Zanetti-Polzi, Laura; Aschi, Massimiliano; Daidone, Isabella; Amadei, Andrea

    2017-02-01

    In this study we report the modeling of the absorption spectrum of riboflavin in water using a hybrid quantum/classical mechanical approach, the MD-PMM methodology. By means of MD-PMM calculations, with which the effect of riboflavin internal motions and of solvent interactions on the spectroscopic properties can be explicitly taken into account, we obtain an absorption spectrum in very good agreement with the experimental spectrum. In particular, the calculated peak maxima show a consistent improvement with respect to previous computational approaches. Moreover, the calculations show that the interaction with the environment may cause a relevant recombination of the gas-phase electronic states.

  18. Infrared Spectroscopic Study For Structural Investigation Of Lithium Lead Silicate Glasses

    International Nuclear Information System (INIS)

    Ahlawat, Navneet; Aghamkar, Praveen; Ahlawat, Neetu; Agarwal, Ashish; Monica

    2011-01-01

    Lithium lead silicate glasses with composition 30Li 2 O·(70-x)PbO·xSiO 2 (where, x = 10, 20, 30, 40, 50 mol %)(LPS glasses) were prepared by normal melt quench technique at 1373 K for half an hour in air to understand their structure. Compositional dependence of density, molar volume and glass transition temperature of these glasses indicates more compactness of the glass structure with increasing SiO 2 content. Fourier transform infrared (FTIR) spectroscopic data obtained for these glasses was used to investigate the changes induced in the local structure of samples as the ratio between PbO and SiO 2 content changes from 6.0 to 0.4. The observed absorption band around 450-510 cm -1 in IR spectra of these glasses indicates the presence of network forming PbO 4 tetrahedral units in glass structure. The increase in intensity with increasing SiO 2 content (upto x = 30 mol %) suggests superposition of Pb-O and Si-O bond vibrations in absorption band around 450-510 cm -1 . The values of optical basicity in these glasses were found to be dependent directly on PbO/SiO 2 ratio.

  19. Massive Young Stellar Objects in the Galactic Center. 1; Spectroscopic Identification from Spitzer/IRS Observations

    Science.gov (United States)

    An, Deokkeun; Ramirez, Solange V.; Sellgren, Kris; Arendt, Richard G.; Boogert, A. C. Adwin; Robitaille, Thomas P.; Schultheis, Mathias; Cotera, Angela S.; Smith, Howard A.; Stolovy, Susan R.

    2011-01-01

    We present results from our spectroscopic study, using the Infrared Spectrograph (IRS) onboard the Spitzer Space Telescope, designed to identify massive young stellar objects (YSOs) in the Galactic Center (GC). Our sample of 107 YSO candidates was selected based on IRAC colors from the high spatial resolution, high sensitivity Spitzer/IRAC images in the Central Molecular Zone (CMZ), which spans the central approximately 300 pc region of the Milky Way Galaxy. We obtained IRS spectra over 5 micron to 35 micron using both high- and low-resolution IRS modules. We spectroscopically identify massive YSOs by the presence of a 15.4 micron shoulder on the absorption profile of 15 micron CO2 ice, suggestive of CO2 ice mixed with CH30H ice on grains. This 15.4 micron shoulder is clearly observed in 16 sources and possibly observed in an additional 19 sources. We show that 9 massive YSOs also reveal molecular gas-phase absorption from C02, C2H2, and/or HCN, which traces warm and dense gas in YSOs. Our results provide the first spectroscopic census of the massive YSO population in the GC. We fit YSO models to the observed spectral energy distributions and find YSO masses of 8 - 23 solar Mass, which generally agree with the masses derived from observed radio continuum emission. We find that about 50% of photometrically identified YSOs are confirmed with our spectroscopic study. This implies a preliminary star formation rate of approximately 0.07 solar mass/yr at the GC.

  20. Spectroscopic ellipsometry study of Cu2ZnSnSe4 bulk crystals

    International Nuclear Information System (INIS)

    León, M.; Lopez, N.; Merino, J. M.; Caballero, R.; Levcenko, S.; Gurieva, G.; Serna, R.; Bodnar, I. V.; Nateprov, A.; Guc, M.; Arushanov, E.; Schorr, S.; Perez-Rodriguez, A.

    2014-01-01

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu 2 ZnSnSe 4 bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E 0 , E 1A , and E 1B interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range

  1. Terahertz spectroscopic analysis of crystal orientation in polymers

    Science.gov (United States)

    Azeyanagi, Chisato; Kaneko, Takuya; Ohki, Yoshimichi

    2018-05-01

    Terahertz time-domain spectroscopy (THz-TDS) is attracting keen attention as a new spectroscopic tool for characterizing various materials. In this research, the possibility of analyzing the crystal orientation in a crystalline polymer by THz-TDS is investigated by measuring angle-resolved THz absorption spectra for sheets of poly(ethylene terephthalate), poly(ethylene naphthalate), and poly(phenylene sulfide). The resultant angle dependence of the absorption intensity of each polymer is similar to that of the crystal orientation examined using pole figures of X-ray diffraction. More specifically, THz-TDS can indicate the alignment of molecules in polymers.

  2. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  3. Spectroscopic study of low-lying 16N levels

    International Nuclear Information System (INIS)

    Bardayan, Daniel W.; O'Malley, Patrick; Blackmon, Jeff C.; Chae, K.Y.; Chipps, K.; Cizewski, J.A.; Hatarik, Robert; Jones, K.L.; Kozub, R. L.; Matei, Catalin; Moazen, Brian; Nesaraja, Caroline D.; Pain, Steven D.; Paulauskas, Stanley; Peters, W.A.; Pittman, S.T.; Schmitt, Kyle; Shriner, J.F. Jr.; Smith, Michael Scott

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented

  4. Spectroscopic study

    International Nuclear Information System (INIS)

    Flores, M.; Rodriguez, R.; Arroyo, R.

    1999-01-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu 3+ ). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of 1 H, 13 C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at λ = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  5. Infrared-laser spectroscopy using a long-pathlength absorption cell

    International Nuclear Information System (INIS)

    Kim, K.C.; Briesmeister, R.A.

    1983-01-01

    The absorption measurements in an ordinary cell may require typically a few torr pressure of sample gas. At these pressures the absorption lines are usually pressure-broadened and, therefore, closely spaced transitions are poorly resolved even at diode-laser resolution. This situation is greatly improved in Doppler-limited spectroscopy at extremely low sample pressures. Two very long-pathlength absorption cells were developed to be used in conjunction with diode lasers. They were designed to operate at controlled temperatures with the optical pathlength variable up to approx. 1.5 km. Not only very low sample pressures are used for studies with such cells but also the spectroscopic sensitivity is enhanced over conventional methods by a factor of 10 3 to 10 4 , improving the analytical capability of measuring particle densities to the order of 1 x 10'' molecules/cm 3 . This paper presents some analytical aspects of the diode laser spectroscopy using the long-pathlength absorption cells in the areas of absorption line widths, pressure broadening coefficients, isotope composition measurements and trace impurity analysis

  6. Iron absorption studies

    International Nuclear Information System (INIS)

    Ekenved, G.

    1976-01-01

    The main objective of the present work was to study iron absorption from different iron preparations in different types of subjects and under varying therapeutic conditions. The studies were performed with different radioiron isotope techniques and with a serum iron technique. The preparations used were solutions of ferrous sulphate and rapidly-disintegrating tablets containing ferrous sulphate, ferrous fumarate and ferrous carbonate and a slow-release ferrous sulphate tablet of an insoluble matrix type (Duroferon Durules). The serum iron method was evaluated and good correlation was found between the serum iron response and the total amount of iron absorbed after an oral dose of iron given in solution or in tablet form. New technique for studying the in-vivo release properties of tablets was presented. Iron tablets labelled with a radio-isotope were given to healthy subjects. The decline of the radioactivity in the tablets was followed by a profile scanning technique applied to different types of iron tablets. The release of iron from the two types of tablets was shown to be slower in vivo than in vitro. It was found that co-administration of antacids and iron tablets led to a marked reduction in the iron absorption and that these drugs should not be administered sumultaneously. A standardized meal markedly decreased the absorbability of iron from iron tablets. The influence of the meal was more marked with rapidly-disintegrating than with slow-release ferrous sulphate tablets. The absorption from rapidly-disintegrating and slow-release ferrous sulphate tablets was compared under practical clinical conditions during an extended treatment period. The studies were performed in healthy subjects, blood donors and patients with iron deficiency anaemia and it was found that the absorption of iron from the slow-release tablets was significantly better than from the rapidly-disintegrating tablets in all three groups of subjects. (author)

  7. In vitro DNA binding studies of lenalidomide using spectroscopic in combination with molecular docking techniques

    Science.gov (United States)

    Xu, Liang; Hu, Yan-Xi; Li, Yan-Cheng; Zhang, Li; Ai, Hai-Xin; Liu, Yu-Feng; Liu, Hong-Sheng

    2018-02-01

    In the present work, the binding interaction between lenalidomide (LEN) and calf thymus DNA (ct-DNA) was systematically studied by using fluorescence, ultraviolet-visible (UV-vis) absorption, circular dichroism (CD) spectroscopies under imitated physiological conditions (pH = 7.4) coupled with molecular docking. It was found that LEN was bound to ct-DNA with high binding affinity (Ka = 2.308 × 105 M-1 at 283 K) through groove binding as evidenced by a slight decrease in the absorption intensity in combination with CD spectra. Thermodynamic parameters (ΔG 0 and ΔS interaction. Furthermore, competitive binding experiments with ethidium bromide and 4‧, 6-dia-midino-2-phenylindoleas probes showed that LEN could preferentially bind in the minor groove of double-stranded DNA. The average lifetime of LEN was calculated to be 7.645 ns. The φ of LEN was measured as 0.09 and non-radiation energy transfer between LEN and DNA had occurred. The results of the molecular docking were consistent with the experimental results. This study explored the potential applicability of the spectroscopic properties of LEN and also investigated its interactions with relevant biological targets. In addition, it will provide some theoretical references for the deep research of simultaneous administration of LEN with other drugs.

  8. Characterization and spectroscopic studies of multi-component calcium zinc bismuth phosphate glass ceramics doped with iron ions

    Science.gov (United States)

    Kumar, A. Suneel; Narendrudu, T.; Suresh, S.; Ram, G. Chinna; Rao, M. V. Sambasiva; Tirupataiah, Ch.; Rao, D. Krishna

    2018-04-01

    Glass ceramics with the composition 10CaF2-20ZnO-(15-x)Bi2O3-55P2O5:x Fe2O3(0≤x≤2.5) were synthesized by melt-quenching technique and heat treatment. These glass ceramics were characterized by XRD and SEM. Spectroscopic studies such as optical absorption, EPR were also carried out on these glass ceramics. From the absorption spectra the observed bands around 438 and 660nm are the octahedral transitions of Fe3+ (d5) ions and another band at about 536 nm is the tetrahedral transition of Fe3+ (d5) ions. The absorption spectrum also consist of a band around 991 nm and is attributed to the octahedral transition of Fe2+ ions. The EPR spectra of the prepared glass ceramics have exhibited two resonance signals one at g1=4.32 and another signal at g2=2.008. The observed decrease in band gap energy up to 2 mol% Fe2O3 doped glass ceramics is an evidence for the change of environment around iron ions and ligands from more covalent to less covalent (ionic) and induces higher concentration of NBOs which causes the depolymerization of the glass ceramic network.

  9. X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, B.; Banik, N.L.; Marquardt, C.M.; Rothe, J.; Denecke, M.A.; Geckeis, H. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2009-07-01

    We perform X-ray absorption spectroscopy (XAS) investigations to monitor the stabilization of redox sensitive trivalent and tetravalent actinide ions in solution at acidic conditions in a pH range from 0 to 3 after treatment with holding reductants, hydroxylamine hydrochloride (NH{sub 2}OHHCl) and Rongalite (sodium hydroxymethanesulfinate, CH{sub 3}NaO{sub 3}S). X-ray absorption near edge structure (XANES) measurements clearly demonstrate the stability of the actinide species for several hours under the given experimental conditions. Hence, structural parameters can be accurately derived by extended X-ray absorption fine structure (EXAFS) investigations. The coordination structure of oxygen atoms belonging to water ligands surrounding the actinide ions does not change with increasing pH value (approximately 11 O atoms at 2.42 A in the case of U(IV) at pH 1, 9 0 atoms at 2.52 A for Np(III) at pH 1.5, and 10 O atoms at 2.49 A for Pu(III) up to pH 3), indicating that hydrolysis reactions are suppressed under the given chemical conditions. (orig.)

  10. Spectroscopic studies of pulsed-power plasmas

    International Nuclear Information System (INIS)

    Maron, Y.; Arad, R.; Dadusc, G.; Davara, G.; Duvall, R.E.; Fisher, V.; Foord, M.E.; Fruchtman, A.; Gregorian, L.; Krasik, Ya.

    1993-01-01

    Recently developed spectroscopic diagnostic techniques are used to investigate the plasma behavior in a Magnetically Insulated Ion Diode, a Plasma Opening Switch, and a gas-puffed Z-pinch. Measurements with relatively high spectral, temporal, and spatial resolutions are performed. The particle velocity and density distributions within a few tens of microns from the dielectric-anode surface are observed using laser spectroscopy. Collective fluctuating electric fields in the plasma are inferred from anisotropic Stark broadening. For the Plasma Opening Switch experiment, a novel gaseous plasma source was developed which is mounted inside the high-voltage inner conductor. The properties of this source, together with spectroscopic observations of the electron density and particle velocities of the injected plasma, are described. Emission line intensities and spectral profiles give the electron kinetic energies during the switch operation and the ion velocity distributions. Secondary plasma ejection from the electrodes is also studied. In the Z-pinch experiment, spectral emission-line profiles are studied during the implosion phase. Doppler line shifts and widths yield the radial velocity distributions for various charge states in various regions of the plasma. Effects of plasma ejection from the cathode are also studied

  11. Mossbauer spectroscopic studies in ferroboron

    Science.gov (United States)

    Yadav, Ravi Kumar; Govindaraj, R.; Amarendra, G.

    2017-05-01

    Mossbauer spectroscopic studies have been carried out in a detailed manner on ferroboron in order to understand the local structure and magnetic properties of the system. Evolution of the local structure and magnetic properties of the amorphous and crystalline phases and their thermal stability have been addressed in a detailed manner in this study. Role of bonding between Fe 4s and/or 4p electrons with valence electrons of boron (2s,2p) in influencing the stability and magnetic properties of Fe-B system is elucidated.

  12. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  13. Motion of Br2 molecules in clathrate cages. A computational study of the dynamic effects on its spectroscopic behavior.

    Science.gov (United States)

    Bernal-Uruchurtu, M I; Janda, Kenneth C; Hernández-Lamoneda, R

    2015-01-22

    This work looks into the spectroscopic behavior of bromine molecules trapped in clathrate cages combining different methodologies. We developed a semiempirical quantum mechanical model to incorporate through molecular dynamics trajectories, the effect movement of bromine molecules in clathrate cages has on its absorption spectra. A simple electrostatic model simulating the cage environment around bromine predicts a blue shift in the spectra, in good agreement with the experimental evidence.

  14. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    International Nuclear Information System (INIS)

    Kacprzak, Glenn G.; Churchill, Christopher W.; Nielsen, Nikole M.

    2012-01-01

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W r (2796) ≥ 0.1 Å] and 35 spectroscopically confirmed non-absorbing galaxies [W r (2796) r (2796) r (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100° and 40°, respectively. We find that the probability of detecting outflows is ∼60%, implying that winds are more commonly observed.

  15. A comprehensive near- and far-ultraviolet spectroscopic study of the hot DA white dwarf G191-B2B

    Science.gov (United States)

    Preval, S. P.; Barstow, M. A.; Holberg, J. B.; Dickinson, N. J.

    2013-11-01

    We present a detailed spectroscopic analysis of the hot DA white dwarf G191-B2B, using the best signal-to-noise ratio, high-resolution near- and far-UV spectrum obtained to date. This is constructed from co-added Hubble Space Telescope (HST) Space Telescope Imaging Spectrometer (STIS) E140H, E230H and FUSE observations, covering the spectral ranges of 1150-3145 Å and 910-1185 Å, respectively. With the aid of recently published atomic data, we have been able to identify previously undetected absorption features down to equivalent widths of only a few mÅ. In total, 976 absorption features have been detected to 3σ confidence or greater, with 947 of these lines now possessing an identification, the majority of which are attributed to Fe and Ni transitions. In our survey, we have also potentially identified an additional source of circumstellar material originating from Si III. While we confirm the presence of Ge detected by Vennes et al., we do not detect any other species. Furthermore, we have calculated updated abundances for C, N, O, Si, P, S, Fe and Ni, while also calculating, for the first time, a non-local thermodynamic equilibrium abundance for Al, deriving Al III/H=1.60_{-0.08}^{+0.07}× {10}^{-7}. Our analysis constitutes what is the most complete spectroscopic survey of any white dwarf. All observed absorption features in the FUSE spectrum have now been identified, and relatively few remain elusive in the STIS spectrum.

  16. The LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap. I. The Spectroscopic Redshift Catalog

    Science.gov (United States)

    Yang, Ming; Wu, Hong; Yang, Fan; Lam, Man I.; Cao, Tian-Wen; Wu, Chao-Jian; Zhao, Pin-Song; Zhang, Tian-Meng; Zhou, Zhi-Min; Wu, Xue-Bing; Zhang, Yan-Xia; Shao, Zheng-Yi; Jing, Yi-Peng; Shen, Shi-Yin; Zhu, Yi-Nan; Du, Wei; Lei, Feng-Jie; He, Min; Jin, Jun-Jie; Shi, Jian-Rong; Zhang, Wei; Wang, Jian-Ling; Wu, Yu-Zhong; Zhang, Hao-Tong; Luo, A.-Li; Yuan, Hai-Long; Bai, Zhong-Rui; Kong, Xu; Gu, Qiu-Sheng; Zhou, Xu; Ma, Jun; Hu, Zou; Nie, Jun-Dan; Wang, Jia-Li; Zhang, Yong; Hou, Yong-Hui; Zhao, Yong-Heng

    2018-01-01

    We present a spectroscopic redshift catalog from the LAMOST Complete Spectroscopic Survey of Pointing Area (LaCoSSPAr) in the Southern Galactic Cap (SGC), which is designed to observe all sources (Galactic and extragalactic) by using repeating observations with a limiting magnitude of r=18.1 {mag} in two 20 {\\deg }2 fields. The project is mainly focusing on the completeness of LAMOST ExtraGAlactic Surveys (LEGAS) in the SGC, the deficiencies of source selection methods, and the basic performance parameters of the LAMOST telescope. In both fields, more than 95% of galaxies have been observed. A post-processing has been applied to the LAMOST 1D spectrum to remove the majority of remaining sky background residuals. More than 10,000 spectra have been visually inspected to measure the redshift by using combinations of different emission/absorption features with an uncertainty of {σ }z/(1+z)visual inspection. Our analysis also indicates that up to one-fourth of the input targets for a typical extragalactic spectroscopic survey might be unreliable. The multi-wavelength data analysis shows that the majority of mid-infrared-detected absorption (91.3%) and emission line galaxies (93.3%) can be well separated by an empirical criterion of W2-W3=2.4. Meanwhile, a fainter sequence paralleled to the main population of galaxies has been witnessed both in M r /W2-W3 and M */W2-W3 diagrams, which could be the population of luminous dwarf galaxies but contaminated by the edge-on/highly inclined galaxies (∼ 30 % ).

  17. Spectroscopic, thermal and biological studies of coordination

    Indian Academy of Sciences (India)

    Spectroscopic, thermal and biological studies of coordination compounds of sulfasalazine drug: Mn(II), Hg(II), Cr(III), ZrO(II), VO(II) and Y(III) transition metal ... The thermal decomposition of the complexes as well as thermodynamic parameters ( *}, *, * and *) were estimated using Coats–Redfern and ...

  18. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion 4070386 (Chile)

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  19. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    International Nuclear Information System (INIS)

    Karthikeyan, B.; Hariharan, S.; Udayabhaskar, R.

    2016-01-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  20. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  1. Mn L2,3-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li2MnO3

    International Nuclear Information System (INIS)

    Kubobuchi, Kei; Mogi, Masato; Imai, Hideto; Ikeno, Hidekazu; Tanaka, Isao; Mizoguchi, Teruyasu

    2014-01-01

    The redox reaction of Mn in Li 2 MnO 3 was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L 2,3 X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L 2,3 XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn 4+ to Mn 5+ but can be explained well by the changes of local atomic structures around Mn 4+ due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li 2 MnO 3

  2. Infrared spectroscopic and voltammetric study of adsorbed CO on stepped surfaces of copper monocrystalline electrodes

    International Nuclear Information System (INIS)

    Koga, O.; Teruya, S.; Matsuda, K.; Minami, M.; Hoshi, N.; Hori, Y.

    2005-01-01

    Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(111)-(111) and n(111)-(100) in 0.1M KH 2 PO 4 +0.1M K 2 HPO 4 at 0 o C. Reversible voltammetric waves were observed below -0.55V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below -0.55V versus SHE. Voltammetric measurements indicated that (111) terrace of Cu is covered with adsorbed CO below -0.5V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (111) terrace. Presence of adsorbed CO on (111) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(111)-(111) and n(111)-(100) with approximately same wavenumber of C?O stretching vibration of 2070cm -1 . The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (111) or (100) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The C-O stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40cm -1 lower than those in uhv system

  3. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  4. APPLYING SPECTROSCOPIC METHODS ON ANALYSES OF HAZARDOUS WASTE

    OpenAIRE

    Dobrinić, Julijan; Kunić, Marija; Ciganj, Zlatko

    2000-01-01

    Abstract The paper presents results of measuring the content of heavy and other metals in waste samples from the hazardous waste disposal site of Sovjak near Rijeka. The preliminary design elaboration and the choice of the waste disposal sanification technology were preceded by the sampling and physico-chemical analyses of disposed waste, enabling its categorization. The following spectroscopic methods were applied on metal content analysis: Atomic absorption spectroscopy (AAS) and plas...

  5. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    Science.gov (United States)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  6. Identification and Spectroscopic Characterization of Nonheme Iron(III) Hypochlorite Intermediates**

    Science.gov (United States)

    Draksharapu, Apparao; Angelone, Davide; Quesne, Matthew G; Padamati, Sandeep K; Gómez, Laura; Hage, Ronald; Costas, Miquel; Browne, Wesley R; de Visser, Sam P

    2015-01-01

    FeIII–hypohalite complexes have been implicated in a wide range of important enzyme-catalyzed halogenation reactions including the biosynthesis of natural products and antibiotics and post-translational modification of proteins. The absence of spectroscopic data on such species precludes their identification. Herein, we report the generation and spectroscopic characterization of nonheme FeIII–hypohalite intermediates of possible relevance to iron halogenases. We show that FeIII-OCl polypyridylamine complexes can be sufficiently stable at room temperature to be characterized by UV/Vis absorption, resonance Raman and EPR spectroscopies, and cryo-ESIMS. DFT methods rationalize the pathways to the formation of the FeIII-OCl, and ultimately FeIV=O, species and provide indirect evidence for a short-lived FeII-OCl intermediate. The species observed and the pathways involved offer insight into and, importantly, a spectroscopic database for the investigation of iron halogenases. PMID:25663379

  7. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  8. Spectroscopic and antimicrobial studies of polystyrene films under ...

    Indian Academy of Sciences (India)

    Spectroscopic and antimicrobial studies of polystyrene films under air plasma and He-Ne laser treatment ... The parameters such as (1) surface area by contact angle measurements, (2) quality of material before and after treatment by SEM and FTIR spectra and (3) material characterization by UV-vis spectra were studied.

  9. The influence of magnetic fields on absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Heshou; Yan, Huirong

    2016-10-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H II Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show that due to GSA, magnetic fields will affect the spectra of diffuse gas with high signal-to-noise(S/N) ratio under the condition that photon-excitation is much more efficient than thermal collision.

  10. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    Directory of Open Access Journals (Sweden)

    Alexander Klein

    2014-11-01

    Full Text Available We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS with the enhanced noise rejection of wavelength modulation spectroscopy (WMS. In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS and an additional 20 kHz sinusoidal modulation (WMS. The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 µm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K. A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer.

  11. An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.

    Science.gov (United States)

    Wang, S; Scott, R A; Lebioda, L; Zhou, Z H; Brewer, J M

    1995-05-15

    An x-ray absorption spectroscopy (XAS) study was carried out at pH 7.6 on solutions of Ni2+ and yeast enolase depleted of its physiological cofactor (Mg2+) in the presence or absence of substrate/product, the very strongly bound competitive inhibitor 2-phosphonoacetohydroxamate and Mg2+. Both "conformational" and "catalytic" Ni2+ are distorted octahedral in coordination, in agreement with several spectroscopic studies but in contrast to the coordination in the crystal at pH 6.0. The data are consistent with direct coordination of what must be the catalytic Ni2+ to the phosphate of the substrate, in agreement with some previous data but in disagreement with recent interpretations by other workers. The ligands around the metal ions obtained from the x-ray structure give simulated XAS spectra in good agreement with the observed spectra.

  12. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    OpenAIRE

    Iwasita Teresa

    2002-01-01

    Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH). In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishi...

  13. A spectroscopic census in young stellar regions: the σ Orionis cluster

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Jesús; Perez, Alice; Hernan, Ramírez [Centro de Investigaciones de Astronomía, Apdo. Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of); Calvet, Nuria; Hartmann, Lee [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Briceño, Cesar [Cerro Tololo Interamerican Observatory, Casilla 603, La Serena (Chile); Olguin, Lorenzo [Depto. de Investigación en Física, Universidad de Sonora, Sonora (Mexico); Contreras, Maria E. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, BC (Mexico); Allen, Lori [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Espaillat, Catherine, E-mail: hernandj@cida.ve [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-10-10

    We present a spectroscopic survey of the stellar population of the σ Orionis cluster. We have obtained spectral types for 340 stars. Spectroscopic data for spectral typing come from several spectrographs with similar spectroscopic coverage and resolution. More than half of the stars in our sample are members confirmed by the presence of lithium in absorption, strong Hα in emission or weak gravity-sensitive features. In addition, we have obtained high-resolution (R ∼ 34,000) spectra in the Hα region for 169 stars in the region. Radial velocities were calculated from this data set. The radial velocity distribution for members of the cluster is in agreement with previous work. Analysis of the profile of the Hα line and infrared observations reveals two binary systems or fast rotators that mimic the Hα width expected in stars with accretion disks. On the other hand, there are stars with optically thick disks and narrow Hα profiles not expected in stars with accretion disks. This contribution constitutes the largest homogeneous spectroscopic data set of the σ Orionis cluster to date.

  14. Specific binding of a dihydropyrimidinone derivative with DNA: Spectroscopic, calorimetric and modeling investigations

    International Nuclear Information System (INIS)

    Wang Gongke; Yan Changling; Wang Dongchao; Li Dan; Lu Yan

    2012-01-01

    One of the dihydropyrimidinone derivative 5-(ethoxycarbonyl)-6-methyl-4-(4-methoxyphenyl) -3,4-dihydropyrimidin-2(1H)-one (EMMD) was synthesized, and its binding properties with calf-thymus DNA (ctDNA) were investigated using spectroscopic, viscometric, isothermal titration calorimetric (ITC) and molecular modeling techniques. Fluorescence spectra suggested that the fluorescence enhancement of the binding interaction of EMMD to ctDNA was a static process with ground state complex formation. The binding constant determined with spectroscopic titration and ITC was found to be in the same order of 10 4 M −1 . According to the results of the viscosity analysis, fluorescence competitive binding experiment, fluorescence quenching studies, absorption spectral and ITC investigations, it can be concluded that EMMD is intercalative binding to ctDNA. Furthermore, the results of molecular modeling confirmed those obtained from spectroscopic, viscosimetric and ITC investigations. Additionally, ITC studies also indicated that the binding interaction is predominantly enthalpy driven. - Highlights: ► Medically important dihydropyrimidinones derivative EMMD is synthesized. ► EMMD is intercalative binding into ctDNA helix. ► Hydrogen bonding may play an essential role in the binding of EMCD with ctDNA. ► This binding interaction is predominantly enthalpy driven.

  15. Photophysics of α-furil at room temperature and 77 K: Spectroscopic and quantum chemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Kundu, Pronab; Chattopadhyay, Nitin, E-mail: nitin.chattopadhyay@yahoo.com [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2016-06-21

    Steady state and time resolved spectroscopic measurements have been exploited to assign the emissions from different conformations of α-furil (2, 2′-furil) in solution phase at room temperature as well as cryogen (liquid nitrogen, LN{sub 2}) frozen matrices of ethanol and methylcyclohexane. Room temperature studies reveal a single fluorescence from the trans-planar conformer of the fluorophore or two fluorescence bands coming from the trans-planar and the relaxed skew forms depending on excitation at the nπ{sup ∗} or the ππ{sup ∗} absorption band, respectively. Together with the fluorescence bands, the LN{sub 2} studies in both the solvents unambiguously ascertain two phosphorescence emissions with lifetimes 5 ± 0.3 ms (trans-planar triplet) and 81 ± 3 ms (relaxed skew triplet). Quantum chemical calculations have been performed using density functional theory at CAM-B3LYP/6-311++G{sup ∗∗} level to prop up the spectroscopic surveillance. The simulated potential energy curves (PECs) illustrate that α-furil is capable of giving two emissions from each of the S{sub 1} and the T{sub 1} states—one corresponding to the trans-planar and the other to the relaxed skew conformation. Contrary to the other 1,2-dicarbonyl molecular systems like benzil and α-naphthil, α-furil does not exhibit any fluorescence from its second excited singlet (S{sub 2}) state. This is ascribed to the proximity of the minimum of the PEC of the S{sub 2} state and the hill-top of the PEC of the S{sub 1} state.

  16. Vibrational spectroscopic study of fluticasone propionate

    Science.gov (United States)

    Ali, H. R. H.; Edwards, H. G. M.; Kendrick, J.; Scowen, I. J.

    2009-03-01

    Fluticasone propionate is a synthetic glucocorticoid with potent anti-inflammatory activity that has been used effectively in the treatment of chronic asthma. The present work reports a vibrational spectroscopic study of fluticasone propionate and gives proposed molecular assignments on the basis of ab initio calculations using BLYP density functional theory with a 6-31G* basis set and vibrational frequencies predicted within the quasi-harmonic approximation. Several spectral features and band intensities are explained. This study generated a library of information that can be employed to aid the process monitoring of fluticasone propionate.

  17. Experimental study of radiative energy transport in dense plasmas by emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Dozieres, Maylis

    2016-01-01

    This PhD work is an experimental study, based on emission and absorption spectroscopy of hot and dense nanosecond laser-produced plasmas. Atomic physics in such plasmas is a complex subject and of great interest especially in the fields of astrophysics or inertial confinement fusion. On the atomic physics point of view, this means determining parameters such as the average ionization or opacity in plasmas at given electronic temperature and density. Atomic physics codes then need of experimental data to improve themselves and be validated so that they can be predictive for a wide range of plasmas. With this work we focus on plasmas whose electronic temperature varies from 10 eV to more than a hundred and whose density range goes from 10 -5 ato10 -2 g/cm 3 . In this thesis, there are two types of spectroscopic data presented which are both useful and necessary to the development of atomic physics codes because they are both characteristic of the state of the studied plasma: 1) some absorption spectra from Cu, Ni and Al plasmas close to local thermodynamic equilibrium; 2) some emission spectra from non local thermodynamic equilibrium plasmas of C, Al and Cu. This work highlights the different experimental techniques and various comparisons with atomic physics codes and hydrodynamics codes. (author) [fr

  18. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    International Nuclear Information System (INIS)

    Mtat, D.; Touati, R.; Guerfel, T.; Walha, K.; Ben Hassine, B.

    2016-01-01

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C 17 H 22 NO 2 Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2 1 2 1 2 1 . In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability β tot of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

  19. Spectroscopic studies of europium-tetracyclines complexes and their applications in detection of hydrogen peroxide and urea peroxide

    International Nuclear Information System (INIS)

    Grasso, Andrea Nastri

    2010-01-01

    In this work were studied the spectroscopic properties of trivalent europium ion complexed with components of tetracycline family, chlorotetracycline, oxytetracycline and metacycline, in the presence of hydrogen peroxide and urea peroxide. Optical parameters were obtained such as absorption, emission, lifetime and calibration curves were constructed for luminescence spectra. Experiments were carried out with both inorganic compounds and europium-tetracyclines complexes in order to verify possible interferences. Studies for glucose determination were also described using europium-tetracyclines complexes as biosensors. Results show that europium tetracyclines complexes emit a narrow band in the visible region and, in the presence of hydrogen peroxide or urea peroxide there is a greater enhancement in their luminescence and lifetime. Thus, europium-tetracyclines complexes studied can be used as biosensors for hydrogen and urea peroxides determination as a low cost and room temperature method. An indirect method for glucose determination was studied by adding glucose oxidase enzyme in europium-tetracyclines complex in the presence of glucose promoting as product hydrogen peroxide. (author)

  20. Spectroscopic investigation of oxidized solder surfaces

    International Nuclear Information System (INIS)

    Song, Jenn-Ming; Chang-Chien, Yu-Chien; Huang, Bo-Chang; Chen, Wei-Ting; Shie, Chi-Rung; Hsu, Chuang-Yao

    2011-01-01

    Highlights: → UV-visible spectroscopy is successfully used to evaluate the degree of discoloring of solders. → The surface oxides of solders can also be identified by UV-visible absorption spectra. → The discoloration of solder surface can be correlated with optical characterization of oxides. → A strategy against discoloring by alloying was also suggested. - Abstract: For further understanding of the discoloration of solder surfaces due to oxidation during the assembly and operation of electronic devices, UV-vis and X-ray photoelectron spectroscopic analyses were applied to evaluate the degree of discoloring and identify the surface oxides. The decrease in reflectance of the oxidized solder surface is related to SnO whose absorption band is located within the visible region. A trace of P can effectively depress the discoloration of solders under both solid and semi-solid states through the suppression of SnO.

  1. Structural analysis of radiation damage in zircon and thorite: An X-ray absorption spectroscopic study

    International Nuclear Information System (INIS)

    Farges, F.; Calas, G.

    1991-01-01

    Metamictization effects have been investigated in zircon, thorite, uranothorite, and thorogummite using X-ray absorption spectroscopy at Zr-K, Th-L III edges. Extended X-ray absorption fine structure (EXAFS) spectra of metamict samples are characterized by a major contribution due to the O nearest neighbors with some contributions from next-nearest neighbors (Si and Zr in zircon, Si in thorite). In zircon, Zr-O distances decrease by ∼0.1 angstrom while the coordination number of Zr decreases from 8 to 7. In contrast, the eightfold coordination of Th in crystalline thorite is preserved in metamict thorite, Si second neighbors around Zr or Th are generally observed in metamict samples with distances close to those measured in crystalline phases. No other contribution to EXAFS is observed in thorite, but Zr-Zr distances are observed in zircon. They decrease by ca. 0.3 Angstrom as a function of zircon metamictization. Metamictization processes are characterized by a loss of medium range order. There is no evidence for decomposition into crystalline oxides. The structural interpretation of EXAFS data must take into account the creation of O vacancies arising from a displacement or tilting of the SiO 4 tetrahedra during metamictization of zircon-like structures. If the cation can take a lower coordination number (as in the case of Zr), a coordination change allows the local structure to be partly maintained during metamictization. If not, as for Th, the local structure is rapidly destroyed

  2. Analyzing Water's Optical Absorption

    Science.gov (United States)

    2002-01-01

    A cooperative agreement between World Precision Instruments (WPI), Inc., and Stennis Space Center has led the UltraPath(TM) device, which provides a more efficient method for analyzing the optical absorption of water samples at sea. UltraPath is a unique, high-performance absorbance spectrophotometer with user-selectable light path lengths. It is an ideal tool for any study requiring precise and highly sensitive spectroscopic determination of analytes, either in the laboratory or the field. As a low-cost, rugged, and portable system capable of high- sensitivity measurements in widely divergent waters, UltraPath will help scientists examine the role that coastal ocean environments play in the global carbon cycle. UltraPath(TM) is a trademark of World Precision Instruments, Inc. LWCC(TM) is a trademark of World Precision Instruments, Inc.

  3. On the limitations of statistical absorption studies with the Sloan Digital Sky Surveys I-III

    Science.gov (United States)

    Lan, Ting-Wen; Ménard, Brice; Baron, Dalya; Johnson, Sean; Poznanski, Dovi; Prochaska, J. Xavier; O'Meara, John M.

    2018-04-01

    We investigate the limitations of statistical absorption measurements with the SDSS optical spectroscopic surveys. We show that changes in the data reduction strategy throughout different data releases have led to a better accuracy at long wavelengths, in particular for sky line subtraction, but a degradation at short wavelengths with the emergence of systematic spectral features with an amplitude of about one percent. We show that these features originate from inaccuracy in the fitting of modeled F-star spectra used for flux calibration. The best-fit models for those stars are found to systematically over-estimate the strength of metal lines and under-estimate that of Lithium. We also identify the existence of artifacts due to masking and interpolation procedures at the wavelengths of the hydrogen Balmer series leading to the existence of artificial Balmer α absorption in all SDSS optical spectra. All these effects occur in the rest-frame of the standard stars and therefore present Galactic longitude variations due to the rotation of the Galaxy. We demonstrate that the detection of certain weak absorption lines reported in the literature are solely due to calibration effects. Finally, we discuss new strategies to mitigate these issues.

  4. Spectroscopic Study of the Binding of Netropsin and Hoechst 33258 to Nucleic Acids

    Science.gov (United States)

    Vardevanyan, P. O.; Parsadanyan, M. A.; Antonyan, A. P.; Sahakyan, V. G.

    2018-05-01

    The interaction of groove binding compounds — peptide antibiotic (polyamide) netropsin and fluorescent dye (bisbenzimidazole) Hoechst 33258 — with the double-stranded DNA and synthetic double-stranded polynucleotide poly(rA)-poly(rU) has been studied by spectrophotometry. Absorption spectra of these ligand complexes with nucleic acids have been obtained. Spectral changes at the complexation of individual ligands with the mentioned nucleic acids reveal the similarity of binding of each of these ligands with both DNA and RNA. Based on the spectroscopic measurements, the binding parameters of netropsin and Hoechst 33258 binding to DNA and poly(rA)-poly(rU) - K and n, as well as the thermodynamic parameters ΔS, ΔG, and ΔH have been determined. It was found that the binding of Hoechst 33258 to both nucleic acids is accompanied by a positive change in enthalpy, while in the case of netropsin the change in enthalpy is negative. Moreover, the contribution of entropy to the formation of the complexes is more pronounced in the case of Hoechst 33258.

  5. Spectroscopic ellipsometry study of Cu{sub 2}ZnSnSe{sub 4} bulk crystals

    Energy Technology Data Exchange (ETDEWEB)

    León, M., E-mail: maximo.leon@uam.es; Lopez, N.; Merino, J. M.; Caballero, R. [Department of Applied Physics M12, Universidad Autónoma de Madrid, Madrid (Spain); Levcenko, S.; Gurieva, G. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Serna, R. [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Bodnar, I. V. [Department of Chemistry, Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus); Nateprov, A.; Guc, M.; Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau MD 2028 (Moldova, Republic of); Schorr, S. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Institute of Geological Sciences, Free University Berlin, Malteserstr. 74-100, Berlin (Germany); Perez-Rodriguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs (Barcelona) (Spain); IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2014-08-11

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu{sub 2}ZnSnSe{sub 4} bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E{sub 0}, E{sub 1A}, and E{sub 1B} interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range.

  6. Spectroscopic studies of the quality of WCO (Waste Cooking Oil fatty acid methyl esters

    Directory of Open Access Journals (Sweden)

    Matwijczuk Arkadiusz

    2018-01-01

    Full Text Available Different kinds of biodiesel fuels become more and more attractive form of fuel due to their unique characteristics such as: biodegradability, replenishability, and what is more a very low level of toxicity in terms of using them as a fuel. The test on the quality of diesel fuel is becoming a very important issue mainly due to the fact that its high quality may play an important role in the process of commercialization and admitting it on the market. The most popular techniques among the wellknown are: molecular spectroscopy and molecular chromatography (especially the spectroscopy of the electron absorption and primarily the infrared spectroscopy (FTIR.The issue presents a part of the results obtained with the use of spectroscopy of the electron absorption and in majority infrared spectroscopy FTIR selected for testing samples of the acid fats WCO (Waste Cooking Oil types. The samples were obtained using laboratory methods from sunflower oil and additionally from waste animal fats delivered from slaughterhouses. Acid methyl esters were selected as references to present the samples. In order to facilitate the spectroscopic analysis, free glycerol, methanol, esters and methyl linolenic acid were measured

  7. Spectroscopic Studies on the Interaction of Acid Yellow With Bovine Serum Albumin

    International Nuclear Information System (INIS)

    Pan Xingren; Liu Rutao; Qin Pengfei; Wang Li; Zhao Xingchen

    2010-01-01

    Azo dyes, which are common in the environment, can be toxic to various organisms. In order to determine the molecular mechanism of acid yellow 11(AY) toxicity, we studied the effect of AY exposure to the common protein bovine serum albumin (BSA) by several spectroscopic techniques including fluorescence spectroscopy, ultraviolet spectrophotometry (UV) and circular dichroism (CD). It could be concluded from the fluorescence spectra that the quenching effect of BSA by AY was mainly due to complex formation which was unrelated to the absorption of AY. The enthalpy change (ΔH) and entropy change (ΔS) were found to be -21.94 kJ/mol and 30.04 Jmol -1 K -1 , respectively. The results confirm that electrostatic attraction was the predominant intermolecular force between BSA and AY. Furthermore, the binding distance (r) between AY and the inner tryptophan residue of BSA was determined to be 3.541 nm on the basis of Forster theory of non-radiative energy transfer. In addition, the conformational changes of BSA in the presence of AY were also analyzed by UV and CD. These results indicated that AY could interact with BSA by complex formation, which also affected the structure of BSA.

  8. Spectroscopic determination of anthraquinone in kraft pulping liquors using a membrane interface

    Science.gov (United States)

    X.S. Chai; X.T. Yang; Q.X. Hou; J.Y. Zhu; L.-G. Danielsson

    2003-01-01

    A spectroscopic technique for determining AQ in pulping liquor was developed to effectively separate AQ from dissolved lignin. This technique is based on a flow analysis system with a Nafion membrane interface. The AQ passed through the membrane is converted into its reduced form, AHQ, using sodium hydrosulfite. AHQ has distinguished absorption characteristics in the...

  9. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    Energy Technology Data Exchange (ETDEWEB)

    Mtat, D.; Touati, R. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia); Guerfel, T., E-mail: taha-guerfel@yahoo.fr [Université de Kairouan, Laboratoire d’Electrochimie, Matériaux et Environnement (Tunisia); Walha, K. [Université de Sfax, M.E.S.Lab. Faculté des Sciences de Sfax (Tunisia); Ben Hassine, B. [Université de Monastir, Laboratoire de Synthèse Organique Asymétrique et Catalyse Homogène (UR11ES56), Faculté des Sciences (Tunisia)

    2016-12-15

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C{sub 17}H{sub 22}NO{sub 2}Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P2{sub 1}2{sub 1}2{sub 1}. In the crystal structure, molecules are interconnected by N–H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO–LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability β{sub tot} of the title compound is determined using DFT calculations. The optical properties are also investigated by UV–Vis absorption spectrum.

  10. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...... conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting....

  11. Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes

    International Nuclear Information System (INIS)

    Song, Kwang Hyun; Kim, Chulhong; Maslov, Konstantin; Wang, Lihong V.

