WorldWideScience

Sample records for absorption spectroscopic study

  1. Spectroscopic study of low-temperature hydrogen absorption in palladium

    Energy Technology Data Exchange (ETDEWEB)

    Ienaga, K., E-mail: ienaga@issp.u-tokyo.ac.jp; Takata, H.; Onishi, Y.; Inagaki, Y.; Kawae, T. [Department of Applied Quantum Physics, Faculty of Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395 (Japan); Tsujii, H. [Department of Physics, Faculty of Education, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Kimura, T. [Department of Physics, Kyushu University, Hakozaki, Higashi-Ku, Fukuoka 812-8581 (Japan)

    2015-01-12

    We report real-time detection of hydrogen (H) absorption in metallic palladium (Pd) nano-contacts immersed in liquid H{sub 2} using inelastic electron spectroscopy (IES). After introduction of liquid H{sub 2}, the spectra exhibit the time evolution from the pure Pd to the Pd hydride, indicating that H atoms are absorbed in Pd nano-contacts even at the temperature where the thermal process is not expected. The IES time and bias voltage dependences show that H absorption develops by applying bias voltage 30 ∼ 50 mV, which can be explained by quantum tunneling. The results represent that IES is a powerful method to study the kinetics of high density H on solid surface.

  2. IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites

    Science.gov (United States)

    Sawant, V. S.; Bagade, A. A.; Mohite, S. V.; Rajpure, K. Y.

    2014-10-01

    The IR spectra of Li0.5-(x/2)CoxFe2.5-(x/2)O4 ferrite samples (0≤x≤0.6) prepared by solution combustion method have been reported. The influence of Co substitution is verified. XRD studies confirm the spinel phase formation of ferrites. Lattice constant varies linearly from 8.31 Å (x=0) to 8.35 Å (x=0.6) with composition. Evidence of two absorption bands in the IR spectra (below 800 cm-1) reveals the characteristic feature of spinel ferrite. The IR spectra featured additional three absorption bands around 550, 670 and 705 cm-1 for the samples x=0.1 and x=0.6. Absence of bands splitting specifies that Fe ions do not exist in excess form. It is found that high frequency band (ν1), due to tetrahedral (A) group, lies at around 600 cm-1 and low frequency band (ν2), due to octahedral (B) group, around 450 cm-1. The positions of bands are found to be composition dependent. The IR bands due to tetrahedral complexes shift slightly towards high frequency side with composition upto x=0.4 where as that due to octahedral complexes shift towards lower frequency side with x. Based on the data of absorption bands, force constants (kt, ko) and bond lengths (RA, RB) were estimated. Compositional dependence of force constants is explained on the basis of cation-oxygen bond distances of respective sites and cation distribution.

  3. Effects of dust absorption on spectroscopic studies of turbulence

    Science.gov (United States)

    Kandel, D.; Lazarian, A.; Pogosyan, D.

    2017-09-01

    We study the effect of dust absorption on the recovery velocity and density spectra as well as on the anisotropies of magnetohydrodynamic turbulence using the velocity channel analysis (VCA), velocity coordinate spectrum (VCS) and velocity centroids. The dust limits volume up to an optical depth of unity. We show that in the case of the emissivity proportional to the density of emitters, the effects of random density get suppressed for strong dust absorption intensity variations arise from the velocity fluctuations only. However, for the emissivity proportional to squared density, both density and velocity fluctuations affect the observed intensities. We predict a new asymptotic regime for the spectrum of fluctuations for large scales exceeding the physical depths to unit optical depth. The spectrum gets shallower by unity in this regime. In addition, the dust absorption removes the degeneracy resulted in the universal K-3 spectrum of intensity fluctuations of self-absorbing medium reported by Lazarian & Pogosyan. We show that the predicted result is consistent with the available H ii region emission data. We find that for sub-Alfvénic and trans-Alfvénic turbulence one can get the information about both the magnetic field direction and the fundamental Alfvén, fast and slow modes that constitute MHD turbulence.

  4. IR absorption spectroscopic study of mixed cobalt substituted lithium ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Sawant, V.S.; Bagade, A.A.; Mohite, S.V.; Rajpure, K.Y., E-mail: rajpure@yahoo.com

    2014-10-15

    The IR spectra of Li{sub 0.5−(x/2)}Co{sub x}Fe{sub 2.5−(x/2)}O{sub 4} ferrite samples (0≤x≤0.6) prepared by solution combustion method have been reported. The influence of Co substitution is verified. XRD studies confirm the spinel phase formation of ferrites. Lattice constant varies linearly from 8.31 Å (x=0) to 8.35 Å (x=0.6) with composition. Evidence of two absorption bands in the IR spectra (below 800 cm{sup −1}) reveals the characteristic feature of spinel ferrite. The IR spectra featured additional three absorption bands around 550, 670 and 705 cm{sup −1} for the samples x=0.1 and x=0.6. Absence of bands splitting specifies that Fe ions do not exist in excess form. It is found that high frequency band (ν{sub 1}), due to tetrahedral (A) group, lies at around 600 cm{sup −1} and low frequency band (ν{sub 2}), due to octahedral (B) group, around 450 cm{sup −1}. The positions of bands are found to be composition dependent. The IR bands due to tetrahedral complexes shift slightly towards high frequency side with composition upto x=0.4 where as that due to octahedral complexes shift towards lower frequency side with x. Based on the data of absorption bands, force constants (k{sub t}, k{sub o}) and bond lengths (R{sub A}, R{sub B}) were estimated. Compositional dependence of force constants is explained on the basis of cation–oxygen bond distances of respective sites and cation distribution.

  5. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths.

    Science.gov (United States)

    Riddle, Sarah G; Tran, Huy H; Dewitt, Jane G; Andrews, Joy C

    2002-05-01

    We have studied water hyacinth (Eichhornia crassipes), a non-native nuisance plant found in the in San Francisco Bay Delta region, for its potential to phytoremediate mercury. Mercury is a common contaminant in San Francisco Bay Area waters because of gold mining activities. In this study, speciation of mercury in hyacinth roots and shoots, rates of mercury uptake by hyacinths in the laboratory, and mercury levels near the Big Break Region in the Delta were studied. In the speciation studies, Hg L3 edge X-ray absorption spectroscopic analysis of Hg model compounds and water hyacinth roots and shoots revealed that Hg was initially bound ionically to oxygen ligands in roots, most likely to carboxylate groups, and was bound covalently to sulfur groups in shoots. In laboratory uptake studies, we found that water hyacinths grown in 1 ppm Hg and one-quarter strength Hoagland's solution accumulated a maximum of 0.20 ppm in shoots and 16.0 ppm in roots, both reaching maximum concentrations after approximately 16 days. Mercury concentrations were found to be 0.26 +/- 0.20 ppm in the water and 0.86 +/- 1.70 ppm in sediment at Big Break. It was proposed that water hyacinths have the potential to phytoremediate mercury in the water at Big Break if the current herbicide treatments are replaced by physical removal.

  6. Theoretical modeling of the spectroscopic absorption properties of luciferin and oxyluciferin: A critical comparison with recent experimental studies

    Energy Technology Data Exchange (ETDEWEB)

    Anselmi, Massimiliano, E-mail: m.anselmi@caspur.it [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Marocchi, Simone [Department of Chemistry, University of Rome ' La Sapienza' , P.le Aldo Moro 5, 00185 Rome (Italy); Aschi, Massimiliano [Department of Chemistry, Chemical Engineering and Materials, University of L' Aquila, Via Vetoio (Coppito 1), 67100 Coppito, L' Aquila (Italy); Amadei, Andrea [Department of Chemistry, University of Rome ' Tor Vergata' , Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2012-01-02

    Highlights: Black-Right-Pointing-Pointer The calculated absorption spectra were compared with experimental data. Black-Right-Pointing-Pointer Shapes and absorption maxima were reproduced for luciferin and oxyluciferin spectra. Black-Right-Pointing-Pointer The effect of the solvent largely changes the electronic transition probabilities. Black-Right-Pointing-Pointer Higher excitations provide an important contribution to the main absorption peak. - Abstract: Firefly luciferin and its oxidated form, oxyluciferin, are two heterocyclic compounds involved in the enzymatic reaction, catalyzed by redox proteins called luciferases, which provides the bioluminescence in a wide group of arthropods. Whereas the electronic absorption spectra of D-luciferin in water at different pHs are known since 1960s, only recently reliable experimental electronic spectra of oxyluciferin have become available. In addition oxyluciferin is involved in a triple chemical equilibria (deprotonation of the two hydroxyl groups and keto-enol tautomerism of the 4-hydroxythiazole ring), that obligates to select during an experiment a predominant species, tuning pH or solvent polarity besides introducing chemical modifications. In this study we report the absorption spectra of luciferin and oxyluciferin in each principal chemical form, calculated by means of perturbed matrix method (PMM), which allowed us to successfully introduce the effect of the solvent on the spectroscopic absorption properties, and compare the result with available experimental data.

  7. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, T.E.

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s{yields}3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  8. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  9. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses

    Science.gov (United States)

    SivaRamaiah, G.; LakshmanaRao, J.

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al2O3 + 75H3BO3 + (20-x)PbO + xMnSO4 (where x = 0.5, 1,1.5 and 2 mol% of MnSO4) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g ≈ 2.0 has been attributed to Mn2+ centers in an octahedral symmetry. The ESR resonance signals at isotropic g ≈ 3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn2+ ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to 5Eg → 5T2g transition of Mn3+centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges.

  10. Optical absorption, Mössbauer, and FTIR spectroscopic studies of two blue bazzites

    Science.gov (United States)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.; Boesenberg, Joseph S.

    2017-07-01

    Two samples of bazzite, a very rare Sc analog of beryl, from Tørdal, Telemark, Norway and Kent, Central Kazakhstan were studied by electron microprobe, optical absorption, and Mössbauer spectroscopies; the latter sample was also studied by FTIR. Electron microprobe results show that the Norway bazzite is composed of two bazzites with slightly different FeO contents, viz. 5.66 and 5.43 wt%. The Kazakhstan sample consists of several varieties of bazzite displaying strong differences in iron, manganese, magnesium, and aluminum contents (in wt%): FeO from 2.02 to 6.73, MnO from 0.89 to 2.98, MgO from 0.37 to 1.86, and Al2O3 from 0.30 to 1.30. Mössbauer spectroscopy shows different degrees of iron oxidation. The Norway bazzite is completely Fe2+, while the Kazakhstan sample contains roughly equivalent Fe3+ and Fe2+ accommodated in the octahedral site. The difference in iron oxidation causes strong variations in the intensity of the broad optical absorption band around 13,850 cm-1, which is assigned to Fe2+ → Fe3+ IVCT; as a result, there are strong differences in the intensity of blue color. Dichroism ( E|| c ≫ E⊥ c) is much stronger in the Kazakhstan sample than in the Norway one. Intensities of the electronic spin-allowed bands of [6]Fe2+ at 8900 and 10,400 cm-1 are somewhat higher in the latter than in the former. FTIR spectra of the sample from Kent show the presence of only water type II molecules with the H-H vector perpendicular to the c-axis, in contrast to more typical beryls that always show at least weak minor bands of H2O I. This result shows that trapped water molecules in structural channels of studied bazzite occupy only sites next to or between six-membered rings centered by Na atoms. Definite structure can be observed in the vicinities of ν2 and ν3 peaks. Peaks at 1621 and 3663 cm-1 are assigned to "doubly coordinated" H2O (IId), whereas maximums at 1633 and 3643 cm-1 likely represent "singly coordinated" H2O (IIs). Interpretation of the

  11. Optical absorption, Mössbauer, and FTIR spectroscopic studies of two blue bazzites

    Science.gov (United States)

    Taran, Michail N.; Dyar, M. Darby; Khomenko, Vladimir M.; Boesenberg, Joseph S.

    2017-02-01

    Two samples of bazzite, a very rare Sc analog of beryl, from Tørdal, Telemark, Norway and Kent, Central Kazakhstan were studied by electron microprobe, optical absorption, and Mössbauer spectroscopies; the latter sample was also studied by FTIR. Electron microprobe results show that the Norway bazzite is composed of two bazzites with slightly different FeO contents, viz. 5.66 and 5.43 wt%. The Kazakhstan sample consists of several varieties of bazzite displaying strong differences in iron, manganese, magnesium, and aluminum contents (in wt%): FeO from 2.02 to 6.73, MnO from 0.89 to 2.98, MgO from 0.37 to 1.86, and Al2O3 from 0.30 to 1.30. Mössbauer spectroscopy shows different degrees of iron oxidation. The Norway bazzite is completely Fe2+, while the Kazakhstan sample contains roughly equivalent Fe3+ and Fe2+ accommodated in the octahedral site. The difference in iron oxidation causes strong variations in the intensity of the broad optical absorption band around 13,850 cm-1, which is assigned to Fe2+ → Fe3+ IVCT; as a result, there are strong differences in the intensity of blue color. Dichroism (E||c ≫ E⊥c) is much stronger in the Kazakhstan sample than in the Norway one. Intensities of the electronic spin-allowed bands of [6]Fe2+ at 8900 and 10,400 cm-1 are somewhat higher in the latter than in the former. FTIR spectra of the sample from Kent show the presence of only water type II molecules with the H-H vector perpendicular to the c-axis, in contrast to more typical beryls that always show at least weak minor bands of H2O I. This result shows that trapped water molecules in structural channels of studied bazzite occupy only sites next to or between six-membered rings centered by Na atoms. Definite structure can be observed in the vicinities of ν2 and ν3 peaks. Peaks at 1621 and 3663 cm-1 are assigned to "doubly coordinated" H2O (IId), whereas maximums at 1633 and 3643 cm-1 likely represent "singly coordinated" H2O (IIs). Interpretation of the third

  12. Infrared absorption spectroscopic study of Nd3+ substituted Zn–Mg ferrites

    Indian Academy of Sciences (India)

    B P Ladgaonkar; C B Kolekar; A S Vaingankar

    2002-08-01

    Compositions of polycrystalline ZnMg1-Fe2–NdO4 ( = 0.00, 0.20, 0.40, 0.60, 0.80 and 1.00; = 0.00, 0.05 and 0.10) ferrites were prepared by standard ceramic method and characterized by X-ray diffraction, scanning electron microscopy and infrared absorption spectroscopy. Far infrared absorption spectra show two significant absorption bands, first at about 600 cm–1 and second at about 425 cm–1 , which were respectively attributed to tetrahedral (A) and octahedral (B) sites of the spinel. The positions of bands are found to be composition dependent. The force constants, $K_T$ and $K_O$, were calculated and plotted against zinc concentration. Compositional dependence of force constants is explained on the basis of cation–oxygen bond distances of respective sites and cation distribution.

  13. X-ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)iron(III) Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Shan,X.; Rohde, J.; Koehntop, K.; Zhou, Y.; Bukowski, M.; Costas, M.; Fujisawa, K.; Que, Jr., L.

    2007-01-01

    The reactions of iron(II) complexes [Fe(Tpt-Bu,i-Pr)(OH)] (1a, Tpt-Bu,i-Pr = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me2BPMCN)(OTf)2] (1b, 6-Me2BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L8Py2)(OTf)](OTf) (1c, L8Py2 = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin FeIII-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes. These include (1) an intense 1s {yields} 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86-1.96 Angstroms Fe-OOR bond, compared to the 1.78 Angstroms Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin FeIII-OOR species.

  14. X-Ray Absorption Spectroscopic Studies of High-Spin Nonheme (Alkylperoxo)Iron(III) Intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Shan, X.; Rohde, J.-U.; Koehntop, K.D.; Zhou, Y.; Bukowski, M.R.; Costas, M.; Fujisawa, K.; Que, L.; Jr.

    2009-06-04

    The reactions of iron(II) complexes [Fe(Tp{sup t-Bu,i-Pr})(OH)] (1a, Tp{sup t-Bu,i-Pr} = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate), [Fe(6-Me{sub 2}BPMCN)(OTf){sub 2}] (1b, 6-Me{sub 2}BPMCN = N,N'-bis((2-methylpyridin-6-yl)methyl)-N,N'-dimethyl-trans-1,2-diaminocyclohexane), and [Fe(L{sup 8}Py{sub 2})(OTf)](OTf) (1c, L{sup 8}Py{sub 2} = 1,5-bis(pyridin-2-ylmethyl)-1,5-diazacyclooctane) with tert-BuOOH give rise to high-spin Fe{sup III}-OOR complexes. X-ray absorption spectra (XAS) of these high-spin species show characteristic features, distinct from those of low-spin Fe-OOR complexes (Rohde, J.-U.; et al. J. Am. Chem. Soc. 2004, 126, 16750--16761). These include (1) an intense 1s {yields} 3d preedge feature, with an area around 20 units, (2) an edge energy, ranging from 7122 to 7126 eV, that is affected by the coordination environment, and (3) a 1.86--1.96 {angstrom} Fe-OOR bond, compared to the 1.78 {angstrom} Fe-OOR bond in low-spin complexes. These unique features likely arise from a flexible first coordination sphere in those complexes. The difference in Fe-OOR bond length may rationalize differences in reactivity between low-spin and high-spin Fe{sup III}-OOR species.

  15. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  16. Reactivity of Chromium(III) Nutritional Supplements in Biological Media: An X-Ray Absorption Spectroscopic Study

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, A.; Mulyani, I.; Levina, A.; Lay, P.A.

    2009-05-22

    Chromium(III) nutritional supplements are widely used due to their purported ability to enhance glucose metabolism, despite growing evidence on low activity and the potential genotoxicity of these compounds. Reactivities of Cr(III) complexes used in nutritional formulations, including [Cr3O(OCOEt)6(OH2)3]+ (A), [Cr(pic)3] (pic) = 2-pyridinecarboxylato(-) (B), and trans-[CrCl2(OH2)4]+ (CrCl3 {center_dot} 6H2O; C), in a range of natural and simulated biological media (artificial digestion systems, blood and its components, cell culture media, and intact L6 rat skeletal muscle cells) were studied by X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectroscopic data were processed by multiple linear-regression analyses with the use of a library of model Cr(III) compounds, and the results were corroborated by the results of X-ray absorption fine structure spectroscopy and electrospray mass spectrometry. Complexes A and B underwent extensive ligand-exchange reactions under conditions of combined gastric and intestinal digestion (in the presence of a semisynthetic meal, 3 h at 310 K), as well as in blood serum and in a cell culture medium (1-24 h at 310 K), with the formation of Cr(III) complexes with hydroxo and amino acid/protein ligands. Reactions of compounds A-C with cultured muscle cells led to similar ligand-exchange products, with at least part of Cr(III) bound to the surface of the cells. The reactions of B with serum greatly enhanced its propensity to be converted to Cr(VI) by biological oxidants (H2O2 or glucose oxidase system), which is proposed to be a major cause of both the insulin-enhancing activity and toxicity of Cr(III) compounds (Mulyani, I.; Levina, A.; Lay, P. A. Angew. Chem. Int. Ed. 2004, 43, 4504-4507). This finding enhances the current concern over the safety of consumption of large doses of Cr(III) supplements, particularly [Cr(pic)3].

  17. Molecular dynamics and a spectroscopic study of sulfur dioxide absorption by an ionic liquid and its mixtures with PEO.

    Science.gov (United States)

    Hoher, Karina; Cardoso, Piercarlo F; Lepre, Luiz F; Ando, Rômulo A; Siqueira, Leonardo J A

    2016-10-19

    An investigation comprising experimental techniques (absorption capacity of SO2 and vibrational spectroscopy) and molecular simulations (thermodynamics, structure, and dynamics) has been performed for the polymer poly(ethylene oxide) (PEO), the ionic liquid butyltrimethylammonium bis(trifluoromethylsulfonyl)imide ([N4111][Tf2N]) and their mixtures as sulfur dioxide (SO2) absorbing materials. The polymer PEO has higher capacity to absorb SO2 than the neat ionic liquid, whereas the mixtures presented intermediary absorption capacities. The band assigned to the symmetric stretching band of SO2 at ca. 1140 cm(-1), which is considered a spectroscopic probe for the strength of SO2 interactions with its neighborhood, shifts to lower wavenumbers as more negative total interaction energy values of SO2 were evaluated from the simulations. The solvation free energy of SO2, ΔGsol, correlates linearly with the absorption capacity of SO2. The negative values of ΔGsol are due to negative and positive values of enthalpy and entropy, respectively. In the ionic liquid, SO2 weakens the cation-anion interactions, whereas in the mixture with a high content of PEO these interactions are slightly increased. Such effects were correlated with the relative population of cisoid and transoid conformers of Tf2N anions as revealed by Raman spectroscopy. Moreover, the presence of SO2 in the systems provokes the increase of diffusion coefficients of the absorbing species in comparison with the systems without the gas. Proper to the slow dynamics of the polymer, the diffusion coefficient of ions and SO2 diminishes with the increase of the PEO content.

  18. Electron spin resonance and optical absorption spectroscopic studies of Cu{sup 2+} ions in aluminium lead borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    SivaRamaiah, G., E-mail: gsivaram7@yahoo.co.in [Department of Physics, Government College for Men, Kadapa 516004 (India); LakshmanaRao, J., E-mail: jlrao46@yahoo.co.in [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer It is for the first time to study optical absorption and EPR in these glasses. Black-Right-Pointing-Pointer The thermal properties are new and interesting in this glass system. Black-Right-Pointing-Pointer It is for the first time to report three optical bands for Cu{sup 2+} in oxide glasses. Black-Right-Pointing-Pointer The interesting optical results are due to excellent sample preparation. - Abstract: Electron Spin Resonance and optical absorption spectral studies of Cu{sup 2+} ions in 5 Al{sub 2}O{sub 3} + 75 B{sub 2}O{sub 3} + (20-z) PbO + z CuO (where z = 0.1-1.5 mol.% of CuO) glasses have been reported. The EPR spectra of all the glasses show resonance signals characteristic of Cu{sup 2+} ions at both room and low temperatures. The number of spins and Gibbs energy were calculated at different concentrations and temperatures. From the plot of the ratio of logarithmic number of spins and absolute temperature and the reciprocal of absolute temperature, the entropy and enthalpy have been evaluated. The optical absorption spectra of all the glasses exhibit three bands and these bands have been assigned to {sup 2}B{sub 1g} {yields} {sup 2}E{sub g}, {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g}, and {sup 2}B{sub 1g} {yields} {sup 2}A{sub 1g} transitions in the decreasing order of energy. It is for the first time to observe three optical absorption bands for Cu{sup 2+} ions in oxide glasses. Such type of results is due to excellent sample preparation. From the EPR and optical absorption spectroscopies data, the molecular orbital coefficients have been evaluated.

  19. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Grace O. [Stanford Univ., CA (United States)

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here.

  20. Gamma-irradiation and UV-C light-induced lipid peroxidation: a Fourier transform-infrared absorption spectroscopic study.

    Science.gov (United States)

    Kinder, R; Ziegler, C; Wessels, J M

    1997-05-01

    Fourier transform-infrared spectroscopy of dry, multibilayer films has been used to study gamma-radiation and UV-C light induced lipid peroxidation in 1,2-dilinoleoyl-sn-glycero-3-phosphocholine liposomes. The observed spectral changes were compared with the results obtained from measurement of hydroperoxides, conjugated dienes and to the formation of thiobarbituric acid reactive substances, such as malondialdehyde (MDA) or MDA-like substances. Upon irradiation a decrease in intensity of the asymmetric C - H stretching vibration (va(CH2)) of the isolated cis C = C - H groups (3010 cm-1) was observed. Directly correlated with the decrease of the va(CH2) absorption was a shift of the asymmetric phosphate ester stretching vibration (va(P = O)) towards smaller wavenumbers (1260-->1244 cm-1), indicating that the lipid peroxidation induced molecular alterations in the fatty acid chains influence the packing of the phospholipids in dry multibilayer films. In addition, the formation of a new absorption band at 1693 cm-1 could be detected, the intensity of which was comparable with the formation of thiobarbituric acid reactive substances and, therefore, attributed to the (C = O) stretching of alpha, beta unsaturated aldehydes. Dose-dependent studies using ionizing radiation showed that the decrease of va(CH2) was directly correlated with an increase in absorption of the conjugated dienes at 234 nm and with the formation of hydroperoxides suggesting that the absorption at 3010 cm-1 is solely due to isolated cis C = C - H groups and hence subject to the early stages of the radical chain reaction. UV-C light induced lipid peroxidation revealed a non-linear decrease of I3010, which was directly correlated with the formation of hydroperoxides. The observed early saturation of the conjugated dienes was attributed to an early photodecomposition of the conjugated double bonds.

  1. Local structural studies of the cubic Cd1–xCaxO system through Cd K-edge extended X-ray absorption spectroscopic studies

    Science.gov (United States)

    Srihari, Velaga; Sridharan, V.; Nomura, Masaharu; Sastry, V. Sankara; Sundar, C. S

    2012-01-01

    Cd K-edge extended X-ray absorption fine-structure spectroscopic studies were carried out on Cd1–xCaxO (0 ≤ x ≤0.9) solid solutions and the first and second nearest neighbour (NN) distances and their mean square relative displacement σ2 were estimated. The first NN distance, d Cd–O(x), was found to be smaller than its expected value, a(x)/2, obtained from the X-ray diffraction measurements. It increases monotonically and non-linearly with a negative curvature, comparable with that of the a(x) value variation. The variation σ2 of the 1NN with x is consistent with a disordered solid solution model. The 2NN distances d Cd–Cd(x) and d Cd–Ca(x) are found to follow the average values obtained by X-ray diffraction with d Cd–Ca(x) > d Cd–Cd(x). From detailed analysis it is argued that the solid solution exhibits a bimodal distribution of the 1NN distances, d Cd–O(x) and d Ca–O(x), and that the system belongs to a persistent type. PMID:22713887

  2. Different speciation for bromine in brown and red algae, revealed by in vivo X-ray absorption spectroscopic studies.

    Science.gov (United States)

    Küpper, Frithjof C; Leblanc, Catherine; Meyer-Klaucke, Wolfram; Potin, Philippe; Feiters, Martin C

    2014-08-01

    Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses. © 2014 Phycological Society of America.

  3. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.

    Science.gov (United States)

    Almandoz, M C; Sancho, M I; Blanco, S E

    2014-01-24

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π(*)). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.

  4. The chemical environment of iron in mineral fibres. A combined X-ray absorption and Mössbauer spectroscopic study.

    Science.gov (United States)

    Pollastri, Simone; D'Acapito, Francesco; Trapananti, Angela; Colantoni, Ivan; Andreozzi, Giovanni B; Gualtieri, Alessandro F

    2015-11-15

    Although asbestos represents today one of the most harmful contaminant on Earth, in 72% of the countries worldwide only amphiboles are banned while controlled use of chrysotile is allowed. Uncertainty on the potential toxicity of chrysotile is due to the fact that the mechanisms by which mineral fibres induces cyto- and geno-toxic damage are still unclear. We have recently started a long term project aimed at the systematic investigation of the crystal-chemistry, bio-interaction and toxicity of the mineral fibres. This work presents a systematic structural investigation of iron in asbestos and erionite (considered the most relevant mineral fibres of social and/or economic-industrial importance) using synchrotron X-ray absorption and Mössbauer spectroscopy. In all investigated mineral fibres, iron in the bulk structure is found in octahedral sites and can be made available at the surface via fibre dissolution. We postulate that the amount of hydroxyl radicals released by the fibers depends, among other factors, upon their dissolution rate; in relation to this, a ranking of ability of asbestos fibres to generate hydroxyl radicals, resulting from available surface iron, is advanced: amosite > crocidolite ≈ chrysotile > anthophyllite > tremolite. Erionite, with a fairly high toxicity potential, contains only octahedrally coordinated Fe(3+). Although it needs further experimental evidence, such available surface iron may be present as oxide nanoparticles coating and can be a direct cause of generation of hydroxyl radicals when such coating dissolves.

  5. Infrared reflection absorption spectroscopic study on the adsorption structures of acrylonitrile on Ag(111) and Ag(110) surfaces

    Science.gov (United States)

    Osaka, Naoki; Akita, Masato; Hiramoto, Shuji; Itoh, Koichi

    1999-06-01

    Infrared reflection-absorption spectra in CN stretching, CH 2 out-of-plane wagging and CH 2 twisting vibration regions were measured for acrylonitrile (CH 2CHCN) exposed to Ag(111) and Ag(110) in increasing amounts at 77 K. The adsorbate on Ag(111) takes on a series of discrete adsorption states; i.e., an isolated state, associated states, and ordered and amorphous multilayer states. The adsorbate on Ag(110) at lower exposures is in a state with the CN group weakly coordinated to a silver atom (or silver atoms). The adsorbate on Ag(110) takes the associated state and the amorphous multilayer at larger exposures. On raising the temperature to 96 K, the amorphous states on both Ag(111) and Ag(110) are converted to the ordered multilayer. The desorption temperature of the ordered multilayer is below 99 K for Ag(110), while the temperature is above 107 K for Ag(111); the result indicates the effect of the surface morphology on the stability of the ordered state.

  6. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au

    Science.gov (United States)

    Dunwell, Marco; Yan, Yushan; Xu, Bingjun

    2016-08-01

    The potential dependent behavior of near-surface water on Au film electrodes in acidic and alkaline solutions is studied using a combination of attenuated total reflectance surface enhanced infrared spectroscopy and chronoamperometry. In acid, sharp νOH peaks appear at 3583 cm- 1 at high potentials attributed to non-H-bonded water coadsorbed in the hydration sphere of perchlorate near the electrode surface. Adsorbed hydronium bending mode at near 1680 cm- 1 is observed at low potentials in low pH solutions (1.4, 4.0, 6.8). At high pH (10.0, 12.3), a potential-dependent OH stretching band assigned to adsorbed hydroxide emerges from 3400-3506 cm- 1. The observation of adsorbed hydroxide, even on a weakly oxophilic metal such as Au, provides the framework for further studies of hydroxide adsorption on other electrodes to determine the role of adsorbed hydroxide on important reactions such as the hydrogen oxidation reaction.

  7. Combined Spectroscopic and Calorimetric Studies to Reveal Absorption Mechanisms and Conformational Changes of Protein on Nanoporous Biomaterials

    Directory of Open Access Journals (Sweden)

    Saharnaz Ahmadi

    2015-07-01

    Full Text Available In this study the effect of surface modification of mesoporous silica nanoparticles (MSNs on its adsorption capacities and protein stability after immobilization of beta-lactoglobulin B (BLG-B was investigated. For this purpose, non-functionalized (KIT-6 and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6] nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum BLG leaching than non-functionalized nanoparticles. It was observed that the amount of adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and [n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was immobilized upon raising the temperature of the medium from 4 to 55 °C while such increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials decreased significantly. By Differential scanning calorimetry or DSC analysis the heterogeneity of the protein solution and increase in Tm may indicate that immobilization of BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified one. The obtained results provide several crucial factors in determining the mechanism(s of protein adsorption and stability on the nanostructured solid supports and the development of engineered nano-biomaterials for controlled drug-delivery systems and biomimetic interfaces for the immobilization of living cells.

  8. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.; Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Mack, M. [Institut fuer Technische Mikrobiologie, Hochschule Mannheim, Paul-Wittsack-Str. 10, D-68163 Mannheim (Germany); Ghisla, S. [Universitaet Konstanz, Fakultaet fuer Biologie, P.O. Box 5560-M644, D-78457 Konstanz (Germany)

    2009-10-16

    The flavin dye 8-amino-8-demethyl-D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  9. Pr(Ⅲ) and Nd(Ⅲ) Absorption Spectroscopic Probe to Investigate Interaction with Lysozyme (HEW)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Pr(Ⅲ) and Nd(Ⅲ) can be utilized as absorption spectroscopic probes to investigate the interaction of biomolecules like Lysozyme (HEW) with Ca(Ⅱ) in-vitro; the most abundant metal ion in the human body system. The spectroscopic techniques involving comparative absorption, absorption difference, and quantitative intensity analysis using 4f-4f transitions are utilized for changes in the inner sphere coordination pattern of Pr(Ⅲ) and Nd(Ⅲ) in solution as well as in solid state. The present study deals with an important biomolecule in human metabolism, that is, Lysozyme (HEW). The absorption spectral parameters such as the oscillator strength (P), the Judd-Ofelt (Tλ) intensity parameters, and the Slater-Condon inter electronic parameters are calculated using chi square methods. The obtained results are used to determine the probable geometry of the complex in the solution, the nature of the bond between Pr(Ⅲ)/Nd(Ⅲ) with lysozyme, and the inner sphere coordination environment of f-f transitions. The results obtained from various experimental conditions are utilized to investigate the coordination changes in the Pr(Ⅲ)/Nd(Ⅲ) complexes caused by different coordinating sites of lysozyme, normalized bite, denticity, the solvent nature, the coordination number, the nature of bond and other parameters to mimic the interaction of the Ca(Ⅱ) ion with such biomolecule.

  10. A multi-epoch spectroscopic study of the BAL quasar APM 08279+5255 II. Emission- and absorption-line variability time lags

    CERN Document Server

    Saturni, F G; Vagnetti, F; Perna, M; Dadina, M

    2015-01-01

    The study of high-redshift bright quasars is crucial to gather information about the history of galaxy assembly and evolution. Variability analyses can provide useful data on the physics of the quasar processes and their relation with the host galaxy. In this study, we aim at measuring the black hole mass of the bright lensed BAL QSO APM 08279+5255 at $z=3.911$ through reverberation mapping, and at updating and extending the monitoring of its C IV absorption line variability. Thanks to 138 R-band photometric data and 30 spectra available over 16 years of observations, we perform the first reverberation mapping of the Si IV and C IV emission lines for a high-luminosity quasar at high redshift. We also cross-correlate the C IV absorption equivalent width variations with the continuum light curve, in order to estimate the recombination time lags of the various absorbers and infer the physical conditions of the ionised gas. We find a reverberation-mapping time lag of $\\sim 900$ rest-frame days for both Si IV and ...

  11. Quasar Absorption Studies

    Science.gov (United States)

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  12. Spectroscopic studies of copper enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  13. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 {Angstrom}. The Fe-Fe distance was determined to be 3.4 {Angstrom}. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  14. X-ray absorption spectroscopic studies of the dinuclear iron center in methane monooxygenase and the sulfure and chlorine centers in photographic materials

    Energy Technology Data Exchange (ETDEWEB)

    DeWitt, J.G.

    1992-12-01

    The dinuclear iron center of the hydroxylase component of soluble methane monooxygenase (MMO) from Methylococcus capsulatus and Methylosinus trichosporiwn has been studied by X-ray absorption spectroscopy. Analysis of the Fe K-edge EXAFS revealed that the first shell coordination of the Fe(HI)Fe(IH) oxidized state of the hydroxylase from M. capsulatus consists of approximately 6 N and 0 atoms at an average distance of 2.04 [Angstrom]. The Fe-Fe distance was determined to be 3.4 [Angstrom]. No evidence for the presence of a short oxo bridge in the iron center of the oxidized hydroxylase was found, suggesting that the active site of MMO is significantly different from the active sites of the dinuclear iron proteins hemery and ribonucleotide reductase. In addition, the results of the first shell fits suggest that there are more oxygen than nitrogen donor ligands.

  15. Local structural studies of the cubic Cd{sub 1-x}Ca{sub x}O system through Cd K-edge extended X-ray absorption spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Srihari, Velaga [Saha Institute of Nuclear Physics, Kolkata (India). Surface Physics Div.; Sridharan, V.; Sankara Sastry, V.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Materials Science Group; Nomura, Masaharu [High Energy Accelerator Research Organization, Tsukuba (Japan). Photon Factory

    2012-07-15

    Cd K-edge extended X-ray absorption fine-structure spectroscopic studies were carried out on Cd{sub 1-x}Ca{sub x}O (0 {<=} x {<=} 0.9) solid solutions and the first and second nearest neighbour (NN) distances and their mean square relative displacement {sigma}{sup 2} were estimated. The first NN distance, d{sub Cd-O}(x), was found to be smaller than its expected value, a(x)/2, obtained from the X-ray diffraction measurements. It increases monotonically and non-linearly with a negative curvature, comparable with that of the a(x) value variation. The variation {sigma}{sup 2} of the 1NN with x is consistent with a disordered solid solution model. The 2NN distances d{sub Cd-Cd}(x) and d{sub Cd-Ca}(x) are found to follow the average values obtained by X-ray diffraction with d{sub Cd-Ca}(x) > d{sub Cd-Cd}(x). From detailed analysis it is argued that the solid solution exhibits a bimodal distribution of the 1NN distances, d{sub Cd-O}(x) and d{sub Ca-O}(x), and that the system belongs to a persistent type. (orig.)

  16. Nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  17. Reactivity-activity relationships of oral anti-diabetic vanadium complexes in gastrointestinal media: an X-ray absorption spectroscopic study.

    Science.gov (United States)

    Levina, Aviva; McLeod, Andrew I; Kremer, Lauren E; Aitken, Jade B; Glover, Christopher J; Johannessen, Bernt; Lay, Peter A

    2014-10-01

    The reactions of oral V(V/IV) anti-diabetic drugs within the gastrointestinal environment (particularly in the presence of food) are a crucial factor that affects their biological activities, but to date these have been poorly understood. In order to build up reactivity-activity relationships, the first detailed study of the reactivities of typical V-based anti-diabetics, Na3V(V)O4 (A), [V(IV)O(OH2)5](SO4) (B), [V(IV)O(ma)2] (C, ma = maltolato(-)) and (NH4)[V(V)(O)2(dipic)] (D, dipic = pyridine-2,5-dicarboxylato(2-)) with simulated gastrointestinal (GI) media in the presence or absence of food components has been performed by the use of XANES (X-ray absorption near edge structure) spectroscopy. Changes in speciation under conditions that simulate interactions in the GI tract have been discerned using correlations of XANES parameters that were based on a library of model V(V), V(IV), and V(III) complexes for preliminary assessment of the oxidation states and coordination numbers. More detailed speciation analyses were performed using multiple linear regression fits of XANES from the model complexes to XANES obtained from the reaction products from interactions with the GI media. Compounds B and D were relatively stable in the gastric environment (pH ∼ 2) in the absence of food, while C was mostly dissociated, and A was converted to [V10O28](6-). Sequential gastric and intestinal digestion in the absence of food converted A, B and D to poorly absorbed tetrahedral vanadates, while C formed five- or six-coordinate V(V) species where the maltolato ligands were likely to be partially retained. XANES obtained from gastric digestion of A-D in the presence of typical food components converged to that of a mixture of V(IV)-aqua, V(IV)-amino acid and V(III)-aqua complexes. Subsequent intestinal digestion led predominantly to V(IV) complexes that were assigned as citrato or complexes with 2-hydroxyacidato donor groups from other organic compounds, including certain

  18. Cerium oxide nanoparticles coated by surfactant sodium bis(2—ethylhexyl) sulphosuccinate(AOT):local atomic structures and x—ray absorption spectroscopic studies

    Institute of Scientific and Technical Information of China (English)

    ZhonghuaWu; RobertEBenfield; LinGuo; HuanjunLi; QinglinYang; Didier

    2001-01-01

    Cerium oxide nanoparticles coated by sodium bis(2-ethylexyl) sulphosuccinate(AOT) were prepared by using a microemulsion method.Transmission electron microscopy revealed an average particle siae of 2-3nm.X-ray diffraction showed that the cerium oxide nanoparticles retain the CeF2-type cubic structures like the bulk crystal.The intermediate valence offormally tetravalent compounds had been detected by x-ray-absorption near-edge structetravalent compounds had been detected by x-ray-absorption near-dege structure(XANES) spectra of Ce LIII absorption in bulk CeO2 and the cerium oxide nanoparticles.Two well resoved white lines can be assigned to the electron configurations of 4f0L and 4f1L,respectively,where L denotes a ligand hole.At the same time,the cerium oxide nanoparticles also showed the structural featres of trivalent compounds,in comparison to the trivalent Ce(NO3)3·6H2O.Fuor Lorentzian functions and two arctan functions were used to fit the normalized XANES spectra.The extended x-ray-absorption fine-structure(EXAFS) technique was used to probe the local atomic structures around the absorber Ce.The multielectrorn excitation effect on the EXAFS spectra was eliminated.A cor-shell model was used to deduce the near-neighbour structural parameters around cerium.Bulk CeO2 with eight oxygen atoms located at 2.343A was used as the reference sample to extract the backscattering amplitude and phase shift of the Ce-O bond.One half of the atome locate at the core part with the CeF2-type cubic structures(eight oxyens at 2.343A around Ce),the other half of the atoms are amorphous phase located in the shell part (surface of the nanoparticles) with approximately Ce2O3 structural features (averageed seven oxygens at 2.50A around Ce).

  19. Structure of the dinuclear active site of urease. X-ray absorption spectroscopic study of native and 2-mercaptoethanol-inhibited bacterial and plant enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shengke; Scott, R.A. (Univ. of Georgia, Athens (United States)); Lee, M.H.; Hausinger, R.P. (Michigan State Univ., East Lansing (United States)); Clark, P.A.; Wilcox, D.E. (Dartmouth College, Hanover, NH (United States))

    1994-04-13

    The structures of the dinuclear Ni(II) active sites of urease from jack bean and Klebsiella aerogenes are compared with and without the addition of the inhibitor 2-mercaptoethanol (2-ME). No significant differences are observed by nickel K-edge X-ray absorption spectroscopy between the plant and bacterial enzymes. The Ni X-ray absorption edge spectra display an 8332-eV 1s[yields]3d peak intensity similar to that observed for five-coordinate Ni(II) compounds[sup 1] for both native and 2-ME-bound derivatives. Curve-fitting of Ni EXAFS data indicates that the average Ni(II) coordination environment in native urease can be described as Ni(imidazole)[sub x](N,O)[sub 5[minus]x], with x = 2 or 3. Addition of 2-ME results in replacement of one of the non-imidazole (N,O) ligands with (S,Cl) (most likely the thiolate sulfur of 2-ME) and results in the appearance of a new peak in the Fourier transforms that can only be fit with a Ni[center dot][center dot][center dot]Ni scattering component at a Ni-Ni distance of [approximately]3.26 [angstrom]. A structure for this 2-ME-bound dinuclear site is proposed to contain the two Ni(II) ions bridged by the thiolate sulfur of 2-ME.

  20. A femtosecond transient absorption spectroscopic study on a carbonyl-containing carotenoid analogue, 2-(all-trans-retinylidene)-indan-1,3-dione

    Science.gov (United States)

    Kusumoto, Toshiyuki; Kosumi, Daisuke; Uragami, Chiasa; Frank, Harry A.; Birge, Robert R.; Cogdell, Richard J.; Hashimoto, Hideki

    2011-01-01

    The photophysical properties of a carbonyl-containing carotenoid analogue in an s-cis configuration, relative to the conjugated π system, 2-(all-trans-retinylidene)-indan-1,3-dione (C20Ind), were investigated by femtosecond time-resolved spectroscopy in various solvents. The lifetime of the optically forbidden S1 state of C20Ind becomes long as solvent polarity increases. This trend is completely opposite to the situation of S1-ICT dynamics of carbonyl-containing carotenoids, such as peridinin and fucoxanthin. Excitation energy dependence of the transient absorption measurements shows that the transient absorption spectra in non-polar solvents were originated from two distinct transient species, while those in polar and protic solvents are due to a single transient species. By referring to the results of MNDO-PSDCI (modified neglect of differential overlap with partial single- and double-configuration interaction) calculations, we conclude: (1) In polar and protic solvents, the S1 state is generated following excitation up to the S2 state; (2) In non-polar solvents, however, both the S1 and 1nπ* states are generated; and (3) C20Ind does not generate the S1-ICT state, despite the fact that it has two conjugated carbonyl groups. PMID:21361262

  1. [Study on lead absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Sun, Yong-Dong; Chen, Bi-Hua; Li, Xin-Zheng

    2008-07-01

    A study was carried out on the characteristic of lead absorption in pumpkin via atomic absorption spectrophotometer. The results showed that lead absorption amount in pumpkin increased with time, but the absorption rate decreased with time; And the lead absorption amount reached the peak in pH 7. Lead and cadmium have similar characteristic of absorption in pumpkin.

  2. A novel surface-sensitive X-ray absorption spectroscopic detector to study the thermal decomposition of cathode materials for Li-ion batteries

    Science.gov (United States)

    Nonaka, Takamasa; Okuda, Chikaaki; Oka, Hideaki; Nishimura, Yusaku F.; Makimura, Yoshinari; Kondo, Yasuhito; Dohmae, Kazuhiko; Takeuchi, Yoji

    2016-09-01

    A surface-sensitive conversion-electron-yield X-ray absorption fine structure (CEY-XAFS) detector that operates at elevated temperatures is developed to investigate the thermal decomposition of cathode materials for Li-ion batteries. The detector enables measurements with the sample temperature controlled from room temperature up to 450 °C. The detector is applied to the LiNi0.75Co0.15Al0.05Mg0.05O2 cathode material at 0% state of charge (SOC) and 50% SOC to examine the chemical changes that occur during heating in the absence of an electrolyte. The combination of surface-sensitive CEY-XAFS and bulk-sensitive transmission-mode XAFS shows that the reduction of Ni and Co ions begins at the surface of the cathode particles at around 150 °C, and propagates inside the particle upon further heating. These changes with heating are irreversible and are more obvious at 50% SOC than at 0% SOC. The fraction of reduced Ni ions is larger than that of reduced Co ions. These results demonstrate the capability of the developed detector to obtain important information for the safe employment of this cathode material in Li-ion batteries.

  3. Infrared reflection absorption spectroscopic study on the adsorption structures of ethylene on Ag(110) and atomic oxygen pre-covered Ag(110) surfaces

    Science.gov (United States)

    Akita, Masato; Osaka, Naoki; Hiramoto, Shuji; Itoh, Koichi

    1999-06-01

    Infrared reflection absorption spectra in the CH 2 out-of-plane wagging (ω(CH 2)) vibration region were measured for ethylene (C 2H 4) adsorbed on Ag(110) as well as on the oxygen-induced p( n×1) reconstructed surfaces of Ag(110) ( n=2, 3, 4 and 6) at 80 K. C 2H 4 on Ag(110) gives a main peak at 955 cm -1, while on p(2×1)O-Ag(110) it exhibits a broad features of at least four components (997, 984, 970 and 954 cm -1) at saturation coverage. C 2H 4 on p( n×1)O-Ag(110) ( n=6, 4, 3) gives rise to a 972-976 cm -1 band at low exposures, shifting to 966-970 cm -1 at saturation coverage. The spectral changes are interpreted by assuming a pair of adsorption sites on both sides of the added Ag-O rows of the reconstructed surfaces.

  4. Infra-red reflection absorption spectroscopic study on adsorption structures of acrolein on polycrystalline gold and Au(111) surfaces under ultra-high vacuum conditions

    Science.gov (United States)

    Akita, M.; Osaka, N.; Itoh, K.

    1998-05-01

    Infra-red reflection absorption (IRA) spectra were measured at 80 K under ultra-high vacuum conditions for acrolein adsorbed on two kinds of gold films; Au(111) and polycrystalline gold surfaces. Upon increasing the amount of exposure from 0.02 to 200 L (1 L=1×10 -6 Torr·s), the adsorbate at Au(111) gave rise to a series of sharp IRA bands due to a CH 2 out-of-plane wagging vibration [ ω(CH 2)] successively, indicating discrete adsorption states, i.e. 964 (type 1)→978(type 1')→991(type 2)→1003 cm -1(type 3). All these states have the molecular plane parallel to the surface; type 1 is in an isolated state, and type 2 is in an associated state with a two-dimensional arrangement, whereas type 3 forms an ordered multilayered structure. Type 1' was tentatively assigned either to a trapped state at step sites or to an associated state forming small oligomers at the surface. Only type 3 gives rise to IRA bands due to ν(CO), which appears at 1677 cm -1 as a singlet at relatively small exposure levels and splits into doublets, giving the 1686 and 1672 cm -1 components at 2.0 L. The doublets were explained as being due to a crystal field splitting, which conforms to the fact that the adsorbate forms an ordered three-dimensional arrangement. The IRA spectrum of type 3 is readily converted to that of a more stable polycrystalline state upon increasing the temperature from 80 to 100 K. Thus, type 3 is a thermodynamically metastable state. Acrolein adsorbed on a polycrystalline gold film assumes an amorphous state in the exposure level of 0.06-4.8 L, giving broad IRA bands due to ν(CO) and ω(CH 2) in the 1686-1699 and 974-991 cm -1 regions, respectively. The IRA spectra of acrolein adsorbed on Ag(111) were also measured, which indicated that the adsorbates exist in a less ordered state than those on Au(111), although a multilayered structure gives IRA features that are almost identical with those of type 3.

  5. 60 Kelvin Absorption Cell for Planetary Spectroscopic Research

    Science.gov (United States)

    Chackerian, Charles, Jr.; McGee, James; Gore, Warren I. Y. (Technical Monitor)

    1995-01-01

    We will describe a 30 cm long absorption cell which has been in operation for about two years. The cell is designed for use with sensitive-wide-spectral-coverage Fourier transform spectrometers. A helium compressor refrigerator allows temperatures to be achieved down to about 57 K. Heaters allow above-ambient temperatures as well. A unique vibration isolation system effectively quenches the transfer of vibration of the compressor unit to the spectrometer. An acid-resistant stainless steel liner in the copper body of the call permits the use of corrosive gases.

  6. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  7. [Study on cadmium absorption in pumpkin by atomic absorption spectrophotometry].

    Science.gov (United States)

    Li, Zhen-Xia; Jing, Rui-Jun; Dong, Wei-Hua; Li, Xin-Zheng; Liu, Hong

    2006-08-01

    A study was carried out on the characteristic of cadmium absorption in pumpkin by atomic absorption spectrophotometer. The results show that the cadmium absorption amount in pumpkin increased with the increase in cadmium concentration. Meanwhile the cadmium absorption amount in pumpkin increased with time. Eight hours after being cultured in the liquid, the cadmium absorption amount became saturated. The cadmium absorption rate reached the peak after 2 hours, then the absorption rate gradually reduced. The cadmium absorption amount in pumpkin is less in acid or alkali compared with neutral condition. And the absorption amount became minimum in pH 3, while maximum in pH 7.

  8. Spectroscopic studies of microwave plasmas containing hexamethyldisiloxane

    Science.gov (United States)

    Nave, A. S. C.; Mitschker, F.; Awakowicz, P.; Röpcke, J.

    2016-10-01

    Low-pressure microwave discharges containing hexamethyldisiloxane (HMDSO) with admixtures of oxygen and nitrogen, used for the deposition of silicon containing films, have been studied spectroscopically. Optical emission spectroscopy (OES) in the visible spectral range has been combined with infrared laser absorption spectroscopy (IRLAS). The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and gas mixture at relatively low pressures, up to 50 Pa, and power values, up to 2 kW. The evolution of the concentration of the methyl radical, CH3, and of seven stable molecules, HMDSO, CH4, C2H2, C2H4, C2H6, CO and CO2, was monitored in the plasma processes by in situ IRLAS using tunable lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the temperature in the plasma hot and colder zones, which are of great importance for calculation of species concentrations, three different methods based on emission and absorption spectroscopy data of N2, CH3 and CO have been used. In this approach line profile analysis has been combined with spectral simulation methods. The concentrations of the various species, which were found to be in the range between 1011 to 1015 cm-3, are in the focus of interest. The influence of the discharge parameters power, pressure and gas mixture on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the HMDSO precursor gas including its fragmentation and conversion to the reaction products was analyzed in detail.

  9. Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals

    Science.gov (United States)

    Chesnokova, T. Yu.; Chentsov, A. V.; Rokotyan, N. V.; Zakharov, V. I.

    2016-09-01

    The impact of uncertainties in CH4 and CO2 absorption line parameters in modern spectroscopic databases on the atmospheric transmission simulation in the near-infrared region is investigated. The atmospheric contents of CH4 and CO2 are retrieved from the absorption solar spectra measured by a ground-based Fourier transform spectrometer. Different spectroscopic databases are used in the forward radiative transfer model and a comparison of the retrieved results is made.

  10. Absorption and fluorescence spectroscopic characterization of cryptochrome 3 from Arabidopsis thaliana.

    Science.gov (United States)

    Song, S-H; Dick, B; Penzkofer, A; Pokorny, R; Batschauer, A; Essen, L-O

    2006-10-02

    The blue light photoreceptor cryptochrome 3 (cry3) from Arabidopsis thaliana was characterized at room temperature in vitro in aqueous solution by optical absorption and emission spectroscopic studies. The protein non-covalently binds the chromophores flavin adenine dinucleotide (FAD) and N5,N10-methenyl-5,6,7,8-tetrahydrofolate (MTHF). In the dark-adapted state of cry3, the bound FAD is present in the oxidized form (FAD(ox), ca. 38.5%), in the semiquinone form (FADH., ca. 5%), and in the fully reduced neutral form (FAD(red)H2) or fully reduced anionic form (FAD(red)H-, ca. 55%). Some amount of FAD (ca. 1.5%) in the oxidized state remains unbound probably caused by chromophore release and/or denaturation. Förster-type energy transfer from MTHF to FAD(ox) is observed. Photo-excitation reversibly modifies the protein conformation causing a slight rise of the MTHF absorption strength and an increase of the MTHF fluorescence efficiency (efficient protein conformation photo-cycle). Additionally there occurs reversible reduction of bound FAD(ox) to FAD(red)H2 (or FAD(red)H-, FAD(ox) photo-cycle of moderate efficiency), reversible reduction of FADH. to FAD(red)H2 (or FAD(red)H-, FADH. photo-cycle of high efficiency), and modification of re-oxidable FAD(red)H2 (or FAD(red)H-) to permanent FAD(red)H2 (or FAD(red)H-) with low quantum efficiency. Photo-excitation of MTHF causes the reversible formation of a MTHF species (MTHF', MTHF photo-cycle, moderate quantum efficiency) with slow recovery to the initial dark state, and also the formation of an irreversible photoproduct (MTHF'').

  11. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    Science.gov (United States)

    Chen, Zhi-Fu; Gu, Qiu-Sheng; Zhou, Luwenjia; Chen, Yan-Mei

    2016-11-01

    In this paper, we extend our work of Papers I and II, which are assigned to systematically survey C IV λλ1548,1551 narrow absorption lines (NALs) with zabs ≪ zem on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS) to collect C IV NALs with zabs ≈ zem from blue to red wings of C IV λ1549 emission lines. Together with Papers I and II, we have collected a total number of 41 479 C IV NALs with 1.4544 ≤ zabs ≤ 4.9224 in surveyed spectral region redward of Lyα until red wing of C IV λ1549 emission line. We find that the stronger C IV NALs tend to be the more saturated absorptions, and associated systems (zabs ≈ zem) seem to have larger absorption strengths when compared to intervening ones (zabs ≪ zem). The redshift density evolution behaviour of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity (β) distribution of Mg II absorbers, the β distribution of C IV absorbers is broader at β ≈ 0, shows longer extended tail, and exhibits a larger dispersion for environmental absorptions. In addition, for associated C IV absorbers, we find that low-luminosity quasars seem to exhibit smaller β and stronger absorptions when compared to high-luminosity quasars.

  12. Spectroscopic measurements of a CO2 absorption line in an open vertical path using an airborne lidar

    CERN Document Server

    Ramanathan, Anand; Allan, Graham R; Riris, Haris; Weaver, Clark J; Hasselbrack, William E; Browell, Edward V; Abshire, James B

    2013-01-01

    We use an airborne pulsed integrated path differential absorption lidar to make spectroscopic measurements of the pressure-induced line broadening and line center shift of atmospheric CO2 at the 1572.335 nm absorption line. We measure the absorption lineshape in the vertical column between the aircraft and ground. A comparison of our measured absorption lineshape to calculations based on HITRAN shows excellent agreement with the peak optical depth accurate to within 0.3%. Additionally, we measure changes in the line center position to within 5.2 MHz of calculations, and the absorption linewidth to within 0.6% of calculations.

  13. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Varghese Mathew; Jochan Joseph; Sabu Jacob; K E Abraham

    2010-08-01

    The preparation of manganese malonate crystals by gel method and its spectroscopic studies are reported. X-ray diffraction (XRD) pattern reveals the crystalline nature. The FTIR and FT Raman spectra of the crystals are recorded and the vibrational assignments are given with possible explanations. Diffuse reflectance spectroscopy (DRS) is used to measure the bandgap (g) of the material.

  14. Studying Young Stars with Large Spectroscopic Surveys

    CERN Document Server

    Martell, Sarah L

    2015-01-01

    Galactic archaeology is the study of the history of star formation and chemical evolution in the Milky Way, based on present-day stellar populations. Studies of young stars are a key anchor point for Galactic archaeology, since quantities like the initial mass function and the star formation rate can be studied directly in young clusters and star forming regions. Conversely, massive spectroscopic Galactic archaeology surveys can be used as a data source for young star studies.

  15. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    CERN Document Server

    Zhi-fu, Chen; Luwenjia, Zhou; Yanmei, Chen

    2016-01-01

    In this paper, we extend our works of Papers I and II, which are assigned to systematically survey \\CIVab\\ narrow absorption lines (NALs) with \\zabs$\\ll$\\zem\\ on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS), to collect \\CIV\\ NALs with \\zabs$\\approx$\\zem\\ from blue to red wings of \\CIVwave\\ emission lines. Together with Papers I and II, we have collected a total number of 41,479 \\CIV\\ NALs with $1.4544\\le$\\zabs$\\le4.9224$ in surveyed spectral region redward of \\lya\\ until red wing of \\CIVwave\\ emission line. We find that the stronger \\CIV\\ NALs tend to be the more saturated absorptions, and associated systems (\\zabs$\\approx$\\zem) seem to have larger absorption strengths when compared to intervening ones (\\zabs$\\ll$\\zem). The redshift density evolution behavior of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity ($\\beta$) distribution of \\MgII\\ absorbers, the $\\beta$ distribution of \\C...

  16. Spectroscopic study of solar twins and analogues

    CERN Document Server

    Datson, Juliet; Portinari, Laura

    2014-01-01

    Context. Many large stellar surveys have been and are still being carried out, providing huge amounts of data, for which stellar physical parameters will be derived. Solar twins and analogues provide a means to test the calibration of these stellar catalogues because the Sun is the best-studied star and provides precise fundamental parameters. Solar twins should be centred on the solar values. Aims. This spectroscopic study of solar analogues selected from the Geneva-Copenhagen Survey (GCS) at a resolution of 48,000 provides effective temperatures and metallicities for these stars. We test whether our spectroscopic parameters, as well as the previous photometric calibrations, are properly centred on the Sun. In addition, we search for more solar twins in our sample. Methods. The methods used in this work are based on literature methods for solar twin searches and on methods we developed in previous work to distinguish the metallicity-temperature degeneracies in the differential comparison of spectra of solar ...

  17. Spectroscopic study of Mentha oils

    Science.gov (United States)

    Rai, A. K.; Singh, A. K.

    The visible fluorescence and excitation spectra of Mentha oils (Japanese mint oil, peppermint oil and spearmint oil) have been recorded. Different physical constants which are characteristic of the fluorescent molecules have been calculated for all three oils. Results reveal that the same group of organic compounds dominate in the oils of peppermint and spearmint, whereas some different compound is present in Japanese mint oil. It is also found that the fluorescence intensity of these oils is comparable to that of Rhodamine 6G dye in methanol solution. Our studies suggest that Mentha oils may be a useful lasing material in the 450-600 nm wavelength range.

  18. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at UTK is involved in heavy-ion physics including both nuclear structure and reaction mechanisms. During the last year experimental work has been in 3 broad areas: structure of nuclei at high angular momentum, structure of nuclei far from stability, and ultra-relativistic heavy-ion physics. Results in these areas are described in this document under: properties of high-spin states, study of low-energy levels of nuclei far from stability, and high-energy heavy-ion physics (PHENIX, etc.). Another important component of the work is theoretical interpretation of experimental results (Joint Institute for Heavy Ion Research).

  19. Nuclear spectroscopic studies. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1993-02-08

    The Nuclear Physics group at the University of Tennessee, Knoxville is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While our main emphasis is on experimental problems involving heavy-ion accelerators, we have maintained a strong collaboration with several theorists in order to best pursue the physics of our measurements. During the last year we have led several experiments at the Holifield Heavy Ion Research Facility and participated in others at Argonne National Laboratory. Also, we continue to be very active in the collaboration to study ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in a RHIC detector R&D project. Our experimental work is in four broad areas: (1) the structure of nuclei at high angular momentum, (2) heavy-ion induced transfer reactions, (3) the structure of nuclei far from stability, and (4) ultra-relativistic heavy-ion physics. The results of studies in these particular areas will be described in this document in sections IIA, IIB, IIC, and IID, respectively. Areas (1), (3), and (4) concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Area (2) pursues the transfer of nucleons to states with high angular momentum, both to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions. An important component of our program is the strong emphasis on the theoretical aspects of nuclear structure and reactions.

  20. Structural and spectroscopic studies of surfaces

    CERN Document Server

    Laitenberger, P

    1996-01-01

    and on a 10ML thick Ar spacer layer, a remarkable substrate dependence is revealed. A new STM-based technique for fabricating simple metal-structures with dimensions in the 10-100nm regime which are partially electrically isolated from their environment was developed in collaboration with Dr. L. A. Silva. This technique employs the STM tip as a mechanical nanofabrication tool to machine gaps into a thin metallic film deposited on an insulating substrate, which laterally confine and electrically isolate the desired metal regions. Several metal structures, such as nanoscale wires and pads, were successfully created. Finally, the conceptual basis and present stage of construction of a new surface analytical tool, the Scanning Probe Energy Loss Spectrometer (SPELS), is discussed. The SPELS offers the exciting prospect of collecting structural as well as spectroscopic information with a spatial resolution of a few nanometres. Once successfully developed, it will be ideally suited for spectroscopic studies of nanos...