    2009-01-01

    Sentinel lymph node (SLN) biopsy has increasingly become important in axillary staging of breast cancer patients since SLN biopsy alleviates the postoperative complications of previously practiced axillary lymph node dissections. Nevertheless, the procedures of SLN biopsy using blue dye and radioactive substance are still intraoperative, and the latter methods are also ionizing. In this pilot study, we have proposed noninvasive in vivo spectroscopic photoacoustic (PA) SLN mapping using gold nanorods as lymph node tracers in a rat model. Gold nanorods have biocompatibility, high optical absorption, and easily tuned surface plasmon resonance peak wavelength.

  12. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.; Kurtz, Charles; Grey, Clare P.; Chapman, Karena W.; Chupas, Peter J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstrated for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.

  13. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences.

    Science.gov (United States)

    Strange, Richard W; Feiters, Martin C

    2008-10-01

    Using X-ray absorption spectroscopy (XAS) the binding modes (type and number of ligands, distances and geometry) and oxidation states of metals and other trace elements in crystalline as well as non-crystalline samples can be revealed. The method may be applied to biological systems as a 'stand-alone' technique, but it is particularly powerful when used alongside other X-ray and spectroscopic techniques and computational approaches. In this review, we highlight how biological XAS is being used in concert with crystallography, spectroscopy and computational chemistry to study metalloproteins in crystals, and report recent applications on relatively rare trace elements utilised by living organisms and metals involved in neurodegenerative diseases.

  14. Electronic properties of an organic molecule within MCM-41 host: a spectroscopic and theoretical study toward elucidating the variation in band gaps of the guest species

    CERN Document Server

    Zhang, L Z; Tang Guo Qing; Liao Dai Zhen

    2003-01-01

    An organic molecule salicylidene-1,2-ethanediamine 1, has been encapsulated in the nanocavities of MCM-41 and this nanocomposite material has been investigated by X-ray diffraction, absorption and emission spectroscopy. Results from the spectroscopic measurements show that the bathochromic shift of the 0-0 transitions is correlated with the reduction of the HOMO-LUMO band gap accompanying by the energy changes of the frontier orbitals. Theoretical studies indicate that the energy levels of HOMO and LUMO increase when 1 is confined, and the HOMO is more sensitive than the LUMO.

  15. Spectroscopic studies on surface reactions between minerals and reagents in flotation systems

    International Nuclear Information System (INIS)

    Giesekke, E.W.

    1981-01-01

    A study of the adsorbed species at the interface between the minerals and the aqueous solution is reported in the hope that it will contribute to a better understanding of selective mineral flotation by various reagents. The results of infrared spectroscopic studies are cited from the author's investigation on the fluorite-sodium oleate and fluorite-linoleate systems. Electron-spectroscopic techniques, e.g., electron spectroscopy for chemical analysis (ESCA) have also been useful in the identification of adsorbed species on mineral surfaces. Some experimental data from the literature are discussed. These studies have the disadvantage that they are not in situ investigations of the interface between the mineral and the aqueous solution. The potential use of other spectroscopic techniques are discussed, photo-acoustic, Raman, and electron-spin-resonance spectroscopy being considered as possible alternatives. It is suggested that the relatively small surface areas of minerals used in flotation (i.e. smaller than 2m 2 .g- 1 ) impose severe restrictions on the use of such techniques

  16. INVISIBLE ACTIVE GALACTIC NUCLEI. II. RADIO MORPHOLOGIES AND FIVE NEW H i 21 cm ABSORPTION LINE DETECTORS

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Ting; Stocke, John T.; Darling, Jeremy [Center for Astrophysics and Space Astronomy, UCB 389, University of Colorado, Boulder, CO 80309-0389 (United States); Momjian, Emmanuel [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Sharma, Soniya [Research School of Astronomy and Astrophysics, The Australian National University, Mt Stromlo Observatory, ACT 2611 (Australia); Kanekar, Nissim [National Centre for Radio Astrophysics, TIFR, Post Bag 3, Ganeshkhind, Pune 411 007 (India)

    2016-03-15

    This is the second paper directed toward finding new highly redshifted atomic and molecular absorption lines at radio frequencies. To this end, we selected a sample of 80 candidates for obscured radio-loud active galactic nuclei (AGNs) and presented their basic optical/near-infrared (NIR) properties in Paper I. In this paper, we present both high-resolution radio continuum images for all of these sources and H i 21 cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz Very Large Array continuum observations find that 52 sources are compact or have substantial compact components with size <0.″5 and flux densities >0.1 Jy at 4.9 GHz. The 36 most compact sources were then observed with the Very Long Baseline Array at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, which is a detection rate of CSOs ∼three times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty-seven sources were observed for H i 21 cm absorption at their photometric or spectroscopic redshifts with only six detections (five definite and one tentative). However, five of these were from a small subset of six CSOs with pure galaxy optical/NIR spectra (i.e., any AGN emission is obscured) and for which accurate spectroscopic redshifts place the redshifted 21 cm line in a radio frequency intereference (RFI)-free spectral “window” (i.e., the percentage of H i 21 cm absorption-line detections could be as high as ∼90% in this sample). It is likely that the presence of ubiquitous RFI and the absence of accurate spectroscopic redshifts preclude H i detections in similar sources (only 1 detection out of the remaining 22 sources observed, 13 of which have only photometric redshifts); that is, H i absorption may well be present but is masked by

  17. Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal

    International Nuclear Information System (INIS)

    Sizov, Igor; Rahman, Masudur; Gelmont, Boris; Norton, Michael L.; Globus, Tatiana

    2013-01-01

    Highlights: • Sub-THz spectroscopy is used to characterize artificially designed DNA monocrystal. • Results are obtained using a novel near field, RT, frequency domain spectrometer. • Narrow resonances of 0.1 cm −1 width in absorption spectra of crystal are observed. • Signature measured between 310 and 490 GHz is reproducible and well resolved. • Absorption pattern is explained in part by simulation results from dsDNA fragment. - Abstract: Sub-terahertz (sub-THz) vibrational spectroscopy is a new spectroscopic branch for characterizing biological macromolecules. In this work, highly resolved sub-THz resonance spectroscopy is used for characterizing engineered molecular structures, an artificially designed DNA monocrystal, built from a short DNA sequence. Using a recently developed frequency domain spectroscopic instrument operating at room temperature with high spectral and spatial resolution, we demonstrated very intense and specific spectral lines from a DNA crystal in general agreement with a computational molecular dynamics (MD) simulation of a short double stranded DNA fragment. The spectroscopic signature measured in the frequency range between 310 and 490 GHz is rich in well resolved and reproducible spectral features thus demonstrating the capability of THz resonance spectroscopy to be used for characterizing custom macromolecules and structures designed and implemented via nanotechnology for a wide variety of application domains. Analysis of MD simulation indicates that intense and narrow vibrational modes with atomic movements perpendicular (transverse) and parallel (longitudinal) to the long DNA axis coexist in dsDNA, with much higher contribution from longitudinal vibrations

  18. Spectroscopic study on the intermolecular interaction of SO{sub 2} absorption in poly-ethylene glycol+H{sub 2}O systems

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhiqiang; Liu, Jinrong; Zhang, Jianbin; Zhang, Na [Inner Mongolia University of Technology, Huhhot (China)

    2014-03-15

    Poly-Ethylene Glycol (PEG) 300+H{sub 2}O solutions (PEGWs) has been used as a promising medium for the absorption of SO{sub 2}. We investigated the UV, FTIR, {sup 1}H-NMR, and fluorescence spectra in the absorption processes of SO{sub 2} in PEGWs to present an important absorption mechanism. Based on the spectral results, the possibility of intermolecular hydrogen bond formation by hydroxyl oxygen atom in the PEG molecule with hydrogen atom in H{sub 2}O and S…O interaction formation by the oxygen atoms in PEG with the sulfur atom in SO{sub 2} are discussed. This shows that the spectral changes may be due to the formation of -CH{sub 2}CH{sub 2}O(H)…HOH… and -CH{sub 2}-CH{sub 2}-O(CH{sub 2}-CH{sub 2}-)…HOH… in PEGWs and the formation of -CH{sub 2}CH{sub 2}OH…OSO…, and intermolecular S…O interaction between PEG and SO{sub 2} as the formation of -CH{sub 2}CH{sub 2}OCH{sub 2}CH{sub 2}O(H)…(O)S(O)… and -CH{sub 2}-CH{sub 2}-O(CH{sub 2}-CH{sub 2}-) …(O)S(O)…. The existence of these bonds benefits the absorption and desorption processes of SO{sub 2} in PEGWs.

  19. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  20. A new and fast in-situ spectroscopic infrared absorption measurement technique

    NARCIS (Netherlands)

    Hest, van M.F.A.M.; Klaver, A.; Sanden, van de M.C.M.

    2001-01-01

    Silicon oxide like films are deposited using an expanding thermal plasma (cascaded arc) in combination with HMDSO and oxygen as deposition precursors. These films are deposited at high rate (up to 200 nm/s). In general Fourier transform infrared (FTIR) reflection absorption spectroscopy is a useful

  1. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    Science.gov (United States)

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Vibrational Spectroscopic Studies of Tenofovir Using Density Functional Theory Method

    Directory of Open Access Journals (Sweden)

    G. R. Ramkumaar

    2013-01-01

    Full Text Available A systematic vibrational spectroscopic assignment and analysis of tenofovir has been carried out by using FTIR and FT-Raman spectral data. The vibrational analysis was aided by electronic structure calculations—hybrid density functional methods (B3LYP/6-311++G(d,p, B3LYP/6-31G(d,p, and B3PW91/6-31G(d,p. Molecular equilibrium geometries, electronic energies, IR intensities, and harmonic vibrational frequencies have been computed. The assignments proposed based on the experimental IR and Raman spectra have been reviewed and complete assignment of the observed spectra have been proposed. UV-visible spectrum of the compound was also recorded and the electronic properties such as HOMO and LUMO energies and were determined by time-dependent DFT (TD-DFT method. The geometrical, thermodynamical parameters, and absorption wavelengths were compared with the experimental data. The B3LYP/6-311++G(d,p-, B3LYP/6-31G(d,p-, and B3PW91/6-31G(d,p-based NMR calculation procedure was also done. It was used to assign the 13C and 1H NMR chemical shift of tenofovir.

  3. Self-assembled via axial coordination magnesium porphyrin-imidazole appended fullerene dyad: spectroscopic, electrochemical, computational, and photochemical studies.

    Science.gov (United States)

    D'Souza, Francis; El-Khouly, Mohamed E; Gadde, Suresh; McCarty, Amy L; Karr, Paul A; Zandler, Melvin E; Araki, Yasuyaki; Ito, Osamu

    2005-05-26

    Spectroscopic, redox, and electron transfer reactions of a self-assembled donor-acceptor dyad formed by axial coordination of magnesium meso-tetraphenylporphyrin (MgTPP) and fulleropyrrolidine appended with an imidazole coordinating ligand (C(60)Im) were investigated. Spectroscopic studies revealed the formation of a 1:1 C(60)Im:MgTPP supramolecular complex, and the anticipated 1:2 complex could not be observed because of the needed large amounts of the axial coordinating ligand. The formation constant, K(1), for the 1:1 complex was found to be (1.5 +/- 0.3) x 10(4) M(-1), suggesting fairly stable complex formation. The geometric and electronic structures of the dyads were probed by ab initio B3LYP/3-21G() methods. The majority of the highest occupied frontier molecular orbital (HOMO) was found to be located on the MgTPP entity, while the lowest unoccupied molecular orbital (LUMO) was on the fullerene entity, suggesting that the charge-separated state of the supramolecular complex is C(60)Im(*-):MgTPP(*+). Redox titrations involving MgTPP and C(60)Im allowed accurate determination of the oxidation and reduction potentials of the donor and acceptor entities in the supramolecular complex. These studies revealed more difficult oxidation, by about 100 mV, for MgTPP in the pentacoordinated C(60)Im:MgTPP compared to pristine MgTPP in o-dichlorobenzene. A total of six one-electron redox processes corresponding to the oxidation and reduction of the zinc porphyrin ring and the reduction of fullerene entities was observed within the accessible potential window of the solvent. The excited state events were monitored by both steady state and time-resolved emission as well as transient absorption techniques. In o-dichlorobenzene, upon coordination of C(60)Im to MgTPP, the main quenching pathway involved electron transfer from the singlet excited MgTPP to the C(60)Im moiety. The rate of forward electron transfer, k(CS), calculated from the picosecond time-resolved emission

  4. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Dotter, A.; Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Marino, A. F.; Milone, A. P. [Australian National University, The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Bailey, J. I. III [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Crane, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Olszewski, E. W. [The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-09-01

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}). The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.

  5. Spectroscopic characterization of the ethyl radical-water complex.

    Science.gov (United States)

    Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S

    2016-10-14

    An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.

  6. Uranium absorption study pile

    International Nuclear Information System (INIS)

    Raievski, V.; Sautiez, B.

    1959-01-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF 3 counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10 -6 boron per gr. of uranium) or better. (author) [fr

  7. Compressed shell conditions extracted from spectroscopic analysis of Ti K-shell absorption spectra with evaluation of line self-emission

    Energy Technology Data Exchange (ETDEWEB)

    Johns, H. M.; Mancini, R. C.; Hakel, P.; Nagayama, T. [Physics Department, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada 89557 (United States); Smalyuk, V. A.; Regan, S. P.; Delettrez, J. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)

    2014-08-15

    Ti-doped tracer layers embedded in the shell at varying distances from the fuel-shell interface serve as a spectroscopic diagnostic for direct-drive experiments conducted at OMEGA. Detailed modeling of Ti K-shell absorption spectra produced in the tracer layer considers n = 1–2 transitions in F- through Li-like Ti ions in the 4400–4800 eV range, both including and excluding line self-emission. Testing the model on synthetic spectra generated from 1-D LILAC hydrodynamic simulations reveals that the model including self-emission best reproduces the simulation, while the model excluding self-emission overestimates electron temperature T{sub e} and density N{sub e} to a higher degree for layers closer to the core. The prediction of the simulation that the magnitude of T{sub e} and duration of Ti absorption will be strongly tied to the distance of the layer from the core is consistent with the idea that regions of the shell close to the core are more significantly heated by thermal transport out of the hot dense core, but more distant regions are less affected by it. The simulation predicts more time variation in the observed T{sub e}, N{sub e} conditions in the compressed shell than is observed in the experiment, analysis of which reveals conditions remain in the range T{sub e} = 400–600 eV and N{sub e} = 3.0–10.0 × 10{sup 24} cm{sup −3} for all but the most distant Ti-doped layer, with error bars ∼5% T{sub e} value and ∼10% N{sub e} on average. The T{sub e}, N{sub e} conditions of the simulation lead to a greater degree of ionization for zones close to the core than occurs experimentally, and less ionization for zones far from the core.

  8. A Novel Temperature Measurement Approach for a High Pressure Dielectric Barrier Discharge Using Diode Laser Absorption Spectroscopy (Preprint)

    National Research Council Canada - National Science Library

    Leiweke, R. J; Ganguly, B. N

    2006-01-01

    A tunable diode laser absorption spectroscopic technique is used to measure both electronically excited state production efficiency and gas temperature rise in a dielectric barrier discharge in argon...

  9. Photoionization-driven Absorption-line Variability in Balmer Absorption Line Quasar LBQS 1206+1052

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Luming; Zhou, Hongyan; Ji, Tuo; Jiang, Peng; Liu, Bo; Pan, Xiang; Shi, Xiheng; Zhang, Shaohua [Polar Research Institute of China, 451 Jinqiao Road, Shanghai (China); Liu, Wenjuan; Wang, Jianguo [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan (China); Wang, Tinggui; Yang, Chenwei [Department of Astronomy, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui (China); Miller, Lauren P., E-mail: lmsun@mail.ustc.edu.cn [Lehigh University, 27 Memorial Drive West, Bethlehem, PA 18015 (United States)

    2017-04-01

    In this paper we present an analysis of absorption-line variability in mini-BAL quasar LBQS 1206+1052. The Sloan Digital Sky Survey spectrum demonstrates that the absorption troughs can be divided into two components of blueshift velocities of ∼700 and ∼1400 km s{sup −1} relative to the quasar rest frame. The former component shows rare Balmer absorption, which is an indicator of high-density absorbing gas; thus, the quasar is worth follow-up spectroscopic observations. Our follow-up optical and near-infrared spectra using MMT, YFOSC, TSpec, and DBSP reveal that the strengths of the absorption lines vary for both components, while the velocities do not change. We reproduce all of the spectral data by assuming that only the ionization state of the absorbing gas is variable and that all other physical properties are invariable. The variation of ionization is consistent with the variation of optical continuum from the V -band light curve. Additionally, we cannot interpret the data by assuming that the variability is due to a movement of the absorbing gas. Therefore, our analysis strongly indicates that the absorption-line variability in LBQS 1206+1052 is photoionization driven. As shown from photoionization simulations, the absorbing gas with blueshift velocity of ∼700 km s{sup −1} has a density in the range of 10{sup 9} to 10{sup 10} cm{sup −3} and a distance of ∼1 pc, and the gas with blueshift velocity of ∼1400 km s{sup −1} has a density of 10{sup 3} cm{sup −3} and a distance of ∼1 kpc.

  10. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  11. Some experiences with absorption, phonon Raman, and luminescence spectroscopic probes of crystal structure of f-element compounds

    International Nuclear Information System (INIS)

    Peterson, J.R.

    1992-01-01

    Structural information is crucial to the study and understanding of the basic chemical properties of the f elements. X-ray diffraction (XRD) techniques are usually used to obtain crystal structure information. However, the transuranium (5f) elements, because of their radioactivity and limited availability, present problems for standard XRD analysis. For some time now we have been developing and using various spectroscopic probes of crystal structure; an overview of our research in this area is presented here

  12. Influence of silver nanoparticles on the spectroscopic properties of Sm3+ doped boro-phosphate glasses

    Science.gov (United States)

    Suthanthirakumar, P.; Marimuthu, K.

    2016-05-01

    The Sm3+ doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm3+ ions free glass sample. The optical band gap energy (Eopt) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) values were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm3+ ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.

  13. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    Science.gov (United States)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  14. Development of atomic spectroscopy technology -Development of ultrasensitive spectroscopic analysis technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Kee; Suk, Song Kyoo; Kim, Duk Hyun; Hong, Suk Kyung; Lee, Yong Joo; Lee, Jong Hoon; Yang, Kee Hoh [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    For the resonance ionization spectroscopy experiment, erbium and samarium were chosen as test elements and their optimum photoionization schemes for trace analysis have been investigated by using multiphoton spectroscopic techniques. With the optimum scheme, the detection limit of various atoms were measured. For the test of laser induced fluorescence system, calibration curves obtained from lead and cadmium standard solutions were made and Pb concentrations of various unknown solutions were determined. By using the developed differential absorption lidar system, backscattering signals from aerosol and ozone have been measured. Error source, error calibration and data interpretation techniques have been also studied. 60 figs, 8 pix, 28 tabs, 30 refs. (Author).

  15. Development of atomic spectroscopy technology -Development of ultrasensitive spectroscopic analysis technology

    International Nuclear Information System (INIS)

    Cha, Hyung Kee; Song Kyoo Suk; Kim, Duk Hyun; Hong, Suk Kyung; Lee, Yong Joo; Lee, Jong Hoon; Yang, Kee Hoh

    1995-07-01

    For the resonance ionization spectroscopy experiment, erbium and samarium were chosen as test elements and their optimum photoionization schemes for trace analysis have been investigated by using multiphoton spectroscopic techniques. With the optimum scheme, the detection limit of various atoms were measured. For the test of laser induced fluorescence system, calibration curves obtained from lead and cadmium standard solutions were made and Pb concentrations of various unknown solutions were determined. By using the developed differential absorption lidar system, backscattering signals from aerosol and ozone have been measured. Error source, error calibration and data interpretation techniques have been also studied. 60 figs, 8 pix, 28 tabs, 30 refs. (Author)

  16. In situ study of nitrobenzene grafting on Si(111)-H surfaces by infrared spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Rappich, J. [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Institut fuer Silizium-Photovoltaik, Kekulestr. 5, 12489 Berlin (Germany); Hinrichs, K. [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)

    2009-12-15

    The binding of nitrobenzene (NB) molecules from a solution of 4-nitrobenzene-diazonium-tetrafluoroborate on a Si(111)-H surface was investigated during the electrochemical processing in diluted sulphuric acid by means of infrared spectroscopic ellipsometry (IR-SE). The grafting was monitored by an increase in specific IR absorption bands due to symmetric and anti-symmetric NO{sub 2} stretching vibrations in the 1400-1700 cm{sup -1} regime. The p- and s-polarized reflectances were recorded within 20 s for each spectrum only. NB molecules were detected when bonded to the Si(111) surface but not in the 2 mM solution itself. Oxide formation on the NB grafted Si surface was observed after drying in inert atmosphere and not during the grafting process in the aqueous solution. (author)

  17. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing

    Science.gov (United States)

    Saha, Dipika; Negi, Devendra P. S.

    2018-01-01

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20 × 105 M- 1. Infrared spectroscopic measurements indicated the participation of the sbnd NH2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules.

  18. Spectroscopic studies of carbon impurities in PISCES-A

    International Nuclear Information System (INIS)

    Ra, Y.; Hirooka, Y.; Leung, W.K.; Conn, R.W.; Pospieszczyk, A.

    1989-08-01

    The graphite used for the limiter of the tokamak reactor produces carbon-containing molecular impurities as a result of the interactions with the edge plasma. The behavior of these molecular impurities has been studied using emission spectroscopy. The present study includes: finding molecular bands and atomic lines in the visible spectral range which can be used for the study of the molecular impurities, studying the breakup processes of the molecular impurities on their way from the source into the plasma, developing a spectroscopic diagnostic method for the absolute measurement of the molecular impurity flux resulting from graphite erosion. For these studies, carbon-containing molecules such as CH 4 , C 2 H 2 , C 2 H 4 , and CO 2 were injected into the tokamak-boundary,like plasma generated by PISCES-A. The spectrograms of these gases were taken. Many useful bands and lines were determined from the spectrograms. The breakup processes of these gases were studied by observing the spatial profiles of the emission of the molecules and their radicals for different plasma conditions. For the absolute measurement of the eroded molecular impurity flux, the photon efficiency of the lines and bands were found by measuring the absolute number of the emitted photons and injected gas molecules. The chemical sputtering yield of graphite by hydrogen plasma was spectroscopically measured using the previously obtained photon efficiencies. It showed good agreement with results obtained by weight loss measurements. 16 refs., 7 figs., 1 tab

  19. Optical spectroscopic determination of human meniscus composition.

    Science.gov (United States)

    Ala-Myllymäki, Juho; Honkanen, Juuso T J; Töyräs, Juha; Afara, Isaac O

    2016-02-01

    This study investigates the correlation between the composition of human meniscus and its absorption spectrum in the visible (VIS) and near infrared (NIR) spectral range. Meniscus samples (n = 24) were obtained from nonarthritic knees of human cadavers with no history of joint diseases. Specimens (n = 72) were obtained from three distinct sections of the meniscus, namely; anterior, center, posterior. Absorption spectra were acquired from each specimen in the VIS and NIR spectral range (400-1,100 nm). Following spectroscopic probing, the specimens were subjected to biochemical analyses to determine the matrix composition, that is water, hydroxyproline, and uronic acid contents. Multivariate analytical techniques, including principal component analysis (PCA) and partial least squares (PLS) regression, were then used to investigate the correlation between the matrix composition and it spectral response. Our results indicate that the optical absorption of meniscus matrix is related to its composition, and this relationship is optimal in the NIR spectral range (750-1,100 nm). High correlations (R(2) (uronic)  = 86.9%, R(2) (water)  = 83.8%, R(2) (hydroxyproline)  = 81.7%, p meniscus composition, thus suggesting that spectral data in the NIR range can be utilized for estimating the matrix composition of human meniscus. In conclusion, optical spectroscopy, particularly in the NIR spectral range, is a potential method for evaluating the composition of human meniscus. This presents a promising technique for rapid and nondestructive evaluation of meniscus integrity in real-time during arthroscopic surgery. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. The low-ion QSO absorption-line systems

    International Nuclear Information System (INIS)

    Lanzetta, K.M.

    1988-01-01

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Lyα absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Lyα absorber toward Q1337 + 113 are presented

  1. Molecular structure, chemical reactivity, nonlinear optical activity and vibrational spectroscopic studies on 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one: A combined density functional theory and experimental approach

    Science.gov (United States)

    Pegu, David; Deb, Jyotirmoy; Saha, Sandip Kumar; Paul, Manoj Kumar; Sarkar, Utpal

    2018-05-01

    In this work, we have synthesized new coumarin Schiff base molecule, viz., 6-(4-n-heptyloxybenzyoloxy)-2-hydroxybenzylidene)amino)-2H-chromen-2-one and characterized its structural, electronic and spectroscopic properties experimentally and theoretically. The theoretical analysis of UV-visible absorption spectra reflects a red shift in the absorption maximum in comparison to the experimental results. Most of the vibrational assignments of infrared and Raman spectra predicted using density functional theory approach match well with the experimental findings. Further, the chemical reactivity analysis confirms that solvent highly affects the reactivity of the studied compound. The large hyperpolarizability value of the compound concludes that the system exhibits significant nonlinear optical features and thus, points out their possibility in designing material with high nonlinear activity.

  2. Arsenic in Ironite fertilizer: The absorption by hamsters and the chemical form

    Energy Technology Data Exchange (ETDEWEB)

    Aposhian, M.M.; Koch, I.; Avram, M.D.; Chowdhury, U.K.; Smith, P.G.; Reimer, K.J.; Aposhian, H.V.; (Ariz); (Royal)

    2009-09-11

    We determined the gastrointestinal absorption of the arsenic in Ironite, a readily available fertilizer, for male hamsters (Golden Syrian), considered to be an excellent model for how the human processes inorganic arsenic. Urine and feces were collected after administering an aqueous suspension of Ironite by stomach tube. In addition, we studied the forms and oxidation states of arsenic in Ironite by synchrotron spectroscopic techniques. The absorption of the arsenic in Ironite (1-0-0) was 21.2% and the absorption relative to sodium arsenite was 31.0%. Our results using XANES spectra determinations indicate that Ironite contains scorodite (AsV) as well as previously reported arsenopyrite (As(-1)). Since the 1-0-0 Ironite is readily available for purchase, its risk assessment for children by professionals is recommended. This is especially important because it is used to fertilize large areas of grass in playgrounds and parks where children play. The absorption of the arsenic in it, the hand to mouth activity of children, and the potential of ground water contamination makes the use of 1-0-0 Ironite as a fertilizer a potential environmental hazard.

  3. Influence of silver nanoparticles on the spectroscopic properties of Sm{sup 3+} doped boro-phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Suthanthirakumar, P.; Marimuthu, K., E-mail: emari-ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram - 624 302 (India)

    2016-05-23

    The Sm{sup 3+} doped novel boro-phosphate glasses containing silver nanoparticles (NPs) (SmBPxA) have been prepared following the melt quenching technique and their structural and spectroscopic behavior were studied through HR-TEM, optical absorption and photoluminescence spectral measurements. The TEM analysis validates the existence of Ag NPs with an average diameter of ~8 nm. The Surface plasmon resonance (SPR) band of silver NPs was found at around 600 nm from the absorption spectrum of the Sm{sup 3+} ions free glass sample. The optical band gap energy (E{sub opt}) corresponding to the direct and indirect allowed transitions and the Urbach energy (ΔE) values were determined from the absorption spectral measurements. The luminescence intensity is found to get enhance when the Ag NPs were embedded along with the Sm{sup 3+} ions in the prepared glasses due to the local electric field effect around the rare earth (RE) ion site produced by the SPR of Ag NPs.

  4. Application of spectroscopic techniques in the radiation dosimetry of glasses: An update

    International Nuclear Information System (INIS)

    Natarajan, V

    2009-01-01

    The colorimetry and thermoluminescence properties of gamma irradiated glass were reported in as early as 1920. The utility of radio-photoluminescence (RPL) of silver activated metaphosphate glass for monitoring high doses of accidental and routine gamma radiation was reported in the 1960s. Since then considerable amount of research work has been carried out to study the thermoluminescence (TL), optical absorption (OA), electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) of different commercially available glasses for high as well as low dose applications. A brief review of the progress made in the spectroscopic studies of glasses during the past few decades and the application of glasses for radiation dosimetry has been given in this paper.

  5. Application of spectroscopic techniques in the radiation dosimetry of glasses: An update

    Energy Technology Data Exchange (ETDEWEB)

    Natarajan, V, E-mail: vnatra@yahoo.co.in [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 40085 (India)

    2009-07-15

    The colorimetry and thermoluminescence properties of gamma irradiated glass were reported in as early as 1920. The utility of radio-photoluminescence (RPL) of silver activated metaphosphate glass for monitoring high doses of accidental and routine gamma radiation was reported in the 1960s. Since then considerable amount of research work has been carried out to study the thermoluminescence (TL), optical absorption (OA), electron paramagnetic resonance (EPR) and optically stimulated luminescence (OSL) of different commercially available glasses for high as well as low dose applications. A brief review of the progress made in the spectroscopic studies of glasses during the past few decades and the application of glasses for radiation dosimetry has been given in this paper.

  6. Electrochemical and spectroscopic studies of uranium(IV), -(V), and -(VI) in carbonate-bicarbonate buffers

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.

    1980-01-01

    Recently a need for more detailed knowledge of the chemistry of actinide ions in basic media has arisen in connection with deducing their chemistry in the environment. In this work the results of polarographic, cyclic voltammetric, and spectroscopic studies of U(IV), -(V), and -(VI) in carbonate and bicarbonate media are reported. Polarographic studies were in excellent agreement with those reported previously. Cyclic voltammetric scans confirmed the irreversible reduction to U(V) in both solutions, but disproportionation of the U(V) was observed only in the bicarbonate solutions. The oxidation of U(V) in carbonate was followed spectroscopically for the first time. Reduction in bicarbonate produced U(IV), the spectrum of which is now reported and the oxidation of which was also followed spectroscopically for the first time

  7. Spectroscopic properties of vitamin E models in solution

    Science.gov (United States)

    Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.

    2015-05-01

    We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.

  8. A rapid method of radium-226 analysis in water samples using an alpha spectroscopic technique

    International Nuclear Information System (INIS)

    Lim, T.P.

    1981-01-01

    A fast, reliable and accurate method for radium-226 determination in environmental water samples has been devised, using an alpha spectroscopic technique. The correlation between barium-133 and radium-226 in the barium-radium sulphate precipitation mechanism was studied and in the limited experimental recovery range, the coefficient of correlation was r = 0.986. A self-absorption study for various barium carrier concentrations was also undertaken to obtain the least broadening of alpha energy line widths. An optimum value of 0.3 mg barium carrier was obtained for chemical recovery in the range of 85 percent. (auth)

  9. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    Science.gov (United States)

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  10. Fuel cells: spectroscopic studies in the electrocatalysis of alcohol oxidation

    Directory of Open Access Journals (Sweden)

    Iwasita Teresa

    2002-01-01

    Full Text Available Modern spectroscopic methods are useful for elucidating complex electrochemical mechanisms as those occurring during the oxidation of small organic molecules (CH3OH, HCOH, HCOOH. In the present paper it is shown the use of spectroscopic methods to study the oxidation of alcohols on platinum or Pt-based binary electrodes. These reactions are of importance in conexion with the development of anode systems for use in fuel cells. Mass spectrometry and FT infrared spectroscopy allow to establishing the reaction intermediates and products and the dependence of the amount of species on the applied potential. FTIR and scanning tunneling microscopy contribute to understand the effects of the surface structure on the rate of reaction. Examples are presented for methanol and ethanol oxidation at pure and modified Pt catalysts.

  11. Studies on absorption coefficient near edge of multi elements

    International Nuclear Information System (INIS)

    Eisa, M.H.; Shen, H.; Yao, H.Y.; Mi, Y.; Zhou, Z.Y.; Hu, T.D.; Xie, Y.N.

    2005-01-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained

  12. Studies on absorption coefficient near edge of multi elements

    Science.gov (United States)

    Eisa, M. H.; Shen, H.; Yao, H. Y.; Mi, Y.; Zhou, Z. Y.; Hu, T. D.; Xie, Y. N.

    2005-12-01

    X-ray absorption near edge structure (XANES) was used to study the near edge mass-absorption coefficients of seven elements, such as, Ti, V, Fe, Co, Ni, Cu and Zn. It is well known that, on the near edge absorption of element, when incident X-ray a few eV change can make the absorption coefficient an order magnitude alteration. So that, there are only a few points mass-absorption coefficient at the near edge absorption and that always average value in published table. Our results showed a wide range of data, the total measured data of mass-absorption coefficient of the seven elements was about 505. The investigation confirmed that XANES is useful technique for multi-element absorption coefficient measurement. Details of experimental methods and results are given and discussed. The experimental work has been performed at Beijing Synchrotron Radiation Facility. The measured values were compared with the published data. Good agreement between experimental results and published data is obtained.

  13. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  14. Spectroscopic characterization approach to study surfactants effect on ZnO2 nanoparticles synthesis by laser ablation process

    International Nuclear Information System (INIS)

    Drmosh, Q.A.; Gondal, M.A.; Yamani, Z.H.; Saleh, T.A.

    2010-01-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2 O 2 . The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2 O 2 , and H 2 O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1 . FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1 .

  15. Mn L{sub 2,3}-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li{sub 2}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Kubobuchi, Kei, E-mail: kubobuchi@nissan-arc.co.jp [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan); Mogi, Masato; Imai, Hideto [NISSAN ARC Ltd., 1 Natsushima, Yokosuka 237-0061 (Japan); Ikeno, Hidekazu [Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570 (Japan); Tanaka, Isao [Department of Materials Science and Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan); Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan. (Japan)

    2014-02-03

    The redox reaction of Mn in Li{sub 2}MnO{sub 3} was studied by X-ray absorption spectroscopy and ab initio multiplet calculation. Associated with the de-intercalation of Li-ion, small but clear spectral changes were observed in Mn-L{sub 2,3} X-ray absorption near edge structure (XANES). The systematic ab initio multiplet calculations of Mn-L{sub 2,3} XANES revealed that the spectral changes in the experiment could not simply be ascribed to the change of the valency from Mn{sup 4+} to Mn{sup 5+} but can be explained well by the changes of local atomic structures around Mn{sup 4+} due to the Li de-intercalation. Our results suggest that the electronic state of oxygen should change during charging in Li{sub 2}MnO{sub 3}.

  16. Facility at CIRUS reactor for thermal neutron induced prompt γ-ray spectroscopic studies

    International Nuclear Information System (INIS)

    Biswas, D.C.; Danu, L.S.; Mukhopadhyay, S.; Kinage, L.A.; Prashanth, P.N.; Goswami, A.; Sahu, A.K.; Shaikh, A.M.; Chatterjee, A.; Choudhury, R.K.; Kailas, S.

    2013-01-01

    A facility for prompt γ-ray spectroscopic studies using thermal neutrons from a radial beam line of Canada India Research Utility Services (CIRUS) reactor, Bhabha Atomic Research Centre (BARC), has been developed. To carry out on-line spectroscopy experiments, two clover germanium detectors were used for the measurement of prompt γ rays. For the first time, the prompt γ–γ coincidence technique has been used to study the thermal neutron induced fission fragment spectroscopy (FFS) in 235 U(n th , f). Using this facility, experiments have also been carried out for on-line γ-ray spectroscopic studies in 113 Cd(n th , γ) reaction

  17. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Science.gov (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  18. Absorption dips at low x-ray energies in Cygnus X-1

    International Nuclear Information System (INIS)

    Murdin, P.

    1976-01-01

    Three more looks with the Copernicus satellite at Cygnus X-1 have produced four more examples of absorption dips, decreases in the 2 to 7 keV flux from Cygnus X-1 with an increase of spectral hardness consistent with photoelectric absorption (Mason et al 1974). The nine now seen, including one by OSO-7 (Li and Clark 1974), are listed in Table 1. Their phase in the spectroscopic binary HD 226868 is also listed, calculated from a newer ephemeris than that in Mason et al (1974), adding the radial velocities by Bolton (1975) and unpublished RGO radial velocities from the 1975 season. (These elements do not differ significantly from Bolton's

  19. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  20. Backscatter absorption gas imaging systems and light sources therefore

    Science.gov (United States)

    Kulp, Thomas Jan [Livermore, CA; Kliner, Dahv A. V. [San Ramon, CA; Sommers, Ricky [Oakley, CA; Goers, Uta-Barbara [Campbell, NY; Armstrong, Karla M [Livermore, CA

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  1. SPECTROSCOPIC AND PHOTOMETRIC VARIABILITY IN THE A0 SUPERGIANT HR 1040

    International Nuclear Information System (INIS)

    Corliss, David J.; Morrison, Nancy D.; Adelman, Saul J.

    2015-01-01

    A time-series analysis of spectroscopic and photometric observables of the A0 Ia supergiant HR 1040 has been performed, including equivalent widths, radial velocities, and Strömgren photometric indices. The data, obtained from 1993 through 2007, include 152 spectroscopic observations from the Ritter Observatory 1 m telescope and 269 Strömgren photometric observations from the Four College Automated Photoelectric Telescope. Typical of late B- and early A-type supergiants, HR 1040 has a highly variable Hα profile. The star was found to have an intermittent active phase marked by correlation between the Hα absorption equivalent width and blue-edge radial velocity and by photospheric connections observed in correlations to equivalent width, second moment and radial velocity in Si ii λλ6347, 6371. High-velocity absorption (HVA) events were observed only during this active phase. HVA events in the wind were preceded by photospheric activity, including Si ii radial velocity oscillations 19–42 days prior to onset of an HVA event and correlated increases in Si ii W λ and second moment from 13 to 23 days before the start of the HVA event. While increases in various line equivalent widths in the wind prior to HVA events have been reported in the past in other stars, our finding of precursors in enhanced radial velocity variations in the wind and at the photosphere is a new result

  2. Absorption heat cycles. An experimental and theoretical study

    International Nuclear Information System (INIS)

    Abrahamsson, K.

    1993-09-01

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  3. Characterization of dissolved organic matter in Dongjianghu Lake by UV-visible absorption spectroscopy with multivariate analysis.

    Science.gov (United States)

    Zhu, Yanzhong; Song, Yonghui; Yu, Huibin; Liu, Ruixia; Liu, Lusan; Lv, Chunjian

    2017-08-08

    UV-visible absorption spectroscopy coupled with principal component analysis (PCA) and hierarchical cluster analysis (HCA) was applied to characterize spectroscopic components, detect latent factors, and investigate spatial variations of dissolved organic matter (DOM) in a large-scale lake. Twelve surface water samples were collected from Dongjianghu Lake in China. DOM contained lignin and quinine moieties, carboxylic acid, microbial products, and aromatic and alkyl groups, which in the northern part of the lake was largely different from the southern part. Fifteen spectroscopic indices were deduced from the absorption spectra to indicate molecular weight or humification degree of DOM. The northern part of the lake presented the smaller molecular weight or the lower humification degree of DOM than the southern part. E 2/4 , E 3/4 , E 2/3 , and S 2 were latent factors of characterizing the molecular weight of DOM, while E 2/5 , E 3/5 , E 2/6 , E 4/5 , E 3/6 , and A 2/1 were latent factors of evaluating the humification degree of DOM. The UV-visible absorption spectroscopy combined with PCA and HCA may not only characterize DOM fractions of lakes, but may be transferred to other types of waterscape.

  4. Spectroscopic investigations on the interaction of thioacetamide with ZnO quantum dots and application for its fluorescence sensing.

    Science.gov (United States)

    Saha, Dipika; Negi, Devendra P S

    2018-01-15

    The purpose of the present work was to develop a method for the sensing of thioacetamide by using spectroscopic techniques. Thioacetamide is a carcinogen and it is important to detect its presence in food-stuffs. Semiconductor quantum dots are frequently employed as sensing probes since their absorption and fluorescence properties are highly sensitive to the interaction with substrates present in the solution. In the present work, the interaction between thioacetamide and ZnO quantum dots has been investigated by using UV-visible, fluorescence and infrared spectroscopy. Besides, dynamic light scattering (DLS) has also been utilized for the interaction studies. UV-visible absorption studies indicated the bonding of the lone pair of sulphur atom of thioacetamide with the surface of the semiconductor. The fluorescence band of the ZnO quantum dots was found to be quenched in the presence of micromolar concentrations of thioacetamide. The quenching was found to follow the Stern-Volmer relationship. The Stern-Volmer constant was evaluated to be 1.20×10 5 M -1 . Infrared spectroscopic measurements indicated the participation of the NH 2 group and the sulphur atom of thioacetamide in bonding with the surface of the ZnO quantum dots. DLS measurements indicated that the surface charge of the semiconductor was shielded by the thioacetamide molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    Science.gov (United States)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  6. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry

    KAUST Repository

    Liu, Hsiang-Lin

    2014-11-17

    Spectroscopic ellipsometry was used to characterize the complex refractive index of chemical-vapor-deposited monolayer transition metal dichalcogenides (TMDs). The extraordinary large value of the refractive index in the visible frequency range is obtained. The absorption response shows a strong correlation between the magnitude of the exciton binding energy and band gap energy. Together with the observed giant spin-orbit splitting, these findings advance the fundamental understanding of their novel electronic structures and the development of monolayer TMDs-based optoelectronic and spintronic devices.

  7. Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry

    KAUST Repository

    Liu, Hsiang-Lin; Shen, Chih-Chiang; Su, Sheng-Han; Hsu, Chang-Lung; Li, Ming-Yang; Li, Lain-Jong

    2014-01-01

    Spectroscopic ellipsometry was used to characterize the complex refractive index of chemical-vapor-deposited monolayer transition metal dichalcogenides (TMDs). The extraordinary large value of the refractive index in the visible frequency range is obtained. The absorption response shows a strong correlation between the magnitude of the exciton binding energy and band gap energy. Together with the observed giant spin-orbit splitting, these findings advance the fundamental understanding of their novel electronic structures and the development of monolayer TMDs-based optoelectronic and spintronic devices.

  8. Attenuation studies near K-absorption edges using Compton ...

    Indian Academy of Sciences (India)

    The results are consistent with theoretical values derived from the XCOM package. Keywords. Photon interaction; 241Am; gamma ray attenuation; Compton scattering; absorption edge; rare earth elements. PACS Nos 32.80.-t; 32.90.+a. 1. Introduction. Photon interaction studies at energies around the absorption edge have ...

  9. Spectroscopical plasma diagnostics for the procedure optimization in laser-beam high-speed cutting; Spektroskopische Plasmadiagnostik zur Verfahrensoptimierung beim Laserstrahl-Hochgeschwindigkeitsschneiden

    Energy Technology Data Exchange (ETDEWEB)

    Nate, M.

    2001-07-01

    In the present thesis the laser-induced plasma typical for the high- speed cutting process was studied in the region of the interaction zone. For this especially the absorption properties of the plasma for the incident laser radiation and their correlation with the maximally reachable cutting speeds. For this with methods of the spectroscopic plasma diagnostics the influence of different process parameters on the quantities characterizing the plasma, electron density and temperature, was determined. On the base of these values in the framework of an equilibrium model the densities of all particles contained in the plasma were determined. With these values the plasma absorption coefficient was subsequently calculated and the laser radiation absorbed in the plasma estimated.

  10. Vibrational spectroscopic and gravimetric study of some Hofmann-CBA-Type Host and host-guest compounds

    International Nuclear Information System (INIS)

    Aytekin, M.A.

    2005-01-01

    In this study, similar to Hofmann type M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 (M=Ni or Co) host and M(C 4 H 7 NH 2 ) 2 Ni(CN) 4 .nG (M=Ni or Co; G=benzene, 1,2-, 1,3-dichlorobenzene; n=the number of guest) hostguest compounds were obtained chemically. The infrared spectra of these compounds were recorded with FT-IR spectrometer in the spectroscopic region of 4000cm-1-400cm-1. From these spectra the vibrational wave numbers of ligand molecule, Ni(CN) 4 2 - ion and guest molecules were determined. The absorption and the liberation processes of the guest molecules in the host compounds were examined at room temperature by gravimetric method. Otherwise, it was seen that the molecular structure was supported by making instrumental analysis of host and some host-guest compounds. By analysing the structures of host and host-guest compounds were found to be similar to those of Hofmann type compounds, ligand molecule cyclobutylamine were coordinated to M metal atom from cyclobutylamine's nitrogen atom, the guest molecules were imprisoned in the structural cavities between the sheets

  11. Spectroscopic characterizations of organic/inorganic nanocomposites

    Science.gov (United States)

    Govani, Jayesh R.

    2009-12-01

    In the present study, pure and 0.3 wt%, 0.4 wt%, as well as 0.5 wt% L-arginine doped potassium dihydrogen phosphate (KDP) crystals were grown using solution growth techniques and further subjected to infrared (IR) absorption and Raman studies for confirmation of chemical group functionalization for investigating the incorporation mechanism of the L-arginine organic material into the KDP crystal structure. Infrared spectroscopic analysis suggests that structural changes are occurring for the L-arginine molecule as a result of its interaction with the KPD crystal. Infrared spectroscopic technique confirms the disturbance of the N-H, C-H and C-N bonds of the amino acid, suggesting successful incorporation of L-arginine into the KDP crystals. Raman analysis also reveals modification of the N-H, C-H and C-N bonds of the amino acid, implying successful inclusion of L-arginine into the KDP crystals. With the help of Gaussian software, a prediction of possible incorporation mechanisms of the organic material was obtained from comparison of the simulated infrared and Raman vibrational spectra with the experimental results. Furthermore, we also studied the effect of L-arginine doping on the thermal stability of the grown KDP crystal by employing Thermo gravimetric analysis (TGA). TGA suggests that increasing the level of L-arginine doping speeds the decomposition process and it weakens the KDP crystal, which indicates successful doping of the KDP crystals with L-arginine amino acid. Urinary stones are one of the oldest and most widely spread diseases in humans, animals and birds. Many remedies have been employed through the ages for the treatment of urinary stones. Recent medicinal measures reflect the modern advances, which are based on surgical removal, percutaneous techniques and extracorporeal shock wave lithotripsy (ESWL). Although these procedures are valuable, they are quite expensive for most people. Furthermore, recurrence of these diseases is awfully frequent with

  12. Microwave absorption studies of MgB 2 superconductor

    Indian Academy of Sciences (India)

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave ...

  13. FTIR spectroscopic studies of bacterial cellular responses to environmental factors, plant-bacterial interactions and signalling

    OpenAIRE

    Kamnev, Alexander A.

    2008-01-01

    Modern spectroscopic techniques are highly useful in studying diverse processes in microbial cells related to or incited by environmental factors. Spectroscopic data for whole cells, supramolecular structures or isolated cellular constituents can reflect structural and/or compositional changes occurring in the course of cellular metabolic responses to the effects of pollutants, environmental conditions (stress factors); nutrients, signalling molecules (communication factors), etc. This inform...

  14. Correction for the time dependent inner filter effect caused by transient absorption in femtosecond stimulated Raman experiment

    NARCIS (Netherlands)

    Kloz, M.; van Grondelle, R.; Kennis, J.T.M.

    2012-01-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is a promising multiple-pulse ultrafast spectroscopic tool whose simplest form utilizes an actinic pump, a Raman pump and a continuum probe. Here, we report that the transient absorption generated by the actinic pulse modulates the overall magnitude

  15. Energy dependent saturable and reverse saturable absorption in cube-like polyaniline/polymethyl methacrylate film

    Energy Technology Data Exchange (ETDEWEB)

    Thekkayil, Remyamol [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); Philip, Reji [Light and Matter Physics Group, Raman Research Institute, C.V. Raman Avenue, Bangalore 560 080 (India); Gopinath, Pramod [Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India); John, Honey, E-mail: honey@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547 (India)

    2014-08-01

    Solid films of cube-like polyaniline synthesized by inverse microemulsion polymerization method have been fabricated in a transparent PMMA host by an in situ free radical polymerization technique, and are characterized by spectroscopic and microscopic techniques. The nonlinear optical properties are studied by open aperture Z-scan technique employing 5 ns (532 nm) and 100 fs (800 nm) laser pulses. At the relatively lower laser pulse energy of 5 μJ, the film shows saturable absorption both in the nanosecond and femtosecond excitation domains. An interesting switchover from saturable absorption to reverse saturable absorption is observed at 532 nm when the energy of the nanosecond laser pulses is increased. The nonlinear absorption coefficient increases with increase in polyaniline concentration, with low optical limiting threshold, as required for a good optical limiter. - Highlights: • Synthesized cube-like polyaniline nanostructures. • Fabricated polyaniline/PMMA nanocomposite films. • At 5 μJ energy, saturable absorption is observed both at ns and fs regime. • Switchover from SA to RSA is observed as energy of laser beam increases. • Film (0.1 wt % polyaniline) shows high β{sub eff} (230 cm GW{sup −1}) and low limiting threshold at 150 μJ.

  16. Use of a standard meal to study iron absorption in humans

    International Nuclear Information System (INIS)

    Reddy, M.B.; Cook, J.D.

    1994-01-01

    Iron absorption varies widely between subjects and groups of subjects because of differences in iron status which markedly influence iron assimilation from the gastrointestinal tract. A small dose of isotopically labelled inorganic iron termed the reference dose (3 mg iron as FeSO 4 ) has been used extensively during the past two decades to standardize food iron absorption in human subjects and thereby eliminate the effect of differences in iron status. Recent studies from this laboratory have shown that because of the high variability of absorption from the reference dose, nonheme iron absorption from a standardized meal provides a more reliable means of standardizing absorption from regional diets. We therefore performed initial studies with a rice based meal but we found a relatively high variation in absorption from 2.0 to 4.7% that presumably reflects differences in the phytate content of rice fours. We then undertook the evaluation of meals prepared with farina, a wheat product that is available in most regions of the world. In six different studies from a farina based meal, iron absorption ranged from 3.4 to 6.5%. Nonheme iron absorption from the farina meal when evaluated in separate laboratories extensively engaged in human studies of iron absorption, ranged from 5.1 to 10.8% but when related to the FeSO 4 dose, a more consistent ratio between 0.21 to 0.26 was observed with the exception of one laboratory where a very low absorption of 1.1.% was observed. Percentage absorption from the farina based meal decreased when the iron content of the meal was increased and showed the expected facilitation of absorption when increasing amounts of ascorbic acid were added. By reducing variability and measuring iron absorption from food rather than inorganic iron, we believe that the use of this standard meal will facilitate comparison of iron absorption data obtained in laboratories throughout the world. 4 refs, 2 tabs

  17. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    Science.gov (United States)

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  18. Spectroscopic investigation of zinc tellurite glasses doped with Yb3 + and Er3 + ions

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-01

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80 - x - y) TeO2 + (0.20) ZnO + xEr2O3 + yYb2O3 (x = 0, y = 0; x = 0.004, y = 0; x = 0, y = 0.05 and x = 0.004, y = 0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er3 + glasses as erbium doped fiber amplifiers at 1.55 μm in infrared emission region.

  19. Infrared reflection absorption spectroscopy study of radiation-heterogeneous processes in the system of aluminum-hexane

    International Nuclear Information System (INIS)

    Gadzhieva, N.N.; Rimikhanova, A.N.; Garibov, A.A.

    2004-01-01

    Full text: Infrared reflection absorption spectroscopy (IRRAS) was applied to study the regularities of radiation conversion of hexane on the surface of aluminum. The research object was the thin polished aluminum plate by mark of AD-00 with reflection coefficient R=0.8†0.85 in infrared range λ=2.2†15 μ . As adsorbate unsaturated vapors of spectroscopy clear hexane were used. The absorption of hexane (C 2 H 14 ) was being studied manometric at pressures P=(0.1†1.0)·10 2 Pa , what corresponded to monolayer value of 1-10. The samples were irradiated with γ-quanta of 60 Co with D=1.03 Gy·s -1 doze rate. Infrared reflection spectrum when linear-polarized radiation fall on the sample under angle ψ=10 o was measured by spectrophotometer 'Specord 71 JR' in diapason of 4000-650cm -1 at the temperature by mean of special reflecting arrangements. Formation of molecular hydrogen (H 2 ) and other gaseous products of decomposition were controlled by chromotographical and infrared spectroscopical methods. The analysis of hexane infrared absorption spectra after radiation-stimulated adsorption on the surface of aluminum, points out the formation of H-bonded hydrocarbon complex ( ν∼2680cm -1 ) with much loosening of C-H bond (the molecular form of absorption) and the possibility of proceeding dissociative absorption with formation of metal-alkyls (ν∼2880, 2920, 2970 cm -1 ). Probability of the last mentioned process, which proceeds in the most defective centers, increases with increasing of γ-radiation doze. It was established that the radiation processes in hetero system Al-ads.C 6 H 14 accelerate the radiolysis of hexane. At all these the radiation decomposition of hexane in hetero system Al-ads.C 6 H 14 is accompanied by formation the surface hydrides (ν∼1700-2000 cm -1 ), acetylene (ν∼3200-3300 cm -1 ), ethylene (ν∼980 cm -1 ), and also gaseous products of molecular hydrogen decomposition (H 2 ) and hydrocarbons C 1 -C 5 (bands with maxima 770, 790

  20. Comparison of photoacoustic spectroscopy, conventional absorption spectroscopy, and potentiometry as probes of lanthanide speciation

    International Nuclear Information System (INIS)

    Torres, R.A.; Palmer, C.E.A.; Baisden, P.A.; Russo, R.E.; Silva, R.J.

    1990-01-01

    The authors measured the stability constants of praseodymium acetate and oxydiacetate complexes by laser-induced photoacoustic spectroscopy, conventional UV-visible absorption spectroscopy, and pH titration. For the spectroscopic studies, changes in the free Pr absorption peaks at 468 and 481 nm were monitored at varying ligand concentrations. The total Pr concentration was 1 x 10 -4 M in solutions used for the photoacoustic studies and 0.02 M for conventional spectroscopy. For the pH titrations, we used solutions whose Pr concentrations varied from 5 x 10 -3 to 5 x 10 -2 M, with total ligand-to-metal ratios ranging from 1 to 10. A comparison of the results obtained by the three techniques demonstrates that photoacoustic spectroscopy can give the same information about metal-ligand speciation as more conventional methods. It is particularly suited to those situations where the other techniques are insensitive because of limited metal concentrations

  1. Role of xanthophylls in light harvesting in green plants: a spectroscopic investigation of mutant LHCII and Lhcb pigment-protein complexes.

    Science.gov (United States)

    Fuciman, Marcel; Enriquez, Miriam M; Polívka, Tomáš; Dall'Osto, Luca; Bassi, Roberto; Frank, Harry A

    2012-03-29

    The spectroscopic properties and energy transfer dynamics of the protein-bound chlorophylls and xanthophylls in monomeric, major LHCII complexes, and minor Lhcb complexes from genetically altered Arabidopsis thaliana plants have been investigated using both steady-state and time-resolved absorption and fluorescence spectroscopic methods. The pigment-protein complexes that were studied contain Chl a, Chl b, and variable amounts of the xanthophylls, zeaxanthin (Z), violaxanthin (V), neoxanthin (N), and lutein (L). The complexes were derived from mutants of plants denoted npq1 (NVL), npq2lut2 (Z), aba4npq1lut2 (V), aba4npq1 (VL), npq1lut2 (NV), and npq2 (LZ). The data reveal specific singlet energy transfer routes and excited state spectra and dynamics that depend on the xanthophyll present in the complex.

  2. Raman spectroscopic study of the oxidation state of Eu in molten LiCl-KCl

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seung; Yun, Jong-Il [KAIST, Daejeon(Korea, Republic of)

    2016-10-15

    Spectroscopy can provide high reliability for the quantitative analysis of such system. The molar absorptivity of Eu(II) at 325 nm is reported as about 1645 M{sup -1}cm{sup -1}, which is too high to apply to higher concentration. A high-temperature Raman spectroscopy has been set and employed for analyzing the molecular structure and coordination complex and investigating the oxidation state of europium in molten LiCl-KCl. Europium can be present in divalent state while many other lanthanides exist in trivalent state. The thermodynamic properties of europium ions have been studied using electrochemical methods, spectroscopic methods, and EPR technique. Although there has been discrepancy of the reduced amount of europium in previous works, the majority of Eu(III) is thought to be reduced to Eu(II) in molten LiCl-KCl spontaneously at relatively low concentration (< 7.5 × 10{sup -4} M). Raman spectroscopy was employed to investigate the oxidation state of EuClx in LiCl-KCl at 500 .deg. C. The Raman scattering results suggest the majority of trivalent europium is reduced to divalent state with the composition change by vaporization. The Raman bands show highly asymmetric structure, quite different from regular octahedral structure.

  3. Band gap of corundumlike α -Ga2O3 determined by absorption and ellipsometry

    Science.gov (United States)

    Segura, A.; Artús, L.; Cuscó, R.; Goldhahn, R.; Feneberg, M.

    2017-07-01

    The electronic structure near the band gap of the corundumlike α phase of Ga2O3 has been investigated by means of optical absorption and spectroscopic ellipsometry measurements in the ultraviolet (UV) range (400-190 nm). The absorption coefficient in the UV region and the imaginary part of the dielectric function exhibit two prominent absorption thresholds with wide but well-defined structures at 5.6 and 6.3 eV which have been ascribed to allowed direct transitions from crystal-field split valence bands to the conduction band. Excitonic effects with large Gaussian broadening are taken into account through the Elliott-Toyozawa model, which yields an exciton binding energy of 110 meV and direct band gaps of 5.61 and 6.44 eV. The large broadening of the absorption onset is related to the slightly indirect character of the material.

  4. On the use of the spectroscopic techniques to model the interactions between radionuclides and solid minerals

    Energy Technology Data Exchange (ETDEWEB)

    Simoni, E. [IPN, Paris XI University, 91406 Orsay (France)]. e-mail: simoni@ipno.in2p3.fr

    2004-07-01

    In order to determine the radionuclides sorption constants on solid natural minerals, both thermodynamic and structural investigations, using spectroscopic techniques, are presented. The natural clays, that could be used as engineering barrier in the nuclear waste geological repository, are rather complex minerals. Therefore, in order to understand how these natural materials retain the radionuclides, it is necessary first to perform these studies on simple substrates such as phosphates, oxides and silicates (as powder and single crystal as well) and then extrapolate the obtained results on the natural minerals. As examples, the main results on the sorption processes of the hexavalent uranium onto zircon (ZrSiO{sub 4}) and lanthanum phosphate (LaPO{sub 4}) are presented. The corresponding sorption curves are simulated using the results obtained with the following spectroscopic techniques: laser induced spectro fluorimetry, X-ray photoelectron spectroscopy (XP S), X-ray absorption spectroscopy (Exafs). Finally, the thermodynamic sorption constants are calculated. (Author)

  5. Spectroscopic investigation on the interaction of titanate nanotubes with bovine serum albumin

    International Nuclear Information System (INIS)

    Zhao, L.Z.; Zhao, Y.S.; Teng, H.H.; Shi, S.Y.; Ren, B.X.

    2014-01-01

    In order to understand the transport mechanism and evaluate the biological safety of titanate nanotubes, the interactions of titanate nanotubes (TNTs) with bovine serum albumin (BSA) were investigated by applying spectroscopic methods under simulated physiological conditions. After taking into account the inner filter effect, the fluorescence intensity of BSA was found to be significantly enhanced by the presence of TNTs, indicating that the microenvironment of tryptophan and tyrosine residues in BSA became more hydrophobic. In addition, the absorption spectra of BSA showed a hyperchromic effect around 280 nm as the concentration of TNTs increased, suggesting that TNTs changed the microenvironment of the tryptophan and tyrosine residues. This is consistent with the results from fluorescence spectroscopy studies. However, circular dichroism spectroscopy revealed that no significant conformational change in BSA occurred during the interaction. We believe that Trp-213 was buried more compactly in the internal hydrophobic region, and hydrophobicity increased around Trp-134 with increasing TNTs concentration. From a spectroscopic point of view, this work elucidates the interaction mechanism of titanate nanotubes with BSA, and the methods used in this paper can also be applied to explore the molecular mechanism underlying toxicity of other nanomaterials. (authors)

  6. Raman and X-ray absorption spectroscopic studies of hydrothermally altered alkali-borosilicate nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A., E-mail: davidm@vsl.cua.ed [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States); Buechele, Andrew C.; Viragh, Carol; Pegg, Ian L. [Vitreous State Laboratory, Catholic University of America, 620 Michigan Ave., N.E., Washington, DC 20064 (United States)

    2010-04-01

    Raman spectroscopy and X-ray absorption spectroscopy (XAS) are used to characterize structural changes that took place in hydrothermally altered (Na,K)-alumina-borosilicate glasses with different Na/K ratios, formulated as part of a durability study to investigate the behavior of glasses for nuclear waste storage. The hydrothermal experiments, or vapor hydration tests (VHT), were performed on each glass for 3 and 20 days at 200 deg. C to accelerate and approximate long-term alteration processes that may occur in a nuclear waste repository. Results found for both glasses and their VHT altered counterparts show little, if any, structural influence from the different starting Na/K ratios. X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Raman spectroscopy indicate that the altered samples are mostly amorphous with small amounts of analcime-like and leucite-like crystals within 200 mum of the sample surface and contain up to 9.7 wt.% water or OH. The Raman data are nearly identical for the amorphous portions of all altered VHT samples investigated, and indicate that two glass structural changes took place during alteration: one, partial depolymerization of the alumina-borosilicate network, and two, introduction of water or OH. Al and Si XAS data indicate tetrahedral AlO{sub 4} and SiO{sub 4} environments in the original glasses as well as in the altered samples. Small energy shifts of the Si K-edge also show that the altered VHT samples have less polymerized networks than the original glass. Na XAS data indicate expanded Na environments in the VHT samples with longer Na-O distances and more nearest-neighbor oxygen atoms, compared with the original glasses, which may be due to hydrous species introduced into the expanding Na-sites.

  7. Determining uranium speciation in Fernald soils by molecular spectroscopic methods

    International Nuclear Information System (INIS)

    Allen, P.G.; Berg, J.M.; Crisholm-Brause, C.J.; Conradson, S.D.; Donohoe, R.J.; Morris, D.E.; Musgrave, J.A.; Tait, C.D.

    1994-07-01

    This progress report describes new experimental results and interpretations for data collected from October 1, 1992, through September 30, 1993, as part of the Characterization Task of the Uranium in Soils Integrated Demonstration of the Office of Technology Development, Office of Environmental Restoration and Waste Management of the US Department of Energy. X-ray absorption, optical luminescence, and Raman vibrational spectroscopies were used to determine uranium speciation in contaminated soils from the US DOE's former uranium production facility at Fernald, Ohio. These analyses were carried out both before and after application of one of the various decontamination technologies being developed within the Integrated Demonstration. This year the program focused on characterization of the uranium speciation remaining in the soils after decontamination treatment. X-ray absorption and optical luminescence spectroscopic data were collected for approximately 40 Fernald soil samples, which were treated by one or more of the decontamination technologies

  8. Borax methylene blue: a spectroscopic and staining study.

    Science.gov (United States)

    Donaldson, P T; Russo, A; Reynolds, C; Lillie, R D

    1978-07-01

    Borax methylene blue is quite stable at room temperatures of 22-25 C. At 30 C polychroming is slow; during 50 days in a water bath at this temperature the absorption peak moves from 665 to 656 nm. At 35 C, the absorption peak reaches 660 nm in 7 days, 654 nm in 14. At 60 C polychroming is rapid, the absorption peak reaching 640-620 nm in 3 days. When the pH of the borax methylene blue solutions, normally about 9.0, is adjusted to pH 6.5, the absorption peak remains at 665 nm even when incubated at 60 C for extended periods. When used as a blood stain 0.4 ml borax methylene blue (1% methylene blue in 1% borax), 4 ml acetone, 2 ml borax-acid phosphate buffer to bring the solution to pH 6.5, and distilled water to make 40 ml, with 0.2 ml 1% eosin added just before using, an excellent Nocht-Giemsa type stain is achieved after 30 minutes staining. The material plasmodia P. falciparum, P. vivax, and P. berghei stain moderate blue with dark red chromatin and green to black pigment granules. The study confirms Malachowski's 1891 results and explains Gautier's 1896-98 failure to duplicate it.

  9. Optimal methodologies for terahertz time-domain spectroscopic analysis of traditional pigments in powder form

    Science.gov (United States)

    Ha, Taewoo; Lee, Howon; Sim, Kyung Ik; Kim, Jonghyeon; Jo, Young Chan; Kim, Jae Hoon; Baek, Na Yeon; Kang, Dai-ill; Lee, Han Hyoung

    2017-05-01

    We have established optimal methods for terahertz time-domain spectroscopic analysis of highly absorbing pigments in powder form based on our investigation of representative traditional Chinese pigments, such as azurite [blue-based color pigment], Chinese vermilion [red-based color pigment], and arsenic yellow [yellow-based color pigment]. To accurately extract the optical constants in the terahertz region of 0.1 - 3 THz, we carried out transmission measurements in such a way that intense absorption peaks did not completely suppress the transmission level. This required preparation of pellet samples with optimized thicknesses and material densities. In some cases, mixing the pigments with polyethylene powder was required to minimize absorption due to certain peak features. The resulting distortion-free terahertz spectra of the investigated set of pigment species exhibited well-defined unique spectral fingerprints. Our study will be useful to future efforts to establish non-destructive analysis methods of traditional pigments, to construct their spectral databases, and to apply these tools to restoration of cultural heritage materials.

  10. Chromate adsorption on selected soil minerals: Surface complexation modeling coupled with spectroscopic investigation

    Energy Technology Data Exchange (ETDEWEB)

    Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)

    2016-11-15

    Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

  11. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    International Nuclear Information System (INIS)

    Laux, Christophe O.

    2007-01-01

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 μm). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed

  12. An X-ray absorption spectroscopic study of the metal site preference in Al1-xGaxFeO3

    Science.gov (United States)

    Walker, James D. S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO3 (Pna21; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al1-xGaxFeO3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L2,3-, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al1-xGaxFeO3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO3 than in GaFeO3, implying more anti-site disorder is present in AlFeO3.

  13. Effects of Omeprazole on Iron Absorption: Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mahmut Yaşar Çeliker

    2013-09-01

    Full Text Available Objective: Increasing numbers of pediatric and adult patients are being treated with proton pump inhibitors (PPIs. PPIs are known to inhibit gastric acid secretion. Nonheme iron requires gastric acid for conversion to the ferrous form for absorption. Ninety percent of dietary and 100% of oral iron therapy is in the nonheme form. To the best of our knowledge, the effect of PPIs on iron absorption has not been studied in humans. Our study assessed the relationship between omeprazole therapy and iron absorption in healthy subjects. Materials and Methods: We recruited 9 healthy volunteers between June 2010 and March 2011. Subjects with chronic illness, anemia, or use of PPI therapy were excluded. Serum iron concentrations were measured 1, 2, and 3 h after the ingestion of iron (control group. The measurements were repeated on a subsequent visit after 4 daily oral administrations of omeprazole at a dose of 40 mg (treatment group. Results: One female and 8 male volunteers were enrolled in the study with a mean age of 33 years. There was no statistical difference detected between baseline, 1-h, 2-h, and 3-h iron levels between control and treatment groups. Conclusion: Administration of omeprazole for a short duration does not affect absorption of orally administered iron in healthy individuals.

  14. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin.

    Science.gov (United States)

    Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh; Schmidt, Marius

    2013-09-13

    Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.

  15. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  16. Absorption spectroscopic studies of carbon dioxide conversion in a low pressure glow discharge using tunable infrared diode lasers

    International Nuclear Information System (INIS)

    Hempel, F; Roepcke, J; Miethke, F; Wagner, H-E

    2002-01-01

    The time and spatial dependence of the chemical conversion of CO 2 to CO were studied in a closed glow discharge reactor (p = 50 Pa, I = 2-30 mA) consisting of a small plasma zone and an extended stationary afterglow. Tunable infrared diode laser absorption spectroscopy has been applied to determine the absolute ground state concentrations of CO and CO 2 . After a certain discharge time an equilibrium of the concentrations of both species could be observed. The spatial dependence of the equilibrium CO concentration in the afterglow was found to be varying less than 10%. The feed gas was converted to CO more predominantly between 43% and 60% with increasing discharge current, forming so-called quasi-equilibrium states of the stable reaction products. The formation time of the stable gas composition also decreased with the current. For currents higher than 10 mA the conversion rate of CO 2 to CO was estimated to be 1.2x10 13 molecules J -1 . Based on the experimental results, a plasma chemical modelling has been established

  17. Electrically tunable coherent optical absorption in graphene with ion gel.

    Science.gov (United States)

    Thareja, Vrinda; Kang, Ju-Hyung; Yuan, Hongtao; Milaninia, Kaveh M; Hwang, Harold Y; Cui, Yi; Kik, Pieter G; Brongersma, Mark L

    2015-03-11

    We demonstrate electrical control over coherent optical absorption in a graphene-based Salisbury screen consisting of a single layer of graphene placed in close proximity to a gold back reflector. The screen was designed to enhance light absorption at a target wavelength of 3.2 μm by using a 600 nm-thick, nonabsorbing silica spacer layer. An ionic gel layer placed on top of the screen was used to electrically gate the charge density in the graphene layer. Spectroscopic reflectance measurements were performed in situ as a function of gate bias. The changes in the reflectance spectra were analyzed using a Fresnel based transfer matrix model in which graphene was treated as an infinitesimally thin sheet with a conductivity given by the Kubo formula. The analysis reveals that a careful choice of the ionic gel layer thickness can lead to optical absorption enhancements of up to 5.5 times for the Salisbury screen compared to a suspended sheet of graphene. In addition to these absorption enhancements, we demonstrate very large electrically induced changes in the optical absorption of graphene of ∼3.3% per volt, the highest attained so far in a device that features an atomically thick active layer. This is attributable in part to the more effective gating achieved with the ion gel over the conventional dielectric back gates and partially by achieving a desirable coherent absorption effect linked to the presence of the thin ion gel that boosts the absorption by 40%.

  18. Spectroscopic imaging of X-rays anew look

    CERN Document Server

    Heijne, Erik H M

    2003-01-01

    In recent hybrid imaging devices a segmented (50-100mum) semiconductor sensor matrix is matched to a separate readout chip made in some standard silicon CMOS technology. The large number of contacts are made by high-density bump bonding interconnect technology. Extended functionality with hundreds of transistors in each electronics cell can serve a variety of purposes. Fluctuations in the response of the sensor matrix can be compensated in real-time. A single photon processing circuit in each pixel can achieve spectroscopic imaging by energy measurement even at high rates. However, it is necessary to take into account the distribution of the signals over adjacent pixels. Another possibility is the discrimination by energy of photon conversions in stacked layers with increasing absorption.

  19. Spectroscopic and thermal properties of uranium relevant to atomic schemes for laser isotope separation

    International Nuclear Information System (INIS)

    Ahmad, S.A.; Pandey, P.L.

    1980-01-01

    Spectroscopic data on uranium atom and thermal properties of uranium relevant to atomic schemes for laser isotope separation have been presented in this report. All the relevant spectroscopic data reported in literature so far, as well as some other parameters like photo-absorption cross sections, branching ratios, effects of magnetic and electric fields, evaluated using the existing data, have been presented here. Among the thermal properties, parameters like vapour pressure and number densities for U/Liquid U, U/URe 2 and U/UP systems, partition function, percentage population distribution in energy levels, thermal ionisation and velocities of uranium atom have been presented at different temperatures. Different possible collision processes are mentioned and cross-sections of U-U + charge-exchange and U + + e radiative recombination processes have been also evaluated. (author)

  20. Optical Absorption Spectroscopy for Gas Analysis in Biomass Gasification

    DEFF Research Database (Denmark)

    Grosch, Helge

    important gas species of the low-temperature circulating fluidized bed gasifier. At first, a special gas cell,the hot gas flow cell (HGC), was build up and veried. In this custom-made gas cell, the optical properties, the so-called absorption cross-sections, of the most important sulfur and aromatic...... compounds were determined in laboratory experiments. By means of the laboratory results and spectroscopic databases,the concentrations of the major gas species and the aromatic compounds phenol and naphthalene were determined in extraction and in-situ measurements....

  1. Investigation of silicate mineral sanidine by vibrational and NMR spectroscopic methods

    Science.gov (United States)

    Anbalagan, G.; Sankari, G.; Ponnusamy, S.; kumar, R. Thilak; Gunasekaran, S.

    2009-10-01

    Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 Å confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200-950, 770-720, 590-540 and 650-640 cm -1. The Raman spectrum shows the strongest band at 512 cm -1 characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV-vis-NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm -1 due to the combination of fundamental OH- stretching. The bands at 11236 and 8196 cm -1and the strong, well-defined band at (30303 cm -1 attest the presence of Fe 2+ and Fe 3+, respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe 3+ at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The 29Si NMR spectrum shows two peaks at -97 and -101 ppm corresponding to T2 and T1, respectively, and one peak in 27Al NMR for Al(IV).

  2. Spectroscopic characterization of alkaline earth uranyl carbonates

    International Nuclear Information System (INIS)

    Amayri, Samer; Reich, Tobias; Arnold, Thuro; Geipel, Gerhard; Bernhard, Gert

    2005-01-01

    A series of alkaline uranyl carbonates, M[UO 2 (CO 3 ) 3 ].nH 2 O (M=Mg 2 , Ca 2 , Sr 2 , Ba 2 , Na 2 Ca, and CaMg) was synthesized and characterized by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS) after nitric acid digestion, X-ray powder diffraction (XRD), and thermal analysis (TGA/DTA). The molecular structure of these compounds was characterized by extended X-ray absorption fine-structure (EXAFS) spectroscopy and X-ray photoelectron spectroscopy (XPS). Crystalline Ba 2 [UO 2 (CO 3 ) 3 ].6H 2 O was obtained for the first time. The EXAFS analysis showed that this compound consists of (UO 2 )(CO 3 ) 3 clusters similar to the other alkaline earth uranyl carbonates. The average U-Ba distance is 3.90+/-0.02A.Fluorescence wavelengths and life times were measured using time-resolved laser-induced fluorescence spectroscopy (TRLFS). The U-O bond distances determined by EXAFS, TRLFS, XPS, and Raman spectroscopy agree within the experimental uncertainties. The spectroscopic signatures observed could be useful for identifying uranyl carbonate species adsorbed on mineral surfaces

  3. How spectroscopic ellipsometry can aid graphene technology?

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, Maria, E-mail: maria.losurdo@cnr.it; Giangregorio, Maria M.; Bianco, Giuseppe V.; Capezzuto, Pio; Bruno, Giovanni

    2014-11-28

    We explore the effects of substrate, grain size, oxidation and cleaning on the optical properties of chemical vapor deposited polycrystalline monolayer graphene exploiting spectroscopic ellipsometry in the NIR-Vis–UV range. Both Drude–Lorentz oscillators' and point-by-point fit approaches are used to analyze the ellipsometric spectra. For monolayer graphene, since anisotropy cannot be resolved, an isotropic model is used. A prominent absorption peak at approximately 4.8 eV, which is a mixture of π–π* interband transitions at the M-point of the Brillouin zone and of the π-plasmonic excitation, is observed. We discuss the sensitivity of this peak to the structural and cleaning quality of graphene. The comparison with previous published dielectric function spectra of graphene is discussed giving a rationale for the observed differences. - Highlights: • Optical properties of graphene are determined by ellipsometry on copper and on glass. • Optical spectra reveal the cleaning quality of transferred graphene. • Sensitivity of absorption peak to graphene structural quality is proven. • Optical properties are proven to be sensitive to oxidation of graphene. • Electronic interaction with substrate affects graphene optical properties.

  4. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  5. TRACING OUTFLOWS AND ACCRETION: A BIMODAL AZIMUTHAL DEPENDENCE OF Mg II ABSORPTION

    Energy Technology Data Exchange (ETDEWEB)

    Kacprzak, Glenn G. [Swinburne University of Technology, Victoria 3122 (Australia); Churchill, Christopher W.; Nielsen, Nikole M., E-mail: gkacprzak@astro.swin.edu.au [New Mexico State University, Las Cruces, NM 88003 (United States)

    2012-11-20

    We report a bimodality in the azimuthal angle distribution of gas around galaxies as traced by Mg II absorption: halo gas prefers to exist near the projected galaxy major and minor axes. The bimodality is demonstrated by computing the mean azimuthal angle probability distribution function using 88 spectroscopically confirmed Mg II-absorption-selected galaxies [W{sub r} (2796) {>=} 0.1 A] and 35 spectroscopically confirmed non-absorbing galaxies [W{sub r} (2796) < 0.1 A] imaged with Hubble Space Telescope and Sloan Digital Sky Survey. The azimuthal angle distribution for non-absorbers is flat, indicating no azimuthal preference for gas characterized by W{sub r} (2796) < 0.1 A. We find that blue star-forming galaxies clearly drive the bimodality while red passive galaxies may exhibit an excess along their major axis. These results are consistent with galaxy evolution scenarios where star-forming galaxies accrete new gas, forming new stars and producing winds, while red galaxies exist passively due to reduced gas reservoirs. We further compute an azimuthal angle dependent Mg II absorption covering fraction, which is enhanced by as much as 20%-30% along the major and minor axes. The W{sub r} (2796) distribution for gas along the major axis is likely skewed toward weaker Mg II absorption than for gas along the projected minor axis. These combined results are highly suggestive that the bimodality is driven by gas accreted along the galaxy major axis and outflowing along the galaxy minor axis. Adopting these assumptions, we find that the opening angle of outflows and inflows to be 100 Degree-Sign and 40 Degree-Sign , respectively. We find that the probability of detecting outflows is {approx}60%, implying that winds are more commonly observed.

  6. ORIGINS OF ABSORPTION SYSTEMS OF CLASSICAL NOVA V2659 CYG (NOVA CYG 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Arai, A.; Kawakita, H. [Koyama Astronomical Observatory, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan); Shinnaka, Y. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tajitsu, A., E-mail: arai6a@cc.kyoto-su.ac.jp [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States)

    2016-10-10

    We report on high-dispersion spectroscopy results of a classical nova V2659 Cyg (Nova Cyg 2014) that are taken 33.05 days after the V -band maximum. The spectrum shows two distinct blueshifted absorption systems originating from H i, Fe ii, Ca ii, etc. The radial velocities of the absorption systems are −620 km s{sup −1}, and −1100 to −1500 km s{sup −1}. The higher velocity component corresponds to the P-Cygni absorption features frequently observed in low-resolution spectra. Much larger numbers of absorption lines are identified at the lower velocity. These mainly originate from neutral or singly ionized Fe-peak elements (Fe i, Ti ii, Cr ii, etc.). Based on the results of our spectroscopic observations, we discuss the structure of the ejecta of V2659 Cyg. We conclude that the low- and high-velocity components are likely to be produced by the outflow wind and the ballistic nova ejecta, respectively.

  7. Syntheses, spectroscopic properties and molecular structure of silver phytate complexes - IR, UV-VIS studies and DFT calculations

    Science.gov (United States)

    Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.

    2018-03-01

    Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.

  8. Investigation of pollutant gases with molecular absorption spectroscopy

    International Nuclear Information System (INIS)

    Izairi, N; Ajredini, F.; Shehabi, M.

    2011-01-01

    This paper contains the molecular absorption spectroscopic investigation on environmental pollution by many pollutants. For this purpose a laser absorption spectroscopy at 630 nm wavelength has been applied to excite the molecular spectra in order to identify the presence of main gas pollutants. The following was the experimental procedure. Preliminary the presence of pollutants was identified. The gas champions were taken in live environment, in Tetovo streets where cars moved, and in some points in Tetovo suburbia, during different periods of the day. A special civet, part of the apparatus, has been filled by environmental air, and latter, put into the apparatus. A laser beam pulse passes throughout absorbing gas medium in the civet to excite the gas, and the absorbing spectra were automatically registered. The molecular band spectra registration has been performed by an FT-IR Spectrometer (Spectrum BX FT-IR Perkin Elmer). For this purpose the measurements were focused in spectral region of 2075 cm -1 to 2384 cm -1 for CO 2 and CO bands investigation. The importance of such measurements is to investigate the spectral properties of absorption spectra and molecular structure, and for monitoring the environmental pollution. (Author)

  9. Analysis of photoisomerizable dyes using laser absorption and fluorescence techniques

    International Nuclear Information System (INIS)

    Duchowicz, R.; Di Paolo, R.E.; Scaffardi, L.; Tocho, J.O.

    1992-01-01

    The attention of the present report has been directed mainly to the description of laser-based techniques developed in order to obtain kinetic and spectroscopic properties of polymethine cyanine dyes in solution. Special attention was dedicated to photoisomerizable molecules where the absorption spectra of both isomers are strongly overlapped. As an example, measurements of two different dyes of laser technological interest, DTCI and DODCI were performed. The developed methods provide a complete quantitative description of photophysical processes. (author). 14 refs, 6 figs

  10. An X-ray absorption spectroscopic study of the metal site preference in Al1−xGaxFeO3

    International Nuclear Information System (INIS)

    Walker, James D.S.; Grosvenor, Andrew P.

    2013-01-01

    Magnetoelectric materials have potential for being introduced into next generation technologies, especially memory devices. The AFeO 3 (Pna2 1 ; A=Al, Ga) system has received attention to better understand the origins of magnetoelectric coupling. The magnetoelectric properties this system exhibits depend on the amount of anti-site disorder present, which is affected by the composition and the method of synthesis. In this study, Al 1−x Ga x FeO 3 was synthesized by the ceramic method and studied by X-ray absorption spectroscopy. Al L 2,3 -, Ga K-, and Fe K-edge spectra were collected to examine how the average metal coordination number changes with composition. Examination of XANES spectra from Al 1−x Ga x FeO 3 indicate that with increasing Ga content, Al increasingly occupies octahedral sites while Ga displays a preference for occupying the tetrahedral site. The Fe K-edge spectra indicate that more Fe is present in the tetrahedral site in AlFeO 3 than in GaFeO 3 , implying more anti-site disorder is present in AlFeO 3 . - Graphical abstract: Al 1−x Ga x FeO 3 has been investigated by XANES. Through examination of Al L 2,3 -, Ga K-, and Fe K-edge XANES spectra, it was found that more anti-site disorder of the Fe atoms is present in AlFeO 3 compared to in GaFeO 3 . Highlights: ► Al 1−x Ga x FeO 3 was investigated by X-ray absorption spectroscopy. ► Ga prefers to occupy the tetrahedral site in Al 1−x Ga x FeO 3 . ► Fe prefers to occupy the octahedral sites in Al 1−x Ga x FeO 3 as x increases. ► More anti-site disorder is present in AlFeO 3 compared to in GaFeO 3.

  11. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  12. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    Science.gov (United States)

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  13. Spectroscopic studies on colloid-borne uranium

    International Nuclear Information System (INIS)

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.

    2005-01-01

    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  14. Proposal of AAA-battery-size one-shot ATR Fourier spectroscopic imager for on-site analysis: Simultaneous measurement of multi-components with high accuracy

    Science.gov (United States)

    Hosono, Satsuki; Qi, Wei; Sato, Shun; Suzuki, Yo; Fujiwara, Masaru; Hiramatsu, Hiroyuki; Suzuki, Satoru; Abeygunawardhana, P. K. W.; Wada, Kenji; Nishiyama, Akira; Ishimaru, Ichiro

    2015-03-01

    For simultaneous measurement of multi-components on-site like factories, the ultra-compact (diameter: 9[mm], length: 45[mm], weight: 200[g]) one-shot ATR (Attenuated Total Reflection) Fourier spectroscopic imager was proposed. Because the proposed one-shot Fourier spectroscopic imaging is based on spatial-phase-shift interferometer, interferograms could be obtained with simple optical configurations. We introduced the transmission-type relativeinclined phase-shifter, that was constructed with a cuboid prism and a wedge prism, onto the optical Fourier transform plane of infinity corrected optical systems. And also, small light-sources and cameras in the mid-infrared light region, whose size are several millimeter on a side, are essential components for the ultra-compact spectroscopic configuration. We selected the Graphite light source (light source area: 1.7×1.7[mm], maker: Hawkeye technologies) whose radiation factor was high. Fortunately, in these days we could apply the cost-effective 2-dimensional light receiving device for smartphone (e.g. product name: LEPTON, maker: FLIR, price: around 400USD). In the case of alcoholic drinks factory, conventionally workers measure glucose and ethanol concentrations by bringing liquid solution back to laboratories every day. The high portable spectroscopy will make it possible to measure multi-components simultaneously on manufacturing scene. But we found experimentally that absorption spectrum of glucose and water and ethanol were overlapped each other in near infrared light region. But for mid-infrared light region, we could distinguish specific absorption peaks of glucose (@10.5[μm]) and ethanol (@11.5[μm]) independently from water absorption. We obtained standard curve between absorption (@9.6[μm]) and ethanol concentration with high correlation coefficient 0.98 successfully by ATR imaging-type 2-dimensional Fourier spectroscopy (wavelength resolution: 0.057[μm]) with the graphite light source (maker: Hawkeye

  15. THE YOUNG SOLAR ANALOGS PROJECT. I. SPECTROSCOPIC AND PHOTOMETRIC METHODS AND MULTI-YEAR TIMESCALE SPECTROSCOPIC RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O.; Briley, M. M.; Lambert, R. A.; Fuller, V. A.; Newsome, I. M.; Seeds, M. F. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Saken, J. M.; Kahvaz, Y. [Department of Physics and Physical Science, Marshall University, Huntington, WV 25755 (United States); Corbally, C. J. [Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721-0065 (United States)

    2015-12-15

    This is the first in a series of papers presenting methods and results from the Young Solar Analogs Project, which began in 2007. This project monitors both spectroscopically and photometrically a set of 31 young (300–1500 Myr) solar-type stars with the goal of gaining insight into the space environment of the Earth during the period when life first appeared. From our spectroscopic observations we derive the Mount Wilson S chromospheric activity index (S{sub MW}), and describe the method we use to transform our instrumental indices to S{sub MW} without the need for a color term. We introduce three photospheric indices based on strong absorption features in the blue-violet spectrum—the G-band, the Ca i resonance line, and the Hydrogen-γ line—with the expectation that these indices might prove to be useful in detecting variations in the surface temperatures of active solar-type stars. We also describe our photometric program, and in particular our “Superstar technique” for differential photometry which, instead of relying on a handful of comparison stars, uses the photon flux in the entire star field in the CCD image to derive the program star magnitude. This enables photometric errors on the order of 0.005–0.007 magnitude. We present time series plots of our spectroscopic data for all four indices, and carry out extensive statistical tests on those time series demonstrating the reality of variations on timescales of years in all four indices. We also statistically test for and discover correlations and anti-correlations between the four indices. We discuss the physical basis of those correlations. As it turns out, the “photospheric” indices appear to be most strongly affected by emission in the Paschen continuum. We thus anticipate that these indices may prove to be useful proxies for monitoring emission in the ultraviolet Balmer continuum. Future papers in this series will discuss variability of the program stars on medium (days–months) and short

  16. SPECTROPHOTOMETRIC, ATOMIC ABSORPTION AND CONDUCTOMETRIC ANALYSIS OF TRAMADOL HYDROCHLORIDE

    Directory of Open Access Journals (Sweden)

    Sara M. Anis

    2011-09-01

    Full Text Available Six simple and sensitive spectroscopic and conductometric procedures (A-F were developed for the determination of tramadol hydrochloride. Methods A, B and C are based on the reaction of cobalt (II thiocyanate with tramadol to form a stable ternary complex, which could be measured by spectrophotometric (method A, atomic absorption (method B or conductometric (method C procedures. Methods D and E depend on the reaction of molybdenum thiocyanate with tramadol to form a stable ternary complex, measured by spectrophotometric means (method D or by atomic absorption procedures (method E, while method F depends on the formation of an ion pair complex between the studied drug and bromothymol blue which is extractable into methylene chloride. Tramadol hydrochloride could be assayed in the range of 80-560 and 40-–220 μg ml-1, 1-15 mg ml-1 and 2.5-22.5, 1.25-11.25 and 5-22 μg ml-1 using methods A,B,C,D,E and F, respectively. Various experimental conditions were studied. The results obtained showed good recoveries. The proposed procedures were applied successfully to the analysis of tramadol in its pharmaceutical preparations and the results were favorably comparable with the official method.