  1. In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties.

    Science.gov (United States)

    Thueler, Philippe; Charvet, Igor; Bevilacqua, Frederic; St Ghislain, M; Ory, G; Marquet, Pierre; Meda, Paolo; Vermeulen, Ben; Depeursinge, Christian

    2003-07-01

    A fast spectroscopic system for superficial and local determination of the absorption and scattering properties of tissue (480 to 950 nm) is described. The probe can be used in the working channel of an endoscope. The scattering properties include the reduced scattering coefficient and a parameter of the phase function called gamma, which depends on its first two moments. The inverse problem algorithm is based on the fit of absolute reflectance measurements to cubic B-spline functions derived from the interpolation of a set of Monte Carlo simulations. The algorithm's robustness was tested with simulations altered with various amounts of noise. The method was also assessed on tissue phantoms of known optical properties. Finally, clinical measurements performed endoscopically in vivo in the stomach of human subjects are presented. The absorption and scattering properties were found to be significantly different in the antrum and in the fundus and are correlated with histopathologic observations. The method and the instrument show promise for noninvasive tissue diagnostics of various epithelia.

  2. Spectroscopic studies of star forming regions

    OpenAIRE

    2006-01-01

    This paper reviews the results of studies of star forming regions, carried out at the Konkoly Observatory in the last two decades. The studies involved distance determination of star-forming dark clouds, search for candidate pre-main sequence stars, and determination of the masses and ages of the candidates by spectroscopic follow-up observations. The results expanded the list of the well-studied star forming regions in our galactic environment. Data obtained by this manner may be useful in a...

  3. Spectroscopic Electrochemical Studies of Interaction Between Fuchsin Basic DNA

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Visible spectroscopic and electrochemical methods were used to study the interactions between DNA and fuchsin basic(FB). FB has an irreversible electro-oxidation peak in 5 mmol/L Tris-HCl buffer solution at pH = 7.4 on a glassy carbon electrode(GCE). After adding certain concentration of dsDNA, the oxidation peak current of FB decreases, but the peak potential hardly changs. The visible absorption spectroscopic study shows that the binding mode of FB to dsDNA is intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is smaller than 0. 2, and a new substance, which produces a new absorption peak, is obtained via a covalent binding between dsDNA and FB apart from intercalative binding and electrostatic binding when the ratio of the concentration of dsDNA to FB is larger than 0. 2. The visible absorption spectra varies no longer when the ratio of the concentration of dsDNA to FB is larger than 1.5. A mean binding ratio of dsDNA to FB was determined to be 1.4: 1,suggesting that two complexes FB-dsDNA and FB-2dsDNA be formed. The interaction between FB and ssDNA was only electrostatic binding. The more powerful interaction of FB with dsDNA than with ssDNA may be applied for the recognition of dsDNA and ssDNA, and in DNA biosensor as hybridization indicator.

  4. Bioavailability study of calcium sandoz-250 by atomic absorption spectroscopy in albino rats

    OpenAIRE

    Patel, Bimalkumar N.; Krishnaveni, N.; Jivani, Nurrrudin P.; Khodakiya, Akruti S.; Khodakiya, Moorti S.; Parida, Saswat K.

    2014-01-01

    Background: Calcium sandoz-250 is an Ayurvedic calcium supplement, containing Khatika Churna. Bioavailability study of the formulation is essential for estimation of peak plasma concentration (C max), time to C max and rate of absorption. Aim: To evaluate the absorption parameters of calcium sandoz-250 in albino rats by atomic absorption spectroscopic (AAS) method. Materials and Methods: Study was carried out as a single dose, open-label, randomized study. Estimation of calcium was carried ou...

  5. Simple Atomic Absorption Spectroscopic and Spectrophotometric Methods for Determination of Pioglitazone Hydrochloride and Carvedilol in Pharmaceutical Dosage Forms

    Directory of Open Access Journals (Sweden)

    Afaf A. Abdelmonem

    2014-01-01

    Full Text Available This study represents simple atomic absorption spectroscopic and spectrophotometric methods for determination of pioglitazone hydrochloride (PGZ-HCl and carvedilol (CRV based on formation of ion-pair associates between drugs and inorganic complex, bismuth(III tetraiodide (Method A and between drugs and organic acidic dyes, fast green and orange G (Method B. Method A is based on formation of ion-pair associate between drugs and bismuth(III tetraiodide in acidic medium to form orange-red ion-pair associates, which can be quantitatively determined by two different procedures. The formed ion-pair associate is extracted by methylene chloride, dissolved in acetone, dried, and then decomposed by hydrochloric acid, and bismuth content is determined by direct atomic absorption spectrometric technique (Procedure 1 or extracted by methylene chloride, dissolved in acetone, and quantified spectrophotometrically at 490 nm (Procedure 2. Method B is based on formation of ion-pair associate between drugs and either fast green dye or orange G dye in acidic medium to form ion-pair associates. The formed ion-pair associate is extracted by methylene chloride and quantified spectrophotometrically at 630 nm (for fast green dye method or 498 nm (for orange G dye method. Optimal experimental conditions have been studied. Both methods are applied for determination of the drugs in tablets without interference.

  6. Terahertz spectroscopic study of benzodiazepine sedative hypnotics

    Science.gov (United States)

    Deng, Fusheng; Shen, Jingling; Wang, Xianfeng

    2011-08-01

    Terahertz time domain spectroscopy (THz-TDS) is used to the pure active ingredient of three benzodiazepine sedative hypnotics with similar molecular structure. The absorption spectra of them are studied in the range of 0.2~2.6THz. Based on the experiment, the theoretical simulation results of diazepam, nitrazepam and clonazepam are got by the Gaussian03 package of DFT/B3LYP/6-31G* method in single-molecule models. The experimental results show that even if the molecular structure and medicine property of them are similar, the accurate identification of them can still be done with their characteristic absorption spectra. Theoretical simulation results are well consistent with the experimental results. It demonstrates that absorption peaks of them in THz range mainly come from intra-molecular forces and are less affected by the intermolecular interaction and crystal effects.ô

  7. Electronic absorption spectroscopic studies on charge-transfer interactions in a biologically important molecule: N, N'-dimethyl-4,4'-bipyridylium chloride (paraquat or methyl viologen) as an electron acceptor

    Science.gov (United States)

    Murthy, A. S. N.; Bhardwaj, A. P.

    The charge-transfer spectra of N, N'-dimethyl-4,4'-bipyridylium chloride (paraquat, PQ 2+) with a wide range of electron donors has been investigated and the thermodynamic data determined. An estimate of the empirical energy parameters has been made using the spectroscopic and thermodynamic data, using Mulliken's theory.

  8. Spectroscopic studies of cryogenic fluids: Benzene in propane

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-03-01

    Energy shifts and bandwidths for the 1B2u↔1A1g optical absorption and emission transitions of benzene dissolved in propane are presented as a function of pressure, temperature, and density. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas no shifts are observed if density is kept constant and temperature and pressure are varied simultaneously. Density is thus the fundamental microscopic parameter for energy shifts of optical transitions. The emission half-width is a linear function of both temperature and pressure but the absorption half-width is dependent only upon pressure. These results are interpreted qualitatively in terms of changes occurring in the intermolecular potentials of the ground and excited states. Both changes in shape of and separation between the ground and excited state potentials are considered as a function of density. Classical dielectric (Onsager-Böttcher), microscopic dielectric (Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra are compared with the experimental results. Calculations suggest limited applicability of dielectric theories but good agreement between experiment and microscopic theory. The results demonstrate the usefulness of cryogenic solutions for high pressure, low temperature spectroscopic studies of liquids.

  9. Spectroscopic studies on the photochemical decarboxylation mechanisms of synthetic pyrethroids.

    Science.gov (United States)

    Suzuki, Yusuke; Ishizaka, Shoji; Kitamura, Noboru

    2012-12-01

    A novel radical trapping technique combined with a fluorescence spectroscopic analysis has been employed to investigate the radical intermediates produced by photodecarboxylation of four synthetic pyrethroids: fenvalerate (SMD), fenpropathrin (DTL), cyphenothrin (GKL), and cypermethrin (AGT). Under photoirradiation at >290 nm, all pyrethroids underwent direct photolysis via homolytic cleavage of the carbon-oxygen bonds in the ester groups. The consumed amount of a nitroxide free radical, as a trapping agent for the intermediate radical of a pyrethroid, was determined by ESR, which was the measure of the reaction yield of a photochemically generated α-cyano-3-phenoxybenzyl radical common to all pyrethroids. The reactivities of the pyrethroids studied was in the sequence of SMD > DTL > GKL > AGT. Furthermore, nanosecond transient absorption spectroscopy demonstrated that geminate recombination of the radical pair within a solvent cage is the main deactivation route of the photochemically generated α-cyano-3-phenoxybenzyl radical common for all pyrethroids studied.

  10. Combined spectroscopic and quantum chemical studies of ezetimibe

    Science.gov (United States)

    Prajapati, Preeti; Pandey, Jaya; Shimpi, Manishkumar R.; Srivastava, Anubha; Tandon, Poonam; Velaga, Sitaram P.; Sinha, Kirti

    2016-12-01

    Ezetimibe (EZT) is a hypocholesterolemic agent used for the treatment of elevated blood cholesterol levels as it lowers the blood cholesterol by blocking the absorption of cholesterol in intestine. Study aims to combine experimental and computational methods to provide insights into the structural and vibrational spectroscopic properties of EZT which is important for explaining drug substance physical and biological properties. Computational study on molecular properties of ezetimibe is presented using density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set. A detailed vibrational assignment has been done for the observed IR and Raman spectra of EZT. In addition to the conformational study, hydrogen bonding and molecular docking studies have been also performed. For conformational studies, the double well potential energy curves have been plotted for the rotation around the six flexible bonds of the molecule. UV absorption spectrum was examined in methanol solvent and compared with calculated one in solvent environment (IEF-PCM) using TD-DFT/6-31G basis set. HOMO-LUMO energy gap of both the conformers have also been calculated in order to predict its chemical reactivity and stability. The stability of the molecule was also examined by means of natural bond analysis (NBO) analysis. To account for the chemical reactivity and site selectivity of the molecules, molecular electrostatic potential (MEPS) map has been plotted. The combination of experimental and calculated results provide an insight into the structural and vibrational spectroscopic properties of EZT. In order to give an insight for the biological activity of EZT, molecular docking of EZT with protein NPC1L1 has been done.

  11. The Far Ultraviolet Spectroscopic Explorer Survey of OVI Absorption in the Disk of the Milky Way

    CERN Document Server

    Bowen, D V; Tripp, T M; Sembach, K R; Savage, B D; Moos, H W; Oegerle, W R; Friedman, S D; Gry, C; Kruk, J W; Murphy, E; Sankrit, R; Shull, J M; Sonneborn, G; York, D G

    2007-01-01

    To probe the distribution and physical characteristics of interstellar gas at temperatures T ~ 3e5 K in the disk of the Milky Way, we have used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe absorption lines of OVI toward 148 early-type stars situated at distances 1 kpc. After subtracting off a mild excess of OVI arising from the Local Bubble, combining our new results with earlier surveys of OVI, and eliminating stars that show conspicuous localized X-ray emission, we find an average OVI mid-plane density n_0 = 1.3e-8 cm^-3. The density decreases away from the plane of the Galaxy in a way that is consistent with an exponential scale height of 3.2 kpc at negative latitudes or 4.6 kpc at positive latitudes. Average volume densities of OVI along different sight lines exhibit a dispersion of about 0.26 dex, irrespective of the distances to the target stars. This indicates that OVI does not arise in randomly situated clouds of a fixed size and density, but instead is distributed in regions that have...

  12. Ultrasonic and spectroscopic studies on photoactivation of euglena

    Science.gov (United States)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  13. Spectroscopic studies of anthracyclines: Structural characterization and in vitro tracking

    Science.gov (United States)

    Szafraniec, Ewelina; Majzner, Katarzyna; Farhane, Zeineb; Byrne, Hugh J.; Lukawska, Malgorzata; Oszczapowicz, Irena; Chlopicki, Stefan; Baranska, Malgorzata

    2016-12-01

    A broad spectroscopic characterization, using ultraviolet-visible (UV-vis) and Fourier transform infrared absorption as well as Raman scattering, of two commonly used anthracyclines antibiotics (DOX) daunorubicin (DNR), their epimers (EDOX, EDNR) and ten selected analogs is presented. The paper serves as a comprehensive spectral library of UV-vis, IR and Raman spectra of anthracyclines in the solid state and in solution. The particular advantage of Raman spectroscopy for the measurement and analysis of individual antibiotics is demonstrated. Raman spectroscopy can be used to monitor the in vitro uptake and distribution of the drug in cells, using both 488 nm and 785 nm as source wavelengths, with submicrometer spatial resolution, although the cellular accumulation of the drug is different in each case. The high information content of Raman spectra allows studies of the drug-cell interactions, and so the method seems very suitable for monitoring drug uptake and mechanisms of interaction with cellular compartments at the subcellular level.

  14. Spectroscopic study of photo and thermal destruction of riboflavin

    Science.gov (United States)

    Astanov, Salikh; Sharipov, Mirzo Z.; Fayzullaev, Askar R.; Kurtaliev, Eldar N.; Nizomov, Negmat

    2014-08-01

    Influence of temperature and light irradiation on the spectroscopic properties of aqueous solutions of riboflavin was studied using linear dichroism method, absorption and fluorescence spectroscopy. It was established that in a wide temperature range 290-423 K there is a decline of absorbance and fluorescence ability, which is explained by thermodestruction of riboflavin. It is shown that the proportion of molecules, which have undergone degradation, are in the range of 4-28%, and depends on the concentration and quantity of temperature effects. Introduction of hydrochloric and sulfuric acids, as well as different metal ions leads to an increase in the photostability of riboflavin solutions by 2-2.5 times. The observed phenomena are explained by the formation protonation form of riboflavin and a complex between the metal ions and oxygen atoms of the carbonyl group of riboflavin, respectively.

  15. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Science.gov (United States)

    Kaur, Parvinder; Kaur, Simranpreet; Singh, Gurinder Pal; Arora, Deepawali; Kumar, Sunil; Singh, D. P.

    2016-08-01

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV-Vis absorption spectra and fluorescence spectra (λexc.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO4 units thus supporting the density results. The UV- Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  16. Excitation induced spectroscopic study and quenching effect in cerium samarium codoped lithium aluminoborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Parvinder; Kaur, Simranpreet [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, Gurinder Pal [Department of Physics, Khalsa College, Amritsar 143002 (India); Arora, Deepawali; Kumar, Sunil [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India); Singh, D.P., E-mail: dpsinghdr@yahoo.com [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-08-15

    Lithium aluminium borate host has been codoped with cerium and samarium to prepare glass by conventional melt quench technique. Their structural and spectroscopic investigation has been carried out using XRD, FTIR and density measurements. The UV‐Vis absorption spectra and fluorescence spectra (λ{sub exc}.=380 nm and 400 nm) have been studied for spectroscopic analysis. The amorphous nature of the prepared samples is shown by XRD. The density is increasing with addition of cerium at the expense of aluminium, keeping other components constant. FTIR study also shows the presence of compact and stable tetrahedral BO{sub 4} units thus supporting the density results. The UV‐ Vis absorption spectra show a shift of optical absorption edge towards longer wavelength along with an increase in intensity of peaks with rising samarium concentration. The fluorescence spectra show a blue shift and subsequent suppression of cerium peaks with addition of samarium.

  17. Fourier Transform Infrared Spectroscopic Studies in Flotation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fourier transform infrared (FTIR) spectroscopy has been extensively employed in flotation research.The work done by the author and co-workers has been reported.A comparison has been made among the different FTIR spectroscopic techniques,e.g.,transmission FTIR spectroscopy,diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy,and attenuated total reflectance (ATR) FTIR spectroscopy.FTIR spectroscopy has been used to study the mechanism of interaction between the collector and the surfaces of different minerals,the mechanism of action of the depressant in improving the selectivity of flotation,and the mechanism of adsorption of the polymeric modifying reagent on mineral surfaces.The interaction between particles in mineral suspension has also been studied by FTIR spectroscopy.

  18. Molecular docking, spectroscopic studies and quantum calculations on nootropic drug.

    Science.gov (United States)

    Uma Maheswari, J; Muthu, S; Sundius, Tom

    2014-04-05

    A systematic vibrational spectroscopic assignment and analysis of piracetam [(2-oxo-1-pyrrolidineacetamide)] have been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G++(d,p) basis set. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, and harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption wavelengths λmax were determined by the time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PED) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. Molecular docking studies have been carried out in the active site of piracetam by using Argus Lab. In addition, the potential energy surface, HOMO and LUMO energies, first-order hyperpolarizability and the molecular electrostatic potential have been computed.

  19. Absorption properties of type-II InAs/InAsSb superlattices measured by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Webster, P. T.; Riordan, N. A.; Liu, S.; Zhang, Y.-H.; Johnson, S. R., E-mail: shane.johnson@asu.edu [Center for Photonics Innovation and School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Steenbergen, E. H. [U.S. Air Force Research Laboratory, AFRL/RXAN, Wright Patterson, Ohio 45433 (United States); Synowicki, R. A. [J. A. Woollam Co., Inc., 645 M. Street, Suite 102, Lincoln, Nebraska 68508 (United States)

    2015-02-09

    Strain-balanced InAs/InAsSb superlattices offer access to the mid- to long-wavelength infrared region with what is essentially a ternary material system at the GaSb lattice constant. The absorption coefficients of InAs/InAsSb superlattices grown by molecular beam epitaxy on (100)-oriented GaSb substrates are measured at room temperature over the 30 to 800 meV photon energy range using spectroscopic ellipsometry, and the miniband structure of each superlattice is calculated using a Kronig-Penney model. The InAs/InAsSb conduction band offset is used as a fitting parameter to align the calculated superlattice ground state transition energy to the measured absorption onset at room temperature and to the photoluminescence peak energy at low temperature. It is observed that the ground state absorption coefficient and transition strength are proportional to the square of the wavefunction overlap and the ground state absorption coefficient approaches a maximum value of around 5780 cm{sup −1} as the wavefunction overlap approaches 100%. The absorption analysis of these samples indicates that the optical joint density of states is weakly dependent on the period thickness and Sb content of the superlattice, and that wavefunction overlap is the principal design parameter in terms of obtaining strong absorption in these structures.

  20. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gottlieb, C.A.; Thaddeus, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    Highly reactive carbenes and carbon-chain radicals are studied at millimeter wavelengths by observing their rotational spectra. The purpose is to provide definitive spectroscopic identification, accurate spectroscopic constants in the lowest vibrational states, and reliable structures of the key intermediates in reactions leading to aromatic hydrocarbons and soot particles in combustion.

  1. Preparation of cesium targets for gamma-spectroscopic studies

    Science.gov (United States)

    Bhattacharyya, S.; Basu, S. K.; Chanda, S.; Deb, P.; Eqbal, Md; Kundu, S.; Joseph, D.

    2000-11-01

    A procedure to prepare monoisotopic cesium compound targets for gamma-spectroscopic experiments is described. Using this procedure, uniform targets up to thicknesses of 0.6-1.2 mg/cm 2 were prepared and used for in-beam spectroscopic studies. The purity of the target was tested by energy dispersive X-ray fluorescence (EDXRF) measurements.

  2. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Science.gov (United States)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  3. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, S. Sreehari, E-mail: sreeharisastry@yahoo.com [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Rao, B. Rupa Venkateswara [Department of Physics, Acharya Nagarjuna University, Nagarjunanagar 522510 (India); Department of Physics, V.R. Siddhartha Engineering College, Vijayawada 52007 (India)

    2014-02-01

    In this paper spectroscopic investigation of Cu{sup 2+} doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR – X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu{sup 2+} state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu{sup 2+} is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P–O–P bonds and creating more number of new P–O–Cu bonds.

  4. Biomedical applications of X-ray absorption and vibrational spectroscopic microscopies in obtaining structural information from complex systems

    Science.gov (United States)

    Aitken, Jade B.; Carter, Elizabeth A.; Eastgate, Harold; Hackett, Mark J.; Harris, Hugh H.; Levina, Aviva; Lee, Yao-Chang; Chen, Ching-Iue; Lai, Barry; Vogt, Stefan; Lay, Peter A.

    2010-02-01

    Protein crystallography and NMR spectroscopy took decades to emerge as routine techniques in structural biology. X-ray absorption spectroscopy now has reached a similar stage of maturity for obtaining complementary local structural information around metals in metalloproteins. However, the relatively recent emergence of X-ray and vibrational spectroscopic microprobes that build on these techniques has enabled the structural information obtained from the "mature" techniques on isolated biomolecules to be translated into in situ structural information from inhomogeneous complex systems, such as whole cells and tissues.

  5. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of some fluoroquinolone antibacterials using ammonium reineckate

    Science.gov (United States)

    Al-Ghannam, Sheikha M.

    2008-04-01

    Three accurate, rapid and simple atomic absorption spectrometric (AAS), conductometric and colorimetric methods were developed for the determination of gatifloxacin (GTF), moxifloxacin (MXF) and sparfloxacin (SPF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone. The optimizations of various experimental conditions were described. Optimum concentration ranges for the determination of GTF, MXF and SPF were 5.0-150, 40-440 μg mL -1 and 0.10-1.5 mg mL -1 using atomic absorption (AAS), conductometric and colorimetric methods, respectively. Detection and quantification limits are ranges from 1.5 to 2.3 μg mL -1 using AAS method or 30-45 μg mL -1 using colorimetric method. The proposed procedures have been applied successfully to the analysis of these drugs in pharmaceutical formulations and the results are favourably comparable to the reference methods.

  6. Synthesis and Spectroscopic Study of Coumarin Derivatives

    Institute of Scientific and Technical Information of China (English)

    YAO Chun-feng; ZENG He-ping

    2011-01-01

    Five new coumarin amide derivatives were synthesized with coupling reagent,the structures of which were characterized by IR,1H NMR,13C NMR,MS and element analysis.Their spectral properties were studied in dichloromethane,in N,N-dimethylformamide(DMF) and in solid state.Solvent polarity has less influence on the UV-Vis maximum absorption at about 430 nm.The maximum emission wavelengths change from 464 nm to 474 nm in dichloromethane,from 476 nm to 482 nm in DMF and from 521 nm to 548 nm in solid state,respectively.The fluorescence intensities of compounds 8 and 9 were extremely strong in solvents or in solid state.Compounds 8 and 9 exhibited high fluorescenct quantumn yields in solution compared to compounds 4-7.The fluorescence lifetimes of all the compounds in solvents were measured.

  7. Time resolved spectroscopic studies on some nanophosphors

    Indian Academy of Sciences (India)

    Harish Chander; Santa Chawla

    2008-06-01

    Time resolved spectroscopy is an important tool for studying photophysical processes in phosphors. Present work investigates the steady state and time resolved photoluminescence (PL) spectroscopic characteristics of ZnS, ZnO and (Zn, Mg)O nanophosphors both in powder as well as thin film form. Photoluminescence (PL) of ZnS nanophosphors typically exhibit a purple/blue emission peak termed as self activated (SA) luminescence and emission at different wavelengths arising due to dopant impurities e.g. green emission for ZnS : Cu, orange emission for ZnS : Mn and red emission for ZnS : Eu. The lifetimes obtained from decay curves range from ns to ms level and suggest the radiative recombination path involving donor–acceptor pair recombination or internal electronic transitions of the impurity atom. A series of ZnMgO nanophosphor thin films with varied Zn : Mg ratios were prepared by chemical bath deposition. Photoluminescence (PL) excitation and emission spectra exhibit variations with changing Mg ratio. Luminescence lifetime as short as 10-10 s was observed for ZnO and ZnMgO (100 : 10) nanophosphors. With increasing Mg ratio, PL decay shifts into microsecond range. ZnO and ZnMgO alloys up to 50% Mg were prepared as powder by solid state mixing and sintering at high temperature in reducing atmosphere. Time resolved decay of PL indicated lifetime in the microsecond time scale. The novelty of the work lies in clear experimental evidence of dopants (Cu, Mn, Eu and Mg) in the decay process and luminescence life times in II–VI semiconductor nanocrystals of ZnS and ZnO. For ZnS, blue self activated luminescence decays faster than Cu and Mn related emission. For undoped ZnO nanocrystals, PL decay is in the nanosecond range whereas with Mg doping the decay becomes much slower in the microsecond range.

  8. Thermodynamic Modeling of Poorly Complexing Metals in Concentrated Electrolyte Solutions: An X-Ray Absorption and UV-Vis Spectroscopic Study of Ni(II) in the NiCl2-MgCl2-H2O System

    Science.gov (United States)

    Zhang, Ning; Brugger, Joël; Etschmann, Barbara; Ngothai, Yung; Zeng, Dewen

    2015-01-01

    Knowledge of the structure and speciation of aqueous Ni(II)-chloride complexes is important for understanding Ni behavior in hydrometallurgical extraction. The effect of concentration on the first-shell structure of Ni(II) in aqueous NiCl2 and NiCl2-MgCl2 solutions was investigated by Ni K edge X-ray absorption (XAS) and UV-Vis spectroscopy at ambient conditions. Both techniques show that no large structural change (e.g., transition from octahedral to tetrahedral-like configuration) occurs. Both methods confirm that the Ni(II) aqua ion (with six coordinated water molecules at RNi-O = 2.07(2) Å) is the dominant species over the whole NiCl2 concentration range. However, XANES, EXAFS and UV-Vis data show subtle changes at high salinity (> 2 mol∙kg-1 NiCl2), which are consistent with the formation of small amounts of the NiCl+ complex (up to 0.44(23) Cl at a Ni-Cl distance of 2.35(2) Å in 5.05 mol∙kg-1 NiCl2) in the pure NiCl2 solutions. At high Cl:Ni ratio in the NiCl2-MgCl2-H2O solutions, small amounts of [NiCl2]0 are also present. We developed a speciation-based mixed-solvent electrolyte (MSE) model to describe activity-composition relationships in NiCl2-MgCl2-H2O solutions, and at the same time predict Ni(II) speciation that is consistent with our XAS and UV-Vis data and with existing literature data up to the solubility limit, resolving a long-standing uncertainty about the role of chloride complexing in this system. PMID:25885410

  9. Absorption-Line Studies of Seyfert Galaxies

    Science.gov (United States)

    Shull, J. Michael

    We propose to undertake a "reverberation analysis" of the variable absorption lines ill two Seyfert Galaxies (NGC 4051 and Mrk 279) to help understand the origin of intrinsic absorption lines in AGNs. Stich an analysis is a powerful tool for elucidating the radial distribution of absorbing gas in the broad-line region (BLR) and narrow-line region (NLR). Only two Seyferts have previously been studied with this technique: NGC 4151 (Bromage el al. 1985; Clavel et al. 1987) and NGC 3516 (Voit, Shull, and Begelman 1987). The absorption features have been interpreted as an outflow of ionized clouds from the nuclear region or from an accretion disk affected by UV/X-ray heating. Neither the source of the absorbing gas in these Seyferts nor the "gene" which distingishes them from other Seyferts is known. Until the 1984 onset of absorption in Mrk 279, broad self-absorbed. lines had been observed only in Seyferts of low intrinsic luminosity, such as NGC 4051. Mrk 279 is intrinsically much brighter, and therefore more quasar-like, than the other three absorptionline Seyfert I's in the CfA sample. Thus, it may show how the absorption phenomenon changes at higher luminosity and could bridge the gap between the low luminosity absorption-line Seyferts and the well-studied broad absorption-line (BAL) QSO's. In addition, Mrk 279's significant redshift will allow us to study, for the first time, the Ly-alpha line in an absorption-line Seyfert. With 3 US-1 shifts for each of these two underobserved Seyferts, we can double the number of objects in which absorption-line variability has been studied and investigate why the absorption-line strengths correlate or anti-correlate with the UV continuum.

  10. Spectroscopic studies of ion implanted PPV films

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, C. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Friend, R.H. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Sarnecki, G.J. (Cavendish Lab., Univ. of Cambridge (United Kingdom)); Lucas, B. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Moliton, A. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Ratier, B. (LEPOFI, Faculte des Sciences, 87 - Limoges (France)); Belorgeot, C. (Lab. de Physique Moleculaire, Faculte des Sciences, 87 - Limoges (France))

    1993-03-15

    The main results of the spectroscopic analyses (infrared and ultraviolet - visible - near infrared) carried out on PPV films before and after ion implantation with halogen and alkali ions are presented in this paper. The influence of both ions nature and implantation parameters on optical properties of this polymer have been pointed out and the appearance of a weak band due to doping has been observed by infrared spectroscopy. (orig.)

  11. Optical and spectroscopic study of erbium doped calcium borotellurite glasses

    Science.gov (United States)

    Gomes, J. F.; Lima, A. M. O.; Sandrini, M.; Medina, A. N.; Steimacher, A.; Pedrochi, F.; Barboza, M. J.

    2017-04-01

    In this study, 10CaF2 - (29.9-0.4x)CaO - (60-0.6x)B2O3 - xTeO2 - 0,1Er2O3 (x = 10, 16, 22, 30 and 50 mol %) glasses were synthesized, and their optical and spectroscopic properties were investigated. X-ray diffraction, density, glass transition temperature (Tg), crystallization temperature (Tx), refraction index, luminescence, radiative lifetime and optical absorption measurements were carried out. Molar volume (Vm), thermal stability (Tx-Tg), electronic polarizability (αm), optical bang gap energy (Eg) and Judd-Ofelt (JO) parameters Ωt (2,4,6) were also calculated. The results are discussed in terms of tellurium oxide content. The increase of TeO2 in the glasses composition increases density, refractive index and electronic polarizability. The optical band gap energy decreases varying from 3.37 to 2.71 eV for the glasses with 10 and 50 mol% of TeO2, respectively. The optical absorption coefficient spectra show characteristic bands of Er3+ ions. Furthermore, these spectra in NIR region show a decrease of hydroxyl groups as a function of TeO2 addition. Luminescence intensity and radiative lifetimes at 1530 nm show an increasing with the TeO2 content. The JO parameters of Er:CaBTeX glasses follow the trend Ω2 > Ω4 > Ω6 and the quality factor values (Ω4/Ω6) were between 1.37 and 3.07. By comparing the measured lifetime with the calculated radiative decay time, quantum efficiency was calculated. The luminescence emission intensity at 1530 nm decreases with the increase of temperature. The lifetime values show a slight trend to decrease with the temperature increase, from 300 to 420 K, for all the samples.

  12. A Spectroscopic Study of Kepler Asteroseismic Targets

    CERN Document Server

    Molenda-Zakowicz, J; Latham, D W; Jerzykiewicz, M

    2009-01-01

    Reported are spectroscopic observations of 15 candidates for Kepler primary asteroseismic targets and 14 other stars in the Kepler field, carried out at three observatories (see the footnote). For all these stars, the radial velocities, effective temperature, surface gravity, metallicity, and the projected rotational velocity are derived from two separate sets of data by means of two independent methods. In addition, MK type is estimated from one of these sets of data. Three stars, HIP 94335, HIP 94734, and HIP 94743, are found to have variable radial-velocity. For HIP 94335 = FL Lyr, a well-known Algol-type eclipsing variable and a double-lined spectroscopic binary, the orbital elements computed from our data agree closely with those of Popper et al. For HIP 94734 and HIP 94743 = V2077 Cyg, which we discover to be single-lined systems, orbital elements are derived. In addition, from our value of the orbital period and the Hipparcos epoch photometry, HIP 94743 is demonstrated to be a detached eclipsing binary...

  13. Structural and Functional Models for the Dinuclear Copper Active Site in Catechol Oxidases: Syntheses, X-ray Crystal Structures, Magnetic and Spectral Properties, and X-ray Absorption Spectroscopic Studies in Solid State and in Solution.

    Science.gov (United States)

    Zippel, Frank; Ahlers, Friedhelm; Werner, Rüdiger; Haase, Wolfgang; Nolting, Hans-Friedrich; Krebs, Bernt

    1996-05-22

    Two novel tridentate dinucleating ligands containing benzimidazole were prepared, 1,3-bis(2-benzimidazolyl)-2-propanol (Hbbp, 1) and 1,5-bis(2-benzimidazolyl)-3-pentanol (Hbbpen, 2). Their complexing properties toward copper were studied in order to obtain structural and functional models for catechol oxidases. Syntheses and crystal structures of dinuclear Cu(II) complexes derived from these ligands are reported. [Cu(2)bbp(2)](ClO(4))(2).2MeOH, 3, crystallizes in the triclinic space group P&onemacr; with the following unit cell parameters: a = 7.702(3) Å, b = 10.973(6) Å, c = 12.396(6) Å, alpha = 100.59(4) degrees, beta = 99.02(4) degrees, gamma = 98.90(4) degrees, V = 998.7(8) Å(3), and Z = 1. [Cu(2)bbpen(2)](ClO(4))(2).3MeOH, 4, crystallizes in the orthorhombic space group Pccn, with the following unit cell parameters: a = 17.478(9) Å, b = 18.795(8) Å, c = 13.888(6) Å, V = 4562.2(4) Å(3), and Z = 4. Magnetic susceptibility measurements in the temperature ranges 4.6-459 K (3) and 4.6-425 K (4) indicate an antiferromagnetic coupling between the Cu(II) centers of both complexes. In order to determine the structures of the complexes in solution, XAS spectra (EXAFS and XANES) were recorded in the solid state and in solution. The interpretation of these data, including multiple scattering calculations, together with UV-vis titrations, shows that the complexes have the same structure in the crystalline state as well as in methanolic solution. Complex 4 is able to oxidize 3,5-di-tert-butylcatechol (3,5-DTBC) to the quinone (catecholase activity). This reaction was also studied by XAS and UV-vis spectroscopy. These measurements reveal the reduction of Cu(II) to Cu(I) accompanied by a decrease of the coordination number.

  14. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    trifluoromethanesulfonate, LiCF3SO3, abbreviated here as lithium triflate(LiTf). The molar absorption coefficients of nus(SO3), deltas(CF3), and deltas(SO3) vibrational modes of triflate anion in the LiTf-2-pentanone system were found to be 6708+/-89, 5182+/-62, and 189+/-2 kg mol-1 cm-1, respectively using Beer-Lambert law. Our results show that there is strong absorption by nu s(SO3) mode and weak absorption by deltas(CF 3) mode. Also, the absorptivity of each mode is independent of the ionic association with Li ions. This work allows for the direct quantitative comparison of calculated concentrations in different samples and different experimental conditions. In addition, this dissertation reports the temperature-dependent vibrational spectroscopic studies of pure poly(ethylene oxide) and LiTf-poly(ethylene oxide) complexes. A significant portion of this dissertation focuses on crystallographic studies of ketone-salt (LiTf:2-pentanone and NaTf:2-hexanone) and amine-acid (diethyleneamine: H3PO4, N,N'-dimethylethylenediamine:H 3PO4, and piperazine:H3PO4) systems. Here, sodium trifluoromethanesulfonate, NaCF3SO3 is abbreviated as NaTf. As model compounds, these systems provide valuable information about ion-ion interactions, which are helpful for understanding complex polymer systems. During this study, five crystal structures were solved using single X-ray diffractometry, and their vibrational modes were studied in the mid-infrared region. In the secondary amine/phosphoric acid systems, the nature of hydrogen-bonding network was examined.

  15. SPECTROSCOPIC STUDIES OF AMINOACIDS COMPLEXES WITH BIOMETALS

    Directory of Open Access Journals (Sweden)

    Andreea Stanila

    2012-06-01

    Full Text Available The [Cu(L2 ]·H2 O, [Co(L2 ]·2H2 O, [Zn(L2 ]·H2 O complexes with methionine (L as ligand, were synthesized in water solution and analyzed by means of: elemental analysis, atomic absorption spectroscopy, thermogravimetry, FT-IR, UV-VIS and EPR spectroscopies. The atomic absorption spectroscopy and elemental measurements confi rm the ratio 1:2 metal ion: methionine composition for the synthesised compounds.The IR spectra show that amino acids act as bidentate ligands with coordination involving the carboxylic oxygen and the nitrogen atom of the amino group. Spectral UV-VIS data confi rmed the covalent metal-ligand bonds, the pseudotetrahedral symmetry around the copper and zinc ions and the octahedral environment for the cobalt ion. Powder ESR spectra at room temperature are typically for monomeric species.

  16. Spectroscopic studies of UV irradiated erythrosine B thin films prepared by spin coating technique.

    Science.gov (United States)

    Zeyada, H M; El-Mallah, H M; Atwee, T; El-Damhogi, D G

    2017-05-15

    The spectroscopic studies of erythrosine B thin films manufactured by the spin coating technique have been presented. The spectra of infrared absorption allow characterization of vibrational modes for erythrosine B in powder form, pristine and UV irradiated thin films. The absorption spectra recorded in UV-vis-NIR for pristine films of erythrosine B display two main bands. UV irradiation on erythrosine B films decreased absorbance over the spectra. Indirect allowed transition with optical energy gap of 2.57eV is observed in pristine films. UV irradiation introduced structural defects and decreased optical band gap. Some of the optical absorption parameters and their relation to UV irradiation times, namely molar extinction coefficient (ε), electronic dipole strength (q(2)), and oscillator strength (f), of the principal optical transitions have also been evaluated.

  17. Highly specific spectroscopic photoacoustic molecular imaging of dynamic optical absorption shifts of an antibody-ICG contrast agent (Conference Presentation)

    Science.gov (United States)

    Wilson, Katheryne E.; Bachawal, Sunitha; Abou-Elkacem, Lotfi; Jensen, Kristen C.; Machtaler, Steven; Tian, Lu; Willmann, Juergen K.

    2017-03-01

    Improved techniques for breast cancer screening are critically needed as current methods lack diagnostic accuracy. Using spectroscopic photoacoustic (sPA) molecular imaging with a priori knowledge of optical absorption spectra allows suppression of endogenous background signal, increasing the overall sensitivity and specificity of the modality to exogenous contrast agents. Here, sPA imaging was used to monitor antibody-indocyanine green (ICG) conjugates as they undergo optical absorption spectrum shifts after cellular endocytosis and degradation to allow differentiation between normal murine mammary glands from breast cancer by enhancing molecular imaging signal from target (B7-H3)-bound antibody-ICG. First, B7-H3 was shown to have highly specific (AUC of 0.93) expression on both vascular endothelium and tumor stroma in malignant lesions through quantitative immunohistochemical staining of B7-H3 on 279 human samples (normal (n=53), benign lesions (11 subtypes, n=182), breast cancers (4 subtypes, n=97)), making B7-H3 a promising target for sPA imaging. Second, absorption spectra of intracellular and degraded B7-H3-ICG and Isotype control (Iso-ICG) were characterized through in vitro and in vivo experiments. Finally, a transgenic murine breast cancer model (FVB/N-Tg(MMTVPyMT)634Mul) was imaged, and sPA imaging in found a 3.01 (IQR 2.63, 3.38, Panimals (n=60), Iso-ICG (n=30), blocking B7-H3+B7-H3-ICG (n=20), and free ICG (n=20)) despite significant tumor accumulation of Iso-ICG, confirmed through ex vivo histology. Overall, leveraging anti-B7-H3 antibody-ICG contrast agents, which have dynamic optical absorption spectra representative of molecular interactions, allows for highly specific sPA imaging of murine breast cancer.

  18. Spectroscopic studies in open quantum systems

    CERN Document Server

    Rotter, I; Pichugin, K N; Seba, P

    2000-01-01

    The spectroscopic properties of an open quantum system are determined by theeigenvalues and eigenfunctions of an effective Hamiltonian H consisting of theHamiltonian H_0 of the corresponding closed system and a non-Hermitiancorrection term W arising from the interaction via the continuum of decaychannels. The eigenvalues E_R of H are complex. They are the poles of theS-matrix and provide both the energies and widths of the states. We illustratethe interplay between Re(H) and Im(H) by means of the different interferencephenomena between two neighboured resonance states. Level repulsion along thereal axis appears if the interaction is caused mainly by Re(H) while abifurcation of the widths appears if the interaction occurs mainly due toIm(H). We then calculate the poles of the S-matrix and the correspondingwavefunctions for a rectangular microwave resonator with a scatter as afunction of the area of the resonator as well as of the degree of opening to aguide. The calculations are performed by using the method o...

  19. Evaluation of laser absorption spectroscopic techniques for eddy covariance flux measurements of ammonia.

    Science.gov (United States)

    Whitehead, James D; Twigg, Marsailidh; Famulari, Daniela; Nemitz, Eiko; Sutton, Mark A; Gallagher, Martin W; Fowler, David

    2008-03-15

    An intercomparison was made between eddy covariance flux measurements of ammonia by a quantum cascade laser absorption spectrometer (QCLAS) and a lead-salt tunable diode laser absorption spectrometer (TDLAS). The measurements took place in September 2004 and again in April 2005 over a managed grassland site in Southern Scotland, U.K. These were also compared with a flux estimate derived from an "Ammonia Measurement by ANnular Denuder with online Analysis" (AMANDA), using the aerodynamic gradient method (AGM). The concentration and flux measurements from the QCLAS correlated well with those of the TDLAS and the AGM systems when emissions were high, following slurry application to the field. Both the QCLAS and TDLAS, however, underestimated the flux when compared with the AMANDA system, by 64%. A flux loss of 41% due to chemical reaction of ammonia in the QCLAS (and 37% in the TDLAS) sample tube walls was identified and characterized using laboratory tests but did not fully accountforthis difference. Recognizing these uncertainties, the agreement between the systems was nevertheless very close (R2 = 0.95 between the QCLAS and the TDLAS; R2 = 0.84 between the QCLAS and the AMANDA) demonstrating the suitability of the laser absorption methods for quantifying the temporal dynamics of ammonia fluxes.

  20. On the opportunity of spectroscopic determination of absolute atomic densities in non-equilibrium plasmas from measured relative intensities within resonance multiplets distorted by self-absorption

    CERN Document Server

    Lavrov, B P

    2007-01-01

    The opportunities of the application of the recently proposed approach in optical emission spectroscopy of non-equilibrium plasmas have been studied. The approach consists of several methods of the determination of {\\em absolute} particle densities of atoms from measured {\\em relative} intensities within resonance multiplets distorted by self-absorption. All available spectroscopic data concerning resonance spectral lines of atoms having multiplet ground states from boron up to gallium were analyzed. It is found that in the case of C, O, F, S and Cl atoms an application of the methods needs VUV technique, while densities of B, Al, Si, Sc, Ti, V, Co, Ni, Ga atoms may be obtained by means of the intensity measurements in UV and visible parts of emission spectra suitable for ordinary spectrometers used for optical diagnostics and monitoring of non-equilibrium plasmas including industrial plasma technologies.

  1. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    Science.gov (United States)

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL

  2. Vibrational and electronic spectroscopic studies of melatonin

    Science.gov (United States)

    Singh, Gurpreet; Abbas, J. M.; Dogra, Sukh Dev; Sachdeva, Ritika; Rai, Bimal; Tripathi, S. K.; Prakash, Satya; Sathe, Vasant; Saini, G. S. S.

    2014-01-01

    We report the infrared absorption and Raman spectra of melatonin recorded with 488 and 632.8 nm excitations in 3600-2700 and 1700-70 cm-1 regions. Further, we optimized molecular structure of the three conformers of melatonin within density functional theory calculations. Vibrational frequencies of all three conformers have also been calculated. Observed vibrational bands have been assigned to different vibrational motions of the molecules on the basis of potential energy distribution calculations and calculated vibrational frequencies. Observed band positions match well with the calculated values after scaling except Nsbnd H stretching mode frequencies. It is found that the observed and calculated frequencies mismatch of Nsbnd H stretching is due to intermolecular interactions between melatonin molecules.

  3. Spectroscopic Studies of Nearby Cool Stars: The DUNES Sample

    Science.gov (United States)

    Maldonado, J.; Martinez-Arnáiz, R. M.; Eiroa, C.; Montes, D.

    At the universities of Madrid we are carrying out a systematic analysis of the spectroscopic properties of the nearby (dDUNES, a Herschel OTKP aiming at detecting and studying cold, faint dust disks around nearby stars. In this contribution we present some preliminary results on the kinematics of the DUNES sample.

  4. MOSSBAUER SPECTROSCOPIC STUDIES ON 3 DIFFERENT TYPES OF CROCIDOLITE FIBERS

    NARCIS (Netherlands)

    POLLAK, H; GULUMIAN, M

    Mossbauer spectroscopic studies have shown that the M1 cationic site in native UICC crocidolite is populated by both ferric and ferrous ions, whereas the M2 and the M3 sites are exclusively occupied by ferric and ferrous ions, respectively. The detoxification of these fibres increased the ferric ion

  5. [Spectroscopic characteristics study of morganite from Mozambique].

    Science.gov (United States)

    Yin, Zuo-wei; Li, Xiao-lu; Bao, De-qing; Chen, Quan-li; Zhang, Miao

    2014-08-01

    In recent years, morganite is becoming more and more popular due to its special color. The morganite samples located in the Republic of Mozambique were detailedly analyzed for its basic properties, chemical composition characteristics and spectroscopy properties by laser ablation plasma mass spectrometry (LA-ICP-MS), ultraviolet-visible absorption spectra (UV-Vis-NIR), infrared spectrum (IR) and Raman spectroscopy. The color parameters of morganite samples including the main wave- length, saturation, and lightness were got by UV-Vis-NIR Chemical composition test showed higher content of Li, Rb, Cs and Mn in samples and chemical formula was calculated as Be3.2090 Al2.0757 Li0.425 Si5.664 O18 (Na0.1420 Cs0.1316). Infrared spectroscopy showed that morganite structure vibration area is mainly in the fingerprint area 400-1200 and 900-1200 cm(-1) for the vibration of the ring Si--O--Si, 550-900 cm(-1) for Be-O vibration area, and 450-530 cm(-1) for Al--O vibration area. Because the Cs element content is higher in sample morganite and Cs belongs to higher atomic number elements, its existence may move the vibrationfrequency of Si--O--Si rings to the low position. Raman spectra showed 1065 cm(-1) for Si-O inner vibration of non bridge oxygen, around 1000 cm(-1) for Be--O outer vibration of non bridge oxygen, 685 cm(-1) for Si--O--Si inner vibration of deformation, 400 cm(-1) for O--Be--O outer vibration of bending, 390 cm(-1) for. Al--O outer vibration of deformation, 320 cm(-1) for Al--O outer vibration of bending.

  6. A spectroscopic study of uranium(VI) interaction with magnetite

    Energy Technology Data Exchange (ETDEWEB)

    El Aamrani, S. [Chemical Engineering Department, Universitat Politecnica de Catalunya (UPC), ETSEIB-UPC H4, Diagonal 647, 08028 Barcelona (Spain); Gimenez, J. [Chemical Engineering Department, Universitat Politecnica de Catalunya (UPC), ETSEIB-UPC H4, Diagonal 647, 08028 Barcelona (Spain)]. E-mail: francisco.javier.gimenez@upc.edu; Rovira, M. [Chemical Engineering Department, Universitat Politecnica de Catalunya (UPC), ETSEIB-UPC H4, Diagonal 647, 08028 Barcelona (Spain); CTM Centre Tecnologic, Avda. Bases de Manresa 1, Manresa (Spain); Seco, F. [CTM Centre Tecnologic, Avda. Bases de Manresa 1, Manresa (Spain); Grive, M. [ENVIROS Spain SL, Passeig de Rubi 29-31, Valldoreix (Spain); Bruno, J. [ENVIROS Spain SL, Passeig de Rubi 29-31, Valldoreix (Spain); Duro, L. [ENVIROS Spain SL, Passeig de Rubi 29-31, Valldoreix (Spain); Pablo, J. de [Chemical Engineering Department, Universitat Politecnica de Catalunya (UPC), ETSEIB-UPC H4, Diagonal 647, 08028 Barcelona (Spain); CTM Centre Tecnologic, Avda. Bases de Manresa 1, Manresa (Spain)

    2007-08-31

    The uranium sorbed onto commercial magnetite has been characterized by using two different spectroscopic techniques such as X-ray photoelectron spectroscopy (XPS), and extended X-ray absorption fine structure (EXAFS). Magnetite samples have been put in contact with uranium(VI) solutions in conditions in which a high uranium uptake is expected. After several days, the magnetite surface has been analysed by XPS and EXAFS. The XPS results obtained are not conclusive regarding the uranium oxidation state in the magnetite surface. On the other hand, the results obtained with the EXAFS technique show that the uranium-magnetite sample spectrum has characteristics from both the UO{sub 2} and schoepite spectra, e.g. a relatively high coordination number of equatorial oxygens and two axial oxygens, respectively. These results would indicate that the uranium sorbed onto magnetite would be a mixture of uranium(IV) and uranium(VI)

  7. Resolution limits of laser spectroscopic absorption measurements with hollow glass waveguides.

    Science.gov (United States)

    Chen, Jia; Hangauer, Andreas; Strzoda, Rainer; Amann, Markus Christian

    2010-10-01

    In this paper, resolution limits of laser spectroscopy absorption measurements with hollow capillary fibers are investigated. Furthermore, a concept of sensitive near-infrared sensing utilizing hollow fiber directly coupled with vertical-cavity surface-emitting lasers is developed. By performing wavelength modulation spectroscopy, the smallest absorbance that can be detected by the fiber sensor was determined to be 10(-4), limited by a random modulation of the fiber transmission function (modal noise). By mechanically vibrating the fiber, a sensor resolution of 10(-5) in absorbance is achieved. Because the random modulation on the fiber transmission function limits the detection sensitivity, its physical reasons are analyzed. One contribution is found to be the partial integration of the far field, and the amplitude of the spectral features is inversely proportional to the square root of the integrated speckle points number. Therefore, careful design of the fiber-detector outcoupling is necessary. It turned out that incoupling alignment is not of much influence with respect to the spectral background. The residual spectral background is caused by mode-dependent effects and can be lowered by vibrating the fiber mechanically.

  8. Photoinduced interaction of colloidal TiO{sub 2} nanoparticles with lysozyme: Evidences from spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Kathiravan, A., E-mail: akathir23@gmail.com [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Asha Jhonsi, M. [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Renganathan, R., E-mail: rrengas@gmail.com [School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2011-09-15

    The interaction between colloidal TiO{sub 2} nanoparticles and lysozyme (LYSO) was studied using absorption, steady state and time resolved fluorescence, FT-IR and synchronous fluorescence spectroscopic measurements. The apparent association constant has been deduced from the absorption spectral changes of LYSO-colloidal TiO{sub 2} nanoparticles using Benesi-Hildebrand equation. The number of binding sites and the apparent binding constant were calculated from relevant fluorescence data. Based on Forster's non-radiation energy transfer theory, distance between the donor (LYSO) and the acceptor (TiO{sub 2}) has also been calculated. The conformational changes of LYSO have been analyzed by means of FT-IR and synchronous fluorescence spectroscopy. In addition, the effect of metal ions on the binding constants of LYSO-TiO{sub 2} complex has also been discussed. - Highlights: > Interaction between colloidal TiO{sub 2} NPs and LYSO has been studied by UV-visible, FT-IR, steady state, time resolved and synchronous fluorescence spectroscopic measurements. > Further, the effect of Cu{sup 2+} and Zn{sup 2+} metal ions on the binding constants of LYSO with TiO{sub 2} has also studied. > Binding study of colloidal TiO{sub 2} with LYSO is of great importance in pharmacy, pharmacology and biochemistry.

  9. Studies on anodic oxide coating with low absorptance and high emittance on aluminum alloy 2024

    Energy Technology Data Exchange (ETDEWEB)

    Siva Kumar, C. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India); Sharma, A.K. [Thermal Process Section, ISRO Satellite Centre, Vimanapura Post, Bangalore (India); Mahendra, K.N.; Mayanna, S.M. [Department of Post-graduate studies in Chemistry, Central College, Bangalore (India)

    2000-01-01

    Anodization of AA 2024 in sulfuric acid bath containing glycerol, lactic acid and ammonium metavenadate has been studied to develop white anodic oxide coating. Investigation on the influence of various operating parameters - coating thickness, current density and ammonium metavenadate concentration on the optical properties was carried out to optimize the process. Infrared, atomic absorption spectroscopic techniques and scanning electron micrograph were used to characterize the coating. The obtained oxide coating provides a ratio of solar absorptance ({alpha}) to infrared emittance ({epsilon}), as low as 0.2. The optical properties and hardness values measured under optimum experimental conditions support its use as a thermal control coating.

  10. SPECTROSCOPIC AND PHYSICOCHEMICAL METHODS FOR STUDYING THE INTERACTION OF METALLOPORPHYRIN WITH DNA

    Directory of Open Access Journals (Sweden)

    Hidenari Inoue

    2010-06-01

    Full Text Available In recent years studies on the interaction of porphyrin with DNA have received much attention because of the importance in DNA-probing and photodynamic therapy of cancer. A variety of spectroscopic methods, e.g. NMR, ESR, Mössbauer, UV-visible absorption, circular dichroism (CD, magnetic circular dichroism (MCD, IR and Raman spectroscopy, have been employed for studying interactions between porphyrin and DNA. Of these spectroscopic methods, only a few instrumental analytical techniques applicable to an aqueous buffer solution of DNA have been particularly developed to investigate porphyrin-DNA interactions. On the other hand, a number of physicochemical methods, e.g. gel electrophoresis, melting temperature measurements and hydrodynamic methods such as viscosity and sedimentation measurements, have been also used for determining the binding modes of porphyrin to DNA. The present lecture will focus on the application of visible absorption, CD and MCD spectroscopy as well as melting temperature and viscosity measurements to studies of porphyrin-DNA interactions.

  11. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V. K.; Singh, Bachcha; Singh, Ranjan K.

    2016-02-01

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  12. Spectroscopic and structural study of the newly synthesized heteroligand complex of copper with creatinine and urea.

    Science.gov (United States)

    Gangopadhyay, Debraj; Singh, Sachin Kumar; Sharma, Poornima; Mishra, Hirdyesh; Unnikrishnan, V K; Singh, Bachcha; Singh, Ranjan K

    2016-02-05

    Study of copper complex of creatinine and urea is very important in life science and medicine. In this paper, spectroscopic and structural study of a newly synthesized heteroligand complex of copper with creatinine and urea has been discussed. Structural studies have been carried out using DFT calculations and spectroscopic analyses were carried out by FT-IR, Raman, UV-vis absorption and fluorescence techniques. The copper complex of creatinine and the heteroligand complex were found to have much increased water solubility as compared to pure creatinine. The analysis of FT-IR and Raman spectra helps to understand the coordination properties of the two ligands and to determine the probable structure of the heteroligand complex. The LIBS spectra of the heteroligand complex reveal that the complex is free from other metal impurities. UV-visible absorption spectra and the fluorescence emission spectra of the aqueous solution of Cu-Crn-urea heteroligand complex at different solute concentrations have been analyzed and the complex is found to be rigid and stable in its monomeric form at very low concentrations.

  13. Inhibition of urinary calculi -- a spectroscopic study

    Science.gov (United States)

    Manciu, Felicia; Govani, Jayesh; Durrer, William; Reza, Layra; Pinales, Luis

    2008-10-01

    Although a considerable number of investigations have already been undertaken and many causes such as life habits, metabolic disorders, and genetic factors have been noted as sources that accelerate calculi depositions and aggregations, there are still plenty of unanswered questions regarding efficient inhibition and treatment mechanisms. Thus, in an attempt to acquire more insights, we propose here a detailed scientific study of kidney stone formation and growth inhibition based on a traditional medicine approach with Rotula Aquatica Lour (RAL) herbal extracts. A simplified single diffusion gel growth technique was used for synthesizing the samples for the present study. The unexpected Zn presence in the sample with RAL inhibitor, as revealed by XPS measurements, explains the inhibition process and the dramatic reflectance of the incident light observed in the infrared transmission studies. Raman data demonstrate potential binding of the inhibitor with the oxygen of the kidney stone. Photoluminescence results corroborate to provide additional evidence of Zn-related inhibition.

  14. Fundamental spectroscopic studies of some atmospheric pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Findley, G.L.; McGlynn, S.P.

    1980-01-01

    Molecular electronic transitions that lie in the vuv (vacuum ultraviolet) spectral region initiate many harmful photochemical modifications in the upper atmosphere. Consequently, investigations have focused on molecules that are primary atmospheric pollutants, but which are simple enough structurally to yield detailed photophysical information. Terminal electronic states for vuv transitions can be either valence or Rydberg and, at low enough energies, the distinction between the two becomes fuzzy. A major thrust of this program has been the classification and characterization of Rydberg transitions in an attempt to gain insight into Rydberg/valence state mixing Rydberg studies. It is concluded that in order to understand the nature of photochemical reactions of molecules in the upper atmosphere, it is necessary to understand the structure and function of high-energy molecular electronic states. It is also necessary to understand the ways in which these states interact and, thereby, facilitate energy transfer. The study of molecular Rydberg states provides information crucial to such an understanding.

  15. SPECTROSCOPIC STUDY OF SEA BUCKTHORN EXTRACTS

    Directory of Open Access Journals (Sweden)

    Carmen Mihaela Topală

    2014-11-01

    Full Text Available The application of sea buckthorn oil is to incorporate the oil into foodstuffs such as milk, yoghurt, cheese, butter, juice and snacks which represents new opportunities for food manufacturers, food supplements and nutraceuticals providing nutritional supports. The FTIR spectroscopy is a powerful technique for assessing food production and studied materials provides fundamental information on the behavior of the spectral metabolites and bio product. The extracts were studied from two varieties of sea buckthorn oil Pitesti I and II. Oil obtained from peel and seeds by the Soxhlet extraction with hexane solvent and CO2 supercriticalwas analyzed by FTIR spectroscopy. The concentration of fatty acids in oil extracted from seeds and peels was similar in both extraction techniques.

  16. Spectroscopic analysis of bones for forensic studies

    Science.gov (United States)

    Tofanelli, Mirko; Pardini, Lorenzo; Borrini, Matteo; Bartoli, Fulvio; Bacci, Alessandra; D'Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano; de Holanda Cavalcanti, Gildo; Lezzerini, Marco; Palleschi, Vincenzo

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied.

  17. Spectroscopic analysis of bones for forensic studies

    Energy Technology Data Exchange (ETDEWEB)

    Tofanelli, Mirko [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy); Pardini, Lorenzo [Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 6, 12489 Berlin (Germany); Borrini, Matteo [Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Byrom Street, Liverpool (United Kingdom); Bartoli, Fulvio; Bacci, Alessandra [Department of Biology, University of Pisa, Via A. Volta, 4, 56126 Pisa (Italy); D’Ulivo, Alessandro; Pitzalis, Emanuela; Mascherpa, Marco Carlo; Legnaioli, Stefano; Lorenzetti, Giulia; Pagnotta, Stefano [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy); Holanda Cavalcanti, Gildo de [Instituto de Fìsica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza, s/no Campus da Praia Vermelha, CEP 24210-346, Niterói, Rio de Janeiro (Brazil); Lezzerini, Marco [Department of Earth Sciences, University of Pisa, Via Santa Maria, 53, 56126 Pisa (Italy); Palleschi, Vincenzo, E-mail: vincenzo.palleschi@cnr.it [Applied and Laser Spectroscopy Laboratory, Institute of Chemistry of Organometallic Compounds, Research Area of CNR, Via G. Moruzzi, 1, 56124 Pisa (Italy)

    2014-09-01

    The elemental analysis of human bones can give information about the dietary habits of the deceased, especially in the last years of their lives, which can be useful for forensic studies. The most important requirement that must be satisfied for this kind of analysis is that the concentrations of analyzed elements are the same as ante mortem. In this work, a set of bones was analyzed using Laser-Induced Breakdown Spectroscopy (LIBS) and validated using Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES), in order to compare those two techniques and to investigate the effect of possible alterations in the elemental concentrations' proportion resulting from the treatment usually applied for preparing the bones for traditional forensic analysis. The possibility that elemental concentrations' changes would occur after accidental or intentional burning of the bones was also studied. - Highlights: • The LIBS analysis of (animal) bones is presented, to establish its feasibility for forensic studies. • Untreated bones and bones subjected to high temperatures (boiled, burned) were analyzed. • A simple calibration, using a single reference sample, gave reasonable quantitative results. • The comparison of the results demonstrates that LIBS analysis can provide nutritional information. • The nutritional information obtained are the same on untreated, boiled and burned bones.

  18. Spectroscopic studies of lead halo borate glasses

    Science.gov (United States)

    Sekhar, K. Chandra; Hameed, Abdul; Chary, M. Narasimha; Shareefuddin, Md.

    2015-06-01

    Glasses in the system xPbF2-(30-x) PbO-69B2O3-1CuO (x=5, 10, 15, 20, & 25 mole %) were prepared by melt quenching method and they are characterized by XRD to confirm the glassy nature. Electron Paramagnetic Resonance (EPR) studies at room temperature in the X-band frequencies and FTIR studies on prepared glass systems were reported. The non-linear variation of spin-Hamiltonian parameters with PbF2 content indicated the change in the ligand field strength around Cu2+ ions in the host glass. The ground state of Cu2+ ions in the glass is designated as dx2-y2 orbital (2B1g) while the observed symmetry around it is tetragonally distorted octahedral. The molecular orbital coefficients α2, β2 and β12 are evaluated for Cu2+ doped samples. From the FTIR studies it was observed that the glass made up of BO3 and BO4 units.

  19. Progress report on nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Guidry, M.W.; Riedinger, L.L.; Sorensen, S.P.

    1994-02-18

    The Nuclear Physics group at the University of Tennessee, Knoxville (UTK) is involved in several aspects of heavy-ion physics including both nuclear structure and reaction mechanisms. While the main emphasis is on experimental problems, the authors have maintained a strong collaboration with several theorists in order to best pursue the physics of their measurements. During the last year they have had several experiments at the ATLAS at Argonne National Laboratory, the GAMMASPHERE at the LBL 88 Cyclotron, and with the NORDBALL at the Niels Bohr Institute Tandem. Also, they continue to be very active in the WA93/98 collaboration studying ultra-relativistic heavy ion physics utilizing the SPS accelerator at CERN in Geneva, Switzerland and in the PHENIX Collaboration at the RHIC accelerator under construction at Brookhaven National Laboratory. During the last year their experimental work has been in three broad areas: (1) the structure of nuclei at high angular momentum, (2) the structure of nuclei far from stability, and (3) ultra-relativistic heavy-ion physics. The results of studies in these particular areas are described in this document. These studies concentrate on the structure of nuclear matter in extreme conditions of rotational motion, imbalance of neutrons and protons, or very high temperature and density. Another area of research is heavy-ion-induced transfer reactions, which utilize the transfer of nucleons to states with high angular momentum to learn about their structure and to understand the transfer of particles, energy, and angular momentum in collisions between heavy ions.