  17. Spectroscopic investigation of zinc tellurite glasses doped with Yb(3+) and Er(3+) ions.

    Science.gov (United States)

    Bilir, Gökhan; Kaya, Ayfer; Cinkaya, Hatun; Eryürek, Gönül

    2016-08-05

    This paper presents a detailed spectroscopic investigation of zinc tellurite glasses with the compositions (0.80-x-y) TeO2+(0.20) ZnO+xEr2O3+yYb2O3 (x=0, y=0; x=0.004, y=0; x=0, y=0.05 and x=0.004, y=0.05 per moles). The samples were synthesized by the conventional melt quenching method. The optical absorption and emission measurements were conducted at room temperature to determine the spectral properties of lanthanides doped zinc tellurite glasses and, to study the energy transfer processes between dopant lanthanide ions. The band gap energies for both direct and indirect possible transitions and the Urbach energies were measured from the absorption spectra. The absorption spectra of the samples were analyzed by using the Judd-Ofelt approach. The effect of the ytterbium ions on the emission properties of erbium ions was investigated and the energy transfer processes between dopant ions were studied by measuring the up-conversion emission properties of the materials. The color quality parameters of obtained visible up-conversion emission were also determined as well as possibility of using the Er(3+) glasses as erbium doped fiber amplifiers at 1.55μm in infrared emission region. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Application of mid-infrared tuneable diode laser absorption spectroscopy to plasma diagnostics: a review

    International Nuclear Information System (INIS)

    Roepcke, J; Lombardi, G; Rousseau, A; Davies, P B

    2006-01-01

    Within the last decade mid-infrared absorption spectroscopy over a region from 3 to 17μm and based on tuneable lead salt diode lasers, often called tuneable diode laser absorption spectroscopy or TDLAS, has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry in molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has led to further applications of TDLAS because most of these compounds and their decomposition products are infrared active. TDLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetic phenomena. Information about gas temperature and population densities can also be derived from TDLAS measurements. A variety of free radicals and molecular ions have been detected by TDLAS. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of quantum cascade lasers (QCLs) offers an attractive new option for the monitoring and control of industrial plasma processes. The aim of the present paper is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid-infrared

  19. Spectroscopic characterization of uranium in evaporation basin sediments

    Science.gov (United States)

    Duff, M. C.; Morris, D. E.; Hunter, D. B.; Bertsch, P. M.

    2000-05-01

    Evaporation ponds in the San Joaquin Valley (SJV), CA, used for the containment of irrigation drainage waters contain elevated levels of uranium (U) resulting from the extensive leaching by carbonate-rich irrigation waters of the local agricultural soils that contain low levels of naturally-occurring U. The SJV ponds are subjected to changes in redox chemistry with cycles of drying and flooding. Our past studies have shown that U in the SJV Pond 14 surface sediments is present as mostly the oxidized and soluble form, U(VI). However, we were uncertain whether the U in the soil was only present as a U oxide of mixed stoichiometry, such as U 3O 8(s) (pitchblende) or other species. Here we present characterization information, which includes wet chemical and in situ spectroscopic techniques (X-ray absorption near-edge structure (XANES) and low temperature time-resolved luminescence spectroscopies) for samples from two SJV Pond sediments. Surface sediments from SJV Pond 16 were characterized for average oxidation state of U with XANES spectroscopy. The fraction of U(VI) to U(IV) in the Pond 16 sediments decreased with depth with U(IV) being the dominant oxidation state in the 5 cm to 15 cm depth. Two luminescent U(VI) species were identified in the surface sediments from Pond 14; a U(VI)-tricarbonate phase and another phase likely comprised of U(VI)-hydroxide or hydroxycarbonate. The luminescent U(VI) population in the Pond 16 sediments is dominated by species with comparable spectral characteristics to the U(VI)-hydroxide or hydroxycarbonate species found in the Pond 14 sediments. The luminescence spectroscopic results were complemented by wet chemical U leaching methods, which involved the use of carbonate and sulfuric acid solutions and oxidizing solutions of peroxide, hypochlorite and Mn(IV). Leaching was shown to decrease the total U concentration in the sediments in all cases. However, results from luminescence studies of the residual fraction in the leached

  20. Spectroscopic diagnostics of plasma during laser processing of aluminium

    International Nuclear Information System (INIS)

    Lober, R; Mazumder, J

    2007-01-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO 2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 A Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO 2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data

  1. Spectroscopic diagnostics of plasma during laser processing of aluminium

    Science.gov (United States)

    Lober, R.; Mazumder, J.

    2007-10-01

    The role of the plasma in laser-metal interaction is of considerable interest due to its influence in the energy transfer mechanism in industrial laser materials processing. A 10 kW CO2 laser was used to study its interaction with aluminium under an argon environment. The objective was to determine the absorption and refraction of the laser beam through the plasma during the processing of aluminium. Laser processing of aluminium is becoming an important topic for many industries, including the automobile industry. The spectroscopic relative line to continuum method was used to determine the electron temperature distribution within the plasma by investigating the 4158 Å Ar I line emission and the continuum adjacent to it. The plasmas are induced in 1.0 atm pure Ar environment over a translating Al target, using f/7 and 10 kW CO2 laser. Spectroscopic data indicated that the plasma composition and behaviour were Ar-dominated. Experimental results indicated the plasma core temperature to be 14 000-15 300 K over the incident range of laser powers investigated from 5 to 7 kW. It was found that 7.5-29% of the incident laser power was absorbed by the plasma. Cross-section analysis of the melt pools from the Al samples revealed the absence of any key-hole formation and confirmed that the energy transfer mechanism in the targets was conduction dominated for the reported range of experimental data.

  2. An integrated spectroscopic approach for the non-invasive study of modern art materials and techniques

    Science.gov (United States)

    Rosi, F.; Miliani, C.; Clementi, C.; Kahrim, K.; Presciutti, F.; Vagnini, M.; Manuali, V.; Daveri, A.; Cartechini, L.; Brunetti, B. G.; Sgamellotti, A.

    2010-09-01

    A non-invasive study has been carried out on 18 paintings by Alberto Burri (1915-1995), one of Italy’s most important contemporary painters. The study aims to demonstrate the appropriate and suitable use of portable non-invasive instrumentation for the characterization of materials and techniques found in works dating from 1948 to 1975 belonging to the Albizzini Collection. Sampling of any kind has been forbidden, in order to maintain the integrity of the paintings. Furthermore, the material heterogeneity of each single artwork could potentially result in a poorly representative sampling campaign. Therefore, a non-invasive and in situ analytical approach has been deemed mandatory, notwithstanding the complexity of modern materials and challenging data interpretation. It is the non-invasive nature of the study that has allowed for the acquisition of vast spectral data (a total of about 650 spectra including XRF, mid and near FTIR, micro-Raman and UV-vis absorption and emission spectroscopies). In order to better handle and to extrapolate the most meaningful information from these data, a statistical multivariate analysis, namely principal component analysis (PCA), has been applied to the spectral results. In particular, the possibility of combining elemental and molecular information has been explored by uniting XRF and infrared spectra in one PCA dataset. The combination of complementary spectroscopic techniques has allowed for the characterization of both inorganic and organic pigments, extenders, fillers, and binders employed by Alberto Burri.

  3. SSGSS: THE SPITZER–SDSS–GALEX SPECTROSCOPIC SURVEY

    International Nuclear Information System (INIS)

    O'Dowd, Matthew J.; Schiminovich, David; Johnson, Benjamin D.; Treyer, Marie A.; Martin, Christopher D.; Wyder, Ted K.; Charlot, Stéphane; Heckman, Timothy M.; Martins, Lucimara P.; Seibert, Mark; Van der Hulst, J. M.

    2011-01-01

    The Spitzer-SDSS-GALEX Spectroscopic Survey (SSGSS) provides a new sample of 101 star-forming galaxies at z < 0.2 with unprecedented multi-wavelength coverage. New mid- to far-infrared spectroscopy from the Spitzer Space Telescope is added to a rich suite of previous imaging and spectroscopy, including ROSAT, Galaxy Evolution Explorer, Sloan Digital Sky Survey, Two Micron All Sky Survey, and Spitzer/SWIRE. Sample selection ensures an even coverage of the full range of normal galaxy properties, spanning two orders of magnitude in stellar mass, color, and dust attenuation. In this paper we present the SSGSS data set, describe the science drivers, and detail the sample selection, observations, data reduction, and quality assessment. Also in this paper, we compare the shape of the thermal continuum and the degree of silicate absorption of these typical, star-forming galaxies to those of starburst galaxies. We investigate the link between star formation rate, infrared luminosity, and total polycyclic aromatic hydrocarbon luminosity, with a view to calibrating the latter for spectral energy distribution models in photometric samples and at high redshift. Last, we take advantage of the 5-40 μm spectroscopic and far-infrared photometric coverage of this sample to perform detailed fitting of the Draine et al. dust models, and investigate the link between dust mass and star formation history and active galactic nucleus properties.

  4. Dielectric function and double absorption onset of monoclinic Cu2SnS3

    DEFF Research Database (Denmark)

    Crovetto, Andrea; Chen, Rongzhen; Ettlinger, Rebecca Bolt

    2016-01-01

    In this work, we determine experimentally the dielectric function of monoclinic Cu2SnS3 (CTS) by spectroscopic ellipsometry from 0.7 to 5.9 eV. An experimental approach is proposed to overcome the challenges of extracting the dielectric function of Cu2SnS3 when grown on a glass/Mo substrate...... secondary phases, is not needed to explain such an absorption spectrum. Finally, we show that the absorption coefficient of CTS is particularly large in the near-band gap spectral region when compared to similar photovoltaic materials....

  5. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    KAUST Repository

    Es-sebbar, Et-touhami

    2016-08-11

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for (C2H4)-C-12 monitoring in such environments is located near the 336 gm window, through its v(11) C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of (C2H4)-C-12 v(11) band at 297 +/- 1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10(-4) cm(-1) resolution. Absorption measurements were performed in the 2975-2980 cm(-1) spectral window to investigate 32 lines corresponding to where, J\\'ka\\',kc\\'<- Jka,kc, 5 <= J <= 7; 0.5 <= K-a <= 6 and 1 <= K-c <= 14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured (C2H4)-C-12 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the (C2H4)-C-12 v(11) band in the 2975-2980 cm(-1) range. (C) 2016 Elsevier Ltd. All rights reserved.

  6. First line shape analysis and spectroscopic parameters for the ν11 band of 12C2H4

    KAUST Repository

    Es-sebbar, Et-touhami; Mantzaras, John; Benilan, Yves; Farooq, Aamir

    2016-01-01

    An accurate knowledge of line intensities, collisional broadening coefficients and narrowing parameters is necessary for the interpretation of high-resolution infrared spectra of the Earth and other planetary atmospheres. One of the most promising spectral domains for (C2H4)-C-12 monitoring in such environments is located near the 336 gm window, through its v(11) C-H stretching mode. In this paper, we report an extensive study in which we precisely determine spectroscopic parameters of (C2H4)-C-12 v(11) band at 297 +/- 1 K, using a narrow Difference-Frequency-Generation (DFG) laser with 10(-4) cm(-1) resolution. Absorption measurements were performed in the 2975-2980 cm(-1) spectral window to investigate 32 lines corresponding to where, J'ka',kc'<- Jka,kc, 5 <= J <= 7; 0.5 <= K-a <= 6 and 1 <= K-c <= 14. Spectroscopic parameters are retrieved using either Voigt or appropriate Galatry profile to simulate the measured (C2H4)-C-12 line shape. Line intensities along with self-broadening coefficients are reported for all lines. Narrowing coefficients for each isolated line are also derived. To our knowledge, the current study reports the first extensive spectroscopic parameter measurements of the (C2H4)-C-12 v(11) band in the 2975-2980 cm(-1) range. (C) 2016 Elsevier Ltd. All rights reserved.

  7. Electronic absorption spectroscopy of matrix-isolated polycyclic aromatic hydrocarbon cations. I - The naphthalene cation (C10H8/+/)

    Science.gov (United States)

    Salama, F.; Allamandola, L. J.

    1991-01-01

    The ultraviolet, visible, and near-infrared absorption spectra of naphthalene (C10H8) and its radical ion (C10H8/+/), formed by vacuum ultraviolet irradiation, were measured in argon and neon matrices at 4.2 K. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion production in the solid phase. The absorption coefficients were calculated for the ion and found lower than previous values, presumably due to the low polarizability of the neon matrix.

  8. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  9. Redox behaviors of iron by absorption spectroscopy and redox potential measurement

    International Nuclear Information System (INIS)

    Oh, Jae Yong

    2010-02-01

    This work is performed to study the redox (reduction/oxidation) behaviors of iron in aqueous system by a combination of absorption spectroscopy and redox potential measurements. There are many doubts on redox potential measurements generally showing low accuracies and high uncertainties. In the present study, redox potentials are measured by utilizing various redox electrodes such as Pt, Au, Ag, and glassy carbon (GC) electrodes. Measured redox potentials are compared with calculated redox potentials based on the chemical oxidation speciation of iron and thermodynamic data by absorption spectroscopy, which provides one of the sensitive and selective spectroscopic methods for the chemical speciation of Fe(II/III). From the comparison analyses, redox potential values measured by the Ag redox electrode are fairly consistent with those calculated by the chemical aqueous speciation of iron in the whole system. In summary, the uncertainties of measured redox potentials are closely related with the total Fe concentration and affected by the formation of mixed potentials due to Fe(III) precipitates in the pH range of 6 ∼ 9 beyond the solubility of Fe(III), whilst being independent of the initially prepared concentration ratios between Fe(II) and Fe(III)

  10. Topical absorption and toxicity studies of jet fuel hydrocarbons in skin

    Science.gov (United States)

    Muhammad, Faqir

    Kerosene-based fuels have been used for many decades. Over 2 million military and civilian personnel each year are occupationally exposed to various jet fuel mixtures. Dermatitis is one of the major health concerns associated with these exposures. In the past, separate absorption and toxicity studies have been conducted to find the etiology of such skin disorders. There was a need for integrated absorption and toxicity studies to define the causative constituents of jet fuel responsible for skin irritation. The focus of this thesis was to study the percutaneous absorption and to identify the hydrocarbons (HC) causing irritation in jet fuels so that preventive measures could be taken in the future. The initial study was conducted to understand the possible mechanism for additive interactions on hydrocarbon absorption/disposition in silastic, porcine skin and isolated perfused porcine skin flap (IPPSF) models. The influence of JP-8 (100) additives (MDA, BHT, 8Q405) on the dermal kinetics of 14C-naphthalene and 14C/3H-dodecane as markers of HC absorption was evaluated. This study indicated that individual and combination of additives influenced marker disposition in different membranes. MDA was a significant suppressor while BHT was a significant enhancer of naphthalene absorption in IPPSF. The 8Q405 significantly reduced naphthalene content in dosed silastic and skin indicating a direct interaction between additive and marker HC. Similarly, the individual MDA and BHT significantly retained naphthalene in the stratum corneum of porcine skin, but the combination of both of these additives statistically decreased the marker retention in the stratum corneum suggesting a potential biological interaction. This study concluded that all components of a chemical mixture should be assessed since the effects of single components administered alone or as pairs may be confounded when all are present in the complete mixture. However, this study indicated that the marker HC

  11. Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses

    International Nuclear Information System (INIS)

    Qiao Yanbo; Wen Lei; Wu Botao; Ren Jinjun; Chen Danping; Qiu Jianrong

    2008-01-01

    Yb-doped and Yb-Al-codoped high silica glasses have been prepared by sintering nanoporous glasses. The absorption, fluorescent spectra and fluorescent lifetimes have been measured and the emission cross-section and minimum pump intensities were calculated. Codoping aluminum ions enhanced the fluorescence intensity of Yb-doped high silica glass obviously. The emission cross-sections of Yb-doped and Yb-Al-codoped high silica glasses were 0.65 and 0.82 pm 2 , respectively. The results show that Yb-Al-codoped high silica glass has better spectroscopic properties for a laser material. The study of high silica glass doped with ytterbium is helpful for its application in Yb laser systems, especially for high-power and high-repetition lasers

  12. Spectroscopic investigation on interaction of toluidine blue/ AOT/ γ-cyclodextrin ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Dasmandal, Somnath; Bhattacharyya, Debabrata; Rudra, Suparna; Patel, Biman Kumar; Mahapatra, Ambikesh, E-mail: amahapatra@chemistry.jdvu.ac.in

    2016-11-15

    Interaction of toluidine blue (TB), a biologically potent cationic phenothiazinium dye, with anionic surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT) have been thoroughly studied employing absorption and emission spectroscopy. A completely distinct spectral behavior of TB has been observed corresponding to pre-micellar and post-micellar region of AOT. Steady-state fluorescence anisotropy measurement has been carefully undertaken to rationalize the spectroscopic results. Effect of γ-cyclodextrin (γ-CD) on the spectral properties of TB has also been encountered for understanding of binding interaction between them. Molecular docking study has been accomplished to enlighten the probable orientation of TB inside the γ-CD core. Here particular interest has been focused on a mixed system, composed of AOT pre-micelles and γ-CD. A remarkable diminution of both absorption and emission intensities of TB has been observed in AOT pre-micelle with a simultaneous colorimetric change of TB solution from dark blue to lavender, and subsequent addition of γ-CD results in enhancement of intensities with dramatic reversal of the lavender colored solution to the original dark blue color. The emission characteristics of TB in the presence of AOT and γ-CD may prove as promising for an ‘IMPLICATION’ logic gate which may perform a significant role in the field of molecular electronics.

  13. Quantum state-resolved gas/surface reaction dynamics probed by reflection absorption infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen Li [Department of Dynamics at Surfaces, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen (Germany); Ueta, Hirokazu; Beck, Rainer D. [Laboratoire de Chimie Physique Moleculaire, Ecole Polytechnique Federale de Lausanne (Switzerland); Bisson, Regis [Aix-Marseille Universite, PIIM, CNRS, UMR 7345, 13397 Marseille (France)

    2013-05-15

    We report the design and characterization of a new molecular-beam/surface-science apparatus for quantum state-resolved studies of gas/surface reaction dynamics combining optical state-specific reactant preparation in a molecular beam by rapid adiabatic passage with detection of surface-bound reaction products by reflection absorption infrared spectroscopy (RAIRS). RAIRS is a non-invasive infrared spectroscopic detection technique that enables online monitoring of the buildup of reaction products on the target surface during reactant deposition by a molecular beam. The product uptake rate obtained by calibrated RAIRS detection yields the coverage dependent state-resolved reaction probability S({theta}). Furthermore, the infrared absorption spectra of the adsorbed products obtained by the RAIRS technique provide structural information, which help to identify nascent reaction products, investigate reaction pathways, and determine branching ratios for different pathways of a chemisorption reaction. Measurements of the dissociative chemisorption of methane on Pt(111) with this new apparatus are presented to illustrate the utility of RAIRS detection for highly detailed studies of chemical reactions at the gas/surface interface.

  14. Multi-spectroscopic characterization of bovine serum albumin upon interaction with atomoxetine

    Directory of Open Access Journals (Sweden)

    Arunkumar T. Buddanavar

    2017-06-01

    Full Text Available The quenching interaction of atomoxetine (ATX with bovine serum albumin (BSA was studied in vitro under optimal physiological condition (pH=7.4 by multi-spectroscopic techniques. The mechanism of ATX-BSA system was a dynamic quenching process and was confirmed by the fluorescence spectra and lifetime measurements. The number of binding sites, binding constants and other binding characteristics were computed. Thermodynamic parameters ∆H° and ∆S° indicated that intermolecular hydrophobic forces predominantly stabilized the drug-protein system. The average binding distance between BSA and ATX was studied by Försters theory. UV-absorption, Fourier transform infrared spectroscopy (FT-IR, circular dichroism (CD, synchronous spectra and three-dimensional (3D fluorescence spectral results revealed the changes in micro-environment of secondary structure of protein upon the interaction with ATX. Displacement of site probes and the effects of some common metal ions on the binding of ATX with BSA interaction were also studied.

  15. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    International Nuclear Information System (INIS)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N.

    2014-01-01

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10 3 , 3.8×10 3 and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry

  16. Studies on the effect of AgNP binding on α-amylase structure of porcine pancreas and Bacillus subtilis by multi-spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, Vinita; Sekar, Gajalakshmi; Mukherjee, Amitava; Chandrasekaran, N., E-mail: nchandrasekaran@vit.ac.in

    2014-02-15

    Functionalizing silver nanoparticles (AgNPs) with biomolecules have a number of applications in catalysis, sensing, pharmaceutics and therapy. For the first time, herein we report the interaction of amylase-AgNPs through various spectroscopic techniques. AgNPs are synthesized and characterized by UV–vis spectroscopy, transmission electron microscopy (TEM) and Dynamic Light Scattering (DLS). The binding of AgNPs to α-amylase are investigated by UV–vis, fluorescence, circular dichroism and FTIR spectroscopic techniques. Absorption intensity and Stern–Volmer plots confirmed the formation of the ground state complex with AgNPs. The quenching of the intrinsic protein fluorescence in the presence of different concentrations of AgNP was observed. The apparent binding constant (K) and number of binding sites (n) was calculated from the Stern–Volmer plot was found to be 4.92×10{sup 3}, 3.8×10{sup 3} and 1.57, 1.3 for porcine pancreas and Bacillus subtilis α-amylase, respectively. Far-UV CD studies revealed the characteristic dichoric band at 222 nm for α-helical structure was shifted to 215 nm in porcine pancreatic α-amylase upon AgNP binding. Further, structural conformation change with peak shifts and the possible binding residues was confirmed through FTIR spectroscopy. -- Highlights: • AgNPs were synthesized using modified Creighton's method and characterized. • Structural changes analyzed by UV–vis, fluorescence spectroscopy. • CD and FTIR spectra reveal the secondary structure conformation change. • Potential application in food industry.

  17. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid

    International Nuclear Information System (INIS)

    Meral, Kadem; Erbil, H. Yıldırım; Onganer, Yavuz

    2011-01-01

    Mono and multilayer of water-soluble pyronin B (PyB) and pyronin Y (PyY) mixed with stearic acid (SA) have been incorporated in Langmuir-Blodgett (LB) films. The surface pressure-area (π-A) isotherm studies pointed out that pure PyB and PyY are incapable of forming stable films at air-water interface and collapsed readily at low surface pressures. However, mixture of PyB or PyY with SA easily formed stable films at the air-water interface and they were easily transferred onto solid substrates. The average area per molecule of mixed films of PyB and PyY at the air-water interface was observed to decrease with increasing concentrations of PyB and PyY. The spectroscopic characteristics of PyB and PyY in chloroform, in SA containing chloroform and in LB films have also been investigated by using absorption and steady-state and time-resolved fluorescence spectroscopy techniques. The morphology of the LB film surfaces has been characterized by using atomic force microscopy (AFM).

  18. A spectroscopic study of water-soluble pyronin B and pyronin Y in Langmuir-Blodgett films mixed with stearic acid

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey); Erbil, H. Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I r Latin-Small-Letter-Dotless-I m [Department of Chemical Engineering, Gebze Institute of Technology, Cay Latin-Small-Letter-Dotless-I rova, Gebze 41400, Kocaeli (Turkey); Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatuerk University, 25240 Erzurum (Turkey)

    2011-12-01

    Mono and multilayer of water-soluble pyronin B (PyB) and pyronin Y (PyY) mixed with stearic acid (SA) have been incorporated in Langmuir-Blodgett (LB) films. The surface pressure-area ({pi}-A) isotherm studies pointed out that pure PyB and PyY are incapable of forming stable films at air-water interface and collapsed readily at low surface pressures. However, mixture of PyB or PyY with SA easily formed stable films at the air-water interface and they were easily transferred onto solid substrates. The average area per molecule of mixed films of PyB and PyY at the air-water interface was observed to decrease with increasing concentrations of PyB and PyY. The spectroscopic characteristics of PyB and PyY in chloroform, in SA containing chloroform and in LB films have also been investigated by using absorption and steady-state and time-resolved fluorescence spectroscopy techniques. The morphology of the LB film surfaces has been characterized by using atomic force microscopy (AFM).

  19. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    DEFF Research Database (Denmark)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1-200 bar and temperature range 300-1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients...... of a CO2-N2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated...

  20. $\\beta$-decay studies using total-absorption spectroscopy

    CERN Document Server

    Algora, A; García-Borge, M J; Cano-Ott, D; Collatz, R; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Gadea, A; Gelletly, W; Hellström, M; Janas, Z; Jungclaus, A; Kirchner, R; Karny, M; Le Scornet, G; Miehé, C; Maréchal, F; Moroz, F; Nacher, E; Poirier, E; Roeckl, E; Rubio, B; Rykaczewski, K; Taín, J L; Tengblad, O; Wittmann, V

    2004-01-01

    $\\beta$-decay experiments are a primary source of information for nuclear-structure studies and at the same time complementary to in- beam investigations of nuclei far from stability. Although both types of experiment are mainly based on $\\gamma$-ray spectroscopy, they face different experimental problems. The so-called " Pandemonium effect " is a critical problem in $\\beta$-decay if we are to test theoretically calculated transition probabilities. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the Total Absorption Spectrometer (TAS) at GSI and describe a new device LUCRECIA recently installed at CERN.

  1. Spectroscopic investigations on Pr3+ ions doped lead telluro-borate glasses for photonic applications

    Science.gov (United States)

    Suthanthirakumar, P.; Mariyappan, M.; Marimuthu, K.

    2018-04-01

    A new series of Lead telluro-borate glasses doped with different concentrations of Pr3+ ions (xPLTB) were prepared by melt quenching technique and their structural and spectroscopic properties were investigated by recording XRD, FTIR, optical absorption and luminescence spectral measurements. XRD measurements confirm the amorphous nature and the FTIR spectra reveal the presence of different vibrational modes of borate and tellurite networks in the prepared glasses. The bonding parameter values (δ) obtained from the absorption band positions indicates that the bonding between Pr3+ ions and their surrounding ligands is of ionic in nature. The optical band gap (Eopt) corresponding to the direct and indirect allowed transitions were determined with the framework of tauc's plot. From the luminescence spectra, important radiative parameters such as stimulated emission cross-section (σPE) , branching ratios (βR) and radiative lifetime (τR) were calculated for the dominant emission transition 3P0→3H4 (blue) in order to suggest the suitability of the studied glasses for suitable photonic applications.

  2. High temperature and high pressure gas cell for quantitative spectroscopic measurements

    International Nuclear Information System (INIS)

    Christiansen, Caspar; Stolberg-Rohr, Thomine; Fateev, Alexander; Clausen, Sønnik

    2016-01-01

    A high temperature and high pressure gas cell (HTPGC) has been manufactured for quantitative spectroscopic measurements in the pressure range 1–200 bar and temperature range 300–1300 K. In the present work the cell was employed at up to 100 bar and 1000 K, and measured absorption coefficients of a CO_2–N_2 mixture at 100 bar and 1000 K are revealed for the first time, exceeding the high temperature and pressure combinations previously reported. This paper discusses the design considerations involved in the construction of the cell and presents validation measurements compared against simulated spectra, as well as published experimental data. - Highlights: • A ceramic gas cell designed for gas measurements up to 1300 K and 200 bar. • The first recorded absorption spectrum of CO_2 at 1000 K and 101 bar is presented. • Voigt profiles might suffice in the modeling of radiation from CO_2 in combustion.

  3. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited ...

  4. White light photothermal lens spectrophotometer for the determination of absorption in scattering samples.

    Science.gov (United States)

    Marcano, Aristides; Alvarado, Salvador; Meng, Junwei; Caballero, Daniel; Moares, Ernesto Marín; Edziah, Raymond

    2014-01-01

    We developed a pump-probe photothermal lens spectrophotometer that uses a broadband arc-lamp and a set of interference filters to provide tunable, nearly monochromatic radiation between 370 and 730 nm as the pump light source. This light is focused onto an absorbing sample, generating a photothermal lens of millimeter dimensions. A highly collimated monochromatic probe light from a low-power He-Ne laser interrogates the generated lens, yielding a photothermal signal proportional to the absorption of light. We measure the absorption spectra of scattering dye solutions using the device. We show that the spectra are not affected by the presence of scattering, confirming that the method only measures the absorption of light that results in generation of heat. By comparing the photothermal spectra with the usual absorption spectra determined using commercial transmission spectrophotometers, we estimate the quantum yield of scattering of the sample. We discuss applications of the device for spectroscopic characterization of samples such as blood and gold nanoparticles that exhibit a complex behavior upon interaction with light.

  5. A subspace approach to high-resolution spectroscopic imaging.

    Science.gov (United States)

    Lam, Fan; Liang, Zhi-Pei

    2014-04-01

    To accelerate spectroscopic imaging using sparse sampling of (k,t)-space and subspace (or low-rank) modeling to enable high-resolution metabolic imaging with good signal-to-noise ratio. The proposed method, called SPectroscopic Imaging by exploiting spatiospectral CorrElation, exploits a unique property known as partial separability of spectroscopic signals. This property indicates that high-dimensional spectroscopic signals reside in a very low-dimensional subspace and enables special data acquisition and image reconstruction strategies to be used to obtain high-resolution spatiospectral distributions with good signal-to-noise ratio. More specifically, a hybrid chemical shift imaging/echo-planar spectroscopic imaging pulse sequence is proposed for sparse sampling of (k,t)-space, and a low-rank model-based algorithm is proposed for subspace estimation and image reconstruction from sparse data with the capability to incorporate prior information and field inhomogeneity correction. The performance of the proposed method has been evaluated using both computer simulations and phantom studies, which produced very encouraging results. For two-dimensional spectroscopic imaging experiments on a metabolite phantom, a factor of 10 acceleration was achieved with a minimal loss in signal-to-noise ratio compared to the long chemical shift imaging experiments and with a significant gain in signal-to-noise ratio compared to the accelerated echo-planar spectroscopic imaging experiments. The proposed method, SPectroscopic Imaging by exploiting spatiospectral CorrElation, is able to significantly accelerate spectroscopic imaging experiments, making high-resolution metabolic imaging possible. Copyright © 2014 Wiley Periodicals, Inc.

  6. Exploration of spectroscopic properties of solvated tris(thenoyltrifluoroacetonate)(2,2′-bipyridine)europium(III)red hybrid organic complex for solution processed OLEDs and displays

    International Nuclear Information System (INIS)

    Chitnis, Dipti; Thejokalyani, N.; Dhoble, S.J.

    2017-01-01

    In order to explore the spectroscopic properties of a novel europium activated hybrid organic tris(thenoyltrifluoroacetonate)(2,2′-bipyridine)europium(III), Eu(TTA) 3 bipy phosphor in various solvents at different pH and molar concentrations, UV–vis optical absorption and photoluminescence spectra were carried out. With a variation in the solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid, formic acid) media, staggering differences in optical absorptions and optical densities were noticed with hypsochromic shift in the absorption peaks. The optical density was found to be maximum for the complex with pH= 7.0 and the intensity as well as optical density gradually decreased when pH is lowered to 6.0 or raised to 8.0 (at an interval of 0.5), proving that the complex is pH sensitive. It's optical energy gap and stokes shift values in various organic solvents were also calculated on the basis of Lippert-Mataga plot. The exploration of spectroscopic properties of solvated Eu(TTA) 3 bipy complex demonstrates its prospective for solution processed OLEDs and display devices. - Graphical abstract: Pictorial depiction of photoluminescence in solvated Eu(TTA) 3 bipy complex under UV light.

  7. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  8. A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Jensen, Adam G.; Redfield, Seth; Endl, Michael; Cochran, William D.; Koesterke, Lars; Barman, Travis S.

    2011-01-01

    We obtained over 90 hr of spectroscopic observations of four exoplanetary systems with the Hobby-Eberly Telescope. Observations were taken in transit and out of transit, and we analyzed the differenced spectra—i.e., the transmission spectra—to inspect it for absorption at the wavelengths of the neutral sodium (Na I) doublet at λλ5889, 5895 and neutral potassium (K I) at λ7698. We used the transmission spectrum at Ca I λ6122—which shows strong stellar absorption but is not an alkali metal resonance line that we expect to show significant absorption in these atmospheres—as a control line to examine our measurements for systematic errors. We use an empirical Monte Carlo method to quantify these systematic errors. In a reanalysis of the same data set using a reduction and analysis pipeline that was derived independently, we confirm the previously seen Na I absorption in HD 189733b at a level of (– 5.26 ± 1.69) × 10 –4 (the average value over a 12 Å integration band to be consistent with previous authors). Additionally, we tentatively confirm the Na I absorption seen in HD 209458b (independently by multiple authors) at a level of (– 2.63 ± 0.81) × 10 –4 , though the interpretation is less clear. Furthermore, we find Na I absorption of (– 3.16 ± 2.06) × 10 –4 at <3σ in HD 149026b; features apparent in the transmission spectrum are consistent with real absorption and indicate this may be a good target for future observations to confirm. No other results (Na I in HD 147506b and Ca I and K I in all four targets) are significant to ≥3σ, although we observe some features that we argue are primarily artifacts.

  9. Study of 137Cs absorption by Lemna minor

    International Nuclear Information System (INIS)

    Bergamini, P.G.; Palmas, G.; Piantelli, F.; Sani, M.; Banditelli, P.; Previtera, M.; Sodi, F.

    1979-01-01

    Absorption of 137 Cs by the floating aquatic plant Lemna Minor in relation to 137 Cs concentration in the water was measured under controlled conditions of temperature, pH and light. The method used to analyse the results is described. When applied to this study the method shows the influence on 137 Cs absorption of (1) potassium-cesium exchange due to chemical affinity, (2) the natural colony growth of the organism and (3) the effect of light. Concentration factors were determined for these three processes. (author)

  10. Carbon dioxide laser absorption spectra of toxic industrial compounds

    International Nuclear Information System (INIS)

    Loper, G.L.; Sasaki, G.R.; Stamps, M.A.

    1982-01-01

    CO 2 laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO 2 laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important inerference in the detection of toxic hydrazine-based rocket fuels by CO 2 laser spectroscopic techniques

  11. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN

    2003-12-16

    Full Text Available of normal vibrations of the corresponding individual compounds. The latter facilitated the Raman spectroscopic elucidation of the reaction products formed on the chalcopyrite surface in real industrial flotation conditions with a sodium isopropyl xanthate...

  12. Studies on the absorption and excretion of arsenic in test animals

    International Nuclear Information System (INIS)

    Mikulski, J.; Walczak, Z.; Politowski, M.

    1980-01-01

    The partition of arsenous compounds in cats between blood, lymph and urine has been studied by the isotopic method. The rate of poison absorption from the intestinal tract and poison excretion with urine have also been investigated. It was found that arsenic is evenly distributed between blood and lymph, but its concentration in urine is about 100 times larger. The rate of arsenic absorption is very high - the absorption time is of the order of minutes and the absorption is shortly followed by the appearance of arsenic in urine. (author)

  13. Uranium absorption study pile; Empilement pour le controle de l'absorption de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Sautiez, B [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF{sub 3} counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10{sup -6} boron per gr. of uranium) or better. (author) [French] Nous decrivons un dispositif permettant de mesurer l'absorption des elements combustibles d'une pile. Ce dispositif est constitue par un empilement de graphite dont la region centrale est formee par un reseau regulier de barres d'uranium. Des sources de RaBe et des compteurs a BF{sub 3} sont places de part et d'autre de cette region. En comparant un chargement d'uranium a un chargement etalon d'environ 560 kg, on peut determiner la difference d'absorption entre ces deux chargements. La sensibilite permettrait de deceler une variation d'absorption de l'ordre du ppm de bore (10{sup -6} g de bore par gramme d'uranium) et peut-etre mieux. (auteur)

  14. Radioisotope studies for quantitative measurement of manganese absorption

    International Nuclear Information System (INIS)

    Helbig, U.

    1981-01-01

    Purpose of the present study was to quantitatively determine the manganese absorption in growing rats by means of radioisotopes. First of all the following factors had to be investigated, which are significant for this determination: Measurability of stable and radioactive Mn in rat tissues; labelling of stable Mn and distribution of stable and radioactive Mn in the organism; verification of the isotope dilution method and of the comparative balance method with regard to its applicability for the determination of the true Mn absorption. We useed male and female Sprague-Dawley rats. The most important results are summarized in the following: in some separate tissues measurement of stable Mn was accompanied by difficulties. The measurement of radioactive Mn however, could be performed without any problems. 10 d after i.m. injection of 54 Mn only 17% of the administered Mn was still detectable in the organism. However, there was no uniform tissue labelling found. Therefore it is possible to an only restricted extent to draw quantitative conclusions on the content of stable Mn. A high percentage of stable and radioactive Mn was found above all in the liver. The isotope dilution method permits by feces analysis to differentiate between unabsorbed Mn coming from the food and endogenic Mn coming from the organism itself. The effective Mn absorption was also determined by means of the comparative balance method. By means of the isotope dilution method we determined the quantitative Mn-absorption with staged Mn administration and the contribution of absorption and excretion to the homeostatic regulation mechanisms of Mn. We found that absorption and excretion help the organism to keep an almost constant Mn concentration even with a differing Mn supply. (orig./MG) [de

  15. Synthesis, characterization and biological activity studies of mixed ...

    African Journals Online (AJOL)

    The complexes were characterized using some physical techniques such as melting point, solubility, conductivity measurement and spectroscopic analyses such as UV-Visible spectroscopy, Atomic absorption spectroscopy, and Infrared spectroscopy. Based on the physical and spectroscopic results, the coordination of the ...

  16. Study the multi-photon absorption process in two types of molecules

    International Nuclear Information System (INIS)

    Al-azawi, H.R.

    1986-01-01

    The aim of the present work was to study the multi-photon absorption process in two types of molecules; spherical top such as SF 6 molecules and assymetric top such as CHOOH and C 2 H 4 molecules. This work also aimed to study the effect of buffer gas pressure (Ar), which is transparent to the infrared (IR) laser on the multiphoton absorption of both types of molecules. A pulsed (TEA) CO 2 laser was used as a source which generates multi-lines in the IR-region of the spectrum and an optoacoustic detector was used to detect the energy absorbed by the molecules. In this study, the relaxation process was found to be faster in the heavy molecules than that in the light ones. A limit in the Ar pressure was observed. Below this limit, the gas acted as an active buffer gas and above it, the multi-photon absorption process was quenched. This work also aimed to study the multi-photon absorption spectrum for the CHOOH molecules in the range (1067-1090 cm -1 ). This spectrum was found to be consistent with the linear absorption spectrum obtained for the same range. The density of the vibrational states as a function of the vibrational energy was studied for the molecules SF 6 , CHOOH and C 2 H 4 . The results were used to interpret (i) the difference in the energy absorbed by difference molecules at the same energy density and (ii) the non-linearity in the multi-photon absorption for CHOOH molecules. 1 tab.; 40 figs.; 70 refs

  17. Studies on the red absorption band of chlorophyll a in vivo

    NARCIS (Netherlands)

    Thomas, J.B.; Kleinen Hammans, J.W.; Arnolds, W.J.

    1965-01-01

    It was studied whether certain earlier observed weak shoulders on the red absorption band of chlorophyll a in vivo might represent anomalies due to overlap of absorption bands. The results are suggested of the fact that no such anomalies occur. It is therefore concluded that the present study

  18. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  19. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    International Nuclear Information System (INIS)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D.; Treu-Filho, O.; Bannach, G.

    2014-01-01

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L) 3 , in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand

  20. Spectroscopic studies of hydrogen atom and molecule collisions: Performance report

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1986-01-01

    This research is concerned with spectroscopic measurements of collisions in atomic and molecular hydrogen in order to clarify the basic physical processes that take place during radiative collisions and to provide experimental values for systems where the theoretical analysis is tractable. To this end, we proposed to measure from the cores to the far wings the profiles of the spectral lines of atomic hydrogen broadened by molecular hydrogen and noble gases, and to study energy transfer in the atom and molecule

  1. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  2. Spectroscopic studies on novel donor-acceptor and low band-gap polymeric semiconductors

    International Nuclear Information System (INIS)

    Cravino, A.

    2002-11-01

    Novel low band-gap conjugated polymeric semiconductors as well as conjugated electron donor chains carrying electron acceptor substituents were electrochemically prepared and investigated by means of different spectroscopic techniques. Using in situ FTIR and ESR spectroelectrochemistry, the spectroscopic features of injected positive charges are found to be different as opposed to the negative charge carriers on the same conjugated polymer. These results, for which the theoretical models so far developed do not account, demonstrate the different structure and delocalization of charge carriers with opposite signs. In addition, vibrational spectroscopy results proof the enhanced 'quinoid' character of low band-gap conjugated chains. Excited state spectroscopy was applied to study photoexcitations in conjugated polymers carrying tetracyanoanthraquinone type or fullerene moieties. This novel class of materials, hereafter called double-cable polymers, was found promising as alternative to the conjugated polymer:fullerene mixtures currently used for the preparation of 'bulk-heterojunction' polymeric solar cells. (author)

  3. Spectroscopic and photometric study of the eclipsing interacting binary V495 Centauri

    Science.gov (United States)

    Rosales Guzmán, J. A.; Mennickent, R. E.; Djurašević, G.; Araya, I.; Curé, M.

    2018-05-01

    Double Periodic Variables (DPV) are among the new enigmas of semidetached eclipsing binaries. These are intermediate-mass binaries characterized by a long photometric period lasting on average 33 times the orbital period. We present a spectroscopic and photometric study of the DPV V495 Cen based on new high-resolution spectra and the ASAS V-band light curve. We have determined an improved orbital period of 33.492 ± 0.002 d and a long period of 1283 d. We find a cool evolved star of M2=0.91± 0.2 M_{⊙}, T2 = 6000 ± 250 K and R2=19.3 ± 0.5 R_{⊙} and a hot companion of M1= 5.76± 0.3 M_{⊙}, T1 = 16960 ± 400 K and R=4.5± 0.2 R_{⊙}. The mid-type B dwarf is surrounded by a concave and geometrically thick disc, of radial extension Rd= 40.2± 1.3 R_{⊙} contributing ˜11 per cent to the total luminosity of the system at the V band. The system is seen under inclination 84.8° ± 0.6° and it is at a distance d = 2092 ± 104.6 pc. The light-curve analysis suggests that the mass transfer stream impacts the external edge of the disc forming a hot region 11 per cent hotter than the surrounding disc material. The persistent V < R asymmetry of the Hα emission suggests the presence of a wind and the detection of a secondary absorption component in He I lines indicates a possible wind origin in the hotspot region.