  20. Spectroscopic Studies of Atmospheric Aerosol Chemistry

    Science.gov (United States)

    Wamsley, R.; Leather, K.; Horn, A. B.; Percival, C.

    2008-12-01

    Particles are ubiquitous in the troposphere and are involved in chemical and physical processes affecting the composition of the atmosphere, climate, cloud albedo and human health (Finlayson-Pitts and Pitts, 2000). Organic species, such as alcohols, carboxylic acids, ketones, aldehydes, aromatics, alkenes and alkanes, originate both from anthropogenic and natural sources and comprise a large component of atmospheric particles. Gas-phase species, such as ozone, can oxidize these organics, changing the particle's oxygen-to carbon ratio and potentially altering its hygroscopicity, viscosity, morphology and reactivity. One reaction in particular, that between ozone and oleic acid, has been the focus of several recent studies and extensively researched by Ziemann (2005). Oleic acid reacts readily with ozone and has a low vapor pressure making this reaction convenient to study in the laboratory and has become the benchmark for studying heterogeneous reactions representing the oxidative processing of atmospheric organic aerosols. A critical source of uncertainty in reactivity estimates is a lack of understanding of the mechanism through which some VOCs are oxidized. This knowledge gap is especially critical for aromatic compounds. Because the intermediate reaction steps and products of aromatics oxidation are unknown, chemical mechanisms incorporate parameters estimated from environmental chamber experiments to represent their overall contribution to ozone formation, e.g. Volkamer et al. ( 2006). Previous studies of uncertainties in incremental reactivity estimates for VOCs found that the representation of aromatics chemistry contributed significantly to the estimated 40 - 50% uncertainties in the incremental reactivities of common aromatic compounds Carter et al. (2002). This study shows development of an effective IR method that can monitor the reaction and hence obtain the kinetics of the ozonolysis of an aromatic compound in the aerosol phase. The development of such

  1. Study of Gallstones by Spectroscopic Methods

    Science.gov (United States)

    Pichugina, A. A.; Tsyro, L. V.; Afanasyev, D. A.; Kiselev, S. A.; Unger, F. G.

    2017-03-01

    We have conducted studies of cholesterol gallstones by electron paramagnetic resonance (EPR), x-ray diffraction (XRD), and nuclear magnetic resonance (1H NMR). The results obtained indicate that the cholesterol gallstone spectra are identical. We have used EPR to establish the presence in the gallstones of species containing open shell spin orbitals, which act as centers for colloidal particles. The 1H NMR spectra and the XRD data indicate the presence in the gallstones of cholesterol and structures representing a desmosterol transition, which form shells around the spin centers.

  2. Nonlinear spectroscopic studies of interfacial molecular ordering

    Energy Technology Data Exchange (ETDEWEB)

    Superfine, R.

    1991-07-01

    The second order nonlinear optical processes of second harmonic generation and sum frequency generation are powerful new probes of surfaces. They possess unusual surface sensitivity due to the symmetry properties of the nonlinear susceptibility. In particular, infrared-visible sum frequency generation (SFG) can obtain the vibrational spectrum of sub-monolayer coverages of molecules. In this thesis, we explore the unique information that can be obtained from SFG. We take advantage of the sensitivity of SFG to the conformation of alkane chains to study the interaction between adsorbed liquid crystal molecules and surfactant treated surfaces. The sign of the SFG susceptibility depends on the sign of the molecular polarizability and the orientation, up or down, of the molecule. We experimentally determine the sign of the susceptibility and use it to determine the absolute orientation to obtain the sign of the molecular polarizability and show that this quantity contains important information about the dynamics of molecular charge distributions. Finally, we study the vibrational spectra and the molecular orientation at the pure liquid/vapor interface of methanol and water and present the most detailed evidence yet obtained for the structure of the pure water surface. 32 refs., 4 figs., 2 tabs.

  3. Progress report on nuclear spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, C.R.; Riedinger, L.L.; Sorensen, S.P.

    1996-01-16

    The experimental program in nuclear physics at the University of Tennessee, Knoxville, is led by Professors Carrol Bingham, Lee Riedinger, and Soren Sorenseni who respectively lead the studies of the exotic decay modes of nuclei far from stability, the program of high-spin research, and our effort in relativistic heavy-ion physics. Over the years, this broad program of research has been successful partially because of the shared University resources applied to this group effort. The proximity of the Oak Ridge National Laboratory has allowed us to build extremely strong programs of joint research, and in addition to play an important leadership role in the Joint Institute for Heavy Ion Research (JIHIR). Our experimental program is also very closely linked with those at other national laboratories: Argonne (collaborations involving the Fragment Mass Analyzer (FMA) and {gamma}-ray arrays), Brookhaven (the RHIC and Phenix projects), and Berkeley (GAMMASPHERE). We have worked closely with a variety of university groups in the last three years, especially those in the UNISOR and now UNIRIB collaborations. And, in all aspects of our program, we have maintained close collaborations with theorists, both to inspire the most exciting experiments to perform and to extract the pertinent physics from the results. The specific areas discussed in this report are: properties of high-spin states; study of low-energy levels of nuclei far from stability; and high energy heavy-ion physics.

  4. Fluorescence Spectroscopic Studies on Ovis Lactoperoxidase

    Directory of Open Access Journals (Sweden)

    P. V. Joseph

    2004-01-01

    Full Text Available Ovis lactoperoxidase (sLP, on excitation at 280 nm shows fluorescence emission of a single broad maximum at 332 nm. The conformational stability was measured by unfolding studies in urea and guanidine hydrochloride. The fluorescence intensity gradually decreased with increase in urea concentrations. The decline might have been caused by partial unfolding, affecting some of the tryptophan residues. In 5 M GuHCl concentrations, a red shift in emission maximum to 356 nm was observed. It indicates that tryptophan is buried in the interior of the hydrophobic environment in native folded state and inaccessible to solvent water but on unfolding all get exposed to aqueous environment. Acrylamide is an efficient quencher and the quenching process is essentially homogenous with all tryptophan being accessible. A little quenching is observed for KI is interpreted as sLP has tryptophan residues that are buried inside the core of the protein.

  5. Spectroscopic Studies of Exotic Nuclei at ISOLDE

    CERN Multimedia

    2002-01-01

    Experiment IS50 is designed to: a) Investigate the full range of the @b strength function of heavy (A~$>$~48)~K nuclei b)~Study the decay of isomeric states in n-deficient bromine nuclei (A~=~72 and 70). The heavy K isotopes appeared to have complex decay schemes, including feeding by the @b-decay of levels having open neutron channels (Beta decay energy Q(@b) exceeds neutron binding energy S^n); in addition, a large fraction of the delayed transitions populate excited levels in the daughter nuclei. The allowed @b-decay selects states in the daughter nucleus with wave functions having a large overlap with the initial state. Hence, the @b strength functions, deduced from these deca reveal simple structures correlated to the particle-hole excitation energies in the Ca nuclei. These results are valuable for the application of the shell-model calculations far from stability. The delayed neutron spectra are measured with a large area curved scintillator in coincidence either with high resolution Ge(Li) detectors, ...

  6. Spectroscopic studies in open quantum systems

    Science.gov (United States)

    Rotter; Persson; Pichugin; Seba

    2000-07-01

    The Hamiltonian H of an open quantum system is non-Hermitian. Its complex eigenvalues E(R) are the poles of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance states. Level repulsion may occur along the real or imaginary axis (the latter is called resonance trapping). In any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are performed by using the method of exterior complex scaling. Re(H) and Im(H) cause changes in the structure of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave resonator shows all the characteristic features known from the study of many-body systems in spite of the absence of two-body forces. The effects arising from the interplay between resonance trapping and level repulsion along the real axis are not involved in the statistical theory (random matrix theory).

  7. Fluorescence spectroscopic studies of DNA dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, B.A.

    1987-04-01

    Random solvent induced motions of DNA are manifest as nanosecond torsional oscillations of the helix backbone, nanosecond through millisecond bending deformations and overall rotational and translational diffusion of the polymer. Fluorescence spectroscopy is used to study this spectrum of DNA motions while ethidium monoazide was covalently bounded. The steady state fluorescence depolarization data indicate that the covalent monoazide/DNA complex exhibits internal motions characterized by an average angular amplitude of 26 degrees confirming reports of fast torsional oscillations in noncovalent ethidium bromide/DNA systems. Data obtained by use of a new polarized photobleaching recovery technique (FPR) reflect both the rotational dynamics of the polymer and the reversible photochemistry of the dye. To isolate the reorientational motion of the DNA, the FPR experiments were ran in two modes that differ only in the polarization of the bleaching light. A quotient function constructed from the data obtained in these two modes monitors only the rotational component of the FPR recovery. In specific applications those bending deformations of long DNA molecules that have characteristic relaxation times on the order of 100 microseconds have been resolved. A fluorescence correlation technique that relates fluctuations in particle number to center-of-mass motion was used to measure translational diffusion on coefficients of the plasmid PBR322 and a short oligomeric DNA. A theory that describes angular correlation in systems exhibiting cyclic, biologically directed reorientation and random Brownian rotation is developed.

  8. Study on Performance and Mechanism of Oil Absorption Materials

    Institute of Scientific and Technical Information of China (English)

    韩梅; 吴兵; 李发生; 何绪文; 谷庆宝

    2001-01-01

    Both the commonly used and the PHBV based oil absorption materials were studied and the absorption mechanism was analyzed. The results show that the oil pick-up ratios and the absorption rates of molded PHBV are almost the same as that of oil absorption polypropylene felt. In addition, the oil-keeping ability of molded PHBV is superior to the latter. So the PHBV is a valuable and bio-degradable oil absorption material.

  9. Spectroscopic studies of cold, gas-phase biomolecular ions

    Science.gov (United States)

    Rizzo, Thomas R.; Stearns, Jaime A.; Boyarkin, Oleg V.

    While the marriage of mass spectrometry and laser spectroscopy is not new, developments over the last few years in this relationship have opened up new horizons for the spectroscopic study of biological molecules. The combination of electrospray ionisation for producing large biological molecules in the gas phase together with cooled ion traps and multiple-resonance laser schemes are allowing spectroscopic investigation of individual conformations of peptides with more than a dozen amino acids. Highly resolved infrared spectra of single conformations of such species provide important benchmarks for testing the accuracy of theoretical calculations. This review presents a number of techniques employed in our laboratory and in others for measuring the spectroscopy of cold, gas-phase protonated peptides. We show examples that demonstrate the power of these techniques and evaluate their extension to still larger biological molecules.

  10. Spectroscopic and dynamical studies of highly energized small polyatomic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Field, R.W.; Silbey, R.J. [Massachusetts Institute of Technology, Cambridge (United States)

    1993-12-01

    The authors have initiated a program to perform spectroscopic and dynamic studies of small molecules. Large amplitude motions in excited acetylene were discussed along with plans to record the dispersed fluorescence (DF) and the stimulated emission pumping (SEP) spectra. SEP spectra were reported for the formyl radical. A Fourier transform spectrometer was discussed with respect to its ability to probe the structure of radicals. This instrument is capable of performing studies using various techniques such as magnetic rotation spectroscopy and sub-Doppler sideband-OODR Zeman (SOODRZ) spectroscopy.

  11. Study on Thermal Stability and Spectroscopic Properties of Nd3+ -Doped Phosphate Laser Glasses

    Institute of Scientific and Technical Information of China (English)

    Shi Qi; Lv Jingwen; Cheng Hong; Fu Xingguo; Sun Yu

    2004-01-01

    Fluorescence spectra, absorption spectra and thermal stability properties of Nd3 + -doped phosphate laser glasses were tested in this work. We calculated spectroscopic parameters of Nd3 + -doped phosphate laser glasses according to their absorption spectrum. Measuring and calculating linear thermal expansion coefficient, and analysising thermal stability of glasses show that this kind of Nd3 + -doped phosphate laser glasses has thermal expansion coefficient α = 38.75× 10 -7/℃ and optimal spectroscopic properties which extend application range of Nd +3-doped phosphate laser glasses.

  12. Optical properties of InN studied by spectroscopic ellipsometry

    Science.gov (United States)

    Chunya, Ye; Wei, Lin; Jin, Zhou; Shuping, Li; Li, Chen; Heng, Li; Xiaoxuan, Wu; Songqing, Liu; Junyong, Kang

    2016-10-01

    With recently developed InN epitaxy via a controlling In bilayer, spectroscopic ellipsometry (SE) measurements had been carried out on the grown InN and the measured ellipsometric spectra were fitted with the Delta Psi2 software by using a suitable model and the dispersion rule. The thickness was measured by a scanning electron microscope (SEM). Insight into the film quality of InN and the lattice constant were gained by X-ray diffraction (XRD). By fitting the SE, the thickness of the InN film is consistent with that obtained by SEM cross-sectional thickness measurement. The optical bandgap of InN was put forward to be 1.05 eV, which conforms to the experimental results measured by the absorption spectrum and cathodoluminescence (CL). The refractive index and the extinction coefficient of interest were represented for InN, which is useful to design optoelectronic devices. Project supported by the State Key Development Program for Basic Research of China (No. 2012CB619301), the National High Technology Research and Development Program of China (No. 2014AA032608), the National Natural Science Foundation of China (Nos. 11204254, 11404271), and the Fundamental Research Funds for the Central Universities (Nos. 2012121014, 20720150027).

  13. Spectroscopic Studies of X-Ray Binary Pulsars

    Indian Academy of Sciences (India)

    F. Nagase

    2002-03-01

    Several new features of X-ray binary pulsars are revealed from recent observations with ASCA, RXTE, BeppoSAX and other X-ray observatories. Among these, I will review in this paper some recent progress in spectroscopic studies of accreting X-ray pulsars in binary systems (XBPs). First, I will discuss soft excess features observed in the energy spectra of XBPs and propose that it is a common feature for various subclasses of XBPs. Next I will present some recent results of high resolution spectroscopy with ASCA and Chandra.

  14. Raman spectroscopic studies on p-terphenyl under high pressure

    Science.gov (United States)

    Liu, Tianyuan; Xu, Shengnan; Sun, Chenglin; Zhou, Mi

    2014-11-01

    High-pressure Raman scattering studies are performed on p-terphenyl up to 5 GPa. The Raman activities of different symmetric molecules were analyzed by means of group theory methods. A phase transition was detected at 1.3 GPa from changes in the slope on plots of frequency versus pressure. The diminishing of internal modes indicated that the molecule symmetry transformed from C2 to D2h. This is an effective method for detecting planar molecular structure of p-terphenyl by ring-ring stretching vibration mode, which can provide a new spectroscopic evidence of planar conjugated polyphenyl molecular conformation.

  15. Vibrational spectroscopic studies of newly developed synthetic biopolymers.

    Science.gov (United States)

    Bista, Rajan K; Bruch, Reinhard F; Covington, Aaron M

    2010-05-01

    Vibrational spectroscopic techniques such as near-infrared (NIR), Fourier transform infrared (FTIR), and Raman spectroscopy are valuable diagnostic tools that can be used to elucidate comprehensive structural information of numerous biological samples. In this review article, we have highlighted the advantages of nanotechnology and biophotonics in conjunction with vibrational spectroscopic techniques in order to understand the various aspects of new kind of synthetic biopolymers termed as polyethylene glycol (PEG)ylated lipids. In contrast to conventional phospholipids, these novel lipids spontaneously form liposomes or nanovesicles upon hydration, without the supply of external activation energy. The amphiphiles considered in this study differ in their hydrophobic acyl chain length and contain different units of PEG hydrophilic headgroups. We have further explored the thermotropic phase behaviors and associated changes in the conformational order/disorder of such lipids by using variable-temperature FTIR and Raman spectroscopy. Phase transition temperature profiles and correlation between various spectral indicators have been identified by either monitoring the shifts in the vibrational peak positions or plotting vibrational peak intensity ratios in the C--H stretching region as a function of temperature. To supplement our observations of phase transformations, a thermodynamic approach known as differential scanning calorimetry (DSC) has been applied and revealed a good agreement with the infrared and Raman spectroscopic data. Finally, the investigation of thermal properties of lipids is extremely crucial for numerous purposes, thus the results obtained in this work may find application in a wide variety of studies including the development of PEGylated lipid based drug and substances delivery vehicles.

  16. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    Science.gov (United States)

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  17. VUV Spectroscopic Study of the D^1\\Pi State of Molecular Deuterium

    CERN Document Server

    Dickenson, G D; Ubachs, W; Roudjane, M; de Oliveira, N; Joyeux, D; Nahon, L; Tchang-Brillet, W -Ü L; Glass-Maujean, M; Schmoranzer, H; Knie, A; Kübler, S; Ehresmann, A; 10.1080/00268976.2011.631056

    2013-01-01

    The D^1\\Pi_u - X^1\\Sigma_g^+ absorption system of molecular deuterium has been re-investigated using the VUV Fourier -Transform (FT) spectrometer at the DESIRS beamline of the synchrotron SOLEIL and photon-induced fluorescence spectrometry (PIFS) using the 10 m normal incidence monochromator at the synchrotron BESSY II. Using the FT spectrometer absorption spectra in the range 72 - 82 nm were recorded in quasi static gas at 100 K and in a free flowing jet at a spectroscopic resolution of 0.50 and 0.20 cm^{-1} respectively . The narrow Q-branch transitions, probing states of \\Pi^- symmetry, were observed up to vibrational level v = 22. The states of \\Pi^+ symmetry, known to be broadened due to predissociation and giving rise to asymmetric Beutler-Fano resonances, were studied up to v = 18. The 10 m normal incidence beamline setup at BESSY II was used to simultaneously record absorption, dissociation, ionization and fluorescence decay channels from which information on the line intensities, predissociated width...

  18. Conformational heterogeneity of methyl 4-hydroxycinnamate: a gas-phase UV-IR spectroscopic study.

    Science.gov (United States)

    Tan, Eric M M; Amirjalayer, Saeed; Smolarek, Szymon; Vdovin, Alexander; Rijs, Anouk M; Buma, Wybren J

    2013-05-02

    UV excitation and IR absorption spectroscopy on jet-cooled molecules is used to study the conformational heterogeneity of methyl 4-hydroxycinnamate, a model chromophore of the Photoactive Yellow Protein (PYP), and to determine the spectroscopic properties of the various conformers. UV-UV depletion spectroscopy identifies four different species with distinct electronic excitation spectra. Quantum chemical calculations argue that these species are associated with different conformers involving the s-cis/s-trans configuration of the ester with respect to the propenyl C-C single bond and the syn/anti orientation of the phenolic OH group. IR-UV hole-burning spectroscopy is used to record their IR absorption spectra in the fingerprint region. Comparison with IR absorption spectra predicted by quantum chemical calculations provides vibrational markers for each of the conformers, on the basis of which each of the species observed with UV-UV depletion spectroscopy is assigned. Although both DFT and wave function methods reproduce experimental frequencies, we find that calculations at the MP2 level are necessary to obtain agreement with experimentally observed intensities. To elucidate the role of the environment, we compare the IR spectra of the isolated conformers with IR spectra of methyl 4-hydroxycinnamate-water clusters, and with IR spectra of methyl 4-hydroxycinnamate in solution.

  19. Solvatochromism of 9,10-phenanthrenequinone: an electronic and resonance Raman spectroscopic study.

    Science.gov (United States)

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π(1)*; S1 state) and the shorter (1π-π(1)*; S2 state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S2 state relative to the ground state. Raman excitation profiles of PQ (400-1800 cm(-1)) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C2ν symmetry constraint on the S2 state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  20. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz [Washington Univ., St. Louis, MO (United States); Collins, Aaron M. [Washington Univ., St. Louis, MO (United States); LaFountain, Amy M. [Univ. of Connecticut, Storrs, CT (United States); Enriquez, Miriam M. [Univ. of Connecticut, Storrs, CT (United States); Frank, Harry A. [Washington Univ., St. Louis, MO (United States); Blankenship, R. E. [Washington Univ., St. Louis, MO (United States)

    2010-06-14

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infrared (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S1(21Ag-) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.

  1. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    R Venkatasubramanian

    2001-06-01

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.

  2. The absorption spectrum of water vapor in the 2.2 μm transparency window: High sensitivity measurements and spectroscopic database

    Science.gov (United States)

    Campargue, A.; Mikhailenko, S. N.; Vasilchenko, S.; Reynaud, C.; Béguier, S.; Čermák, P.; Mondelain, D.; Kassi, S.; Romanini, D.

    2017-03-01

    The weak absorption spectrum of water vapor in the important 2.2 μm transparency window is investigated with very high sensitivity. Overall, about 400 absorption lines were measured by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) in five spectral intervals: 4248.2-4257.3, 4298.4-4302.6, 4336.8.5-4367.5, 4422.4-4441.2 and 4514.6-4533.7 cm-1. The achieved sensitivity of the recordings (noise equivalent absorption, αmin, on the order of 2×10-10 cm-1) allowed detecting transitions with intensity values down to 1×10-28 cm/molecule, more than one order of magnitude better than previous studies by Fourier Transform spectroscopy. The rovibrational assignment was performed on the basis of variational calculations and of previously determined empirical energy values. Most of the newly assigned lines correspond to transitions of the ν1, ν3 and 3ν2 bands of H217O in natural isotopic abundance. Fourteen energy levels of H217O, H218O and HD18O are newly determined. An accurate and complete spectroscopic database is constructed for natural water in the 4190-4550 cm-1 region (2.39-2.20 μm). The list includes about 4500 transitions with intensity greater than 1×10-29 cm/molecule, for the six most abundant isotopologues in natural isotopic abundance. Line positions were obtained by difference of empirical energy values determined from literature data and complemented with the present CRDS results. The list is made mostly complete by including weak transitions not yet detected, with positions calculated from empirical levels and variational intensities. The variational intensities computed by a collaboration between the University College London and the Institute of Applied Physics in Nizhny Novgorod are found to improve significantly previous results by Schwenke and Partridge. Examples of comparison of the constructed line list to CRDS spectra and to simulations based on the HITRAN2012 list illustrate the advantages

  3. A Systematic Spectroscopic Study of Four Apollo Lunar Soils

    Institute of Scientific and Technical Information of China (English)

    Zongcheng Ling; Alian Wang; Bradley L Jolliff

    2011-01-01

    A systematic spectroscopic study including Raman,Mid-IR,NIR,and VIS-NIR,is used to investigate four endmember lunar soils.Apollo soils (<45 μm) 14163,15271,67511,and 71501 were selected as endmembers to study,based on their soil chemistry,maturity against space weathering,and the sampling locations.These endmembers include an anorthositic highlands soil (67511),a low-Ti basaltic soil (15271),a high-Ti basaltic soil (71501),and a mafic,KREEPy,impact-melt-rich soil (14163).We used a laser Raman point-counting procedure to derive mineral modes of the soils and the compositional distributions of major mineral phases,which in turn reflect characteristics of the main source materials for these soils.The Mid-lR,NIR,and VIS-NIR spectroscopic properties also yield distinct information on mineralogy,geochemistry,and maturity among the four soils.Knowledge of the mineralogy resulting from the Raman point-counting procedure corresponds well with bulk mineralogy and soil properties based on Mid-IR,NIR,and VIS-NIR spectroscopy.The future synergistic application of these spectroscopy methods on the Moon will provide a linkage between the results from in situ surface exploration and those from orbital remote- sensing observations.

  4. Albumin adsorption on oxide thin films studied by spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva-Bermudez, P., E-mail: suriel21@yahoo.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico); Unidad de Posgrado, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, CU, 04510, Mexico D.F. (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito Exterior s/n, C.U., 04510, Mexico D.F. (Mexico)

    2011-12-15

    Thin films of tantalum, niobium, zirconium and titanium oxides were deposited by reactive magnetron sputtering and their wettability and surface energy, optical properties, roughness, chemical composition and microstructure were characterized using contact angle measurements, spectroscopic ellipsometry, profilometry, X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The purpose of the work was to correlate the surface properties of the films to the Bovine Serum Albumin (BSA) adsorption, as a first step into the development of an initial in vitro test of the films biocompatibility, based on standardized protein adsorption essays. The films were immersed into BSA solutions with different protein concentrations and protein adsorption was monitored in situ by dynamic ellipsometry; the adsorption-rate was dependent on the solution concentration and the immersion time. The overall BSA adsorption was studied in situ using spectroscopic ellipsometry and it was found to be influenced by the wettability of the films; larger BSA adsorption occurred on the more hydrophobic surface, the ZrO{sub 2} film. On the Ta{sub 2}O{sub 5}, Nb{sub 2}O{sub 5} and TiO{sub 2} films, hydrophilic surfaces, the overall BSA adsorption increased with the surface roughness or the polar component of the surface energy.

  5. Spectroscopic studies of interactions involving horseradish peroxidase and Tb3+.

    Science.gov (United States)

    Guo, Shaofen; Zhou, Qing; Lu, Tianhong; Ding, Xiaolan; Huang, Xiaohua

    2008-09-01

    The spectroscopic properties of interactions involving horseradish peroxidase (HRP) and Tb3+ in the simulated physiological solution was investigated with some electrochemical and spectroscopic methods, such as cyclic voltammetry (CV), circular dichroism (CD), X-ray photoelectron spectroscopy (XPS) and synchronous fluorescence (SF). It was found that Tb3+ can coordinate with oxygen atoms in carbonyl groups in the peptide chain of HRP, form the complex of Tb3+ and HRP (Tb-HRP), and then lead to the conformation change of HRP. The increase in the random coil content of HRP can disturb the microstructure of the heme active center of HRP, in which the planarity of the porphyrin cycle in the heme group is increased and then the exposure extent of the electrochemical active center is decreased. Thus Tb3+ can inhibit the electrochemical reaction of HRP and its electrocatalytic activity for the reduction of H2O2 at the Au/Cys/GC electrode. The changes in the microstructure of HRP obstructed the electron transfer of Fe(III) in the porphyrin cycle of the heme group, thus HRP catalytic activity is inhibited. The inhibition effect of Tb3+ on HRP catalytic activity is increased with the increasing of Tb3+ concentration. This study would provide some references for better understanding the rare earth elements and heavy metals on peroxidase toxicity in living organisms.

  6. Spectroscopic studies on gallic acid and its azo derivatives and their iron(III) complexes.

    Science.gov (United States)

    Masoud, Mamdouh S; Ali, Alaa E; Haggag, Sawsan S; Nasr, Nessma M

    2014-01-01

    Azo gallic derivatives and their iron(III) complexes were synthesized and characterized. The stereochemistry and the mode of bonding of the complexes were achieved based on elemental analysis, UV-Vis and IR. The thermal behaviors of the complexes were studied. The effect of pH on the electronic absorption spectra of gallic acid and its azo derivatives are discussed. Different spectroscopic methods (molar ratio, straight line method, continuous variation, slope ratio and successive method) are applied for determination of stoichiometry and pK values for the complex formation of gallic acid with iron(III) in aqueous media. Iron(III) complexes of gallic acid is formed with different ratio: 1:1, 1:2, 1:3 and 1:4 (M:L).

  7. Spectroscopic studies on the interaction of fluorescein and safranine T in PC liposomes.

    Science.gov (United States)

    Bozkurt, Ebru; Bayraktutan, Tuğba; Acar, Murat; Toprak, Mahmut

    2013-01-15

    In this study, the fluorescence quenching of fluorescein by safranine T in liposome media had been investigated systematically by fluorescence spectroscopy, UV-vis absorption spectroscopy and fluorescence decay lifetime measurements. The spectroscopic data were analyzed using a Stern-Volmer equation to determine the quenching process. The experimental results showed that the intrinsic fluorescence of fluorescein was strongly quenched by safranine T, and that the quenching mechanism was considered as static quenching by forming a ground-complex. The Stern-Volmer quenching constant Ksv, and the bimolecular quenching constant Kq were estimated. The distances between the donor (fluorescein) and the acceptor (safranine T) were calculated according to the Förster non-radiation energy transfer theory. In addition, the partition coefficient of the safranine T (Kp) in the L-egg lecithin phosphatidylcholine liposomes was also calculated by utilizing the fluorescence quenching.

  8. Study of targeted-treatment on colon cancer cell via spectroscopic imaging ellipsometry

    Science.gov (United States)

    Chen, Yu-Da; Hsu, Hao Yun; Khaleel, Mai Ibrahim; Chan, Ching-Hsiang; Chang, Yia-Chung; Wu, Chien-Hsun; Wu, Han-Chung

    2017-04-01

    We present the enhancement of targeted treatment on colon cancer cell via microscopic imaging ellipsometry (MIE). All spectroscopic MIE signals on 5μm×5μm area in visible range are captured within the modified Optrel MULTISKOP system. Colon cancer cells are cultured in Bottom-up Millicell EZ SLIDE 4-well structure under the environment (37°C, 10% CO2). Original single colon cancer cell, single colon cancer cell under untargeted-treatment, and single colon cancer cell under targeted-treatment are studied by specular-reflective mode and off-specular scattering mode in this experiment. Some polarization-related and phase-related MIE images are analyzed to reveal the improvement of targeted-treatment by observing changes in specular and off-specular reflectance and absorption.

  9. A Spectroscopic Study of the Blue Component of Albireo

    Science.gov (United States)

    Whight, Kenneth R.

    2013-05-01

    This paper describes an investigation into what can be learned about the physical properties of the blue component of the Albireo double star system from both low (150 lines/mm) and high (2400 lines/mm) resolution spectra, based on the simple model that the star is a rotating uniformly emitting oblate spheroid with a photosphere that is a single layer in thermal equilibrium. The blue component of Albireo is an interesting target in that it exhibits emission at both Halpha and Hbeta wavelengths; this emission is believed to originate from an equatorial decretion disk spun off from the star. The aim of this work was to split the observed high resolution spectra into an absorption component, from the star, and an emission component, from the disk. To achieve this aim the continuum spectrum was modeled as a "black body" to obtain an effective temperature and the Hgamma absorption line was studied to obtain values for the star's model parameters. These results were then used to predict the expected absorption at Halpha and Hbeta wavelengths. Measured Halpha and Hbeta lines were then divided by their expected absorption lines to reveal the pure disk emission for further analysis.

  10. Spectroscopic Ellipsometry Studies of n-i-p Hydrogenated Amorphous Silicon Based Photovoltaic Devices

    Directory of Open Access Journals (Sweden)

    Laxmi Karki Gautam

    2016-02-01

    Full Text Available Optimization of thin film photovoltaics (PV relies on characterizing the optoelectronic and structural properties of each layer and correlating these properties with device performance. Growth evolution diagrams have been used to guide production of materials with good optoelectronic properties in the full hydrogenated amorphous silicon (a-Si:H PV device configuration. The nucleation and evolution of crystallites forming from the amorphous phase were studied using in situ near-infrared to ultraviolet spectroscopic ellipsometry during growth of films prepared as a function of hydrogen to reactive gas flow ratio R = [H2]/[SiH4]. In conjunction with higher photon energy measurements, the presence and relative absorption strength of silicon-hydrogen infrared modes were measured by infrared extended ellipsometry measurements to gain insight into chemical bonding. Structural and optical models have been developed for the back reflector (BR structure consisting of sputtered undoped zinc oxide (ZnO on top of silver (Ag coated glass substrates. Characterization of the free-carrier absorption properties in Ag and the ZnO + Ag interface as well as phonon modes in ZnO were also studied by spectroscopic ellipsometry. Measurements ranging from 0.04 to 5 eV were used to extract layer thicknesses, composition, and optical response in the form of complex dielectric function spectra (ε = ε1 + iε2 for Ag, ZnO, the ZnO + Ag interface, and undoped a-Si:H layer in a substrate n-i-p a-Si:H based PV device structure.

  11. Absorption and fluorescence spectroscopic characterisation of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry)

    Science.gov (United States)

    Shirdel, J.; Zirak, P.; Penzkofer, A.; Breitkreuz, H.; Wolf, E.

    2008-09-01

    The absorption and fluorescence behaviour of the circadian blue-light photoreceptor cryptochrome from Drosophila melanogaster (dCry) in a pH 8 aqueous buffer solution is studied. The flavin adenine dinucleotide (FAD) cofactor of dCry is identified to be present in its oxidized form (FAD ox), and the 5,10-methenyltetrahydrofolate (MTHF) cofactor is found to be hydrolyzed and oxidized to 10-formyldihydrofolate (10-FDHF). The absorption and the fluorescence behaviour of dCry is investigated in the dark-adapted (receptor) state, the light-adapted (signalling) state, and under long-time violet light exposure. Photo-excitation of FAD ox in dCry causes a reductive electron transfer to the formation of anionic FAD semiquinone (FAD rad - ), and photo-excitation of the generated FAD rad - causes an oxidative electron transfer to the back formation of FAD ox. In light adapted dCry a photo-induced equilibrium between FAD ox and FAD rad - exists. The photo-cycle dynamics of signalling state formation and recovery is discussed. Quantum yields of photo-induced signalling state formation of about 0.2 and of photo-induced back-conversion of about 0.2 are determined. A recovery of FAD rad - to FAD ox in the dark with a time constant of 1.6 min at room temperature is found.

  12. Studies on Nephrite and Jadeite Jades by Fourier Transform Infrared (ftir) and Raman Spectroscopic Techniques

    Science.gov (United States)

    Tan, T. L.; Ng, L. L.; Lim, L. C.

    2013-10-01

    The mineralogical properties of black nephrite jade from Western Australia are studied by Fourier transform infrared (FTIR) spectroscopy using both transmission and specular reflectance techniques in the 4000-400 cm-1 wavenumber region. The infrared absorption peaks in the 3700-3600 cm-1 region which are due to the O-H stretching mode provides a quantitative analysis of the Fe/(Fe+Mg) ratio in the mineral composition of jade samples. The Fe/(Fe+Mg) percentage in black nephrite is found to be higher than that in green nephrite, but comparable to that of actinolite (iron-rich nephrite). This implies that the mineralogy of black nephrite is closer to actinolite than tremolite. The jade is also characterized using Raman spectroscopy in the 1200-200 cm-1 region. Results from FTIR and Raman spectroscopic data of black nephrite jade are compared with those of green nephrite jade from New Zealand and jadeite jade from Myanmar. Black nephrite appears to have a slightly different chemical composition from green nephrite. Spectra from FTIR and Raman spectroscopic techniques were found to be useful in differentiating black nephrite, green nephrite, and green jadeite jades. Furthermore, data on refractive index, specific gravity, and hardness of black nephrite jade are measured and compared with those of green nephrite and of jadeite jade.

  13. Time Domain Reflectometric and spectroscopic studies on toluene + butyronitrile solution

    Science.gov (United States)

    Karthick, N. K.; Arivazhagan, G.; Kumbharkhane, A. C.; Joshi, Y. S.; Kannan, P. P.

    2016-03-01

    The dielectric parameters of toluene + butyronitrile solution have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz at 298 K. Spectroscopic (FTIR and 13C NMR) studies have also been carried out on the solution and the results of the studies show that neat butyronitrile is self-associative through C-H⋯N contacts and weak intermolecular forces of C-H⋯N and C-H⋯π type are operative in the solution. The obtained dielectric parameters such as Kirkwood correlation factor g, relaxation time τ etc. have been analyzed in view of these weak intermolecular forces. The weak non-covalent interactions between heteromolecules appear to have no influence on the ideality of ɛm vs X2 curve of the solution. Heteromolecular entities with weak intermolecular forces experience larger hindrance leading to longer relaxation time τ.

  14. UV-visible and (1)H-(15)N NMR spectroscopic studies of colorimetric thiosemicarbazide anion sensors.

    Science.gov (United States)

    Farrugia, Kristina N; Makuc, Damjan; Podborska, Agnieszka; Szaciłowski, Konrad; Plavec, Janez; Magri, David C

    2015-02-14

    Four model thiosemicarbazide anion chemosensors containing three N-H bonds, substituted with phenyl and/or 4-nitrophenyl units, were synthesised and studied for their anion binding abilities with hydroxide, fluoride, acetate, dihydrogen phosphate and chloride. The anion binding properties were studied in DMSO and 9 : 1 DMSO-H2O by UV-visible absorption and (1)H/(13)C/(15)N NMR spectroscopic techniques and corroborated with DFT studies. Significant changes were observed in the UV-visible absorption spectra with all anions, except for chloride, accompanied by dramatic colour changes visible to the naked eye. These changes were determined to be due to the deprotonation of the central N-H proton and not due to hydrogen bonding based on (1)H/(15)N NMR titration studies with acetate in DMSO-d6-0.5% water. Direct evidence for deprotonation was confirmed by the disappearance of the central thiourea proton and the formation of acetic acid. DFT and charge distribution calculations suggest that for all four compounds the central N-H proton is the most acidic. Hence, the anion chemosensors operate by a deprotonation mechanism of the central N-H proton rather than by hydrogen bonding as is often reported.

  15. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Y J Shiu; J M Zhang; M Hayashi; V Gulbinas; C M Yang; S H Lin

    2002-12-01

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited states of the unexcited subunit of allophycocyanin monomer decreases via an interaction with another excited subunit. For allophycocyanin trimer, we find that the fast dynamics results from the fast internal conversion and the first excited state is the only one electronic state which can trap the final population.

  16. Study of physical properties of spectroscopic binary stars

    Science.gov (United States)

    Popova, E. I.; Tutukov, A. V.; Yungelson, L. R.

    1982-11-01

    The main results of a study of a catalogue of physical parameters of 1041 spectroscopic binaries are presented. The results of the analysis of the observed distributions of SB's over the main, genetically and evolutionary stipulated parameters, such as apparent brightness and orbital periods, are given. The main effects of observational selection that prevent the direct analysis of innate distributions of SB's over masses, mass ratios of components, and the large semiaxes of their orbits are briefly discussed. Models of observed distributions of bright SB's over M(1), M(2)/M(1) and the large semiaxes are computed by a program which, starting with arbitrary distributions, generates models of observed distributions, taking into account the important effects of observational selection and stellar evolution.

  17. Raman spectroscopic study of "The Malatesta": a Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G M; Vandenabeele, Peter; Benoy, Timothy J

    2015-02-25

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Raman spectroscopic study of cyclohexane at pressures below 1000 MPa

    Science.gov (United States)

    Qiao, Erwei; Zheng, Haifei

    2017-10-01

    At present, the room temperature freezing pressure of cyclohexane is still uncertain, and the phase transition pressure of solid I - solid III is not reliable at ambient temperature. In this work, we have performed a Raman spectroscopic study of cyclohexane in a Moissanite anvil cell at pressures below 1000 MPa at 25 °C, and analyzed the characteristic of Raman brands νs(CH2), νas(CH2) and νb(Ring). Two phase transition pressures 80 MPa and 550 MPa were determined by a quartz pressure gauge, and they are the room temperature freezing pressure of cyclohexane and the phase transition pressure of solid I to solid III, respectively. Furthermore, from the phase diagram of cyclohexane, it is inferred that pressure plays an important role on the stability of cyclohexane as the main constituent of oil, and it can be beneficial to understanding the formation, migration and preservation of petroleum in subterranean rock strata.

  19. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    Science.gov (United States)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  20. Coordination of the uranyl ion in solution and ionic liquids : a combined UV-Vis absorption and EXAFS study

    OpenAIRE

    Servaes, Kelly

    2007-01-01

    The uranyl ion (UO22+) has been extensively studied for decades and nowadays it is still a hot topic in a number of contemporary issues like nuclear waste treatment and the Balkan syndrome. Therefore, besides our fundamental interest in this complex system, the aim of this study was to provide a convenient and straightforward approach to identify the structure of various uranyl complexes formed in solution. To achieve this goal, spectroscopic techniques like UV-Vis absorption spectroscopy, ...

  1. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression

    Science.gov (United States)

    Kokaly, R.F.; Clark, R.N.

    1999-01-01

    We develop a new method for estimating the biochemistry of plant material using spectroscopy. Normalized band depths calculated from the continuum-removed reflectance spectra of dried and ground leaves were used to estimate their concentrations of nitrogen, lignin, and cellulose. Stepwise multiple linear regression was used to select wavelengths in the broad absorption features centered at 1.73 ??m, 2.10 ??m, and 2.30 ??m that were highly correlated with the chemistry of samples from eastern U.S. forests. Band depths of absorption features at these wavelengths were found to also be highly correlated with the chemistry of four other sites. A subset of data from the eastern U.S. forest sites was used to derive linear equations that were applied to the remaining data to successfully estimate their nitrogen, lignin, and cellulose concentrations. Correlations were highest for nitrogen (R2 from 0.75 to 0.94). The consistent results indicate the possibility of establishing a single equation capable of estimating the chemical concentrations in a wide variety of species from the reflectance spectra of dried leaves. The extension of this method to remote sensing was investigated. The effects of leaf water content, sensor signal-to-noise and bandpass, atmospheric effects, and background soil exposure were examined. Leaf water was found to be the greatest challenge to extending this empirical method to the analysis of fresh whole leaves and complete vegetation canopies. The influence of leaf water on reflectance spectra must be removed to within 10%. Other effects were reduced by continuum removal and normalization of band depths. If the effects of leaf water can be compensated for, it might be possible to extend this method to remote sensing data acquired by imaging spectrometers to give estimates of nitrogen, lignin, and cellulose concentrations over large areas for use in ecosystem studies.We develop a new method for estimating the biochemistry of plant material using

  2. Studies on Negative Refractive Index without Absorption

    CERN Document Server

    Rajapakse, R M; Yelin, S F

    2012-01-01

    Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discussed in [1]; however the main limitations for negative refraction introduced are the necessity of resonant electric and magnetic dipole transitions, and the necessity of very dense media. We suggest using frequency translators in a composite system that would provide negative refraction for a range of optical frequencies while attempting to overcome the limitations discussed above. In the process of using frequency translators, we also find composite systems that can be used for refractive index enhancement.

  3. Synthesis and spectroscopic studies of the aminoglycoside (neomycin)--perylene conjugate binding to human telomeric DNA.

    Science.gov (United States)

    Xue, Liang; Ranjan, Nihar; Arya, Dev P

    2011-04-12

    Synthesis of a novel perylene-neomycin conjugate (3) and the properties of its binding to human telomeric G-quadruplex DNA, 5'-d[AG3(T2AG3)3] (4), are reported. Various spectroscopic techniques were employed to characterize the binding of conjugate 3 to 4. A competition dialysis assay revealed that 3 preferentially binds to 4, in the presence of other nucleic acids, including DNA, RNA, DNA-RNA hybrids, and other higher-order structures (single strands, duplexes, triplexes, other G-quadruplexes, and the i-motif). UV thermal denaturation studies showed that thermal stabilization of 4 increases as a function of the increasing concentration of 3. The fluorescence intercalator displacement (FID) assay displayed a significantly tighter binding of 3 with 4 as compared to its parent constituents [220-fold stronger than neomycin (1) and 4.5-fold stronger than perylene diamine (2), respectively]. The binding of 3 with 4 resulted in pronounced changes in the molar ellipticity of the DNA absorption region as confirmed by circular dichroism. The UV-vis absorption studies of the binding of 3 to 4 resulted in a red shift in the spectrum of 3 as well as a marked hypochromic change in the perylene absorption region, suggesting that the ligand-quadruplex interaction involves stacking of the perylene moiety. Docking studies suggest that the perylene moiety serves as a bridge that end stacks on 4, making contacts with two thymine bases in the loop, while the two neomycin moieties branch into the grooves of 4.

  4. Study on the interaction between gold nanoparticles and papain by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongke; Chen, Ye; Yan, Changling; Lu, Yan, E-mail: yanlu2001@sohu.com

    2015-01-15

    The interaction between gold nanoparticles and papain was studied by fluorescence, UV–vis absorption and synchronous fluorescence spectroscopic techniques under the physiological conditions. The results showed that the binding of gold nanoparticles to papain was a spontaneous binding process. The fluorescence of papain was strongly quenched by gold nanoparticles. The quenching mechanism was probably a static quenching type with the formation of a ground state complex. The Stern–Volmer quenching constants, the binding constants and the number of binding sites in different temperatures were calculated. The corresponding thermodynamic parameters ΔH,ΔS and ΔG indicated that hydrogen bonding and Van der Waals forces played a key role in the interaction process. Additionally, the conformational change of papain induced by gold nanoparticles was analyzed by UV–vis absorption and synchronous fluorescence spectra. - Highlights: • Spherical and monodispersed gold nanoparticles are synthesized. • The fluorescence of papain is quenched by gold nanoparticles under physiological conditions. • Hydrogen bonding and Van der Waals forces may play an essential role in the binding of gold nanoparticles with papain. • This binding interaction is predominantly enthalpy driven.

  5. Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO

    Science.gov (United States)

    Rajyasree, Ch.; Vinaya Teja, P. Michael; Murthy, K. V. R.; Krishna Rao, D.

    2011-12-01

    10MO·20Bi2O3·(70-x)B2O3·xCuO [M=Pb, Zn] with x=0, 0.4 and 0.8 (wt%) glasses were synthesized by the melt-quenching technique and were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Physical parameters, like density, and spectroscopic studies (optical absorption, EPR, FTIR and photoluminescence) were used to understand the role of modifier oxide and CuO in the glass matrix. A red shift of the absorption band corresponds to 2B1g→2B2g transition of Cu2+ ions from P2 to Z4 samples and the increase of hyperfine splitting factor (A‖) from P2 to Z2 shows that with the integration of PbO by ZnO the electron density around copper ion is increased. It is also supported by the gradual increase in theoretical optical basicity values of ZnO mixed glasses, as compared to that of PbO mixed glass matrix. Reduced bismuth radicals are found in undoped and 0.4% CuO doped glasses of both the series. Analysis of the absorption and emission studies indicates that the concentration of luminescence centers of bismuth ions (Bi3+ ions in UV region) is decreased by the integration of ZnO as well as by increasing the dopant concentration. In lead series PbO4 and BiO3 units are increased from P2 to P4 and in zinc series BiO3 units are decreased from Z0 to Z4. The conductivity of the glass matrices is increased in both the series with the dopant of CuO.

  6. Atomic absorption spectroscopic, conductometric and colorimetric methods for determination of fluoroquinolone antibiotics using ammonium reineckate ion-pair complex formation

    Science.gov (United States)

    Ragab, Gamal H.; Amin, Alaa S.

    2004-03-01

    Three accurate, rapid and simple atomic absorption spectrometric, conductometric and colorimetric methods were developed for the determination of norfloxacin (NRF), ciprofloxacin (CIP), ofloxacin (OFL) and enrofloxacin (ENF). The proposed methods depend upon the reaction of ammonium reineckate with the studied drugs to form stable precipitate of ion-pair complexes, which was dissolved in acetone. The pink coloured complexes were determined either by AAS or colorimetrically at λmax 525 nm directly using the dissolved complex. Using conductometric titration, the studied drugs could be evaluated in 50% (v/v) acetone in the range 5.0-65, 4.0-48, 5.0-56 and 6.0-72 μg ml -1 of NRF, CPF, OFL and ENF, respectively. The optimizations of various experimental conditions were described. The results obtained showed good recoveries of 99.15±1.15, 99.30±1.40, 99.60±1.50, and 99.00±1.25% with relative standard deviations of 0.81, 1.06, 0.97, and 0.69% for NRF, CPF, OFL, and ENF, respectively. Applications of the proposed methods to representative pharmaceutical formulations are successfully presented.

  7. Protection of stainless-steels against corrosion in sulphidizing environments by Ce oxide coatings: X-ray absorption and thermogravimetric studies

    NARCIS (Netherlands)

    Fransen, T.; Gellings, P.J.; Fuggle, J.C.; Laan, van der G.; Esteva, J.-M.; Karnatak, R.C.

    1985-01-01

    In this paper a study is reported concerning ceramic coatings containing cerium oxide, prepared by the sol-gel method, used to protect Incoloy 800H against sulphidation. When the coating is sintered in air at 850°C good protection is obtained. In an X-ray absorption spectroscopic study of the coatin

  8. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  9. Particle in a Disk: A Spectroscopic and Computational Laboratory Exercise Studying the Polycyclic Aromatic Hydrocarbon Corannulene

    Science.gov (United States)

    Frey, E. Ramsey; Sygula, Andrzej; Hammer, Nathan I.

    2014-01-01

    This laboratory exercise introduces undergraduate chemistry majors to the spectroscopic and theoretical study of the polycyclic aromatic hydrocarbon (PAH), corannulene. Students explore the spectroscopic properties of corannulene using UV-vis and Raman vibrational spectroscopies. They compare their experimental results to simulated vibrational…

  10. Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in

    2015-01-14

    Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bond weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.

  11. Vibrational spectroscopic studies of Isoleucine by quantum chemical calculations.

    Science.gov (United States)

    Moorthi, P P; Gunasekaran, S; Ramkumaar, G R

    2014-04-24

    In this work, we reported a combined experimental and theoretical study on molecular structure, vibrational spectra and NBO analysis of Isoleucine (2-Amino-3-methylpentanoic acid). The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments, thermodynamics properties, NBO analyses, NMR chemical shifts and ultraviolet-visible spectral interpretation of Isoleucine have been studied by performing MP2 and DFT/cc-pVDZ level of theory. The FTIR, FT-Raman spectra were recorded in the region 4000-400 cm(-1) and 3500-50 cm(-1) respectively. The UV-visible absorption spectra of the compound were recorded in the range of 200-800 nm. Computational calculations at MP2 and B3LYP level with basis set of cc-pVDZ is employed in complete assignments of Isoleucine molecule on the basis of the potential energy distribution (PED) of the vibrational modes, calculated using VEDA-4 program. The calculated wavenumbers are compared with the experimental values. The difference between the observed and calculated wavenumber values of most of the fundamentals is very small. (13)C and (1)H nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method and compared with experimental results. The formation of hydrogen bond was investigated in terms of the charge density by the NBO calculations. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands were carried out. Besides, molecular electrostatic potential (MEP) were investigated using theoretical calculations.

  12. Spectroscopic Studies of Molecular Systems relevant in Astrobiology

    Science.gov (United States)

    Fornaro, Teresa

    2016-01-01

    In the Astrobiology context, the study of the physico-chemical interactions involving "building blocks of life" in plausible prebiotic and space-like conditions is fundamental to shed light on the processes that led to emergence of life on Earth as well as to molecular chemical evolution in space. In this PhD Thesis, such issues have been addressed both experimentally and computationally by employing vibrational spectroscopy, which has shown to be an effective tool to investigate the variety of intermolecular interactions that play a key role in self-assembling mechanisms of nucleic acid components and their binding to mineral surfaces. In particular, in order to dissect the contributions of the different interactions to the overall spectroscopic signals and shed light on the intricate experimental data, feasible computational protocols have been developed for the characterization of the spectroscopic properties of such complex systems. This study has been carried out through a multi-step strategy, starting the investigation from the spectroscopic properties of the isolated nucleobases, then studying the perturbation induced by the interaction with another molecule (molecular dimers), towards condensed phases like the molecular solid, up to the case of nucleic acid components adsorbed on minerals. A proper modeling of these weakly bound molecular systems has required, firstly, a validation of dispersion-corrected Density Functional Theory methods for simulating anharmonic vibrational properties. The isolated nucleobases and some of their dimers have been used as benchmark set for identifying a general, reliable and effective computational procedure based on fully anharmonic quantum mechanical computations of the vibrational wavenumbers and infrared intensities within the generalized second order vibrational perturbation theory (GVPT2) approach, combined with the cost-effective dispersion-corrected density functional B3LYP-D3, in conjunction with basis sets of

  13. Spectroscopic studies on glassy Ni(II) and Co(II) polyphosphate coacervates

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Mauricio A.P., E-mail: mauricio.silva@ufjf.edu.br [Nucleo de Espectroscopia e Estrutura Molecular, Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario Martelos, 36036-900 Juiz de Fora, MG (Brazil); Franco, Douglas F.; Brandao, Adilson R. [Nucleo de Espectroscopia e Estrutura Molecular, Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario Martelos, 36036-900 Juiz de Fora, MG (Brazil); Barud, Hernane [Instituto de Quimica, Universidade Estadual Paulista, C.P. 355, 14801-970 Araraquara, SP (Brazil); Dias Filho, Francisco A. [Departamento de Quimica Organica e Inorganica, Centro de Ciencias, Universidade Federal do Ceara, Campus do Pici, C.P. 12200, 60455-760 Fortaleza, CE (Brazil); Ribeiro, Sidney J.L.; Messaddeq, Younes [Instituto de Quimica, Universidade Estadual Paulista, C.P. 355, 14801-970 Araraquara, SP (Brazil); Oliveira, Luiz F.C. de [Nucleo de Espectroscopia e Estrutura Molecular, Departamento de Quimica, Universidade Federal de Juiz de Fora, Campus Universitario Martelos, 36036-900 Juiz de Fora, MG (Brazil)

    2010-11-01

    Transparent amorphous bulk materials have been prepared through the coacervation process of sodium polyphosphate and Ni{sup 2+} and Co{sup 2+} chloride solutions. Structural and spectroscopic properties were analyzed by X-ray diffraction, thermogravimetric analysis, UV-vis, infrared and Raman spectroscopic techniques. Different optical properties and water absorption tendencies were observed for the polyphosphate coacervates. The symmetric P-O{sub b} and P-O{sub t} stretching modes on the Raman spectra for the coacervates and the sodium polyphosphate revealed the coordination processes of the polyphosphate chains to the metal ions, including the effects of the water coordination outside the polyphosphate cages, connecting the adjacent chains. Based on data collected from the electronic spectra, these materials can present important technological applicability. Being transparent materials, these glasses can be used as absorption filters with pass-band between 600 and 500 nm for the Ni coacervate, and above 600 nm for the Co coacervate.

  14. A spectroscopic study of the hybrid pulsator Gamma Pegasi

    CERN Document Server

    Pandey, C P; Briquet, M; Jayakumar, K; Bisht, S; Sanwal, B B

    2011-01-01

    The recent detection of both pressure and high-order gravity modes in the classical B-type pulsator Gamma Pegasi offers promising prospects for probing its internal structure through seismic studies. To aid further modelling of this star, we present the results of a detailed NLTE abundance analysis based on a large number of time-resolved, high-quality spectra. A chemical composition typical of nearby B-type stars is found. The hybrid nature of this star is consistent with its location in the overlapping region of the instability strips for beta Cephei and slowly pulsating B stars computed using OP opacity tables, although OPAL calculations may also be compatible with the observations once the uncertainties in the stellar parameters and the current limitations of the stability calculations are taken into account. The two known frequencies f1 = 6.58974 and f2 = 0.68241 c/d are detected in the spectroscopic time series. A mode identification is attempted for the low-frequency signal, which can be associated to ...

  15. Spectroscopic and molecular docking studies on chlorambucil interaction with DNA.

    Science.gov (United States)

    Charak, Sonika; Shandilya, Manish; Tyagi, Gunjan; Mehrotra, Ranjana

    2012-11-01

    Chlorambucil (CMB) is an anticancer drug used for the treatment of variety of cancers. Structural and conformational changes associated with DNA after binding with CMB were explored using spectroscopic techniques to get insight into the mechanism of action of CMB at molecular level. Different molar ratios of CMB-DNA complex were prepared with constant DNA concentration under physiological conditions. FTIR spectroscopy, UV-visible spectroscopy, CD spectroscopy and molecular docking studies were employed to determine the binding site and binding constant of CMB with DNA. The results show CMB binds DNA through nitrogenous bases (thymine, guanine and cytosine). The binding constant was calculated to be 1.3 × 10³ M⁻¹, which suggests weak binding of CMB with DNA double helix. FTIR and CD results show that CMB do not disturb native B-conformation of DNA and it continues to remain in its B conformation even at higher concentrations of CMB. The molecular docking results are in corroboration with our experimental results and provides structural insight into the interaction site. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Spectroscopic Study on the Beryllium Abundances of Red Giant Stars

    CERN Document Server

    Takeda, Yoichi

    2014-01-01

    An extensive spectroscopic study was carried out for the beryllium abundances of 200 red giants (mostly of late G and early K type), which were determined from the near-UV Be II 3131.066 line based on high-dispersion spectra obtained by Subaru/HDS, with an aim of investigating the nature of surface Be contents in these evolved giants; e.g., dependence upon stellar parameters, degree of peculiarity along with its origin and build-up timing. We found that Be is considerably deficient (to widely different degree from star to star) in the photosphere of these evolved giants by ~1-3 dex (or more) compared to the initial abundance. While the resulting Be abundances (A(Be)) appear to weakly depend upon T_eff, log g, [Fe/H], M, age, and v_sin i, this may be attributed to the metallicity dependence of A(Be) coupled with the mutual correlation between these stellar parameters, since such tendencies almost disappear in the metallicity-scaled Be abundance ([Be/Fe]). By comparing the Be abundances (as well as their correl...

  17. Spectroscopic and Microscopic Study of Peroxyformic Pulping of Agave Waste.

    Science.gov (United States)

    Hernández-Hernández, Hilda M; Chanona-Pérez, Jorge J; Vega, Alberto; Ligero, Pablo; Farrera-Rebollo, Reynold R; Mendoza-Pérez, Jorge A; Calderón-Domínguez, Georgina; Vera, Norma Güemes

    2016-10-01

    The peroxyformic process is based on the action of a carboxylic acid (mainly formic acid) and the corresponding peroxyacid. The influences of processing time (60-180 min), formic acid concentration (80-95%), temperature (60-80°C), and hydrogen peroxide concentration (2-4%) on peroxyformic pulping of agave leaves were studied by surface response methodology using a face-centered factorial design. Empirical models were obtained for the prediction of yield, κ number (KN) and pulp viscosity as functions of the aforementioned variables. Mathematical optimization enabled us to select a set of operational variables that produced the best fractionation of the material with the following results: pulp yield (26.9%), KN (3.6), and pulp viscosity (777 mL/g). Furthermore, this work allowed the description and evaluation of changes to the agave fibers during the fractionation process using different microscopic and spectroscopic techniques, and provided a comprehensive and qualitative view of the phenomena occurring in the delignification of agave fibers. The use of confocal and scanning electron microscopy provided a detailed understanding of the microstructural changes to the lignin and cellulose in the fibers throughout the process, whereas Raman spectroscopy and X-ray diffraction analysis indicated that cellulose in the pulp after treatment was mainly of type I.

  18. A spectroscopic study of the Globular Cluster NGC 4147

    CERN Document Server

    Villanova, Sandro; Bidin, Cristian Moni; Assmann, Paulina

    2016-01-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium and high resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H]=-1.84+-0.02 and an alpha-enhancement of +0.38+-0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular we found a Na-O anti-correlation and Na-Al correlation. The cluster contains only 15% of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic Halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic ...

  19. In vitro spectroscopic study of piperine-encapsulated nanosize liposomes.

    Science.gov (United States)

    Pentak, Danuta

    2016-03-01

    Black pepper is a source of effective antioxidants. It contains several powerful antioxidants and is thus one of the most important spices for preventing and curtailing oxidative stress. There is considerable interest in the development of a drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic and amphiphilic molecules. This article focuses on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. Liposome formulations of piperine were analyzed with various spectroscopic methods. The formulation with the highest entrapment efficiency (90.5%) was formulated with an L-α-phosphatidylcholine dipalmitoyl (DPPC):piperine, 30:1 molar ratio, and total lipid count of 19.47 mg/ml in the final liposomal preparation. The liposome formulation was found to be stable after storage at 4 °C, protected from light, for a minimum of 3 weeks. The incremental process of piperine penetration through the phospholipid membrane was analyzed using the FT-IR, UV-Vis and NMR methods. Temperature stability studies carried out at 37 °C showed the highest percentage of piperine release in the first 3 h of incubation.

  20. Batch sorption and spectroscopic speciation studies of neptunium uptake by montmorillonite and corundum

    Science.gov (United States)

    Elo, O.; Müller, K.; Ikeda-Ohno, A.; Bok, F.; Scheinost, A. C.; Hölttä, P.; Huittinen, N.

    2017-02-01

    Detailed information on neptunium(V) speciation on montmorillonite and corundum surfaces was obtained by batch sorption and desorption studies combined with surface complexation modelling using the Diffuse Double-Layer (DDL) model, in situ time-resolved Attenuated Total Reflection Fourier-Transform Infrared (ATR FT-IR) and X-ray absorption (XAS) spectroscopies. The pH-dependent batch sorption studies and the spectroscopic investigations were conducted under carbonate-free conditions in 10 mM NaClO4 or 10 mM NaCl. Solid concentrations of 0.5 g/l and 5 g/l were used depending on the experiment. The neptunium(V) desorption from the two mineral surfaces was investigated at pH values ranging from 8 to 10, using the replenishment technique. Neptunium(V) was found to desorb from the mineral surface, however, the extent of desorption was dependent on the solution pH. The desorption of neptunium(V) was confirmed in the ATR FT-IR spectroscopic studies at pH 10, where all of the identified inner-sphere complexed neptunium(V), characterized by a vibrational band at 790 cm-1, was desorbed from both mineral surfaces upon flushing the mineral films with a blank electrolyte solution. In XAS investigations of neptunium(V) uptake by corundum, the obtained structural parameters confirm the formation of an inner-sphere complex adsorbed on the surface in a bidentate fashion. As the inner-sphere complexes found in the IR-studies are characterized by identical sorption bands on both corundum and montmorillonite, we tentatively assigned the neptunium(V) inner-sphere complex on montmorillonite to the same bidentate complex found on corundum in the XAS investigations. Finally, the obtained batch sorption and spectroscopic results were modelled with surface complexation modelling to explain the neptunium(V) speciation on montmorillonite over the entire investigated pH range. The modelling results show that cation exchange in the interlayer space as well as two pH-dependent surface complexes

  1. Spectroscopic and molecular docking studies on the interaction of troxerutin with DNA.

    Science.gov (United States)

    Subastri, A; Ramamurthy, C H; Suyavaran, A; Mareeswaran, R; Lokeswara Rao, P; Harikrishna, M; Suresh Kumar, M; Sujatha, V; Thirunavukkarasu, C

    2015-01-01

    Troxerutin (TXER) is a derivative of naturally occurring bioflavonoid rutin. It possesses different biological activities in rising clinical world. The biological activity possessed by most of the drugs mainly targets on macromolecules. Hence, in the current study we have examined the interaction mechanism of TXER with calf thymus DNA (CT-DNA) by using various spectroscopic methods, isothermal titration calorimetry (ITC) and molecular docking studies. Further, DNA cleavage study was carried out to find the DNA protection activity of TXER. UV-absorption and emission spectroscopy showed low binding constant values via groove binding. Circular dichroism study indicates that TXER does not modify native B-form of DNA, and it retains the native B-conformation. Furthermore, no effective positive potential peak shift was observed in TXER-DNA complex during electrochemical analysis by which it represents an interaction of TXER with DNA through groove binding. Molecular docking study showed thymine guanine based interaction with docking score -7.09 kcal/mol. This result was compared to experimental ITC value. The DNA cleavage study illustrates that TXER does not cause any DNA damage as well as TXER showed DNA protection against hydroxyl radical induced DNA damage. From this study, we conclude that TXER interacts with DNA by fashion of groove binding.

  2. Photoinduced intramolecular charge transfer process of betaine pyridinium: A theoretical spectroscopic study

    Science.gov (United States)

    Perrier, Aurélie; Aloïse, Stéphane; Pawlowska, Zuzanna; Sliwa, Michel; Maurel, François; Abe, Jiro

    2011-10-01

    Using Time-Dependent Density Functional Theory and taking into account bulk solvent effects, we investigate the absorption and emission spectra of a betaine pyridinium molecule, the 2-(1-pyridinio) benzimidazolate (SBPa). This molecule exhibits strong photoinduced intramolecular charge transfer (ICT). We have identified two different electronic states involved, respectively, in the strong bathochromic ICT absorption band (S 2) and in the moderate emission band (S 1). The ICT process is analyzed in terms of charge distribution and dipole moment evolutions upon photoexcitation. These results are compared with steady-state spectroscopic measurements.

  3. Spectroscopic studies on the interaction of cysteine capped CuS nanoparticles with tyrosine

    Energy Technology Data Exchange (ETDEWEB)

    Prasanth, S.; Raj, D. Rithesh; Kumar, T. V. Vineesh; Sudarsanakumar, C. [School of Pure and Applied Physics, Mahatma Gandhi University Kottayam, Kerala (India)

    2015-06-24

    Biocompatible cysteine coated CuS nanoparticles were synthesized by a simple aqueous solution method. Hexagonal phase of the samples were confirmed from X-ray diffraction and particle size found to be 9 nm. The possible interaction between the bioactive cysteine capped CuS nanoparticles and tyrosine were investigated using spectroscopic techniques such as UV-Visible absorption and fluorescence spectroscopy. It is observed that the luminescence intensity of tyrosine molecule enhanced by the addition CuS nanoparticles.

  4. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  5. Spectroscopic study of neodymium doped lead-bismuth-borate glasses

    Science.gov (United States)

    Pasha, Altaf; Dayani, P.; Negalur, Mahesh; Swamy, Manjunatha; Abhiram, J.; Rajaramakrishna, R.

    2016-05-01

    This paper reports on different physical and optical properties of rare earth doped heavy metal oxide glasses. The glass composition of 10Bi2O3-30PbO-60B2O3-xNd2O3 where x = 0, 0.1, 0.2, 0.5 and 1 (in mol %) has been synthesized using melt-quenching technique. Refractive index measurements for these glasses were done and physical parameters were studied. Structural properties of these glasses were analysed through infrared spectra that was recorded between 1600cm-1 and 300cm-1 in transmission mode. The optical absorption spectra were recorded in the wavelength range from 300 to 700 nm. The transitions originated from ground state energy 4I9/2. The energy level analysis has been carried out by considering absorption spectral bands. The results thus obtained are comparable with reports on similar glasses, indicating that the prepared glasses may have potential laser applications.

  6. Spectroscopic study of graphene oxide membranes exposed to ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Schwenzer, Birgit; Kaspar, Tiffany C.; Shin, Yongsoon; Gotthold, David W.

    2016-05-16

    Research on graphene oxide (GO) as anything but a precursor material for synthesizing graphene started to pick up in 20061,2 and was soon followed by a first report of freestanding GO membranes (also referred to as GO paper) from R. S. Ruoff’s group at Northwestern University.3 The first GO membranes were prepared by vacuum filtration. More recently, larger scale GO membranes have been prepared by tape casting4 and other methods.5 In step with the development of new fabrication techniques, GO membranes are now tested for a wide array of applications6 ranging from energy-related4,7 or biomedical8 applications to more conventional uses for filtration9 and dehumidification.10 For all these proposed and implemented applications it remains to be seen how sensitive each of them is with respect to chemical and physical changes of the GO membranes over time. In this study, we report the effects of UV exposure on 2D-hierarchically stacked (Fig. S1 in ESI†) GO membranes. Macroscopically observable changes, such as darkening and mechanical deformation, have been correlated to chemical changes at the molecular level through spectroscopic measurements. Not only do the results of this work offer insights into the stability of GO membranes under UV light, but the findings will enable researchers, who are studying the use of these materials for different applications, to better understand the shelf life and packaging requirements for GO membranes. Furthermore, our results demonstrate the feasibility of deep ultraviolet (DUV) photolithography for graphene oxide-based devices. This approach is readily scalable as opposed to previous reports on photolithographic patterned reduction of GO to graphene by AFM,11 electron-beam12 or with an extreme ultraviolet (λ = 46.9 nm) laser.13

  7. Spectroscopic structural studies of salicylic acid, salicylamide and aspirin

    Science.gov (United States)

    El-Shahawy, Anwar S.

    The electronic absorption spectra of the salicylic acid and the salicylamide molecules have been studied using SCF—CL calculations. The singlet and the triplet electronic transition energies have been calculated. The state functions of eight excited states for these molecules have been calculated in addition to the oscillator strengths, charge densities, ionization potentials and electron affinities. Our calculations lead to the presence of salicylic acid and salicylamide in the β-forms in which the carboxylic hydroxyl group or the amino group is directed toward the enolic hydroxyl group. The salicylic acid and the salicylamide molecules have the Cs point group symmetry, but the aspirin molecule has the C1 point group symmetry, in which the acetyl group does not lie in the plane of the salicylic acid molecule.

  8. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  9. Interaction of quercetin with ovalbumin: Spectroscopic and molecular modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Lu Yan, E-mail: yanlu2001@sohu.co [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China); Wang Yunlai; Gao Shenghua; Wang Gongke; Yan Changling; Chen Dejun [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2009-09-15

    The binding of quercetin (QCT) to ovalbumin (OVA) in aqueous solution was investigated by molecular spectroscopy and modeling at pH 7.4. The fluorescence, synchronous fluorescence and UV-absorption spectroscopies were employed to study the mode and the mechanism for this interaction. QCT binding is characterized by one high affinity binding site with the association constants of the order of 10{sup 5}. The distance between donor (OVA) and acceptor (QCT) was estimated according to Forster's theory of non-radiation energy transfer. Molecular docking showed that the QCT can bind to the active site of OVA. The binding dynamics was expounded by thermodynamic parameters, molecular modeling and accessible surface area calculation, which entails that hydrophobic interactions, hydrogen bonding and electrostatic forces stabilizes the interaction.

  10. A spectroscopic study of interaction of cationic dyes with heparin

    Directory of Open Access Journals (Sweden)

    R. Nandini

    2010-01-01

    Full Text Available The interaction of two cationic dyes namely, acridine orange and pinacyanol chloride with an anionic polyelectrolyte, heparin, has been investigated by spectrophotometric method.The polymer induced metachromasy in the dyes resulting in the shift of the absorption maxima of the dyes towards shorter wavelengths. The stability of the complexes formed between acridine orange and heparin was found to be lesser than that formed between pinacyanol chloride and heparin. This fact was further confirmed by reversal studies using alcohols, urea and surfactants. The interaction of acridine orange with heparin has also been investigated fluorimetrically.The interaction parameters revealed that binding between acridine orange and heparin arises due to electrostatic interaction while that between pinacyanol chloride and heparin is found to involve both electrostatic and hydrophobic forces. The effect of the structure of the dye in inducing metachromasy has also been discussed.

  11. Spectroscopic studies on diamond like carbon films synthesized by pulsed laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Madhusmita; Krishnan, R., E-mail: krish@igcar.gov.in; Ravindran, T. R.; Das, Arindam; Mangamma, G.; Dash, S.; Tyagi, A. K. [Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603102, Tamil Nadu (India)

    2016-05-23

    Hydrogen free Diamond like Carbon (DLC) thin films enriched with C-C sp{sup 3} bonding were grown on Si (111) substrates at laser pulse energies varying from 100 to 400 mJ (DLC-100, DLC-200, DLC-300, DLC-400), by Pulsed Laser Ablation (PLA) utilizing an Nd:YAG laser operating at fundamental wavelength. Structural, optical and morphological evolutions as a function of laser pulse energy were studied by micro Raman, UV-Vis spectroscopic studies and Atomic Force Microscopy (AFM), respectively. Raman spectra analysis provided critical clues for the variation in sp{sup 3} content and optical energy gap. The sp{sup 3} content was estimated using the FWHM of the G peak and found to be in the range of 62-69%. The trend of evolution of sp{sup 3} content matches well with the evolution of I{sub D}/I{sub G} ratio with pulse energy. UV-Vis absorption study of DLC films revealed the variation of optical energy gap with laser pulse energy (1.88 – 2.23 eV), which matches well with the evolution of G-Peak position of the Raman spectra. AFM study revealed that roughness, size and density of particulate in DLC films increase with laser pulse energy.

  12. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Science.gov (United States)

    Pradhan, Ankur Bikash; Haque, Lucy; Roy, Snigdha; Das, Suman

    2014-01-01

    Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride) with single and double stranded form of polyriboadenylic acid (hereafter poly-A) using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A) with high affinity while it does not interact at all with the double stranded (ds) form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  13. Binding of phenazinium dye safranin T to polyriboadenylic acid: spectroscopic and thermodynamic study.

    Directory of Open Access Journals (Sweden)

    Ankur Bikash Pradhan

    Full Text Available Here, we report results from experiments designed to explore the association of the phenazinium dye safranin T (ST, 3,7-diamino-2,8-dimethyl-5-phenylphenazinium chloride with single and double stranded form of polyriboadenylic acid (hereafter poly-A using several spectroscopic techniques. We demonstrate that the dye binds to single stranded polyriboadenylic acid (hereafter ss poly-A with high affinity while it does not interact at all with the double stranded (ds form of the polynucleotide. Fluorescence and absorption spectral studies reveal the molecular aspects of binding of ST to single stranded form of the polynucleotide. This observation is also supported by the circular dichroism study. Thermodynamic data obtained from temperature dependence of binding constant reveals that association is driven by negative enthalpy change and opposed by negative entropy change. Ferrocyanide quenching studies have shown intercalative binding of ST to ss poly-A. Experiments on viscosity measurements confirm the binding mode of the dye to be intercalative. The effect of [Na⁺] ion concentration on the binding process suggests the role of electrostatic forces in the complexation. Present studies reveal the utility of the dye in probing nucleic acid structure.

  14. Spectroscopic study of the long-period dust-producing WC7pd+O9 binary HD192641

    CERN Document Server

    Lefèvre, L; Lepine, S; Moffat, A F J; Acker, A; Harries, T J; Annuk, K; Bohlender, D A; Demers, H; Grosdidier, Y; Hill, G M; Morrison, N D; Knauth, D C; Skalkowski, G; Viti, S

    2005-01-01

    We present the results of an optical spectroscopic study of the massive Wolf-Rayet binary WR137. These data cover the dust-formation maximum in 1997. Combining all available measurements of radial velocities, we derive, for the first time, a spectroscopic orbit with period 13.05 +/- 0.18 years. The resulting masses, adopting i=67degrees, are M(O)= 20 +/- 2 Mo and M(WR)= 4.4+/- 1.5 Mo. These appear, respectively, around normal and on the low side for the given spectral types. Analysis of the intense multi-site spectroscopic monitoring in 1999 shows that the CIII5696 and CIV5802/12 lines have the highest intrinsic variability levels. The periodogram analysis yields a small-amplitude modulation in the absorption troughs of the CIV5802/12 and HeI5876 lines with a period of 0.83 days, which could be related either to pulsations or large-scale rotating structures as seen in the WN4 star EZ Canis Majoris (WR6).Wavelet analysis of the strong emission lines of CIII5696 and CIV5802/12 enabled us to isolate and follow f...

  15. Microwave absorption studies of MgB2 superconductor

    Indian Academy of Sciences (India)

    M K Bhide; R M Kadam; M D Sastry; Ajay Singh; Shashwati Sen; Manmeet Kaur; D K Aswal; S K Gupta; V C Sahni

    2002-05-01

    Microwave absorption studies have been carried out on MgB2 superconductor using a standard X-band EPR spectrometer. The modulated low-field microwave absorption signals recorded for polycrystalline (grain size ∼ 10m) samples suggested the absence of weak-link character. The field dependent direct microwave absorption has been found to obey a $\\sqrt{H}$ dependence with two different slopes, which indicated a transition from strongly pinned lattice to flux flow regime.

  16. Studies on intestinal absorption of sulpiride (3): intestinal absorption of sulpiride in rats.

    Science.gov (United States)

    Watanabe, Kazuhiro; Sawano, Tetsuya; Jinriki, Toshiya; Sato, Juichi

    2004-01-01

    The aim of this study was to investigate whether the concomitant administration of the substrates or inhibitors of PEPT1, OCTN1, OCTN2, and P-glycoprotein affects the intestinal absorption of sulpiride in rats. The absorption of sulpiride from rat intestine was decreased by the substrates or inhibitors of PEPT1, OCTN1, and OCTN2. On the other hand, the absorption was increased by the substrates of P-glycoprotein. The effects of these concomitantly administered drugs on the pharmacokinetic behavior of sulpiride after oral administration in rats were investigated. Peak concentration (C(max)) and area under the plasma concentration-time curve (AUC(0-8 h)) of sulpiride were decreased by the concomitant administration of the substrates or inhibitors of PEPT1, OCTN1, and OCTN2. However, the same parameters were significantly increased by the concomitant administration of the substrates of P-glycoprotein. The present results suggest the possibility of drug-drug interaction during the absorption process in the small intestine due to the coadministration of sulpiride and these agents. These findings provide important information for preventing adverse effects and for ensuring the effectiveness of sulpiride and concomitantly administered drugs.

  17. Spectroscopic studies of cathode materials for lithium-ion batteries

    Science.gov (United States)

    Totir, Dana Alexa

    2000-10-01

    Structural changes that occur during electrochemical cycling of lithium-ion battery cathode materials have been investigated using in situ spectroscopic techniques. A new method was developed for the preparation of carbon and binder free cathodes utilizing powder materials of interest for commercial batteries. The extraordinary quality of the cyclic voltammetric curves recorded for this type of electrodes during the in situ measurements allows direct correlations to be made between the state of charge of the material and its structural and electronic characteristics. LiCoO2, LiMn2O4 and LiCo0.15Ni 0.85O2 electrodes were evaluated using cycling voltammetry and the mean diffusion coefficient for Li-ions in the lattice (DLi) was calculated for LiMn2O4. LiMn2O4 electrodes prepared by this technique have been studied in situ using Mn K-edge XAS. Data analysis for the species formed at different potentials indicated a contraction of the lattice associated with the increase in the oxidation state of manganese. In situ Raman spectra of particles of LiMn2O 4, and LiCoO2 embedded in Au and also of KS-44 graphite and carbon microfibers MCF28 embedded in thermally annealed Ni have been recorded as a function of the applied potential. Fe K-edge XAFS of pyrite electrodes in a Li/PEO(LiClO4)/FeS 2 cell and S K-edge XANES measurements of a FeS2 electrode in a non-aqueous electrolyte have been acquired as a function of the state of charge. The studies have clearly evidenced the formation of metallic Fe and Li2S as intermediates after 4 e- discharge and the formation of Li2FeS2 after 2 e- recharge. While Fe K-edge studies have indicated that there is no change in the Fe environment and oxidation state upon 4 e- recharge, the results obtained from S K-edge studies are inconclusive for this stage. Finally, in situ Co K-edge XAFS data were obtained for the first time during the electrochemical cycling of electrodeposited Co(OH) 2 films in alkaline solutions. The results support

  18. Spectroscopic and thermodynamic studies on ferulic acid - Alpha-2-macroglobulin interaction

    Science.gov (United States)

    Rehman, Ahmed Abdur; Sarwar, Tarique; Arif, Hussain; Ali, Syed Saqib; Ahsan, Haseeb; Tabish, Mohammad; Khan, Fahim Halim

    2017-09-01

    Ferulic acid is a major phenolic acid found in numerous plant species in conjugated form. It binds to enzymes and oligomeric proteins and modifies their structure and function. This study was designed to examine the interaction of ferulic acid, an active ingredient of some important medicines, with α2M, a key serum proteinase, under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques such as, UV-visible absorption, fluorescence spectroscopy, circular dichroism along with isothermal titration calorimetry. Fluorescence quenching of α2M by ferulic acid demonstrated the formation of α2M-ferulic acid complex by static quenching mechanism. Binding parameters calculated by Stern-Volmer method showed that ferulic acid binds to α2M with moderate affinity of the order of ∼104 M-1. The thermodynamic signatures reveal that binding was enthalpy driven and hydrogen bonding played a major role in ferulic acid-α2M binding. CD spectra analysis suggests very little conformational changes in α2M on ferulic acid binding.

  19. DNA-binding study of anticancer drug cytarabine by spectroscopic and molecular docking techniques.

    Science.gov (United States)

    Shahabadi, Nahid; Falsafi, Monireh; Maghsudi, Maryam

    2017-01-02

    The interaction of anticancer drug cytarabine with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multispectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove-binding mode, while the binding constant of UV-vis and the number of binding sites were 4.0 ± 0.2 × 10(4) L mol(-1) and 1.39, respectively. The fluorimetric studies showed that the reaction between the drugs with CT-DNA is exothermic. Circular dichroism spectroscopy was employed to measure the conformational change of DNA in the presence of cytarabine. Furthermore, the drug induces detectable changes in its viscosity for DNA interaction. The molecular modeling results illustrated that cytarabine strongly binds to groove of DNA by relative binding energy of docked structure -20.61 KJ mol(-1). This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the interaction of small molecular pollutants and drugs with biomacromolecules for clarifying the molecular mechanism of toxicity or side effect in vivo.

  20. Human hemoglobin structural and functional alterations and heme degradation upon interaction with benzene: A spectroscopic study

    Science.gov (United States)

    Hosseinzadeh, Reza; Moosavi-Movahedi, Ali Akbar

    2016-03-01

    Here, the effect of benzene on hemoglobin structure, stability and heme prosthetic group integrity was studied by different methods. These included UV-vis absorption spectrophotometry, normal and synchronous fluorescence techniques, and differential scanning calorimetry (DSC). Our results indicated that benzene has high hemolytic potential even at low concentrations. The UV-vis spectroscopic results demonstrated that benzene altered both the globin chain and the heme prosthetic group of hemoglobin increasing met- and deoxy-Hb, while decreasing oxy-Hb. However, with increasing benzene the concentration of all species decreased due to heme destruction. The spectrophotometric results show that benzene has a high potential for penetrating the hydrophobic pocket of hemoglobin. These results were consistent with the molecular docking simulation results of benzene-hHb. Aggregation and thermal denaturation studies show that the increased benzene concentration induced hemoglobin aggregation with a decrease in stability, which is consistent with the DSC results. Conventional fluorescence spectroscopy revealed that the heme degradation species were produced in the presence of benzene. The results of constant wavelength synchronous fluorescence spectroscopy (CWSFS) indicated that at least five heme-degraded species were produced. Together, our results indicated that benzene has adverse effects on hemoglobin structure and function, and heme degradation.

  1. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    Energy Technology Data Exchange (ETDEWEB)

    Lezama-pacheco, Juan S [Los Alamos National Laboratory; Conradson, Steven D [Los Alamos National Laboratory; Clark, David L [Los Alamos National Laboratory

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  2. Spectroscopic studies of uranium species for environmental decontamination applications

    Science.gov (United States)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by

  3. Spectroscopic Studies of the Several Isomers of UO3

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, Lucas E.; Reilly, Dallas D.; Abrecht, David G.; Buck, Edgar C.; Meier, David E.; Su, Yin-Fong; Brauer, Carolyn S.; Schwantes, Jon M.; Tonkyn, Russell G.; Szecsody, James E.; Blake, Thomas A.; Johnson, Timothy J.

    2013-09-26

    Uranium trioxide is known to adopt seven different structural forms. While these structural forms have been well characterized using x-ray or neutron diffraction techniques, little work has been done to characterize their spectroscopic properties, particularly of the pure phases. Since the structural isomers of UO3 all have similar thermodynamic stabilities and most tend to hydrolyze under open atmospheric conditions, mixtures of UO3 phases and the hydrolysis products are common. Much effort went into isolating pure phases of UO3. Utilizing x-ray diffraction as a sample identification check, UV/Vis/NIR spectroscopic signatures of α-UO3, β-UO3, γ-UO3 and UO2(OH)2 products were obtained. The spectra of the pure phases can now be used to characterize typical samples of UO3, which are often mixtures of isomers.

  4. Spectroscopic studies of neodymium (III) and praeseodymium (III) compounds in molten chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, H.; Sharrad, C. [School of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M139PL (United Kingdom); Claux, B.; Soucek, P.; Malmbeck, R. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2016-07-01

    A novel spectroscopic furnace has been developed for the in situ acquisition of UV-visible absorption spectra in high temperature molten salts. The furnace has been used to obtain spectra of neodymium(III) and praseodymium(III) trichloride in LiCl-KCl eutectic at 450 Celsius degrees over various Ln(III) concentrations. The major absorption peaks for both for Nd(III) and Pr(III) in the UV-visible region of the spectrum have been identified and the molar absorbances quantified for each of these absorption maxima. The neodymium and praseodymium were then precipitated by adding respectively, Li{sub 2}CO{sub 3} and Li{sub 2}O to the salt and monitored using UV-visible spectroscopy. In both cases the precipitate has been identified as the relevant LnOCl by powder XRD. (authors)

  5. Spectroscopic studies of the protein-methylglyoxal adduct.

    OpenAIRE

    1980-01-01

    Spectroscopic measurements are reported for the effects of pH, time, solvent, and chemical modification of arginine and lysine side chains on the reaction of proteins with methylglyoxal. The reaction responsible for the appearance of a brown coloration and increased submolecular electronic activity in the proteins involves the epsilon-amino groups of the lysine residues. It is concluded that the primary step in the reaction involves the formation of a Schiff base linkage between the lysine si...

  6. Temperature Dependent Spectroscopic Studies of HiPco SWNT Composites

    OpenAIRE

    Keogh, Sinead; Hedderman, Theresa; Farrell, Gerald; Ruether, M.; Gregan, Elizabeth; McNamara, Mary; Chambers, Gordon; Byrne, Hugh

    2005-01-01

    Hybrid systems of the conjugated organic polymer poly(p-phenylene vinylene-co-2,5-dioctyIoxy-m-phenylene vinylene)(PmPV) and HiPco SWNTs are explored using spectroscopic and thermal techniques to determine specific interactions. Vibrational spectroscopy indicates a weak interaction and this is further elucidated using Differential Scanning Calorimetry, Temperature Dependent Raman Spectroscopy and Temperature Dependent Infrared Spectroscopy of the raw materials and the composite. An endothermi...

  7. A New Way to Study Water-Vapor Absorption Coefficient

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In the visible spectrum, the atmospheric attenuations to sunlight mainly include aerosol scattering, atmospheric molecule Rayleigh scattering and ozone absorption, while in the near-infrared spectrum (from 650 nm to 1000 nm), we must take water-vapor absorption into account. Based on the atmospheric correction theory, using spectrum irradiance data measured by Instantaneous Ground spectrometer, ozone content measured by Microtops Ⅱ ozone monitor,water-vapor content and aerosol optical thickness measured by sun photometer, we give a new way to study water-vapor absorption to sunlight, and the result shows that the main peak values of water-vapor absorption coefficients are 0.025 cm-1, 0.073 cm-1, 0.124 cm-1, 0.090 cm-1, 0.141cm-1 and 0.417 cm-1, which respectively lie at 692 nm, 725 nm, 761 nm, 818 nm, 912 nm and 937 nm.

  8. THEORETICAL STUDY OF THE ABSORPTION SPECTRA OF TRIAMTERENE

    Directory of Open Access Journals (Sweden)

    M. Ramegowda

    2013-03-01

    Full Text Available ABSTRACT: Time dependent density functional theory (TDDFT calculations have been carried out to study the electronic structure and the UV absorption spectra of Triamterene. The UV spectra have been investigated with inclusion of solvent effect. The B3LYP functional with a 6-31G(d, p basis sets have been used to compute absorption energies. The solvent effects have been described within the polarizable continuum model (PCM. The geometries are optimized using density functional theory (DFT with B3LYP functional combined with 6-31G(d, p basis sets. The vertical absorption energies both in gas phase and in polar solvents such as ethanol, methanol and water were computed. Red-shift of the absorption maximum in the polar solvents is discussed in terms of electrostatic interaction energy, oscillator strength and dipole moment.

  9. Quantification of point-source emissions of CO2 and CH4 using airborne absorption spectroscopic remote sensing

    Science.gov (United States)

    Bovensmann, H.; Gerilowski, K.; Krings, T.; Buchwitz, M.; Sachs, T.; Erzinger, J.; Burrows, J. P.

    2012-04-01

    Many natural and anthropogenic emissions of CO2 and CH4 occure on small to point scales. Examples are the CO2 release by volcanoes, power plants, steel and cement production, as well as CH4 release by mud volcanoes, large seeps, land fills or open coal mines and coal mine venting. Quantifying and verifying these emissions by independent, non-intrusive (here remote sensing) techniques is required in the context of a better understanding and management these sources. The data of airborne absorption spectrometer covering the relevant spectral absorptions of CO2 and CH4 has the potential to contribute to this research and application area. Recent achievements using the Methane Airborne MAPper (MAMAP) sensor - developed by the University of Bremen in cooperation with the GFZ Potsdam - show that CO2 as well as CH4 point source emissions can be derived from column averaged dry air mole fractions of CO2 and CH4 retrieved from airborne passive nadir remote sensing measurements. The developed techniques are also relevant in the context of future CO2 and CH4 satellite missions like OCO-2 and CarbonSat. The paper will present first results of two campaigns performed in 2011 covering anthropogenic as well as geologic point sources of CO2 and CH4. The potential and limitations for future applications will be discussed.

  10. PROBING THE FERMI BUBBLES IN ULTRAVIOLET ABSORPTION: A SPECTROSCOPIC SIGNATURE OF THE MILKY WAY'S BICONICAL NUCLEAR OUTFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Andrew J.; Bordoloi, Rongmon; Hernandez, Svea; Tumlinson, Jason [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Savage, Blair D.; Wakker, Bart P. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Lockman, Felix J. [National Radio Astronomy Observatory, P.O. Box 2, Rt. 28/92, Green Bank, WV 24944 (United States); Jenkins, Edward B.; Bowen, David V. [Princeton University Observatory, Princeton, NJ 08544 (United States); Bland-Hawthorn, Joss [Institute of Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Kim, Tae-Sun [Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34143 Trieste (Italy); Benjamin, Robert A., E-mail: afox@stsci.edu [Department of Physics, University of Wisconsin-Whitewater, 800 West Main Street, Whitewater, WI 53190 (United States)

    2015-01-20

    Giant lobes of plasma extend ≈55° above and below the Galactic center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity of the outflowing gas within these regions, targeting the quasar PDS 456 (ℓ, b = 10.°4, +11.°2). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v {sub LSR} = –235 and +250 km s{sup –1}, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic center. We develop simple kinematic biconical outflow models that can explain the observed profiles with an outflow velocity of ≳900 km s{sup –1} and a full opening angle of ≈110° (matching the X-ray bicone). This indicates Galactic center activity over the last ≈2.5-4.0 Myr, in line with age estimates of the Fermi Bubbles. The observations illustrate the use of UV spectroscopy to probe the properties of swept-up gas venting into the Fermi Bubbles.

  11. Probing the Fermi Bubbles in Ultraviolet Absorption: A Spectroscopic Signature of the Milky Way's Biconical Nuclear Outflow

    CERN Document Server

    Fox, Andrew J; Savage, Blair D; Lockman, Felix J; Jenkins, Edward B; Wakker, Bart P; Bland-Hawthorn, Joss; Hernandez, Svea; Kim, Tae-Sun; Benjamin, Robert A; Bowen, David V; Tumlinson, Jason

    2014-01-01

    Giant lobes of plasma extend 55 degrees above and below the Galactic Center, glowing in emission from gamma rays (the Fermi Bubbles) to microwaves (the WMAP haze) and polarized radio waves. We use ultraviolet absorption-line spectra from the Hubble Space Telescope to constrain the velocity structure of the outflowing gas within these regions, targeting the quasar PDS 456 (Galactic coordinates l,b=10.4, +11.2 degrees). This sightline passes through a clear biconical structure seen in hard X-ray and gamma-ray emission near the base of the northern Fermi Bubble. We report two high-velocity metal absorption components, at v_LSR=-235 and +250 km/s, which cannot be explained by co-rotating gas in the Galactic disk or halo. Their velocities are suggestive of an origin on the front and back side of an expanding biconical outflow emanating from the Galactic Center. We develop simple kinematic biconical outflow models that can explain these observed profiles with an outflow velocity of ~900 km/s and a full opening angl...

  12. Spectroscopic study of excitations in pi-conjugated polymers

    Science.gov (United States)

    Yang, Cungeng

    This dissertation deals with spin-physics of photo excitations in pi-conjugated polymers. Optical and magneto-optical spectroscopies, including continuous wave and time-resolved photo-induced absorption, photoluminescence, electroluminescence, and their optically detected magnetic resonance, were used to study steady state and transient photogeneration, energy transfer, spin relaxation, and spin dependent recombination process in the time domain from tens of nanoseconds to tens of milliseconds in polymer materials including regio-random poly (3-hexyl-thiophene-2,5-diyl), regio-regular poly (3-hexyl-thiophene-2,5-diyl), poly (9,9-dioctyl-fluorenyl-2,7-diyl), poly (poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene vinylene) of various morphologies, and transition metal complex poly (Pt-quinoxene). Our studies provided the tools to clarify the physical pictures regarding two types of long-lived photoexcitations, namely polarons (both germinate polaron-pairs, and unpaired polarons) and triplet excitons, which are the major excitations in these exotic semiconductors in electrical and optical related applications. From measurements of transient fluorescence and transient fluorescence detected magnetic resonance we show that photogenerated geminate polaron pairs live up to hundreds of microseconds following laser pulsed excitation. This conclusion is in agreement with the delayed formation of triplet excitons that we measured by transient photoinduced absorption. It also agrees with the weak spin-lattice relaxation rate in polymers that we measured using the optically detected magnetic resonance dynamic in thin films and organic light emitting devices. Randomly captured nongeminate polaron pairs were shown to be the major source of optically detected magnetic resonance signal at steady, state. We found that the dynamics and magnitude of the signal depend on the spin-relaxation rate, generation rate and decay rate of the geminate pairs and nongeminate pairs. Importantly we

  13. FTIR Spectroscopic Study of Broad Bean 3iseased Leaves

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The aim was to indentify diseased leaves of broad bean by vibra- tional spectroscopy. [Method] In this paper, broad bean rust, fusarium rhizome rot, broad bean zonate spot, yellow leaf curl virus and normal leaves were studied using Fourier transform infrared spectroscopy combined with chemometrics. [Result] The spectra of the samples were similar, only with minor differences in absorption inten- sity of several peaks. Second derivative analyses show that the significant difference of all samples was in the range of 1 200-700 cm2. The data in the range of 1 200- 700 cm' were selected to evaluate correlation coefficients, hierarchical cluster analy- sis (HCA) and principal component analysis (PCA). Results showed that the correla- tion coefficients are larger than 0.928 not only between the healthy leaves, but also between the same diseased leaves. The values between healthy and diseased leaves, and among diseased leaves, are all declined. HCA and PCA yielded about 73.3% and 82.2% accuracy, respectively. [Conclusion] This study demonstrated that FTIR techniques might be used to detect crop diseases.

  14. Theoretical spectroscopic study of protonated and deuteronated PAHs

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit

    The study of Polycyclic Aromatic Hydrocarbon (PAH) plays a key role to understand astrophysical environments as they are ubiquitous in the Interstellar Medium (ISM). They account for about 5-10% of carbon budget in the universe and are responsible for the strong IR emission features at 3.3, 6.2, 7.7, 8.6, 11.2 and 12.7mum seen towards most of the interstellar objects including HII regions, reflection nebulae, planetary nebulae, late-type stars, as well as active star-forming regions. These IR features result from the relaxation of vibrationally excited PAHs. As PAHs are stable enough to survive the interstellar conditions, they could possibly be responsible for the enigmatic Diffuse Interstellar Bands (DIBs) which are optical absorption features on the interstellar extinction curve. The fact that interstellar PAHs are more likely to be ions has motivated the study of radical PAHs. Protonated PAHs formed by H(+) addition to neutral parent molecules, denoted as HPAH(+) , are an important form of closed shell PAH cation. Protonated forms show electronic transitions in the visible part of the spectrum where most DIBs are present, whereas neutral forms generally show their strongest electronic transitions in the UV region. We also report quantum chemical calculations on HPAH(+) and DPAH(+) (D(+) attached to PAH) to get the electronic and IR spectra to understand the IR emission and DIB features. A comparison of theoretical spectra with the available experimental spectra has also been carried out.

  15. Spectroscopic studies on the interaction of bovine serum albumin with surfactants and apigenin

    Science.gov (United States)

    Zhao, Xu-Na; Liu, Yi; Niu, Li-Yuan; Zhao, Chen-Ping

    The binding of apigenin (Ap) to bovine serum albumin (BSA) has been studied using the methods of fluorescence spectroscopy and UV-vis absorption spectroscopy. The spectroscopic analysis of the quenching mechanism indicates that the quenching constants are inversely correlated with the temperatures and the quenching process could result from a static interaction. The type of interaction force was discussed and the binding site of Ap was in site I (subdomain IIA) of BSA. The thermodynamic parameters ΔH and ΔS are -42.02 kJ mol-1 and -48.31 J mol-1 K-1, respectively and the negative ΔG implying that the binding interaction was spontaneous. The distance r between BSA and Ap was calculated according to Förster's theory and the value is 3.44 nm. The synchronous and three-dimensional fluorescence spectra show that the binding of Ap to BSA could lead to the changes in the conformation and microenvironment of BSA. At the same time, the effects of ionic surfactants on the interaction of Ap and BSA have also been investigated.

  16. Spectroscopic and MD simulation studies on unfolding processes of mitochondrial carbonic anhydrase VA induced by urea.

    Science.gov (United States)

    Idrees, Danish; Prakash, Amresh; Haque, Md Anzarul; Islam, Asimul; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2016-09-01

    Carbonic anhydrase VA (CAVA) is primarily expressed in the mitochondria and involved in numerous physiological processes including lipogenesis, insulin secretion from pancreatic cells, ureagenesis, gluconeogenesis and neuronal transmission. To understand the biophysical properties of CAVA, we carried out a reversible urea-induced isothermal denaturation at pH 7.0 and 25°C. Spectroscopic probes, [θ]222 (mean residue ellipticity at 222 nm), F344 (Trp-fluorescence emission intensity at 344 nm) and Δε280 (difference absorption at 280 nm) were used to monitor the effect of urea on the structure and stability of CAVA. The urea-induced reversible denaturation curves were used to estimate [Formula: see text], Gibbs free energy in the absence of urea; Cm, the mid-point of the denaturation curve, i.e. molar urea concentration ([urea]) at which ΔGD = 0; and m, the slope (=∂ΔGD/∂[urea]). Coincidence of normalized transition curves of all optical properties suggests that unfolding/refolding of CAVA is a two-state process. We further performed 40 ns molecular dynamics simulation of CAVA to see the dynamics at different urea concentrations. An excellent agreement was observed between in silico and in vitro studies.

  17. Magnetic Resonance Spectroscopic Imaging (MRSI Study of Breast Cancer

    Directory of Open Access Journals (Sweden)

    K. B. Ashok

    2011-05-01

    Full Text Available Background: Breast cancer is the fifth most common cause of cancer death worldwide and most serious form of neoplastic diseases in both developed and developing countries. Mammography and ultrasound are the most often used screening methods in breast cancer. Magnetic Resonance Imaging (MRI uses the protons in water and fat to create the image of breast cancer. But recent studies says neoplastic breast lesions contains elevated choline concentration (tCho and altered mean apparent diffusion coefficient (ADC which can be used as good biomarkers to evaluate the cancer stages even follow up the Neoadjuvent Chemotherapy (NACT.Aim & Objectives:1. To evaluate the relation of age, tCho concentration and mean ADC with breast cancer.2. To estimate the correlation between the factors.3. To calculate the main difference between breast cancer patient before and after menopause.Methods/Study Design: This was a cross sectional, observational study done on 14 randomly selected diagnosed stage I breast cancer patients newly registered in surgery department of All India Institute of Medical Sciences, New Delhi, India during 3 months study period. Intentionally 7 of them were selected to be postmenopausal and rest 7 premenopausal. Patients with claustrophobia, serious illness, pacemaker or associated diseases were excluded. Volunteers were selected by lottery method after confirmation of absence of the exclusion criteria in them. All the breast MRS images were taken only after signing the consent form of being a volunteer for the study with breast coil. All the spectroscopic images were analyzed with computer technologies and SPPS software with the help of non-parametric statistical tests.Results/Findings: Mean age of patients were 44.85±6.97 where in premenopausal and postmenopausal women it was 40.14±4.59 and 49.57±5.26 respectively. tCho concentration was high in postmenopausal women (4.85±2.64 mmol/kg vs 3.72±1.64 where unlike to them premenopausal women

  18. Yeast Cytochrome c adsorption on SiO{sub 2}/Si substrates studied by in situ spectroscopic ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Toccafondi, Chiara, E-mail: toccafondi@fisica.unige.it [CNISM and Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cavalleri, Ornella [CNISM and Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Bisio, Francesco [CNR-SPIN, Corso F.M. Perrone 24 16152, Genova (Italy); Canepa, Maurizio [CNISM and Dipartimento di Fisica, Universitá di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2013-09-30

    In situ spectroscopic ellipsometry is employed to investigate the adsorption of Yeast Cytochrome c (YCC) on SiO{sub 2}/Si substrates. In order to highlight the slight variations induced by protein adsorption, difference spectra (δΔ and δΨ) have been considered, following the approach introduced in our previous studies on self-assembled monolayers. The difference spectra show a sharp dip at about 410 nm, the Soret or B band, related to the heme optical absorption, whose fine position is sensitive to the protein environment and to the oxidation state of the iron ion within the heme. Remarkably, the analysis of the difference spectra allowed us to detect two lower intensity dips in the 590–650 nm range, the Q bands, whose position and lineshape provide additional information on protein conformation and redox state. Quantitative reproduction of experimental data obtained by using a simple isotropic optical model, accounting for the molecular absorption spectrum, is presented. Estimates of the film thickness and determination of the position and shape of the heme-related features were obtained from calculations. The results are compared with those previously obtained in a study on YCC adsorption on Au substrates. Complementary ex-situ atomic force microscopy measurements are also presented. - Highlights: • Protein adsorption on SiO{sub 2}/Si was monitored by spectroscopic ellipsometry. • Yeast Cytochrome c (YCC) absorption features were detected in difference spectra. • The features exhibit changes in position and lineshape with respect to native ones. • The variations may be related to changes in YCC conformation upon adsorption.

  19. Spectroscopic study of heavy metals sorption on clinoptilolite

    Science.gov (United States)

    Mozgawa, W.; Bajda, T.

    Sorption of heavy metal cations (Pb(II), Cr(III), Cd(II), Ni(II)) from aqueous solutions on natural Na-clinoptilolite was studied using atomic absorption spectrometry (AAS) and FT-IR spectroscopy. It was found that the sorption capacity of clinoptilolite decreases in the following order: Pb(II) (22,600 mg/kg), Cr(III) (21,200 mg/kg), Cd(II) (10,400 mg/kg) and Ni(II) (6,200 mg/kg). In the FT-IR spectra of the samples, in the region of pseudolattice vibrations (500 800 cm-1), systematic changes connected with the type of cation and its concentration in the initial solution were observed. The proportions of ion exchange and chemisorption in the whole process of sorption were also estimated. It was found that the amount of cations sorbed on clinoptilolite depended on the concentrations and pH of the solutions used as well as on the contact time of zeolite-solution system. After 120 min of the reaction, despite the metal type, 90 100% of the total amount of cations were immobilized.

  20. Spectroscopic Study of Elements in Various Therapeutic Plants and Soil

    Directory of Open Access Journals (Sweden)

    Ali Rehman

    2014-11-01

    Full Text Available Objective: The study was designed with the aim to find out the concentrations of essential and non essential heavy metals such as Nickel, Copper, Iron, Zinc, Chromium, Cadmium and Lead in selected therapeutic plant samples and soil. Methods: Plant samples like Malva parviflora, Polygonum aviculare, Anagallis arvensis, Solanum nigrum, Coronopus didymus, Aerva tomentosa, Alternanthera pungens and Cenchrus ciliaris were collected from District Karak, Khyber Pakhtunkhwa, Pakistan. Dry method was adapted to digest the plant material and then heavy metals were investigated by using Flame Atomic Absorption Spectrophotometer. Results: Results showed that highest concentration of zinc was found in Polygonum aviculare 80.13 mg/kg followed by Anagallis arvensis 66.14 mg/kg. Similarly maximum amount of iron was recorded in Anagallis arvensis, 75.35 mg/kg followed by Cenchrus ciliaris 53.10 mg/kg. The copper concentration was found beyond the permissible limit in all therapeutic plants. Conclusion: The metals content in soil was higher as compared to the plant samples. The concentration of metals in each plant was also significantly different which may be due to the metals uptake rate of plants from the soil or metabolism of the plant.

  1. Percutaneous absorption of methimazole: an in vitro study of the absorption pharmacokinetics for two different vehicles.

    Science.gov (United States)

    Hill, K E; Mills, P C; Jones, B R; Bolwell, C F; Aberdein, D; Chambers, J P

    2015-12-01

    The use of transdermal medications in cats has become popular in veterinary medicine due to the ease of administration compared to oral medication. However, the research to support systemic absorption of drugs applied to the pinna after transdermal administration in cats is limited. The aim of this study was to characterize the percutaneous absorption pharmacokinetics of methimazole in a lipophilic vehicle compared to methimazole in Pluronic(®) lecithin organogel (PLO) using a finite dose applied to feline ear skin in an in vitro Franz cell model. The two formulations of methimazole (10 mg) were applied to the inner stratum corneum of six pairs of feline ears. The receptor medium was sampled up to 30 h post-administration, and methimazole concentrations were measured using high-performance liquid chromatography (HPLC). Histological examination of all ears was undertaken as small differences in the thickness of ear skin may have contributed to inter-individual differences in methimazole absorption between six cats. Methimazole was absorbed more completely across the pinnal skin when administered in the lipophilic vehicle compared to administration in the PLO gel (P < 0.001).

  2. Line-Mixing Relaxation Matrix model for spectroscopic and radiative transfer studies

    Science.gov (United States)

    Mendaza, Teresa; Martin-Torres, Javier

    2016-04-01

    We present a generic model to compute the Relaxation Matrix easily adaptable to any molecule and type of spectroscopic lines or bands in non-reactive molecule collisions regimes. It also provides the dipole moment of every transition and level population of the selected molecule. The model is based on the Energy-Corrected Sudden (ECS) approximation/theory introduced by DePristo (1980), and on previous Relaxation Matrix studies for the interaction between molecular ro-vibrational levels (Ben-Rueven, 1966), atoms (Rosenkranz, 1975), linear molecules (Strow and Reuter, 1994; Niro, Boulet and Hartmann, 2004), and symmetric but not linear molecules (Tran et al., 2006). The model is open source, and it is user-friendly. To the point that the user only has to select the wished molecule and vibrational band to perform the calculations. It reads the needed spectroscopic data from the HIgh-resolution TRANsmission molecular absorption (HITRAN) (Rothman et al., 2013) and ExoMol (Tennyson and Yurchenko, 2012). In this work we present an example of the calculations with our model for the case of the 2ν3 band of methane (CH4), and a comparison with a previous work (Tran et al., 2010). The data produced by our model can be used to characterise the line-mixing effects on ro-vibrational lines of the infrared emitters of any atmosphere, to calculate accurate absorption spectra, that are needed in the interpretation of atmospheric spectra, radiative transfer modelling and General Circulation Models (GCM). References [1] A.E. DePristo, Collisional influence on vibration-rotation spectral line shapes: A scaling theoretical analysis and simplification, J. Chem. Phys. 73(5), 1980. [2] A. Ben-Reuven, Impact broadening of microwave spectra, Phys. Rev. 145(1), 7-22, 1966. [3] P.W. Rosenkranz, Shape of the 5 mm Oxygen Band in the Atmosphere, IEEE Transactions on Antennas and Propagation, vol. AP-23, no. 4, pp. 498-506, 1975. [4] Strow, L.L., D.D. Tobin, and S.E. Hannon, A compilation of

  3. FTIR Spectroscopic Studies on Cross Linking of SU-8 Photoresist

    Science.gov (United States)

    Kalaiselvi, S. M. P.; Tan, T. L.; Rawat, R. S.; Lee, P.; Heussler, S. P.; Breese, M. B. H.

    2013-11-01

    The usage of chemically-amplified, negative tone SU-8 photoresist is numerous, spanning industrial, scientific and medical fields. Hence, in this study, some preliminary studies were conducted to understand the dosage and heat treatment requirements of the SU-8 photoresist essential for pattern generation using X-ray lithography. In this work, using Synchrotron as the X-ray source, SU-8 photoresist was characterized for X-ray lithography in terms of its process parameters such as X-ray exposure dose, post exposure bake (PEB) time and temperature for various photoresist thicknesses which is considered worthwhile in view of applications of SU-8 for the fabrication of very high aspect ratio micro structures. The process parameters were varied and the resultant cross linking of the molecular chains of the photoresist was accurately monitored using a Fourier Transform Infra-Red (FTIR) spectrometer and the results are discussed. The infrared absorption peak at 914 cm-1 in the spectrum of the SU-8 photoresist was found to be a useful indicator for the completion of cross linking in the SU-8 photoresist. Results show that the cross linking of the SU-8 photoresist is at a higher rate from 0 J/cm3 to 30 J/cm3 after which the peak almost saturates regardless of the PEB time. It is a good evidence for the validation of dosage requirement of SU-8 photoresist for effective completion of cross linking, which in turn is a requirement for efficient fabrication of micro and nano structures. An analogous behavior was also observed between the extent of cross linking and the PEB time and temperature. The rate of cross linking declines after a certain period of PEB time regardless of PEB temperature. The obtained results also show a definite relation between variation of the absorbance area of the peak at 914 cm-1 and the X-ray exposure dose.

  4. Kinetic and Diagnostic Studies of Molecular Plasmas Using Laser Absorption Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Welzel, S [INP-Greifswald, 17489 Greifswald, Felix-Hausdorff-Str. 2 (Germany); Rousseau, A [Laboratoire de Physique et Technologie des Plasmas, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Davies, P B [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Roepcke, J [INP-Greifswald, 17489 Greifswald, Felix-Hausdorff-Str. 2 (Germany)

    2007-10-15

    Within the last decade mid infrared absorption spectroscopy between 3 and 20 {mu}m, known as Infrared Laser Absorption Spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Information about gas temperature and population densities can also be derived from IRLAS measurements. A variety of free radicals and molecular ions have been detected, especially using TDLs. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes. The aim of the present article is threefold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas (ii) to report on selected studies of the spectroscopic properties and kinetic behaviour of radicals, and (iii) to describe the current status of advanced instrumentation for TDLAS in the mid infrared.

  5. Structural and spectroscopic studies of a commercial glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Imberti, Silvia; Callear, Samantha K. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX (United Kingdom); Albers, Peter W. [AQura GmbH, AQ-EM, Rodenbacher Chaussee 4, D-63457 Hanau (Germany)

    2013-12-12

    Highlights: • Structural and spectroscopic probes show that glassy carbon is very like amorphous carbon. • No evidence for fullerene-like material being present to a significant extent. • A small quantity of water is trapped in the network and may account for batch-to-batch variation in properties. - Abstract: Glassy carbon is a form of carbon made by heating a phenolic resin to high temperature in an inert atmosphere. It has been suggested that it is composed of fullerene-like structures. The aim of the present work was to characterize the material using both structural (neutron diffraction and transmission electron microscopy) and spectroscopic (inelastic neutron scattering, Raman and X-ray photoelectron spectroscopies) methods. We find no evidence to support the suggestion of fullerene-like material being present to a significant extent, rather the model that emerges from all of the techniques is that the material is very like amorphous carbon, consisting of regions of small graphite-like basic structural units of partly stacked but mismatched structure with the edges terminated by hydrogen or hydroxyls. We do find evidence for the presence of a small quantity of water trapped in the network and suggest that this may account for batch-to-batch variation in properties that may occur.

  6. Magnetization and Specific Absorption Rate Studies of Ball-Milled Iron Oxide Nanoparticles for Biomedicine

    Directory of Open Access Journals (Sweden)

    P. Burnham

    2013-01-01

    Full Text Available Comparative studies are presented of iron oxide nanoparticles in the 7–15 nm average diameter range ball milled in hexane in the presence of oleic acid. Transmission electron microscopy identified spherical particles of decreasing size as milling time and/or surfactant concentration increased. Micromagnetic characterization via Mössbauer spectroscopy at room temperature yielded broadened magnetic spectroscopic signatures, while macromagnetic characterization via vibrating sample magnetometry of 7-8 nm diameter particles showed largely superparamagnetic behavior at room temperature and hysteretic at 2 K. Zero-field and field-cooled magnetization curves exhibited a broad maximum at ~215 K indicating the presence of strong interparticle magnetic interactions. The specific absorption rates of ferrofluids based on these nanoparticle preparations were measured in order to test their efficacies as hyperthermia agents.

  7. Infrared and Raman spectroscopic studies of glasses with NASICON-type chemistry

    Indian Academy of Sciences (India)

    K J Rao; K C Sobha; Sundeep Kumar

    2001-10-01

    Structures of NASICON glasses of the general formula AB2(PO4)3, where A = Li, Na or K and B = Fe, Ga, Ti, V or Nb, have been investigated using vibrational (IR and Raman) spectroscopies. Phosphate species appear to establish an equilibrium via a disproportionation reaction involving a dynamical bond-switching mechanism where both charge and bonds are conserved. B ions in the system acquire different coordinations to oxygens. Alkali ions cause absorptions due to cage vibrations. All the observed spectroscopic features are consistent with speciation involving disproportionation reactions.

  8. Theoretical Study on Sulfur Dioxide Absorption with Citrate Solution

    Institute of Scientific and Technical Information of China (English)

    薛娟琴; 洪涛; 王召启; 李林波

    2006-01-01

    The citrate absorption of SO2 is currently one of the most successful and economic methods to harness sulfur dioxide pollution.In order to theoretically elucidate the mechanism of SO2 absorption by citrate solution and provide theoretical instruction for experiments and industrial process, the theory of multi-buffer solution, combined with computer numerical calculation methods, was applied to study the distribution parameters of the components of the citrate solution in the process of SO2 absorption and the following results were obtained: (1) HCi2- and H2Ci- in the citrate solution played the dominant role in the absorption and desorption processes; (2) Through the calculation for the buffer capacity of citrate solution, it was found that the pH of the absorption and desorption solution should be in the range of 2~8, while at pH=4.5 the buffer capacity reached its maximum. Some valuable parameters were obtained, which are instructive to the ensuing experiments and industrial design.

  9. Studies of Moisture Absorption and Release Behaviour of Akund Fiber

    Directory of Open Access Journals (Sweden)

    Xue Yang

    2012-01-01

    Full Text Available Akund fiber is a new type of natural cellulose fiber. Because of its excellent properties, akund fiber has become one of the new ecological materials which have huge development potential. Recently natural fibers have shown great promise in a variety of applications that were previously dominated by synthetic fibers due to their important aspects of biocompatibility, possible biodegradation, nontoxicity, and abundance. Moisture absorption and release behaviour of natural fiber plastic composites is one major concern in their outdoor applications. So the knowledge of the moisture content and the moisture absorption and release rate is very much essential for the application of akund fiber as an excellent reinforcement in polymers. An effort has been made to study the moisture absorption and release behaviour of akund fiber and the mechanical performance of it at relative air humidity from 0% to 100%. The gain and loss in moisture content in akund fiber due to water absorption and release were measured as a function of exposure time under the environment, in which temperature is 20°C and humidity is 65%. The regression equations of the absorption and release process were established.

  10. Study on Optical Absorption Behavior of Dyestuff in Fabric

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-ying; ZHU Su-kang; ZUO Lei; ZHU Ping-ping; PAN Ning

    2008-01-01

    Fabric is a kind of turbid materials with strong light scattering,to which the Kubelka-Munk theory can be applied to describe it optical behavior.In this paper,the light absorption coefficients of dyestuff in fabrics are obtained by test and calculation thnmgh a special method proposed by the authors.Then the optical behaviours of dyestuff in fabric are studied.Results show that,the absorption coeffident of dye in fabric is non-scalable and exponential to dye concentrafion in fabric which is totally different from that of the dye in transparent medm like water.

  11. Near-infrared spectroscopic studies of self-forming lipids and nanovesicles

    Science.gov (United States)

    Bista, Rajan K.; Bruch, Reinhard F.

    2009-02-01

    Lipids and liposomes have remained an active research topic for several decades due to their significance as membrane model. Several vibrational spectroscopic techniques have been developed and employed to study the properties of lipids and liposomes. In this study, near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids trademarked as QuSomesTM. The three amphiphiles used in this study, differ in their apolar hydrophobic chain length and contain various units of polar polyethylene glycol (PEG) head groups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes spontaneously upon hydration, without the supply of external activation energy. Whilst the NIR spectra of QuSomesTM show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm-1 (~2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In particular, we have established specific band structures as "molecular fingerprints" corresponding to overtones and combinations vibrational modes involving mainly C-H and O-H functional groups for sample analysis of QuSomesTM. Moreover, we have demonstrated that the nanovesicles formed by such lipids in polar solvents show high stability and obey Beer's law at low concentration. The results reported in this study may find applications in various field including the development of lipids based drug delivery systems.

  12. Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation.

    Science.gov (United States)

    Chang, Han-Wei; Lu, Ying-Rui; Chen, Jeng-Lung; Chen, Chi-Liang; Lee, Jyh-Fu; Chen, Jin-Ming; Tsai, Yu-Chen; Chang, Chien-Min; Yeh, Ping-Hung; Chou, Wu-Ching; Liou, Ya-Hsuan; Dong, Chung-Li

    2015-02-07

    The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structures of the MnO2/functionalized CNTs (MnO2/C-CNT and MnO/N-CNT) during the charge/discharge process, in situ X-ray absorption spectroscopy (XAS) measurements were made at the Mn K-edge. Both C-CNT and N-CNT are highly conductive. The effect of the scan rate on the capacitance behavior was also examined, revealing that the π* state of CNT and the size of the tunnels in pseudo-capacitor materials (which facilitate conduction and the transport of electrolyte ions) are critical for the capacitive performance, and their role depends on the scan rate. In the slow charge/discharge process, MnO2/N-CNT has a more symmetrical rectangular cyclic voltammetry (CV) curve. In the fast charge/discharge process, MnO2/C-CNT with a highly developed surface provides fast electronic and ionic channels that support a reversible faradaic redox reaction between MnO2 nanoflakes and the electrolyte, significantly enhancing its capacitive performance over that of MnO2/N-CNT. The MnO2/C-CNT architecture has great potential for supercapacitor applications. The information that was obtained herein helps to elucidate CNT surface modification and the design of the MnO2/functionalized CNT interface with a view for the further development of supercapacitors. This work, and especially the combination of CV with in situ XAS measurements, will be of value to readers with an interest in nanomaterial, nanotechnology and their applications in energy storage.

  13. Raman spectroscopic study of a genetically altered kidney cell

    Science.gov (United States)

    Joshi, Joel; Garcia, Francisco; Centeno, Silvia P.; Joshi, N. V.

    2008-02-01

    A Raman spectroscopic investigation of a genetically altered Human Embryonic Kidney Cell (HEK293) along with a pathologically normal cell has been carried out by a conventional method. The genetic alteration was carried out with a standard protocol by using a Green Fluorescence Protein (GFP). Raman spectra show that there are dramatic differences between the spectrum obtained from a genetically altered cell and that obtained from a pathologically normal cell. The former shows three broad bands; meanwhile the latter shows several sharp peaks corresponding to the ring vibrational modes of Phen, GFP and DNA. The present analysis provides an indication that the force field near Phen located at 64, 65 and 66 was altered during the genetic transformation. The Raman spectrum could be a direct experimental evidence for substantial modifications triggered due to the expression of specific genes.

  14. Models of chemical biosignatures - a vibrational spectroscopic study

    Science.gov (United States)

    Bödeker, B.; Böttger, U.; Hübers, H.-W.; deVera, J.-P.; Fox, S.; Strasdeit, H.

    2013-09-01

    Investigating possible biosignatures is of central interest in the search for the oldest traces of terrestrial life. Possible biosignatures are: (i) physical structures, such as fossilized single-celled or colonyforming microorganisms; (ii) biomolecules and their altered residues (chemical biosignatures); (iii) altered element, isotope and mineral compositions in former microbial habitats and related effects caused by metabolic activity [1]. New insights in this field of research are also important in the search for life on other planets and moons, especially Mars. However, abiotically formed organic compounds are widely distributed in the universe. Therefore, in future Mars missions, it will be essential to know whether organic molecules are actually of biological origin. Here, we describe the syntheses and spectroscopic (Raman and infrared) properties of artificial chemical biosignatures that might help answering this question.

  15. Nanoflaky MnO2/functionalized carbon nanotubes for supercapacitors: an in situ X-ray absorption spectroscopic investigation

    Science.gov (United States)

    Chang, Han-Wei; Lu, Ying-Rui; Chen, Jeng-Lung; Chen, Chi-Liang; Lee, Jyh-Fu; Chen, Jin-Ming; Tsai, Yu-Chen; Chang, Chien-Min; Yeh, Ping-Hung; Chou, Wu-Ching; Liou, Ya-Hsuan; Dong, Chung-Li

    2015-01-01

    The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox reaction. C-CNT was found to have a lower edge plane structure and fewer defect sites than N-CNT. MnO2/C-CNT with a highly developed surface area exhibited favorable electrochemical performance. To determine the atomic/electronic structures of the MnO2/functionalized CNTs (MnO2/C-CNT and MnO/N-CNT) during the charge/discharge process, in situ X-ray absorption spectroscopy (XAS) measurements were made at the Mn K-edge. Both C-CNT and N-CNT are highly conductive. The effect of the scan rate on the capacitance behavior was also examined, revealing that the π* state of CNT and the size of the tunnels in pseudo-capacitor materials (which facilitate conduction and the transport of electrolyte ions) are critical for the capacitive performance, and their role depends on the scan rate. In the slow charge/discharge process, MnO2/N-CNT has a more symmetrical rectangular cyclic voltammetry (CV) curve. In the fast charge/discharge process, MnO2/C-CNT with a highly developed surface provides fast electronic and ionic channels that support a reversible faradaic redox reaction between MnO2 nanoflakes and the electrolyte, significantly enhancing its capacitive performance over that of MnO2/N-CNT. The MnO2/C-CNT architecture has great potential for supercapacitor applications. The information that was obtained herein helps to elucidate CNT surface modification and the design of the MnO2/functionalized CNT interface with a view for the further development of supercapacitors. This work, and especially the combination of CV with in situ XAS measurements, will be of value to readers with an interest in nanomaterial, nanotechnology and their applications in energy storage.The surfaces of acid- and amine-functionalized carbon nanotubes (C-CNT and N-CNT) were decorated with MnO2 nanoflakes as supercapacitors by a spontaneous redox

  16. Synthesis, spectroscopic properties and theoretical studies of bis-Schiff bases derived from polyamine and pyrazolones.

    Science.gov (United States)

    Ren, Tiegang; Liu, Shuyun; Li, Guihui; Zhang, Jinglai; Guo, Jia; Li, Weijie; Yang, Lirong

    2012-11-01

    A series of novel bis-Schiff base were synthesized from 1-aryl-3-methyl-4-benzoyl-5-pyrazolones and diethylenetriamine (or triethylenetetramine) as the starting materials. All of these bis-Schiff bases were characterized by means of NMR, IR, and MS. The UV-vis absorption spectra and fluorescent spectra of these bis-Schiff bases were also measured. Moreover, the B3LYP/6-31G(d) method was used to optimize the ground state geometry of the bis-Schiff bases; and the UV-vis spectroscopic properties of the products were computed and compared with corresponding experimental data based on cc-pVDZ basis set of TD-B3LYP method. It has been found that all of these bis-Schiff bases show a remarkable absorption peak in a wavelength range of 270-340 nm; and their maximum emission peaks are around 348 nm.

  17. Spectroscopic studies of molybdenum complexes as models for nitrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Walker, T.P.