  4. A spectroscopic study on stability of curcumin as a function of pH in silica nanoformulations, liposome and serum protein

    Science.gov (United States)

    Jain, Beena

    2017-02-01

    The effect of pH on the stability of curcumin formulated with different carriers has been studied spectroscopically. This was investigated by monitoring the absorption and emission kinetics and fluorescence decay time of four different curcumin formulations suspended in buffer with pH varying from 5 to 8.5. The carriers were organically modified silica NP (SiNP) having 3-amino propyl and/or vinyl groups, liposome and serum protein. The results reveal that stability of curcumin formulated with SiNP functionalized with 3-amino propyl group (SiNP-VA) is significantly higher as compared to SiNP with only vinyl group (SiNP-V) and buffer but lower as compared to serum protein and liposome. However, fluorescence quantum yield (QY) is highest in SiNP-VA among all the nano formulations at pH 7.4 and below, which is attributed to the excited state interaction of curcumin with the amino groups of SiNP-VA. Results suggest that SiNP-VA could be an effective carrier for curcumin, which may have applications for imaging and drug delivery.

  5. Scramjet Performance Assessment Using Water Absorption Diagnostics (U)

    Science.gov (United States)

    Cavolowsky, John A.; Loomis, Mark P.; Deiwert, George

    1995-01-01

    Simultaneous multiple path measurements of temperature and H2O concentration will be presented for the AIMHYE test entries in the NASA Ames 16-Inch Shock Tunnel. Monitoring the progress of high temperature chemical reactions that define scramjet combustor efficiencies is a task uniquely suited to nonintrusive optical diagnostics. One application strategy to overcome the many challenges and limitations of nonintrusive measurements is to use laser absorption spectroscopy coupled with optical fibers. Absorption spectroscopic techniques with rapidly tunable lasers are capable of making simultaneous measurements of mole fraction, temperature, pressure, and velocity. The scramjet water absorption diagnostic was used to measure combustor efficiency and was compared to thrust measurements using a nozzle force balance and integrated nozzle pressures to develop a direct technique for evaluating integrated scramjet performance. Tests were initially performed with a diode laser tuning over a water absorption feature at 1391.7 nm. A second diode laser later became available at a wavelength near 1343.3 nm covering an additional water absorption feature and was incorporated in the system for a two-wavelength technique. Both temperature and mole fraction can be inferred from the lineshape analysis using this approach. Additional high temperature spectroscopy research was conducted to reduce uncertainties in the scramjet application. The lasers are optical fiber coupled to ports at the combustor exit and in the nozzle region. The output from the two diode lasers were combined in a single fiber, and the resultant two-wavelength beam was subsequently split into four legs. Each leg was directed through 60 meters of optical fiber to four combustor exit locations for measurement of beam intensity after absorption by the water within the flow. Absorption results will be compared to 1D combustor analysis using RJPA and nozzle CFD computations as well as to data from a nozzle metric

  6. Studies on the optical absorption of copper-dopped myoglobin: conformational changes

    International Nuclear Information System (INIS)

    Lamy, M.T.M.

    1976-03-01

    Optical absorption changes in the visible and near U.V. spectrum of myoglobin molecules are observed when copper ions are added to the macromolecule. The heme optical transitions are investigated through a theoretical simulation of the optical absorption spectrum. A study of the absorption band in the region of 700 nm associated with the copper - myoglobin complexes indicated the existence of two kinds of metal-protein complexes: one associated with the six or eitht first added copper ions and the other related with the higher concentrations. Conformational changes caused by thermal treatment are studied in myoglobin water solutions and solutions containing copper ions. The phenomenon named pre-denaturation is observed through the optical absorption at 245 nm. It is shown that interactions between myoglobin molecules occur in the pre-denaturation phenomenon. (Author) [pt

  7. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  8. Applications of structural and spectroscopic techniques to the experimental and theoretical study of new luminescent materials

    International Nuclear Information System (INIS)

    Navarro Ahumada, Gustavo Adolfo

    2001-01-01

    This thesis discusses the general problem of the radiation-matter interaction in the case of a family of crystals known as elpasolites, which belong to the spatial group FM3M(O 5 H ). These systems present complications, from a theoretical as well as experimental point of view. The study was carried out in stoichiometric elpasolite type systems, characterized by empirical formulas of the general type Cs2NaLnCl 6 where Ln is a lanthanide of the first series of internal transition with electronic configurations for the trivalent state (Ln +3 ) of the form ∫ 1 → ∫ 13 . An analysis of the atomic spectra for these gaseous phase ions shows a diversity of permitted states, due to relativistic and non relativistic effects. Systems with positive trivalent lanthanide ions of the form Dy 3+ (∫ 9 ), Ho 3+ (∫ 10 ) y Er 3+ (∫ 11 ) have been selected at the level of the stoichiometric elpasolites and are characterized by complex energetic spectra. A careful experimental study of the emission states suggests that the elpasolite of Er 3+ is interesting, and its study is very relevant. The assignments and identifications of the peaks, during absorption as well as during emission, are more precise for the configuration Er 3+ , and careful studies show that fluorescence between terminal states with the rule of selection for the total orbital angular momentum:ΔJ = 6 is observed for this system. A declining cascade that can reasonably explain the unsuspected related spectral intensity, in the order of 10-9, is presented and suggested although a value was predicted for the electric dipolar force of lesser than 4 orders of magnitude what was observed. This problem is discussed and a mechanism is proposed for spectral intensities associated with two emissions characterized by ΔJ = 4 (electric hexadecapole) and ΔJ = 2 (electric cuadrupole). The laboratory tests made, include synthesis by solid state reactions of Dy 3+ and Ho 3+ , type elpasolites, structural characterization

  9. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Directory of Open Access Journals (Sweden)

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  10. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures

    Science.gov (United States)

    Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.

    2014-01-01

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  11. Structure and linear spectroscopic properties of near IR polymethine dyes

    International Nuclear Information System (INIS)

    Webster, Scott; Padilha, Lazaro A.; Hu Honghua; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Davydenko, Iryna G.; Slominsky, Yuriy L.; Kachkovski, Alexei D.

    2008-01-01

    We performed a detailed experimental investigation and quantum-chemical analysis of a new series of near IR polymethine dyes with 5-butyl-7,8-dihydrobenzo[cd]furo[2,3-f]indolium terminal groups. We also synthesized and studied two neutral dyes, squaraine and tetraone, with the same terminal groups and performed a comparison of the spectroscopic properties of this set of 'near IR' dyes (polymethine, squaraine, and tetraone) with an analogous set of 'visible' dyes with simpler benzo[e]indolium terminal groups. From these measurements, we find that the dyes with dihydrobenzo[cd]furo[2,3-f]indolium terminal groups are characterized by a remarkably large shift ∼300 nm (∼200 nm for tetraone) of their absorption bands towards the red region. We discuss the difference in electronic structure for these molecules and show that the 'near IR' dyes are characterized by an additional weak fluorescence band from the higher lying excited states connected with the terminal groups. Absorption spectra for the longest polymethines are solvent-dependent and are characterized by a broadening of the main band in polar solvents, which is explained by ground state symmetry breaking and reduced charge delocalization within the polymethine chromophore. The results of these experiments combined with the agreement of quantum chemical calculations moves us closer to a predictive capability for structure-property relations in cyanine-like molecules

  12. Spectroscopic properties of Er3+-doped fluorotellurite glasses containing various modifiers

    Science.gov (United States)

    Burtan-Gwizdała, Bożena; Reben, Manuela; Cisowski, Jan; Grelowska, Iwona; Yousef, El Sayed; Algarni, Hamed; Lisiecki, Radosław; Nosidlak, Natalia

    2017-11-01

    We have investigated the optical and spectroscopic properties of new Er3+-doped fluorotellurite glasses with the basic molar composition 75%TeO2-10%P2O5-10%ZnO-5%PbF2, modified by replacing 5%TeO2 by four various metal oxides, namely MgO, PbO, SrO and CdO. The ellipsometric data have provided a Sellmeier-type dispersion relation of the refractive index of the investigated glasses. The optical absorption edge has been described within the Urbach approach, while the absorption and fluorescence spectra have been analyzed in terms of the standard Judd-Ofelt theory along with the photoluminescence decay of the 4I13/2 and 4S3/2 levels of the Er3+ ion. The absorption and emission spectra of the 4I15/2 ↔ 4I13/2 infrared transition have been analyzed within the McCumber theory to yield the peak emission cross-section and figure of merit (FOM) for the amplifier gain. It appears that the glass containing MgO as a modifier is characterized by the largest FOM suggesting that the fluorotellurite matrix with this oxide can be a good novel host for Er3+ ion doping. Finally, we propose a new simple method to calculate the mean transition energy of the McCumber approach as the arithmetic average of the barycenter wavenumbers of absorption and emission spectra.

  13. Understanding the shrinkage of optical absorption edges of nanostructured Cd-Zn sulphide films for photothermal applications

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Md. Sohrab [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Kabir, Humayun [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); School of Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Rahman, M. Mahbubur, E-mail: M.Rahman@Murdoch.edu.au [Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia); Hasan, Kamrul [Department of Chemistry, College of Sciences, University of Sharjah, P.O. Box 27272, Sharjah (United Arab Emirates); Bashar, Muhammad Shahriar; Rahman, Mashudur [Institute of Fuel and Research Development, Bangladesh Council for Scientific and Industrial Research, Dhanmondi, Dhaka (Bangladesh); Gafur, Md. Abdul [Pilot Plant and Process Development Center, Bangladesh Council for Scientific and Industrial Research, Dhanmondi, Dhaka (Bangladesh); Islam, Shariful [Department of Physics, Comilla University, Comilla (Bangladesh); Amri, Amun [Department of Chemical Engineering, Universitas Riau, Pekanbaru (Indonesia); Jiang, Zhong-Tao [Surface Analysis and Materials Engineering Research Group, School of Engineering & Information Technology, Murdoch University, Perth, Western Australia 6150 (Australia); Altarawneh, Mohammednoor; Dlugogorski, Bogdan Z. [School of Engineering & Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2017-01-15

    Highlights: • Cd-Zn sulphide films synthesized via chemical bath deposition technique. • Nanocrystalline phase of Cd-Zn sulphide films were seen in XRD studies. • Nanocrystalline structures of the films were also confirmed by the SEM. • The band gap of these films is a combination of composition and size. • E{sub U} and σ studies ascribed the shrinkage of absorption edges around the optical band-gaps. - Abstract: In this article Cd-Zn sulphide thin films deposited onto soda lime glass substrates via chemical bath deposition (CBD) technique were investigated for photovoltaic applications. The synthesized films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (UV–vis) spectroscopic methodologies. A higher degree of crystallinity of the films was attained with the increase of film thicknesses. SEM micrographs exhibited a partial crystalline structure with a particulate appearance surrounded by the amorphous grain boundaries. The optical absorbance and absorption coefficient of the films were also enhanced significantly with the increase in film thicknesses. Optical band-gap analysis indicated a monotonic decrease in direct and indirect band-gaps with the increase of thicknesses of the films. The presence of direct and indirect transitional energies due to the exponential falling edges of the absorption curves may either be due to the lack of long-range order or to the existence of defects in the films. The declination of the optical absorption edges was also confirmed via Urbach energy and steepness parameters studies.

  14. Shell model and spectroscopic factors

    International Nuclear Information System (INIS)

    Poves, P.

    2007-01-01

    In these lectures, I introduce the notion of spectroscopic factor in the shell model context. A brief review is given of the present status of the large scale applications of the Interacting Shell Model. The spectroscopic factors and the spectroscopic strength are discussed for nuclei in the vicinity of magic closures and for deformed nuclei. (author)

  15. EPR and optical absorption studies of paramagnetic molecular ion (VO2+) in Lithium Sodium Acid Phthalate single crystal

    Science.gov (United States)

    Subbulakshmi, N.; Kumar, M. Saravana; Sheela, K. Juliet; Krishnan, S. Radha; Shanmugam, V. M.; Subramanian, P.

    2017-12-01

    Electron Paramagnetic Resonance (EPR) spectroscopic studies of VO2+ ions as paramagnetic impurity in Lithium Sodium Acid Phthalate (LiNaP) single crystal have been done at room temperature on X-Band microwave frequency. The lattice parameter values are obtained for the chosen system from Single crystal X-ray diffraction study. Among the number of hyperfine lines in the EPR spectra only two sets are reported from EPR data. The principal values of g and A tensors are evaluated for the two different VO2+ sites I and II. They possess the crystalline field around the VO2+ as orthorhombic. Site II VO2+ ion is identified as substitutional in place of Na1 location and the other site I is identified as interstitial location. For both sites in LiNaP, VO2+ are identified in octahedral coordination with tetragonal distortion as seen from the spin Hamiltonian parameter values. The ground state of vanadyl ion in the LiNaP single crystal is dxy. Using optical absorption data the octahedral and tetragonal parameters are calculated. By correlating EPR and optical data, the molecular orbital bonding parameters have been discussed for both sites.

  16. Photo absorption studies of polyatomic molecules using Indus 1 synchrotron radiation source

    International Nuclear Information System (INIS)

    Saraswathy, P.; Sunanda, K.; Aparna, S.; Rajashekar, B.N.; Das, N.C.

    2004-06-01

    The Photophysics beamline is a medium resolution beamline designed for carrying out photo absorption and fluorescence experiments using the synchrotron radiation source Indus-l. This beamline has been commissioned recently and is in operation. An experimental setup for gas phase absorption studies has been developed and installed. Absorption spectra of a few polyatomicmolecules viz. benzene, ammonia, carbon disulphide and acetone were recorded in the wavelength region 1500 -3000 A. The results from this study indicated the satisfactory performance of the beam line as well as the experimental setup. Details of the first set of absorption experiments carried out are discussed in this report. (author)

  17. Sound absorption study on acoustic panel from kapok fiber and egg tray

    Science.gov (United States)

    Kaamin, Masiri; Mahir, Nurul Syazwani Mohd; Kadir, Aslila Abd; Hamid, Nor Baizura; Mokhtar, Mardiha; Ngadiman, Norhayati

    2017-12-01

    Noise also known as a sound, especially one that is loud or unpleasant or that causes disruption. The level of noise can be reduced by using sound absorption panel. Currently, the market produces sound absorption panel, which use synthetic fibers that can cause harmful effects to the health of consumers. An awareness of using natural fibers from natural materials gets attention of some parties to use it as a sound absorbing material. Therefore, this study was conducted to investigate the potential of sound absorption panel using egg trays and kapok fibers. The test involved in this study was impedance tube test which aims to get sound absorption coefficient (SAC). The results showed that there was good sound absorption at low frequency from 0 Hz up to 900 Hz where the maximum absorption coefficient was 0.950 while the maximum absorption at high frequencies was 0.799. Through the noise reduction coefficient (NRC), the material produced NRC of 0.57 indicates that the materials are very absorbing. In addition, the reverberation room test was carried out to get the value of reverberation time (RT) in unit seconds. Overall this panel showed good results at low frequencies between 0 Hz up to 1500 Hz. In that range of frequency, the maximum reverberation time for the panel was 3.784 seconds compared to the maximum reverberation time for an empty room was 5.798 seconds. This study indicated that kapok fiber and egg tray as the material of absorption panel has a potential as environmental and cheap products in absorbing sound at low frequency.

  18. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    Science.gov (United States)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  19. Binding of Bisphenol-F, a bisphenol analogue, to calf thymus DNA by multi-spectroscopic and molecular docking studies.

    Science.gov (United States)

    Usman, Afia; Ahmad, Masood

    2017-08-01

    BPF (Bisphenol-F), a member of the bisphenol family, having a wide range of industrial applications is gradually replacing Bisphenol-A. It is a recognized endocrine disrupting chemical (EDC). EDCs have been implicated in increased incidences of breast, prostate and testis cancers besides diabetes, obesity and decreased fertility. Due to the adverse effects of EDCs on human health, attempts have been directed towards their mechanism of toxicity especially at the molecular level. Hence, to understand the mechanism at the DNA level, interaction of BPF with calf thymus DNA was studied employing multi-spectroscopic, voltammetric and molecular docking techniques. Fluorescence spectra, cyclic voltammetry (CV), circular dichroism (CD) and molecular docking studies of BPF with DNA were suggestive of minor groove binding of BPF. UV-visible absorption and fluorescence spectra suggested static quenching due to complex formation between BPF and ctDNA. Hoechst 33258 (HO) and ethidium bromide (EB) displacement studies further confirmed such mode of BPF interaction. Thermodynamic and molecular docking parameters revealed the mechanism of binding of BPF with ctDNA to be favorable and spontaneous due to negative ΔG and occurring through hydrogen bonds and van der waals interactions. BPF induced DNA cleavage under in vitro conditions by plasmid nicking assay suggested it to be genotoxic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Spectroscopic characterization of Ho3+ ion-doped fluoride glass

    International Nuclear Information System (INIS)

    Florez, A.; Oliveira, S.L.; Florez, M.; Gomez, L.A.; Nunes, L.A.O.

    2006-01-01

    Among the new optical materials available, fluoride glass, which has an extended transmission window, is emerging as an important material for use in optical fibers, lasers, sensors, etc. Here, we analyze the spectroscopic properties of Ho 3+ ions in a fluoroindate glass based on absorption measurements. Ho 3+ -doped fluoroindate glass with the composition (40 - x)InF 3 -20SrF 2 -20ZnF 2 -16BaF 2 -2GdF 3 -2NaF-xHoF 3 , x = 1.0, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0 and 9.0 mol%, was prepared under an argon atmosphere. Absorption spectra in the range 300-2200 nm were then obtained. The experimental oscillator strength f Exp. was calculated from the areas under absorption bands. Using Judd-Ofelt theory and least-squares fitting, the phenomenological intensity parameter Ω λ (λ = 2, 4, 6) and the theoretical oscillator strength f Cal. were calculated. To evaluate potential applications and to analyze the properties of Ho 3+ ions in these host glasses, the following spectroscopy parameters were calculated: the transition probability between multiplets A JJ' , the branching ratio β JJ' , the radiative lifetime τ R , the peak cross-section for stimulated emission σ p , and the emitting-level multiphonon rate W NR for each band. The results were compared with those reported in the literature for similar glasses of the same concentration

  1. A theoretical study on the geometry and spectroscopic properties of ground-state and local minima isomers of (CuS)n=2-6 clusters

    Science.gov (United States)

    Luque-Ceballos, Jonathan C.; Posada-Borbón, Alvaro; Herrera-Urbina, Ronaldo; Aceves, R.; Juárez-Sánchez, J. Octavio; Posada-Amarillas, Alvaro

    2018-03-01

    Spectroscopic properties of gas-phase copper sulfide clusters (CuS)n (n = 2-6) are calculated using Density Functional Theory (DFT) and time-dependent (TD) DFT approaches. The energy landscape of the potential energy surface is explored through a basin-hopping DFT methodology. Ground-state and low-lying isomer structures are obtained. The global search was performed at the B3PW91/SDD level of theory. Normal modes are calculated to validate the existence of optimal cluster structures. Energetic properties are obtained for the ground-state and isomer clusters and their relative energies are evaluated for probing isomerization. This is a few tenths of an eV, except for (CuS)2 cluster, which presents energy differences of ∼1 eV. Notable differences in the infrared spectra exist between the ground-state and first isomer structures, even for the (CuS)5 cluster, which has in both configurations a core copper pyramid. TDDFT provides the simulated absorption spectrum, presenting a theoretical description of optical absorption bands in terms of electronic excitations in the UV and visible regions. Results exhibit a significant dependence of the calculated UV/vis spectra on clusters size and shape regarding the ground state structures. Optical absorption is strong in the UV region, and weak or forbidden in the visible region of the spectrum.

  2. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  3. Isolation and spectroscopic studies of curcumin from Philippine Curcuma longa L

    International Nuclear Information System (INIS)

    Torres, Rosalinda C.; Bonifacio, Teresita S.; Herrera, Celia L.; Lanto, Eduardo A.

    1998-01-01

    Curcumin, the yellow coloring matter was isolated from the rhizomes of Philippine Curcuma longa L. (turmeric) by Soxhlet extraction with toluene followed by concentration and slow crystallization. The isolated curcumin was then subjected to chromatographic and spectroscopic studies with the Merck curcumin standard. The infra red and UV-vis spectra of both compounds were found to be almost identical indicating a high purity of the isolate. The % yield obtained was 2-3%. (Author)

  4. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    A sensitive, reliable and relative fast method has been developed for the determination of total zinc in insulin by atomic absorption spectrophotometer. This designed study was used to optimize the procedures for the existing methods. Spectrograms of both standard and sample solutions of zinc were recorded by measuring ...

  5. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be. (Auth.)

  6. Argon plasma jet continuum emission investigation by using different spectroscopic methods

    International Nuclear Information System (INIS)

    Dgheim, J

    2007-01-01

    Radiation and temperature fields of the continuum field are determined by using different spectroscopic methods based on the spectral emission of an argon plasma jet. An interferential filter of bandwidth 2.714 nm centred at a wavelength of 633 nm is used to observe only the continuum emission and to eliminate the self-absorption phenomenon. An optical multichannel analyser (OMA) of an MOS detector is used to measure argon plasma jet volumetric emissivity under atmospheric pressure and high temperatures. An emission spectroscopic method is used to measure the Stark broadening of the hydrogen line H β and to determine the electron density. The local thermodynamic equilibrium is established and its limit is stated. The local electron temperature is determined by two methods (the continuum emission relation and the LTE relations), and the total Biberman factor is measured. The results given by the OMA are compared with those given by the imagery method. At a given wavelength, the Biberman factor, which depends on the electron temperature and the electron density, may serve as an indicator to show where the LTE prevails along the argon plasma jet core length

  7. SPECTROSCOPIC EVIDENCE FOR SN 2010ma ASSOCIATED WITH GRB 101219B

    International Nuclear Information System (INIS)

    Sparre, M.; Fynbo, J. P. U.; Malesani, D.; De Ugarte Postigo, A.; Hjorth, J.; Leloudas, G.; Milvang-Jensen, B.; Watson, D. J.; Sollerman, J.; Goldoni, P.; Covino, S.; Tagliaferri, G.; D'Elia, V.; Flores, H.; Hammer, F.; Jakobsson, P.; Schulze, S.; Kaper, L.; Levan, A. J.; Tanvir, N. R.

    2011-01-01

    We report on the spectroscopic detection of supernova SN 2010ma associated with the long gamma-ray burst GRB 101219B. We observed the optical counterpart of the GRB on three nights with the X-shooter spectrograph at the Very Large Telescope. From weak absorption lines, we measure a redshift of z = 0.55. The first-epoch UV-near-infrared afterglow spectrum, taken 11.6 hr after the burst, is well fit by a power law consistent with the slope of the X-ray spectrum. The second- and third-epoch spectra (obtained 16.4 and 36.7 days after the burst), however, display clear bumps closely resembling those of the broad-lined type-Ic SN 1998bw if placed at z = 0.55. Apart from demonstrating that spectroscopic SN signatures can be observed for GRBs at these large distances, our discovery makes a step forward in establishing a general connection between GRBs and SNe. In fact, unlike most previous unambiguous GRB-associated SNe, GRB 101219B has a large gamma-ray energy (E iso = 4.2 x 10 51 erg), a bright afterglow, and obeys the 'Amati' relation, thus being fully consistent with the cosmological population of GRBs.

  8. Exploration of spectroscopic properties of solvated tris(thenoyltrifluoroacetonate)(2,2′-bipyridine)europium(III)red hybrid organic complex for solution processed OLEDs and displays

    Energy Technology Data Exchange (ETDEWEB)

    Chitnis, Dipti [Department of Physics, RTM Nagpur University, Nagpur 440033 (India); Thejokalyani, N., E-mail: thejokalyani@rediffmail.com [Department of Applied Physics, Laxminarayan Institute of Technology, Nagpur 440033 (India); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440033 (India)

    2017-05-15

    In order to explore the spectroscopic properties of a novel europium activated hybrid organic tris(thenoyltrifluoroacetonate)(2,2′-bipyridine)europium(III), Eu(TTA){sub 3}bipy phosphor in various solvents at different pH and molar concentrations, UV–vis optical absorption and photoluminescence spectra were carried out. With a variation in the solvent from basic (chloroform, toluene, tetrahydrofuran) to acidic (acetic acid, formic acid) media, staggering differences in optical absorptions and optical densities were noticed with hypsochromic shift in the absorption peaks. The optical density was found to be maximum for the complex with pH= 7.0 and the intensity as well as optical density gradually decreased when pH is lowered to 6.0 or raised to 8.0 (at an interval of 0.5), proving that the complex is pH sensitive. It's optical energy gap and stokes shift values in various organic solvents were also calculated on the basis of Lippert-Mataga plot. The exploration of spectroscopic properties of solvated Eu(TTA){sub 3}bipy complex demonstrates its prospective for solution processed OLEDs and display devices. - Graphical abstract: Pictorial depiction of photoluminescence in solvated Eu(TTA){sub 3}bipy complex under UV light.

  9. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    Science.gov (United States)

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  10. In vivo determination of the absorption and scattering spectra of the human prostate during photodynamic therapy

    Science.gov (United States)

    Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Stripp, Diana C. H.; Malkowicz, S. B.; Whittington, Richard; Miles, Jeremy; Glatstein, Eli; Hahn, Stephen M.

    2004-06-01

    A continuing challenge in photodynamic therapy is the accurate in vivo determination of the optical properties of the tissue being treated. We have developed a method for characterizing the absorption and scattering spectra of prostate tissue undergoing PDT treatment. Our current prostate treatment protocol involves interstitial illumination of the organ via cylindrical diffusing optical fibers (CDFs) inserted into the prostate through clear catheters. We employ one of these catheters to insert an isotropic white light point source into the prostate. An isotropic detection fiber connected to a spectrograph is inserted into a second catheter a known distance away. The detector is moved along the catheter by a computer-controlled step motor, acquiring diffuse light spectra at 2 mm intervals along its path. We model the fluence rate as a function of wavelength and distance along the detector"s path using an infinite medium diffusion theory model whose free parameters are the absorption coefficient μa at each wavelength and two variables A and b which characterize the reduced scattering spectrum of the form μ"s = Aλ-b. We analyze our spectroscopic data using a nonlinear fitting algorithm to determine A, b, and μa at each wavelength independently; no prior knowledge of the absorption spectrum or of the sample"s constituent absorbers is required. We have tested this method in tissue simulating phantoms composed of intralipid and the photosensitizer motexafin lutetium (MLu). The MLu absorption spectrum recovered from the phantoms agrees with that measured in clear solution, and μa at the MLu absorption peak varies linearly with concentration. The ´"s spectrum reported by the fit is in agreement with the known scattering coefficient of intralipid. We have applied this algorithm to spectroscopic data from human patients sensitized with MLu (2 mg kg-1) acquired before and after PDT. Before PDT, the absorption spectra we measure include the characteristic MLu absorption

  11. Intestinal perfusion in the study of intestinal absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Several techniques for studying absorption by means of intestinal perfusion have been developed. While the principle is simple, the practice is complicated by absorption of the solvent and by excretion of fluid into the lumen. To improve reliability a ''marker'' is incorporated into the system; it should behave as nearly as possible like the nutrient of interest, except that it should be unabsorbable. A great many markers, including several labelled with radionuclides, have been developed for use with numerous nutrients, and perfusion methods using double or triple tubes or occlusive balloons have been tested. The perfusion technique is too complicated for routine diagnostic use, but it offers at present the only possibility of studying the function of defined sections of the small intestine in the intact human. (author)

  12. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Satoshi [Tohoku Univ., Sendai (Japan); Gogami, Toshiyuki [Tohoku Univ., Sendai (Japan); Tang, Liguang [Hampton Univ., Hampton, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  13. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  14. Near-Infrared Spectroscopic Study of Chlorite Minerals

    OpenAIRE

    Min Yang; Meifang Ye; Haihui Han; Guangli Ren; Ling Han; Zhuan Zhang

    2018-01-01

    The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 we...

  15. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be by Crisp (1977). (Auth.)

  16. Spectroscopic studies with the use of deep-inelastic heavy-ion reactions

    International Nuclear Information System (INIS)

    Broda, R

    2006-01-01

    Gamma spectroscopic studies exploiting deep-inelastic heavy-ion reactions in thick target experiments are reviewed. The description of physical motivation, history of early experiments, analysis of the N/Z equilibration process as well as the outline of the experimental method and data analysis are followed by the presentation of main results obtained in various regions of the nuclide chart. Brief comments on thin target spectroscopy experiments involving fragment detection and future outlook are summarized. (topical review)

  17. In vivo studies of biotin absorption in distal rat intestine

    International Nuclear Information System (INIS)

    Bowman, B.B.; Rosenberg, I.H.

    1986-01-01

    The authors have extended their previous studies of biotin absorption in rat proximal jejunum (PJ) to examine biotin absorptive capacity of rat ileum (I) and proximal colon (PC) using in vivo intestinal loop technique. Intestinal loops (2.5 cm) were filled with 0.3 ml of solution containing ( 3 H)-biotin and ( 14 C)-inulin in phosphate buffer, pH 6.5. Biotin absorption was determined on the basis of luminal biotin disappearance after correction for inulin recovery and averaged (pmol/loop-10 min; X +/- SEM). In related experiments, 5-cm loops of PJ, distal I (DI), or PC were filled with 0.5 ml of solution of similar composition (1.0 μM biotin). The abdominal cavity was closed and the rats were allowed to recover from anesthesia, then sacrificed 3 hr after injection. Biotin absorption averaged 96.2% (PJ), 93.2% (DI), and 25.8% (PC) of the dose administered. These differences were reflected in the radioactive biotin content of plasma and intestinal loop, kidney, and liver. These data demonstrate significant biotin absorption in rat DI and PC, as required if the intestinal microflora are to be considered as a source of biotin for the host

  18. A spectroscopic transfer standard for accurate atmospheric CO measurements

    Science.gov (United States)

    Nwaboh, Javis A.; Li, Gang; Serdyukov, Anton; Werhahn, Olav; Ebert, Volker

    2016-04-01

    Atmospheric carbon monoxide (CO) is a precursor of essential climate variables and has an indirect effect for enhancing global warming. Accurate and reliable measurements of atmospheric CO concentration are becoming indispensable. WMO-GAW reports states a compatibility goal of ±2 ppb for atmospheric CO concentration measurements. Therefore, the EMRP-HIGHGAS (European metrology research program - high-impact greenhouse gases) project aims at developing spectroscopic transfer standards for CO concentration measurements to meet this goal. A spectroscopic transfer standard would provide results that are directly traceable to the SI, can be very useful for calibration of devices operating in the field, and could complement classical gas standards in the field where calibration gas mixtures in bottles often are not accurate, available or stable enough [1][2]. Here, we present our new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor capable of performing absolute ("calibration free") CO concentration measurements, and being operated as a spectroscopic transfer standard. To achieve the compatibility goal stated by WMO for CO concentration measurements and ensure the traceability of the final concentration results, traceable spectral line data especially line intensities with appropriate uncertainties are needed. Therefore, we utilize our new high-resolution Fourier-transform infrared (FTIR) spectroscopy CO line data for the 2-0 band, with significantly reduced uncertainties, for the dTDLAS data evaluation. Further, we demonstrate the capability of our sensor for atmospheric CO measurements, discuss uncertainty calculation following the guide to the expression of uncertainty in measurement (GUM) principles and show that CO concentrations derived using the sensor, based on the TILSAM (traceable infrared laser spectroscopic amount fraction measurement) method, are in excellent agreement with gravimetric values. Acknowledgement Parts of this work have been

  19. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-01-01

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we find that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.

  20. Single-Shot MR Spectroscopic Imaging with Partial Parallel Imaging

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2010-01-01

    An MR spectroscopic imaging (MRSI) pulse sequence based on Proton-Echo-Planar-Spectroscopic-Imaging (PEPSI) is introduced that measures 2-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3 T whole body scanner equipped with 12-channel array coil. Four-step interleaved phase encoding and 4-fold SENSE acceleration were used to encode a 16×16 spatial matrix with 390 Hz spectral width. Comparison with conventional PEPSI and PEPSI with 4-fold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of Inositol, Choline, Creatine and NAA in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement. PMID:19097245

  1. High performance direct absorption spectroscopy of pure and binary mixture hydrocarbon gases in the 6-11 μm range

    Science.gov (United States)

    Heinrich, Robert; Popescu, Alexandru; Hangauer, Andreas; Strzoda, Rainer; Höfling, Sven

    2017-08-01

    The availability of accurate and fast hydrocarbon analyzers, capable of real-time operation while enabling feedback-loops, would lead to a paradigm change in the petro-chemical industry. Primarily gas chromatographs measure the composition of hydrocarbon process streams. Due to sophisticated gas sampling, these analyzers are limited in response time. As hydrocarbons absorb in the mid-infrared spectral range, the employment of fast spectroscopic systems is highly attractive due to significantly reduced maintenance costs and the capability to setup real-time process control. New developments in mid-infrared laser systems pave the way for the development of high-performance analyzers provided that accurate spectral models are available for multi-species detection. In order to overcome current deficiencies in the availability of spectroscopic data, we developed a laser-based setup covering the 6-11 μm wavelength range. The presented system is designated as laboratory reference system. Its spectral accuracy is at least 6.6× 10^{-3} cm^{-1} with a precision of 3× 10^{-3} cm^{-1}. With a "per point" minimum detectable absorption of 1.3× 10^{-3} cm^{-1} Hz^{{-}{1/2}} it allows us to perform systematic measurements of hydrocarbon spectra of the first 7 alkanes under conditions which are not tabulated in spectroscopic database. We exemplify the system performance with measured direct absorption spectra of methane, propane, iso-butane, and a mixture of methane and propane.

  2. Confirming LBV Candidates Through Variability: A Photometric and Spectroscopic Monitoring Study

    Science.gov (United States)

    Stringfellow, Guy; Gvaramadze, Vasilii

    2013-02-01

    Luminous Blue Variable (LBV) stars represent an extremely rare class of luminous massive stars with high mass loss rates. The paucity ( 12) of confirmed Galactic LBV precludes determining a solid evolutionary connection between LBV and other intermediate (e.g. Ofpe/WN9, WNL) phases in the life of very massive stars. We've been conducting an optical/near-IR spectral survey of a large subset of central stars residing within newly discovered it Spitzer nebulae and have identified over two dozen new candidate LBVs (cLBVs) based on spectral similarity alone; confirming them as bona fide LBVs requires demonstrating 1-3 mag photometric and spectroscopic variability. This marks a significant advancement in the study of massive stars, far outweighing the return from many studies searching for LBVs and WRs the past several decades. Monitoring from semesters 2011B-2012A already has confirmed one new cLBV as a bona fide LBV. We propose to continue optical-IR photometric monitoring of these cLBVS with the 1.3m. Chiron, replacing the RC spectrograph on the 1.5m, now allows high-resolution optical spectroscopic monitoring of bright cLBVs, 11 of which are proposed herein. Spectra are important for understanding the physics driving photometric variability, properties of the wind, and allow analysis of line profiles.

  3. A laboratory experimental setup for photo-absorption studies using synchrotron radiation

    CERN Document Server

    Shastri, A; Saraswati, P; Sunanda, K

    2002-01-01

    The photophysics beamline, which is being installed at the 450 MeV Synchrotron Radiation Source (SRS), Indus-l, is a medium resolution beamline useful for a variety of experiments in the VUV region viz. 500-2000 A. One of the major applications of this beamline is gas-phase photo-absorption studies. An experimental set up to be used for these experiments was designed, developed and tested in our laboratory. The setup consists of a high vacuum absorption cell, 1/4 m monochromator and detection system. For the purpose of testing, xenon and tungsten continuum sources were used and absorption spectra were recorded in the UV region. This setup was used to record the absorption spectrum of a few molecules like acetone, ammonia, benzene, formaldehyde and acetaldehyde in order to evaluate the performance of the experimental system which will subsequently be used with the photophysics beamline. Details of the design, fabrication and testing of the absorption cell and experimental procedures are presented in this repor...

  4. Evaluation of Optical Depths and Self-Absorption of Strontium and Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy (LIBS).

    Science.gov (United States)

    Alfarraj, Bader A; Bhatt, Chet R; Yueh, Fang Yu; Singh, Jagdish P

    2017-04-01

    Laser-induced breakdown spectroscopy (LIBS) is a widely used laser spectroscopic technique in various fields, such as material science, forensic science, biological science, and the chemical and pharmaceutical industries. In most LIBS work, the analysis is performed using radiative transitions from atomic emissions. In this study, the plasma temperature and the product [Formula: see text] (the number density N and the absorption path length [Formula: see text]) were determined to evaluate the optical depths and the self-absorption of Sr and Al lines. A binary mixture of strontium nitrate and aluminum oxide was used as a sample, consisting of variety of different concentrations in powder form. Laser-induced breakdown spectroscopy spectra were collected by varying various parameters, such as laser energy, gate delay time, and gate width time to optimize the LIBS signals. Atomic emission from Sr and Al lines, as observed in the LIBS spectra of different sample compositions, was used to characterize the laser induced plasma and evaluate the optical depths and self-absorption of LIBS.

  5. Spectroscopic study of the microbial community in chemocline zones of relic meromictic lakes separating from the White Sea

    Science.gov (United States)

    Kharcheva, Anastasia V.; Krasnova, Elena D.; Voronov, Dmitry A.; Patsaeva, Svetlana V.

    2015-03-01

    As a result of a recent years study on the Karelia shore of the White Sea more than ten relict lakes in different stages of separation from the sea have been discovered. Five of them are located close to the Nikolai Pertsov White Sea Biological Station of Moscow State University. Such separated lakes are interesting to explore for their firm vertical stratification. Water layers differ not only by temperature, salinity and other physic and chemical characteristics and optical properties, but also by ibhabiting microorganisms and by the quality of dissolved organic matter. To study phototropic organisms in water sampled from different depths we used spectroscopic techniques. Identification of the main bands in the absorption and fluorescence spectra showed that there are two main groups of photosynthetic organisms in the redox zone (chemocline): unicellular algae containing chlorophyll a and green sulfur bacteria with bacteriochlorophylls c, d, e. Spectral data were compared with physical and chemical characteristics of the water layer (temperature, salinity, pH, dissolved oxygen and sunlight illumination at certain depth). It gave an opportunity to compare vertical profiles of oxygen and hydrogen sulphide concentration with the number and distribution of oxygenic and anoxygenic phototrophic microorganisms. Maximum abundance of both algae and green sulfur bacteria were achieved within the redox zone. Typical thickness of the layer with the highest concentration of microorganisms did not exceed 10-20 cm.

  6. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Science.gov (United States)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-05-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader's quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN (1Σ) and hydrideisocyanidezinc HZnNC (1Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]+ composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn+ (2Σ) and HCNZn+ (2Σ).

  7. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    International Nuclear Information System (INIS)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen

    2015-01-01

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ( 1 Σ) and hydrideisocyanidezinc HZnNC ( 1 Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn] + composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn + ( 2 Σ) and HCNZn + ( 2 Σ)

  8. Structure and spectroscopic properties of neutral and cationic tetratomic [C,H,N,Zn] isomers: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Largo, Antonio; Vega-Vega, Álvaro; Barrientos, Carmen, E-mail: cbb@qf.uva.es [Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain)

    2015-05-14

    The structure and spectroscopic parameters of the most relevant [C,H,N,Zn] isomers have been studied employing high-level quantum chemical methods. For each isomer, we provide predictions for their molecular structure, thermodynamic stabilities as well as vibrational and rotational spectroscopic parameters which could eventually help in their experimental detection. In addition, we have carried out a detailed study of the bonding situations by means of a topological analysis of the electron density in the framework of the Bader’s quantum theory of atoms in molecules. The analysis of the relative stabilities and spectroscopic parameters suggests two linear isomers of the neutral [C,H,N,Zn] composition, namely, cyanidehydridezinc HZnCN ({sup 1}Σ) and hydrideisocyanidezinc HZnNC ({sup 1}Σ), as possible candidates for experimental detections. For the cationic [C,H,N,Zn]{sup +} composition, the most stable isomers are the ion-molecule complexes arising from the direct interaction of the zinc cation with either the nitrogen or carbon atom of either hydrogen cyanide or hydrogen isocyanide, namely, HCNZn{sup +} ({sup 2}Σ) and HCNZn{sup +} ({sup 2}Σ)

  9. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  10. Multi-spectroscopic and molecular docking studies on the interaction of darunavir, a HIV protease inhibitor with calf thymus DNA.

    Science.gov (United States)

    Shi, Jie-Hua; Zhou, Kai-Li; Lou, Yan-Yue; Pan, Dong-Qi

    2018-03-15

    Molecular interaction of darunavir (DRV), a HIV protease inhibitor with calf thymus deoxyribonucleic acid (ct-DNA) was studied in physiological buffer (pH7.4) by multi-spectroscopic approaches hand in hand with viscosity measurements and molecular docking technique. The UV absorption and fluorescence results together revealed the formation of a DRV-ct-DNA complex having binding affinities of the order of 10 3 M -1 , which was more in keeping with the groove binding. The results that DRV bound to ct-DNA via groove binding mode was further evidenced by KI quenching studies, viscosity measurements, competitive binding investigations with EB and Rhodamine B and CD spectral analysis. The effect of ionic strength indicated the negligible involvement of electrostatic interaction between DRV and ct-DNA. The thermodynamic parameters regarding the binding interaction of DRV with ct-DNA in terms of enthalpy change (ΔH 0 ) and entropy change (ΔS 0 ) were -63.19kJ mol -1 and -141.92J mol -1 K -1 , indicating that hydrogen bonds and van der Waals forces played a predominant role in the binding process. Furthermore, molecular simulation studies suggested that DRV molecule was prone to bind in the A-T rich region of the minor groove of DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A VISION OF ORKUT´S USERS: STUDYING THIS PHENOMENON THROUGH COGNITIVE ABSORPTION

    Directory of Open Access Journals (Sweden)

    Mauri Leodir Löbler

    2011-05-01

    Full Text Available This study aims to identify the influence that Cognitive Absorption has on the intention of using Orkut. It happens due to the fact that Cognitive Absorption is related to the state of deep involvement users carry with an individual task, performed with the support of Information Technology (IT; it corroborates the study on this virtual community. Therefore, through descriptive research with a quantitative character and with the aid of structural equations, 645 Orkut users were investigated. After the identification of suitability of all indexes tested and fit for both constructs and the final model. The conclusion drawn is that Cognitive Absorption explains the 41% intention of using Orkut, emphasizing that for this kind of IT the Cognitive Absorption seems perfectly adequate to measure the Intention of Use.

  12. Study of /sup 137/Cs absorption by Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Bergamini, P G; Palmas, G; Piantelli, F; Sani, M [Siena Univ. (Italy). Ist. di Fisica; Banditelli, P; Previtera, M; Sodi, F

    1979-09-01

    Absorption of /sup 137/Cs by the floating aquatic plant Lemna minor in relation to /sup 137/Cs concentration in the water was measured under controlled conditions of temperature, pH and light. The method used to analyse the results is described. When applied to this study the method shows the influence on /sup 137/Cs absorption of (1) potassium-cesium exchange due to chemical affinity, (2) the natural colony growth of the organism and (3) the effect of light. Concentration factors were determined for these three processes.

  13. Studies of selected transuranium and lanthanide tri-iodides under pressure using absorption spectrophotometry

    International Nuclear Information System (INIS)

    Haire, R.G.; Young, J.P.; Peterson, J.R.; Tennessee Univ., Knoxville; Benedict, U.

    1987-01-01

    The anhydrous tri-iodides of plutonium, americium and curium under pressure have been investigated using absorption spectrophotometry. These initial studies on plutonium and curium tri-iodides together with the published data for americium tri-iodide show that the rhombohedral form of these compounds (BiI 3 -type structure) can be converted to the orthorhombic form (PuBr 3 -type structure) by applying pressure at room temperature. Absorption spectrophotometry can often differentiate between two crystallographic forms of a material and has been used in the present high-pressure studies to monitor the effects of pressure on the tri-iodides. A complication in these studies of the tri-iodides is a significant shift of their absorption edges with pressure from the near UV to the visible spectral region. With curium tri-iodide this shift causes interference with the major f-f absorption peaks and precludes identification by absorption spectrophotometry of the high pressure phase of CmI 3 . (orig.)

  14. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Terry [The Ohio State Univ., Columbus, OH (United States)

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work has demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.

  15. Non-resonant microwave absorption studies of superconducting ...

    Indian Academy of Sciences (India)

    Abstract. Non-resonant microwave absorption (NRMA) studies of superconducting MgB2 and a sample containing 10% by weight of MgO in MgB2 are reported. The NRMA results indicate near absence of intergranular weak links in the pure MgB2 sample. A linear temperature dependence of the lower critical field Hc1 is ...

  16. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Allers, K. N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C., E-mail: k.allers@bucknell.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  17. Modelling the effect of absorption from the interstellar medium on transient black hole X-ray binaries

    Science.gov (United States)

    Eckersall, A. J.; Vaughan, S.; Wynn, G. A.

    2017-10-01

    All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.

  18. Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene and its copper (II), nickel (II) and zinc (II) complexes: a novel fluorescence sensor

    International Nuclear Information System (INIS)

    Ressalan, S.; Iyer, C.S.P.

    2005-01-01

    Absorption and fluorescence spectroscopic properties of 3-hydroxy-3-phenyl-1-o-carboxyphenyltriazene (HT) are studied. The mechanism of photo-induced electron transfer (PET) followed by energy transfer process of the ligand and the Cu (II), Ni (II) and Zn (II) metal complexes have been investigated. The excited state photo induced intramolecular hydrogen transfer from N-OH to triazene 1-nitrogen atom is explained. The effect of pH, solvent and concentration on the absorption and fluorescence of the ligand is studied and it has been found that the absorption and fluorescence of HT is highly pH, solvent and concentration dependent. Participation of the N-OH proton of HT in the solvent assisted O to N-proton transfer has also been proposed. The fluorescence band shift and changes in intensity is modulated by protonation and complexation with metal ions. This fluorophore can thus be used as a pH dependent and M (n+1)+ /M n+ redox on/off switchable molecular sensor

  19. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  20. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, Jane G. [Stanford Univ., CA (United States)

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 Å. The Fe-Fe distance was determined to be 3.4 Å. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  1. Mössbauer spectroscopic study of cobalt hexacyanoferrate nanoparticles: Effect of hydrogenation

    Science.gov (United States)

    Kumar, Asheesh; Kanagare, A. B.; Meena, Sher Singh; Banerjee, S.; Kumar, P.; Sudarsan, V.

    2018-04-01

    This paper reports Mössbauer study of cobalt hexacyanoferrate (CoHCF) before and after hydrogenation. The CoHCF was synthesised by chemical precipitation method. The sample was characterized by using various techniques (XRD, TG, EDX and FTIR). The CoHCF paricles show fcc structure. The hydrogen storage property was measured at different temperature. The COHCF shows maximum 0.93 wt% hydrogen storage capacity at 223K. 57Fe Mössbauer spectroscopic study shows the effect of hydrogenation on the electronic structure in terms of electronic charge distribution and volume expansion. Isomer shift and quadrupole splitting values were found to be increased after hydrogenation.

  2. Hyperfine structure of 147,149Sm measured using saturated absorption spectroscopy in combination with resonance-ionization mass spectroscopy

    International Nuclear Information System (INIS)

    Park, Hyunmin; Lee, Miran; Rhee, Yongjoo

    2003-01-01

    The hyperfine structures of four levels of the Sm isotopes have been measured by means of diode-laser-based Doppler-free saturated absorption spectroscopy in combination with a diode-laser-initiated resonance-ionization mass spectroscopy. It was demonstrated that combining the two spectroscopic methods was very effective for the identification and accurate measurement of the spectral lines of atoms with several isotopes, such as the rare-earth elements. From the obtained spectra, the hyperfine constants A and B for the odd-mass isotopes 147 Sm and 149 Sm were determined for four upper levels of the studied transitions.

  3. Spectroscopic investigations of novel pharmaceuticals: Stability and resonant interaction with laser beam

    Science.gov (United States)

    Smarandache, Adriana; Boni, Mihai; Andrei, Ionut Relu; Handzlik, Jadwiga; Kiec-Kononowicz, Katarzyna; Staicu, Angela; Pascu, Mihail-Lucian

    2017-09-01

    This paper presents data about photophysics of two novel thio-hydantoins that exhibit promising pharmaceutical properties in multidrug resistance control. Time stability studies are necessary to establish the proper use of these compounds in different applications. As for their administration as drugs, it is imperative to know their shelf life, as well as storage conditions. At the same time, laser induced modified properties of the two new compounds are valuable to further investigate their specific interactions with other materials, including biological targets. The two new thio-hydantoins under generic names SZ-2 and SZ-7 were prepared as solutions in dimethyl sulfoxide at different concentrations, as well as in deionised water. For the stability assay they were kept in various light/temperature conditions up to 60 days. The stability was estimates based on UV-vis absorption measurements. The samples in bulk shape were exposed different time intervals to laser radiation emitted at 266 nm as the fourth harmonic of a Nd:YAG laser. The resonant interaction of the studied compounds with laser beams was analysed through spectroscopic methods UV-vis and FTIR absorption, as well as laser induced fluorescence spectroscopy. As for stability assay, only solutions kept in dark at 4 °C have preserved the absorption characteristics, considering the cumulated measuring errors, less than one week. The vibrational changes that occur in their FTIR and modified fluorescence spectra upon laser beam exposure are also discussed. A result of the experimental analysis is that modifications are induced in molecular structures of the investigated compounds by resonant interaction with laser radiation. This fact evidences that the molecules are photoreactive and their characteristics might be shaped through controlled laser radiation exposure using appropriate protocols. This conclusion opens many opportunities both in the biomedical field, but also in other industrial activities

  4. Spectroscopic properties of Er3+/Yb3+ Co-doped zinc boro-tellurite glasses for 1.5 xB5m broadband optical amplifiers

    Science.gov (United States)

    Suthanthirakumar, P.; Karthikeyan, P.; Vijayakumar, R.; Marimuthu, K.

    2015-06-01

    A new series of Er3+/Yb3+ co-doped Zinc boro-tellurite glasses with the chemical composition (40-x-y)B2O3+ 25TeO2+20ZnO+15BaO+xYb2O3+yEr2O3 (where x = 0.1, 0.5, 1 and 3; y =1 in wt %) were prepared by melt quenching technique and their spectroscopic behavior were studied through UV-Vis-NIR absorption and NIR luminescence measurements. The bonding parameters (β ¯ and δ) and Judd-Ofelt (JO) intensity parameters Ωλ (λ=2, 4 and 6) have been calculated from the band positions of the absorption spectra. A broad near-infrared emission band at 1540 nm with a full width at half maximum around 80 nm was observed from the NIR luminescence spectra by monitoring an excitation at 980 nm. The absorption cross-section and emission cross-section for the4I13/2→4I15/2 transition of the Er3+ ions were also determined using McCumber theory and the results were discussed and reported.

  5. A detailed spectroscopic study of an Italian fresco

    International Nuclear Information System (INIS)

    Barilaro, Donatella; Crupi, Vincenza; Majolino, Domenico; Barone, Germana; Ponterio, Rosina

    2005-01-01

    In the present work we characterized samples of plasters and pictorial layers taken from a fresco in the Acireale Cathedral. The fresco represents the Coronation of Saint Venera, patron saint of this Ionian town. By performing a detailed spectroscopic analysis of the plaster preparation layer by Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD), and of the painting layer by FTIR and confocal Raman microspectroscopy, scanning electron microscopy+energy dispersive x-ray spectroscopy, and XRD, we were able to identify the pigments and the binders present. In particular, Raman investigation was crucial to the characterization of the pigments thanks to the high resolution of the confocal apparatus used. It is worth stressing that the simultaneous use of complementary techniques was able to provide more complete information for the conservation of the artifact we studied

  6. The use of absorption spectroscopy of plutonium to minimize waste streams

    International Nuclear Information System (INIS)

    Vaughn, R.B.; Berg, J.; Cisneros, M.

    1997-01-01

    Through the use of absorption spectroscopy we are better able to understand the chemical reactions of plutonium and other actinide elements in solution. In many cases such an understanding can minimize the generation of waste streams by suggesting more optimal chemical conditions for separating these radioactive elements from their host matrix. Many processes are developed using an empirical approach with little understanding of what is actually taking place. One such example is the anion exchange process for Plutonium purification. Various resins have been tested in various solutions and workable outcomes have been produced. However, absorption spectroscopy provides an understanding of why ion exchange works and can determine which compounds complex best with actinides in order to obtain a more efficient and effective separations process. This presentation will touch on the chemistry involved, the spectroscopic instrumentation, and the environmental impacts. Primarily the talk will focus on the chemical technicians involvement in the day to day research, the obstacles encountered, and the environment in which this research was conducted

  7. Spectroscopic Observations of Nearby Low Mass Stars

    Science.gov (United States)

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  8. Interaction of Lysozyme with Rhodamine B: A combined analysis of spectroscopic & molecular docking.

    Science.gov (United States)

    Millan, Sabera; Satish, Lakkoji; Kesh, Sandeep; Chaudhary, Yatendra S; Sahoo, Harekrushna

    2016-09-01

    The interaction of Rhodamine B (RB) with Lysozyme (Lys) was investigated by different optical spectroscopic techniques such as absorption, fluorescence, and circular-dichroism (CD), along with molecular docking studies. The fluorescence results (including steady-state and time-resolved mode) revealed that the addition of RB effectively causes strong quenching of intrinsic fluorescence in Lysozyme and mostly, by the static quenching mechanism. Different binding and thermodynamic parameters were calculated at different temperatures and the binding constant value was found to be 2963.54Lmol(-1) at 25°C. The average distance (r0) was found to be 3.31nm according to Förster's theory of non-radiative energy transfer between Lysozyme and RB. The conformational change in Lysozyme during interaction with RB was confirmed from absorbance, synchronous fluorescence, and circular dichroism measurements. Finally, molecular docking studies were done to confirm that the dye binds with Lysozyme. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Photo-induced absorption spectroscopy on organic, photovoltaically active donor-acceptor heterojunctions; Photoinduzierte Absorptionsspektroskopie an organischen, photovoltaisch aktiven Donor-Akzeptor-Heterouebergaengen

    Energy Technology Data Exchange (ETDEWEB)

    Schueppel, Rico

    2007-07-01

    Starting from some general considerations about organic semiconductors first the foundations of molecular crystals, their spectroscopic properties, as well as the mechanisms, on which the exharge-carrier generation is based, are presented. The functionality of the organic solar cells is then explained. The applied experimental techniques are thereafter explained. Special regards gets the photo-induced and transient absorption. Thed the dicyanovinyl-oligothiophene studied in this thesis are presented, whereby the characteristics fitted to the heterojunction with the fullerene C{sub 60} are discussed. Then the photo-induced absorption in this system is presented. In these studies an indirect occupation of the triplet starte of the oligothiophene derivates at the heterojunction with C{sub 60} is observed. The application of the oligothiophene derivates in organic solar cells is thereafter described. Thereby especially the correlation between reached zero voltage and the fitting of the energy levels at the DCVnT:C{sub 60} junction is considered. Furthermore the data of the solar cells are discussed in view of the statements on the charge-carrier separation at the heterojunction with C{sub 60} obtained from the photo-induced absorption.

  10. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  11. Spectroscopic classification of transients

    DEFF Research Database (Denmark)

    Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.

    2017-01-01

    We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....

  12. Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine: structural, spectroscopic, and theoretical studies.

    Science.gov (United States)

    Chan, Siu-Chung; Cheung, Ho-Yuen; Wong, Chun-Yuen

    2011-11-21

    Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine (ON(^)N) and tetradentate thioether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4), [Ru(ON(^)N)([14]aneS4)](2+) [ON(^)N = 2-(2-nitrosophenyl)pyridine (2a), 10-nitrosobenzo[h]quinoline (2b), 2-(2-nitroso-4-methylphenyl)pyridine, (2c), 2-(2-nitrosophenyl)-5-(trifluoromethyl)pyridine (2d)] and analogues with the 1,4,7-trithiacyclononane ([9]aneS3)/tert-butylisocyanide ligand set, [Ru(ON(^)N)([9]aneS3)(C≡N(t)Bu)](2+) (4a and 4b), have been prepared by insertion of a nitrosonium ion (NO(+)) into the Ru-aryl bond of cyclometalated ruthenium(II) complexes. The molecular structures of the ON(^)N-ligated complexes 2a and 2b reveal that (i) the ON(^)N ligands behave as bidentate chelates via the two N atoms and the bite angles are 86.84(18)-87.83(16)° and (ii) the Ru-N(NO) and N-O distances are 1.942(5)-1.948(4) and 1.235(6)-1.244(5) Å, respectively. The Ru-N(NO) and N-O distances, together with ν(N═O), suggest that the coordinated ON(^)N ligands in this work are neutral moiety (ArNO)(0) rather than monoanionic radical (ArNO)(•-) or dianion (ArNO)(2-) species. The nitrosated complexes 2a-2d show moderately intense absorptions centered at 463-484 nm [ε(max) = (5-6) × 10(3) dm(3) mol(-1) cm(-1)] and a clearly discriminable absorption shoulder around 620 nm (ε(max) = (6-9) × 10(2) dm(3) mol(-1) cm(-1)), which tails up to 800 nm. These visible absorptions are assigned as a mixing of d(Ru) → ON(^)N metal-to-ligand charge-transfer and ON(^)N intraligand transitions on the basis of time-dependent density functional theory (TD-DFT) calculations. The first reduction couples of the nitrosated complexes range from -0.53 to -0.62 V vs Cp(2)Fe(+/0), which are 1.1-1.2 V less negative than that for [Ru(bpy)([14]aneS4)](2+) (bpy = 2,2'-bipyridine). Both electrochemical data and DFT calculations suggest that the lowest unoccupied molecular orbitals of the nitrosated complexes are ON(^)N-centered. Natural population

  13. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    Science.gov (United States)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  14. Thermophysical and spectroscopic studies of room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate in Tritons

    International Nuclear Information System (INIS)

    Chaudhary, Ganga Ram; Bansal, Shafila; Mehta, S.K.; Ahluwalia, A.S.

    2012-01-01

    Highlights: ► Thermophysical studies of new formulations of [BMIM][PF 6 ]+TX(45,100) have been made. ► Strong intermolecular interactions between [BMIM][PF 6 ] and TX (45, 100) is observed. ► Magnitude of interactions increases with the addition of oxyethylene groups in TX. ► With rise in temperature, intermolecular interactions increases. ► Spectroscopic studies show that interactions are via aromatic rings of RTIL and TX. - Abstract: The thermophysical properties viz. density ρ, speed of sound u, and specific conductivity κ of pure room temperature ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate) and its binary formulations with Triton X-45 and Triton X-100 have been studied over the entire composition range at different temperatures (293.15 to 323.15) K. Excess molar volume V E , deviation in isentropic compressibility ΔK S , partial molar excess volume V i E , deviation in partial molar isentropic compressibility ΔK S,i , deviation in specific conductivity Δκ have also been estimated and analysed. Spectroscopic properties (IR, 1 H and 13 C NMR) of these mixtures have been investigated in order to understand the structural and interactional behaviour of formulations studied. The magnitude of interactions between the two components increases with addition of number of oxyethylene groups in Tritons and with rise in temperature. Spectroscopic measurements indicate that interactions are mainly taking place through the five member ring of room temperature ionic liquid and six member ring of Tritons.

  15. Raman spectroscopic studies on CeVO4 at high pressures

    International Nuclear Information System (INIS)

    Rao, Rekha; Garg, Alka B.; Wani, B.N.

    2011-01-01

    Raman scattering investigations of CeVO 4 at high pressures is reported. Polycrystalline CeVO 4 was prepared by solid state reaction of CeO 2 and V 2 O 5 . High pressure Raman spectroscopic measurements were carried out as per experimental details given

  16. Spectroscopic Study of Green Tea (Camellia sinensis) Leaves Extraction

    Science.gov (United States)

    Marzuki, A.; Suryanti, V.; Virgynia, A.

    2017-04-01

    This paper reports the analysis of UV-VIS-NIR absorption spectra of different concentrations of green tea (Camellia sinensis) leaf extract in two different solvent systems (chloroform and ethyl acetate). In those solvents, two different peaks characterizing green tea are observed at different wavelengths, namely 296 nm and 329 nm (extracted in chloroform) and 391 nm and 534 nm (extracted in ethyl acetate). We then investigated the absorption spectra change as function of green tea concentration in both solvents. We found that light absorption increases linearly with the increase of green tea concentration. Different wavelengths, however, respond this change differently. However, the way it changes is wavelength dependence.

  17. Growth and spectroscopic properties of Tm3+:NaBi(MoO4)2 single crystal

    Science.gov (United States)

    Gusakova, N. V.; Mudryi, A. V.; Demesh, M. P.; Yasukevich, A. S.; Pavlyuk, A. A.; Kornienko, A. A.; Dunina, E. B.; Khodasevich, I. A.; Orlovich, V. A.; Kuleshov, N. V.

    2018-06-01

    In this work we report the spectroscopic properties of Tm3+:NaBi(MoO4)2 crystals with the dopant concentrations of 0.7 at.% and 3 at.%. The energy levels of the Tm3+ in the NaBi(MoO4)2 host were determined from polarized optical absorption and photoluminescence spectra measured at 77.4 K. Radiative properties of the crystals were calculated in context of Judd-Ofelt theory. Raman spectra of the crystal were studied. The concentration dependences of emission decay times of 3H4 and 3F4 levels were analyzed. The potential of the crystal for building tunable and ultrafast pulse lasers is shown on the base of cross sections and gain coefficient in the range of 1.9 μm.

  18. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Science.gov (United States)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  19. The Mean Metal-line Absorption Spectrum of Damped Ly α Systems in BOSS

    Energy Technology Data Exchange (ETDEWEB)

    Mas-Ribas, Lluís [Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029, NO-0315 Oslo (Norway); Miralda-Escudé, Jordi; Pérez-Ràfols, Ignasi; Arinyo-i-Prats, Andreu [Institut de Ciències del Cosmos, Universitat de Barcelona (UB-IEEC), Barcelona E-08028, Catalonia (Spain); Noterdaeme, Pasquier; Petitjean, Patrick [Institut d’Astrophysique de Paris, UPMC and CNRS, UMR7095 98bis Boulevard Arago, F-75014—Paris (France); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); York, Donald G. [Department of Astronomy and Astrophysics and the Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Ge, Jian, E-mail: l.m.ribas@astro.uio.no [Department of Astronomy, University of Florida, Bryant Space Science Center, Gainesville, FL 32611-2055 (United States)

    2017-09-01

    We study the mean absorption spectrum of the Damped Ly α (DLA) population at z ∼ 2.6 by stacking normalized, rest-frame-shifted spectra of ∼27,000 DLA systems from the DR12 of the Baryon Oscillation Spectroscopic Survey (BOSS)/SDSS-III. We measure the equivalent widths of 50 individual metal absorption lines in five intervals of DLA hydrogen column density, five intervals of DLA redshift, and overall mean equivalent widths for an additional 13 absorption features from groups of strongly blended lines. The mean equivalent width of low-ionization lines increases with N {sub H} {sub i}, whereas for high-ionization lines the increase is much weaker. The mean metal line equivalent widths decrease by a factor ∼1.1–1.5 from z ∼ 2.1 to z ∼ 3.5, with small or no differences between low- and high-ionization species. We develop a theoretical model, inspired by the presence of multiple absorption components observed in high-resolution spectra, to infer mean metal column densities from the equivalent widths of partially saturated metal lines. We apply this model to 14 low-ionization species and to Al iii, S iii, Si iii, C iv, Si iv, N v, and O vi. We use an approximate derivation for separating the equivalent width contributions of several lines to blended absorption features, and infer mean equivalent widths and column densities from lines of the additional species N i, Zn ii, C ii*, Fe iii, and S iv. Several of these mean column densities of metal lines in DLAs are obtained for the first time; their values generally agree with measurements of individual DLAs from high-resolution, high signal-to-noise ratio spectra when they are available.

  20. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    Science.gov (United States)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  1. Subcutaneous insulin absorption explained by insulin's physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans.

    Science.gov (United States)

    Kang, S; Brange, J; Burch, A; Vølund, A; Owens, D R

    1991-11-01

    To study the influence of molecular aggregation on rates of subcutaneous insulin absorption and to attempt to elucidate the mechanism of absorption of conventional soluble human insulin in humans. Seven healthy male volunteers aged 22-43 yr and not receiving any drugs comprised the study. This study consisted of a single-blind randomized comparison of equimolar dosages of 125I-labeled forms of soluble hexameric 2 Zn2+ human insulin and human insulin analogues with differing association states at pharmaceutical concentrations (AspB10, dimeric; AspB28, mixture of monomers and dimers; AspB9, GluB27, monomeric). After an overnight fast and a basal period of 1 h, 0.6 nmol/kg of either 125I-labeled human soluble insulin (Actrapid HM U-100) or 125I-labeled analogue was injected subcutaneously on 4 separate days 1 wk apart. Absorption was assessed by measurement of residual radioactivity at the injection site by external gamma-counting. The mean +/- SE initial fractional disappearance rates for the four preparations were 20.7 +/- 1.9 (hexameric soluble human insulin), 44.4 +/- 2.5 (dimeric analogue AspB10), 50.6 +/- 3.9 (analogue AspB28), and 67.4 +/- 7.4%/h (monomeric analogue AspB9, GluB27). Absorption of the dimeric analogue was significantly faster than that of hexameric human insulin (P less than 0.001); absorption of monomeric insulin analogue AspB9, GluB27 was significantly faster than that of dimeric analogue AspB10 (P less than 0.01). There was an inverse linear correlation between association state and the initial fractional disappearance rates (r = -0.98, P less than 0.02). Analysis of the disappearance data on a log linear scale showed that only the monomeric analogue had a monoexponential course throughout. Two phases in the rates of absorption were identified for the dimer and three for hexameric human insulin. The fractional disappearance rates (%/h) calculated by log linear regression analysis were monomer 73.3 +/- 6.8; dimer 44.4 +/- 2.5 from 0 to 2 h and

  2. A spectroscopic study of uranium and molybdenum complexation within the pore channels of hybrid mesoporous silica

    Energy Technology Data Exchange (ETDEWEB)

    Charlot, Alexandre [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France); CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Dumas, Thomas [CEA, DEN, DTDC, SPDE, Laboratoire d' Interaction Ligands Actinides, Bagnols-sur-Ceze (France); Solari, Pier L. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint-Aubin, Gif-sur-Yvette (France); Cuer, Frederic [CEA, DEN, DTDC, SPDE, Laboratoire de Developpement des Procedes de Separation, Bagnols-sur-Ceze (France); Grandjean, Agnes [CEA, DEN, DTDC, SPDE, Laboratoire des Procedes Supercritiques de Separation, Bagnols-sur-Ceze (France)

    2017-01-18

    To enable the reduction of the environmental impact of nuclear energy generation, in this paper, we link the molecular and macroscopic behaviour of a functionalized material (TR rate at SBA15) used to extract uranium from sulfuric media. Two organic 3-[N,N-di(2-ethylhexyl)carbamoyl]-3-[ethoxy(hydroxy)phosphoryl]propanoic acid (TR) molecules grafted onto the solid are involved in the extraction process and form a 2:1 TR-U complex. FTIR and extended X-ray absorption fine structure (EXAFS) spectroscopic analyses show that the TR-U bond is realized through a phosphonate group in a monodentate fashion below pH 3, in agreement with the macroscopic observations. The first coordination sphere of the uranyl ion is completed by two monodentate sulfate ions and one water molecule. Above pH 3, the TR contribution decreases, and other inner-sphere complexes appear, which is consistent with the increased extraction observed on the macroscopic scale. Molybdenum, a competitor element, reduces the uranium extraction capacity but not its speciation, whereas polyoxomolybdates form inside the pores from the molybdenum in solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  5. The SPHEREx All-Sky Spectroscopic Survey

    Science.gov (United States)

    Unwin, Stephen C.; SPHEREx Science Team, SPHEREx Project Team

    2016-06-01

    SPHEREx is a mission to conduct an optical-near-IR survey of the entire sky with a spectrum at every pixel location. It was selected by NASA for a Phase A study in its Small Explorer Program; if selected, development would begin in 2016, and the observatory would start a 2-year prime mission in 2020. An all-sky spectroscopic survey can be used to tackle a wide range of science questions. The SPHEREx science team is focusing on three: (1) Probing the physics of inflation through measuring non-Gaussianity from the study of large-scale structure; (2) Studying the origin of water and biogenic molecules in a wide range of physical and chemical environments via ice absorption spectra; (3) Charting the history of star formation in the universe through intensity mapping of the large-scale spatial power. The instrument is a small wide-field telescope operating in the range of 0.75 - 4.8 µm at a spectral resolution of 41.5 in the optical and 150 at the long-wavelength end. It observes in a sun-sync low-earth orbit, covering the sky like WISE and COBE. SPHEREx is a simple instrument that requires no new technology. The Phase A design has substantial technical and resource margins and can be built with low risk. It is a partnership between Caltech and JPL, with Ball Aerospace and the Korea Astronomy and Space Science Institute as major partners. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  6. Characterizing Nanophase Materials on Mars: Spectroscopic Studies of Allophane and Imogolite

    Science.gov (United States)

    Jeute, Thomas; Baker, Leslie; Bishop, Janice; Rampe, Elizabeth; Abidin, Zaenal

    2017-01-01

    Allophane is an amorphous or poorly crystalline hydrous aluminosilicate material. Allophane's chemical structure represents a hollow nanosphere, 5-6 nm in diameter with 4-7 large pores in the structure. Identification of allophane and other amorphous and nanophase minerals on Mars has provided clues about the aqueous geochemical environment there. These materials likely represent partially altered or leached basaltic ash and therefore, could represent a geologic marker for where water was present on the Martian surface; as well as indicate regions of climate change, where surface water was not present long enough or sufficiently warm to form clays. Characterization of these materials is important for increasing spectral recognition capabilities using visible/near-infrared (VNIR) and thermal infrared (TIR) spectra of Mars. A suite of synthetic allophane samples was created using a method that has been modified to produce allophane with Fe isomorphically substituted for Al in octahedral coordination. Compositions of the materials range from high-Si allophane (molar Al:Si = 1:2) to protoimogolite (Al:Si = 2:1), with Fe(3+) and Fe(2+) isomorphically substituted for Al from 0-10 mol% of total Al. These compositions span the range observed in natural terrestrial allophanes. Fe K-edge X-ray absorption spectroscopy provided information on the speciation and electrochemical and structural position of Fe in the framework. Fourier transform infrared spectroscopy confirmed syntheses and demonstrated changes in infrared spectroscopic signature with Fe substitution. VNIR reflectance spectra and TIR Thermal infrared emissivity spectra were also collected for direct comparison to Martian data. By increasing spectral recognition capacities of nanophase materials, more accurate estimates can be made on the aqueous geochemical environment of Mars.

  7. Thermal, structural and spectroscopic investigations on Eu{sup 3+} doped boro-tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraju, K. [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Marimuthu, K., E-mail: mari_ram2000@yahoo.com [Department of Physics, Gandhigram Rural University, Gandhigram 624 302 (India); Seshagiri, T.K.; Godbole, S.V. [Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Fundamental O-H, (BO{sub 3}){sup -} vibrations and B-O-B linkages in borate network explored. Black-Right-Pointing-Pointer The covalent nature of the Eu{sup 3+} ions with surrounding ligands have been confirmed. Black-Right-Pointing-Pointer B3TMK glass is found to be the best optical candidate for laser working at 612 nm. - Abstract: Eu{sup 3+} doped boro-tellurite glasses with the chemical composition (69 - x)B{sub 2}O{sub 3}-xTeO{sub 2}-15Mg{sub 2}O-15K{sub 2}O-1Eu{sub 2}O{sub 3} (where x = 0, 10, 20, 30 and 40 wt%) have been synthesized and its thermal, structural and spectroscopic behavior were studied and reported. The thermal behavior of the Eu{sup 3+} doped boro-tellurite glasses were explored through DTA thermograms. The presence of varying tellurium dioxide results in structural and spectroscopic changes around Eu{sup 3+} ions and are explored through XRD, FTIR, UV-vis, Luminescence and lifetime measurements. The XRD pattern confirms the amorphous nature and the FTIR spectra reveal the formation of the local structural units BO{sub 3} and BO{sub 4} in the prepared glasses. The bonding parameters (-bar {beta} and {delta}) have been calculated based on the observed band positions of the absorption spectra. The Judd-Ofelt (JO) parameters were determined from the absorption and luminescence spectra and the results are presented. The variation in the JO intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4 and 6) and the hypersensitive band positions with the change in chemical composition have been discussed in detail. The JO parameters have been used to derive important radiative properties like transition probabilities (A), branching ratios ({beta}{sub R}) and peak stimulated emission cross section ({sigma}E/P) for the {sup 5}D{sub 0} {yields} {sup 7}F{sub J} (J = 1, 2, 3 and 4) transitions of the Eu{sup 3+} ions. The varying optical properties of the prepared glasses with the change in tellurium dioxide have

  8. Macroscopic and spectroscopic investigations on the immobilization of radionuclides by hardened cement paste

    International Nuclear Information System (INIS)

    Wieland, E.; Bonhoure, I.; Tits, J.; Scheidegger, A.M.; Bradbury, M.H.

    2002-01-01

    The uptake of safety-relevant radionuclides was studied using a combination of macroscopic (wet chemistry) and spectroscopic (X-ray absorption fine structure (XAFS) spectroscopy) techniques with the aim of gaining a mechanistic understanding of the uptake processes on hardened cement paste (HCP) and deducing robust sets of sorption values. HCP contains impurities of metal cations in the ppb to ppm concentration range. As a consequence, the inventories of stable isotopes are expected to be significant in a cementitious near-field and may even exceed the radionuclide inventories of the waste matrix for many safety-relevant radioelements. In view of the significant inventories of stable isotopes, it is suggested that isotopic exchange - replacement of stable isotopes by their radioactive counterparts in the cement matrix - is an important immobilisation process in HCP. However, it is not a priori known what proportion of each elemental inventory is available for isotopic exchange. Wet chemistry studies with Cs and Sr show that the total inventory of these elements is reversibly bound and that their partitioning between HCP and pore water can be modelled using the distribution values deduced from studies of the corresponding tracers ( 137 Cs and 85 Sr). This finding corroborates the relevance of isotopic exchange in cementitious systems. Wet chemistry investigations need to be complemented by spectroscopic techniques, e.g., XAFS, in order to gain a mechanistic understanding of the chemical processes by which waste ions become immobilised in cement-based matrices. XAFS can be used to obtain information at the atomic/molecular level, i.e., the type, number and distance of neighbouring atoms. XAFS studies on cementitious systems are still rather rare, and therefore information on the potential and limitations of this technique is sparse. Mechanistic aspects of the immobilisation processes are discussed for some safety-relevant radionuclides (e.g. Ni and Sr) using the

  9. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas

    International Nuclear Information System (INIS)

    Shah, M. L.; Pulhani, A. K.; Suri, B. M.; Gupta, G. P.

    2013-01-01

    Laser-induced steel plasma is generated by focusing a Q-switched Nd:YAG visible laser (532 nm wavelength) with an irradiance of ∼ 1 × 10 9 W/cm 2 on a steel sample in air at atmospheric pressure. An Echelle spectrograph coupled with a gateable intensified charge-coupled detector is used to record the plasma emissions. Using time-resolved spectroscopic measurements of the plasma emissions, the temperature and electron number density of the steel plasma are determined for many times of the detector delay. The validity of the assumption by the spectroscopic methods that the laser-induced plasma (LIP) is optically thin and is also in local thermodynamic equilibrium (LTE) has been evaluated for many delay times. From the temporal evolution of the intensity ratio of two Fe I lines and matching it with its theoretical value, the delay times where the plasma is optically thin and is also in LTE are found to be 800 ns, 900 ns and 1000 ns.

  10. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    Science.gov (United States)

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  11. Reduced and oxidised scytonemin: theoretical protocol for Raman spectroscopic identification of potential key biomolecules for astrobiology.

    Science.gov (United States)

    Varnali, Tereza; Edwards, Howell G M

    2014-01-03

    Scytonemin is an important UV-radiation protective biomolecule synthesised by extremophilic cyanobacteria in stressed terrestrial environments. Scytonemin and its reduced form have been both isolated experimentally and the Raman spectrum for scytonemin has been assigned and characterised experimentally both in extracts and in living extremophilic cyanobacterial colonies. Scytonemin is recognised as a key biomarker molecule for terrestrial organisms in stressed environments. We propose a new, theoretically plausible structure for oxidised scytonemin which has not been mentioned in the literature hitherto. DFT calculations for scytonemin, reduced scytonemin and the new structure modelled and proposed for oxidised scytonemin are reported along with their Raman spectroscopic data and λmax UV-absorption data obtained theoretically. Comparison of the vibrational spectroscopic assignments allows the three forms of scytonemin to be detected and identified and assist not only in the clarification of the major features in the experimentally observed Raman spectral data for the parent scytonemin but also support a protocol proposed for their analytical discrimination. The results of this study provide a basis for the search for molecules of this type in future astrobiological missions of exploration and the search for extinct and extant life terrestrially. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Spectroscopic properties of Er{sup 3+}-doped antimony oxide glass

    Energy Technology Data Exchange (ETDEWEB)

    Ouannes, K.; Soltani, M.T. [Laboratoire de Physique Photonique et Nanomatériaux Multifonctionnels, Université de Biskra, BP 145 RP, 07000 Biskra (Algeria); Poulain, M. [UMR 6226 – Verres et Céramiques – Campus de Beaulieu, Université' de Rennes 1, 35042 Rennes (France); Boulon, G.; Alombert-Goget, G.; Guyot, Y.; Pillonnet, A. [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne (France); Lebbou, K., E-mail: kheireddine.lebbou@univ-lyon1.fr [Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne (France)

    2014-08-01

    Highlight: • As a function of Er concentration, glasses corresponding to the 60Sb{sub 2}O{sub 3}–20WO{sub 3}–(19 − x) Na{sub 2}O–1Bi{sub 2}O{sub 3}, xEr{sub 2}O{sub 3} formula were prepared. The quantum efficiency shows that this glass could be promised for laser devices. - Abstract: Spectroscopic properties of Er{sup 3+} ions have been studied in the 60Sb{sub 2}O{sub 3}–20WO{sub 3}–19Na{sub 2}O–1Bi{sub 2}O{sub 3} (SWNB) glasses doped with 0.25 and 0.50 mol% Er{sub 2}O{sub 3} respectively. The Judd–Ofelt parameters measured from the absorption spectra have been used to calculate the radiative life-time (τ{sub r}) and the stimulated emission cross section. The low phonon energy, a reduced quenching effect and a high quantum efficiency of 90% for the 1.53 μm expected laser emission into pumping at 980 nm are in favor of promising material laser application.

  13. Electrochemical and spectroscopic studies of tungstencarbonyl complexes containing nitrogen and phosphorous ligands

    Directory of Open Access Journals (Sweden)

    Haddad Paula S.

    2000-01-01

    Full Text Available The present work deals with the synthesis, spectroscopic investigation and electrochemical behaviour of the compounds [W(CO4(bipy] (1, [W(CO3(bipy(dppm] (2 and [W(CO3(bipy(dppf] (3, bipy = 2,2'-bipyridine; dppm = bis(diphenylphosphinomethane; dppf = 1,1'-bis(diphenylphosphinoferrocene. The IR and 31P{¹H} NMR spectroscopic data have shown an octahedral coordination geometry for the tungsten atom with the diphosphines acting as monodentate ligands. The electrochemical behaviour of the complexes was investigated by cyclic voltammetry and controlled potential coulometry. Cyclic voltammograms have indicated that the compounds containing diphosphines ligands are more stable towards oxidation than compound (1.

  14. Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films

    Science.gov (United States)

    Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans

    2018-02-01

    Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.

  15. Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.

    Science.gov (United States)

    Posse, Stefan; Otazo, Ricardo; Tsai, Shang-Yueh; Yoshimoto, Akio Ernesto; Lin, Fa-Hsuan

    2009-03-01

    A magnetic resonance spectroscopic imaging (MRSI) pulse sequence based on proton-echo-planar-spectroscopic-imaging (PEPSI) is introduced that measures two-dimensional metabolite maps in a single excitation. Echo-planar spatial-spectral encoding was combined with interleaved phase encoding and parallel imaging using SENSE to reconstruct absorption mode spectra. The symmetrical k-space trajectory compensates phase errors due to convolution of spatial and spectral encoding. Single-shot MRSI at short TE was evaluated in phantoms and in vivo on a 3-T whole-body scanner equipped with a 12-channel array coil. Four-step interleaved phase encoding and fourfold SENSE acceleration were used to encode a 16 x 16 spatial matrix with a 390-Hz spectral width. Comparison with conventional PEPSI and PEPSI with fourfold SENSE acceleration demonstrated comparable sensitivity per unit time when taking into account g-factor-related noise increases and differences in sampling efficiency. LCModel fitting enabled quantification of inositol, choline, creatine, and N-acetyl-aspartate (NAA) in vivo with concentration values in the ranges measured with conventional PEPSI and SENSE-accelerated PEPSI. Cramer-Rao lower bounds were comparable to those obtained with conventional SENSE-accelerated PEPSI at the same voxel size and measurement time. This single-shot MRSI method is therefore suitable for applications that require high temporal resolution to monitor temporal dynamics or to reduce sensitivity to tissue movement.

  16. Evaluating the influence of particulate matter on spectroscopic measurements of a combusting flow

    Science.gov (United States)

    Herlan, Jonathan; Murray, Nathan

    2017-11-01

    An adiabatic table-top burner has been used to develop a method for estimating the temperature and concentration of OH in a measurement volume of a non-premixed, hydrogen-air flame. The estimation method uses a nonlinear curve-fitting routine to compare experimental absorption spectra with a model derived, using statistical mechanics, from the Beer-Lambert law. With the aim of applying this method to the analysis of rocket exhaust plumes, this study evaluates whether or not it provides faithful estimates of temperature and OH concentration when the combusting flow contains particulate matter-such as soot or tracers used for particle image velocimetry (PIV) measurements. The hydrogen line of the table-top burner will be seeded with alumina, Al2O3, particles and their influence on spectroscopic measurements elucidated. The authors wish to thank Mr. Bernard Jansen for his support and insight in laboratory activities.

  17. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  18. Thumb-size ultrasonic-assisted spectroscopic imager for in-situ glucose monitoring as optional sensor of conventional dialyzers

    Science.gov (United States)

    Nogo, Kosuke; Mori, Keita; Qi, Wei; Hosono, Satsuki; Kawashima, Natsumi; Nishiyama, Akira; Wada, Kenji; Ishimaru, Ichiro

    2016-03-01

    We proposed the ultrasonic-assisted spectroscopic imaging for the realization of blood-glucose-level monitoring during dialytic therapy. Optical scattering and absorption caused by blood cells deteriorate the detection accuracy of glucose dissolved in plasma. Ultrasonic standing waves can agglomerate blood cells at nodes. In contrast, around anti-node regions, the amount of transmitted light increases because relatively clear plasma appears due to decline the number of blood cells. Proposed method can disperse the transmitted light of plasma without time-consuming pretreatment such as centrifugation. To realize the thumb-size glucose sensor which can be easily attached to dialysis tubes, an ultrasonic standing wave generator and a spectroscopic imager are required to be small. Ultrasonic oscillators are ∅30[mm]. A drive circuit of oscillators, which now size is 41×55×45[mm], is expected to become small. The trial apparatus of proposed one-shot Fourier spectroscopic imager, whose size is 30×30×48[mm], also can be little-finger size in principal. In the experiment, we separated the suspension mixed water and micro spheres (Θ10[mm) into particles and liquid regions with the ultrasonic standing wave (frequency: 2[MHz]). Furthermore, the spectrum of transmitted light through the suspension could be obtained in visible light regions with a white LED.

  19. A new concept of efficient therapeutic drug monitoring using the high-resolution continuum source absorption spectrometry and the surface enhanced Raman spectroscopy

    Science.gov (United States)

    Xing, Yanlong; Fuss, Harald; Lademann, Jürgen; Huang, Mao Dong; Becker-Ross, Helmut; Florek, Stefan; Patzelt, Alexa; Meinke, Martina C.; Jung, Sora; Esser, Norbert

    2018-04-01

    In this study, a new therapeutic drug monitoring approach has been tested based on the combination of CaF molecular absorption using high-resolution continuum source absorption spectrometry (HR-CSAS) and surface enhanced Raman spectroscopy (SERS). HR-CSAS with mini graphite tube was successfully tested for clinical therapeutic drug monitoring of the fluorine-containing drug capecitabine in sweat samples of cancer patients: It showed advantageous features of high selectivity (no interference from Cl), high sensitivity (characteristic mass of 0.1 ng at CaF 583.069 nm), low sample consumption (down to 30 nL) and fast measurement (no sample pretreatment and less than 1 min of responding time) in tracing the fluorine signal out of capecitabine. However, this technique has the disadvantage of the total loss of the drug's structure information after burning the sample at very high temperature. Therefore, a new concept of combining HR-CSAS with a non-destructive spectroscopic method (SERS) was proposed for the sensitive sensing and specific identification of capecitabine. We tested and succeed in obtaining the molecular characteristics of the metabolite of capecitabine (named 5-fluorouracil) by the non-destructive SERS technique. With the results shown in this work, it is demonstrated that the combined spectroscopic technique of HR-CSAS and SERS will be very useful in efficient therapeutic drug monitoring in the future.

  20. Spectroscopic study of honey from Apis mellifera from different regions in Mexico

    Science.gov (United States)

    Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.

    2017-05-01

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  1. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  2. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    Science.gov (United States)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  3. Higher-order interactions in molecular collisions studied by a novel laser spectroscopic method

    International Nuclear Information System (INIS)

    Kajita, M.; Tachikawa, M.; Shimizu, T.

    1986-01-01

    This is the first systematic experiment to study the characteristics of the dipole-quadrupole and dipole-induced dipole interactions as well as the dipole-dipole interaction. The authors developed a new method to measure the relaxation rate constant of a weak IR transition. The absorption cell is introduced inside the CO/sub 2/ laser cavity to improve sensitivity. The transient oscillation superimposed on the cw laser output is observed when the Stark pulse is applied to the absorbing molecules. The absorption increases when the better coincidence between the laser and absorption lines is obtained by application of the Stark voltage. The absorption decreases for a larger Stark voltage. The sign of the signal depends on whether the absorption intensity increases or decreases due to the Stark field. Since pressure broadening modifies the absorption line shape, the sign of the signal changes when the pressure is increased. The relaxation rate constant can be determined by observing the sign of the signal. The experiment is performed with the frequency coincidence between the CH/sub 3/CN ν/sub 7//sup r/ R(6.6) line and the CO/sub 2/ laser 9.4-μm R(22) line. The relaxation rate constants against various foreign gas molecules (polar molecules, nonpolar linear molecules, and spherical atoms and molecules) have been determined

  4. Time-resolved absorption and hemoglobin concentration difference maps: a method to retrieve depth-related information on cerebral hemodynamics.