    1981-05-01

    Because biological nitrogen fixation requires Mo, there is an interest in inorganic Mo complexes which mimic the reactions of nitrogen-fixing enzymes. Two such complexes are the dimer Mo/sub 2/O/sub 4/ (cysteine)/sub 2//sup 2 -/ and trans-Mo(N/sub 2/)/sub 2/(dppe)/sub 2/ (dppe = 1,2-bis(diphenylphosphino)ethane). The H/sup 1/ and C/sup 13/ NMR of solutions of Mo/sub 2/O/sub 4/(cys)/sub 2//sup 2 -/ are described. It is shown that in aqueous solution the cysteine ligands assume at least three distinct configurations. A step-wise dissociation of the cysteine ligand is proposed to explain the data. The Extended X-ray Absorption Fine Structure (EXAFS) of trans-Mo(N/sub 2/)/sub 2/(dppe)/sub 2/ is described and compared to the EXAFS of MoH/sub 4/(dppe)/sub 2/. The spectra are fitted to amplitude and phase parameters developed at Bell Laboratories. On the basis of this analysis, one can determine (1) that the dinitrogen complex contains nitrogen and the hydride complex does not and (2) the correct Mo-N distance. This is significant because the Mo inn both complexes is coordinated by four P atoms which dominate the EXAFS. A similar sort of interference is present in nitrogenase due to S coordination of the Mo in the enzyme. This model experiment indicates that, given adequate signal to noise ratios, the presence or absence of dinitrogen coordination to Mo in the enzyme may be determined by EXAFS using existing data analysis techniques. A new reaction between Mo/sub 2/O/sub 4/(cys)/sub 2//sup 2 -/ and acetylene is described to the extent it is presently understood. A strong EPR signal is observed, suggesting the production of stable Mo(V) monomers. EXAFS studies support this suggestion. The Mo K-edge is described. The edge data suggests Mo(VI) is also produced in the reaction. Ultraviolet spectra suggest that cysteine is released in the course of the reaction.

  18. Effects of Omeprazole on Iron Absorption: Preliminary Study

    Directory of Open Access Journals (Sweden)

    Mahmut Yaşar Çeliker

    2013-09-01

    Full Text Available Objective: Increasing numbers of pediatric and adult patients are being treated with proton pump inhibitors (PPIs. PPIs are known to inhibit gastric acid secretion. Nonheme iron requires gastric acid for conversion to the ferrous form for absorption. Ninety percent of dietary and 100% of oral iron therapy is in the nonheme form. To the best of our knowledge, the effect of PPIs on iron absorption has not been studied in humans. Our study assessed the relationship between omeprazole therapy and iron absorption in healthy subjects. Materials and Methods: We recruited 9 healthy volunteers between June 2010 and March 2011. Subjects with chronic illness, anemia, or use of PPI therapy were excluded. Serum iron concentrations were measured 1, 2, and 3 h after the ingestion of iron (control group. The measurements were repeated on a subsequent visit after 4 daily oral administrations of omeprazole at a dose of 40 mg (treatment group. Results: One female and 8 male volunteers were enrolled in the study with a mean age of 33 years. There was no statistical difference detected between baseline, 1-h, 2-h, and 3-h iron levels between control and treatment groups. Conclusion: Administration of omeprazole for a short duration does not affect absorption of orally administered iron in healthy individuals.

  19. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    CERN Document Server

    Mehdipour, M; Kallman, T

    2016-01-01

    Atomic data and plasma models play a crucial role in diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter $\\xi$, we find that on average there is about 30% deviation between the codes in $\\xi$ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in $\\xi$ is smaller at about 10% on average. The comparison of the absorp...

  20. Spectroscopic and molecular docking techniques study of the interaction between oxymetholone and human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Madrakian, Tayyebeh, E-mail: madrakian@basu.ac.ir; Bagheri, Habibollah; Afkhami, Abbas; Soleimani, Mohammad

    2014-11-15

    In this study, the binding of oxymetholone (OXM), a doping drug, to human serum albumin (HSA) was explored at pH 7.40 by spectroscopic methods including spectrofluorimetry, three dimensional excitation–emission matrix (3D EEM), UV–vis absorption, resonance rayleigh scattering (RRS) and molecular docking. The fluorescence results showed that there was a considerable quenching of the intrinsic fluorescence of HSA upon binding to OXM by static quenching mechanism. The Stern–Volmer quenching constants (K{sub SV}) between OXM and HSA at three different temperatures 295, 303, 308 K, were obtained as 4.63×10{sup 4}, 3.05×10{sup 4} and 1.49×10{sup 4} L mol{sup −1}, respectively. Furthermore this interaction was confirmed by UV–vis spectrophotometric and RRS techniques. The binding site number, n, apparent binding constant, K{sub b}, and corresponding thermodynamic parameters (ΔS, ΔH and ΔG) were measured at different temperatures. The Van der Waals and hydrogen-bond forces were found to stabilize OXM–HSA complex. The distance (r) between the donor and acceptor was obtained from Förster's theory of fluorescence resonance energy transfer (FRET) and found to be 1.67 nm. The 3D EEM showed that OXM slightly changes the secondary structure of HSA. Furthermore, the molecular docking was employed for identification of drug binding sites and interaction of OXM with amino acid residues. - Highlights: • The binding of OXM as a doping drug with HSA was studied by different techniques. • The binding constant of HSA–OXM was calculated. • The binding site of OXM on HSA was characterized with molecular docking. • The thermodynamic parameters were calculated according to fluorescence technique.

  1. Monitoring a CuO gas sensor at work: an advanced in situ X-ray absorption spectroscopy study.

    Science.gov (United States)

    Volanti, D P; Felix, A A; Suman, P H; Longo, E; Varela, J A; Orlandi, M O

    2015-07-28

    X-ray absorption near edge structure (XANES) and electrical measurements were used to elucidate the local structure and electronic changes of copper(II) oxide (CuO) nanostructures under working conditions. For this purpose, a sample holder layout was developed enabling the simultaneous analysis of the spectroscopic and electrical properties of the sensor material under identical operating conditions. The influence of different carrier gases (e.g., air and N2) on the CuO nanostructures behavior under reducing conditions (H2 gas) was studied to analyze how a particular gas atmosphere can modify the oxidation state of the sensor material in real time.

  2. A study of optical and ESR radiation-induced absorptions in TeO2 single crystals

    Science.gov (United States)

    Kappers, L. A.; Gilliam, O. R.; Bartram, R. H.; Földv&Ári, I.; Watterich, A.

    Gamma-ray and 1.5-MeV electron irradiations are employed in the temperature range 25-175°C to produce radiation effects in undoped paratellurite (α-TeO2) single crystals. Optical absorption and ESR techniques are used to study the growth and annealing of point defects, and spectroscopic observations by these two methods are compared. Pulseannealing experiments are reported over the range 100-500°C. The TeO2 crystal shows much more susceptibility to radiation damage at the higher irradiation temperatures.

  3. ATR-FTIR and UV-Vis Spectroscopic Studies of Aqueous U(IV)-oxalate Complexes under Mild Acidic Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Wansik; Jung, Euo Chang; Cho, Hyeryun; Park, Yangsoon; Ha, Yeongkeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The redox transformation process between U(VI) and U(IV) likely involves the participation of soluble or dissolved U(IV) species, such as U(IV)-hydroxo compounds and organic/inorganic ligand complexes. However, their role in the redox process has not been well documented, partly due to the ready oxidation of soluble U(IV) species, and partly due to the assumption that soluble or dissolved forms of U(IV) account for only a minor fraction of uranium in groundwater systems. In this study, a bidentate chelate ligand, oxalate (Ox) was selected to examine the complexation behaviors of U(IV) and ultimately its impact on the U(IV) solubility in mildly acidic solutions. Although some early studies reported that oxalate and pyrophosphate, i. e., multivalent anions, can form soluble U(IV) complexes, the related thermodynamic data and evidences for chemical speciation are very scarce. In our previous work, the U(IV)-Ox 1:1 complex was identified by monitoring the gradual transition of the characteristic absorption spectrum of U(OH){sup 3+} to that of UOx{sup 2+} upon the addition of oxalate at pH 1.6.2.0. This work aims to further provide spectroscopic evidence for the formation of multi-ligand complexes, i. e., U(Ox)n{sup 4-2n} (n ≥ 2) at pH 2-5 using attenuated total reflectance (ATR)- FTIR spectroscopy and UV-Vis absorption spectroscopy. The solid phase of U(IV)-Ox complex system was also characterized through an XRD analysis. Analysis of the FTIR spectra is found to be useful to determine the complexation stoichiometry and to obtain the structural information of the complexes. The outcome of the spectroscopic analysis for the multi-ligand complexation equilibria will be discussed in detail.

  4. Dielectric and impedance spectroscopic studies of neodymium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Sakhya, Anup Pradhan, E-mail: npshakya31@gmail.com [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India); Dutta, Alo [Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India); Sinha, T.P. [Department of Physics, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700009 (India)

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO{sub 3} (NGO), synthesized by the sol–gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  5. Dielectric and impedance spectroscopic studies of neodymium gallate

    Science.gov (United States)

    Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.

    2016-05-01

    The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.

  6. Spectroscopic studies of triethoxysilane sol-gel and coating process.

    Science.gov (United States)

    Li, Ying-Sing; Ba, Abdul

    2008-10-01

    Silica sol-gels have been prepared under different conditions using triethoxysilane (TES) as precursor. The prepared sol-gels have been used to coat aluminum for corrosion protection. Vibrational assignments have been made for most vibration bands of TES, TES sol-gel, TES sol-gel-coated aluminum and xerogel. It has been noticed that air moisture may have helped the hydrolysis of the thin coating films. Xerogels have been obtained from the sol-gel under different temperature conditions and the resulting samples have been characterized by using infrared and Raman spectroscopic methods. IR data indicate that the sol-gel process is incomplete under the ambient conditions although an aqueous condition can have slightly improved the process. Two nonequivalent silicon atoms have been identified from the collected 29Si NMR spectra for the sol-gel, supporting the result derived from the IR data. The frequency of Si-H bending vibration has been found to be more sensitive to the skeletal structure than that of the Si-H stretching vibration. A higher temperature condition could favor the progression of hydrolysis and condensation. A temperature higher than 300 degrees C would cause sample decomposition without seriously damaging the silica network. From infrared intensity measurements and thermo-gravimetric analyses, the fractions of incomplete hydrolysis and condensation species have been estimated to be 4% and 3%, respectively. Electrochemical data have shown that the sol-gel coating significantly improves the corrosion protection properties of aluminum.

  7. A spectroscopic study of field BHB star candidates

    CERN Document Server

    Kinman, T D; Cacciari, C; Bragaglia, A; Harmer, D; Valdes, F G

    2000-01-01

    New spectroscopic observations (R=15000 and 40000) are given for 31 nearby (V < 11) BHB star candidates. IUE low-resolution spectra are available for most of them. New determinations of temperature, gravity, reddening and abundances were obtained from these data using models computed by Castelli with an updated version of the ATLAS9 code. A summary of the visual photometry for these stars (including new photometry obtained at Kitt Peak) is also given. All 31 candidates are halo stars. We classify 28 as BHB stars because: (1) They lie close to the ZAHB (in a similar position to globular cluster BHB stars) in the Teff vs. log g plot. (2) Their distribution of vsini (less than 40 km/s) is similar to that found for the BHB stars in globular clusters. (3) Their [Fe/H] lies between -0.99 and -2.95 (mean [Fe/H] -1.67, dispersion 0.42 dex) which is similar to that found for field halo RR Lyrae and red HB stars but more metal- poor than for halo globular clusters. Field BHB stars with Teff greater than 8500 K show ...

  8. Study on the interaction between amphiphilic drug and bovine serum albumin: A thermodynamic and spectroscopic description

    Energy Technology Data Exchange (ETDEWEB)

    Rub, Malik Abdul, E-mail: malikrub@gmail.com [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Khan, Javed Masood [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Asiri, Abdullah M. [Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Khan, Rizwan Hasan, E-mail: rizwanhkhan1@gmail.com [Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002 (India); Kabir-ud-Din [Department of Applied Chemistry, Aligarh Muslim University, Aligarh-202002 (India)

    2014-11-15

    Herein we report the interaction of amphiphilic drug clomipramine hydrochloride (CLP—a tricyclic antidepressant) with bovine serum albumin (BSA) studied by fluorescence, UV–vis, and circular dichroism (CD) spectroscopic techniques. Clomipramine hydrochloride is used to treat a variety of mental health problems. The quenching rate constant (k{sub q}) values, calculated according to the fluorescence data, decrease with increase in temperature indicating the static quenching procedure for the CLP–BSA interaction. The association binding constants (K{sub A}), evaluated at different conditions, and the thermodynamic parameters (free energy, enthalpy and entropy changes) indicate that the hydrophobic forces play a major role in the binding interaction of drug. The interaction of BSA with CLP was further confirmed by UV absorption spectra. Blue shift of position was detected due to the complex formation between the BSA–CLP. The molecular distance, r{sub 0}, between donor (BSA) and acceptor (CLP) was estimated by fluorescence resonance energy transfer (FRET) whose value (4.47 nm) suggests high probability of static quenching interaction. The CD results prove the conformational changes in the BSA on binding with the drug. Thus, the results supply qualitative and quantitative understanding of the binding of BSA to CLP, which is important in understanding their effect as therapeutic agents. - Highlights: • BSA can be considered as a good carrier for transportation of CLP in vivo. • The fluorescence results indicated the presence of static quenching mechanism in the binding process. • CD spectra showed the change in molecular conformation of BSA in the presence of CLP. • The results have applicability in model drug delivery.

  9. Spectroscopic studies of cryogenic fluids: Benzene in nitrogen

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-05-01

    Energy shifts and bandwidths for the 1B2u←1A1g optical absorption of benzene in supercritical nitrogen are presented as a function of pressure, temperature, and density. The pressure and density dependence of energy shifts of room temperature emission of benzene in nitrogen fluid is also reported. Both absorption and emission spectra exhibit shifts to lower energy as a function of density, whereas almost no spectral shifts are observed if the density is kept constant and temperature and pressure varied simultaneously. Thus, density is the fundamental microscopic parameter for energy shifts of optical transitions in supercritical nitrogen. This result is analogous to the findings for the liquid benzene/propane system and can be interpreted qualitatively in terms of changes occurring in the intermolecular potential; however, in the benzene/supercritical nitrogen system an additional small density independent temperature effect on the transition energy has been identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and microscopic quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute electronic spectra. Reasonably good agreement between experiment and theory is found. The results demonstrate that liquid state theory can be used to describe the supercritical nitrogen fluid.

  10. Spectroscopic, docking and molecular dynamics simulation studies on the interaction of two Schiff base complexes with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Fani, N. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Bordbar, A.K., E-mail: bordbar@chem.ui.ac.ir [Department of Chemistry, University of Isfahan, Isfahan 81746-73441 (Iran, Islamic Republic of); Ghayeb, Y. [Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of)

    2013-09-15

    This study was designed to examine the interaction of two Schiff base complexes with human serum albumin (HSA), by different kinds of spectroscopic and molecular modeling techniques. Fluorescence quenching and absorption spectra were investigated in order to estimate the binding parameters. The analysis of absorption data at different temperatures were done in order to estimate the thermodynamics parameters of interactions between Schiff base complexes and HSA. The experimental data suggested that both complexes demonstrated a significant binding affinity to HSA and the process is enthalpy driven. Molecular docking study indicated that both Schiff base complexes bind to polar and apolar residues located in the subdomain IB of HSA. Molecular dynamics (MD) simulations were also performed with the GROMACS program package to study the characters of HSA in binding states. Molecular dynamics results suggested that both Schiff base complexes can interact with HSA, without affecting the secondary structure of HSA but probably with a slight modification of its tertiary structure. All the molecular docking and molecular dynamics results kept in good consistence with experimental data. -- Highlights: • The fluorescence of HSA quenched due to reacting with Schiff base complexes. • The absorbance of Schiff base complexes in the presence of HSA changed. • Binding parameters and the pose of the molecules in the binding site were estimated. • Both complexes can interact with HSA, without affecting the secondary structure. • Simulation results predicted slight compactness of tertiary structure for HSA.

  11. Fourier-transform infrared spectroscopic studies of dithia tetraphenylporphine

    Indian Academy of Sciences (India)

    Sandeep Mishra; Sarvpreet Kaur; S K Tripathi; C G Mahajan; G S S Saini

    2006-07-01

    We present here infrared absorption spectra of dithia tetraphenylporphine and its cation in the 450-1600 and 2900-3400 cm-1 regions. Most of the allowed IR bands are observed in pairs due to overall 2ℎ point group symmetry of the molecule. The observed bands have been assigned to the porphyrin skeleton and phenyl ring modes. Some weak bands, which are forbidden under 2ℎ, also appear in the spectra due to the distortion of the molecule from planarity-caused by the out-of-plane positioned N and S atoms. Increased intensity of some phenyl ring bands compared to free-base tetraphenylporphine is explained on the basis of rotation of phenyl rings towards the mean molecular plane. Contrary to the point group symmetry of cation of dithia tetraphenylporphine, certain bands are observed to be degenerate due to identical bonding arrangements in pyrrole rings of the cation.

  12. Spectroscopic studies of cryogenic fluids: Benzene in argon and helium

    Science.gov (United States)

    Nowak, R.; Bernstein, E. R.

    1987-09-01

    Energy shifts and bandwidths of the 610 vibronic feature of the 1B2u←1A1g optical absorption spectrum of benzene dissolved in supercritical argon and helium, and in liquid argon are reported as a function of pressure, temperature, and density. Benzene/Ar solutions display red shifts of the 610 transition with increasing density but the dependence is found to be nonlinear at high densities. Benzene/He solutions evidence blue shifts of the 610 transition as a function of increasing density which also becomes nonlinear at high densities. Only small spectral shifts are recorded if the density is kept constant and pressure and temperature are varied simultaneously. In addition, a small density independent temperature effect on the transition energy shift is identified. Experimental results are compared to dielectric (Onsager-Böttcher and Wertheim) and quantum statistical mechanical (Schweizer-Chandler) theories of solvent effects on solute absorption energy. Reasonably good agreement between experiment and theory is found only for the benzene/Ar system at relatively low densities. The theory fails to predict energy shifts for both the benzene/He and high density benzene/Ar systems. This result is different from the findings for the benzene/N2 and benzene/C3H8 solutions and can be interpreted qualitatively in terms of competition between dispersive attractive and repulsive interactions as a function of density. The failure of the theory to describe these transition energy shifts is attributed to the omission of explicit repulsive interactions terms in the theoretical models employed.

  13. Spectroscopic study of molecular structure, antioxidant activity and biological effects of metal hydroxyflavonol complexes

    Science.gov (United States)

    Samsonowicz, Mariola; Regulska, Ewa

    2017-02-01

    Flavonols with varied hydroxyl substitution can act as strong antioxidants. Thanks to their ability to chelate metals as well as to donate hydrogen atoms they have capacity to scavenge free radicals. Their metal complexes are often more active in comparison with free ligands. They exhibit interesting biological properties, e.g. anticancer, antiphlogistic and antibacterial. The relationship between molecular structure and their biological properties was intensively studied using spectroscopic methods (UV-Vis, IR, Raman, NMR, ESI-MS). The aim of this paper is review on spectroscopic analyses of molecular structure and biological activity of hydroxyflavonol metal complexes.

  14. Spectroscopic Study of Low-Lying 16N Levels

    Energy Technology Data Exchange (ETDEWEB)

    Bardayan, Daniel W [ORNL; O' Malley, Patrick [Rutgers University; Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee, Knoxville (UTK); Chipps, K. [Colorado School of Mines, Golden; Cizewski, J. A. [Rutgers University; Hatarik, Robert [Rutgers University; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Moazen, Brian [University of Tennessee, Knoxville (UTK); Nesaraja, Caroline D [ORNL; Pain, Steven D [ORNL; Paulauskas, Stanley [University of Tennessee, Knoxville (UTK); Peters, W. A. [Rutgers University; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Schmitt, Kyle [University of Tennessee, Knoxville (UTK); ShrinerJr., J. F. [Tennessee Technological University; Smith, Michael Scott [ORNL

    2008-01-01

    The magnitude of the 15N(n,gamma)16N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying 16N levels. A new study of the 15N(d,p)16N reaction is reported populating the ground and first three excited states in 16N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated 15N(n,gamma)16N reaction rates are presented.

  15. Spectroscopic Signatures and Structural Motifs of Dopamine: a Computational Study

    Science.gov (United States)

    Srivastava, Santosh Kumar; Singh, Vipin Bahadur

    2016-06-01

    Dopamine (DA) is an essential neurotransmitter in the central nervous system and it plays integral role in numerous brain functions including behaviour, cognition, emotion, working memory and associated learning. In the present work the conformational landscapes of neutral and protonated dopamine have been investigated in the gas phase and in aqueous solution by MP2 and DFT (M06-2X, ωB97X-D, B3LYP and B3LYP-D3) methods. Twenty lowest energy structures of neutral DA were subjected to geometry optimization and the gauche conformer, GIa, was found to be the lowest gas phase structure at the each level of theory in agreement with the experimental rotational spectroscopy. All folded gauche conformers (GI) where lone electron pair of the NH2 group is directed towards the π system of the aromatic ring ( 'non up' ) are found more stable in the gas phase. While in aqueous solution, all those gauche conformers (GII) where lone electron pair of the NH2 group is directed opposite from the π system of the aromatic ring ('up' structures) are stabilized significantly.Nine lowest energy structures, protonated at the amino group, are optimized at the same MP2/aug-cc-pVDZ level of theory. In the most stable gauche structures, g-1 and g+1, mainly electrostatic cation - π interaction is further stabilized by significant dispersion forces as predicted by the substantial differences between the DFT and dispersion corrected DFT-D3 calculations. In aqueous environment the intra-molecular cation- π distance in g-1 and g+1 isomers, slightly increases compared to the gas phase and the magnitude of the cation- π interaction is reduced relative to the gas phase, because solvation of the cation decreases its interaction energy with the π face of aromatic system. The IR intensity of the bound N-H+ stretching mode provides characteristic 'IR spectroscopic signatures' which can reflect the strength of cation- π interaction energy. The CC2 lowest lying S1 ( 1ππ* ) excited state of neutral

  16. Infrared spectroscopic study of carrier scattering in gated CVD graphene

    Science.gov (United States)

    Yu, Kwangnam; Kim, Jiho; Kim, Joo Youn; Lee, Wonki; Hwang, Jun Yeon; Hwang, E. H.; Choi, E. J.

    2016-12-01

    We measured Drude absorption of gated CVD graphene using far-infrared transmission spectroscopy and determined the carrier scattering rate (γ ) as a function of the varied carrier density (n ). The n -dependent γ (n ) was obtained for a series of conditions systematically changed as (10 K, vacuum) → (300 K, vacuum) → (300 K, ambient pressure), which reveals that (1) at low-T, charged impurity (=A /√{n } ) and short-range defect (=B √{n } ) are the major scattering sources which constitute the total scattering γ =A /√{n }+B √{n } , (2) among various kinds of phonons populated at room-T , surface polar phonon of the SiO2 substrate is the dominantly scattering source, and (3) in air, the gas molecules adsorbed on graphene play a dual role in carrier scattering as charged impurity center and resonant scattering center. We present the absolute scattering strengths of those individual scattering sources, which provides the complete map of scattering mechanism of CVD graphene. This scattering map allows us to find out practical measures to suppress the individual scatterings, the mobility gains accompanied by them, and finally the ultimate attainable carrier mobility for CVD graphene.

  17. Molecular Spectroscopic Study on the Interaction between Heparin and Neutral Red

    Institute of Scientific and Technical Information of China (English)

    Li ZHANG; Na LI; Feng Lin ZHAO; Ke An LI

    2004-01-01

    The interaction between heparin and neutral red was investigated by molecular spectroscopic methods. The change of all spectra suggested that positively charged neutral red had interacted with negatively charged heparin. The study of influence factors indicated that electrostatic force and hydrophobic bond might be involved in the interaction. The total binding number per disaccharide unit and intrinsic binding constant were obtained using Scatchard model.

  18. Complexation of roxatidine acetate hydrochloride with beta-cyclodextrin: NMR spectroscopic study.

    Science.gov (United States)

    Ali, S M; Maheshwari, A; Asmat, F

    2004-08-01

    A NMR spectroscopic study of mixtures of varying ratios of roxatidine acetate hydrochloride (RAH) and beta-cyclodextrin (beta-CD) in D2O revealed the formation of a 1:1 inclusion compound. The aromatic ring of RAH selectively penetrates the beta-CD cavity in preference to the piperidine ring.

  19. Comparison of pharmaceutical formulations: ATR-FTIR spectroscopic imaging to study drug-carrier interactions.

    Science.gov (United States)

    Ewing, Andrew V; Biggart, Gordon D; Hale, Carwyn R; Clarke, Graham S; Kazarian, Sergei G

    2015-11-10

    Attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopic imaging has been used in combination with UV detection to study the release of a model poorly water-soluble drug, indomethacin, when formulated with selected drug carriers. Firstly, formulations of indomethacin and nicotinamide in varying weight ratios were studied since novel tablet dosage forms containing multi-drugs are of industrial interest. The in situ spectroscopic imaging measurements of the dissolving tablets showed that as the loading of indomethacin was increased, the rate of drug release changed from one that expressed first-order drug release to one which showed zero-order drug release. Two drug release mechanisms have been identified from the recorded spectroscopic images and UV dissolution profiles. To further validate these mechanisms, specific formulations containing the model drug and two other excipients, urea and mannitol, were studied. The formulations with urea showed similar first-order release, indicative of the drug-carrier interactions. Whereas, the indomethacin/mannitol formulations showed a zero-order release curve explained by disintegration of the tablet. ATR-FTIR spectroscopic imaging provided highly chemically specific information as well as the spatial distribution of the components during the dissolution process which has demonstrated the potential of this combined analytical setup to determine the mechanisms of drug release.

  20. Sound absorption study of raw and expanded particulate vermiculites

    Science.gov (United States)

    Vašina, Martin; Plachá, Daniela; Mikeska, Marcel; Hružík, Lumír; Martynková, Gražyna Simha

    2016-12-01

    Expanded and raw vermiculite minerals were studied for their ability to absorb sound. Phase and structural characterization of the investigated vermiculites was found similar for both types, while morphology and surface properties vary. Sound waves reflect in wedge-like structure and get minimized, and later are absorbed totally. We found that thanks to porous character of expanded vermiculite the principle of absorption of sound into layered vermiculite morphology is analogous to principle of sound minimization in "anechoic chambers." It was found in this study that the best sound damping properties of the investigated vermiculites were in general obtained at higher powder bed heights and higher excitation frequencies.

  1. Synthesis, structure, spectroscopic investigations, and computational studies of optically pure β-ketoamide

    Science.gov (United States)

    Mtat, D.; Touati, R.; Guerfel, T.; Walha, K.; Ben Hassine, B.

    2016-12-01

    Chemical preparation, X-ray single crystal diffraction, IR and NMR spectroscopic investigations of a novel nonlinear optical organic compound (C17H22NO2Cl) are described. The compound crystallizes in the orthorhombic system with the non-centrosymmetric sp. gr. P212121. In the crystal structure, molecules are interconnected by N-H…O hydrogen bonds forming infinite chains along a axis. The Hirshfeld surface and associated fingerprint plots of the compound are presented to explore the nature of intermolecular interactions and their relative contributions in building the solid-state architecture. The molecular HOMO-LUMO compositions and their respective energy gaps are also drawn to explain the activity of the compound. The first hyperpolarizability βtot of the title compound is determined using DFT calculations. The optical properties are also investigated by UV-Vis absorption spectrum.

  2. Spectroscopic ellipsometry study of Cu{sub 2}ZnSnSe{sub 4} bulk crystals

    Energy Technology Data Exchange (ETDEWEB)

    León, M., E-mail: maximo.leon@uam.es; Lopez, N.; Merino, J. M.; Caballero, R. [Department of Applied Physics M12, Universidad Autónoma de Madrid, Madrid (Spain); Levcenko, S.; Gurieva, G. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Serna, R. [Laser Processing Group, Instituto de Optica, CSIC, Serrano 121, 28006 Madrid (Spain); Bodnar, I. V. [Department of Chemistry, Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus); Nateprov, A.; Guc, M.; Arushanov, E. [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau MD 2028 (Moldova, Republic of); Schorr, S. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany); Institute of Geological Sciences, Free University Berlin, Malteserstr. 74-100, Berlin (Germany); Perez-Rodriguez, A. [IREC, Catalonia Institute for Energy Research, C. Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besòs (Barcelona) (Spain); IN2UB, Departament d' Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)

    2014-08-11

    Using spectroscopic ellipsometry we investigated and analyzed the pseudo-optical constants of Cu{sub 2}ZnSnSe{sub 4} bulk crystals, grown by the Bridgman method, over 0.8–4.5 eV photon energy range. The structures found in the spectra of the complex pseudodielectric functions were associated to E{sub 0}, E{sub 1A}, and E{sub 1B} interband transitions and were analyzed in frame of the Adachi's model. The interband transition parameters such as strength, threshold energy, and broadening were evaluated by using the simulated annealing algorithm. In addition, the pseudo-complex refractive index, extinction coefficient, absorption coefficient, and normal-incidence reflectivity were derived over 0.8–4.5 eV photon energy range.

  3. How specific Raman spectroscopic models are: a comparative study between different cancers

    Science.gov (United States)

    Singh, S. P.; Kumar, K. Kalyan; Chowdary, M. V. P.; Maheedhar, K.; Krishna, C. Murali

    2010-02-01

    Optical spectroscopic methods are being contemplated as adjunct/ alternative to existing 'Gold standard' of cancer diagnosis, histopathological examination. Several groups are actively pursuing diagnostic applications of Ramanspectroscopy in cancers. We have developed Raman spectroscopic models for diagnosis of breast, oral, stomach, colon and larynx cancers. So far, specificity and applicability of spectral- models has been limited to particular tissue origin. In this study we have evaluated explicitly of spectroscopic-models by analyzing spectra from already developed spectralmodels representing normal and malignant tissues of breast (46), cervix (52), colon (25), larynx (53), and oral (47). Spectral data was analyzed by Principal Component Analysis (PCA) using scores of factor, Mahalanobis distance and Spectral residuals as discriminating parameters. Multiparametric limit test approach was also explored. The preliminary unsupervised PCA of pooled data indicates that normal tissue types were always exclusive from their malignant counterparts. But when we consider tissue of different origin, large overlap among clusters was found. Supervised analysis by Mahalanobis distance and spectral residuals gave similar results. The 'limit test' approach where classification is based on match / mis-match of the given spectrum against all the available spectra has revealed that spectral models are very exclusive and specific. For example breast normal spectral model show matches only with breast normal spectra and mismatch to rest of the spectra. Same pattern was seen for most of spectral models. Therefore, results of the study indicate the exclusiveness and efficacy of Raman spectroscopic-models. Prospectively, these findings might open new application of Raman spectroscopic models in identifying a tumor as primary or metastatic.

  4. Infrared absorption study of neutron-transmutation-doped germanium

    Science.gov (United States)

    Park, I. S.; Haller, E. E.

    1988-01-01

    Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.

  5. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    Institute of Scientific and Technical Information of China (English)

    HE; YuFeng

    2001-01-01

    The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.  ……

  6. Study on Polarographic Absorption Wave of Soluble Porphyrin Copper Complex

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The porphyrins is a kind of sensitive color-producing reagent. However, its selectivity is low. If the porphyrin is used in polarographic analysis, the selectivity and sensitivity can be improved. Copper is one of the most important trace element in human and mammalian body. The polarographic method is a kind of important method in determination of metal ion [1]. In this paper, meso-tetra (4-sulfonylphenyl) porphyrin (H2TPPS4) is used as the soluble ligand. The polarographic absorption behavior of meso-tetra (4-sulfonylphenyl) porphyrin complex with copper ion has been studied.

  7. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Science.gov (United States)

    Al-Rubaiey, Najem A.; Walsh, Robin

    2017-03-01

    Silylenes (silanediyls) have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD) of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2) are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas) at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using Lindemann

  8. Time resolved spectroscopic investigation of SiD2 + D2: kinetic study

    Directory of Open Access Journals (Sweden)

    Al-Rubaiey Najem A.

    2017-01-01

    Full Text Available Silylenes (silanediyls have made an important impact on organosilicon chemistry even if it is of more recent foundation than carbenes in organic chemistry and much less complete. These species are highly reactive intermediates. They play a central role in the chemical vapour deposition (CVD of various silicon-containing thin films which have a technological importance in microelectronics as well as in the dry etching processes of silicon wafers. Spectroscopic methods have been developed to observe these species, a necessary pre-requisite to their direct monitoring. In this work, deuterated phenylsilane precursor, PhSiD3 was chosen for SiD2 because its analogue phenylsilane, PhSiH3 proved to be a good precursor for SiH2 and the high quality decay signals observed revealed that SiD2 be readily detected from PhSiD3 and that if other decomposition pathways (e.g. PhSiD + D2 are occurring, they do not effect measurements of the rate constants for SiD2. The absorption spectrum of SiD2 formed from the flash photolysis of a mixture of PhSiD3 and SF6 at 193nm were found in the region 17384-17391 cm-1 with strong band at 17387.07 cm-1. This single rotational line of pQ1 was chosen to monitor SiD2 removal. Time-resolved studies of SiD2 have been carried out to obtain rate constants for its bimolecular reactions with D2. The reactions were studied over the pressure range 5-100 Torr (in SF6 bath gas at four temperatures in the range 298-498K. Single decay from 10 photolysis laser shots were averaged and found to give reasonable first-order kinetics fits. Second order kinetics were obtained by pressure dependence of the pseudo first order decay constants and substance D2 pressures within experimental error. The reaction was found to be weakly pressure dependent at all temperatures, consistent with a third-body mediated association process. In addition, SiH2+ H2 reaction is approximately ca. 60% faster than SiD2+D2 reaction. Theoretical extrapolations (using

  9. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, Shelly A.

    2000-05-12

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K). Because LR32.3 and LRC28.5 modulate the PC trimer spectral properties in distinct manners, it suggests different chromophore-interaction mechanisms for each linker. The low temperature absorbance spectrum of the PC trimer is consistent with an excitonic

  10. Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro, Shelly Ann [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The phycobilisome (PBS) light-harvesting antenna is composed of chromophore-containing biliproteins and 'colorless' linker peptides and is structurally designed to support unidirectional transfer of excitation energy from the periphery of the PBS to its core. The linker peptides have a unique role in this transfer process by modulating the spectral properties of the associated biliprotein. There is only one three-dimensional structure of a biliprotein/linker complex available to date (APC/LC7.8) and the mechanism of interaction between these two proteins remains unknown. This study brings together a detailed spectroscopic characterization of C-Phycocyanin (PC)-linker complexes (isolated from Synechococcus sp. PCC 7002) with proteomic analysis of the linker amino acid sequences to produce a model for biliprotein/linker interaction. The amino acid sequences of the rod linkers [LR8.9, LR32.3 and LRC28.5] were examined to identify evolutionarily conserved regions important to either the structure or function of this protein family. Although there is not one common homologous site among all the linkers, there are strong trends across each separate subset (LC, LR and LRC) and the N-terminal segments of both LR32.3 and LRC28.5 display multiple regions of similarity with other linkers. Predictions of the secondary structure of LR32.3 and LRC28.5, and comparison to the crystal structure of LC7.8, further narrowed the candidates for interaction sites with the PC chromophores. Measurements of the absorption, fluorescence, CD and excitation anisotropy of PC trimer, PC/LR32.3, and PC/LRC28.5, document the spectroscopic effect of each linker peptide on the PC chromophores at a series of temperatures (298 to 77 K

  11. STUDY ON FACTORS INFLUENCING INK ABSORPTION OF COATED PAPER

    Institute of Scientific and Technical Information of China (English)

    Yanxin Liu; Chuanshan Zhao; Shuxia Shang; Zhongwei Sun

    2004-01-01

    Ink absorption is one of the most important factors which influence printing properties. This article had discussed the influence of coating properties,technologies of heating and pressure etc. on ink absorption and showed that ink absorption can be adjusted and coating surface structure can be improved when technologies of heating and pressure change, pigment and adhesive altered.

  12. Emission and Absorption Study of the Vela Supernova Remnant

    Science.gov (United States)

    Raymond, John C.

    The combination of emission and absorption studies of the shocked gas in a supernova remnant can provide information not available from either study by itself, especially relating to the liberation of refractory elements from interstellar grains in the cooling zone behind the shock and the effects of departures from steady flow. No such combined studies have been attempted due to the need for a hot, bright background star behind supernova remnant nebulosity bright enough for emission line observations. Wallerstein and Balick have discovered a suitable patch of nebulosity in the Vela Supernova Remnant adjacent to the B3 III star HD 72088. IUE spectra of the star show a 94 km/s component in C IV and Si IV in absorption, and the optical spectra of Wallerstein and Balick show strong high excitation emission lines close to the star. We wish to obtain IUE spectra of the nebulosity as close to the star as possible and further high dispersion spectra of the star to improve the signal-tonoise.

  13. Spectroscopic study of Y b{sup 3+} centres in the Y Al{sub 3}(BO{sub 3}){sub 4} nonlinear laser crystal

    Energy Technology Data Exchange (ETDEWEB)

    RamIrez, M O [Departamento FIsica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Bausa, L E [Departamento FIsica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Jaque, D [Departamento FIsica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Cavalli, E [INFM and Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica e Chimica Fisica, Universita di Parma, Parco Area delle Scienze 17/a, 43100 Parma (Italy); Speghini, A [Dipartimento Scientifico e Tecnologico, University of Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, 37134 Verona (Italy); Bettinelli, M [Dipartimento Scientifico e Tecnologico, University of Verona and INSTM, UdR Verona, Ca' Vignal, Strada Le Grazie 15, 37134 Verona (Italy)

    2003-11-19

    A spectroscopic study of Y b{sup 3+} ions in Y Al{sub 3}(BO{sub 3}){sub 4} laser crystals is presented. Polarized absorption and site selective spectroscopy experiments at low temperature have been used to determine the presence of two different Y b{sup 3+} centres in this host crystal in the concentration range 0.2-9 at.%. The contribution of these centres to the absorption spectra has been found to be dependent on the total Y b{sup 3+} concentration, and the Stark energy level diagrams corresponding to the different Y b{sup 3+} centres have been determined. The importance of electron-phonon coupling in the optical transitions of Y b{sup 3+} ions has been also pointed out.

  14. Flash-lamp annealing of ZnO-layers on copper–indium–gallium–sulphide layers: A spectroscopic ellipsometry study

    Energy Technology Data Exchange (ETDEWEB)

    Reck, J., E-mail: reck@out-ev.de [OUT e.V., Köpenicker Str. 325, Haus 201, 12555 Berlin (Germany); Seeger, S.; Weise, M.; Mientus, R. [OUT e.V., Köpenicker Str. 325, Haus 201, 12555 Berlin (Germany); Schulte, J. [Helmholtz Zentrum Berlin, 14109 Berlin (Germany); Ellmer, K., E-mail: ellmer@helmholtz-berlin.de [Helmholtz Zentrum Berlin, 14109 Berlin (Germany)

    2014-11-28

    Polycrystalline copper–indium–(gallium)–sulphide (CI(G)Su) absorbers were analysed by spectroscopic ellipsometry (SE) with special emphasis on the optical band gap energy. Rough CI(G)Su absorber films grown by reactive magnetron sputtering were peeled off from molybdenum coated glass substrates. The smooth back side of CI(G)Su absorbers was suited for the SE analysis. Furthermore, these samples were covered with a thin zinc oxide (ZnO) layer and heat-treated with a commercial xenon flash lamp annealing system (FLA) as well as by thermal annealing in an argon atmosphere. The effect of zinc on CI(G)Su absorber films was studied by secondary ion mass spectrometry depth profiling as well as by SE analysis. The optical modelling of spectral Stokes parameters was performed by using a multilayer approach over a spectral range from 1.5 to 4.3 eV. Spectral absorption coefficients were calculated in every process stage, i.e. (i) peeled samples, (ii) ZnO deposition, (iii) FLA treatment and (iv) etching of the ZnO. Special emphasis was given to the shift of the optical band gap due to the various treatments. While the SE analysis was quite sensitive to the change of optical band gaps due to a varying gallium content in the CI(G)Su absorber layers, a significant shift of the optical band gap due to increasing zinc content was not detectable. - Highlights: • Optical functions of CuIn(Ga)S{sub 2} absorbers are studied by spectroscopic ellipsometry. • Flash lamp annealing realises shallow zinc-profiles in absorber layers. • The method is sensitive for optical band gap shifts regarding gallium or zinc doping. • A band gap shift due to doping with zinc additional to gallium was not detectable.

  15. SOME SULFATO ADDUCTS AND DERIVATIVE: SYNTHESIS AND SPECTROSCOPIC STUDY

    Directory of Open Access Journals (Sweden)

    MOUHAMADOU BIRAME DIOP

    2014-11-01

    Full Text Available Three new adducts and derivative have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete with a sulfate behaving as a monochelating, bichelating or monodentate ligand, the environments around the tin centre being octahedral or pentagonal bipyramidal. In all the studied compounds, proposed supramolecular architectures may be obtained when intermolecular hydrogen bonds are considered.

  16. X-ray absorption studies of battery materials

    Energy Technology Data Exchange (ETDEWEB)

    McBreen, J.

    1996-10-01

    X-ray absorption spectroscopy (XAS) is ideal for {ital in}{ital situ} studies of battery materials because both the probe and signal are penetrating x rays. The advantage of XAS being element specific permits investigation of the environment of a constituent element in a composite material. This makes it very powerful for studying electrode additives and corrosion of individual components of complex metal hydride alloys. The near edge part of the spectrum (XANES) provides information on oxidation state and site symmetry of the excited atom. This is particularly useful in study of corrosion and oxidation changes in cathode materials during charge/discharge cycle. Extended fine structure (EXAFS) gives structural information. Thus the technique provides both chemical and structural information. Since XAS probes only short range order, it can be applied to study of amorphous electrode materials and electrolytes. This paper discusses advantages and limitations of the method, as well as some experimental aspects.

  17. An absorption study of dietary administered acrylamide in swine.

    Science.gov (United States)

    Aureli, Federica; Di Pasquale, Mauro; Lucchetti, Dario; Aureli, Paolo; Coni, Ettore

    2007-07-01

    Acrylamide is a food toxicant suspected to be carcinogenic to humans. It is formed in the heat processing of carbohydrate-rich food. A current issue in food safety is whether acrylamide actually represents a risk for human health. At present, available information is insufficient to reach any conclusions. Inter alias, a still unclear matter is the fraction of acrylamide ingested by food that is absorbed and metabolized. This study compared the in vivo relative absorption of acrylamide formed in cooked food with that of the pure compound dissolved in drinking water using the pig (25 Italian Large White females) as the animal model. Acrylamide intakes of about 0.8 and 8 microg kg(-1) pig body wt day(-1) equal to one and ten times, respectively, the maximum average acrylamide daily intake for humans from the diet (expressed on a body wt basis) in industrialized countries, were chosen for the study. Adducts with the N-terminal valine of haemoglobin formed by acrylamide and its epoxide metabolite glycidamide, were used as exposure markers. Analyses were carried out by gas chromatography/mass spectrometry following in-house method validation. Both for the low and the high dose regimen, the glycidamide adduct levels in swine globins were lower of the limit of quantification of the method. As concerns acrylamide adducts, it was found that the relative absorption of acrylamide from feed and water was the same and that there is a direct proportionality between the adduct concentration and acrylamide intake.

  18. Studies on Steam Absorption Chillers Performance at a Cogeneration Plant

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2014-07-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers can be of either single-effect or double effect configuration and the coefficient of performance (COP depends on the selection made. The COP varies from 0.7 to 1.2 depending on the types of chillers. Single effect chillers normally have COP in the range of 0.68 to 0.79. Double effect chillers COP are higher and can reach 1.2. However due to factors such as inappropriate operations and maintenance practices, COP could drop over a period of time. In this work the performances of double effect steam absorption chillers at a cogeneration plant were studied. The study revealed that during the period of eleven years of operation the COP of the chillers deteriorated from 1.25 to 0.6. Regression models on the operation data indicated that the state of deterioration was projected to persist. Hence, it would be recommended that the chillers be considered for replacement since they had already undergone a series of costly repairs.

  19. SPECTROSCOPIC STUDIES OF MATERIALS FOR ELECTROCHEMICAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, Steven G.

    2014-03-01

    Several battery materials research projects were undertaken, suing NMR spectroscopy as a primary analytical tool. These include transport proerties of liquid and solid electrolytes and structural studies of Li ion electrodes.

  20. Raman spectroscopic study of some chalcopyrite-xanthate flotation products

    CSIR Research Space (South Africa)

    Andreev, GN

    2003-12-16

    Full Text Available The ability of Raman spectroscopy to investigate chemical substances in water media was applied for studying the surface products of the chalcopyrite-sodium isopropyl xanthate flotation system. Performing the reaction in model conditions, i...

  1. SOME NEW SULFONATO ADDUCT: SYNTHESIS AND SPECTROSCOPIC STUDIES

    Directory of Open Access Journals (Sweden)

    MOUHAMADOU BIRAME DIOP

    2015-02-01

    Full Text Available Three new adducts have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete with a pyridine -3- sulfonate acting as a tri O-chelating and N-donor or as a non σ coordinating ligand, a 4-aminobenzenesulfonate behaving as a monodentate O-donor, the environments around the tin centre being tetrahedral, octahedral or seven coordinated. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  2. PHOSPHATO AND PHOSPHONATO ADDUCTS: SYNTHESIS AND SPECTROSCOPIC STUDY

    Directory of Open Access Journals (Sweden)

    Mouhamadou Birame Diop

    2014-05-01

    Full Text Available Two new adducts have been synthesized and studied by infrared and NMR spectroscopy. The suggested structures are discrete or of infinite chain type with a phosphate behaving as a bidentate ligand, a phosphonate acting as a monodentate ligand, the environments around the tin centre being tetrahedral or trigonal bipyramidal. In all the studied compounds, supramolecular architectures are obtained when hydrogen bonds are considered.

  3. Fundamental spectroscopic studies of carbenes and hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-12

    Determination of bond dissociation energies and heats of formation of hydrocarbon radicals and carbenes requires knowledge of their structures, but this is not provided by standard mass spectrometric studies; what is needed is high-resolution spectroscopy, often best achieved at centimeter and millimeter wavelengths. Nearly 60 reactive organic molecules were investigated in the period from 1988--1998.

  4. Sol-gel preparation and spectroscopic study of the pyrophanite MnTiO3 nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Guowei; KANG; Youngsoo; LI; Tianduo; XU; Guiying

    2005-01-01

    The nanosized xerogel of titanium dioxide (TiO2) and manganese oxides (MnO2, Mn2O3, Mn3O4) was prepared by the sol-gel method using manganese chloride (MnCl2·4H2O) and titanium isopropoxide (Ti(O-iPr)4) as precursors in cetyltrimethylammonium bromide (CTAB)/ ethanol/H2O/HCl micelle solutions, following the calcinations of the produced powders at difference temperatures. The nanostructure and phase composition of these nanoparticles were characterized with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The spectroscopic characterizations of these nanoparticles were also done with UV-Vis spectroscopy and laser Raman spectroscopy (LRS). XRD patterns show that the pyrophanite MnTiO3 phase was formed at the calcinations temperature of 900℃. The TEM images show that the nanoparticles are almost spherical or slight ellipose and the sizes are 50 nm on average. The UV-Vis spectra show that the nanosized MnTiO3 have significant absorption bands in the visible region. There are new absorption peaks of MnTiO3 nanoparticles in LRS compared with the pure TiO2 powder.

  5. Spectroscopic studies of the interfacial interactions between polymers and nanostructures

    Science.gov (United States)

    Sampson, William M.

    Optical and vibrational spectroscopies are used to study the interactions of various polymers with several nanoscopic materials. First, two new conjugated polymers manufactured by the Ferraris Group in the Department of Chemistry at The University of Texas at Dallas, poly [1,4-bis-2-ethylhexylmercapto]- p-phenylenevinylene (BEHM-PPV)and poly [1,4-bis-(2-ethylhexyl-sulfinyl)]- p-phenylenevinylene (BEHSO-PPV) are studied along with poly (2,5-bis (2'-ethylhexyloxy)-1,4-p-phenylenevinylene) (BEH-PPV). It is found that the two sulphur containing polymers BEHM-PPV and BEHSO-PPV have a greater tendency to aggregate than does BEH-PPV, and also have bluer photoluminescence. These three polymers are then studied in composite with single walled carbon nanotubes where charge transfer occurs across the interface from the polymer to the nanotubes. These three polymers are studied in mixture with aggregated quantum dots, where it is seen that the quantum dot aggregation prevents significant interactions to occur. The energy transfer interaction between conjugated polymers and transparent, conducting multiwalled carbon nanotubes films is investigated. It is found that a coating of PEDOT-PSS between the nanotubes and conjugated polymer suppresses the quenching of photoluminescence. This effect is important for enhancement of electroluminescence of organic LED devices, in which MWCNT hole injectors are used instead of the usual ITO. The University of Texas developed peptide nano-1 has been shown to engage in charge transfer interactions with SWNTs and, perhaps more importantly, can enable self assembly of complex nanotube structures. Finally, poly [2-methoxy-5-(2'-ethylhexyloxy)- p-phenylenevinylene] (MEH-PPV) and poly[3-hexyl thiophene] (P3HT) are studied in composite with titanium dioxide and an increase in the photoluminescence is seen, induced by interfacial interactions between the polymer and TiO 2. An explanation based on polaron mediated triplet to singlet exciton conversion

  6. UV- VIS Spectroscopic and HPLC Studies on Dictyota bartayresiana Lamour

    Institute of Scientific and Technical Information of China (English)

    Johnson Marimuthu Antonisamy; Krishnaveni Eahamban

    2012-01-01

    Objective: The present study was aimed to explore phytochemical constituents present in Dictyota bartayresiana Lamour and produce the UV-VIS and HPLC spectrum profile for Dictyotabartayresiana. Methods: Phytochemical screening of the extracts was carried out according to the standard methods. For the HPLC analysis, the methanol: water (45:55) was used as mobile phase. Results: The phytochemical results showed the presence of alkaloids, steroids, phenolic groups, saponins, tannins, glycosides and sugars. The UV- VIS profile of methanolic, petroleum ether, chloroform, isopropanol of D. bartayresiana extract showed various peaks with different functional groups. The HPLC profile of D. bartayresiana petroleum ether, chloroform and benzene extracts showed some prominent and moderate peaks with different retention time. Conclusions:The results of the present study showed that Dictyota bartayresiana Lamour may be rich sources of phytoconstituents which can be isolated and further screened for different kinds of biological activities, depending on their reported therapeutic uses.

  7. NEW HYDROGENOXALATO ADDUCTS AND MALONATO COMPLEX: SYNTHESIS AND SPECTROSCOPIC STUDIES

    OpenAIRE

    2014-01-01

    Two new hydrogenoxalato and one malonato adduct and complex have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete, the hydrogenoxalate behaving as a monodentate ligand or only involved in hydrogen bonding, the environment around the tin (IV) centre being tetrahedral or trigonal bipyramidal. The malonate anion is a monodentate ligand. In all the suggested structures, when extra hydrogen bonds are considered, supramolecular architectures are...

  8. NEW HYDROGENOXALATO ADDUCTS AND MALONATO COMPLEX: SYNTHESIS AND SPECTROSCOPIC STUDIES

    Directory of Open Access Journals (Sweden)

    MOUHAMADOU BIRAME DIOP

    2014-08-01

    Full Text Available Two new hydrogenoxalato and one malonato adduct and complex have been synthesized and studied by infrared and NMR spectroscopies. The suggested structures are discrete, the hydrogenoxalate behaving as a monodentate ligand or only involved in hydrogen bonding, the environment around the tin (IV centre being tetrahedral or trigonal bipyramidal. The malonate anion is a monodentate ligand. In all the suggested structures, when extra hydrogen bonds are considered, supramolecular architectures are obtained.

  9. NMR spectroscopic study on methanolysis reaction of vegetable oil

    Energy Technology Data Exchange (ETDEWEB)

    Fangming Jin; Kohei Kawasaki; Hisanori Kishida; Kazuyuki Tohji; Takehoko Moriya; Heiji Enomoto [Tohoku University, Sendai (Japan). Graduate School of Environmental Studies

    2007-05-15

    This study is to clarify the pathways of the transesterification of vegetable oil by applying NMR to the identification of intermediates in the transesterification reaction. Results showed that the significant methanolysis product was sn-1,3-diglycerides in diglycerides, and sn-2-monoglycerides was not found. These analytical results suggest that the methanolysis reaction may occur easily at the sn-2-position for both sn-tri- and sn-1,2-diglycerides. Short communication. 16 refs., 6 figs., 2 tabs.

  10. Spectroscopic and computational study of a new isomer of salinomycin

    Science.gov (United States)

    Pankiewicz, Radosław

    2013-09-01

    A new derivative of polyether ionophore salinomycin was obtained as a result of a rearrangement catalysed by sulphuric acid in two-phase medium of water/methylene chloride solution. The new isomer was fully characterized by multinuclear 2D NMR, NOESY and MALDI-TOF. The properties of the new compound were additionally study by semiempirical (PM5) and DFT (B3LYP) methods. A potential mechanism of the rearrangement was also proposed.

  11. SPECTROSCOPIC STUDIES OF STRUCTURE, DYNAMICS AND REACTIVITY IN IONIC LIQUIDS.

    Energy Technology Data Exchange (ETDEWEB)

    WISHART,J.F.

    2007-11-30

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are generally nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increases the importance of pre-solvated electron reactivity and consequently alters product distributions. Parallel studies of IL solvation phenomena using coumarin-153 dynamic Stokes shifts and polarization anisotropy decay rates are done to compare with electron solvation studies and to evaluate

  12. The 1997 spectroscopic GEISA databank.

    Science.gov (United States)

    Jacquinet-Husson, N.; Arie, E.; Ballard, J.; Barbe, A.; Bjoraker, G.; Bonnet, B.; Brown, L. R.; Camy-Peyret, C.; Champion, J. P.; Chedin, A.; Chursin, A.; Clerbaux, C.; Duxbury, G.; Flaud, J.-M.; Fourrie, N.; Fayt, A.; Graner, G.; Gamache, R.; Goldman, A.; Golovko, V.; Guelachvili, G.; Hartmann, J. M.; Hilico, J. C.; Hillman, J.; Lefevre, G.; Lellouch, E.; Mikhailenko, S. N.; Naumenko, O. V.; Nemtchinov, V.; Newnham, D. A.; Nikitin, A.; Orphal, J.; Perrin, A.; Reuter, D. C.; Rinsland, C. P.; Rosenmann, L.; Rothman, L. S.; Scott, N. A.; Selby, J.; Sinitsa, L. N.; Sirota, J. M.; Smith, A. M.; Smith, K. M.; Tyuterev, V. G.; Tipping, R. H.; Urban, S.; Varanasi, P.; Weber, M.

    1999-05-01

    The current version GEISA-97 of the computer-accessible database system GEISA (Gestion et Etude des Informations Spectroscopiques Atmospheriques: Management and Study of Atmospheric Spectroscopic Information) is described. This catalogue contains 1,346,266 entries. These are the spectroscopic parameters required to describe adequately the individual spectral lines belonging to 42 molecules (96 isotopic species) and located between 0 and 22656 cm-1. The featured molecules are of interest in studies of the terrestrial as well as the other planetary atmospheres, especially those of the giant planets. GEISA-97 contains also a catalog of absorption cross-sections of molecules such as chlorofluorocarbons which exhibit unresolvable spectra. The modifications and improvements made to the earlier edition (GEISA-92) and the data management software are described.

  13. Mössbauer spectroscopic study of iron-chelate trammels

    Science.gov (United States)

    Pal, Sangita; Meena, S. S.; Ningthoujam, R. S.; Goswami, D.

    2014-04-01

    Any kind of waste effluent in the Indian context and other countries contains a lot of iron in any ore. During mining, milling, extraction and purification process iron acts as contaminant towards other metal's purity. It is essential to remove iron to the maximum extent. In this case, an "IN-HOUSE" resin polyacrylamidehydroxamic acid (PHOA) has been designed and developed which is highly hydrophilic three dimensionally cross-linked. It has an excellent iron binding capacity with almost no leaching. Interaction of resin with ammonium ferrous sulphate and red-mod (Fe2O3) is studied using Mössbauer spectroscopy.

  14. SPECTROSCOPIC STUDIES OF INHIBITION OF CALMODULIN ACTIVITY BY SOME DRUGS

    Directory of Open Access Journals (Sweden)

    Naderi

    1996-06-01

    Full Text Available The effect of four inhibitors on calmalulin (CuM were studied by a ftuorescence and ultraviolet techniques. Four compounds IN - ( 6 - aminohexyt 5-chloro - I - napthalenesulphonamide] (W-7, 1 - [ bis - (4 - chtorophenyt methyl] - 3 - [2, 4-dichloro - β - ( 2 , 4 - dichlorobenzyloxyl phenethyt] imidazolium chloride (R24571, trifluoperazine (TFP , thiodiphenylamide chloride (TDPAC showed inhibitory effect on bovine brain phosphodiesterase (PDE induced by CaM. The concentration of inhibitors producing 50% inhibition of of Ca 2+ / CaM activity activity (IC50 and the Hill coefficient were correlating closely between the methods, Ki's and thermodynamic parameters for these interactions were estimated.

  15. Spectroscopic, thermal and structural studies on manganous malate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J., E-mail: smartlabindia@gmail.com; Lincy, A., E-mail: lincymaria@gmail.com; Mahalakshmi, V.; Saban, K. V. [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College (India)

    2013-01-15

    Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

  16. Spectroscopic studies with the PRISMA-CLARA set-up

    Energy Technology Data Exchange (ETDEWEB)

    Fioretto, E; Corradi, L; Angelis, G de; Napoli, D R; Sahin, E; Silvestri, R; Stefanini, A M; Valiente-Dobon, J J [INFN - Laboratori Nazionali di Legnaro, Viale dell' Universita 2, Legnaro (PD), I-35020 (Italy); Bazzacco, D; Beghini, S; Farnea, E; Lenzi, S M; Lunardi, S; Mason, P; Mengoni, D; Montagnoli, G; Scarlassara, F; Ur, C A [Dipartimento di Fisica dell' Universita di Padova and INFN, Via Marzolo 8, Padova, I-35131 (Italy); Gadea, A [Instituto de Fisica Corpuscolar, CSIC-Universidad de Valencia, Valencia, E-46071 (Spain); Pollarolo, G, E-mail: enrico.fioretto@lnl.infn.i [Dipartimento di Fisica Teorica dell' Universita di Torino and INFN, Via P. Giuria 1, Torino, I-10125 (Italy)

    2010-01-01

    The large solid angle magnetic spectrometer for heavy ions PRISMA, installed at Laboratori Nazionali di Legnaro (LNL), was operated up to the end of March 2008 in conjunction with the highly efficient CLARA set-up. It allowed to carry out nuclear structure and reaction mechanism studies in several mass regions of the nuclide chart. Results obtained in the vicinity of the island of inversion and for the heavy iron and chromium isotopes are presented in this contribution. The status of the new focal plane detectors specifically designed for light ions and slow moving heavy ions is also reported.

  17. Impedance and modulus spectroscopic study of nano hydroxyapatite

    Science.gov (United States)

    Jogiya, B. V.; Jethava, H. O.; Tank, K. P.; Raviya, V. R.; Joshi, M. J.

    2016-05-01

    Hydroxyapatite (Ca10 (PO4)6 (OH)2, HAP) is the main inorganic component of the hard tissues in bones and also important material for orthopedic and dental implant applications. Nano HAP is of great interest due to its various bio-medical applications. In the present work the nano HAP was synthesized by using surfactant mediated approach. Structure and morphology of the synthesized nano HAP was examined by the Powder XRD and TEM. Impedance study was carried out on pelletized sample in a frequency range of 100Hz to 20MHz at room temperature. The variation of dielectric constant, dielectric loss, and a.c. conductivity with frequency of applied field was studied. The Nyquist plot as well as modulus plot was drawn. The Nyquist plot showed two semicircle arcs, which indicated the presence of grain and grain boundary effect in the sample. The typical behavior of the Nyquist plot was represented by equivalent circuit having two parallel RC combinations in series.

  18. Divalent thulium triflate. A structural and spectroscopic study

    Energy Technology Data Exchange (ETDEWEB)

    Xemard, Mathieu; Jaoul, Arnaud; Cordier, Marie; Nocton, Gregory [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Molton, Florian; Duboc, Carole [Grenoble Univ., Saint Martin d' Heres (France). Dept. de Chimie Moleculaire; Cador, Olivier; Le Guennic, Boris [Univ. de Rennes 1 (France). Inst. des Sciences Chimique de Rennes, UMR 6226 CNRS; Maury, Olivier [Univ. Claude Bernard Lyon 1 (France). Lab. de Chimie; Clavaguera, Carine [Univ. Paris-Saclay, Palaiseau (France). LCM, Ecole polytechnique, CNRS; Univ. Paris Sud, Univ. Paris-Saclay, Orsay (France). Lab. de Chimie Physique, CNRS

    2017-04-03

    The first molecular Tm{sup II} luminescence measurements are reported along with rare magnetic, X and Q bands EPR studies. Access to simple and soluble molecular divalent lanthanide complexes is highly sought for small-molecule activation studies and organic transformations using single-electron transfer processes. However, owing to their low stability and propensity to disproportionate, these complexes are hard to synthetize and their electronic properties are therefore almost unexplored. Herein we present the synthesis of [Tm(μ-OTf){sub 2}(dme){sub 2}]{sub n}, a rare and simple coordination compound of divalent thulium that can be seen as a promising starting material for the synthesis of more elaborated complexes. This reactive complex was structurally characterized by X-ray diffraction analysis and its electronic structure has been compared with that of its halide cousin TmI{sub 2}(dme){sub 3}. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    Science.gov (United States)

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  20. Spectroscopic studies on the interaction of bilirubin with liver cystatin.

    Science.gov (United States)

    Shah, Aaliya; Bano, Bilqees

    2011-02-01

    Studies on the role of endogenous metabolites such as bilirubin and their interactions with biomolecules have attracted considerable attention over the past several years. In this work, the interaction of bilirubin (BR) with purified goat liver cystatin (LC) was studied using fluorescence and ultraviolet (UV) spectroscopy. The fluorescence data proved that the fluorescence quenching of liver cystatin by BR was the result of BR-cystatin complex formation. Stern-Volmer analysis of fluorescence quenching data showed the binding constant to be 9.27 x 10⁴ M⁻¹ and the number of binding sites to be close to unity. The conformation of the BR-cystatin complex was found to change upon varying the pH of the complex. The BR-cystatin complex was found to have reduced papain inhibitory activity. Photo-illumination of BR-cystatin complex causes perturbation in the micro-environment of goat liver cystatin as indicated by red-shift. This report summarizes our research efforts to reveal the mechanism of interaction of bilirubin with liver cystatin.

  1. Spectroscopic, structural and drug docking studies of carbocysteine

    Science.gov (United States)

    Manivannan, M.; Rajeshwaran, K.; Govindhan, R.; Karthikeyan, B.

    2017-09-01

    Carbocysteine or carbocisteine having the empirical formula C5H9NO4S,is one of the most therapeutically prescribed expectorant, sold under the brand name viz., Mucodyne (UK and India), Rhinathiol and Mucolite. In pediatric respiratory pathology, it can relieve the symptoms of obstructive pulmonary disease (COPD) and bronchiectasis. On the consideration of its extensive pharmaceutical usage and medicinal value, we have investigated its chemical structure and composition by employing various spectral techniques like 1H, 13C NMR, FT-IR,Raman, UV-Visible spectroscopy and powder X-ray diffraction method. Density Functional Theoretical (DFT) studies on its electronic structure is also carried out. Drug docking studies were carried out to ascertain the nature of molecular interaction with the biological protein system. Furthermore theoretical Raman spectrum of this molecule has been computed and compared with the experimental Raman spectrum. The forbidden energy gap between its frontier molecular orbitals, viz., HOMO-LUMO is calculated and correlated with its observed λmax value. Atomic orbitals which are mainly contributes to the frontier molecular orbitals were identified. Molecular electrostatic potential diagram has been mapped to explain its chemical activity. Based on the results, a suitable mechanism of its protein binding mode and drug action has been discussed.

  2. Negative ion photoelectron spectroscopic studies of transition metal cluster

    Science.gov (United States)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  3. Spectroscopic studies of Yb3+-doped rare earth orthosilicate crystals

    Science.gov (United States)

    Campos, S.; Denoyer, A.; Jandl, S.; Viana, B.; Vivien, D.; Loiseau, P.; Ferrand, B.

    2004-06-01

    Infrared transmission and Raman scattering have been used to study Raman active phonons and crystal-field excitations in Yb3+-doped yttrium, lutetium and scandium orthosilicate crystals (Y2SiO5 (YSO), Lu2SiO5 (LSO) and Sc2SiO5 (SSO)), which belong to the same C2h6 crystallographic space group. Energy levels of the Yb3+ ion 2F5/2 manifold are presented. In the three hosts, Yb3+ ions experience high crystal field strength, particularly in Yb:SSO. Satellites in the infrared transmission spectra have been detected for the first time in the Yb3+-doped rare earth orthosilicates. They could be attributed to perturbed Yb3+ sites of the lattices or to magnetically coupled Yb3+ pairs.

  4. In-beam spectroscopic studies of $^{44}$S nucleus

    CERN Document Server

    Caceres, L; Grévy, S; Sorlin, O; Dombradi, Zs; Bastin, B; Achouri, N L; Angélique, J C; Azaiez, F; Baiborodin, D; Borcea, R; Bourgeois, C; Buta, A; Bürger, A; Chapman, R; Dalouzy, J C; Dlouhy, Z; Drouard, A; Elekes, Z; Franchoo, S; Gaudefroy, L; Iacob, S; Laurent, B; Lazar, M; Liang, X; Liénard, E; Mrazek, J; Nalpas, L; Negoita, F; Nowacki, F; Orr, N A; Penionzhkevich, Y; Podolyak, Zs; Pougheon, F; Poves, A; Roussel-Chomaz, P; Saint-Laurent, M G; Stanoiu, M; Stefan, I

    2012-01-01

    The structure of the $^{44}$S nucleus has been studied at GANIL through the one proton knock-out reaction from a $^{45}$Cl secondary beam at 42 A$\\cdot$MeV. The $\\gamma$ rays following the de-excitation of $^{44}$S were detected in flight using the 70 BaF${_2}$ detectors of the Ch\\^{a}teau de Cristal array. An exhaustive $\\gamma\\gamma$-coincidence analysis allowed an unambiguous construction of the level scheme up to an excitation energy of 3301 keV. The existence of the spherical 2$^+_2$ state is confirmed and three new $\\gamma$-ray transitions connecting the prolate deformed 2$^+_1$ level were observed. Comparison of the experimental results to shell model calculations further supports a prolate and spherical shape coexistence with a large mixing of states built on the ground state band in $^{44}$S.

  5. Spectroscopic and quantum chemical calculation study on 2-ethoxythiazole molecule

    Science.gov (United States)

    Avcı, Davut; Dede, Bülent; Bahçeli, Semiha; Varkal, Döndü

    2017-06-01

    In this study, the 2-ethoxythiazole molecule (C5H7NSO) which is a member of the five-membered heterocyles with one nitrogen atom group has been investigated by using the experimental UV-vis (in three different solvents) and FT-IR spectral results as well as some magnetic properties. Furthermore, the calculated molecular geometric parameters, vibrational wavenumbers, HOMO-LUMO energies, 1H and 13C NMR chemical shift values and natural bond orbitals (NBO) of the title molecule have been calculated at the B3LYP and HSEH1PBE levels of theory with the 6-311++G(d,p) basis set. The spectral results obtained from the quantum chemical calculations are in good agreement with the experimental results.

  6. Moessbauer spectroscopic study of meteorites recovered on Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Endo, K. [Showa Coll. of Pharmaceutical Sci., Tokyo (Japan); Hirunuma, R. [Showa Coll. of Pharmaceutical Sci., Tokyo (Japan); Shinonaga, T. [Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan); Ebihara, M. [Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan); Nakahara, H. [Dept. of Chemistry, Tokyo Metropolitan Univ. (Japan)

    1994-11-01

    The chemical states of iron in sixteen Antarctic meteorites belonging to H-group chondrites were studied by means of Moessbauer spectroscopy. An Fe-Ni alloy, troilite, paramagnetic Fe(III), and two kinds of paramagnetic Fe(II) were observed in each meteorite. The Moessbauer parameters indicated that the Fe(II) components can be assigned to olivine and some pyroxenes. The relative area intensities of Fe(III) in the chondrites correlated positively with iodine content, which was determined by radiochemical neutron activation analysis, and those of two Fe(II)-species correlated negatively with the content. On the basis of the data on the halogen and the Moessbauer spectrocopy, the terrestrial contamination on Antarctic meteorites is discussed. (orig.)

  7. Raman spectroscopic study of ancient South African domestic clay pottery

    Science.gov (United States)

    Legodi, M. A.; de Waal, D.

    2007-01-01

    The technique of Raman spectroscopy was used to examine the composition of ancient African domestic clay pottery of South African origin. One sample from each of four archaeological sites including Rooiwal, Lydenburg, Makahane and Graskop was studied. Normal dispersive Raman spectroscopy was found to be the most effective analytical technique in this study. XRF, XRD and FT-IR spectroscopy were used as complementary techniques. All representative samples contained common features, which were characterised by kaolin (Al 2Si 2O 5(OH) 5), illite (KAl 4(Si 7AlO 20)(OH) 4), feldspar (K- and NaAlSi 3O 8), quartz (α-SiO 2), hematite (α-Fe 2O 3), montmorillonite (Mg 3(Si,Al) 4(OH) 2·4.5H 2O[Mg] 0.35), and calcium silicate (CaSiO 3). Gypsum (CaSO 4·2H 2O) and calcium carbonates (most likely calcite, CaCO 3) were detected by Raman spectroscopy in Lydenburg, Makahane and Graskop shards. Amorphous carbon (with accompanying phosphates) was observed in the Raman spectra of Lydenburg, Rooiwal and Makahane shards, while rutile (TiO 2) appeared only in Makahane shard. The Raman spectra of Lydenburg and Rooiwal shards further showed the presence of anhydrite (CaSO 4). The results showed that South African potters used a mixture of clays as raw materials. The firing temperature for most samples did not exceed 800 °C, which suggests the use of open fire. The reddish brown and grayish black colours were likely due to hematite and amorphous carbon, respectively.

  8. Luminescence and spectroscopic studies of halosulfate phosphors: a review.

    Science.gov (United States)

    Gedam, S C; Thakre, P S; Dhoble, S J

    2015-03-01

    This review discusses the photoluminescence (PL) characteristics of halosulfate phosphors developed by us. Halosulfate phosphors KCaSO4 Cl:X,Y (X = Eu or Ce; Y = Dy or Mn) and Na6 (SO4 )2 FCl (doped with Dy, Ce or Eu) were prepared using a solid-state diffusion method. The mechanism of energy transfer from Eu(2+) →Dy(3+) , Ce(3+) →Dy(3+) and Ce(3+) →Mn(2+) has also been studied. Dy(3+) emission in the host at 475 and 570 nm is observed due to (4) F9/2 →(6) H15/2 and (4) F9/2 →(6) H13/2 transition, whereas the PL emission spectra of Na6 (SO4 )2 FCl:Ce phosphor shows Ce(3+) emission at 322 nm due to 5d→4f transition of the Ce(3+) ion. The main property of KCaSO4 Cl is its very high sensitivity, particularly when doped by Dy, Mn or Pb activators. This review also discusses the PL characteristics of some new phosphors such as LiMgSO4 F, Na6 Pb4 (SO4 )6 Cl2 , Na21 Mg(SO4 )10 Cl3 and Na15 (SO4 )5 F4 Cl.

  9. Spectroscopic studies on the antioxidant activity of ellagic acid

    Science.gov (United States)

    Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel

    2014-09-01

    Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.

  10. Vibrational spectroscopic and computational studies on diisopropylammonium bromide

    Science.gov (United States)

    Sahoo, Shradhanjali; Ravindran, T. R.; Chandra, Sharat; Sarguna, R. M.; Das, B. K.; Sairam, T. N.; Sivasubramanian, V.; Thirmal, C.; Murugavel, P.

    2017-09-01

    Diisopropylammonium bromide (DIPAB) can be crystallized either in an orthorhombic (P212121) or in a monoclinic (P21) structure at room temperature depending on synthesis conditions. The non-polar orthorhombic structure exhibits a subtle, irreversible transformation into the ferroelectric monoclinic-II (m-II) phase above 421 K. At a slightly higher temperature of 426 K this m-II (P21) phase reversibly transforms into a disordered, paraelectric monoclinic-I (P21/m) structure. We synthesized DIPAB in the orthorhombic structure, heated it to obtain the m-II phase and carried out a systematic study of their Raman and IR spectra. We obtained the phonon irreducible representations from factor group analysis of the orthorhombic and m-II structures based on the reported structural information. DIPAB is an organic molecular crystal, and the vibrational spectra in the intramolecular region (200-3500 cm- 1) of the two different phases are identical to each other, indicating weak inter-molecular interactions in both crystalline structures. In the low wavenumber region (10-150 cm- 1) the Raman spectra of the two phases are different due to their sensitivity to molecular environment. We also carried out first principles calculations using Gaussian 09 and CASTEP codes to analyze the vibrational frequencies. Mode assignments were facilitated by isolated molecule calculations that are also in good agreement with intramolecular vibrations, whereas CASTEP (solid state) results could explain the external modes.

  11. High Resolution Spectroscopic Study of $^{10}_{\\Lambda}$Be

    CERN Document Server

    Gogami, T; Kawama, D; Achenbach, P; Ahmidouch, A; Albayrak, I; Androic, D; Asaturyan, A; Asaturyan, R; Ates, O; Baturin, P; Badui, R; Boeglin, W; Bono, J; Brash, E; Carter, P; Chiba, A; Christy, E; Danagoulian, S; De Leo, R; Doi, D; Elaasar, M; Ent, R; Fujii, Y; Fujita, M; Furic, M; Gabrielyan, M; Gan, L; Garibaldi, F; Gaskell, D; Gasparian, A; Han, Y; Hashimoto, O; Horn, T; Hu, B; Hungerford, Ed V; Jones, M; Kanda, H; Kaneta, M; Kato, S; Kawai, M; Khanal, H; Kohl, M; Liyanage, A; Luo, W; Maeda, K; Margaryan, A; Markowitz, P; Maruta, T; Matsumura, A; Maxwell, V; Mkrtchyan, A; Mkrtchyan, H; Nagao, S; Nakamura, S N; Narayan, A; Neville, C; Niculescu, G; Niculescu, M I; Nunez, A; Nuruzzaman,; Okayasu, Y; Petkovic, T; Pochodzalla, J; Qiu, X; Reinhold, J; Rodriguez, V M; Samanta, C; Sawatzky, B; Seva, T; Shichijo, A; Tadevosyan, V; Tang, L; Taniya, N; Tsukada, K; Veilleux, M; Vulcan, W; Wesselmann, F R; Wood, S A; Yamamoto, T; Ya, L; Ye, Z; Yokota, K; Yuan, L; Zhamkochyan, S; Zhu, L

    2015-01-01

    A spectroscopy of a $^{10}_{\\Lambda}$Be hypernucleus was carried out at JLab Hall C using the $(e,e^{\\prime}K^{+})$ reaction. A new magnetic spectrometer system (SPL+HES+HKS), specifically designed for high resolution hypernuclear spectroscopy, was used to obtain an energy spectrum with a resolution of 0.78 MeV (FWHM). The well-calibrated spectrometer system of the present experiment using the $p(e,e^{\\prime}K^{+})\\Lambda,\\Sigma^{0}$ reactions allowed us to determine the energy levels, and the binding energy of the ground state peak (mixture of 1$^{-}$ and 2$^{-}$ states) was obtained to be B$_{\\Lambda}$=8.55$\\pm$0.07(stat.)$\\pm$0.11(sys.) MeV. The result indicates that the ground state energy is shallower than that of an emulsion study by about 0.5 MeV which provides valuable experimental information on Charge Symmetry Breaking (CSB) effect in the $\\Lambda N$ interaction.

  12. Studies on selected polymeric materials using the photoacoustic spectroscopic technique

    Institute of Scientific and Technical Information of China (English)

    Hukum Singh

    2011-01-01

    Polymethylmethacrylate-graft-polybisphenol-A-carbonate (PMMA-G-PC) with 50% grafting is synthesized. The acid (0.18 M, 100 ml) in air at (45±12) ℃ for 3.0 h. Condensation of (PMMA-G-PC) with N-[p-(carboxyl phenyl amino acetic acid)] hydrazide (PCPH) affords polybisphenol-A-carbonate-graft-polymethylmethacrylate hydrazide (PCGH).The photoacoustic (PA) spectra of (PCGH) are recorded in a wavelength range from 200 nm to 800 nm at a modulation frequency of 22 Hz, and compared with those of pure polybisphenol-A-carbonate (PC), (PMMA-G-PC) and (PCPH).In the present work, a non-destructive and non-contact analytical method, namely the photoacoustic technique, is successfully implemented for optical and thermal characterization of selected polymeric materials. The indigenous PA spectrometer used in the present study consists of a 300-W xenon arc lamp, a lock-in amplifier, a chopper, a (1/8)-m monochromator controlled by computer and a home-made PA cell.

  13. HPLC assisted Raman spectroscopic studies on bladder cancer

    Science.gov (United States)

    Zha, W. L.; Cheng, Y.; Yu, W.; Zhang, X. B.; Shen, A. G.; Hu, J. M.

    2015-04-01

    We applied confocal Raman spectroscopy to investigate 12 normal bladder tissues and 30 tumor tissues, and then depicted the spectral differences between the normal and the tumor tissues and the potential canceration mechanism with the aid of the high-performance liquid chromatographic (HPLC) technique. Normal tissues were demonstrated to contain higher tryptophan, cholesterol and lipid content, while bladder tumor tissues were rich in nucleic acids, collagen and carotenoids. In particular, β-carotene, one of the major types of carotenoids, was found through HPLC analysis of the extract of bladder tissues. The statistical software SPSS was applied to classify the spectra of the two types of tissues according to their differences. The sensitivity and specificity of 96.7 and 66.7% were obtained, respectively. In addition, different layers of the bladder wall including mucosa (lumps), muscle and adipose bladder tissue were analyzed by Raman mapping technique in response to previous Raman studies of bladder tissues. All of these will play an important role as a directive tool for the future diagnosis of bladder cancer in vivo.

  14. A theoretical and spectroscopic study of conformational structures of piroxicam

    Science.gov (United States)

    Souza, Kely Ferreira de; Martins, José A.; Pessine, Francisco B. T.; Custodio, Rogério

    2010-02-01

    Piroxicam (PRX) has been widely studied in an attempt to elucidate the causes and mechanisms of its side effects, mainly the photo-toxicity. In this paper fluorescence spectra in non-protic solvents and different polarities were carried out along with theoretical calculations. Preliminary potential surfaces of the keto and enol forms were obtained at AM1 level of theory providing the most stable conformers, which had their structure re-optimized through the B3LYP/CEP-31G(d,p) method. From the optimized structures, the electronic spectra were calculated using the TD-DFT method in vacuum and including the solvent effect through the PCM method and a single water molecule near PRX. A new potential surface was constructed to the enol tautomer at DFT level and the most stable conformers were submitted to the QST2 calculations. The experimental data showed that in apolar media, the solution fluorescence is raised. Based on conformational analysis for the two tautomers, keto and enol, the results indicated that the PRX-enol is the main tautomer related to the drug fluorescence, which is reinforced by the spectra results, as well as the interconvertion barrier obtained from the QST2 calculations. The results suggest that the PRX one of the enol conformers presents great possibility of involvement in the photo-toxicity mechanisms.

  15. A spectroscopic study of the open cluster NGC 6250

    Science.gov (United States)

    Martin, A. J.; Stift, M. J.; Fossati, L.; Bagnulo, S.; Scalia, C.; Leone, F.; Smalley, B.

    2017-04-01

    We present the chemical abundance analysis of 19 upper main-sequence stars of the young open cluster NGC 6250 (log t ∼ 7.42 yr). This work is part of a project aimed at setting observational constraints on the theory of atomic diffusion in stellar photospheres, by means of a systematic study of the abundances of the chemical elements of early F-, A- and late B-type stars of well-determined age. Our data set consists of low-, medium- and high-resolution spectra obtained with the Fibre Large Array Multi Element Spectrograph (FLAMES) instrument of the ESO Very Large Telescope (VLT). To perform our analysis, we have developed a new suite of software tools for the chemical abundance analysis of stellar photospheres in local thermodynamical equilibrium. Together with the chemical composition of the stellar photospheres, we have provided new estimates of the cluster mean radial velocity, proper motion, refined the cluster membership, and we have given the stellar parameters including masses and fractional age. We find no evidence of statistically significant correlation between any of the parameters, including abundance and cluster age, except perhaps for an increase in Ba abundance with cluster age. We have proven that our new software tool may be successfully used for the chemical abundance analysis of large data sets of stellar spectra.

  16. A spectroscopic study of IRAS F10214+4724

    CERN Document Server

    Serjeant, S; Lacy, M; McMahon, R G; Lawrence, A; Rowan-Robinson, M; Mountain, M; Serjeant, Stephen; Rawlings, Steve; Lacy, Mark; Mahon, Richard G. Mc; Lawrence, Andy; Rowan-Robinson, Michael; Mountain, Matt

    1998-01-01

    The z=2.286 IRAS galaxy F10214+4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214+4724, with clear evidence for three distinct components: lines of width ~1000 km/s from a Seyfert-II nucleus; <~200 km/s lines which are likely to be associated with star formation; and a broad ~4000 km/s CIII] 1909ang emission line which is blue-shifted by ~1000 km/s with respect to the Seyfert-II lines. Our study of the Seyfert-II component leads to several new results, including: (i) From the double-peaked structure in the Ly alpha line, and the lack of Ly beta, we argue that the Ly alpha photons have emerged through a neutral column of N_H ~ 2.5 x 10^{25}/m^2, possibly located within the AGN narrow-line region as argued in several high redshift radiogalaxies. (ii) The resonant O VI 1032,1036ang doublet (previously identified as Ly beta) is in an optically thick (1:1) ratio. At face value this implies an an ext...

  17. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    Science.gov (United States)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  18. Solvated crystalline forms of nevirapine: thermoanalytical and spectroscopic studies.

    Science.gov (United States)

    Chadha, Renu; Arora, Poonam; Saini, Anupam; Jain, Dharamvir Singh

    2010-09-01

    The study is aimed at exploring the utility of thermoanalytical methods in the solid-state characterization of various crystalline forms of nevirapine. The different forms obtained by recrystallization of nevirapine from various solvents were identified using differential scanning calorimetry and thermogravimetric analysis (TGA). The appearance of desolvation peak accompanied by weight loss in TGA indicated the formation of solvates: hemi-ethanolate (Form I), hemi-acetonitrilate (Form II), hemi-chloroformate (Form III), hemi-THF solvate (Form IV), mixed hemi-ethanolate hemi-hydrate (Form V), and hemi-toluenate (Form VI). The higher desolvation temperatures of all the solvates except toluenate than their respective boiling point indicate tighter binding of solvent. Emphasis has been laid on the determination of heat capacity and heat of solution utilizing microreaction calorimeter to further distinguish the various forms. The enthalpy of solution (ΔH(sol)), an indirect measure of the lattice energy of a solid, was well correlated with the crystallinity of all the solid forms obtained. The magnitude of ΔH(sol) was found to be -14.14 kJ/mol for Form I and -2.83 kJ/mol for Form V in phosphate buffer of pH 2, exhibiting maximum ease of molecular release from the lattice in Form I. The heat capacity for solvation (ΔC(p)) was found to be positive, providing information about the state of solvent molecules in the host lattice. The solubility and dissolution rate of the forms were also found to be in agreement with their enthalpy of solution. Form (I), being the most exothermic, was found to be the most soluble of all the forms.

  19. Synthesis, structural, spectroscopic and biological studies of Schiff base complexes

    Science.gov (United States)

    Diab, M. A.; El-Sonbati, A. Z.; Shoair, A. F.; Eldesoky, A. M.; El-Far, N. M.

    2017-08-01

    Schiff base ligand 4-((pyridin-2- yl)methyleneamino)-1,2-dihydro-2,3-dimethyl-1-phenylpyrazol-5-one (PDMP) and its complexes were prepared and characterized on the basis of elemental analysis, IR, mass spectra and thermogravimetric analysis. All results confirm that the complexes have 1:1 (M: PMDP) stoichiometric formula [M(PMDP)Cl2H2O ] (M = Cu(II), Co(II), Ni(II) and Mn(II)), [Cd(PMDP)Cl2] and the ligand behaves as a bi/tridentate forming five-membered chelating ring towards the metal ions, bonding through azomethine nitrogen/exocyclic carbonyl oxygen, azomethine pyridine nitrogen and exocyclic carbonyl oxygen. The shift in the band positions of the groups involved in coordination has been utilized to estimate the metal-nitrogen and/or oxygen bond lengths. The complexes of Co(II), Ni(II) and Cu(II) are paramagnetic and the magnetic as well as spectral data suggest octahedral geometry, whereas the Cd(II) complex is tetrahedral. The XRD studies show that both the ligand and its metal complexes (1 and 3) show polycrystalline with crystal structure. Molecular docking was used to predict the binding between PMDP ligand and the receptors. The corrosion inhibition of mild steel in 2 M HCl solution by PDMP was explored utilizing potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and (EFM) electrochemical frequency modulation method. Potentiodynamic polarization demonstrated that PDMP compound is mixed-type inhibitor. EIS spectra exhibit one capacitive loop and confirm the protective ability. The percentage of inhibition efficiency was found to increase with increasing the inhibitor concentration.

  20. Optical Emission Spectroscopic Studies of ICP Ar Plasma

    Institute of Scientific and Technical Information of China (English)

    QI Xuelian; REN Chunsheng; ZHANG Jian; MA Tengcai

    2007-01-01

    The ion line of 434.8 nm and atom line of 419.8 nm of Ar plasma produced by an inductively coupled plasma (ICP) were measured by optical emission spectroscopy and the influences from the working gas pressure, radio-frequency (RF) power and different positions in the discharge chamber on the line intensities were investigated in this study. It was found that the intensity of Ar atom line increased firstly and then saturated with the increase of the pressure. The line intensity of Ar+, on the other hand, reached a maximum value and then decreased along with the pressure. The intensity of the line in an RF discharge also demonstrated a jumping mode and a hysteresis phenomenon with the RF power. When the RF power increased to 400 W, the discharge jumped from the E-mode to the H-mode where the line intensity of Ar atom demonstrated a sudden increase, while the intensity of Ar+ ion only changed slightly. If the RF power decreased from a high value, e.g., 1000 W, the discharge would jump from the H-mode back to the E-mode at a power of 300 W. At this time the intensities of Ar and Ar+ lines would also decrease sharply. It was also noticed in this paper that the intensity of the ion line depended on the detective location in the chamber, namely at the bottom of the chamber the line was more intense than that in the middle of the chamber, but less intense than at the top, which is considered to be related to the capacitance coupling ability of the ICP plasma in different discharge areas.

  1. Moessbauer spectroscopic study on inorganic compounds. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Masashi; Kitazawa, Takafumi; Nanba, Hiroshi; Yoshinaga, Tomohiro; Nakajima, Norio; Sumisawa, Yasuhiro; Takeda, Masuo [Toho Univ., Funabashi, Chiba (Japan). Faculty of Science; Sawahata, Hiroyuki; Ito, Yasuo

    1998-01-01

    {sup 166}Er and {sup 127}I Moessbauer spectra were observed. {sup 166}Er Moessbauer spectrum of Er metal and 9 compounds were measured by {sup 166}Ho/Y{sub 0.6}Ho{sub 0.4}H{sub 2} source at 12K and the parameters such as e{sup 2}qQ(mm s{sup -1}), Heff(T) and {tau}(ns) were determined. The relaxation time of ErCl{sub 3}{center_dot}6H{sub 2}O was 0.7ns, long, but that of ErCl{sub 3} was 10 ps, short time. {sup 127}I Moessbauer spectrum of PhI(O{sub 2}CR){sub 2} (R=CH{sub 3}, CHF{sub 2}, CH{sub 2}Cl, CHCl{sub 2}, CCl{sub 3}, CH{sub 2}Br, CHBr{sub 2} and CBr{sub 3}) were observed and compared with that of R`{sub 3}Sb(O{sub 2}CR){sub 2} was similar to that of PhI(O{sub 2}CR){sub 2}. The correlation coefficient between e{sup 2}qQ({sup 127}I) and Mulliken population of carboxylic hydrogen atom of R{sub 2}CO{sub 2}H was -0.87. The relation between the hypervalent bond of O-I-O and that of O-Sb-0 was shown by the equation: e{sup 2}qQ({sup 121}Sb)/mm s{sup -1} = -47.2 + 1.32 e{sup 2}qQ({sup 127}I)/mm s{sup -1}. Hypervalent iodine complex such as (PhI(py){sub 2}){sup 2+} salt and E-Sb-I (E=O, I, N and C) were studied, too. (S.Y.)

  2. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    Energy Technology Data Exchange (ETDEWEB)

    Gindt, Y.M.

    1993-04-01

    The role of the L[sub cm] (I), [beta][sup 18] (II), and [alpha][sup AP-B] (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A[sub max] = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  3. Spectroscopic studies of Synechococcus sp PCC 7002 phycobilisome core mutants

    Energy Technology Data Exchange (ETDEWEB)

    Gindt, Y.M.

    1993-04-01

    The role of the L{sub cm} (I), {beta}{sup 18} (II), and {alpha}{sup AP-B} (III) chromoproteins in the phycobilisome (PBS) core was investigated using genetically engineered strains of Synechococcus missing different polypeptides. Intact cells, isolated PBS, and subcore preparations for each mutant were studied to determine the effect of that mutation on energy transfer within the PBS core and to the reaction centers. Three mutants lacked the II and/or III polypeptides, while the I chromophore was altered in others. A lower energy absorbing chromophore, A{sub max} = 695 nm, was substituted for the I chromophore. The deletion of the II and III subunits had no discernible effect on energy transfer from the PBS to PSII. In cells and isolated PBS, the altered I chromophore acts to quench the PBS complex and to redirect the energy which would be transferred to PSII. In the PBS and subcore preparations, deletion of the III subunit did not alter energy transfer within the core. The deletion of the II subunit from the PBS caused a small decrease in the excited state lifetimes of the final emitters indicating more disorder within the core. The I chromophore was found to absorb at 670nm and to emit at 683nm within the intact PBS. The II chromophore emits at 679nm while the III chromophore emits at 682nm. A strong interaction exists between the I chromophore and the II subunit. Upon deletion of the II subunit from the PBS core, the I chromophore emits at a higher energy. The II subunit could act to stabilize the I chromophore-binding pocket, or exciton coupling could be occurring between the two. The role of the III chromophore is still unclear at this time. The III chromophore does contribute to the RT emission of the isolated PBS, but it transfers energy to I at 77 K. One can conclude that the III subunit is adjacent to the trimer containing the I polypeptide.

  4. Study of structural and spectroscopic behavior of Sm3+ ions in lead-zinc borate glasses containing alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Babu, S.; Rajeswara Reddy, B.; Ratnakaram, Y. C.

    2017-06-01

    High luminescence behavior of rare earth inorganic glasses have a variety of uses in the industry. In the past few decades, rare earth ions with characteristic photonics applications are being hosted by heavy metal oxide glasses. Among the rare earth ions Sm3+ ion has features which make it apt for high density optical storage. The authors of the paper have experimented to synthesize Sm3+ doped glasses. In this regard a new series of borate glasses doped with 1 mol% Sm3+ ion are developed by using melt-quenching technique. XRD, FTIR, optical absorption, luminescence techniques are used to study the various characteristics of Sm3+ ion in the present glass matrices. The XRD spectra confirms the amorphous nature of glasses. Further, the researchers have used differential thermal analysis to study the glass transition temperature. The structural groups in the prepared glasses are studied using Fourier transform infrared spectra. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) have been computed. Based on these Judd-Ofelt intensity parameters, radiative properties such as radiative probabilities (Arad), branching ratios (β), and radiative life time (τR) are calculated. The excitation spectra of Sm3+ doped lithium heavy metal borate glass matrix is recorded under the emission wavelength of 600 nm. The emission spectra are recorded under 404 nm excitation wavelength. From various emission transitions, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 bands could be of interest for various applications. The decay profiles of 4G5/2 level exhibit single exponential nature in all the prepared glass matrices. The potassium glass matrix exhibits higher quantum efficiency than the other glass matrices. Finally, by going through these several spectroscopic characterizations, it is concluded that the prepared Sm3+ doped lead-zinc borate glasses might be useful for visible light applications.

  5. Spectroscopic study of Zn{sub 1−x}Co{sub x}O thin films showing intrinsic ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, S.; Thakur, P. [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Bazylewski, P.; Bauer, R. [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N 5E2 Canada (Canada); Singh, A.P.; Kim, J.Y. [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Subramanian, M.; Jayavel, R. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Asokan, K. [Inter-University Accelerator Centre, JNU Campus, New Delhi 110 067 (India); Chae, K.H., E-mail: khchae@kist.re.kr [Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Chang, G.S., E-mail: gapsoo.chang@usask.ca [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK, S7N 5E2 Canada (Canada)

    2013-06-15

    Dilute magnetic semiconductors are widely studied due to their potential applications in spin-resolved electronics. We report the direct evidences of intrinsic ferromagnetism in the primarily ferromagnetic ZnO:Co thin films using near-edge X-ray absorption fine structure (NEXAFS) and soft X-ray magnetic circular dichroism (XMCD). The single phase Zn{sub 1−x}Co{sub x}O thin films with nominal compositions (0.00 ≤ x ≤ 0.15) were synthesized by a spray pyrolysis technique, which exhibit room temperature ferromagnetism as revealed by alternating gradient force magnetometer (AGFM) measurements. The spectroscopic measurements indicate that most of Co dopants have substituted for Zn sites in ZnO matrix and they are present in divalent Co{sup 2+} (d{sup 7}) state with tetrahedral symmetry according to the atomic multiplet calculations. The O 1s NEXAFS spectra suggest strong hybridization between O 2p and Co 3d electrons within ZnO matrix. The Co 2p XMCD measurements rule out the magnetism due to the presence of Co clusters, and show that Co–O–Co bonding provides localized magnetic moments leading to ferromagnetism. - Highlights: • We have studied the electronic and magnetic properties of ZnO:Co thin films. • The study uses X-ray absorption and magnetic circular dichroism spectroscopies. • Co dopants substitute for Zn sites in ZnO matrix and are divalent Co{sup 2+}. • Measurements indicate Co clusters are not formed. • Co–O–Co bonding provide localized magnetic moments leading to ferromagnetism.

  6. Study of structural and spectroscopic behavior of Sm3+ ions in lead-zinc borate glasses containing alkali metal ions

    Science.gov (United States)

    Sasi Kumar, M. V.; Babu, S.; Rajeswara Reddy, B.; Ratnakaram, Y. C.

    2017-02-01

    High luminescence behavior of rare earth inorganic glasses have a variety of uses in the industry. In the past few decades, rare earth ions with characteristic photonics applications are being hosted by heavy metal oxide glasses. Among the rare earth ions Sm3+ ion has features which make it apt for high density optical storage. The authors of the paper have experimented to synthesize Sm3+ doped glasses. In this regard a new series of borate glasses doped with 1 mol% Sm3+ ion are developed by using melt-quenching technique. XRD, FTIR, optical absorption, luminescence techniques are used to study the various characteristics of Sm3+ ion in the present glass matrices. The XRD spectra confirms the amorphous nature of glasses. Further, the researchers have used differential thermal analysis to study the glass transition temperature. The structural groups in the prepared glasses are studied using Fourier transform infrared spectra. From the measurement of its optical absorption, three phenomenological Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) have been computed. Based on these Judd-Ofelt intensity parameters, radiative properties such as radiative probabilities (Arad), branching ratios (β), and radiative life time (τR) are calculated. The excitation spectra of Sm3+ doped lithium heavy metal borate glass matrix is recorded under the emission wavelength of 600 nm. The emission spectra are recorded under 404 nm excitation wavelength. From various emission transitions, 4G5/2 → 6H7/2 and 4G5/2 → 6H9/2 bands could be of interest for various applications. The decay profiles of 4G5/2 level exhibit single exponential nature in all the prepared glass matrices. The potassium glass matrix exhibits higher quantum efficiency than the other glass matrices. Finally, by going through these several spectroscopic characterizations, it is concluded that the prepared Sm3+ doped lead-zinc borate glasses might be useful for visible light applications.

  7. Vibrational and Raman Spectroscopic Study of Cubic Boron Nitride Under Pressure Using Density Functional Theory

    Science.gov (United States)

    Pillai, Sharad Babu; Mankad, Venu; Jha, Prafulla K.

    2017-08-01

    Pressure-dependent mechanical, vibrational and Raman spectroscopic study of the cubic boron nitride in context of recent experimental Raman spectroscopic has been performed using the ab initio calculations based on density functional theory. Detailed analysis of the pressure-dependent mechanical and phonon properties shows that the pressure significantly affects the elastic constants and phonon frequencies. There is a systematic variation of elastic properties with pressure while a polynomial expression is used to fit the pressure dependence of the Raman shift. The longitudinal optical-transverse optical (LO-TO) splitting reduces with pressure, and the intensity of both LO and TO peaks start diminishing after 750 GPa. The phonon dispersion curves up to 1000 GPa indicate its dynamical stability. The lower slope of frequency versus pressure for the LO and TO modes at higher pressures suggests its use for pressure calibration at higher pressures.

  8. Study on the coordination structure of pt sorbed on bacterial cells using x-ray absorption fine structure spectroscopy.

    Directory of Open Access Journals (Sweden)

    Kazuya Tanaka

    Full Text Available Biosorption has been intensively investigated as a promising technology for the recovery of precious metals from solution. However, the detailed mechanism responsible for the biosorption of Pt on a biomass is not fully understood because of a lack of spectroscopic studies. We applied X-ray absorption fine structure spectroscopy to elucidate the coordination structure of Pt sorbed on bacterial cells. We examined the sorption of Pt(II and Pt(IV species on bacterial cells of Bacillus subtilis and Shewanella putrefaciens in NaCl solutions. X-ray absorption near-edge structure and extended X-ray absorption fine structure (EXAFS of Pt-sorbed bacteria suggested that Pt(IV was reduced to Pt(II on the cell's surface, even in the absence of an organic material as an exogenous electron donor. EXAFS spectra demonstrated that Pt sorbed on bacterial cells has a fourfold coordination of chlorine ions, similar to PtCl42-, which indicated that sorption on the protonated amine groups of the bacterial cells. This work clearly demonstrated the coordination structure of Pt sorbed on bacterial cells. The findings of this study will contribute to the understanding of Pt biosorption on biomass, and facilitate the development of recovery methods for rare metals using biosorbent materials.

  9. Characterization of porcine skin as a model for human skin studies using infrared spectroscopic imaging.

    Science.gov (United States)

    Kong, Rong; Bhargava, Rohit

    2011-06-07

    Porcine skin is often considered a substitute for human skin based on morphological and functional data, for example, for transdermal drug diffusion studies. A chemical, structural and temporal characterization of porcine skin in comparison to human skin is not available but will likely improve our understanding of this porcine skin model. Here, we employ Fourier transform infrared (FT-IR) spectroscopic imaging to holistically measure chemical species as well as spatial structure as a function of time to characterize porcine skin as a model for human skin. Porcine skin was found to resemble human skin spectroscopically and differences are elucidated. Cryo-prepared fresh porcine skin samples for spectroscopic imaging were found to be stable over time and small variations are observed. Hence, we extended characterization to the use of this model for dynamic processes. In particular, the capacity and stability of this model in transdermal diffusion is examined. The results indicate that porcine skin is likely to be an attractive tool for studying diffusion dynamics of materials in human skin.

  10. Spectroscopic Studies of a Water-soluble Derivative of Hypocrellin A and Its One- and Two-Electron Reduction Products

    Institute of Scientific and Technical Information of China (English)

    胡义镇; 安静仪; 蒋丽金

    1994-01-01

    In this study the spectroscopic characteristics of a water-soluble derivative of hypocrellin A (HA), 14-dehydroxy-15-deacetyl-hypocrellin A-13-sulfonate(13-SO3Na-DDHA),and its one- and two-electron reduction products have been investigated. From the changes in absorbance with pH it was observed that the two phenolic hydroxy groups at C-3 and C-10 positions of 13-SO3Na-DDHA or HA dissociated stepwise with increase of pH values. The pKa values for 13-SO3Na-DDHA and HA were determined using an effective method established in this study. Attempts were also made to use absorption and ESR spectroscopies to study the photoreduction of 13-SO3Na-DDHA. It was found that 13-SO3Na-DDHA was directly reduced to its two-electron reduction product in buffered aqueous solution (pH 7. 7). However, in DMF-buffer (1 :1/ v : v,pH 7. 7), it proceeded with one-electron reduction to generate its semiquinone radical anions. The semiquinone radical anions decayed according to second-order kinetics. indicating that the terminatio

  11. Surfactants induced release of a red emitting dye from the nanocavity of a molecular container: A spectroscopic and calorimetric study.

    Science.gov (United States)

    Ahmed, Sayeed Ashique; Chatterjee, Aninda; Maity, Banibrata; Seth, Debabrata

    2016-08-01

    Supramolecular interaction of a red emitting dye Nile blue A (NBA) with Cucurbit[7]uril (CB7) in aqueous solution was studied and the release of the dye from the hydrophobic cavity of CB7 was reported. To investigate the supramolecular host-guest complex formation and release of dye, we have used the steady state absorption, fluorescence and time resolved fluorescence emission spectroscopy, (1)H NMR spectroscopy and isothermal titration calorimetry (ITC). The spectral properties of NBA were changed in the presence of CB7. The change in spectral features of NBA in presence of CB7 indicates the formation of supramolecular host-guest complexes. By using the SED equation the diameter of the complex was estimated. The complex formation further affirmed by the (1)H NMR study. Upfield and downfield shifts of the protons of NBA was observed in both the aliphatic and aromatic region. From the ITC measurement, we have drawn up the forces involved for the complexation of NBA with CB7. We have studied the release of NBA from the hydrophobic cavity of CB7 by using ionic, neutral surfactants and ionic liquid with the help of spectroscopic and calorimetric techniques. It is observed that on addition of SDS and ionic liquid (

  12. Spectroscopic studies on ligand-enzyme interactions: complexation of alpha-chymotrypsin with 4',6-diamidino-2-phenylindole (DAPI).

    Science.gov (United States)

    Banerjee, Debapriya; Srivastava, Sachin Kumar; Pal, Samir Kumar

    2008-02-14

    In the present study, the interaction of two structurally related proteolytic enzymes trypsin and alpha-chymotrypsin (CHT) with 4',6-Diamidino-2-phenylindole (DAPI) has been addressed. The binding of DAPI to CHT has been characterized by steady-state and picosecond time-resolved spectroscopic techniques. Enzymatic activity of CHT and simultaneous binding of the well-known inhibitor proflavin (PF) in the presence of DAPI clearly rule out the possibility of DAPI binding at the catalytic site of the enzyme. The spectral overlap between the emission of DAPI and absorption of PF offers the opportunity to explore the binding site of DAPI using Förster resonance energy transfer (FRET). FRET studies between DAPI and PF indicate that DAPI is bound to CHT with its transition dipole nearly perpendicular to that of PF. Competitive binding of DAPI with another fluorescent probe 2,6-p-toluidinonaphthalene sulfonate (TNS), having a well-defined binding site, indicates that DAPI and TNS bind at the same hydrophobic site of the enzyme CHT. The difference in the interactions of two well-studied, structurally similar enzymes with the same molecule may find its application in the design of specific substrate mimics or inhibitors of the enzymes.

  13. Spectroscopic and DFT-based computational studies on the molecular electronic structural characteristics and the third-order nonlinear property of an organic NLO crystal: (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide

    Science.gov (United States)

    Sasikala, V.; Sajan, D.; Joseph, Lynnette; Balaji, J.; Prabu, S.; Srinivasan, P.

    2017-04-01

    Single crystals of (E)-N‧-(4-chlorobenzylidene)-4-methylbenzenesulfonohydrazide (CBMBSH) have been grown by slow evaporation crystal growth method. The structure stabilizing intramolecular donor-acceptor interactions and the presence of the Nsbnd H⋯O, Csbnd H⋯O and Csbnd H⋯C(π) hydrogen bonds in the crystal were confirmed by vibrational spectroscopic and DFT methods. The linear optical absorption characteristics of the solvent phase of CBMBSH were investigated using UV-Vis-NIR spectroscopic and TD-DFT approaches. The 2PA assisted RSA nonlinear absorption and the optical limiting properties of CBMBSH were studied using the open-aperture Z-scan method. The topological characteristics of the electron density have been determined using the quantum theory of atoms in molecules method.

  14. Spectroscopic characterization approach to study surfactants effect on ZnO 2 nanoparticles synthesis by laser ablation process

    Science.gov (United States)

    Drmosh, Q. A.; Gondal, M. A.; Yamani, Z. H.; Saleh, T. A.

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H 2O 2. The effect of surfactants on the optical and structure of ZnO 2 was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H 2O 2, and H 2O 2 mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO 2 nanoparticles prepared with and without surfactants show a characteristic ZnO 2 absorption at 435-445 cm -1. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm -1.

  15. Spectroscopic characterization approach to study surfactants effect on ZnO{sub 2} nanoparticles synthesis by laser ablation process

    Energy Technology Data Exchange (ETDEWEB)

    Drmosh, Q.A. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Yamani, Z.H. [Laser Research Group, Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Saleh, T.A. [Center of Excellence in Nanotechnology (CENT), King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2010-05-01

    Zinc peroxide nanoparticles having grain size less than 5 nm were synthesized using pulsed laser ablation in aqueous solution in the presence of different surfactants and solid zinc target in 3% H{sub 2}O{sub 2}. The effect of surfactants on the optical and structure of ZnO{sub 2} was studied by applying different spectroscopic techniques. Structural properties and grain size of the synthesized nanoparticles were studied using XRD method. The presence of the cubic phase of zinc peroxide in all samples was confirmed with XRD, and the grain sizes were 4.7, 3.7, 3.3 and 2.8 nm in pure H{sub 2}O{sub 2}, and H{sub 2}O{sub 2} mixed with SDS, CTAB and OGM respectively. For optical characterization, FTIR transmittance spectra of ZnO{sub 2} nanoparticles prepared with and without surfactants show a characteristic ZnO{sub 2} absorption at 435-445 cm{sup -1}. FTIR spectrum revealed that the adsorbed surfactants on zinc peroxide disappeared in case of CTAB and OGM while it appears in case of SDS. This could be due to high critical micelles SDS concentration comparing with others which is attributed to the adsorption anionic nature of this surfactant. Both FTIR and UV-vis spectra show a red shift in the presence of SDS and blue shift in the presence of CTAB and OGM. The blue shift in the absorption edge indicates the quantum confinement property of nanoparticles. The zinc peroxide nanoparticles prepared in additives-free media was also characterized by Raman spectra which show the characteristic peaks at 830-840 and 420-440 cm{sup -1}.

  16. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide.

    Science.gov (United States)

    Tanaka, M; Kurata, T; Fujisawa, C; Ohshima, Y; Aoki, H; Okazaki, O; Hakusui, H

    1993-10-01

    The mechanisms of reduction in absorption of levofloxacin (LVFX) by coadministration of aluminum hydroxide were studied. The partition coefficient of LVFX (0.1 mM) between chloroform and phosphate buffer (pH 5.0) was reduced by 60 to 70% with the addition of metal ions such as Cu2+, Al3+, and Fe2+ (0.8 mM), which indicated the formation of LVFX-metal ion chelates. However, there was no significant difference in absorption from rat intestine between the synthetic LVFX-Al3+ (1:1) chelate (6.75 mM) and LVFX (6.75 mM) in an in situ recirculation experiment. On the other hand, Al(NO3)3 (1.5 mM) significantly inhibited the absorption of LVFX (1.5 mM) by 20% of the control in the in situ ligated loop experiment, in which partial precipitation of aluminum hydroxide was observed in the dosing solution. Data for adsorption of LVFX and ofloxacin (OFLX) from aqueous solution by aluminum hydroxide were shown to fit Langmuir plots, and the adsorptive capacities (rmax) and the K values were 7.0 mg/g and 1.77 x 10(4) M-1 for LVFX and 7.4 mg/g and 1.42 x 10(4) M-1 for OFLX, respectively. The rate of adsorption of several quinolones (50 microM) onto aluminum hydroxide (2.5 mg/ml) followed the order norfloxacin (NFLX) (72.0%) > enoxacin (ENX) (61.0%) > OFLX (47.2%) approximately LVFX (48.1%). The elution rate of adsorbed quinolones with water followed the rank order LVFX (17.9%) approximately OFLX (20.9%) approximately ENX (18.3%) > NFLX (11.9%). These results strongly suggest that adsorption of quinolones by aluminum hydroxide reprecipitated in the small intestine would play an important role in the reduced bioavailability of quinolones after coadministration with aluminum-containing antacids.

  17. STUDY ON FACTORS INFLUENCING INK ABSORPTION OF COATED PAPER

    Institute of Scientific and Technical Information of China (English)

    YanxinLiu; ChuanshanZhao; ShuxiaShangt; ZhongweiSun

    2004-01-01

    Ink absorption is one of the most important factorswhich influence printing properties. This article haddiscussed the influence of coating properties,technologies of heating and pressure etc. on inkabsorption and showed that ink absorption can beadjusted and coating surface structure can beimproved when technologies of heating and pressurechange, pigment and adhesive altered.

  18. Calorimetric and spectroscopic studies on the interaction of anticancer drug mitoxantrone with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Keswani, Neelam [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Kishore, Nand, E-mail: nandk@chem.iitb.ac.in [Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-09-15

    Highlights: > Human serum albumin exhibits two binding sites for mitoxantrone. > Discrepancies in calorimetric and spectroscopic results clarify binding sites. > Effect of ionic strength on binding permitted detailed analysis of interactions. > Electrostatic interactions predominate in binding. > One binding site on protein does not have tryptophan in immediate vicinity. - Abstract: Binding of the anticancer drug mitoxantrone with the protein human serum albumin (HSA) has been studied by using isothermal titration calorimetry (ITC), in combination with fluorescence, UV-visible, and circular dichroism spectroscopy. The thermodynamic parameters of binding have been evaluated from ITC and spectroscopic results and compared. The ITC results demonstrate that the binding of mitoxantrone with HSA occurs according to two sets of binding sites on the protein as opposed to the fluorescence and UV-visible spectroscopic results. Blockage of one binding site on HSA for mitoxantrone in the presence of NaCl indicates strong involvement of electrostatic interactions in the binding of the drug with the protein. An insignificant temperature dependence of the association constant observed in fluorescence measurements suggests a very low enthalpy of binding which is in close agreement with the results obtained from ITC measurements. Fluorescence life time measurements suggest formation of a static complex between mitoxantrone and HSA. The discrepancies in the ITC and fluorescence results suggest that one of the binding sites on the protein for mitoxantrone does not contain tryptophan residue in its immediate vicinity. The calorimetric and spectroscopic results have provided quantitative information on the binding of mitoxantrone with HSA and suggest that the binding is dominated by electrostatic interactions.

  19. Luminescence, electronic absorption and vibrational IR and Raman studies of binary and ternary cerium ortho-, pyro- and meta-phosphates doped with Pr 3+ ions

    Science.gov (United States)

    Szczygieł, I.; Macalik, L.; Radomińska, E.; Znamierowska, T.; Mączka, M.; Godlewska, P.; Hanuza, J.

    2007-05-01

    The broad class of polycrystalline ortho-[Ba 3Ce(PO 4) 3, Ca 3Ce(PO 4) 3, Ba 6Ce(PO 4) 5, K 3Ce(PO 4) 2. Na 3Ce(PO 4) 2, Na 3- xK xCe(PO 4) 2 ( x = 0.5, 1.5 and 2.5)], pyro-[NaCeP 2O 7] and meta-[NaCe(PO 3) 4, KCe(PO 3) 4, K 2Ce(PO 3) 5] phosphates was prepared in the solid state reaction. The Pr 3+ ions have been used as active probe for studies of the spectroscopic properties of these materials. Optical absorption, emission as well as infrared and Raman spectroscopic methods have been applied to characterise the properties and structure of the compounds studied. Their electronic spectra were discussed in terms of the Ce 3+ ion spectroscopic characteristics. The 2F 5/2 → 2F 7/2 transition appears in the typical for this ion region, i.e., at about 2000 cm -1. The absorption bands in the range 25,000-50,000 cm -1 have been assigned to the 4f 1 → 5d 1 transitions of the cerium ion. The role of these transitions in the radiative and radiation-less energy transfer mechanism was discussed. This paper discusses also the emission of Ce 3+ and Pr 3+ and Stokes shift.

  20. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    Science.gov (United States)

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  1. Systematic comparison of photoionised plasma codes with application to spectroscopic studies of AGN in X-rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-12-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionisation codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionisation equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionisation codes, and compare their derived thermal and ionisation states for various ionising spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionised outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionisation parameter ξ, we find that on average there is about 30% deviation between the codes in ξ where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in ξ is smaller at about 10% on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30% deviation between the codes in the optical depth of the lines produced at log ξ 1 to 2, reducing to about 20% deviation at log ξ 3. We also simulate spectra of the ionised outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionisation codes, which is about 10 to 40%. We compare the modelling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionisation codes for the upcoming era of X-ray astronomy with Athena.

  2. Systematic Comparison of Photoionized Plasma Codes with Application to Spectroscopic Studies of AGN in X-Rays

    Science.gov (United States)

    Mehdipour, M.; Kaastra, J. S.; Kallman, T.

    2016-01-01

    Atomic data and plasma models play a crucial role in the diagnosis and interpretation of astrophysical spectra, thus influencing our understanding of the Universe. In this investigation we present a systematic comparison of the leading photoionization codes to determine how much their intrinsic differences impact X-ray spectroscopic studies of hot plasmas in photoionization equilibrium. We carry out our computations using the Cloudy, SPEX, and XSTAR photoionization codes, and compare their derived thermal and ionization states for various ionizing spectral energy distributions. We examine the resulting absorption-line spectra from these codes for the case of ionized outflows in active galactic nuclei. By comparing the ionic abundances as a function of ionization parameter, we find that on average there is about 30 deviation between the codes in where ionic abundances peak. For H-like to B-like sequence ions alone, this deviation in is smaller at about 10 on average. The comparison of the absorption-line spectra in the X-ray band shows that there is on average about 30 deviation between the codes in the optical depth of the lines produced at log 1 to 2, reducing to about 20 deviation at log 3. We also simulate spectra of the ionized outflows with the current and upcoming high-resolution X-ray spectrometers, on board XMM-Newton, Chandra, Hitomi, and Athena. From these simulations we obtain the deviation on the best-fit model parameters, arising from the use of different photoionization codes, which is about 10 to40. We compare the modeling uncertainties with the observational uncertainties from the simulations. The results highlight the importance of continuous development and enhancement of photoionization codes for the upcoming era of X-ray astronomy with Athena.

  3. Spectroscopic Study of L Hypernuclei with Electron Beams at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Satoshi [Tohoku Univ., Sendai (Japan); Gogami, Toshiyuki [Tohoku Univ., Sendai (Japan); Tang, Liguang [Hampton Univ., Hampton, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2017-07-01

    The missing mass spectroscopy of L hypernuclei with the (e, e'K^+) reaction was started from 2000 at Jefferson Lab. In this fifteen years, various hypernuclei (A = 7 - 52) including hyperon (L, S^0) productions have been studied with newly developed experimental techniques. The (e, e'K^+) reaction spectroscopy of L hypernuclei features its capability of absolute missing mass calibration and production of new species of hypernuclei which are the isospin partners of well studied hypernuclei by (K^-, pi-) and (pi^+, K^+) reactions. In this paper, we will review how we established the (e, e'K^+) spectroscopic study of hypernuclei.

  4. Spectroscopic properties of chlorophyll f.

    Science.gov (United States)

    Li, Yaqiong; Cai, Zheng-Li; Chen, Min

    2013-09-26

    The absorption and fluorescence spectra of chlorophyll f (newly discovered in 2010) have been measured in acetone and methanol at different temperatures. The spectral analysis and assignment are compared with the spectra of chlorophyll a and d under the same experimental conditions. The spectroscopic properties of these chlorophylls have further been studied by the aid of density functional CAM-B3LYP and high-level symmetric adapted coupled-cluster configuration interaction calculations. The main Q and Soret bands and possible sidebands of chlorophylls have been determined. The photophysical properties of chlorophyll f are discussed.

  5. Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study.

    Science.gov (United States)

    Xu, Ronghua; Ou, Huase; Yu, Xubiao; He, Runsheng; Lin, Chong; Wei, Chaohai

    2015-01-01

    This paper taking a full-scale coking wastewater (CWW) treatment plant as a case study aimed to characterize removal behaviors of dissolved organic matter (DOM) by UV spectra and fluorescence excitation-emission matrix-parallel factor analysis (PARAFAC), and investigate the correlations between spectroscopic indices and water quality parameters. Efficient removal rates of chemical oxygen demand (COD), dissolved organic carbon (DOC) and total nitrogen (TN) after the bio-treatment were 91.3%, 87.3% and 69.1%, respectively. UV270 was proven to be a stable UV absorption peak of CWW that could reflect the mixture of phenols, heterocyclics, polynuclear aromatic hydrocarbons and their derivatives. Molecular weight and aromaticity were increased, and also the content of polar functional groups was greatly reduced after bio-treatment. Three fluorescent components were identified by PARAFAC: C1 (tyrosine-like), C2 (tryptophan-like) and C3 (humic-like). The removal rate of protein-like was higher than that of humic-like and C1 was identified as biodegradable substance. Correlation analysis showed UV270 had an excellent correlation with COD (r=0.921, n=60, Ptreatment.

  6. Voltammetric and spectroscopic studies on binding of antitumor Morin, Morin-Cu complex and Morin-β-cyclodextrin with DNA

    Science.gov (United States)

    Temerk, Y. M.; Ibrahim, M. S.; Kotb, M.

    2009-01-01

    A systematic comparative study of the binding of antitumor Morin and its complexes with DNA has been investigated in the Britton-Robison (BR) buffer solutions using voltammetric and spectroscopic methods. The results show that Morin molecule, acting as an intercalator, is inserted into the cavity of the β-cyclodextrin (β-CD) as well as into the base stacking domain of the DNA double helix. The interaction of Morin-Cu complex or the inclusion complex of Morin-β-CD with ds-DNA causes hypochromism in the absorption spectra, along with pronounced changes in the electrochemical behavior of the Morin complexes. An isobestic point and a new spectrum band appeared indicating the formation of the new system of Morin-Cu-DNA at λm = 391 nm and Morin-β-CD-DNA at λm = 375 nm. The intercalation of Morin-Cu and Morin-β-CD complexes with DNA produces an electrochemically inactive supramolecular complex. The binding constants were calculated from the increase of the solubility, the strong hypochromism, and the decrease in peak current of Morin and its complexes upon the addition of the host molecules. Calculation of the thermodynamic parameters of the interaction of the inclusion complex of Morin-β-CD with DNA, including Gibbs free energy change, Helmholz free energy and entropy change shows that the complexation is a spontaneous process of association.

  7. Study on Kinetics of Hydrogen Absorption by Metal Hydride Slurries Ⅰ. Absorption of Hydrogen by Hydrogen Storage Alloy MlNi5 Suspended in Benzene

    Institute of Scientific and Technical Information of China (English)

    安越; 陈长聘; 徐国华; 蔡官明; 王启东

    2002-01-01

    The absorption of hydrogen was studied in metal hydride slurry, which is formed by benzene and hydrogen storage alloy powder. The influence of temperature on the rate of absorption was discussed using three-phase mass transfer model. It is also concluded that the suitable absorption temperature is 313 K.

  8. Synthesis, structural and spectroscopic studies of two new benzimidazole derivatives: A comparative study

    Science.gov (United States)

    Saral, Hasan; Özdamar, Özgür; Uçar, İbrahim

    2017-02-01

    In the present work, structural and spectroscopic studies on 1-Methyl-2-(2‧-hydroxy-4‧-chlorophenyl)benzimidazole (1) and 1-Methyl-2-(2‧-hydroxy-4‧-methoxyphenyl)benzimidazole (2), have been carried out extensively by X-ray diffraction, HRMS, UV-Vis, FT-IR and 1H and 13C NMR spectroscopy. The crystal structure of both compounds is stabilized by Osbnd H⋯N hydrogen bond and π-π interactions. Contrary to compound 1, the skeleton of compound 2 is considerably deviated from the planarity probably caused by intermolecular hydrogen bonding. The experimental results were compared to the theoretical ones, obtained at DFT level. Ground state geometry, electronic structure, vibrational and NMR spectra have been performed using the B3LYP functional with the 6-31 G(d,p) basis set. It was observed that the bond distances and angles in the both compounds were in good with those of the experiment. The energetic behaviors of the both compounds in methanol solvent were examined using by time-dependent DFT (TD-DFT) method by applying the polarizable continuum model (PCM). Isotropic chemical shifts (13C and 1H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. The HOMO and LUMO analyses were used to elucidate information regarding charge transfer within the molecule.

  9. Fundamental Study of Absorption Cycle without Electric Solution Pump

    Science.gov (United States)

    Tsujimori, Atsushi; Sato, Kazuo; Nakao, Kazushige; Ohgushi, Tetsuro; Katsuta, Masafumi

    The absorption refrigerant cycle has been used in Japan, as energy shortage problem is more and more serious and environmental protection is of increasing importance. This type of air conditioner and chiller consume less electric power input than the electric one. However, the absorption refrigerator of large cooling capacity consumes some electric power with the required facility. Then in this research, the absorption cycle without the electric solution pump is proposed using a capillary pump and the possibility of making this cycle running using LiBr solution as a working fluid is investigated. As a result, it was found that the absorption cycle could be reached using a capillary wick in the generator to circulate the refrigerant and kept the strong and weak solution low pressure.

  10. In situ spectroscopic applications to the study of rechargeable lithium batteries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, R.; Kim, Sunghyun; Tryk, D.; Scherson, D.A. [Case Western Reserve Univ., Cleveland, OH (United States). Dept of Chemistry

    1993-08-01

    In situ attenuated total reflection Fourier transform infrared spectroscopy (ATR/FTIR) has been employed to examine the reactivity of lithium toward polyethylene oxide (PEO) at ca. 60{degree}C. Uncertainties regarding the cleanliness of the Li surfaces were, minimized by electrodepositing a film of metallic Li directly onto a thin layer of gold (ca. 60 {Angstrom}) vapor deposited on a Ge ATR optical element during the spectroscopic measurements. The ATR/FTIR features observed upon stripping the Li layer were consistent with the formation of alkoxide-type moieties resulting from the Li-induced cleavage of the ether-type functionalities. Electronic and structural aspects of the electrochemical insertion of lithium from non-aqueous electroyltes into FeS{sub 2} have been investigated using in situ Fe K-edge X-ray absorption fine structure (XAFS). The results obtained indicate that the incorporation of Li{sup +} in the pyrite lattice brings about a marked decrease in the amplitude of the extended XAFS (EXAFS) oscillations, particularly for shells associated with distant atoms and a rounding of the, X-ray absorption near edge structure (XANES) region. An analysis of the EXAFS spectra yielded a value for the FeS distance of 2.29 {plus_minus} 0.02 {Angstrom}. On this basis and additional in situ room temperature {sup 57}Fe Mossbauer effect spectroscopy data for the same system it has been proposed that the electrically formed material involves a highly disordered (possibly amorphous) form of Fe{sub l-x}S (with Li+ counterbalancing the charge).

  11. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  12. Povidone iodine skin absorption: an ex-vivo study.

    Science.gov (United States)

    Nesvadbova, Martina; Crosera, Matteo; Maina, Giovanni; Larese Filon, Francesca

    2015-06-15

    Povidone iodine is a water-soluble complex used to disinfect the skin surface and it exerts prolonged germicidal action against a broad spectrum of germs. Indeed, it is often applied on burned skin, large wounds, deep tissues or mucosa. Notably some surgical hand-scrub solutions, which are considered safe antiseptics, contain large amounts of iodine that can be absorbed by skin. The aim of present study was to study the skin absorption of iodine after the application on the skin of povidone-iodine solution, used by health care workers during surgical procedure. We use Franz diffusion static cells with human skin. After 24h from the beginning of our measurement the iodine concentration in the receiving compartment was 11.59±6.3μg/cm(2). The medium flux calculated was 0.73±0.33μg/cm(2)/h with a lag time of 8.9±1.5h. These in vitro results confirmed that povidone iodine could pass through the skin in a relevant amount that can explain the clinical findings in burned or surgically treated patients. In professional use the repetitive contact with povidone iodine, also as soap, can cause iodine skin permeation that must be considered when the washing procedures are repeated more than 20 times a day.