    Science.gov (United States)

    Montcel, Bruno; Chabrier, Renée; Poulet, Patrick

    2006-12-01

    Time-resolved diffuse optical methods have been applied to detect hemodynamic changes induced by cerebral activity. We describe a near infrared spectroscopic (NIRS) reconstruction free method which allows retrieving depth-related information on absorption variations. Variations in the absorption coefficient of tissues have been computed over the duration of the whole experiment, but also over each temporal step of the time-resolved optical signal, using the microscopic Beer-Lambert law.Finite element simulations show that time-resolved computation of the absorption difference as a function of the propagation time of detected photons is sensitive to the depth profile of optical absorption variations. Differences in deoxyhemoglobin and oxyhemoglobin concentrations can also be calculated from multi-wavelength measurements. Experimental validations of the simulated results have been obtained for resin phantoms. They confirm that time-resolved computation of the absorption differences exhibited completely different behaviours, depending on whether these variations occurred deeply or superficially. The hemodynamic response to a short finger tapping stimulus was measured over the motor cortex and compared to experiments involving Valsalva manoeuvres. Functional maps were also calculated for the hemodynamic response induced by finger tapping movements.

  5. SPECTROSCOPIC OBSERVATIONS OF LYMAN BREAK GALAXIES AT REDSHIFTS ∼4, 5, AND 6 IN THE GOODS-SOUTH FIELD

    International Nuclear Information System (INIS)

    Vanzella, E.; Cristiani, S.; Nonino, M.; Giavalisco, M.; Dickinson, M.; Kuntschner, H.; Fosbury, R. A. E.; Popesso, P.; Rosati, P.; Cesarsky, C.; Renzini, A.; Stern, D.; Ferguson, H. C.

    2009-01-01

    We report on observations of Lyman break galaxies (LBGs) selected from the Great Observatories Origins Deep Survey at mean redshifts z ∼ 4, 5, and 6 (B 435 -, V 606 -, and i 775 -band dropouts, respectively), obtained with the red-sensitive FORS2 spectrograph at the ESO VLT. This program has yielded spectroscopic identifications for 114 galaxies (∼60% of the targeted sample), of which 51 are at z ∼ 4, 31 at z ∼ 5, and 32 at z ∼ 6. We demonstrate that the adopted selection criteria are effective, identifying galaxies at the expected redshift with minimal foreground contamination. Of the 10% interlopers, 83% turn out to be Galactic stars. Once selection effects are properly accounted for, the rest-frame ultraviolet (UV) spectra of the higher redshift LBGs appear to be similar to their counterparts at z ∼ 3. As at z ∼ 3, LBGs at z ∼ 4 and z ∼ 5 are observed with Lyα both in emission and in absorption; when in absorption, strong interstellar lines are also observed in the spectra. The stacked spectra of Lyα absorbers and emitters also show that the former have redder UV spectra and stronger but narrower interstellar lines, a fact also observed at z ∼ 2 and 3. At z ∼ 6, sensitivity issues bias our sample toward galaxies with Lyα in emission; nevertheless, these spectra appear to be similar to their lower redshift counterparts. As in other studies at similar redshifts, we find clear evidence that brighter LBGs tend to have weaker Lyα emission lines. At fixed rest-frame UV luminosity, the equivalent width of the Lyα emission line is larger at higher redshifts. At all redshifts where the measurements can be reliably made, the redshift of the Lyα emission line turns out to be larger than that of the interstellar absorption lines (ISLs), with a median velocity difference ΔV ∼ 400 km s -1 at z ∼ 4 and 5, consistent with results at lower redshifts. This shows that powerful, large-scale winds are common at high redshift. In general, there is no

  6. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  7. Effects of thermal annealing on the optical, spectroscopic, and structural properties of tris (8-hydroxyquinolinate) gallium films grown on quartz substrates

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, Fahmi Fariq, E-mail: fahmi982@gmail.com [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Department of Physics, Faculty of Science and Engineering, University of Koya, Koya, Kurdistan Region (Iraq); Sulaiman, Khaulah [Low Dimensional Materials Research Center, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2011-10-03

    Highlights: {yields} Achieving a broad absorption band for Gaq3 covering the whole UV and some parts of visible spectra. {yields} Increasing photoluminescence emission to five times stronger than that of pristine film. {yields} Conformational changes towards the formation of crystalline {alpha}-Gaq3 polymorph. {yields} Determination of glass transition temperature for Gaq3 (T{sub g} 182 deg. C) and Alq3 (T{sub g} = 173 deg. C). {yields} Improving and understanding the physical properties of Gaq3 film by means of thermal treatment. - Abstract: In this study we report the optical, spectroscopic, and structural properties of vacuum deposited tris (8-hydroxyquinolinate) gallium film upon thermal annealing in the temperature range from 85 deg. C to 255 deg. C under a flowing nitrogen gas for 10 min. The optical UV-vis-NIR and luminescence spectroscopy measurements were performed to estimate the absorption bands, optical energy gap (E{sub g}), and photoluminescence (PL) of the films. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) techniques were used to probe the spectroscopic and structural nature of the films. We show that, by annealing the films from 85 deg. C to 235 deg. C, it is possible to achieve an enhanced absorption and increased photoluminescence to five times stronger than that of the pristine film. The PL quenching at 255 deg. C was attributed to the presence of plainer chains allow easy going for excitons to a long distance due to the crystalline region formation of {alpha}-Gaq3 polymorph. The reduction in E{sub g} and infrared absorption bands upon annealing were referred to the enhancement in {pi}-{pi} interchain interaction and conformational changes by re-arrangement of the Gaq3 quinolinate ligands, respectively. Stokes shift for the films were observed and calculated. From the differential scanning calorimetry, DSC measurements, higher glass transition temperature was observed for Gaq3 (T{sub g} = 182 deg. C) compared to

  8. Spectroscopic and transport studies of Cu 2 ion doped in (40–x ...

    Indian Academy of Sciences (India)

    The preparation of (40 – )Li2O–LiF–60Bi2O3 glassy system and spectroscopic and transport studies of this system are reported. IR results show that this glass consists of [BiO3] units and indicate formation of Bi–F bonds with the addition of LiF. From the ESR spectra of Cu2+ ion, the effective values are found to vary ...

  9. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  10. Precision electron-gamma spectroscopic studies in 111Cd

    International Nuclear Information System (INIS)

    Sai Vignesh, T.; Chhetri, Premaditya; Vijay Sai, K.; Gowrishankar, R.; Venkataramaniah, K.; Deepa, S.; Rao, Dwarakarani; Kailas, S.

    2011-01-01

    The energy levels of 111 Cd has formerly been considered in terms of the states available to the 63rd neutron which is in the 3s 1/2 sub-shell. Kisslinger and Sorensen have used the pairing plus-quadrupole model to predict the energy levels. In the Coulomb excitation experiment only five levels have been excited. The decay of 111 Ag has been investigated only by few workers, Burmistov and Didorenko, Shevlev et al and Goswamy et al. The previous data on level energies, gamma energies and intensities differ considerably even for intense gamma transitions. There has been no detailed study of the internal conversion spectrum. There have been no multipolarity assignments for some of the transitions. An extensive experimental investigation of the gamma and conversion electron spectra has been undertaken to provide precision spectroscopic information on the low lying levels of 111 Cd from the beta decay of 111 Ag

  11. Pharmaceutical properties of two ethenzamide-gentisic acid cocrystal polymorphs: Drug release profiles, spectroscopic studies and theoretical calculations.

    Science.gov (United States)

    Sokal, Agnieszka; Pindelska, Edyta; Szeleszczuk, Lukasz; Kolodziejski, Waclaw

    2017-04-30

    The aim of this study was to evaluate the stability and solubility of the polymorphic forms of the ethenzamide (ET) - gentisic acid (GA) cocrystals during standard technological processes leading to tablet formation, such as compression and excipient addition. In this work two polymorphic forms of pharmaceutical cocrystals (ETGA) were characterized by 13 C and 15 N solid-state nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Spectroscopic studies were supported by gauge including projector augmented wave (GIPAW) calculations of chemical shielding constants.Polymorphs of cocrystals were easily identified and characterized on the basis of solid-state spectroscopic studies. ETGA cocrystals behaviour during direct compressionand tabletting with excipient addition were tested. In order to choose the best tablet composition with suitable properties for the pharmaceutical industry dissolution profile studies of tablets containing polymorphic forms of cocrystals with selected excipients were carried out. Copyright © 2017. Published by Elsevier B.V.

  12. Pump absorption in coiled and twisted double-clad hexagonal fiber: effect of launching conditions and core location

    Science.gov (United States)

    Dalidet, Romain; Peterka, Pavel; Doya, Valérie; Aubrecht, Jan; Koška, Pavel

    2018-02-01

    Ever extending applications of fiber lasers require energy efficient, high-power, small footprint and reliable fiber lasers and laser wavelength versatility. To meet these demands, next generation of active fibers for high-power fiber lasers is coming out that will eventually offer tailored spectroscopic properties, high robustness and reduced cooling requirements and improved efficiency through tailored pump absorption. We report on numerical modelling of the efficiency of the pump absorption in double clad active fibers with hexagonal shape of the inner cladding cross section and rare-earth-doped core. We analyze both the effect of different radii of the spool on which the fiber is coiled and different fiber twisting rates. Two different launching conditions were investigated: the Gaussian input pump beam and a speckle pattern that mimics the output of the pump laser diode pigtail. We have found that by asymmetric position of the rare-earth-doped core we can significantly improve the pump absorption.

  13. Spectroscopic Evolution of Disintegrating Planetesimals: Minute to Month Variability in the Circumstellar Gas Associated with WD 1145+017

    Energy Technology Data Exchange (ETDEWEB)

    Redfield, Seth; Cauley, P. Wilson; Duvvuri, Girish M. [Astronomy Department and Van Vleck Observatory, Wesleyan University, Middletown, CT 06459 (United States); Farihi, Jay [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom); Parsons, Steven G. [Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH (United Kingdom); Gänsicke, Boris T., E-mail: sredfield@wesleyan.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-04-10

    With the recent discovery of transiting planetary material around WD 1145+017, a critical target has been identified that links the evolution of planetary systems with debris disks and their accretion onto the star. We present a series of observations, five epochs over a year, taken with Keck and the VLT, which for the first time show variability of circumstellar absorption in the gas disk surrounding WD 1145+017 on timescales of minutes to months. Circumstellar absorption is measured in more than 250 lines of 14 ions among 10 different elements associated with planetary composition, e.g., O, Mg, Ca, Ti, Cr, Mn, Fe, and Ni. Broad circumstellar gas absorption with a velocity spread of 225 km s{sup −1} is detected, but over the course of a year blueshifted absorption disappears, while redshifted absorption systematically increases. A correlation of equivalent width and oscillator strength indicates that the gas is not highly optically thick (median τ ≈ 2). We discuss simple models of an eccentric disk coupled with magnetospheric accretion to explain the basic observed characteristics of these high-resolution and high signal-to-noise observations. Variability is detected on timescales of minutes in the two most recent observations, showing a loss of redshifted absorption for tens of minutes, coincident with major transit events and consistent with gas hidden behind opaque transiting material. This system currently presents a unique opportunity to learn how the gas causing the spectroscopic, circumstellar absorption is associated with the ongoing accretion evidenced by photospheric contamination, as well as the transiting planetary material detected in photometric observations.

  14. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  15. Kinetic study of carbon dioxide absorption into glycine promoted diethanolamine (DEA)

    Science.gov (United States)

    Pudjiastuti, Lily; Susianto, Altway, Ali; IC, Maria Hestia; Arsi, Kartika

    2015-12-01

    In industry, especially petrochemical, oil and natural gas industry, required separation process of CO2 gas which is a corrosive gas (acid gas). This characteristic can damage the plant utility and piping systems as well as reducing the caloric value of natural gas. Corrosive characteristic of CO2 will appear in areas where there is a decrease in temperature and pressure, such as at the elbow pipe, tubing, cooler and injector turbine. From disadvantages as described above, then it is important to do separation process in the CO2 gas stream, one of the method for remove CO2 from the gas stream is reactive absorption using alkanolamine based solution with promotor. Therefore, this study is done to determine the kinetics constant of CO2 absorption in diethanolamine (DEA) solution using a glycine promoter. Glycine is chosen as a promoter because glycine is a primary amine compound which is reactive, moreover, glycine has resistance to high temperatures so it will not easy to degradable and suitable for application in industry. The method used in this study is absorption using laboratory scale wetted wall column equipment at atmospheric of pressure. This study will to provide the reaction kinetics data information in order to optimize the separation process of CO2 in the industrialized world. The experimental results show that rising temperatures from 303,15 - 328,15 K and the increase of concentration of glycine from 1% - 3% weight will increase the absorption rate of carbon dioxide in DEA promoted with glycine by 24,2% and 59,764% respectively, also the reaction kinetic constant is 1.419 × 1012 exp (-3634/T) (m3/kmol.s). This result show that the addition of glycine as a promoter can increase absorption rate of carbon dioxide in diethanolamine solution and cover the weaknesses of diethanolamine solution.

  16. Crystal growth and spectroscopic characterization of Yb3+:LiTaO3

    International Nuclear Information System (INIS)

    Gruber, John B.; Allik, Toomas H.; Sardar, Dhiraj K.; Yow, Raylon M.; Scripsick, Michael; Wechsler, Barry

    2006-01-01

    Spectroscopic properties are presented for Yb 3+ incorporated into single crystals of LiTaO 3 grown by the top-seeded solution growth method. From an analysis of the absorption and fluorescence spectra, we are able to determine the Stark-level components of the 2 F 7/2 (the ground-state multiplet manifold) and the 2 F 5/2 (the excited-state multiplet manifold of Yb 3+ (4f 13 )). The room-temperature fluorescence lifetime of 2 F 5/2 is 678μs as measured on a thin sample to reduce possibilities for reabsorption. Spectral comparisons of Yb 3+ -doped LiTaO 3 and LiNbO 3 are drawn. The crystal-field splitting of Yb 3+ (4f 13 ) in both crystal hosts is modeled using a set of crystal-field splitting parameters, B nm , determined from a recent spectroscopic analysis of Er 3+ (4f 11 ) in LiNbO 3 . Without adjustment of the B nm parameters, the model predicts the Stark-level energy and the symmetry label for each level in reasonable agreement with the experimental values. Less photorefractive than its niobate cousin, LiTaO 3 has potential for use in numerous integrated electro-optical circuits and devices

  17. Matrix isolation spectroscopic studies of the radical ions of 2,5-diphenyloxazole (Preprint No. RC-15)

    International Nuclear Information System (INIS)

    Wani, A.M.

    1988-02-01

    The radical ions of 2,5-diphenyloxazole (PPO) produced upon γ-irradiation were studied at 77 K in organic glasses by optical absorption spectroscopy. The dependence of absorption spectra on the nature of the matrix, electron and hole scavengers is interpretted and the absorption bands are assigned to the anionic and cationic radical species of PPO. (author). 6 refs

  18. SPECTROSCOPIC STUDIES OF AMINOACIDS COMPLEXES WITH BIOMETALS

    Directory of Open Access Journals (Sweden)

    Andreea Stanila

    2012-06-01

    Full Text Available The [Cu(L2 ]·H2 O, [Co(L2 ]·2H2 O, [Zn(L2 ]·H2 O complexes with methionine (L as ligand, were synthesized in water solution and analyzed by means of: elemental analysis, atomic absorption spectroscopy, thermogravimetry, FT-IR, UV-VIS and EPR spectroscopies. The atomic absorption spectroscopy and elemental measurements confi rm the ratio 1:2 metal ion: methionine composition for the synthesised compounds.The IR spectra show that amino acids act as bidentate ligands with coordination involving the carboxylic oxygen and the nitrogen atom of the amino group. Spectral UV-VIS data confi rmed the covalent metal-ligand bonds, the pseudotetrahedral symmetry around the copper and zinc ions and the octahedral environment for the cobalt ion. Powder ESR spectra at room temperature are typically for monomeric species.

  19. Experimental studies of a zeeman-tuned xenon laser differential absorption apparatus.

    Science.gov (United States)

    Linford, G J

    1973-06-01

    A Zeeman-tuned cw xenon laser differential absorption device is described. The xenon laser was tuned by axial magnetic fields up to 5500 G generated by an unusually large water-cooled dc solenoid. Xenon laser lines at 3.37 micro, 3.51 micro, and 3.99 micro were tuned over ranges of 6 A, 6 A, and 11 A, respectively. To date, this apparatus has been used principally to study the details of formaldehyde absorption lines lying near the 3 .508-micro xenon laser transition. These experiments revealed that the observed absorption spectrum of formaldehyde exhibits a sufficiently unique spectral structure that the present technique may readily be used to measure relative concentrations of formaldehyde in samples of polluted air.

  20. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  1. Nanofluid optical property characterization: towards efficient direct absorption solar collectors.

    Science.gov (United States)

    Taylor, Robert A; Phelan, Patrick E; Otanicar, Todd P; Adrian, Ronald; Prasher, Ravi

    2011-03-15

    Suspensions of nanoparticles (i.e., particles with diameters solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm). A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm) with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power) increase.

  2. Spectroscopic and molecular docking techniques study of the interaction between oxymetholone and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Bagheri, Habibollah; Afkhami, Abbas; Soleimani, Mohammad

    2014-11-15

    In this study, the binding of oxymetholone (OXM), a doping drug, to human serum albumin (HSA) was explored at pH 7.40 by spectroscopic methods including spectrofluorimetry, three dimensional excitation–emission matrix (3D EEM), UV–vis absorption, resonance rayleigh scattering (RRS) and molecular docking. The fluorescence results showed that there was a considerable quenching of the intrinsic fluorescence of HSA upon binding to OXM by static quenching mechanism. The Stern–Volmer quenching constants (K{sub SV}) between OXM and HSA at three different temperatures 295, 303, 308 K, were obtained as 4.63×10{sup 4}, 3.05×10{sup 4} and 1.49×10{sup 4} L mol{sup −1}, respectively. Furthermore this interaction was confirmed by UV–vis spectrophotometric and RRS techniques. The binding site number, n, apparent binding constant, K{sub b}, and corresponding thermodynamic parameters (ΔS, ΔH and ΔG) were measured at different temperatures. The Van der Waals and hydrogen-bond forces were found to stabilize OXM–HSA complex. The distance (r) between the donor and acceptor was obtained from Förster's theory of fluorescence resonance energy transfer (FRET) and found to be 1.67 nm. The 3D EEM showed that OXM slightly changes the secondary structure of HSA. Furthermore, the molecular docking was employed for identification of drug binding sites and interaction of OXM with amino acid residues. - Highlights: • The binding of OXM as a doping drug with HSA was studied by different techniques. • The binding constant of HSA–OXM was calculated. • The binding site of OXM on HSA was characterized with molecular docking. • The thermodynamic parameters were calculated according to fluorescence technique.

  3. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.; Ho, Shirley [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Myers, Adam D. [Department of Astronomy, MC-221, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Yeche, Christophe; Aubourg, Eric [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Strauss, Michael A.; Lee, Khee-Gan [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bovy, Jo; Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Croft, Rupert A. C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Da Silva, Robert [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, UT (United States); Eisenstein, Daniel J. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hennawi, Joseph F., E-mail: npross@lbl.gov [Max-Planck-Institut fuer Astronomie, Konigstuhl 17, 69117 Heidelberg (Germany); and others

    2012-03-01

    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations

  4. Determination of photocarrier density under continuous photoirradiation using spectroscopic techniques as applied to polymer: Fullerene blend films

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Katsuichi, E-mail: kkane@sci.osaka-cu.ac.jp; Nakatani, Hitomi; Domoto, Shinya [Department of Physics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan)

    2014-10-28

    We propose a method to determine the density of photocarrier under continuous photoirradiation in conjugated polymers using spectroscopic signals obtained by photoinduced absorption (PIA) measurements. The bleaching signals in the PIA measurements of polymer films and the steady-state absorption signals of oxidized polymer solution are employed to determine the photocarrier density. The method is applied to photocarriers of poly (3-hexylthiophene) (P3HT) in a blended film consisting of P3HT and [6,6]-phenyl C61 butyric acid methyl ester (PCBM). The photocarrier density under continuous photoirradiation of 580 mW/cm{sup 2} is determined to be 3.5 × 10{sup 16 }cm{sup −3}. Using a trend of the carrier density increasing in proportion to the square root of photo-excitation intensity, we provide a general formula to estimate the photocarrier density under simulated 1 sun solar irradiation for the P3HT: PCBM film of an arbitrary thickness. We emphasize that the method proposed in this study enables an estimate of carrier density without measuring a current and can be applied to films with no electrodes as well as to devices.

  5. Raman Spectroscopic Studies of YBa2Cu3O7 Coated Conductors

    International Nuclear Information System (INIS)

    Choi, Mi Kyeung; Mnh, Nguyen Van; Bae, J. S.; Jo, William; Yang, In Sang; Ko, Rock Kil; Ha, Hong Soo; Park, Chan

    2005-01-01

    We present results of Raman spectroscopic studies of superconducting YBa 2 Cu 3 O 7 (YBCO) coated conductors. Raman scattering is used to characterize optical phonon modes, oxygen content, c-axis misalignment, and second phases of the YBCO coated conductors at a micro scale. A two-dimensional mapping of Raman spectra with transport properties has been performed to elucidate the effect of local propertied on current path and superconducting phase. The information taken from the local measurement will be useful for optimizing the process condition.

  6. Ion-beam spectroscopic studies of the 69As nucleus

    International Nuclear Information System (INIS)

    Badica, T.; Cojocaru, V.; Olariu, A.; Petre, M.; Popescu, I. V.; Gheboianu, A.

    2009-01-01

    Excited state of the neutron deficient 69 As nucleus were investigated in the 58 Ni( 14 N,2pn) reaction by ion-beam γ spectroscopic methods (excitation functions, γγ-coincidences, angular distributions and linear polarization gated with neutrons). A new more complete level scheme of 69 As has been proposed with spin-parity values. The structure of the nucleus is discussed in the framework of the interaction boson-fermion model (IBFM). (authors)

  7. A VISION OF ORKUT´S USERS: STUDYING THIS PHENOMENON THROUGH COGNITIVE ABSORPTION

    OpenAIRE

    Mauri Leodir Löbler; Monize Sâmara Visentini; Vania de Fátima Barros Estivalete

    2011-01-01

    This study aims to identify the influence that Cognitive Absorption has on the intention of using Orkut. It happens due to the fact that Cognitive Absorption is related to the state of deep involvement users carry with an individual task, performed with the support of Information Technology (IT); it corroborates the study on this virtual community. Therefore, through descriptive research with a quantitative character and with the aid of structural equations, 645 Orkut users were investigated....

  8. Introduction of spectroscopic photoemission and low energy electron microscope in SPring-8

    International Nuclear Information System (INIS)

    Guo, FangZhun; Kobayashi, Keisuke; Kinoshita, Toyohiko

    2005-01-01

    An upright configuration SPELEEM (Spectroscopic PhotoEmission and Low Energy Electron Microscope) has been introduced in SPring-8 in the framework of the nanotechnology support project of Ministry of Education, Culture, Sport, Science and Technology (MEXT), Japan. SPELEEM combines microscopy, spectroscopy and diffraction in one system, which allows a comprehensive characterization of the specimen. The combination of SPELEEM and polarized (circularly or linearly) soft X-rays in SPring-8 is expected to realize the highest performance. The characteristics of SPELEEM and typical results, for example nano-XANES (X-ray absorption near edge structure) of Fe oxide on Fe(100) surface, nano-XPS (X-ray photoemission spectroscopy) of indium (In) on Si(111) and antiferro-magnetic domain structure images of NiO(001) single crystal, are reported. (author)

  9. Study on the prediction of visible absorption maxima of azobenzene compounds

    Science.gov (United States)

    Liu, Jun-na; Chen, Zhi-rong; Yuan, Shen-feng

    2005-01-01

    The geometries of azobenzene compounds are optimized with B3LYP/6-311G* method, and analyzed with nature bond orbital, then their visible absorption maxima are calculated with TD-DFT method and ZINDO/S method respectively. The results agree well with the observed values. It was found that for the calculation of visible absorption using ZINDO/S method could rapidly yield better results by adjusting OWFπ-π (the relationship between π-π overlap weighting factor) value than by the TD-DFT method. The method of regression showing the linear relationship between OWFπ-π and BLN-N (nitrogen-nitrogen bond lengths) as OWF π-π=−8.1537+6.5638BL N-N, can be explained in terms of quantum theory, and also be used for prediction of visible absorption maxima of other azobenzne dyes in the same series. This study on molecules’ orbital geometry indicates that their visible absorption maxima correspond to the electron transition from HOMO (the highest occupied molecular orbital) to LUMO (the lowest unoccupied molecular orbital). PMID:15909349

  10. Spectroscopic study of ohmically heated Tokamak discharges

    International Nuclear Information System (INIS)

    Breton, C.; Michelis, C. de; Mattioli, M.

    1980-07-01

    Tokamak discharges interact strongly with the wall and/or the current aperture limiter producing recycling particles, which penetrate into the discharge and which can be studied spectroscopically. Working gas (hydrogen or deuterium) is usually studied observing visible Balmer lines at several toroidal locations. Absolute measurements allow to obtain both the recycling flux and the global particle confinement time. With sufficiently high resolution the isotopic plasma composition can be obtained. The impurity elements can be divided into desorbed elements (mainly oxygen) and eroded elements (metals from both walls and limiter) according to the plasma-wall interaction processes originating them. Space-and time-resolved emission in the VUV region down to about 20 A will be reviewed for ohmically-heated discharges. The time evolution can be divided into four phases, not always clearly separated in a particular discharge: a) the initial phase, lasting less than 10 ms (the so-called burn-out phase), b) the period of increasing plasma current and electron temperature, lasting typically 10 - 100 ms, c) an eventual steady state (plateau of the plasma current with almost constant density and temperature), d) the increase of the electron density up to or just below the maximum value attainable in a given device. For all these phases the results reported from different devices will be described and compared

  11. Study of absorption and re-emission processes in a ternary liquid scintillation system

    International Nuclear Information System (INIS)

    Xiao Hualin; Wang Naiyan; Li Xiaobo; Cao Jun; Wen Liangjian; Zheng Dong

    2010-01-01

    Liquid scintillators are widely used as the neutrino target in neutrino experiments. The absorption and emission of different components of a ternary liquid scintillator (Linear Alkyl Benzene (LAB) as the solvent, 2, 5-diphenyloxazole (PPO) as the fluor and p-bis-(o-methylstyryl)-benzene (bis-MSB) as wavelength shifter) are studied. It is shown that the absorption of this liquid scintillator is dominant by LAB and PPO at wavelengths less than 349 nm, and the absorption by bis-MSB becomes prevalent at the wavelength larger than 349 nm. The fluorescence quantum yields, which are the key parameters to model the absorption and re-emission processes in large liquid scintillation detectors, are measured. (authors)

  12. $\\beta$-decay studies using total absorption techniques some recent results

    CERN Document Server

    Algora, A; García-Borge, M J; Cano-Ott, D; Collatz, R; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Gadea, A; Gelletly, W; Hellström, M; Janas, Z; Jungclaus, A; Karny, M; Kirchner, R; Maréchal, F; Miehé, C; Moroz, F; Nacher, E; Poirier, E; Roeckl, E; Rubio, B; Rykaczewski, K; Scornet, G L; Taín, J L; Tengblad, O; Wittmann, V

    2004-01-01

    $\\beta$-decay experiments, are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on $\\gamma$-ray spectroscopy, they face different experimental problems. The so-called $\\textit{Pandemonium effect}$ is a critical problem in $\\beta$-decay. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the total absorption spectrometers TAS at GSI and Lucrecia recently installed at CERN. (25 refs).

  13. Beta-decay studies using total absorption techniques: some recent results

    Energy Technology Data Exchange (ETDEWEB)

    Algora, A.; Rubio, B.; Nacher, E.; Cano O, D.; Tain, J.L.; Gadea, A. [lnstituto de Fisica Corpuscular, Apartado Oficial 22085, 46071 Valencia (Spain); Batist, L.; Moroz, F.; Wittmann, V. [St. Petersburg Nuclear Physics Institute, RU-188-350 Gatchina, (Russian Federation); Borge, M.J.G.; Jungclaus, A.; Tengblad, O. [Instituto Estructura de la Materia, E-28006 Madrid (Spain); Collatz, R.; Hellstrom, M.; Kirchner, R.; Roeckl, E. [Gesellschaft fur Schwerionenforschung, D-64291 Darmstadt (Germany); Courtin, H.; Dessagne, Ph.; Miehe, C.; Marechal, F.; Poirier, E. [lnstitut de Recherches Subatomiques, IN2P3-CNRS, F-67037 Strassbourg Cedex 2 (France); Fraile, L.M. [ISOLDE, Division EP, CERN, CH-1211 Geneva (Switzerland); Gelletly, W. [University of Surrey, Guildford GU2 7XH (United Kingdom); Janas, Z.; Karny, M.; Rykaczewski, K. [University of Warsaw, PL-00-681, Warsaw (Poland); Le Scornet, G. [CSNSM, 91405 Orsay (France)

    2004-12-01

    Beta-decay experiments are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on {gamma} ray spectroscopy, they face different experimental problems. The so called Pandemonium effect [1] is a critical problem in {beta}-decay. In this contribution we will present a solution to this problem using total absorption spectroscopy methods. We will also present some examples of experiments carried out with the total absorption spectrometers TAS at GSI and Lucrecia recently installed at CERN. (Author) 25 refs., 4 figs.

  14. Spectroscopic studies of silver boro tellurite glasses

    Science.gov (United States)

    Kumar, E. Ramesh; Kumari, K. Rajani; Rao, B. Appa; Bhikshamaiah, G.

    2014-04-01

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI-Ag2O-[(1-x)B2O3-xTeO2] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO2 on SBT glass system is that as increasing the concentration of TeO2 the band intensity at 707 cm-1 increase.

  15. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  16. Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption.

    Science.gov (United States)

    Hung, Yung-Jr; Lee, San-Liang; Coldren, Larry A

    2010-03-29

    Tapered silicon photonic crystals (PhCs) with smooth sidewalls are realized using a novel single-step deep reactive ion etching. The PhCs can significantly reduce the surface reflection over the wavelength range between the ultra-violet and near-infrared regions. From the measurements using a spectrophotometer and an angle-variable spectroscopic ellipsometer, the sub-wavelength periodic structure can provide a broad and angular-independent antireflective window in the visible region for the TE-polarized light. The PhCs with tapered rods can further reduce the reflection due to a gradually changed effective index. On the other hand, strong optical resonances for TM-mode can be found in this structure, which is mainly due to the existence of full photonic bandgaps inside the material. Such resonance can enhance the optical absorption inside the silicon PhCs due to its increased optical paths. With the help of both antireflective and absorption-enhanced characteristics in this structure, the PhCs can be used for various applications.

  17. High-pressure effect in spectroscopic and structural properties of Sm{sup 3+} doped GeO{sub 2}-PbO glass

    Energy Technology Data Exchange (ETDEWEB)

    Rovani, Pablo Roberto; Herrera, Alvaro; Azevedo, Gustavo de Medeiros; Balzaretti, Naira Maria, E-mail: rovani.pr@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil)

    2016-07-01

    Full text: The effect of densification under high pressure (7.7 GPa) on spectroscopic and structural properties of Ge{sub 2}O-PbO glass doped with Sm{sup 3+} ion were investigated. Raman spectroscopy and Extended X-ray Absorption Fine Structure (EXAFS) were used to investigate the effect of high pressure on the structural properties. The spectroscopic properties were investigated through the absorption and luminescence spectra recorded at room temperature The splitting in the VIS-NIR fluorescence bands increased after densification. Judd-Ofelt (J-O) theory was applied to evaluate phenomenological JO intensity parameters Ω (λ = 2, 4 and 6). The effect of high pressure on the transition probabilities (A{sub R}), radiative lifetimes (t{sub R}), branching ratio (b{sub R}) and stimulated emission cross-section s(l{sub p}) was also investigated. The results obtained from EXAFS indicated changes around the vicinity of Sm{sup 3+} ion which would explain the quenching in emission intensities in the visible range. A novel band related to the transition {sup 4}G{sub 5/2} to {sup 6}F{sub 11/2} was observed in the Sm{sup 3+} doped GeO{sub 2}-PbO. The obtained results may be useful for compact light sources, optical devices in the visible region and optoelectronic devices. (author)

  18. Design, Synthesis, Structural and Spectroscopic Studies of Push-Pull Two-Photon Absorbing Chromophores with Acceptor Groups of Varying Strength

    Science.gov (United States)

    Morales, Alma R.; Frazer, Andrew; Woodward, Adam W.; Ahn-White, Hyo-Yang; Fonari, Alexandr; Tongwa, Paul; Timofeeva, Tatiana; Belfield, Kevin D.

    2013-01-01

    A new series of unsymmetrical diphenylaminofluorene-based chromophores with various strong π-electron acceptors were synthesized and fully characterized. The systematic alteration of the structural design facilitated the investigation of effects such as molecular symmetry and strength of electron-donating and/or withdrawing termini have on optical nonlinearity. In order to determine the electronic and geometrical properties of the novel compounds, a thorough investigation was carried out by a combination of linear and nonlinear spectroscopic techniques, single crystal X-ray diffraction, and quantum chemical calculations. Finally, on the basis of two-photon absorption (2PA) cross sections, the general trend for π -electron accepting ability, i.e., ability to accept charge transfer from diphenylamine was: 2-pyran-4-ylidene malononitrile (pyranone) > dicyanovinyl > bis(dicyanomethylidene)indane > 1-(thiophen-2-yl)propenone > dicyanoethylenyl > 3-(thiophen-2-yl)propenone. An analog with the 2-pyran-4-ylidene malononitrile acceptor group exhibited a nearly three-fold enhancement of the 2PA< δ (1650 GM at 840 nm), relative to other members of the series. PMID:23305555

  19. VUV spectroscopic study of the ? state of H2

    Science.gov (United States)

    Dickenson, G. D.; Ubachs, W.

    2014-04-01

    Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.

  20. Spectroscopic study of Pr3+ ions doped Zinc Lead Tungsten Tellurite glasses for visible photonic device applications

    Science.gov (United States)

    Sharma, Ritu; Rao, A. S.; Deopa, Nisha; Venkateswarlu, M.; Jayasimhadri, M.; Haranath, D.; Prakash, G. Vijaya

    2018-04-01

    Zinc Lead Tungsten Tellurite (ZnPbWTe) glasses doped with different Pr3+ ion concentrations having the composition 5ZnO + 15PbO + 20WO3 + (60-x)TeO2 + xPr6O11 (where x = 0.5, 1, 1.5, 2.0 and 2.5 mol%) were prepared by using sudden quenching technique and characterized to understand their visible emission characteristic features using spectroscopic techniques such as absorption, excitation and emission. The Judd-Ofelt (J-O) theory has been applied to the absorption spectral features with an aim to evaluate various radiative properties for the prominent fluorescent levels of Pr3+ions in the as-prepared glasses. The emission spectra recorded for the as-prepared glasses under 468 nm excitation show three prominent emission transitions 3P0→3H6, 3P0→3F2 and 3P1→3F4, of which 3P0→3F2 observed in visible red region (648 nm), is relatively more intense. The intensity of 3P0→3F2 emission transition in the titled glasses increases up to 1mol% of Pr3+ ions and beyond concentration quenching is observed. Branching ratios (βR) and emission cross-sections (σse) were estimated for 3P0→3F2 transition to understand the luminescence efficiency in visible red region (648 nm). The CIE chromaticity coordinates were also evaluated in order to understand the suitability of these glasses for visible red luminescence devices. From the emission cross-sections, quantum efficiency and CIE coordinates, it was concluded that 1mol% of Pr3+ ions in ZnPbWTe glasses are quite suitable for preparing visible reddish orange luminescent devices.

  1. Raman Spectroscopic Study of As-Deposited and Exfoliated Defected Graphene Grown on (001 Si Substrates by CVD

    Directory of Open Access Journals (Sweden)

    T. I. Milenov

    2017-01-01

    Full Text Available We present here results on a Raman spectroscopic study of the deposited defected graphene on Si substrates by chemical vapor deposition (thermal decomposition of acetone. The graphene films are not deposited on the (001 Si substrate directly but on two types of interlayers of mixed phases unintentionally deposited on the substrates: а diamond-like carbon (designated here as DLC and amorphous carbon (designated here as αC are dominated ones. The performed thorough Raman spectroscopic study of as-deposited as well as exfoliated specimens by two different techniques using different excitation wavelengths (488, 514, and 613 nm as well as polarized Raman spectroscopy establishes that the composition of the designated DLC layers varies with depth: the initial layers on the Si substrate consist of DLC, nanodiamond species, and C70 fullerenes while the upper ones are dominated by DLC with an occasional presence of C70 fullerenes. The αC interlayer is dominated by turbostratic graphite and contains a larger quantity of C70 than the DLC-designated interlayers. The results of polarized and unpolarized Raman spectroscopic studies of as-grown and exfoliated graphene films tend to assume that single- to three-layered defected graphene is deposited on the interlayers. It can be concluded that the observed slight upshift of the 2D band as well as the broadening of 2D band should be related to the strain and doping.

  2. Theoretical experimental study of the factors that govern the molybdenum absorption signal by means of electro thermic atomic absorption spectroscopy

    International Nuclear Information System (INIS)

    Garaboto Farfan, M. A.

    1996-01-01

    The formation of molybdenum carbides in the atomizer, used in the electro thermic atomic absorption spectroscopy, is responsible for incomplete analyte removal in its analysis. This generates the apparition of the memory effect and little precision in the results. In this work, different variables that could affect the molybdenum absorption sign were investigated, as well as the influence of hydrochloric acid on the memory effect, by means of studies in the different stages: drying, calcination and atomization, and the samples deposition order in molybdenum solutions, either acidified or not acidified [es

  3. Experimental study on the sound absorption characteristics of continuously graded phononic crystals

    Directory of Open Access Journals (Sweden)

    X. H. Zhang

    2016-10-01

    Full Text Available Novel three-dimensional (3D continuously graded phononic crystals (CGPCs have been designed, and fabricated by 3D printing. Each of the CGPCs is an entity instead of a combination of several other samples, and the porosity distribution of the CGPC along the incident direction is nearly linear. The sound absorption characteristics of CGPCs were experimentally investigated and compared with those of uniform phononic crystals (UPCs and discretely stepped phononic crystals (DSPCs. Experimental results show that CGPCs demonstrate excellent sound absorption performance because of their continuously graded structures. CGPCs have higher sound absorption coefficients in the large frequency range and more sound absorption coefficient peaks in a specific frequency range than UPCs and DSPCs. In particular, the sound absorption coefficients of the CGPC with a porosity of 0.6 and thickness of 30 mm are higher than 0.56 when the frequency is 1350–6300 Hz and are all higher than 0.2 in the studied frequency range (1000–6300 Hz. CGPCs are expected to have potential application in noise control, especially in the broad frequency and low-frequency ranges.

  4. Mg II ABSORPTION CHARACTERISTICS OF A VOLUME-LIMITED SAMPLE OF GALAXIES AT z ∼ 0.1

    International Nuclear Information System (INIS)

    Barton, Elizabeth J.; Cooke, Jeff

    2009-01-01

    We present an initial survey of Mg II absorption characteristics in the halos of a carefully constructed, volume-limited subsample of galaxies embedded in the spectroscopic part of the Sloan Digital Sky Survey (SDSS). We observed quasars near sightlines to 20 low-redshift (z ∼ 0.1), luminous (M r + 5log h ≤-20.5) galaxies in SDSS DR4 and DR6 with the LRIS-B spectrograph on the Keck I telescope. The primary systematic criteria for the targeted galaxies are a redshift z ∼> 0.1 and the presence of an appropriate bright background quasar within a projected 75 h -1 kpc of its center, although we preferentially sample galaxies with lower impact parameters and slightly more star formation within this range. Of the observed systems, six exhibit strong (W eq (2796) ≥ 0.3 A) Mg II absorption at the galaxy's redshift, six systems have upper limits which preclude strong Mg II absorption, while the remaining observations rule out very strong (W eq (2796) ≥ 1-2 A) absorption. The absorbers fall at higher impact parameters than many non-absorber sightlines, indicating a covering fraction f c ∼ -1 kpc (f c ∼ 0.25). The data are consistent with a possible dependence of covering fraction and/or absorption halo size on the environment or star-forming properties of the central galaxy.

  5. A study of phosphate absorption by magnesium iron hydroxycarbonate.

    Science.gov (United States)

    Du, Yi; Rees, Nicholas; O'Hare, Dermot

    2009-10-21

    A study of the mechanism of phosphate adsorption by magnesium iron hydroxycarbonate, [Mg(2.25)Fe(0.75)(OH)(6)](CO(3))(0.37).0.65H(2)O over a range of pH has been carried out. The efficiency of the phosphate removal from aqueous solution has been investigated between pH 3-9 and the resulting solid phases have been studied by elemental analysis, XRD, FT-IR, Raman, HRTEM, EDX and solid-state MAS (31)P NMR. The analytical and spectroscopic data suggest that phosphate removal from solution occurs not by anion intercalation of the relevant phosphorous oxyanion (H(2)PO(4)(-) or HPO(4)(2-)) into the LDH but by the precipitation of either an insoluble iron hydrogen phosphate hydrate and/or a magnesium phosphate hydrate.

  6. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.

    Science.gov (United States)

    Zhou, Kai-Ge; Chang, Meng-Jie; Wang, Hang-Xing; Xie, Yu-Long; Zhang, Hao-Li

    2012-01-01

    Thin films of graphene oxide, graphene and copper (II) phthalocyanine dye have been successfully fabricated by electrostatic layer-by-layer (LbL) assembly approach. We present the first variable angle spectroscopic ellipsometry (VASE) investigation on these graphene-dye hybrid thin films. The thickness evaluation suggested that our LbL assembly process produces highly uniform and reproducible thin films. We demonstrate that the refractive indices of the graphene-dye thin films undergo dramatic variation in the range close to the absorption of the dyes. This investigation provides new insight to the optical properties of graphene containing thin films and shall help to establish an appropriate optical model for graphene-based hybrid materials.

  7. Monitoring the composition of the Cd1-zZnzTe heteroepitaxial layers by spectroscopic ellipsometry

    International Nuclear Information System (INIS)

    Yakushev, M. V.; Shvets, V. A.; Azarov, I. A.; Rykhlytski, S. V.; Sidorov, Yu. G.; Spesivtsev, E. V.; Shamirzaev, T. S.

    2010-01-01

    A hardware-software complex based on a spectroscopic ellipsometer integrated into a molecular beam epitaxy installation and destined to monitor the composition of the Cd 1 -z Zn z Te alloy at small values of z is described. Methodical features of determination of the composition of growing layers by the spectra of ellipsometric parameters are considered. The procedure of determination of the composition by the absorption edge that allows measuring this parameter accurate to 1.2% is developed. Problems are considered the solutions of which will allow one to increase the resolution by the composition. In particular, maintaining a stable temperature during growth is required for this purpose.

  8. The VANDELS ESO spectroscopic survey

    Science.gov (United States)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 motivation, survey design and target selection.

  9. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Lezama-pacheco, Juan S.; Conradson, Steven D.; Clark, David L.