  13. Picosecond spectroscopic studies of energy transfer in phycobiliproteins and model dye systems

    Energy Technology Data Exchange (ETDEWEB)

    Switalski, S.C.

    1987-02-01

    Energy transfer was investigated in the ..cap alpha beta.. monomer and separated ..cap alpha.. and ..beta.. subunits of C-phycocyanin from Anabaena variabilis and Anacystis nidulans, using steady-state and picosecond spectroscopy. Fluorescence excitation polarization spectra were consistent with a sensitizing (s) - fluorescing (f) model using a Forster energy transfer mechanism. The rise in polarization across the absorption band towards longer wavelength for the ..beta.. subunit and the ..cap alpha beta.. monomer was attributed to energy transfer among the three chromophores in the ..cap alpha beta.. monomer and between the 2 chromophores in the ..beta.. subunit. The constant polarization of the ..cap alpha.. subunit, with one chromophore, is consistent with a lack of any possibility of energy transfer. Fluorescence emission maxima were at 640 nm for the ..cap alpha beta.. monomer and the separated subunits of Anabaena variabilis, and 645 nm for the ..beta.. subunit, 640 nm for the ..cap alpha.. subunit, and 644 nm for ..cap alpha beta.. monomer of Anacystis nidulans. We have shown that the labels s and f are not consistent with all the steady-state spectroscopic results. 171 refs., 32 figs., 15 tabs.

  14. Fe(II) sorption on a synthetic montmorillonite. A combined macroscopic and spectroscopic study.

    Science.gov (United States)

    Soltermann, Daniela; Fernandes, Maria Marques; Baeyens, Bart; Dähn, Rainer; Miehé-Brendlé, Jocelyne; Wehrli, Bernhard; Bradbury, Michael H

    2013-07-02

    Extended X-ray absorption fine structure (EXAFS) and Mössbauer spectroscopy combined with macroscopic sorption experiments were employed to investigate the sorption mechanism of Fe(II) on an iron-free synthetic montmorillonite (Na-IFM). Batch sorption experiments were performed to measure the Fe(II) uptake on Na-IFM at trace concentrations as a function of pH and as a function of sorbate concentration at pH 6.2 and 6.7 under anoxic conditions (O2 < 0.1 ppm). A two-site protolysis nonelectrostatic surface complexation and cation exchange sorption model was used to quantitatively describe the uptake of Fe(II) on Na-IFM. Two types of clay surface binding sites were required to model the Fe(II) sorption, the so-called strong (≡S(S)OH) and weak (≡S(W)OH) sites. EXAFS data show spectroscopic differences between Fe sorbed at low and medium absorber concentrations that were chosen to be characteristic for sorption on strong and weak sites, respectively. Data analysis indicates that Fe is located in the continuity of the octahedral sheet at trans-symmetric sites. Mössbauer spectroscopy measurements confirmed that iron sorbed on the weak edge sites is predominantly present as Fe(II), whereas a significant part of surface-bound Fe(III) was produced on the strong sites (∼12% vs ∼37% Fe(III) species to total sorbed Fe).

  15. Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

    KAUST Repository

    de Ruiter, J. M.

    2016-09-20

    One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2\\'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.

  16. Spectroscopic studies of the interaction between methylene blue and G-quadruplex

    Institute of Scientific and Technical Information of China (English)

    SUN Hongxia; XIANG Junfeng; ZHANG Yazhou; XU Guangzhi; XU Lianghua; TANG Yalin

    2006-01-01

    G-rich single-stranded DNA (5'-TTAG-GG-3') adopted a G-quadruplex structure in buffer containing potassium ions. The spectroscopic feature and the interaction between methylene blue and G-quadruplex have been investigated by circular dichroism, and nuclear magnetic resonance spectroscopy. The UV-Vis absorption and fluorescence spectral results show that the fluorescence behavior of MB by single-stranded DNA fits Stern-Volmer static quenching equation very well and they formed 1:1 complexes; dimeric G-quadruplexes were bound to MB with 1:1 or 2:1, and their equilibrium constants were 1.047×105 and 8.79×104 L/mol, respectively.Based on the above results and 1H-NMR spectral data, one may conclude that MB stacked either the terminal tetrads to form 1:1 complexes or between two terminal tetrads of G-quadruplexes to form 1:2 sandwich complexes with G-qudruplexes.

  17. Studies on the interaction of salvianolic acid B with human hemoglobin by multi-spectroscopic techniques

    Science.gov (United States)

    Chen, Tingting; Zhu, Shajun; Cao, Hui; Shang, Yanfang; Wang, Miao; Jiang, Guoqing; Shi, Yujun; Lu, Tianhong

    2011-04-01

    The interaction between salvianolic acid B (Sal B) and human hemoglobin (HHb) under physiological conditions was investigated by UV-vis absorption, fluorescence, synchronous fluorescence and circular dichroism spectroscopic techniques. The experimental results indicate that the quenching mechanism of fluorescence of HHb by Sal B is a static quenching procedure, the binding reaction is spontaneous, and the hydrophobic interactions play a major role in binding of Sal B to HHb. Based on Förster's theory of non-radiative energy transfer, the binding distance between Sal B and the inner tryptophan residues of HHb was determined to be 2.64 nm. The synchronous fluorescence experiment revealed that Sal B can not lead to the microenvironmental changes around the Tyr and Trp residues of HHb, and the binding site of Sal B on HHb is located at α 1β 2 interface of HHb. Furthermore, the CD spectroscopy indicated the secondary structure of HHb is not changed in the presence of Sal B.

  18. Spectroscopic ellipsometry study of N+ ion-implanted ethylene-norbornene films

    Science.gov (United States)

    Šiljegović, M.; Kačarević-Popović, Z. M.; Stchakovsky, M.; Radosavljević, A. N.; Korica, S.; Novaković, M.; Popović, M.

    2014-05-01

    The optical properties of 150 keV N+ implanted ethylene-norbornene (TOPAS 6017S-04) copolymer were investigated using phase modulated spectroscopic ellipsometry (PMSE) and ultraviolet-visible (UV-Vis) spectroscopy in the ranges of 0.6-6.5 eV and of 1.5-6.2 eV, respectively. The single-effective-oscillator model was used to fit the calculated data to the experimental ellipsometric spectra. The results show that the oscillator and dispersion energies decrease with increasing ion fluence up to 1015 cm-2, and then these parameters increase with further fluence increasing. Analysis of the UV-Vis absorption spectra revealed the presence of indirect electronic transitions with the band gap energy in the range of 1.3 to 2.8 eV. It was found that both the band gap energy and the energy width of the distribution of localized band tail states decrease, while the values of Tauc coefficient increase with increasing the ion fluence. From the ellipsometric data we found that the real part of the dielectric function increased about 7% after irradiation with 1015 cm-2, and decreased about 10% in samples modified with 1016 cm-2.

  19. Shock absorption in lumbar disc prosthesis: a preliminary mechanical study.

    Science.gov (United States)

    LeHuec, J C; Kiaer, T; Friesem, T; Mathews, H; Liu, M; Eisermann, L

    2003-08-01

    Lumbar disc prostheses have been used in treating symptomatic degenerative disc diseases. A few prostheses of the ball-socket design are currently available for clinical use, the joint mechanism being materialized either with a hard polymer core or a metal-to-metal couple. Other prostheses of "shock absorber" design were not available at the time of the study. The objective of this work was to establish whether there was a difference in the shock absorption capacity between a device having an ultra-high-molecular-weight polyethylene center core and a device having a metal-on-metal bearing. Vibration and shock loading were applied to two lumbar total disc prostheses: PRODISC, manufactured by Spine Solutions, and MAVERICK Total Disc Replacement, manufactured by Medtronic Sofamor Danek. The shock absorption capacity of the device was evaluated by comparing the input and the output force measurements. The disc prosthesis was mounted onto a test apparatus. Each side of the device was equipped with a force sensor. The input shock load and the output resulting forces were simultaneously measured and recorded. The loading force pattern included 1). a static preload of 350 N plus an oscillating vibration of 100 N with frequency sweeping from 0 to 100 Hz and 2). a sudden shock load of 250 N applied over a 0.1-second interval. Both input and output signal data were processed and were transformed into their frequency spectrums. The vibration and shock transmissibility of the device, defined as the ratio of the output spectrum over the input spectrum, were calculated in sweeping the frequency from 0 to 100 Hz. The phase deviation was calculated to characterize the shock absorber effects. For both tested devices under vibration and shock loading, the phase angle displacement between the input and the output signals was 10 degrees. Under oscillating vibration loading, both tested devices had a transmission ratio higher than 99.8%. Over the frequency interval 1-100 Hz, the

  20. Spectroscopic study of mimetite-vanadinite solid solution series - preliminary results

    Science.gov (United States)

    Janicka, Urszula; Bajda, Tomasz; Topolska, Justyna; Manecki, Maciej

    2014-05-01

    Mimetite Pb5(AsO4)3Cl and vanadinite Pb5(VO4)3Cl are minerals from the Pb-apatites family which belong to the apatite supergroup. Most often they crystalize under hypergenic conditions, in oxidation zones of Pb ore deposits, where they form paragenesis with pyromorphite Pb5(PO4)3Cl. These minerals are used in the techniques of soils reclamation. Their crystal structure allows substituting of metal cations as well as of anionic complexes. Natural mimetite often contains admixture of phosphates and/or vanadates. Similarly, vanadinite contains admixtures of phosphates and/or arsenates. Among the lead apatites, properties of the minerals from pyromorphite-mimetite solid solution series are well known, while the knowledge about the mimetite-vanadinite series is incomplete. The aim of this research was synthesis and spectroscopic characterization of mimetite-vanadinite solid solution series. Mimetite, vanadinite and their solid solution were synthesized from aqueous solutions by dropwise mixing of Pb(NO3)2, Na3VO4, Na2HAsO4×7H2O and NaCl at 25 ºC and pH = 3.5. Products of the syntheses were analyzed by X-Ray diffraction (XRD), Infrared absorption spectroscopy (FTIR) and Raman spectroscopy. The precipitates formed in the syntheses were identified by the XRD method as mimetite, vanadinite and their solid solutions. Other crystalline phases were not present in synthetic precipitates within the detection limit of XRD. In the Mid-IR spectra of mimetite-vanadinite solid solutions series, bands characteristic for vibrations of As-O bonds of the AsO4 tetrahedra and vibrations of V-O bonds of the VO4 tetrahedra were observed. The band corresponding to stretching ν3vibrations of AsO4 and VO4 occured in the range 700-900 cm-1. In the Raman spectra, bands which are characteristic for vibrations of As-O bonds of the AsO4 tetrahedra and vibrations of V-O bonds of the VO4 tetrahedra were also observed. The bands attributed to vibrations in the AsO4 tetrahedra appeared at 880-740 cm

  1. Attempted Isolation, Spectroscopic Characterization, and Computational Study of Diazirinone (N2CO), its Analogs, and their Precursors

    Science.gov (United States)

    Esselman, Brian J.; Nolan, Alex M.; Amberger, Brent K.; Shaffer, Chris J.; Woods, R. Claude; Stanton, John F.; McMahon, Robert J.

    2010-11-01

    Intrigued by the 2005 reported synthesis of diazirinone, we carried out further experimental and theoretical studies aimed at the detailed matrix-isolation and millimeter-wave spectroscopic characterizations. Diazirinone is a peculiar isoconjugate of two very stable molecules, CO and N2, which may be of astrochemical interest. Unfortunately, the previous reported methods of diazirinone generation did not yield this species, but rather its decomposition products. Encouraged by the many computational studies of the N2CO potential energy surface that all found diazirinone to be the lowest energy isomer, save its decomposition products, we proposed a new method of preparation of diazirinone from the photolysis or thermolysis of carbonyl diazide by loss of two nitrogen molecules. We were able to generate the highly explosive carbonyl diazide in sufficient yield from the reaction of triphosgene and sodium azide. This has allowed us to obtain a matrix-isolation and gas phase IR spectrum of carbonyl diazide which has a gas-phase lifetime of several days. We are currently engaged in the safe purification and distillation of our sample and obtaining a millimeter-wave spectrum of carbonyl diazide. We will attempt to photolyze or thermolyze this molecule to release diazirinone and characterize it by millimeter-wave spectroscopy to pave the way for possible astrochemical detection. In order to provide better mechanistic insight into the decomposition of carbonyl diazide to diazirinone, we have engaged in a DFT and ab initio computational study of several possible pathways. Our preliminary results suggest that of the pathways studied, a step-wise process in which an acyclic CON4 species is generated by loss of nitrogen followed by possible rearrangement and further loss of N2 is most likely. These results will be compared to the analogous reactions for azirinone (HC2NO), our next likely synthetic and spectroscopic target. The millimeter-wave absorption spectrometer used in this

  2. A Study of CO2 Absorption Using Jet Bubble Column

    Directory of Open Access Journals (Sweden)

    Setiadi Setiadi

    2010-10-01

    Full Text Available The phenomenon of plunging jet gas-liquid contact occurs quite often in nature, it's momentum carries small air bubbles with it into the reactor medium. The momentum of the liquid stream can be sufficient to carry small bubbles completely to the bottom of the vessel. A stream of liquid falling toward a level surface of that liquid will pull the surrounding air along with it. It will indent the surface of the liquid to form a trumpet-like shape. If the velocity of the stream is high enough, air bubbles will be pulled down, i.e. entrained into the liquid. This happens for two main reasons: air that is trapped between the edge of the falling stream and the trumpet-shaped surface profile and is carried below the surface. This study investigates the potential of a vertical liquid plunging jet for a pollutant contained gas absorption technique. The absorber consists of liquid jet and gas bubble dispersed phase. The effects of operating variables such as liquid flowrate, nozzle diameter, separator pressure, etc. on gas entrainment and holdup were investigated. The mass transfer of the system is governed by the hydrodynamics of the system. Therefore a clear and precise understanding of the above is necessary : to characterize liquid and gas flow within the system, 2. Variation in velocity of the jet with the use of different nozzle diameters and flow rates, 3. Relationship between the liquid and entrained airflow rate, 4. Gas entrainment rate and gas void fraction.

  3. Photometric and Spectroscopic Study of Open Clusters in the Direction of the Galactic Center

    Science.gov (United States)

    Piatti, Andres E.

    1997-03-01

    We present results obtained from photometric and spectroscopic CCD observations of 16 previously little-studied objects, cataloged as galactic open cluster candidates. All observations were carried out at the Complejo Astronomico El Leoncito (CASLEO, Argentina) and at Las Campanas Observatory (Chile). A detailed analysis of the observed color-magnitude diagrams [V vs (B-V), V vs V-I)] and density histograms of the 16 objects--mostly located in the direction to the galactic center--demonstrate that they are genuine open clusters. We also present new photometric CCD VI Johnson-Cousins data of 10 template open clusters with well-known fundamental parameters. (SECTION: Dissertation Summaries)

  4. The interaction of new piroxicam analogues with lipid bilayers--a calorimetric and fluorescence spectroscopic study.

    Science.gov (United States)

    Maniewska, Jadwiga; Szczęśniak-Sięga, Berenika; Poła, Andrzej; Sroda-Pomianek, Kamila; Malinka, Wiesław; Michalak, Krystyna

    2014-01-01

    The purpose of the present paper was to assess the ability of new piroxicam analogues to interact with the lipid bilayers. The results of calorimetric and fluorescence spectroscopic experiments of two new synthesized analogues of piroxicam, named PR17 and PR18 on the phase behavior of phospholipid bilayers and fluorescence quenching of fluorescent probes (Laurdan and Prodan), which molecular location within membranes is known with certainty, are shown in present work. The presented results revealed that, depending on the details of chemical structure, the studied compounds penetrated the lipid bilayers.

  5. Dielectric properties of WS2-coated multiwalled carbon nanotubes studied by energy-loss spectroscopic profiling

    Science.gov (United States)

    Stolojan, Vlad; Silva, S. R. P.; Goringe, Michael J.; Whitby, R. L. D.; Hsu, Wang K.; Walton, D. R. M.; Kroto, Harold W.

    2005-02-01

    We investigate experimentally the electronic properties of the coating for multiwalled carbon nanotubes covered in tungsten disulfide (WS2) of various thicknesses. Coatings of thicknesses between 2 and 8 monolayers (ML) are analyzed using energy-loss spectroscopic profiling (ELSP), by studying the variations in the plasmon excitations across the coated nanotube, as a function of the coating thickness. We find a change in the ELSP for coatings above 5 ML thickness, which we interpret in terms of a change in its dielectric properties.

  6. Circular dichroism spectroscopic studies on structures formed by telomeric DNA sequences in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Telomere plays an important role in cellular processes, such as cell aging, death and carcinogenisis. Having special sequences, it can form quadruplex structure in vitro. Circular dichroism (CD) spectroscopic studies show that TTAGGG, (TTAGGG)2 and (TTAGGG)4 can all form quadruplex in vitro and exist mainly as parallel quadruplex without metal ions. Both K+ and Na+ can stabilize the tetrameric structure and facilitate the forming of anti-parallel conformation. Furthermore, the conformations of quadruplex can also be affected by sequence length, the nature and concentration of metal ions.

  7. Synthesis, spectroscopic characterizations, crystal structures and DFT studies of nalidixic acid carbonyl hydrazones derivatives

    Science.gov (United States)

    Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.

    2016-09-01

    This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.

  8. Transmission electron microscopic and X-ray absorption fine structure spectroscopic investigation of U repartition and speciation after accumulation in renal cells

    Energy Technology Data Exchange (ETDEWEB)

    Carriere, M.; Milgram, S.; Thiebault, C.; Avoscan, L.; Gouget, B. [CEA Saclay, Lab Pierre Sue, CEA-CNRS, F-91191 Gif sur Yvette, (France); Proux, O. [Univ Joseph Fourier, CNRS, Lab Geophys Interne et Tectonophys, F-38400 Saint Martin d' Heres, (France)

    2008-07-01

    After environmental contamination, U accumulates in the kidneys and in bones, where it causes visible damage. Recent in vitro data prove that the occurrence of citrate increases U bioavailability without changing its speciation. Two hypotheses can explain the role of citrate: it either modifies the U intracellular metabolization pathway, or it acts on the transport of U through cell membrane. To understand which mechanisms lead to increased bioavailability, we studied the speciation of U after accumulation in NRK-52E kidney cells. U speciation was first identified in various exposure media, containing citrate or not, in which U was supplied as U carbonate. The influence of serum proteins was analyzed in order to detect the formation of macromolecular complexes of U. Transmission electron microscopy (TEM) was employed to follow the evolution of the U species distribution among precipitated and soluble forms. Finally, extended X-ray absorption fine structure spectroscopy (EXAFS) enabled the precipitates observed to be identified as U-phosphate. It also demonstrated that the intracellular soluble form of U is U carbonate. These results suggest that citrate does not change U metabolization but rather plays a role in the intracellular accumulation pathway. U speciation inside cells was directly and clearly identified for the first time. These results elucidate the role of U speciation in terms of its bioavailability and consequent health effects. (authors)

  9. Fast drying and film formation of latex dispersions studied with FTIR spectroscopic imaging.

    Science.gov (United States)

    Kimber, James A; Gerst, Matthias; Kazarian, Sergei G

    2014-11-18

    Drying of thin latex films (∼20 μm) at high drying speeds (of the order of seconds) has been studied by fast chemical imaging. ATR-FTIR spectroscopic imaging combined with a fast "kinetic" mode was used to acquire spectral images without coaddition, enabling the amount of water and homogeneity of the drying film to be studied over time. Drying profiles, constructed from analyzing the water content in each image, show two stages of drying, a fast and a slow region. The formulation of latex dispersions affects the onset of slow drying and the volume fraction of water remaining at the onset of slow drying. In this work, the effect of physical properties, film thickness and glass transition temperature (Tg), were investigated, as well as the effect of monomer composition where two monomoers, 2-ethylhexyl acrylate and n-butyl acrylate, and the amount of hydrophilic comonomer, methyl methacrylate (MMA), were varied. It was found that thicker films produced slower overall drying and that the formulation with a Tg above the minimum film formation temperature did not dry evenly, exhibiting cracking. However, the drying kinetics of high and low Tg films were similar, highlighting the advantage of using a spatially-resolved spectroscopic approach. Formulations containing more MMA dried faster than those with less. This was due to the hydrophilicity of MMA and the increase in Tg of the dispersion from the addition of MMA. Overall, FTIR spectroscopic imaging was shown to be a suitable approach in measuring film drying at high speeds as both chemical changes and chemical distribution could be analyzed over time.

  10. Infrared and Raman spectroscopic studies on alkali borate glasses: evidence of mixed alkali effect.

    Science.gov (United States)

    Padmaja, G; Kistaiah, P

    2009-03-19

    A lithium-potassium-borate glass system containing manganese and iron cations has been thoroughly investigated in order to obtain information about the mixed alkali effect and the structural role of both the manganese and iron in such glass hosts. Mixed alkali borate glasses of the (30 - x)Li(2)O - xK(2)O - 10CdO/ZnO - 59B(2)O(3) (x = 0, 10, 15, 20, and 30) doped with 1MnO(2)/1Fe(2)O(3) system were prepared by a melt quench technique. The amorphous phase of the prepared glass samples was confirmed from their X-ray diffraction. The spectroscopic properties of glass samples were studied using infrared (IR) and Raman spectroscopic techniques. The density of all the prepared glasses was measured using Archimedes principle. Molar volumes were estimated from the density data. IR spectra of these glasses revealed a dramatic variation of three- and four-coordinated boron structures as a function of mixed alkali concentration. The vibrations due to Li-O, K-O, and MnO(4)/FeO(4) arrangements are consistent in all the compositions and show a nonlinear variation in the intensity with alkali content. Raman spectra of different alkali combinations with CdO and ZnO present drastic changes in the intensity of various Raman bands. The observation of disappearance and reappearance of IR and Raman bands as a function of various alkali concentrations is an important result pertaining to the mixed alkali effect in borate glasses. Acting as complementary spectroscopic techniques, both types of measurements, IR and Raman, revealed that the network structure of the studied glasses is mainly based on BO(3) and BO(4) units placed in different structural groups, the BO(3) units being dominant. The measured IR and Raman spectra of different glasses are used to clarify the optical properties of the present glasses correlating them with their structure and composition.

  11. Binding of copper to lysozyme: Spectroscopic, isothermal titration calorimetry and molecular docking studies

    Science.gov (United States)

    Jing, Mingyang; Song, Wei; Liu, Rutao

    2016-07-01

    Although copper is essential to all living organisms, its potential toxicity to human health have aroused wide concerns. Previous studies have reported copper could alter physical properties of lysozyme. The direct binding of copper with lysozyme might induce the conformational and functional changes of lysozyme and then influence the body's resistance to bacterial attack. To better understand the potential toxicity and toxic mechanisms of copper, the interaction of copper with lysozyme was investigated by biophysical methods including multi-spectroscopic measurements, isothermal titration calorimetry (ITC), molecular docking study and enzyme activity assay. Multi-spectroscopic measurements proved that copper quenched the intrinsic fluorescence of lysozyme in a static process accompanied by complex formation and conformational changes. The ITC results indicated that the binding interaction was a spontaneous process with approximately three thermodynamical binding sites at 298 K and the hydrophobic force is the predominant driven force. The enzyme activity was obviously inhibited by the addition of copper with catalytic residues Glu 35 and Asp 52 locating at the binding sites. This study helps to elucidate the molecular mechanism of the interaction between copper and lysozyme and provides reference for toxicological studies of copper.

  12. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Vargas Alvarez, Carlos A.; Kobulnicky, Henry A. [Department of Physics and Astronomy, University of Wyoming, Dept. 3905, Laramie, WY 82071 (United States); Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, CB 3255, Phillips Hall, Chapel Hill, NC 27599-3255 (United States); Cool, Richard J. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Miller, Brendan P., E-mail: cvargasa@uwyo.edu, E-mail: chipk@uwyo.edu, E-mail: davidbradley512@gmail.com, E-mail: sheila@physics.unc.edu, E-mail: manorris@physics.unc.edu, E-mail: rcool@obs.carnegiescience.edu, E-mail: mbrendan@umich.edu [Department of Astronomy, University of Michigan, 745 Dennison Building, 500 Church St., Ann Arbor, MI 48109 (United States)

    2013-05-15

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R{sub V} and A{sub V} for O-type stars in Wd2. We find average values (R{sub V} ) = 3.77 {+-} 0.09 and (A{sub V} ) = 6.51 {+-} 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 {+-} 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  13. An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide

    NARCIS (Netherlands)

    Jong, K.P. de; Geus, John W.; Joziasse, J.

    1980-01-01

    Adsorption of carbon monoxide at room temperature (0.1–50 Torr) on silica-supported copper oxide was studied by infrared spectroscopy. Catalysts were prepared by deposition-precipitation or impregnation. After calcination two types of adsorbed CO were identified showing absorption bands at 2136 ± 3

  14. Glutamate receptors as seen by light: spectroscopic studies of structure-function relationships

    Directory of Open Access Journals (Sweden)

    K.A. Mankiewicz

    2007-11-01

    Full Text Available Ionotropic glutamate receptors are major excitatory receptors in the central nervous system and also have a far reaching influence in other areas of the body. Their modular nature has allowed for the isolation of the ligand-binding domain and for subsequent structural studies using a variety of spectroscopic techniques. This review will discuss the role of specific ligand:protein interactions in mediating activation in the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors as established by various spectroscopic investigations of the GluR2 and GluR4 subunits of this receptor. Specifically, this review will provide an introduction to the insight gained from X-ray crystallography and nuclear magnetic resonance investigations and then go on to focus on studies utilizing vibrational spectroscopy and fluorescence resonance energy transfer to study the behavior of the isolated ligand-binding domain in solution and discuss the importance of specific ligand:protein interactions in the mechanism of receptor activation.

  15. Bio-precipitation of uranium by two bacterial isolates recovered from extreme environments as estimated by potentiometric titration, TEM and X-ray absorption spectroscopic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Merroun, Mohamed L., E-mail: merroun@ugr.es [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Departamento de Microbiologia, Universidad de Granada, Campus Fuentenueva s/n 18071, Granada (Spain); Nedelkova, Marta [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Ojeda, Jesus J. [Cell-Mineral Interface Research Programme, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Experimental Techniques Centre, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom); Reitz, Thomas [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany); Fernandez, Margarita Lopez; Arias, Jose M. [Departamento de Microbiologia, Universidad de Granada, Campus Fuentenueva s/n 18071, Granada (Spain); Romero-Gonzalez, Maria [Cell-Mineral Interface Research Programme, Kroto Research Institute, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Selenska-Pobell, Sonja [Institute of Radiochemistry, Helmholtz Centre Dresden-Rossendorf, Dresden (Germany)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Precipitation of uranium as U phosphates by natural bacterial isolates. Black-Right-Pointing-Pointer The uranium biomineralization involves the activity of acidic phosphatase. Black-Right-Pointing-Pointer Uranium bioremediation could be achieved via the biomineralization of U(VI) in phosphate minerals. - Abstract: This work describes the mechanisms of uranium biomineralization at acidic conditions by Bacillus sphaericus JG-7B and Sphingomonas sp. S15-S1 both recovered from extreme environments. The U-bacterial interaction experiments were performed at low pH values (2.0-4.5) where the uranium aqueous speciation is dominated by highly mobile uranyl ions. X-ray absorption spectroscopy (XAS) showed that the cells of the studied strains precipitated uranium at pH 3.0 and 4.5 as a uranium phosphate mineral phase belonging to the meta-autunite group. Transmission electron microscopic (TEM) analyses showed strain-specific localization of the uranium precipitates. In the case of B. sphaericus JG-7B, the U(VI) precipitate was bound to the cell wall. Whereas for Sphingomonas sp. S15-S1, the U(VI) precipitates were observed both on the cell surface and intracellularly. The observed U(VI) biomineralization was associated with the activity of indigenous acid phosphatase detected at these pH values in the absence of an organic phosphate substrate. The biomineralization of uranium was not observed at pH 2.0, and U(VI) formed complexes with organophosphate ligands from the cells. This study increases the number of bacterial strains that have been demonstrated to precipitate uranium phosphates at acidic conditions via the activity of acid phosphatase.

  16. Design, synthesis, physicochemical studies, solvation, and DNA damage of quinoline-appended chalcone derivative: comprehensive spectroscopic approach toward drug discovery.

    Science.gov (United States)

    Kumar, Himank; Chattopadhyay, Anjan; Prasath, R; Devaraji, Vinod; Joshi, Ritika; Bhavana, P; Saini, Praveen; Ghosh, Sujit Kumar

    2014-07-01

    The present study epitomizes the design, synthesis, photophysics, solvation, and interaction with calf-thymus DNA of a potential antitumor, anticancer quinoline-appended chalcone derivative, (E)-3-(anthracen-10-yl)-1-(6,8-dibromo-2-methylquinolin-3-yl)prop-2-en-1-one (ADMQ) using steady state absorption and fluorescence spectroscopy, molecular modeling, molecular docking, Fourier-transform infrared spectroscopy (FTIR), molecular dynamics (MD) simulation, and gel electrophoresis studies. ADMQ shows an unusual photophysical behavior in a variety of solvents of different polarity. The dual emission has been observed along with the formation of twisted intramolecular charge transfer (TICT) excited state. The radiationless deactivation of the TICT state is found to be promoted strongly by hydrogen bonding. Quantum mechanical (DFT, TDDFT, and ZINDO-CI) calculations show that the ADMQ is sort of molecular rotor which undergoes intramolecular twist followed by a complete charge transfer in the optimized excited state. FTIR studies reveals that ADMQ undergoes important structural change from its native structure to a β-hydroxy keto form in water at physiological pH. The concentration-dependent DNA cleavage has been identified in agarose gel DNA electrophoresis experiment and has been further supported by MD simulation. ADMQ forms hydrogen bond with the deoxyribose sugar attached with the nucleobase adenine DA-17 (chain A) and result in significant structural changes which potentially cleave DNA double helix. The compound does not exhibit any deleterious effect or toxicity to the E. coli strain in cytotoxicity studies. The consolidated spectroscopic research described herein can provide enormous information to open up new avenues for designing and synthesizing chalcone derivatives with low systematic toxicity for medicinal chemistry research.

  17. A study of the absorption features of Makemake

    Science.gov (United States)

    Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J.; Duffard, R.; Carvano, J.; de Pra, M.

    2014-07-01

    Most transneptunian objects do not show prominent absorption features due to the size and location [1]. Nevertheless, absorption due to water ice and volatile ices do appear on a few large objects, particularly those that have good signal-to-noise-ratio spectra. In particular, methane appears in three dwarf planets (Pluto, Eris, and Makemake), as well as in some smaller objects, such as Quaoar and probably Sedna, and in Neptune's satellite Triton. Methane has such intense absorption features that even small amounts of methane on the surface dominate the reflectance spectra in the visible and near-infrared range, making it a great tool to probe surfaces, especially, considering that the depth of the bands could be used as a proxy for physical depths and that shifts in the bands with respect to laboratory measurements could point to possible dilutions (as seen in Pluto and Eris; for instance [3] and references therein). Aiming at gaining a deeper insight into Makemake's surface through its methane absorption bands, we have observed it with X-Shooter at the VLT with a medium spectral resolution in the range of 0.4--1.8 microns. In this work, we present the results of comparing these features with those of methane in the laboratory and the same features in Eris and Pluto, within the context of methane-dominated spectra of dwarf planets.

  18. 21-cm absorption studies with the Square Kilometer Array

    NARCIS (Netherlands)

    Kanekar, N; Briggs, FH

    2004-01-01

    HI 21-cm absorption spectroscopy provides an excellent probe of the neutral gas content of absorbing galaxies, yielding information on their kinematics, mass, physical size and ISM conditions. The high sensitivity, unrivaled frequency coverage and RFI suppression techniques of the SKA will enable it

  19. Thermal and spectroscopic studies on solid ibuprofen complexes of lighter trivalent lanthanides

    Energy Technology Data Exchange (ETDEWEB)

    Gálico, D.A.; Holanda, B.B.C.; Guerra, R.B.; Legendre, A.O.; Rinaldo, D. [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil); Treu-Filho, O. [UNESP – Univ Estadual Paulista, Instituto de Química, São Paulo CEP 14800-900 (Brazil); Bannach, G., E-mail: gilbert@fc.unesp.br [UNESP – Univ Estadual Paulista, Faculdade de Ciências, Departamento de Química, São Paulo CEP 17033-260 (Brazil)

    2014-01-10

    Highlights: • Lighter trivalent lanthanide complexes of ibuprofen have been synthesized. • The TG-FTIR allowed the identification of propane as the gas evolved during the thermal decomposition of the neodymium compound. • The thermal analysis provided information about the composition, dehydration, thermal behavior and thermal decomposition of the samples. • The theoretical and experimental spectroscopic studies suggest that the carboxylate group of ibuprofen is coordinated to the metals by a bidentate bond. - Abstract: Solid-state compounds of general formula Ln(L){sub 3}, in which L is ibuprofen and Ln stands for trivalent La, Ce, Pr, Nd, Sm and Eu, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry (DRX), complexometry, Fourier-transformed infrared spectroscopy (FTIR) and thermogravimetry coupled to Fourier-transformed infrared spectroscopy (TG-FTIR) were used to characterize these compounds. The results provided information concerning the chemical composition, dehydration, coordination modes of the ligands, crystallinity of the samples, thermal behavior and thermal decomposition of the compounds. The theoretical and experimental spectroscopic studies suggest that ibuprofen coordinates through the carboxylate group as a chelating ligand.

  20. Laser spectroscopic and theoretical studies of the structures and encapsulation motifs of functional molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, Takayuki; Kusaka, Ryoji [Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, 739-8526 (Japan); Xantheas, Sotiris S. [Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, WA 99352 (United States)

    2015-01-22

    Extensive laser spectroscopic and theoretical studies have been recently carried out with the aim to reveal the structure and dynamics of encapsulation complexes in the gas phase. The characteristics of the encapsulation complexes are governed by the fact that (i) most of the host molecules are flexible and (ii) the complexes form high dimensional structures by using weak non-covalent interactions. These characteristics result in the possibility of the coexistence of many conformers in close energetic proximity. The combination of supersonic jet/laser spectroscopy and high level quantum chemical calculations is essential in tackling these challenging problems. In this report we describe our recent studies on the structures and dynamics of the encapsulation complexes formed by calix[4]arene (C4A), dibenzo-18-crown-6-ether (DB18C6), and benzo-18-crown-6-ether (B18C6) 'hosts' interacting with N{sub 2}, acetylene, water, and ammonia 'guest' molecules. The gaseous host-guest complexes are generated under jet-cooled conditions. We apply various laser spectroscopic methods to obtain the conformer- and isomer-specified electronic and IR spectra. The experimental results are complemented with quantum chemical calculations ranging from density functional theory to high level first principles calculations at the MP2 and CCSD(T) levels of theory. We discuss the possible conformations of the bare host molecules, the structural changes they undergo upon complexation, and the key interactions that are responsible in stabilizing the specific complexes.

  1. [Study of Terahertz Amplitude Imaging Based on the Mean Absorption].

    Science.gov (United States)

    Zhang, Zeng-yan; Ji, Te; Xiao, Ti-qiao; Zhao, Hong-wei; Chen, Min; Yu, Xiao-han; Tong, Ya-jun; Zhu, Hua-chun; Peng, Wei-wei

    2015-12-01

    A new method of terahertz (THz) imaging based on the mean absorption is proposed. Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. THz pulse imaging emerges as a novel tool in many fields because of its low energy and non-ionizing character, such as material, chemical, biological medicine and food safety. A character of THz imaging technique is it can get large amount of information. How to extract the useful parameter from the large amount of information and reconstruct sample's image is a key technology in THz imaging. Some efforts have been done for advanced visualization methods to extract the information of interest from the raw data. Both time domain and frequency domain visualization methods can be applied to extract information on the physical properties of samples from THz imaging raw data. The process of extracting useful parameter from raw data of the new method based on the mean absorption was given in this article. This method relates to the sample absorption and thickness, it delivers good signal to noise ratio in the images, and the dispersion effects are cancelled. A paper with a "THz" shape hole was taken as the sample to do the experiment. Traditional THz amplitude imaging methods in time domain and frequency domain are used to achieve the sample's image, such as relative reduction of pulse maximum imaging method, relative power loss imaging method, and relative power loss at specific frequency imaging method. The sample's information that reflected by these methods and the characteristics of these methods are discussed. The method base on the mean absorption within a certain frequency is also used to reconstruct sample's image. The experimental results show that this new method can well reflect the true information of the sample. And it can achieve a clearer image than the other traditional THz amplitude imaging methods. All the experimental results and theoretical analyses indicate that

  2. Exploiting the P L2,3 absorption edge for optics: spectroscopic and structural characterization of cubic boron phosphide thin films

    NARCIS (Netherlands)

    Huber, S.P.; Medvedev, V.V.; Meyer-Ilse, J.; Gullikson, E.; Padavala, B.; Edgar, J.H.; Sturm, J.M.; Kruijs, van de R.W.E.; Prendergast, D.; Bijkerk, F.

    2016-01-01

    The transmission of cubic boron phosphide (c-BP) thin films, prepared by chemical vapor deposition (CVD), was evaluated near the phosphorous L2,3 and boron K absorption edge. The c-BP films were analyzed with transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray ab

  3. Design and electronic structure of new styryl dye bases: steady-state and time-resolved spectroscopic studies.

    Science.gov (United States)

    Bashmakova, N V; Shaydyuk, Ye O; Levchenko, S M; Masunov, A E; Przhonska, O V; Bricks, J L; Kachkovsky, O D; Slominsky, Yu L; Piryatinski, Yu P; Belfield, K D; Bondar, M V

    2014-06-26

    A comprehensive investigation of the electronic structure and fast relaxation processes in the excited states of new styryl base-type derivatives was performed using steady-state, pico-, and femtosecond time-resolved spectroscopic techniques. Linear photophysical parameters of new compounds, including steady-state absorption, fluorescence, and excitation anisotropy spectra, were obtained in a number of organic solvents at room temperature. A detailed analysis of the fluorescence lifetimes and ultrafast relaxation processes in the electronically excited state of the styryl bases revealed an important role of solvate dynamics and donor-acceptor strength of the molecular structures in the formation of their excited state absorption spectra. Experimental data were in good agreement with quantum chemical calculations at the time dependent density functional theory level, combined with a polarizable continuum model.

  4. Copper(II) complexes of prion protein PEG11-tetraoctarepeat fragment: spectroscopic and voltammetric studies.

    Science.gov (United States)

    Bonomo, Raffaele P; Di Natale, Giuseppe; Rizzarelli, Enrico; Tabbì, Giovanni; Vagliasindi, Laura I

    2009-04-14

    Spectroscopic (UV-Vis and EPR) and voltammetric studies have been carried out on the copper(II) complexes with the Ac-PEG11-(PHGGGWGQ)4-NH2 (L) polypeptide. In the ratios Cu : L 3 : 1 and 4 : 1, the two [Cu3(L)H(-6)] and [Cu4(L)H(-8)] complex species have been characterized at neutral pH values. All the copper atoms occupy similar coordination sites formed by imidazole, peptidic nitrogen atoms and carbonyl oxygen atoms in a square base pyramidal geometry. Voltammetric measurements on these systems point out the cooperativity in the electron transfer processes among the copper(II) sites during their reduction. NO interaction with these polynuclear copper species is characterized by the reduction of the copper sites through the formation of two different intermediate complex species. When an excess of the Ac-PEG11-(PHGGGWGQ)4-NH2 ligand is considered, frozen solution EPR parameters and UV-Vis spectroscopic data identify the [Cu(N(im))4]2+ chromophore, which does not interact with NO.

  5. A Near-Infrared Spectroscopic Study of Young Field Ultracool Dwarfs

    CERN Document Server

    Allers, K N

    2013-01-01

    We present a near-infrared (0.9-2.4 microns) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth (~10-300 Myr). Our sample is composed of 48 low-resolution (R~100) spectra and 41 moderate-resolution spectra (R>~750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provide consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of ~10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K, Na and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and d...

  6. Studies of multiple stellar systems - IV. The triple-lined spectroscopic system Gliese 644

    CERN Document Server

    Mazeh, T; Goldberg, E; Torres, G L; Stefanik, R P; Henry, T J; Zucker, S W; Gnat, O; Ofek, E O; Mazeh, Tsevi; Latham, David W.; Goldberg, Elad; Torres, Guillermo; Stefanik, Robert P.; Henry, Todd J.; Zucker, Shay; Gnat, Orly; Ofek, Eran O.

    2001-01-01

    We present a radial-velocity study of the triple-lined system Gliese 644 and derive spectroscopic elements for the inner and outer orbits with periods of 2.9655 and 627 days. We also utilize old visual data, as well as modern speckle and adaptive optics observations, to derive a new astrometric solution for the outer orbit. These two orbits together allow us to derive masses for each of the three components in the system: M_A = 0.410 +/- 0.028 (6.9%), M_Ba = 0.336 +/- 0.016 (4.7%), and $M_Bb = 0.304 +/- 0.014 (4.7%) M_solar. We suggest that the relative inclination of the two orbits is very small. Our individual masses and spectroscopic light ratios for the three M stars in the Gliese 644 system provide three points for the mass-luminosity relation near the bottom of the Main Sequence, where the relation is poorly determined. These three points agree well with theoretical models for solar metallicity and an age of 5 Gyr. Our radial velocities for Gliese 643 and vB 8, two common-proper-motion companions of Gli...

  7. M-dwarf metallicities - A high-resolution spectroscopic study in the near infrared

    CERN Document Server

    Önehag, Anna; Gustafsson, Bengt; Piskunov, Nikolai; Plez, Bertrand; Reiners, Ansgar

    2011-01-01

    The relativley large spread in the derived metallicities ([Fe/H]) of M dwarfs shows that various approaches have not yet converged to consistency. The presence of strong molecular features, and incomplete line lists for the corresponding molecules have made metallicity determinations of M dwarfs difficult. Furthermore, the faint M dwarfs require long exposure times for a signal-to-noise ratio sufficient for a detailed spectroscopic abundance analysis. We present a high-resolution (R~50,000) spectroscopic study of a sample of eight single M dwarfs and three wide-binary systems observed in the infrared J-band. The absence of large molecular contributions allow for a precise continuum placement. We derive metallicities based on the best fit synthetic spectra to the observed spectra. To verify the accuracy of the applied atmospheric models and test our synthetic spectrum approach, three binary systems with a K-dwarf primary and an M-dwarf companion were observed and analysed along with the single M dwarfs. We obt...

  8. A study of the ISM with large massive-star optical spectroscopic surveys

    CERN Document Server

    Ordaz, M Penadés; Sota, A

    2012-01-01

    We are conducting a study on the imprint of the ISM on optical spectra based on two types of ongoing spectroscopic massive-star surveys: on the one hand, intermediate-resolution (R = 2500) green-blue spectra for ~3000 stars obtained with the Galactic O Star Spectroscopic Survey (GOSSS). On the other hand, high-resolution (R = 23 000 - 65 000) optical spectra for 600 stars obtained from three different surveys, OWN, IACOB, and NoMaDS. The R = 2500 data allows us to reach a larger sample with an average larger extinction while the R = 23 000 - 65 000 sample provides access to more diffuse interstellar bands (DIBs) and allows for the resolution in velocity of some ISM features. For each spectrum we are measuring the equivalent widths, FWHMs, and central wavelengths of 10-40 DIBs and interstellar lines (e.g. Ca II H+K, Na I D1+D2) and, in the case of GOSSS, the existence of an H II region around the star. We have also derived from auxiliary data or compiled from the literature values for the reddening, extinction...

  9. Spectroscopic study of honey from Apis mellifera from different regions in Mexico.

    Science.gov (United States)

    Frausto-Reyes, C; Casillas-Peñuelas, R; Quintanar-Stephano, J L; Macías-López, E; Bujdud-Pérez, J M; Medina-Ramírez, I

    2017-02-07

    The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.

  10. Spectroscopic and magnetic studies of erbium(III)-TEMPO complex as a potential single-molecule magnet: Interplay of the crystal-field and exchange coupling effects

    Science.gov (United States)

    Karbowiak, Mirosław; Rudowicz, Czesław; Nakamura, Takeshi; Murakami, Rina; Ishida, Takayuki

    2016-10-01

    Crystallographic, spectroscopic, and magnetic studies of three-center systems: lanthanoid-Ln3+ ions doubly-coordinated by TEMPO (2,2,6,6-tetramethylpiperidin-1-oxyl) radicals [Ln-TEMPO2] are reported. The temperature dependence of alternating-current magnetic susceptibility indicates the single-molecule-magnet behavior of Er-TEMPO2, exhibiting relatively slow magnetization relaxation. Well-resolved absorption spectra were obtained only for Er-TEMPO2. Other samples yielded spectra not amenable for meaningful interpretation. The crystal-field parameters (CFPs) determined from the measured Er3+-energy levels served as starting CFPs for fitting the direct-current magnetic susceptibility result. Compatibility of the so-determined and fine-tuned CFPs, and interplay between crystal-field-related effects and exchange-coupling effects are considered. Exchange couplings in Ln-TEMPO2 appear antiferromagnetic and unexpectedly large.

  11. Spectroscopic Study of The Interaction between Camptothecin and DNA%喜树碱与DNA相互作用的光谱学研究

    Institute of Scientific and Technical Information of China (English)

    于岚岚; 杨冉; 白希希; 陈晓英; 李建军; 屈凌波

    2011-01-01

    The interaction of an anti-cancer drug camptothecin with salmon sperm DNA was studied by spec-troscopic techniques. DNA induced slight hypochromic and bathochromic effects on the UV-Vis absorption spectra of camptothecin, but strong fluorescence quenching of camptothecin, which suggest the formation of ground-state camptothecin-DNA complex. The binding constant and number of binding site were calculated and the main interaction force was determined. The effect of salt, phosphate and negatively charged quencher KI on camptothecin-DNA interaction was investigated and the interaction of camptothecin with double-stranded DNA and single-stranded DNA was compared. The melting temperature of camptothecin-DNA complex was 60 ℃ , which is 18℃ lower than that of pure DNA. All the results indicate that groove binding mode is the main interaction mode between camptothecin and DNA.

  12. Spectroscopic studies on the interaction of bovine serum albumin with Al{sub 2}O{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rajeshwari, A.; Pakrashi, Sunandan; Dalai, Swayamprava; Madhumita,; Iswarya, V.; Chandrasekaran, N.; Mukherjee, Amitava, E-mail: amitav@vit.ac.in

    2014-01-15

    Since the nanoparticle usage in the biomedical field is increasing, it is necessary to understand their interaction with the biomolecules, such as proteins. The current study primarily investigates the interaction of BSA with the Al{sub 2}O{sub 3} nanoparticles by various spectroscopic techniques. The experiments were carried out in three different experimental matrices, i.e. the distilled de-ionized water, the phosphate buffer and the saline media. The enhanced absorbance observed by UV–visible and fluorescence spectroscopy suggested the probable formation of a ground state complex of the type BSA–Al{sub 2}O{sub 3}. The apparent association constant (K{sub app}), calculated based on the spectral changes due to the association of BSA with Al{sub 2}O{sub 3} NPs, was found to be higher in an aqueous system (pH 4.47) as compared to the other two matrices, suggesting the maximum interaction between BSA and Al{sub 2}O{sub 3}. The particle size analysis of Al{sub 2}O{sub 3} in aqueous suspension demonstrated the possibility of BSA adsorption onto the NP surface. The FT-IR and the circular dichroism (CD) studies indicated that the Al{sub 2}O{sub 3} NPs induced the structural changes in the BSA secondary structure, especially α-helix. -- Highlights: • BSA interaction with Al{sub 2}O{sub 3} caused aggregation of NPs. • Enhanced absorption due to the ground state complex. • Non significant quenching effect due to absence of corona formation. • Conformation change in BSA.

  13. Study on the Absorption Spectra and Stability of Theaflavin Pigment

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Theaflavin(TF) was extracted and purified from black broken tea.The purified TF possessed an absorption peak at the 363nm wavelength,and the solutions of TF remained stable under the conditions of pH3-6,below 80℃ within 60 minutes, as well as in 1%-4% Vc and 0. 05-0.5mmol /L Na2SO3 solutions. Fading occurred in 0. 05mol/L H2O2 solution.

  14. Study of Water Absorption Lines in the Near Infrared

    Science.gov (United States)

    1975-02-17

    the absorption coefficient is better approximated by the sum of Matcha -N«. oec short range contribution and W-BB dispersion contribution. The...and W. Byers Brown, Molecular Physics 2S, 1105 (1973). 5. R. L. Matcha and R. K. Nesbet, Phys. Rev. 1_6_0, 72 (1967). I H. B. Levine, Phys. Rev...reasurcrents of Ouren, ^eltqen Gaide, Helbing and Pauly. The dipole moment function is taken from ab initio 9 calculations of Matcha and Nesbet. With

  15. CdTe Nanowires studied by Transient Absorption Microscopy

    Directory of Open Access Journals (Sweden)

    Kuno M.

    2013-03-01

    Full Text Available Transient absorption measurements were performed on single CdTe nanowires. The traces show fast decays that were assigned to charge carrier trapping at surface states. The observed power dependence suggests the existence of a trap-filling mechanism. Acoustic phonon modes were also observed, which were assigned to breathing modes of the nanowires. Both the fundamental breathing mode and the first overtone were observed, and the dephasing times provide information about how the nanowires interact with their environment.

  16. Atomic absorption determination of tin in foods: collaborative study.

    Science.gov (United States)

    Elkins, E R; Sulek, A

    1979-09-01

    Samples of green beans, applesauce, and a fruit juice were fortified with tin at 3 levels. Collaborators were asked to digest the samples, using HNO3-H2SO4, add methanol to enhance the absorption signal, and aspirate directly, using a nitrous oxide-acetylene flame. Results were received from 8 laboratories including 4 from Europe. However, only 6 laboratories used the prescribed methodology. All results were considered acceptable. The method has been adopted as interim official first action.

  17. Studies on Inhibition of the Intestinal Absorption of Radioactive Strontium

    Science.gov (United States)

    Tanaka, Y.; Inoue, S.; Skoryna, S. C.

    1970-01-01

    The inhibitory action of alginate on intestinal absorption of radioactive strontium was investigated in order to correlate the biological activity with the chemical composition. Alginate from Laminaria hyperborea was partially hydrolyzed with oxalic acid and the degradation products were fractionated into polymannuronic and polyguluronic acid. The activity of these products was assessed biologically in rats and morphologically by electron microscopy. Sodium polymannuronate was found to be less effective than sodium polyguluronate in preventing absorption of radiostrontium. The inhibition of absorption of radio-calcium was low and not affected by hydrolysis or fractionation. When dried from dilute aqueous solutions, the polymannuronate retained the original helical structure of alginate, while the polyguluronate showed a strong tendency to coagulate, forming granules. The variation in the biological activity was attributed to the morphological differences between these alginic acid components and it is suggested that the degree of uncoiling of the polyguluronate chain in water is greater than that of the polymannuronate chain, thus making the carboxylate ions more accessible to strontium. ImagesFIG. 2FIG. 3 PMID:5469618

  18. Calorimetry study of microwave absorption of some solid materials.

    Science.gov (United States)

    He, Chun Lin; Ma, Shao Jian; Su, Xiu Juan; Chen, Yan Qing; Liang, Yu Shi

    2013-01-01

    In practice, the dielectric constant of a material varies the applied frequency the material composition, particle size, purity, temperature, physical state (solid or liquid), and moisture content. All of these parameters might change during processing, therefore, it is difficult to predict how well a material will absorb microwave energy in a given process. When the temperature is measured by a digital thermometer, it could not accurately reflect the true temperature of the bulk materials, especially for mixed materials. Thus, in this paper we measured the microwave absorption characteristics of different materials by calorimetry. The microwave power levels, irradiation times, and masses of the materials were varied. It was difficult to predict the microwave energy absorption characteristics of reagent-grade inorganic compounds based on their color, metallic cation, or water stoichiometry. CuO, MnO2, Fe3O4, and MnSO4 x H2O (Taishan) strongly absorbed microwave energy. Most of the remaining inorganic compounds were poor absorbers, with silica hardly absorbing any microwave energy. Carbon-based materials had significantly different microwave absorption characteristics. Activated carbon and coke were especially sensitive to microwaves, but different types of coal were poor absorbers. The jamesonite concentrate absorbed microwave energy strongly, while the zinc concentrate was a poor absorber.

  19. Studies on the red absorption band of chlorophyll a in vivo

    NARCIS (Netherlands)

    Thomas, J.B.; Kleinen Hammans, J.W.; Arnolds, W.J.

    1965-01-01

    It was studied whether certain earlier observed weak shoulders on the red absorption band of chlorophyll a in vivo might represent anomalies due to overlap of absorption bands. The results are suggested of the fact that no such anomalies occur. It is therefore concluded that the present study suppo

  20. Molecular structure and spectroscopic investigations combined with hypoglycemic/anticancer and docking studies of a new barbituric acid derivative

    Science.gov (United States)

    Barakat, Assem; Soliman, Saied M.; Elshaier, Yaseen A. M. M.; Ali, M.; Al-Majid, Abdullah Mohammed; Ghabbour, Hazem A.

    2017-04-01

    The one-pot synthesis reaction of barbituric acid derivative, 1,3-cyclohexandione, and 4-fluorobenzaldehyde in water mediated by NHEt2 as base afforded 4 with excellent yield. The synthesized compound was characterized by spectrophotometric tools as well as X-ray single crystal diffraction technique. The stability of the nine possible isomers of the synthesized compound was studied using the B3LYP method and 6-31G(d,p) basis set. The electronic and spectroscopic properties of the most stable isomer were predicted. The UV-Vis absorption spectrum displayed two bands at 203 and 257 nm in the solvent chloroform. The latter was calculated at 235.6 nm (f = 0.1995) in the gas phase due to H-2→L (42%) and H-1→L+2 (14%) excitations. In solution, using chloroform as a solvent, a slight bathochromic shift to 237.6 nm with an increase in the absorption intensity (f = 0.2898) was predicted. The molecular orbital energy level diagram of this transition band was characterized mainly by π-π* transitions. The 13C and 1H NMR chemical shifts correlated well with the experimental data. The correlations had higher correlation coefficients (R2) when solvent effects were considered. The atomic charges were calculated using natural population analysis and the charged regions were presented using a molecular electrostatic potential (MEP) map. The synthesized compound was examined as a hypoglycemic agent via inhibition of α-glucosidase and β-glucuronidase enzymes. Its inhibitory activity against α-glucosidase was 10 times greater than the inhibitory activity of the standard drug acarbose (IC50 77.9 ± 0.3 μM and 840 ± 1.73 μM, respectively). Moreover, the target compound was evaluated for anticancer activity against MCF-7, H460, 3T3, and Hela cell lines. It demonstrated inhibitory activity against the MCF-7 and H460 cell lines with IC50 5.80 ± 0.12 and 19.6 ± 0.5 μM, respectively, in comparison to doxorubicin. The docking study was performed using the OpenEye program.

  1. Structures and spectroscopic properties of nonperipherally and peripherally substituted metal-free phthalocyanines: a substitution effect study based on density functional theory calculations.

    Science.gov (United States)

    Zhong, Aimin; Zhang, Yuexing; Bian, Yongzhong

    2010-11-01

    The molecular structures, molecular orbitals, atomic charges, electronic absorption spectra, and infrared (IR) and Raman spectra of a series of substituted metal-free phthalocyanine compounds with four (1, 3, 5, 7) or eight (2, 4, 6, 8) methoxyl (1, 2, 5, 6) or methylthio groups (3, 4, 7, 8) on the nonperipheral (1-4) or peripheral positions (5-8) of the phthalocyanine ring are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The calculated structural parameters and simulated electronic absorption and IR spectra are compared with the X-ray crystallography structures and the experimentally observed electronic absorption and IR spectra of the similar molecules, and good agreement between the calculated and experimental results is found. The substitution of the methoxyl or methylthio groups at the nonperipheral positions of the phthalocyanine ring has obvious effects on the molecular structure and spectroscopic properties of the metal-free phthalocyanine. Nonperipheral substitution has a more significant influence than peripheral substitution. The substitution effect increases with an increase in the number of substituents. The methylthio group shows more significant influence than the methoxyl group, despite the stronger electron-donating property of the methoxyl group than the methylthio group. The octa-methylthio-substituted metal-free phthalocyanine compounds have nonplanar structures whose low-lying occupied molecular orbitals and electronic absorption spectra are significantly changed by the substituents. The present systematical study will be helpful for understanding the relationship between structures and properties in phthalocyanine compounds and designing phthalocyanines with typical properties.

  2. Characterization of the physico-chemical properties of polymeric materials for aerospace flight. [differential thermal and atomic absorption spectroscopic analysis of nickel cadmium batteries

    Science.gov (United States)

    Rock, M.

    1981-01-01

    Electrodes and electrolytes of nickel cadmium sealed batteries were analyzed. Different thermal analysis of negative and positive battery electrodes was conducted and the temperature ranges of occurrence of endotherms indicating decomposition of cadmium hydroxide and nickel hydroxide are identified. Atomic absorption spectroscopy was used to analyze electrodes and electrolytes for traces of nickel, cadmium, cobalt, and potassium. Calibration curves and data are given for each sample analyzed. Instrumentation and analytical procedures used for each method are described.

  3. A study on the spectroscopic, energy band, and optoelectronic properties of α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium blends; DH6T/Gaq3 composite system

    Science.gov (United States)

    Muhammad, Fahmi F.; Yahya, Mohd Yazid; Ketuly, Kamal Aziz; Muhammad, Abdulkader Jaleel; Sulaiman, Khaulah

    2016-12-01

    In this work the optical response, spectroscopic behaviour, and optoelectronic properties of solution and solid state composite systems based on α,ω-dihexylsexithiophene/tris(8-hydroxyquinolinate) gallium (DH6T/Gaq3) are studied upon the incorporation of different molar percentages of Gaq3. UV-vis, PL, FTIR spectrophotometers and SEM technique were utilized to perform the investigations. The results showed a reduced energy band (Eg) (from 2.33 eV to 1.83 eV) and a broadened absorption spectrum for the blend system when 29.8% molar of Gaq3 was incorporated. These were attributed to the enhanced intermolecular interactions that are brought about by the increased strength of π - π overlap between the molecular moieties. A mathematical formula was developed to interpret the non-monotonic change occurred in Eg, while numerical calculations have been made to assign the type and nature of the electronic transitions governing the spectroscopic behaviour of the system. The results were elaborated and comprehensively discussed in terms of the exciton generation, energy band theory, molecular interactions, and spatial geometry.

  4. Preferential binding of fisetin to the native state of bovine serum albumin: spectroscopic and docking studies.

    Science.gov (United States)

    Singha Roy, Atanu; Pandey, Nitin Kumar; Dasgupta, Swagata

    2013-04-01

    We have investigated the binding of the biologically important flavonoid fisetin with the carrier protein bovine serum albumin using multi-spectroscopic and molecular docking methods. The binding constants were found to be in the order of 10(4) M(-1) and the number of binding sites was determined as one. MALDI-TOF analyses showed that one fisetin molecule binds to a single bovine serum albumin (BSA) molecule which is also supported by fluorescence quenching studies. The negative Gibbs free energy change (∆G°) values point to a spontaneous binding process which occurs through the presence of electrostatic forces with hydrophobic association that results in a positive entropy change (+51.69 ± 1.18 J mol(-1) K(-1)). The unfolding and refolding of BSA in urea have been studied in absence and presence of fisetin using steady-state fluorescence and lifetime measurements. Urea denaturation studies indicate that fisetin is gradually released from its binding site on the protein. In the absence of urea, an increase in temperature that causes denaturation of the protein results in the release of fisetin from its bound state indicating that fisetin binds only to the native state of the protein. The circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopic studies showed an increase in % α-helix content of BSA after binding with fisetin. Site marker displacement studies in accordance with the molecular docking results suggested that fisetin binds in close proximity of the hydrophobic cavity in site 1 (subdomain IIA) of the protein. The PEARLS (Program of Energetic Analysis of Receptor Ligand System) has been used to estimate the interaction energy of fisetin with BSA and the results are in good correlation with the experimental findings.

  5. Optical absorption and fluorescence studies on imidazolium ionic liquids comprising the bis(trifluoromethanesulphonyl)imide anion

    Indian Academy of Sciences (India)

    Aniruddha Paul; Anunay Samanta

    2006-07-01

    Optical absorption and fluorescence behaviour of two rigorously purified imidazolium ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide are studied in the neat condition and in solution. Non-negligible absorption in the UV region with a long tail extending into the visible region is the main feature of the absorption. Excitation wavelength-dependent two-component fluorescence characterizes the emission behaviour of these liquids. That ion association gives rise to the long absorption tail and shifting fluorescence maximum, which appears to be common to most of the imidazolium ionic liquids, is evident from the effect of the conventional solvents.

  6. Dielectric studies of boron sub phthalocyanine chloride thin films by admittance spectroscopic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kalia, Sameer; Neerja [Department of Physics, DAV College, Amritsar-143301 (India); Mahajan, Aman, E-mail: dramanmahajan@yahoo.co.in; Sharma, Anshul Kumar; Kumar, Sanjeev; Bedi, R. K. [Material Research Laboratory, Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India)

    2016-05-06

    The dielectric properties of Boron Sub Phthalocyanine Chloride (Cl-SubPc) thermally deposited on ITO substrate have been studied using admittance spectroscopic techniques. The I-V and capacitance –frequency (C-F) studies at various bias voltages reveal that the mobility of charge carriers decrease with bias voltage, however the conduction phenomenon still remain hopping in nature. From the differential susceptance curve, the contribution of the Schottky barrier contact in the charge carrier concentration was found to be absent. The mobility of charge carriers have been determined using differential susceptance variation and from the phase of admittance curve. The values obtained in two cases have been found to be in agreement with each other.