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO 2+x -type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO 2+x , and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO 2+x would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  10. Physical and spectroscopic studies of Cr{sup 3+} doped mixed alkaline earth oxide borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Samdani, E-mail: samdanimohd82@gmail.com [Department of Engineering, Salalah College of Technology, Salalah (Oman); Ramadevudu, G. [Department of Physics, Vasavi College of Engineering, Ibrahimbagh, Hyderabad 500031, Telangana (India); Chary, M. Narasimha; Shareefuddin, Md. [Department of Physics, Osmania University, Hyderabad 500007, Telangana (India)

    2017-01-15

    A series of mixed alkaline earth oxide glasses xMgO-(30-x)BaO-69.8B{sub 2}O{sub 3}-0.2Cr{sub 2}O{sub 3} were prepared and studied using electron paramagnetic resonance (EPR), optical absorption, Raman spectroscopy and photoluminescence experimental techniques. The optical absorption spectra revealed the characteristic octahedral symmetry of Cr{sup 3+}ions through three broad band transitions {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 2g}(F), {sup 4}A{sub 2g}(F)→ {sup 4}T{sub 1g}(F), and {sup 4}A{sub 2g}(F)→ {sup 2}T{sub 1g}(P). The crystal field (Dq) and Racah parameters (B and C), the optical band gap and Urbach energies of the glass samples were also reported along with the physical properties like density and molar volume. In the EPR spectra three resonance signals corresponding to Cr3+ ions were observed. A broad signal with g = 5.110 was observed which belongs to the isolated Cr3+ centers localized in the strongly distorted octahedral (rhombic) sites of the glass network, a narrow signal (g = 1.960) corresponding to the Cr{sup 3+} centers in the weekly distorted (cubic) sites of the glass network, and a third very broad signal (g = 2.210) was also observed corresponding to Cr{sup 3+}- Cr{sup 3+} paired centers coupled by magnetic dipolar interaction. Another resonance signal with effective value g ≈ 4.220 was attributed to Fe{sup 3+} ions impurity. The number of spins (N) participating in the resonance and susceptibility (χ) values at room temperature were reported and their values varied in a non-linear manner with the composition exhibiting mixed oxide effect. The estimated molecular bonding coefficients (α) values indicated stronger ionic contribution. The Raman spectral investigations were carried out. The Photoluminescence spectra bands near 690 and 750 nm correspond to the Cr{sup 3+} centers in high and low field sites respectively. - Highlights: • Spectroscopic studies were made on alkaline earth borate glasses. • Three resonance signals

  11. X-ray absorption spectroscopic studies on novel microporous copper containing catalytic systems

    International Nuclear Information System (INIS)

    Bhargava, Suresh K.; Akolekar, Deepak B.; Foran, Garry

    2006-01-01

    Novel copper metal modified microporous aluminosilicate and aluminophosphate catalysts with the high phase purity were synthesized and characterized. CuK-edge XAS measurements were carried out over a series of copper containing SAPO-34 and ZSM-5 catalysts. EXAFS technique was used to obtain specific climacteric information related to the copper atomic distances, coordination and near neighbour environments. EXAFS studies indicated the presence of different of Cu species on ZSM-5/SAPO34 catalysts

  12. Triphenylene columnar liquid crystals: spectroscopic study of triplets states and charge carriers

    International Nuclear Information System (INIS)

    Bondkowski, Jens

    2000-01-01

    This research thesis reports the study of three oxygenated derivatives of triphenylene (two monomers, a symmetric one and an asymmetric one, and a tetramer) by using different experimental techniques: absorption spectroscopy and fluorescence spectroscopy in stationary regime, and time-resolved fluorescence spectroscopy (also said single photon counting). Moreover, the author adapted an existing experiment of transient absorption spectroscopy time-resolved at the microsecond level to obtain spectra of thin layers under electric field. A cyclic voltammetry experiment and a spectro-electrochemistry experiment have also been performed. The report first presents the studied materials, the characterisation of singlet states, and the study of the effect molecular symmetry decreasing have on molecular transitions. Then, the author reports the study of cationic species of the triphenylene derivatives. The next chapters address the characterisation of derivative triplet states, and the study of energy transfer within the meso phase of one of these derivatives. The last chapters address charge carriers of columnar liquid crystals, and the molecular nature of these charge carriers

  13. Discovery of Variable Hydrogen Balmer Absorption Lines with Inverse Decrement in PG 1411+442

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xi-Heng; Pan, Xiang; Zhang, Shao-Hua; Sun, Lu-Ming; Ji, Tuo; Liu, Bo; Zhou, Hong-Yan [Polar Research Institute of China, Jinqiao Road 451, Shanghai 200136 (China); Wang, Jian-Guo [Yunnan Observatories, Chinese Academy of Sciences, Kunming, Yunnan 650011 (China); Yang, Chen-Wei; Jiang, Ning, E-mail: zhouhongyan@pric.org.cn, E-mail: shixiheng@pric.org.cn [Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Chinese Academy of Sciences, Hefei, Anhui 230026 (China)

    2017-07-01

    We present new optical spectra of the well-known broad absorption line (BAL) quasar PG 1411+442, using the DBSP spectrograph at the Palomar 200 inch telescope in 2014 and 2017 and the YFOSC spectrograph at the Lijiang 2.4 m telescope in 2015. A blueshifted narrow absorption line system is clearly revealed in 2014 and 2015 consisting of hydrogen Balmer series and metastable He i lines. The velocity of these lines is similar to the centroid velocity of the UV BALs, suggesting that both originate from the outflow. The Balmer lines vary significantly between the two observations and vanished in 2017. They were also absent in the archived spectra obtained before 2001. The variation is thought to be driven by photoionization change. Besides, the absorption lines show inversed Balmer decrement, i.e., the apparent optical depths of higher-order Balmer absorption lines are larger than those of lower-order lines, which is inconsistent with the oscillator strengths of the transitions. We suggest that such anomalous line ratios can be naturally explained by the thermal structure of a background accretion disk, which allows the obscured part of the disk to contribute differently to the continuum flux at different wavelengths. High-resolution spectroscopic and photometric monitoring would be very useful to probe the structure of the accretion disk as well as the geometry and physical conditions of the outflow.

  14. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    Science.gov (United States)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  15. Spectroscopic studies of silver boro tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, E. Ramesh, E-mail: apparao.bojja@gmail.com; Kumari, K. Rajani, E-mail: apparao.bojja@gmail.com; Rao, B. Appa, E-mail: apparao.bojja@gmail.com; Bhikshamaiah, G., E-mail: apparao.bojja@gmail.com [Department of Physics, Osmania University, Hyderabad-500007 (India)

    2014-04-24

    The FTIR absorption and Raman scattering studies were used to obtain the structural information of AgI−Ag{sub 2}O−[(1−x)B{sub 2}O{sub 3}−xTeO{sub 2}] (x=0 to 1 mol% in steps of 0.2) glasses. The glassy nature of the compounds has been confirmed by X-ray diffraction. FTIR and Raman spectra were recorded for all samples at room temperature. FTIR spectra which provides the information about the change in bond structure of the glasses. Raman spectra provide the effect of TeO{sub 2} on SBT glass system is that as increasing the concentration of TeO{sub 2} the band intensity at 707 cm{sup −1} increase.

  16. Measurements of the Absorption by Auditorium SEATING—A Model Study

    Science.gov (United States)

    BARRON, M.; COLEMAN, S.

    2001-01-01

    One of several problems with seat absorption is that only small numbers of seats can be tested in standard reverberation chambers. One method proposed for reverberation chamber measurements involves extrapolation when the absorption coefficient results are applied to actual auditoria. Model seat measurements in an effectively large model reverberation chamber have allowed the validity of this extrapolation to be checked. The alternative barrier method for reverberation chamber measurements was also tested and the two methods were compared. The effect on the absorption of row-row spacing as well as absorption by small numbers of seating rows was also investigated with model seats.

  17. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2012-01-01

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  18. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei

    2012-05-25

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  19. Infrared absorption studies of the annealing of irradiated diamonds

    International Nuclear Information System (INIS)

    Woods, G.S.

    1984-01-01

    Natural (types Ia and IIa) and synthetic (type Ib) diamonds have been irradiated with energetic electrons and neutrons and then heated at temperatures up to 1400 deg C. Attendant changes in the infrared absorption spectra, especially above the Raman frequency (1332 cm -1 ), have been monitored. The most prominent absorption to develop in the infrared region proper, on annealing both type Ia and type Ib specimens, whether electron- or neutron-irradiated is the H1a line at 1450 cm -1 . Measurements taken of neutron-irradiated type Ia specimens show that the strength of this line is specimen-dependent, and that it is a linear function of radiation dose. Isochronal annealing studies show that the onset of the line occurs during heating at 250 deg C for type Ia specimens and at 650 deg C for type Ib specimens. The absorption begins to weaken during heating at 1100 deg C, but it is very persistent, surviving an anneal of 4 hours at 1400 deg C, albeit with diminished intensity. Three other weaker lines at 1438, 1358 and 1355 cm -1 develop with the 1450 cm -1 line, but differ from it and from each other in subsequent annealing behaviour. Other lines were observed; these are reported and discussed. (author)

  20. Studies concerning thermodynamics and kinetics of the absorption of halogenated hydrocarbons relevant to environment

    International Nuclear Information System (INIS)

    Weisweiler, W.; Eidam, K.; Winterbauer, H.

    1993-07-01

    In the context of the research project the scrubbing of air contaminated by peculiar volatile organic compounds was investigated using the absorption technique by means of high boiling organics as washing liquids. Eight chlorinated hydrocarbons well known from technical processes were chosen to be representative for the volatile organic compounds. Eleven absorption media were selected on the basis of their physical properties. For the determination of the solubility data of the absorption media due to chlorinated hydrocarbons, nitrogen as well as a mixture of nitrogen and oxygen were used as carrier gas. The influence of the dipole moment of the absorption media on the amount of solubility - expressed as enrichment factor - was studied, too. Concerning the technical application, the thermostability and the stability against diluted inorganic acids were studied as well. (orig.). 56 figs., 8 tabs., 63 refs [de

  1. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    International Nuclear Information System (INIS)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; Di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-01-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν 1 +2ν 2 0 +ν 3 transition in CO 2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ∼1.6x10 -4

  2. Primary Gas Thermometry by Means of Laser-Absorption Spectroscopy: Determination of the Boltzmann Constant

    Science.gov (United States)

    Casa, G.; Castrillo, A.; Galzerano, G.; Wehr, R.; Merlone, A.; di Serafino, D.; Laporta, P.; Gianfrani, L.

    2008-05-01

    We report on a new optical implementation of primary gas thermometry based on laser-absorption spectrometry in the near infrared. The method consists in retrieving the Doppler broadening from highly accurate observations of the line shape of the R(12) ν1+2ν20+ν3 transition in CO2 gas at thermodynamic equilibrium. Doppler width measurements as a function of gas temperature, ranging between the triple point of water and the gallium melting point, allowed for a spectroscopic determination of the Boltzmann constant with a relative accuracy of ˜1.6×10-4.

  3. Spectroscopic surveys of LAMOST

    International Nuclear Information System (INIS)

    Zhao Yongheng

    2015-01-01

    The Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST), a new type of reflecting Schmidt telescope, has been designed and produced in China. It marks a breakthrough for large scale spectroscopic survey observation in that both large aperture and wide field of view have been achieved. LAMOST has the highest spectrum acquisition rate, and from October 2011 to June 2014 it has obtained 4.13 million spectra of celestial objects, of which 3.78 million are spectra of stars, with the stellar parameters of 2.20 million stars included. (author)

  4. Dithieno[3,2-a:2',3'-c]phenazine-based Chemical Probe for Anions: A Spectroscopic Study of Binding

    KAUST Repository

    El-Assaad, Tarek H.

    2015-04-27

    The synthesis of a new anion-responsive molecule N,N\\'-(2,5-bis(4-(tert-butyl)phenyl)dithieno[3,2-a:2\\',3\\'-c]phenazine-9,10-diyl)bis(4-methylbenzenesulfonamide) (1) is reported. The sensitivities of the spectroscopic properties of 1 in the presence of various anions were examined using UV-vis absorption spectroscopy, fluorescence and 1H NMR titration experiments. Strong binding of 1 to carboxylate, cyanide, fluoride and dihydrogen phosphate anions results in an increase in quantum yield for emission of 1, and changes in its 1H NMR chemical shifts. A significant electrostatic interaction of the tetrabutylammonium cation with 1, upon strong binding with the counter anion, was also indicated by the chemical shifts observed in the 1H NMR titrations. Binding constants of 1 to anions are also calculated based on the binding isotherms derived from NMR and UV-Vis titrations. DFT calculations show that the anion does not significantly impact the HOMO/LUMO levels (and subsequently the S0 -> S1 transition), but rather changes the strength of the S0 -> S2 transition, which accounts for the observed changes in the UV-vis spectra.

  5. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Science.gov (United States)

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  6. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    Directory of Open Access Journals (Sweden)

    Claude Daneault

    2012-06-01

    Full Text Available In this work, oxidized nanocellulose (ONC was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR and X-ray photoelectron spectroscopy (XPS spectroscopic techniques.

  7. Some spectroscopic studies of cotton-G-styrene prepared by γ irradiation

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Zahran, A.H.; Abo-Zeid, M.; Badr, Y.; Mousa, A.

    1986-01-01

    Absorption of water by graft copolymers obtained by direct radiation-induced grafting of styrene onto cotton fabrics has been studied. High-resolution nuclear magnetic resonance was used to study the nature of water absorption by these graft copolymers and its dependence on percent water content and degree of grafting percent. It was found that for cotton samples having increasing water content percent, first a rapid decrease in the width at half-value (upsilonsub(1/2)) corresponds to bound water strongly attached to the molecules of cellulose. On further increasing the water content percent, a small or zero change in upsilonsub(1/2) was observed corresponding to free water). Quantitative infrared measurements of the graft copolymers were carried out. The results showed the possibility of using an accurate IR technique for the quantitative estimation of the degree of grafting. This was achieved by carrying out a band shape analysis and correlating the changes in integral intensity and half-bandwidth with degree of grafting percent. (author

  8. Two-Photon Absorption Properties of Gold Fluorescent Protein: A Combined Molecular Dynamics and Quantum Chemistry Study.

    Science.gov (United States)

    Simsek, Yusuf; Brown, Alex

    2018-05-09

    Molecular dynamic (MD) simulations were carried out to obtain the conformational changes of the chromophore in the gold fluorescent protein (PDB ID: 1OXF). To obtain two-photon absorption (TPA) cross-sections, time dependent density functional theory (TD-DFT) computations were performed for chromophore geometries sampled along the trajectory. The TD-DFT computations used the CAM-B3LYP functional and 6-31+G(d) basis set with the conductor-like polarizable continuum model (PCM) with parameters for water. Results showed that two dihedral angles change remarkably over the simulation time. TPA cross-sections were found to average 20 GM for the excitation to S1 between 430 and 460 nm; however, the maximal and minimal values were 35GM and 5GM, respectively. Besides the effects of the dihedrals on the spectroscopic properties, some bond lengths affected the excitation energies and the TPA cross-sections significantly (up to ±25-30%) while the effects of bond angles were smaller (±5%). Overall the present results provide insight in the effects of conformational exibility on TPA (with gold fluorescent protein as a specific example) and suggest that further experimental measurements of TPA for gold fluorescent protein should be undertaken.

  9. Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements.

    Science.gov (United States)

    Weck, Philippe F; Kim, Eunja; Wang, Yifeng; Kruichak, Jessica N; Mills, Melissa M; Matteo, Edward N; Pellenq, Roland J-M

    2017-08-01

    Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

  10. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    International Nuclear Information System (INIS)

    Zhang Qi-Xian; Ruan Fang-Ping; Wei Wen-Sheng

    2011-01-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO 2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV–4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  11. THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE

    International Nuclear Information System (INIS)

    Lilly, Simon J.; Maier, Christian; Carollo, Marcella; Caputi, Karina; Le Brun, Vincent; Kneib, Jean-Paul; Le Fevre, Olivier; De la Torre, Sylvain; De Ravel, Loic; Mainieri, Vincenzo; Mignoli, Marco; Zamorani, Gianni; Bardelli, Sandro; Bolzonella, Micol; Coppa, Graziano; Scodeggio, Marco; Contini, Thierry; Renzini, Alvio; Bongiorno, Angela; Cucciati, Olga

    2009-01-01

    We present spectroscopic redshifts of a large sample of galaxies with I AB -1 , independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.

  12. Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

    Science.gov (United States)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill

    2009-07-01

    We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and

  13. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey

    International Nuclear Information System (INIS)

    Pessanha, S.; Manso, M.; Carvalho, M.L.

    2012-01-01

    This work focused on the application of the most relevant spectroscopic techniques used for the characterization of illuminated manuscripts. The historical value of these unique and invaluable artworks, together with the increased awareness concerning the conservation of cultural heritage, prompted the application of analytical techniques to the study of these illuminations. This is essential for the understanding of the artist's working methods, which aids conservation–restoration. The characterization of the pigments may also help assign a probable date to the manuscript. For these purposes, the spectroscopic techniques used so far include those that provide information on the elemental content: X-ray fluorescence, total reflection X-ray fluorescence and scanning electron microscopy coupled with energy-dispersive spectroscopy and laser-induced breakdown spectroscopy. Complementary techniques, such as X-ray diffraction, Fourier transform infrared and Raman spectroscopy, reveal information regarding the compounds present in the samples. The techniques, suitability, technological evolution and development of high-performance detectors, as well as the possibility of microanalysis and the higher sensitivity of the equipment, will also be discussed. Furthermore, issues such as the necessity of sampling, the portability of the equipment and the overall advantages and disadvantages of different techniques will be analyzed. - Highlights: ► The techniques used for studying illuminated manuscripts are described and compared. ► For in situ, non-destructive analysis the most suitable technique is EDXRF. ► For quantitative analysis TXRF is more appropriate. ► Raman spectroscopy is mostly used for pigments identification. ► FTIR was used for the characterization of binders and parchment.

  14. Glucose Oxidase Adsorption on Sequential Adsorbed Polyelectrolyte Films Studied by Spectroscopic Techniques

    Science.gov (United States)

    Tristán, Ferdinando; Solís, Araceli; Palestino, Gabriela; Gergely, Csilla; Cuisinier, Frédéric; Pérez, Elías

    2005-04-01

    The adsorption of Glucose Oxidase (GOX) on layers of poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) deposited on Sequentially Adsorbed Polyelectrolyte Films (SAPFs) were studied by three different spectroscopic techniques. These techniques are: Optical Wave Light Spectroscopy (OWLS) to measure surface density; Fluorescence Resonance Energy Transfer (FRET) to verify the adsorption of GOX on the surface; and Fourier Transform Infrared Spectroscopy in Attenuated Total Reflection mode (FTIR-HATR) to inspect local structure of polyelectrolytes and GOX. Two positive and two negative polyelectrolytes are used: Cationic poly(ethyleneimine) (PEI) and poly(allylamine hydrochloride) (PAH) and anionic poly(sodium 4-styrene sulfonate) (PSS) and poly(acrylic acid) (PAA). These spectroscopic techniques do not require any labeling for GOX or SAPFs, specifically GOX and PSS are naturally fluorescent and are used as a couple donor-acceptor for the FRET technique. The SAPFs are formed by a (PEI)-(PSS/PAH)2 film followed by (PAA/PAH)n bilayers. GOX is finally deposited on top of SAPFs at different values of n (n=1..5). Our results show that GOX is adsorbed on positive ended SAPFs forming a monolayer. Contrary, GOX adsorption is not observed on negative ended film polyelectrolyte. GOX stability was tested adding a positive and a negative polyelectrolyte after GOX adsorption. Protein is partially removed by PAH and PAA, with lesser force by PAA.

  15. Errors in spectroscopic measurements of SO2 due to nonexponential absorption of laser radiation, with application to the remote monitoring of atmospheric pollutants

    International Nuclear Information System (INIS)

    Brassington, D.J.; Moncrieff, T.M.; Felton, R.C.; Jolliffe, B.W.; Marx, B.R.; Rowley, W.R.C.; Woods, P.T.

    1984-01-01

    Methods of measuring the concentration of atmospheric pollutants by laser absorption spectroscopy, such as differential absorption lidar (DIAL) and integrated long-path techniques, all rely on the validity of Beer's exponential absorption law. It is shown here that departures from this law occur if the probing laser has a bandwidth larger than the wavelength scale of structure in the absorption spectrum of the pollutant. A comprehensive experimental and theoretical treatment of the errors resulting from these departures is presented for the particular case of SO 2 monitoring at approx.300 nm. It is shown that the largest error occurs where the initial calibration measurement of absorption cross section is made at low pressure, in which case errors in excess of 5% in the cross section could occur for laser bandwidths >0.01 nm. Atmospheric measurements by DIAL or long-path methods are in most cases affected less, because pressure broadening smears the spectral structure, but when measuring high concentrations errors can exceed 5%

  16. Protonation effects on the UV/Vis absorption spectra of imatinib: a theoretical and experimental study.

    Science.gov (United States)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-14

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. X-ray spectroscopic studies of uranium transformations in microbial cultures

    International Nuclear Information System (INIS)

    Dodge, C.J.; Francis, A.J.; Clayton, C.R.

    1995-01-01

    Microbial transformations of uranyl nitrate, U:citric acid, and mixed metal U:Fe:citric acid complex were investigated. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) analyses showed that soluble U 6+ was reduced to insoluble U 4+ by Clostridium sp. and was associated with the bacterial surface, whereas U 3+ was observed within the biomass. Uranium forms a binuclear complex with citric acid involving two carboxylic acid groups and the hydroxyl group. Biodegradation studies of U:citric acid and U:Fe:citric acid complexes using Pseudomonas fluorescens showed they were recalcitrant. The lack of biodegradation was due to the nature of the metal-citrate complex species and not due to toxicity. Characterization of the mixed metal U:Fe:citric acid complex by extended X-ray absorption fine structure (EXAFS) indicated that Fe was associated with the U and citric acid, resulting in formation of a bionuclear mixed metal citrate complex

  18. Yb3+:Sr5(VO4)3F: Crystal growth, spectroscopic characterization and laser development

    International Nuclear Information System (INIS)

    Bustamante, Andrea Nora Pino

    1999-01-01

    Crystal growth, spectroscopic characterization and laser development of Yb 3+ :SVAP [Sr 5 (VO 4 ) 3 F] was performed to demonstrate for the first time, operation of tunable laser emission centered at 1120 nm. Initially, SVAP crystals were grown with high dopant concentrations, up to 6.0 mol % of Yb 2 O 3 in the melt, in order to investigate the material for potential laser operation at a new laser wavelength. Additional research was performed to alleviate highly doped SVAP crystals of defects previously observed. Basic spectroscopic characterization including absorption and luminescent properties were measured to better understand the behavior of Yb 3+ ions in SVAP. Based upon these studies, discussion of the 1120 nm laser transition is presented as it arises from a ground state vibrational level. Investigations of the charge compensation process and the optical parameters as a function of dopant concentration are also presented. The laser development of Yb 3+ :SVAP included continuous and pulsed modes of operation of the 1044 nm and 1120 nm transitions. Initial laser action of the 1044 nm transition was achieved using a Yi: Saphire laser pump source in order to compare with previously results. Further development of a diode-pumped Yb 3+ :SVAP laser system demonstrated continuously tunable laser operation from 1103 nm for the first time. The laser investigations also proved that this high gain media does provide continuous wave laser action at 1044 nm and 1120 simultaneously without significant gain depletion. (author)

  19. Thermal, structural and spectroscopic properties of Pr3+-doped lead zinc borate glasses modified by alkali metal ions

    Directory of Open Access Journals (Sweden)

    M.V. Sasi kumar

    2017-07-01

    Full Text Available This paper offers a study on Pr3+-doped alkali and mixed-alkali borate glasses prepared by the melt quenching technique and characterized by thermal, structural and spectroscopic studies. The amorphous nature of the glassy systems was identified based on X-ray diffraction. The thermal behaviour of glasses was studied using differential thermal analysis (DTA. The functional groups contained in the glasses were identified by Fourier transform infrared spectroscopy (FTIR. Spectral intensities were evaluated from the absorption spectra and used for calculating J–O intensity parameters, Ωλ (λ = 2, 4 and 6. Further, these parameters were used for calculating different radiative properties. The best radiative state was identified as the laser transition state among the various states. Emission analysis was performed for this state by calculating the branching ratios and stimulated emission cross sections (σp for all the prepared glasses. These studies suggest that borate glasses are useful for visible fluorescence.

  20. Optical properties of gold island films-a spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, Martin, E-mail: mloncaric@irb.hr; Sancho-Parramon, Jordi; Zorc, Hrvoje

    2011-02-28

    Metal island films of noble metals are obtained by deposition on glass substrates during the first stage of evaporation process when supported metal nanoparticles are formed. These films show unique optical properties, owing to the localized surface plasmon resonance of free electrons in metal nanoparticles. In the present work we study the optical properties of gold metal island films deposited on glass substrates with different mass thicknesses at different substrate temperatures. The optical characterization is performed by spectroscopic ellipsometry at different angles of incidence and transmittance measurements at normal incidence in the same point of the sample. Fitting of the ellipsometric data allows determining the effective optical constants and thickness of the island film. A multiple oscillator approach was used to successfully represent the dispersion of the effective optical constants of the films.

  1. Basic studies on digestion and absorption in the small intestine, 7

    International Nuclear Information System (INIS)

    Ohki, Masahisa

    1980-01-01

    The absorption of 14 C-labeled fatty acids (caproic acid, oleic acid and stearic acid) was investigated. These were emulsified with an ultrasonic mixer for 60 min, and intestine treated with physiological saline and 10% pluronic F68 solution was used. Caproic acid was absorbed very rapidly and solely through the portal vein. Oleic acid and stearic acid were absorbed slowly through the lymphatics, with the former being absorbed faster. In physiological saline-treated intestine, oleic acid was transported into both the portal vein and lymphatic ducts. 10% Pluronic F68 solution did not change the absorption of caproic acid and oleic acid, but accelerated that of stearic acid. Autoradiographic studies demonstrated that each fatty acid was absorbed into absorptive cells in a different fashion, and long chain fatty acids required a long period of time for transport from the intestinal cells to the circulating blood. (author)

  2. Bio-medical X-ray imaging with spectroscopic pixel detectors

    CERN Document Server

    Butler, A P H; Tipples, R; Cook, N; Watts, R; Meyer, J; Bell, A J; Melzer, T R; Butler, P H

    2008-01-01

    The aim of this study is to review the clinical potential of spectroscopic X-ray detectors and to undertake a feasibility study using a novel detector in a clinical hospital setting. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allowing for routine use of spectroscopic bio-medical imaging. We have coined the term MARS (Medipix All Resolution System) for bio-medical images that provide spatial, temporal, and energy information. The full clinical significance of spectroscopic X-ray imaging is difficult to predict but insights can be gained by examining both image reconstruction artifacts and the current uses of dual-energy techniques. This paper reviews the known uses of energy information in vascular imaging and mammography, clinically important fields. It then presents initial results from using Medipix-2, to image human tissues within a clinical radiology department. Detectors currently in development, such as Medipix-3, will have multiple energy thresholds allo...

  3. Spectroscopic characterization of low dose rate brachytherapy sources

    Science.gov (United States)

    Beach, Stephen M.

    The low dose rate (LDR) brachytherapy seeds employed in permanent radioactive-source implant treatments usually use one of two radionuclides, 125I or 103Pd. The theoretically expected source spectroscopic output from these sources can be obtained via Monte Carlo calculation based upon seed dimensions and materials as well as the bare-source photon emissions for that specific radionuclide. However the discrepancies resulting from inconsistent manufacturing of sources in comparison to each other within model groups and simplified Monte Carlo calculational geometries ultimately result in undesirably large uncertainties in the Monte Carlo calculated values. This dissertation describes experimentally attained spectroscopic outputs of the clinically used brachytherapy sources in air and in liquid water. Such knowledge can then be applied to characterize these sources by a more fundamental and metro logically-pure classification, that of energy-based dosimetry. The spectroscopic results contained within this dissertation can be utilized in the verification and benchmarking of Monte Carlo calculational models of these brachytherapy sources. This body of work was undertaken to establish a usable spectroscopy system and analysis methods for the meaningful study of LDR brachytherapy seeds. The development of a correction algorithm and the analysis of the resultant spectroscopic measurements are presented. The characterization of the spectrometer and the subsequent deconvolution of the measured spectrum to obtain the true spectrum free of any perturbations caused by the spectrometer itself is an important contribution of this work. The approach of spectroscopic deconvolution that was applied in this work is derived in detail and it is applied to the physical measurements. In addition, the spectroscopically based analogs to the LDR dosimetry parameters that are currently employed are detailed, as well as the development of the theory and measurement methods to arrive at these

  4. Structure-function relationship of viral coat proteins : a site-directed spectroscopic study of M13 coat protein

    NARCIS (Netherlands)

    Stopar, D.

    1997-01-01

    This thesis describes the results of a spectroscopic study of the major coat protein of bacteriophage M13. During the infection process this protein is incorporated into the cytoplasmic membrane of Escherichia coli host cells. To specifically monitor the local structural changes

  5. The 2003 edition of geisa: a spectroscopic database system for the second generation vertical sounders radiance simulation

    Science.gov (United States)

    Jacquinet-Husson, N.; Lmd Team

    The GEISA (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Atmospheric Spectroscopic Information) computer accessible database system, in its former 1997 and 2001 versions, has been updated in 2003 (GEISA-03). It is developed by the ARA (Atmospheric Radiation Analysis) group at LMD (Laboratoire de Météorologie Dynamique, France) since 1974. This early effort implemented the so-called `` line-by-line and layer-by-layer '' approach for forward radiative transfer modelling action. The GEISA 2003 system comprises three databases with their associated management softwares: a database of spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located in a spectral range from the microwave to the limit of the visible. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the Giant Planets. a database of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. a database of refractive indices of basic atmospheric aerosol components. Illustrations will be given of GEISA-03, data archiving method, contents, management softwares and Web access facilities at: http://ara.lmd.polytechnique.fr The performance of instruments like AIRS (Atmospheric Infrared Sounder; http://www-airs.jpl.nasa.gov) in the USA, and IASI (Infrared Atmospheric Sounding Interferometer; http://smsc.cnes.fr/IASI/index.htm) in Europe, which have a better vertical resolution and accuracy, compared to the presently existing satellite infrared vertical sounders, is directly related to the quality of the spectroscopic parameters of the optically active gases, since these are essential input in the forward models used to simulate recorded radiance spectra. For these upcoming atmospheric sounders, the so-called GEISA/IASI sub-database system has been elaborated

  6. THE SLOAN DIGITAL SKY SURVEY REVERBERATION MAPPING PROJECT: RAPID C iv BROAD ABSORPTION LINE VARIABILITY

    International Nuclear Information System (INIS)

    Grier, C. J.; Brandt, W. N.; Trump, J. R.; Schneider, D. P.; Hall, P. B.; Shen, Yue; Vivek, M.; Dawson, K. S.; Ak, N. Filiz; Chen, Yuguang; Denney, K. D.; Kochanek, C. S.; Peterson, B. M.; Green, Paul J.; Jiang, Linhua; McGreer, Ian D.; Pâris, I.; Tao, Charling; Wood-Vasey, W. M.; Bizyaev, Dmitry

    2015-01-01

    We report the discovery of rapid variations of a high-velocity C iv broad absorption line trough in the quasar SDSS J141007.74+541203.3. This object was intensively observed in 2014 as a part of the Sloan Digital Sky Survey Reverberation Mapping Project, during which 32 epochs of spectroscopy were obtained with the Baryon Oscillation Spectroscopic Survey spectrograph. We observe significant (>4σ) variability in the equivalent width (EW) of the broad (∼4000 km s −1 wide) C iv trough on rest-frame timescales as short as 1.20 days (∼29 hr), the shortest broad absorption line variability timescale yet reported. The EW varied by ∼10% on these short timescales, and by about a factor of two over the duration of the campaign. We evaluate several potential causes of the variability, concluding that the most likely cause is a rapid response to changes in the incident ionizing continuum. If the outflow is at a radius where the recombination rate is higher than the ionization rate, the timescale of variability places a lower limit on the density of the absorbing gas of n e ≳ 3.9 × 10 5 cm −3 . The broad absorption line variability characteristics of this quasar are consistent with those observed in previous studies of quasars, indicating that such short-term variability may in fact be common and thus can be used to learn about outflow characteristics and contributions to quasar/host-galaxy feedback scenarios

  7. Infrared spectroscopic studies of rotational isomerism in salicylaldehyde and its derivatives

    International Nuclear Information System (INIS)

    Al-Dbaj, M.

    1984-01-01

    Infrared spectra of salicyladehyde,methyl salicylate,and ethyl-salicylate have been recorded in the solid,liquid,and vapour phases.It has been found that some of the absorption bands are increasing in intensity upon moving from the solid,liquid to the vapour phase.Some other bands are found to decrease in the same direction.The important parts of their work is that concerning the thermal measurements.It was carried out by selecting couples of absorption bands for each compound known to belong to individual isomers.Then they have been recorded at different temperatures in every phase.Enthalpy differences between these two isomers were calculated in every phase for each compound.This study many be considered as a good method for the identification of isomers.(32 tabs., 39 figs., 74 refs.)

  8. Characterizing the Cloud Decks of Luhman 16AB with Medium-resolution Spectroscopic Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Kendra; Metchev, Stanimir [The University of Western Ontario, Centre for Planetary and Space Exploration, 1151 Richmond Street, London, ON N6A 3K7 (Canada); Heinze, Aren [Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822-1839 (United States); Gagné, Jonathan [Carnegie Institution of Washington DTM, 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Kurtev, Radostin, E-mail: kkellogg@uwo.ca, E-mail: smetchev@uwo.ca [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Ave. Gran Bretaña 1111, Playa Ancha, Casilla 53, Valparaíso (Chile)

    2017-11-01

    We present results from a two-night R ∼ 4000 0.9–2.5 μ m spectroscopic monitoring campaign of Luhman 16AB (L7.5 + T0.5). We assess the variability amplitude as a function of pressure level in the atmosphere of Luhman 16B: the more variable of the two components. The amplitude decreases monotonically with decreasing pressure, indicating that the source of variability—most likely patchy clouds—lies in the lower atmosphere. An unexpected result is that the strength of the K i absorption is higher in the faint state of Luhman 16B and lower in the bright state. We conclude that either the abundance of K i increases when the clouds roll in, potentially because of additional K i in the cloud itself, or that the temperature–pressure profile changes. We reproduce the change in K i absorption strengths with combinations of spectral templates to represent the bright and the faint variability states. These are dominated by a warmer L8 or L9 component, with a smaller contribution from a cooler T1 or T2 component. The success of this approach argues that the mechanism responsible for brown dwarf variability is also behind the diverse spectral morphology across the L-to-T transition. We further suggest that the L9–T1 part of the sequence represents a narrow but random ordering of effective temperatures and cloud fractions, obscured by the monotonic progression in methane absorption strength.

  9. Characterizing the Cloud Decks of Luhman 16AB with Medium-resolution Spectroscopic Monitoring

    International Nuclear Information System (INIS)

    Kellogg, Kendra; Metchev, Stanimir; Heinze, Aren; Gagné, Jonathan; Kurtev, Radostin

    2017-01-01

    We present results from a two-night R ∼ 4000 0.9–2.5 μ m spectroscopic monitoring campaign of Luhman 16AB (L7.5 + T0.5). We assess the variability amplitude as a function of pressure level in the atmosphere of Luhman 16B: the more variable of the two components. The amplitude decreases monotonically with decreasing pressure, indicating that the source of variability—most likely patchy clouds—lies in the lower atmosphere. An unexpected result is that the strength of the K i absorption is higher in the faint state of Luhman 16B and lower in the bright state. We conclude that either the abundance of K i increases when the clouds roll in, potentially because of additional K i in the cloud itself, or that the temperature–pressure profile changes. We reproduce the change in K i absorption strengths with combinations of spectral templates to represent the bright and the faint variability states. These are dominated by a warmer L8 or L9 component, with a smaller contribution from a cooler T1 or T2 component. The success of this approach argues that the mechanism responsible for brown dwarf variability is also behind the diverse spectral morphology across the L-to-T transition. We further suggest that the L9–T1 part of the sequence represents a narrow but random ordering of effective temperatures and cloud fractions, obscured by the monotonic progression in methane absorption strength.

  10. MeCaSDa and ECaSDa: Methane and ethene calculated spectroscopic databases for the virtual atomic and molecular data centre

    International Nuclear Information System (INIS)

    Ba, Yaye Awa; Wenger, Christian; Surleau, Romain; Boudon, Vincent; Rotger, Maud; Daumont, Ludovic; Bonhommeau, David A.; Tyuterev, Vladimir G.; Dubernet, Marie-Lise

    2013-01-01

    Two spectroscopic relational databases, denoted MeCaSDa and ECaSDa, have been implemented for methane and ethene, and included in VAMDC (Virtual Atomic and Molecular Data Centre, (http://portal.vamdc.eu/vamdc_portal/home.seam)). These databases collect calculated spectroscopic data from the accurate analyses previously performed for the electronic ground state of methane, ethene, and some of their isotopologues: 12 CH 4 , 13 CH 4 , and 12 C 2 H 4 . Both infrared absorption and Raman scattering lines are included. The polyad structures are reported and the transitions are precisely described by their energy, their intensity and the full description of the lower and upper states involved in the transitions. The relational schemas of ECaSDa and MeCaSDa databases are equivalent and optimised to enable the better compromise between data retrieval and compatibility with the XSAMS (XML Schema for Atoms, Molecules, and Solids) format adopted within the VAMDC European project. -- Highlights: • We present two new spectroscopic databases, MeCaSDa and ECaSDa. • They contain calculated line lists for methane and ethene, respectively. • They collect data from accurate analyses previously preformed. • They are included in the Virtual Atomic and Molecular Data Centre (VAMDC)

  11. SOME SPECIATION STUDIES IN FOODSTUFF BY ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Gücer, S

    2000-01-01

    There has been increasing interest in speciation studies of essentialelements in foods. The main limitation of this studies, their levels in foodsamples and the difficulties for the determination in their own differentforms without any changes in their original forms.Atomic Absorption Spectrometry (AAS) coupled with separation methodswould be outline in this presentation. Analytical scheme was given for tea, olive and garlic samples forManganese, Magnesium and Selenium respectively. Activated...

  12. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    Science.gov (United States)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  13. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    International Nuclear Information System (INIS)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong

    2016-01-01

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future

  14. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong [Gyeongsang National University, Jinju (Korea, Republic of)

    2016-10-15

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future.

  15. A Spectroscopic and Photometric Study of Gravitational Microlensing Events

    Science.gov (United States)

    Kane, Stephen R.

    2000-08-01

    Gravitational microlensing has generated a great deal of scientific interest over recent years. This has been largely due to the realization of its wide-reaching applications, such as the search for dark matter, the detection of planets, and the study of Galactic structure. A significant observational advance has been that most microlensing events can be identified in real-time while the source is still being lensed. More than 400 microlensing events have now been detected towards the Galactic bulge and Magellanic Clouds by the microlensing survey teams EROS, MACHO, OGLE, DUO, and MOA. The real-time detection of these events allows detailed follow-up observations with much denser sampling, both photometrically and spectroscopically. The research undertaken in this project on photometric studies of gravitational microlensing events has been performed as a member of the PLANET (Probing Lensing Anomalies NETwork) collaboration. This is a worldwide collaboration formed in the early part of 1995 to study microlensing anomalies - departures from an achromatic point source, point lens light curve - through rapidly-sampled, multi-band, photometry. PLANET has demonstrated that it can achieve 1% photometry under ideal circumstances, making PLANET observations sensitive to detection of Earth-mass planets which require characterization of 1%--2% deviations from a standard microlensing light curve. The photometric work in this project involved over 5 months using the 1.0 m telescope at Canopus Observatory in Australia, and 3 separate observing runs using the 0.9 m telescope at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. Methods were developed to reduce the vast amount of photometric data using the image analysis software MIDAS and the photometry package DoPHOT. Modelling routines were then written to analyse a selection of the resulting light curves in order to detect any deviation from an achromatic point source - point lens light curve. The photometric

  16. Structural, optical absorption and photoluminescence spectral studies of Sm3+ ions in Alkaline-Earth Boro Tellurite glasses

    Science.gov (United States)

    Siva Rama Krishna Reddy, K.; Swapna, K.; Mahamuda, Sk.; Venkateswarlu, M.; Srinivas Prasad, M. V. V. K.; Rao, A. S.; Prakash, G. Vijaya

    2018-05-01

    Sm3+ ions doped Alkaline-Earth Boro Tellurite (AEBT) glasses were prepared by using conventional melt quenching technique and characterized using the spectroscopic techniques such as FT-IR, optical absorption, emission and decay spectral measurements to understand their utility in optoelectronic devices. From absorption spectra, the bonding parameters, nephelauxetic ratios were determined to know the nature of bonding between Sm3+ ions and its surrounding ligands. From the measured oscillator strengths, the Judd-Ofelt (J-O) intensity parameters were evaluated and in turn used to estimate various radiative parameters for the fluorescent levels of Sm3+ ions in AEBT glasses. The PL spectra of Sm3+ ions exhibit three emission bands corresponding to the transitions 4G5/2 → 6H5/2, 6H7/2 and 6H9/2 in the visible region for which the emission cross-sections and branching ratios were evaluated. The decay spectral profiles measured for 4G5/2 → 6H7/2 transition showed single exponential for lower concentration and non-exponential for higher concentration of doped rare earth ion in the as prepared glasses. Conversion of decay spectral profiles from single to non-exponential have been analyzed using Inokuti-Hirayama (I-H) model to understand the energy transfer mechanism involved in the decay process. CIE Chromaticity coordinates were measured using emission spectral data to identify the exact region of emission from the as-prepared glasses. From the evaluated radiative parameters, emission cross-sections and quantum efficiencies, it was observed that AEBT glass with 1 mol% of Sm3+ ions is more suitable for designing optoelectronic devices.

  17. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  18. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  19. Spectroscopic properties of Ho{sup 3+}-doped K-Sr-Al phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Linganna, K.; Rathaiah, M.; Venkatramu, V. [Yogi Vemana University, Department of Physics, Kadapa (India); Jayasankar, C.K. [Sri Venkateswara University, Department of Physics, Tirupati (India)

    2014-05-15

    Trivalent holmium-doped K-Sr-Al phosphate glasses (P{sub 2}O{sub 5}-K{sub 2}O-SrO-Al{sub 2}O{sub 3}-Ho{sub 2}O{sub 3}) were prepared, and their spectroscopic properties have been evaluated using absorption, emission, and excitation measurements. The Judd-Ofelt theory has been used to derive spectral intensities of various absorption bands from measured absorption spectrum of 1.0 mol% Ho{sub 2}O{sub 3}-doped K-Sr-Al phosphate glass. The Judd-Ofelt intensity parameters (Ω{sub λ}, x 10{sup -20} cm{sup 2}) have been determined of the order of Ω{sub 2} = 11.39, Ω{sub 4} = 3.59, and Ω{sub 6} = 2.92, which in turn used to derive radiative properties such as radiative transition probability, radiative lifetime, branching ratios, etc. for excited states of Ho{sup 3+} ions. The radiative lifetimes for the {sup 5}F{sub 4}, {sup 5}S{sub 2}, and {sup 5}F{sub 5} levels of Ho{sup 3+} ions are found to be 169, 296, and 317 μs, respectively. The stimulated emission cross-section for 2.05-μm emission was calculated by the McCumber theory and found to be 9.3 x 10{sup -21} cm{sup 2}. The wavelength-dependent gain coefficient with population inversion rate has been evaluated. The results obtained in the titled glasses are discussed systematically and compared with other Ho{sup 3+}-doped systems to assess the possibility for visible and infrared device applications. (orig.)

  20. Fourier-transform infrared spectroscopic studies of dithia ...

    Indian Academy of Sciences (India)

    We present here infrared absorption spectra of dithia tetraphenylporphine and its cation in the 450-1600 and 2900-3400 cm-1 regions. Most of the allowed IR bands are observed in pairs due to overall 2ℎ point group symmetry of the molecule. The observed bands have been assigned to the porphyrin skeleton and phenyl ...