  7. Raman Spectroscopic Methods for Classification of Normal and Malignant Hypopharyngeal Tissues: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    Parul Pujary

    2011-01-01

    Full Text Available Laryngeal cancer is more common in males. The present study is aimed at exploration of potential of conventional Raman spectroscopy in classifying normal from a malignant laryngopharyngeal tissue. We have recorded Raman spectra of twenty tissues (aryepiglottic fold using an in-house built Raman setup. The spectral features of mean malignant spectrum suggests abundance proteins whereas spectral features of mean normal spectrum indicate redundancy of lipids. PCA was employed as discriminating algorithm. Both, unsupervised and supervised modes of analysis as well as match/mismatch “limit test” methodology yielded clear classification among tissue types. The findings of this study demonstrate the efficacy of conventional Raman spectroscopy in classification of normal and malignant laryngopharyngeal tissues. A rigorous evaluation of the models with development of suitable fibreoptic probe may enable real-time Raman spectroscopic diagnosis of laryngopharyngeal cancers in future.

  8. Study of hydrogen-bonding, vibrational dynamics and structure-activity relationship of genistein using spectroscopic techniques coupled with DFT

    Science.gov (United States)

    Singh, Harshita; Singh, Swapnil; Srivastava, Anubha; Tandon, Poonam; Bharti, Purnima; Kumar, Sudhir; Dev, Kapil; Maurya, Rakesh

    2017-02-01

    The conformational and hydrogen bonding studies of genistein have been performed by combined spectroscopic and quantum chemical approach. The vibrational spectra (FT-IR and FT-Raman), UV-visible and 1H and 13C NMR absorption spectra of genistein have been recorded and examined. The vibrational wavenumbers of optimized geometry and total energy for isolated molecule and hydrogen-bonded dimers of genistein have been determined using the quantum chemical calculation (DFT/B3LYP) with extended 6-311++G (d,p) basis set. The vibrational assignments for the observed FT-IR and FT-Raman spectra of genistein are provided by calculations on monomer and hydrogen-bonded dimer. The quantum theory of atoms in molecules (QTAIM) is used for investigating the nature and strength of hydrogen-bonds. UV-visible spectrum of the genistein was recorded in methanol solvent and the electronic properties were calculated by using time-dependent density functional theory (TD-DFT). The computed HOMO and LUMO energies predicted the type of transition as π → π*. The 1H and 13C NMR signals of the genistein were computed by the Gauge including atomic orbital (GIAO) approach. Natural bond orbital (NBO) analysis predicted the stability of molecules due to charge delocalization and hyper conjugative interactions. NBO analysis shows that there is an Osbnd H⋯O inter and intramolecular hydrogen bond, and π → π* transition in the monomer and dimer, which is consistent with the conclusion obtained by the investigation of molecular structure and assignment of UV-visible spectra.

  9. Accurate molecular structure and spectroscopic properties for nucleobases: A combined computational - microwave investigation of 2-thiouracil as a case study

    Science.gov (United States)

    Puzzarini, Cristina; Biczysko, Malgorzata; Barone, Vincenzo; Peña, Isabel; Cabezas, Carlos; Alonso, José L.

    2015-01-01

    The computational composite scheme purposely set up for accurately describing the electronic structure and spectroscopic properties of small biomolecules has been applied to the first study of the rotational spectrum of 2-thiouracil. The experimental investigation was made possible thanks to the combination of the laser ablation technique with Fourier Transform Microwave spectrometers. The joint experimental – computational study allowed us to determine accurate molecular structure and spectroscopic properties for the title molecule, but more important, it demonstrates a reliable approach for the accurate investigation of isolated small biomolecules. PMID:24002739

  10. Electron spectroscopic study of electronic and morphological modifications of the WSe{sub 2} surface induced by Rb adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Jens

    2010-07-20

    The rubidium-covered surface of the semiconducting transition metal dichalcogenide tungsten diselenide (WSe{sub 2}) is examined using photoelectron spectroscopy (PES) and photoemission electron microscopy (PEEM). Adsorbed Rb is known to induce a variety of effects in this system concerning electronic, structural, and mechanical properties. In this work, the surface potential created by charge transfer upon Rb deposition is examined in thermal equilibrium (band bending) and stationary non-equilibrium (surface photovoltage (SPV) effect), which is induced by the absorption of light. It is shown that combined measurements and numerical simulations of the SPV effect as a function of the photon flux can be exploited for the estimation of many material parameters of the system, especially of the unoccupied adsorbate state. Issues of extending a conventional photoelectron spectrometer setup by a secondary light source will be discussed in the context of simulations and calibration measurements. The customization of an existing theoretical model of the SPV effect for the WSe{sub 2}: Rb system is introduced, and a comprehensive validation of the obtained predictions is given in the context of experimental data. In addition, the self-organized formation of Rb domains at room temperature was examined by application of spatially resolved XPS spectroscopy using the PEEM setup at the end station of beamline UE49/PGMa at the BESSY II synchrotron facility. From the obtained results, the arrangement of Rb in surface lattices can be concluded. Furthermore, an X-Ray absorption study of self-organized nanostructure networks, aiming at the chemical characterization, is presented. Based on the interpretation of the examined structures as tension-induced cracks, a statistical approach to analyzing large-scale features was pursued. First accordance with the predictions made by a primitive, mechanical model of crack creation developed here gives gives some evidence for the validity of the

  11. Spectroscopic and computational studies of a Ru(II) terpyridine complex: the importance of weak intermolecular forces to photophysical properties.

    Science.gov (United States)

    Garino, Claudio; Gobetto, Roberto; Nervi, Carlo; Salassa, Luca; Rosenberg, Edward; Ross, J B Alexander; Chu, Xi; Hardcastle, Kenneth I; Sabatini, Cristiana

    2007-10-15

    The complex [Ru(tpy)(CO)(2)TFA]+[PF(6)]- (where tpy = 2,2':6',2' '-terpyridine and TFA = CF(3)CO(2)-) (1) has been synthesized and fully characterized spectroscopically. The X-ray structure of the complex has been determined. The photopysical properties of the ruthenium complex and the free ligand tpy have been investigated at room temperature and at 77 K in acetonitrile solution and in the solid state. Their electronic spectra are highly influenced by intermolecular stacking interactions, both in solution and in the solid state. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed to characterize the electronic structure and the excited states of [Ru(tpy)(CO)(2)TFA]+[PF(6)]- and tpy. TDDFT calculations on three different conformations of free ligand have been performed as well. Absorption and emission spectra of tpy have been studied at different temperatures and concentrations in order to have a better understanding of this ruthenium derivative's properties. The absorption spectrum of 1 is characterized by metal-perturbed ligand-centered (LC) bands in the UV region. No metal-to-ligand charge transfer (MLCT) bands are observed in the visible for the complex. Only at high concentrations (10(-4) M) does a very weak band appear at 470 nm. At 77 K and low concentrations, solutions of 1 exhibit a major 3LC emission band centered at 468 nm (21.4 x 10(-3) cm(-1)). When the concentration of the complex is increased, an unstructured narrow emission at 603 nm (16.6 x 10(-3) cm(-1)), with a lifetime of 10 micros, dominates the emission spectrum in glassy acetonitrile. This emission originates from a pi-pi stacked dimeric (or oligomeric) species. TDDFT calculations performed on a tail-to-tail dimer structure, similar to that seen in the solid state, ascribe the transition to a triplet excited state, where intermolecular metal (d) --> ligand (pi*, polypyridine) charge transfer occurs. A good estimate of the transition energy is also

  12. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga).

    Science.gov (United States)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  13. Spectroscopic study; Estudio espectroscopico del PAA con iones de Eu{sup 3+} como material luminescente

    Energy Technology Data Exchange (ETDEWEB)

    Flores, M.; Rodriguez, R. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa, Mexico D.F. (Mexico); Arroyo, R. [Departamento de Quimica, Universidad Autonoma Metropolitana Iztapalapa, A.P. 55-534, 09340 Mexico D.F. (Mexico)

    1999-07-01

    This work is focused about the spectroscopic properties of a polymer material which consists of Polyacrylic acid (Paa) doped at different concentrations of Europium ions (Eu{sup 3+}). They show that to stay chemically joined with the polymer by a study of Nuclear Magnetic Resonance (NMR) of {sup 1} H, {sup 13} C and Fourier Transform Infrared Spectroscopy (Ft-IR) they present changes in the intensity of signals, just as too when this material is irradiated at {lambda} = 394 nm. In according with the results obtained experimentally in this type of materials it can say that is possible to unify chemically the polymer with this type of cations, as well as, varying the concentration of them, since that these are distributed homogeneously inside the matrix maintaining its optical properties. These materials can be obtained more quickly and easy in solid or liquid phase and they have the best conditions for to make a quantitative analysis. (Author)

  14. Spectroscopic study of jet-cooled indole-3-carbinol by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Cheol Joo; Kim, Eun Bin; Min, Ahreum; Ahn, Ahreum; Seong, Yeon Guk; Choi, Myong Yong [Gyeongsang National University, Jinju (Korea, Republic of)

    2016-10-15

    Cruciferous vegetables such as cabbage, kale, broccoli, and cauliflower have relatively high levels of indole-3-carbinol (I3C), which can be used as a possible cancer preventative agent particularly for breast, cervical, colorectal, and other hormone-related cancers. Thus, this naturally occurring substance, I3C, is now being used in dietary supplements. In conclusion, we have succeeded in obtaining the R2PI spectrum of a thermally unstable sample, I3C, by using a thermal buffer (herein, uracil) for the first time. Use of thermal evaporation method for thermally unstable biomolecules using thermal buffers will allow us to explore more gas phase spectroscopic studies for their intrinsic physiological properties in the near future.

  15. Electrochemical and Spectroscopic Study on the Interaction of Cytochrome c with Anionic Lipid Vesicles

    Institute of Scientific and Technical Information of China (English)

    JING,Wei-Guo; LIU,Chang-Wei; TANG,Ji-Lin; WU,Zheng-Yan; DONG,Shao-Jun; WANG,Er-kang

    2003-01-01

    The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles wrer analyzed by electrochemical and various spectroscopic methods.It was found that upon binding to anionic lipid membrane,the formal potential of cytochrome c shifted 30 mV negtively indicating an easier redox interaction than that in its native state.This is due to the local alteration of the coordination and the heme crevice.The structural perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important.This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.

  16. Study of gamma detection capabilities of the REWARD mobile spectroscopic system

    Science.gov (United States)

    Balbuena, J. P.; Baptista, M.; Barros, S.; Dambacher, M.; Disch, C.; Fiederle, M.; Kuehn, S.; Parzefall, U.

    2017-07-01

    REWARD is a novel mobile spectroscopic radiation detector system for Homeland Security applications. The system integrates gamma and neutron detection equipped with wireless communication. A comprehensive simulation study on its gamma detection capabilities in different radioactive scenarios is presented in this work. The gamma detection unit consists of a precise energy resolution system based on two stacked (Cd,Zn)Te sensors working in coincidence sum mode. The volume of each of these CZT sensors is 1 cm3. The investigated energy windows used to determine the detection capabilities of the detector correspond to the gamma emissions from 137Cs and 60Co radioactive sources (662 keV and 1173/1333 keV respectively). Monte Carlo and Technology Computer-Aided Design (TCAD) simulations are combined to determine its sensing capabilities for different radiation sources and estimate the limits of detection of the sensing unit as a function of source activity for several shielding materials.

  17. Raman spectroscopic study on the excystation process in a single unicellular organism amoeba (Acanthamoeba polyphaga)

    Science.gov (United States)

    Lin, Yu-Chung; Perevedentseva, Elena; Cheng, Chia-Liang

    2015-05-01

    An in vivo Raman spectroscopic study of amoeba (Acanthamoeba polyphaga) is presented. The changes of the spectra during the amoeba cyst activation and excystation are analyzed. The spectra show the changes of the relative intensities of bands corresponding to protein, lipid, and carotenoid components during cyst activation. The presence of carotenoids in the amoeba is observed via characteristic Raman bands. These signals in the Raman spectra are intense in cysts but decrease in intensity with cyst activation and exhibit a correlation with the life cycle of amoeba. This work demonstrates the feasibility of using Raman spectroscopy for the detection of single amoeba microorganisms in vivo and for the analysis of the amoeba life activity. The information obtained may have implications for the estimation of epidemiological situations and for the diagnostics and prognosis of the development of amoebic inflammations.

  18. Laser Raman and ac impedance spectroscopic studies of PVA: NH4NO3 polymer electrolyte.

    Science.gov (United States)

    Hema, M; Selvasekarapandian, S; Hirankumar, G; Sakunthala, A; Arunkumar, D; Nithya, H

    2010-01-01

    Ion conducting polymer electrolyte PVA:NH(4)NO(3) has been prepared by solution casting technique and characterized using XRD, Raman and ac impedance spectroscopic analyses. The amorphous nature of the polymer films has been confirmed by XRD and Raman spectroscopy. An insight into the deconvoluted Raman peaks of upsilon(1) vibration of NO(3)(-) anion for the polymer electrolyte reveals the dominancy of ion aggregates at higher NH(4)NO(3) concentration. From the ac impedance studies, the highest ion conductivity at 303 K has been found to be 7.5x10(-3)Scm(-1) for 80PVA:20NH(4)NO(3). The conductivity of the polymer electrolytes has been found to depend on the degree of dissociation of the salt in the host polymer matrix. The combination of the above-mentioned analyses has proven worth while and in fact necessary in order to achieve better understanding of these complex systems.

  19. Spectroscopic and theoretical study of the o-vanillin hydrazone of the mycobactericidal drug isoniazid

    Science.gov (United States)

    González-Baró, Ana C.; Pis-Diez, Reinaldo; Parajón-Costa, Beatriz S.; Rey, Nicolás A.

    2012-01-01

    A complete and detailed study of the hydrazone obtained from condensation of antituberculous isoniazid (hydrazide of the isonicotinic acid, INH) and o-vanillin (2-hydroxy-3-methoxybenzaldehyde, o-HVa) is performed. It includes structural and spectroscopic analyses, comparing experimental and theoretical results. The compound was obtained as a chloride of the pyridinic salt (INHOVA +Cl -) but it will be referred as INHOVA for the sake of simplicity. The conformational space was searched and optimized geometries were determined both in gas phase and including solvent effects. Vibrational (IR and Raman), electronic and NMR spectra were registered and assigned with the help of computational methods based on the Density Functional Theory. Isoniazid hydrazones are good candidates for therapeutic agents against tuberculosis with conserved efficiency and lower toxicity and resistance than parent INH.

  20. Raman spectroscopic study of “The Malatesta”: A Renaissance painting?

    Science.gov (United States)

    Edwards, Howell G. M.; Vandenabeele, Peter; Benoy, Timothy J.

    2015-02-01

    Raman spectroscopic analysis of the pigments on an Italian painting described as a "Full Length Portrait of a Gentleman", known also as the "Malatesta", and attributed to the Renaissance period has established that these are consistent with the historical research provenance undertaken earlier. Evidence is found for the early 19th Century addition of chrome yellow to highlighted yellow ochre areas in comparison with a similar painting executed in 1801 by Sir Thomas Lawrence of John Kemble in the role of Hamlet, Prince of Denmark. The Raman data are novel in that no analytical studies have previously been made on this painting and reinforces the procedure whereby scientific analyses are accompanied by parallel historical research.

  1. Discovery and spectroscopic study of the massive Galactic cluster Mercer 81

    CERN Document Server

    de la Fuente, Diego; Davies, Ben; Figer, Donald F

    2012-01-01

    During the last decade, hundreds of young massive cluster candidates have been detected in the disk of the Milky Way. We investigate one of these candidates, Mercer 81, which was discovered through a systematic search for stellar overdensities, with follow-up NICMOS/HST infrared narrow-band photometry to find emission-line stars and confirm it as a massive cluster. Surprisingly, the brightest stars turned out to be a chance alignment of foreground stars, while a real massive cluster was found among some fainter stars in the field. From a first spectroscopic study of four emission-line stars (ISAAC/VLT), it follows that Mercer 81 is a very massive young cluster, placed at the far end of the Galactic bar. Additionally, in this work we present some unpublished spectra from a follow-up observation program which confirm that the cluster hosts several Nitrogen-rich Wolf-Rayet stars (WN) and blue supergiants.

  2. Spectroscopic ellipsometry studies of as-prepared and annealed CdS:O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khalilova, Khuraman; Hasanov, Ilham; Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, 1143 Baku (Azerbaijan); Shim, YongGu [Department of Physics and Electronics, Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Asaba, Ryo; Wakita, Kazuki [Department of Electronics and Computer Engineering, Chiba Institute of Technology, Chiba 275-0016 (Japan)

    2015-06-15

    Cadmium sulfide thin films on soda lime substrates were obtained by rf-magnetron sputtering in argon-oxygen atmosphere. As-prepared and vacuum annealed films were then studied by spectroscopic ellipsometry at room temperature over photon energy range from 0.5 to 6 eV. The obtained ellipsometric data were treated using optical dispersion models based on Gaussian type oscillators. Dielectric function of oxygen-free films, as well as those obtained under 3% of O/Ar partial pressure was reliably restored. At the same time, dielectric function obtained for 5% CdS:O can be regarded only as an average over several materials since our XPS examination disclosed presence of several compounds in thin films deposited at O/Ar ratios higher than 3%. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Spectroscopic studies of the interactions between β-lactoglobulin and bovine submaxillary mucin

    DEFF Research Database (Denmark)

    Celebioglu, Hilal Yilmaz; Guðjónsdóttir, María; Meier, Sebastian

    2015-01-01

    The structural changes occurring during the interaction between β-lactoglobulin (BLG), the major whey protein, and bovine submaxillary mucin (BSM), a major salivary protein, were studied using high and low field Nuclear Magnetic Resonance (NMR), Dynamic Light Scattering (DLS), and Circular...... Dichroism (CD) spectroscopy. The zeta potentials of the proteins were also measured to provide information on the role of electrostatic forces in the interaction. The ratio between BLG and BSM was 1:1, and pH was adjusted to 3.0, 5.0 and 7.4 at room temperature. These spectroscopic results suggested...... between the two proteins can thus be concluded to be mostly of hydrophilic origin. Moreover, low field NMR measurements showed a decrease in transverse relaxation times in the mixture compared to the pure BLG and buffer solutions. This is possibly connected to fewer hydrophilic binding sites available...

  4. A polarizable embedding DFT study of one-photon absorption in fluorescent proteins

    DEFF Research Database (Denmark)

    Beerepoot, Maarten; Steindal, Arnfinn H.; Kongsted, Jacob;

    2013-01-01

    A theoretical study of the one-photon absorption of five fluorescent proteins (FPs) is presented. The absorption properties are calculated using a polarizable embedding approach combined with density functional theory (PE-DFT) on the wild-type green fluorescent protein (wtGFP) and several of its...

  5. Iron absorption in raw and cooked bananas: A field study using stable isotopes in women

    Science.gov (United States)

    Banana is a staple food in many regions with high iron deficiency and may be a potential vehicle for iron fortification. However, iron absorption from bananas is not known. The objective of this study was to evaluate total iron absorption from raw and cooked bananas. Thirty women (34.9 +/- 6.6 years...

  6. Stratum corneum damage and ex vivo porcine skin water absorption - a pilot study

    DEFF Research Database (Denmark)

    Duch Lynggaard, C; Bang Knudsen, D; Jemec, G B E

    2009-01-01

    A simple ex vivo screening technique would be of interest for mass screening of substances for potential barrier disruptive qualities. Ex vivo water absorption as a marker of skin barrier integrity was studied on pig ear skin. Skin water absorption was quantified by weighing and weight changes we...

  7. Application of spectroscopic techniques to the study of illuminated manuscripts: A survey

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, S.; Manso, M.; Carvalho, M.L., E-mail: luisa@cii.fc.ul.pt

    2012-05-15

    This work focused on the application of the most relevant spectroscopic techniques used for the characterization of illuminated manuscripts. The historical value of these unique and invaluable artworks, together with the increased awareness concerning the conservation of cultural heritage, prompted the application of analytical techniques to the study of these illuminations. This is essential for the understanding of the artist's working methods, which aids conservation-restoration. The characterization of the pigments may also help assign a probable date to the manuscript. For these purposes, the spectroscopic techniques used so far include those that provide information on the elemental content: X-ray fluorescence, total reflection X-ray fluorescence and scanning electron microscopy coupled with energy-dispersive spectroscopy and laser-induced breakdown spectroscopy. Complementary techniques, such as X-ray diffraction, Fourier transform infrared and Raman spectroscopy, reveal information regarding the compounds present in the samples. The techniques, suitability, technological evolution and development of high-performance detectors, as well as the possibility of microanalysis and the higher sensitivity of the equipment, will also be discussed. Furthermore, issues such as the necessity of sampling, the portability of the equipment and the overall advantages and disadvantages of different techniques will be analyzed. - Highlights: Black-Right-Pointing-Pointer The techniques used for studying illuminated manuscripts are described and compared. Black-Right-Pointing-Pointer For in situ, non-destructive analysis the most suitable technique is EDXRF. Black-Right-Pointing-Pointer For quantitative analysis TXRF is more appropriate. Black-Right-Pointing-Pointer Raman spectroscopy is mostly used for pigments identification. Black-Right-Pointing-Pointer FTIR was used for the characterization of binders and parchment.

  8. Mechanisms in Ruthenium(II) photochemistry and Iron(III) catalyzed oxidations : Photochemical, Electrochemical and Spectroscopic studies

    NARCIS (Netherlands)

    Unjaroen, Duenpen

    2017-01-01

    In this thesis, photochemical, electrochemical and spectroscopic studies of Ru(II), Fe(II), and Fe(III) complexes are described. The overall goal in this studies was to understanding process that occur during oxidation catalysis and photo irradiation and especially the changes in the structure that

  9. Coupled cluster study of spectroscopic constants of ground states of heavy rare gas dimers with spin-orbit interaction

    Science.gov (United States)

    Tu, Zhe-Yan; Wang, Wen-Liang; Li, Ren-Zhong; Xia, Cai-Juan; Li, Lian-Bi

    2016-07-01

    The CCSD(T) approach based on two-component relativistic effective core potential with spin-orbit interaction just included in coupled cluster iteration is adopted to study the spectroscopic constants of ground states of Kr2, Xe2 and Rn2 dimers. The spectroscopic constants have significant basis set dependence. Extrapolation to the complete basis set limit provides the most accurate values. The spin-orbit interaction hardly affects the spectroscopic constants of Kr2 and Xe2. However, the equilibrium bond length is shortened about 0.013 Å and the dissociation energy is augmented about 18 cm-1 by the spin-orbit interaction for Rn2 in the complete basis set limit.

  10. Hetarylazopyrazolone Dyes Based on Benzothiazole and Benzimidazole Ring Systems: Synthesis, Spectroscopic Investigation, and Computational Study

    Directory of Open Access Journals (Sweden)

    Ebru Aktan

    2017-01-01

    Full Text Available In this study, the synthesized coupling component 1-(2-benzothiazolyl-3-methylpyrazol-5-one reacted with diazotised heterocyclic amines to afford six novel hetarylazopyrazolone dyes. These azo dyes based on benzothiazole and benzimidazole ring systems were characterized by spectral methods and elemental analyses. The solvatochromic behaviors of these dyes in various solvents were evaluated. The ground state geometries of the dyes were optimized using density functional theory (DFT. Solvent, acid-base, and substituent influences on the wavelength of the maximum absorption were examined in detail. Time-dependent density functional theory (TD-DFT calculations were performed to obtain the absorption spectra of the dyes in various solvents and the results compared with experimental values. Besides, frontier molecular orbitals (FMO analysis for the dyes is also described from the computational process.

  11. Femtosecond spectroscopic studies of photoinduced electron transfer in MDMO-PPV:ZnO hybrid bulk heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Cecchetto, E.; De Cola, L. [Institute of Physics, University of Muenster, Mendelstrasse 7, 48149 Muenster (Germany); Slooff, H. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands); Zhang, H. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 129, 1018 WS Amsterdam (Netherlands)

    2007-01-15

    The photophysics of charge carriers (polaron) in MDMO-PPV:ZnO hybrid bulk heterojunction is studied at 80 K by femtosecond transient absorption spectroscopy. A short-lived positive polaron is observed in the blend phase in MDMO-PPV:ZnO blend films with a weight ratio of 1:1 and 1:2. Further increase of ZnO weight ratio results in a significant quenching of the polaron absorption. The results are discussed in the concept that both pristine polymer and MDMO-PPV:ZnO blend phases coexist in the blend films. It is concluded that a polaron is photogenerated within the excitation laser pulse (<100 fs) and electron transfer efficiency is highest in blend films 1:1 and 1:2. Lack of the interfacial area and faster back electron transfer process are discussed to be responsible for the quenching of the electron transfer efficiency in blend film 1:3.

  12. Spectroscopic Studies of the Interaction of Silver Nanoparticles with Methylene Blue

    Institute of Scientific and Technical Information of China (English)

    Chuan DONG; Jun ZHANG; Dai-zi ZHOU

    2010-01-01

    The interaction between silver nanoparticles and Methylene Blue(MB)is studied by UV-Vis spectroscopy and fluorescence spectrometry.The UN-Vis absorption of the silver nanoparticles dramatically with the addition of MB.However,no obvious changes of absorption spectra of MB are observed when silver colloids ate added into the MB solution.In the presence of surfactant SDS,the catalysis of the silver nanoparticles in the reducton of MB by sodium borohydride is exhibited by UV-Vis and fluorescence spectroscopy of MB displaying faster response compared with the absence of the silver nanoparticles.The results show that the activity of surfactant SDS modified silver nanoparticles is great and a strong physical adsorption to MB exists.

  13. Biochemical activity of a fluorescent dye rhodamine 6G: Molecular modeling, electrochemical, spectroscopic and thermodynamic studies.

    Science.gov (United States)

    Al Masum, Abdulla; Chakraborty, Maharudra; Ghosh, Soumen; Laha, Dipranjan; Karmakar, Parimal; Islam, Md Maidul; Mukhopadhyay, Subrata

    2016-11-01

    Interaction of CT DNA with Rhodamine 6G (R6G) has been studied using molecular docking, electrochemical, spectroscopic and thermodynamic methods. From the study, it was illustrated that Rhodamine 6G binds to the minor groove of CT DNA. The binding was cooperative in nature. Circular voltametric study showed significant change in peak current and peak potential due to complexation. All the studies showed that the binding constant was in the order of 10(6)M(-1). Circular dichroic spectra showed significant conformational change on binding and DNA unwind during binding. Thermodynamic study showed that binding was favored by negative enthalpy and positive entropy change. From thermodynamic study it was also observed that several positive and negative free energies played significant role during binding and the unfavorable conformational free energy change was overcame by highly negative hydrophobic and salt dependent free energy changes. The experimental results were further validated using molecular docking study and the effect of structure on binding has been studied theoretically. From docking study it was found that the hydrophobic interaction and hydrogen bonds played a significant role during binding. The dye was absorbed by cell and this phenomenon was studied using fluorescent microscope. Cell survivability test showed that the dye active against Human Breast Cancer cells MDA-MB 468. ROS study showed that the activity is due to the production of reactive oxygen.

  14. UV-vis spectroscopic studies of CaF2 photo-thermo-refractive glass

    Science.gov (United States)

    Stoica, Martina; Herrmann, Andreas; Hein, Joachim; Rüssel, Christian

    2016-12-01

    A photo-thermo-refractive glass based on the system Na2O/K2O/CaO/CaF2/Al2O3/ZnO/SiO2 doped with Ag2O, CeO2, SnO2, Sb2O3 and KBr was investigated. This glass undergoes a permanent refractive index change after UV irradiation and subsequent two step heat treatment at temperatures above Tg. This is due to the formation of Ag metal clusters which act as nucleation centers for CaF2 crystallization. Oxidation of Ce3+ by UV light is the initial reaction and acts as photosensitizer in the glass. The UV-vis absorption spectra during this photo-induced crystallization process were measured. The spectral components that form the absorption spectra of cerium were studied in detail by a band separation with Gaussian functions. Deconvolution of the cerium absorption bands shows an envelope of five spectral components for the trivalent cerium due to the 4f-5d transitions and two spectral components for the tetravalent cerium caused by charge transfer transitions. The effect of different dopants and melting conditions on the photo-thermal process were studied to investigate the influence of glass technology on the photoprocess.

  15. Spectroscopic studies on the interaction of DNA with the copper complexes of NSAIDs lornoxicam and isoxicam.

    Science.gov (United States)

    Goswami, Sathi; Ray, Suhita; Sarkar, Munna

    2016-12-01

    Non Steroidal Anti-inflammatory Drugs (NSAIDs) form the most common class of anti-inflammatory and analgesic agents. They also show anticancer properties for which they exert their effects by interacting at the protein but not at the genomic level. This is because most NSAIDs are anions at physiological pH, which prohibit their approach to the polyanionic DNA backbone. Complexing NSAIDs with bioactive metal like copper obliterates this disadvantage. Here, copper complexes of two oxicam NSAIDs, Lornoxicam (Lx) and Isoxicam (Isx) have been chosen to study their interaction with calf thymus (ct) DNA and have been synthesized as per reported protocols. UV-vis absorption showed that DNA binding to Cu(II)-Lx complex alters the absorption spectra indicating changes in the electronic environment of the complex, whereas, for Cu(II)-Isx there was only small changes. Hence, UV-vis absorption was used to determine the binding constant, stoichiometry and thermodynamic parameters of Cu(II)-Lx. However, UV-melting studies and CD difference spectra showed that both Cu(II)-Lx and Cu(II)-Isx can interact with the DNA backbone albeit with different binding modes. The probable binding mode was determined by kinetics of EtBr displacement and viscosity measurements. Our results point to an intercalative mode of binding for Cu(II)-Lx and external groove binding for Cu(II)-Isx.

  16. Identification of nickel chelators in three hyperaccumulating plants: an X-ray spectroscopic study.

    Science.gov (United States)

    Montargès-Pelletier, Emmanuelle; Chardot, Vanessa; Echevarria, Guillaume; Michot, Laurent J; Bauer, Allan; Morel, Jean-Louis

    2008-05-01

    We have investigated the accumulation of nickel in a hyperaccumulating plant from the Brassicacae family Leptoplax emarginata (Boiss.) O.E. Schulz. Two supplementary hyperaccumulating plants, which have been the subject of a high number of publications, Alyssum murale Waldst. & Kit and Thlaspi caerulescens J.&C. Presl, and a nonaccumulating species Aurinia saxatilis were also studied for reference. The plants were grown during 4 months in specific rhizoboxes with Ni-bearing minerals as a source of nickel. Nickel speciation was analyzed through X-ray absorption spectroscopy at Ni K-edge (X-ray absorption near edge spectroscopy and extended X-ray absorption fine structure spectroscopy) in the different parts of the plants (leaves, stems and roots) and compared with aqueous solutions containing different organo-Ni(II) complexes. Carboxylic acids (citrate, malate) appeared as the main ligands responsible of nickel transfer within those plants. Citrate was found as the predominant ligand for Ni in stems of Leptoplax and Alyssum, whereas in leaves of the three plants, malate appeared as the chelating organic acid of accumulated metal. Histidine could not be detected either in leaves, stems nor roots of any studied plant sample.

  17. Spectroscopic studies of the interaction of C 60 and C 70 films with metal substrates

    Science.gov (United States)

    Zhao, Wei; Chen, Li-Quan; Li, Yu-Xin; Zhao, Tie-Nan; Huang, Yu-Zhen; Zhang, Zhan-Xiang; Wang, Hui-Tian; Ye, Pei-Xian; Zhao, Zhong-Xian

    1994-09-01

    The interaction of fullerenes C 60 and C 70 films with metal substrates Au, Ag, In and Sn has been studied by UV-visible absorption spectra, IR, Raman, photoluminescence and second-order nonlinear optics. The absorption spectra show new bands for films on Au, Ag, In and Sn film substrates. For C 60 on Au and Ag, new bands appear, peaking at 723 and 566 nm, respectively. For C 60 film on Sn, several new bands are found at 975.4, 1218, 1557, 2000 and 3570 nm in the NIR and IR regions. Raman spectra reveal an additional peak at 350 cm-1 for C 60 film on Au and five new peaks at 350, 532, 564, 1692 and 1850 cm-1 for the film on Sn. An enhancement of the Raman peak intensity is observed in the latter case. A peak blue shift of photoluminescence band from 749 to 735 nm for C 60 on Sn has also been found. Moreover, a second-order nonlinear optics study at 1.06,μm yields a ten times greater secondary harmonic generation signal intensity for C 60 films on Ag than that of Ag, while no signal is observed for C 60 film on glass. For C 70 on Sn, UV absorption bands broaden and new bands are found at 747, 984 and 1738 nm. The above results suggest a structural distortion of C 60 and C 70 molecules, induced by charge transfer from these metals to the molecules.

  18. EXPLOSIVE ABSORPTION EFFECT OF POWER CO2 LASER BEAM IN ATMOSPHERE

    OpenAIRE

    Zakharov, V.; Shmelev, V.; Nesterenko, A.

    1991-01-01

    The interaction of a wide beam of intense 10.6 µm and 9.4 µm laser radiation with atmospheric CO2 is studied. The threshold spectroscopic effect of explosive absorption have been obtained. In this effect the absorption coefficient of the atmosphere increases sharply owing to strong self-heating ([MATH] 700-1000 K) of the beam channel.

  19. Pilot Study on the Nano-Composites Coats of Radar Wave's Absorption

    Institute of Scientific and Technical Information of China (English)

    HU Chuan-xin; ZhANG Lei; GAN Ai-feng; LI Wan-zhi; LIANG Wen-ting; ZHANG Chen-jia

    2004-01-01

    This thesis mainly introduced the guiding principle and physical model of the research on the nano-composites coats of radar wave's absorption, and then studied the qualitative analysis of the performance ameliorating of radar wave's absorption composite coats. And on the basis of the optimum design of multilayer wave's absorption materials, two new kinds of radar wave's absorption composite coats have been made, which are composed of nano-composites hydroxyl iron powder and hollow micro-sphere. The research indicated that the surface-density of these two new composite coats is less than 3.5 Kg/m2.The coats' thickness is about 1 mm. And the waves absorption capability is above the level of 5 db, in the range of 3 ~ 18GHz. Therefore the wave's absorption performance of these two new coats is better than nano-crystalloid in low frequency area. The pilot study has proved that the nano-composites coat's performance of radar wave's absorption excels the ordinary radar wave's absorption coats, so it needs to be further studied.

  20. Studies of multiple stellar systems - IV. The triple-lined spectroscopic system Gliese 644

    Science.gov (United States)

    Mazeh, Tsevi; Latham, David W.; Goldberg, Elad; Torres, Guillermo; Stefanik, Robert P.; Henry, Todd J.; Zucker, Shay; Gnat, Orly; Ofek, Eran O.

    2001-07-01

    We present a radial velocity study of the triple-lined system Gliese 644 and derive spectroscopic elements for the inner and outer orbits with periods of 2.9655 and 627d. We also utilize old visual data, as well as modern speckle and adaptive optics observations, to derive a new astrometric solution for the outer orbit. These two orbits together allow us to derive masses for each of the three components in the system: MA=0.410+/-0.028 (6.9 per cent), MBa=0.336+/-0.016 (4.7 per cent), and MBb=0.304+/-0.014 (4.7 per cent)Msolar. We suggest that the relative inclination of the two orbits is very small. Our individual masses and spectroscopic light ratios for the three M stars in the Gliese 644 system provide three points for the mass-luminosity relation near the bottom of the main sequence, where the relation is poorly determined. These three points agree well with theoretical models for solar metallicity and an age of 5Gyr. Our radial velocities for Gliese 643 and vB 8, two common proper motion companions of Gliese 644, support the interpretation that all five M stars are moving together in a physically bound group. We discuss possible scenarios for the formation and evolution of this configuration, such as the formation of all five stars in a sequence of fragmentation events leading directly to the hierarchical configuration now observed, versus formation in a small N cluster with subsequent dynamical evolution into the present hierarchical configuration.

  1. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    Science.gov (United States)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  2. STUDY ON EUROPEAN FUNDS ABSORPTION IN ROMANIA FOR MEASURE 313

    Directory of Open Access Journals (Sweden)

    Florentina D. MATEI

    2014-06-01

    Full Text Available In this paper we wish to highlight the main causes of regional disparities in Romania in terms of absorption of European funds through Measure 313: Encouragement of tourism activities. The post-accession of Romania shows a major deficiency in attracting funds from the European Union, this situation is generated, in particular, by the lack of a coherent long-term vision of the authorities, insufficient resources for co-financing projects, low administrative capacity at central and local level, lack of inter-institutional coordination, public-private partnerships failures and insufficient skilled human resources . We will analyze the number of projects approved and implemented in each region of Romania (2007-2013 to establish the real possibilities of expansion of rural tourism.

  3. Synthesis, spectroscopic, thermal and electrochemical studies on thiazolyl azo based disperse dyes bearing coumarin

    Science.gov (United States)

    Özkütük, Müjgan; İpek, Ezgi; Aydıner, Burcu; Mamaş, Serhat; Seferoğlu, Zeynel

    2016-03-01

    In this study, seven novel thiazolyl azo disperse dyes (6a-g) were synthesized and fully characterized by FT-IR, 1H NMR, 13C NMR, and mass spectral techniques. The electronic absorption spectra of the dyes in solvents of different polarities cover a λmax range of 404-512 nm. The absorption properties of the dyes changed drastically upon acidification. This was due to the protonation of the nitrogen in the thiazole ring, which in turn increased the donor-acceptor interplay of the π system in the dyes, and therefore increased the absorption properties of the prepared dyes. Thermal analysis showed that these dyes are thermal stable up to 269 °C. Additionally, the electrochemical behavior of the dyes (6a-g) were investigated using cyclic voltammetric and chronoamperometric techniques, in the presence of 0.10 M tetrabutylammonium tetrafluoroborate, in dimethylsulfoxide, at a glassy carbon electrode. The number of transferred electrons, and the diffusion coefficient were determined by electrochemical methods. The results showed that, for all the dyes, one oxidation peak and two reduction peaks were observed.

  4. Spectroscopic Studies of Cryptophyte Light Harvesting Proteins: Vibrations and Coherent Oscillations.

    Science.gov (United States)

    Arpin, Paul C; Turner, Daniel B; McClure, Scott D; Jumper, Chanelle C; Mirkovic, Tihana; Challa, J Reddy; Lee, Joohyun; Teng, Chang Ying; Green, Beverley R; Wilk, Krystyna E; Curmi, Paul M G; Hoef-Emden, Kerstin; McCamant, David W; Scholes, Gregory D

    2015-08-06

    The first step of photosynthesis is the absorption of light by antenna complexes. Recent studies of light-harvesting complexes using two-dimensional electronic spectroscopy have revealed interesting coherent oscillations. Some contributions to those coherences are assigned to electronic coherence and therefore have implications for theories of energy transfer. To assign these femtosecond data and to gain insight into the interplay among electronic and vibrational resonances, we need detailed information on vibrations and coherences in the excited electronic state compared to the ground electronic state. Here, we used broad-band transient absorption and femtosecond stimulated Raman spectroscopies to record ground- and excited-state coherences in four related photosynthetic proteins: PC577 from Hemiselmis pacifica CCMP706, PC612 from Hemiselmis virescens CCAC 1635 B, PC630 from Chroomonas CCAC 1627 B (marine), and PC645 from Chroomonas mesostigmatica CCMP269. Two of those proteins (PC630 and PC645) have strong electronic coupling while the other two proteins (PC577 and PC612) have weak electronic coupling between the chromophores. We report vibrational spectra for the ground and excited electronic states of these complexes as well as an analysis of coherent oscillations observed in the broad-band transient absorption data.

  5. Hydrodynamic and absorption studies of carbon dioxide absorption in aqueous amide solutions using a bubble column contactor

    Directory of Open Access Journals (Sweden)

    A. Blanco

    2013-12-01

    Full Text Available The present work analyses the carbon dioxide absorption process in aqueous n-alkylpyrrolidones solutions, from the point of view of hydrodynamic studies as well as mass transfer, using a bubble column contactor. An analysis of the influence of solute concentration and gas flow-rate is complemented by the study of the effect caused by the alkyl group on the hydrodynamics and mass transfer. The presence of this kind of substance produces a decrease in mass transfer rate, but on the basis of interfacial area and mass transfer coefficient values, ethyl-2-pyrrolidine (EP shows suitable characteristics to replace methyl-2-pyrrolidine (MP in gas separation processes due to its lower safety problems.

  6. Analytical procedure for the simultaneous voltammetric determination of trace metals in food and environmental matrices. Critical comparison with atomic absorption spectroscopic measurements.

    Science.gov (United States)

    Melucci, Dora; Torsi, Giancarlo; Locatelli, Clinio

    2007-01-01

    An analytical procedure fit for the simultaneous determination of copper (II), chromium(VI), thallium(I), lead(II), tin(II), antimony(III), and zinc(II) by square wave anodic stripping voltammetry (SWASV) in three interdependent environmental matrices involved in foods and food chain as meals, cereal plants and soils is described. The digestion of each matrix was carried out using a concentrated HCl-HNO3-H2SO4 (meals and cereal plants) and HCl-HNO3 (soils) acidic attack mixtures. 0.1 mol/L dibasic ammonium citrate pH 8.5 was employed as the supporting electrolyte. The voltammetric measurements were carried out using, as working electrode, a stationary hanging mercury drop electrode (HMDE) and a platinum electrode and an Ag/AgCl/KClsat electrode as auxiliary and reference electrodes, respectively. The analytical procedure was verified by the analyses of the standard reference materials: Wholemeal BCR-CRM 189, Tomato Leaves NIST-SRM 1573a and Montana Soil Moderately Elevated Traces NIST-SRM 2711. For all the elements in the certified matrix, the precision as repeatability, expressed as relative standard deviation (Sr %) was lower than 5%. The accuracy, expressed as percentage relative error (e %) was of the order of 3-7%, while the detection limits were in the range 0.015-0.103 microg/g. Once set up on the standard reference materials, the analytical procedure was transferred and applied to commercial meal samples, cereal plants and soils samples drawn in sites devoted to agricultural practice. A critical comparison with spectroscopic measurements is also discussed.

  7. Combined study of biphasic and zero-order release formulations with dissolution tests and ATR-FTIR spectroscopic imaging.

    Science.gov (United States)

    Wray, Patrick; Li, Jing; Li, Ling Qiao; Kazarian, Sergei G

    2014-07-01

    In this study of multi-layer tablets, the dissolution of biphasic and zero-order release formulations has been studied primarily using attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic imaging as well as UV-Vis detection of dissolved drug in the effluent stream and USP dissolution testing. Bilayer tablets, containing the excipients microcrystalline cellulose (MCC) and glucose, were used for biphasic release with nicotinamide and buflomedil as model drugs. ATR-FTIR spectroscopic imaging showed the changing component distributions during dissolution. Further experiments studied monolithic and barrier-layered tablets containing hydroxypropyl methylcellulose, MCC and buflomedil dissolving in a USP I apparatus. These data were compared with UV-Vis dissolution profiles obtained online with the ATR flow-through cell. ATR-FTIR imaging data of the biphasic formulations demonstrated that the drug release was affected by excipient ratios and effects such as interference between tablet sections. Tablets placed in the ATR-FTIR flow-through cell exhibited zero-order UV-Vis dissolution profile data at high flow rates, similar to barrier-layered formulations studied using the USP I apparatus. ATR-FTIR spectroscopic imaging provided information regarding the dissolution mechanisms in multi-layer tablets which could assist formulation development. The ability to relate data from USP dissolution tests with that from the ATR-FTIR flow-through cell could help spectroscopic imaging complement dissolution methods used in the industry.

  8. Experimental studies on the influence of porosity on membrane absorption process

    Institute of Scientific and Technical Information of China (English)

    GAO Jian; REN Zhongqi; ZHANG Zeting; ZHANG Weidong

    2007-01-01

    Eight kinds of flat membranes with different micro-structures were chosen to carry out the membrane absorption experiments with CO2 and de-ionized water or According to experimental results,the membrane pores shape (stretched pore and cylinder pore) and membrane thickness do not affect the membrane absorption process,and the membrane porosity has only little influence on membrane absorption process for slow mass transfer system.However,the influence of porosity on the membrane absorption process became visible for fast mass transfer system.Moreover,the mass transfer behavior near the membrane surface on liquid side was studied.The results show that the influence of membrane porosity on mass transfer relates to flow condition,absorption system and distance between micro-pores,etc.

  9. Fluorescence spectroscopic studies on binding of a flavonoid antioxidant quercetin to serum albumins

    Indian Academy of Sciences (India)

    Beena Mishra; Atanu Barik; K Indira Priyadarsini; Hari Mohan

    2005-11-01

    Binding of quercetin to human serum albumin (HSA) was studied and the binding constant measured by following the red-shifted absorption spectrum of quercetin in the presence of HSA and the quenching of the intrinsic protein fluorescence in the presence of different concentrations of quercetin. Fluorescence lifetime measurements of HSA showed decrease in the average lifetimes indicating binding at a location, near the tryptophan moiety, and the possibility of fluorescence energy transfer between excited tryptophan and quercetin. Critical transfer distance () was determined, from which the mean distance between tryptophan-214 in HSA and quercetin was calculated. The above studies were also carried out with bovine serum albumin (BSA).

  10. Cationic pyridinium porphyrins appending different peripheral substituents: Spectroscopic studies on their interactions with bovine serum albumin

    Science.gov (United States)

    Zhao, Ping; Huang, Jin-Wang; Ji, Liang-Nian

    2012-03-01

    The interaction of cationic pyridinium porphyrins appending methylpyridyl, hydroxyphenyl, propionoxyphenyl or carboxyphenyl group at meso-20-position of porphyrin core with bovine serum albumin (BSA), was studied by the combination of absorption spectroscopy, surface-enhanced Raman spectroscopy (SERS), circular dichroism (CD) spectroscopy, fluorescence spectroscopy and synchronous spectroscopy. The spectral monitoring results indicate that the studied compounds could bind with the BSA molecule and the calculated binding constants show that the tetracationic porphyrin has higher binding affinity than those tricationic ones. The interactions between porphyrins and BSA employ an electrostatic binding mechanism and there was only one binding site which located on the surface of the protein molecule.

  11. Spectroscopic study of local thermal effect in transparent glass ceramics containing nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Local thermal effect influencing the fluorescence of triply ionized rare earth ions doped in nanocrystals is studied with laser spectroscopy and theory of thermal transportation for transparent oxyfluoride glass ceramics containing nanocrystals. The result shows that the local temperature of the nanocrystals embedded in glass matrices is much higher than the environmental temperature of the sample. It is suggested that the temperature-dependent thermal energy induced by the light absorption must be considered when the theory of thermal transportation is applied to the study of local thermal effect.

  12. Infrared and UV-visible spectroscopic studies of gamma-irradiated Sb2O3-B2O3 glasses

    Science.gov (United States)

    Marzouk, Samir Y.; Elbatal, Fatma H.

    2014-04-01

    Glasses from the binary Sb2O3-B2O3 system were prepared in the compositional range 90-30 Sb2O3 mol%. UV-visible spectroscopic measurements were carried out in the range 190-1100 nm before and after successive gamma rays irradiation (1, 3, 4 Mrad). Infrared absorption of the samples was measured by the KBr technique in the range 4000-400 cm-1 and the same measurements were repeated after gamma irradiation with 4 kGy. Experimental results indicate that antimony borate glasses reveal quite shielding behavior towards gamma rays irradiation as observed with heavy metal cations bearing glasses such as Bi3+ and Pb2+. Infrared absorption spectra reveal characteristic absorption bands specific for the glass-forming borate units and Sb-O units. Glasses containing high antimony oxide content can thus be recommended as promising radiation-shielding material because they show resistant to gamma irradiation due to the presence of high percent of heavy metal oxide (Sb2O3).

  13. Study of interaction of butyl p-hydroxybenzoate with human serum albumin by molecular modeling and multi-spectroscopic method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Qin, E-mail: wqing07@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Zhang Yaheng, E-mail: zhangyah04@lzu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Sun Huijun, E-mail: sun.hui.jun-04@163.co [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Hongli, E-mail: hlchen@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chen Xingguo, E-mail: chenxg@lzu.edu.c [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-02-15

    Study of the interaction between butyl p-hydroxybenzoate (butoben) and human serum albumin (HSA) has been performed by molecular modeling and multi-spectroscopic method. The interaction mechanism was predicted through molecular modeling first, then the binding parameters were confirmed using a series of spectroscopic methods, including fluorescence spectroscopy, UV-visible absorbance spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. The thermodynamic parameters of the reaction, standard enthalpy {Delta}H{sup 0} and entropy {Delta}S{sup 0}, have been calculated to be -29.52 kJ mol{sup -1} and -24.23 J mol{sup -1} K{sup -1}, respectively, according to the Van't Hoff equation, which suggests the van der Waals force and hydrogen bonds are the predominant intermolecular forces in stabilizing the butoben-HSA complex. Results obtained by spectroscopic methods are consistent with that of the molecular modeling study. In addition, alteration of secondary structure of HSA in the presence of butoben was evaluated using the data obtained from UV-visible absorbance, CD and FT-IR spectroscopies. - Research highlights: The interaction between butyl p-hydroxybenzoate with HSA has been investigated for the first time. Molecular modeling study can provide theoretical direction for experimental design. Multi-spectroscopic method can provide the binding parameters and thermodynamic parameters. These results are important for food safety and human health when using parabens as a preservative.

  14. A spectroscopic study on new phthalonitrile derivative and its computational background: 4-[(4,5-Diphenyl-4H-1,2,4-triazol-3-yl)sulfanyl]benzene-phthalonitrile

    Science.gov (United States)

    Akçay, Hakkı Türker; Çoruh, Ufuk; Bayrak, Rıza; Menteşe, Emre; Vazquez Lopez, Ezequiel M.

    2017-01-01

    Heterocyclic phthalonitrile derivatives are important precursors in synthesis of new photoactive phthalocyanine compounds. In this study, novel phthalonitrile compound bearing triazole moiety was synthesized and characterized by using spectroscopic techniques such as FT-IR and NMR. The molecular structures of the title compound was analyzed crystallographically and compared with the structural parameters obtained computationally. The orbital energies, electronic absorptions, atomic charge parameters, vibrational frequencies, ground state transitions, 1H and 13C NMR chemical shifts and NBO analysis were computed by using DFT (Density Functional Theory) calculation and compared with the experimental results.

  15. Spectroscopic and molecular modelling studies of binding mechanism of metformin with bovine serum albumin

    Science.gov (United States)

    Sharma, Deepti; Ojha, Himanshu; Pathak, Mallika; Singh, Bhawna; Sharma, Navneet; Singh, Anju; Kakkar, Rita; Sharma, Rakesh K.

    2016-08-01

    Metformin is a biguanide class of drug used for the treatment of diabetes mellitus. It is well known that serum protein-ligand binding interaction significantly influence the biodistribution of a drug. Current study was performed to characterize the binding mechanism of metformin with serum albumin. The binding interaction of the metformin with bovine serum albumin (BSA) was examined using UV-Vis absorption spectroscopy, fluorescence, circular dichroism, density functional theory and molecular docking studies. Absorption spectra and fluorescence emission spectra pointed out the weak binding of metformin with BSA as was apparent from the slight change in absorbance and fluorescence intensity of BSA in presence of metformin. Circular dichroism study implied the significant change in the conformation of BSA upon binding with metformin. Density functional theory calculations showed that metformin has non-planar geometry and has two energy states. The docking studies evidently signified that metformin could bind significantly to the three binding sites in BSA via hydrophobic, hydrogen bonding and electrostatic interactions. The data suggested the existence of non-covalent specific binding interaction in the complexation of metformin with BSA. The present study will certainly contribute to the development of metformin as a therapeutic molecule.

  16. Electronic properties of diphenyl-s-tetrazine and some related oligomers. An spectroscopic and theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Moral, Monica; Garcia, Gregorio [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Penas, Antonio [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Garzon, Andres; Granadino-Roldan, Jose M. [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Melguizo, Manuel [Departamento de Quimica Inorganica y Organica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain); Fernandez-Gomez, Manuel, E-mail: mfg@ujaen.es [Departamento de Quimica Fisica y Analitica, Facultad de Ciencias Experimentales, Universidad de Jaen, Campus las Lagunillas, E23071 Jaen (Spain)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer We study properties of Ph{sub 2}Tz and (PhTz){sub n}Ph as candidates for organic electronics. Black-Right-Pointing-Pointer The synthesis of Ph{sub 2}Tz was performed through a modified Pinner-type reaction. Black-Right-Pointing-Pointer IR/Raman spectra allowed to conclude that Ph{sub 2}Tz is nearly planar in liquid phase. Black-Right-Pointing-Pointer Electronic structure was studied by UV-Vis/TD-DFT methods in different solvents. Black-Right-Pointing-Pointer Bandgap, E{sub LUMO}, electron mobility predict some n-type character for limit polymer. -- Abstract: This work presents a theoretical and spectroscopic study on the electronic and structural properties of the diphenyl-s-tetrazine molecule (Ph{sub 2}Tz) and some oligomeric derivatives. Ph{sub 2}Tz was synthesized through a variation of Pinner-type reaction which uses N-acetylcysteine as catalyst. Insight into the structure and electronic properties of the title compound was obtained through IR, Raman, UV-Vis spectra in different solvents, and theoretical calculations. Theoretical studies have been extended to different n-mers derivatives up to an ideal molecular wire through the oligomeric approximation, predicting this way electronic properties such as LUMO energy levels, electron affinity and reorganization energy in order to assess their possible applications in molecular electronics.

  17. Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Science.gov (United States)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-09-01

    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  18. STUDY OF INTERACTION OF DRUGS WITH BODY-ALIKE MACROMOLECULE (POLYVINYLPYRROLIDONE BY ULTRA VIOLET SPECTROSCOPIC METHOD

    Directory of Open Access Journals (Sweden)

    AKHTAR SAEED

    2006-01-01

    Full Text Available UV-visible spectrophotometric technique was used to study the interaction of polyvinylpyrrolidone (PVP with co-solutes: phenol, benzoic acid, sodium benzoate, salicylic acid and acetyl salicylic acid in aqueous medium. Changes in the absorption spectra of the co-solutes were observed in the presence of PVP from 200 to 210 nm. The changes were attributed to interaction of PVP molecules with the co-solute molecules. As the concentration of the co-solute increased, a red shift in the bands was observed indicating an increase in interaction between PVP and the co-solute.

  19. Spectroscopic Study on the Interaction of Al3+ with Flavonoids and BSA

    Institute of Scientific and Technical Information of China (English)

    TIAN Qiu-Lin; LIAO Sheng-Hua; LU Ping; LIU LI-Juan

    2006-01-01

    The interaction of Chinese herbal medicine component flavonoids (morin and rutin) with trivalent aluminium ion and the complex of aluminium ion and Bovine Serum Albumin in Hank's artificial simulate body fluid was studied using UV-Vis absorption spectra. The result showed that morin and rutin could conjugate with Al3+ in Hank's artificial simulate body fluid. It was found that morin and rutin could competed with the complex of aluminium ion and Bovine Serum Albumin for aluminium ion. The mechanism of flavonoids and Bovine Serum Albumin compete aluminium ion was discussed, and the constant of rutin complex with aluminium ion was calculated.

  20. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Mallika [Department of Chemistry, Miranda House, University of Delhi, Delhi 11007 (India); Mishra, Rashmi; Agarwala, Paban K. [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Ojha, Himanshu, E-mail: himanshu.drdo@gmail.com [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Bhawna [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Anju; Kukreti, Shrikant [Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi 11007 (India)

    2016-06-10

    Highlights: • ITC study showed binding of ethyl pyruvate with BSA with high binding affinity. • Ethyl pyruvate binding caused conformation alteration of BSA. • Fluorescence quenching mechanism is static in nature. • Electrostatic, hydrogen bonding and hydrophobic forces involved in binding. • Docking confirmed role of electrostatic, hydrogen bonding and hydrophobic forces. - Abstract: Various in vitro and in vivo studies have shown the anti-inflammatory and anticancer potential role of ethyl pyruvate. Bio-distribution of drugs is significantly influenced by the drug-serum protein binding. Therefore, the binding mechanism of the ethyl pyruvate with bovine serum albumin was investigated using UV–vis absorption, fluorescence, circular dichroism, isothermal titration calorimetry and molecular docking techniques. Absorption and fluorescence quenching studies indicated the binding of ethyl pyruvate with protein. Circular dichroism spectra of bovine serum albumin confirmed significant change in the conformation of protein upon binding. Thermodynamic data confirmed that ethyl pyruvate binds to bovine serum albumin at the two different sites with high affinity. Binding of ethyl pyruvate to bovine serum albumin involves hydrogen bonding, van der Waal and hydrophobic interactions. Further, docking studies indicated that ethyl pyruvate could bind significantly at the three binding sites. The results will definitely contribute to the development of ethyl pyruvate as drug.

  1. Sneezes, gasps and yawns in the evolution of Cataclsmic Variables: a spectroscopic study of winds

    Science.gov (United States)

    Kafka, Stella; Honeycutt, R. Kent; Hoard, Don

    2008-02-01

    Cataclysmic variables (CVs) sometimes show evidence for bi-polar winds arising from the accretion process. These winds carry away mass and angular momentum, likely affecting the evolution of the system. For the most part, it has only been possible to study such winds by means of the P Cygni profiles seen in space-UV resonance lines. However, we have found that a number of CVs show wind lines in the optical region of the spectrum, providing the opportunity for ground-based study of changes in the wind to determine its origin, time scales, kinematics, and geometry. Distinct differences in the behaviors of singlet and triplet He I lines provide a means to distinguish wind and disk components; however we know very little about the secular and orbital changes in the winds, or the types of CVs in which winds occur. This proposal is to enrich our on- going spectroscopic program studying for P Cygni profiles in the He I triplet lines. These data will reveal the kinds of CVs that have winds and how often winds appear, information critical to understanding if such winds contribute to the angular momentum loss that drives CV evolution.

  2. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine

    Science.gov (United States)

    Deborah, M.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin

    2015-03-01

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (0 0 2) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  3. Spectroscopic studies on sidewall carboxylic acid functionalization of multi-walled carbon nanotubes with valine.

    Science.gov (United States)

    Deborah, M; Jawahar, A; Mathavan, T; Dhas, M Kumara; Benial, A Milton Franklin

    2015-03-15

    The valine functionalized multi-walled carbon nanotubes (MWCNTS) were prepared and characterized by using XRD, UV-Vis, FT-IR, EPR, SEM, and EDX, spectroscopic techniques. The enhanced XRD peak (002) intensity was observed for valine functionalized MWCNTs compared with oxidized MWCNTs, which is likely due to sample purification by acid washing. UV-Vis study shows the formation of valine functionalized MWCNTs. FT-IR study confirms the presence of functional groups of oxidized MWCNTs and valine functionalized MWCNTs. The ESR line shape analysis indicates that the observed EPR line shape is a Gaussian line shape. The g-values indicate that the systems are isotropic in nature. The morphology study was carried out for oxidized MWCNTs and valine functionalized MWCNTs by using SEM. The EDX spectra revealed that the high purity of oxidized MWCNTs and valine functionalized MWCNTs. The functionalization has been chosen because, functionalization of CNTs with amino acids makes them soluble and biocompatible. Thus, they have potential applications in the field of biosensors and targeted drug delivery.

  4. Studies on absorption and metabolism of palatinose (isomaltulose) in rats.

    Science.gov (United States)

    Tonouchi, Hidekazu; Yamaji, Taketo; Uchida, Masayuki; Koganei, Megumi; Sasayama, Akina; Kaneko, Tetsuo; Urita, Yoshihisa; Okuno, Masahiro; Suzuki, Kouji; Kashimura, Jun; Sasaki, Hajime

    2011-01-01

    We evaluated the absorption and metabolism of palatinose in rats by the carbohydrate load test and the 13C- and H2-breath tests. We compared the results of these tests with those of sucrose, since sucrose is an isomer of palatinose and generally known to be degraded and absorbed from the small intestine. In the carbohydrate load test, blood glucose and plasma insulin levels after oral administration of palatinose rose more gradually and reached a maximum that was lower than that after sucrose administration. In the 13C-breath test, rats were orally administrated [1-13C]sucrose or [1-13C]palatinose and housed in a chamber. The expired air in the chamber was collected, and the level of 13CO2 in the expired air was measured at appropriate intervals for 360 min. The value of time taken to reach the maximum concentration for expired 13CO2 from [1-13Cglucose] ([1-13Cglc]) and [1-13Cfructose] ([1-13Cfru]) palatinose was significantly longer than that from [1-13Cglc] and [1-13Cfru]sucrose, respectively. The value of area under the curve (AUC) for [1-13Cglc]palatinose was larger than that for [1-13Cglc]sucrose, but AUC for [1-13Cfru] showed no difference between palatinose and sucrose. In the H2-breath test, the concentration of H2 in the expired air was measured for 420 min. H2 was hardly detected with both palatinose and sucrose and no significant difference was observed between the two groups. These results suggest that palatinose is utilised in vivo at a rate equal to that of sucrose.

  5. Colorimetric and fluorimetric response of salicylaldehyde dithiosemicarbazone towards fluoride, cyanide and copper ions: Spectroscopic and TD-DFT studies

    Science.gov (United States)

    Harikrishnan, Vengayil K.; Basheer, Sabeel M.; Joseph, Nithin; Sreekanth, Anandaram

    2017-07-01

    The sensing mechanism of salicylaldehyde phenyldithiosemicarbazone (SDTSC) chemosensor has been investigated by spectroscopic and TD-DFT methods. The SDTSC shows colourimetric and spectral changes towards fluoride, cyanide and copper ions. The interaction between SDTSC with fluoride, cyanide and copper ions was examined through their absorption and fluorescence behaviour, and found that SDTSC has more sensing ability towards Cu2 + ion than CN- and F- ions. The 1H NMR titration with SDTSC and F- gives the structural changes in the sensing process. The reversibility of SDTSC was also evaluated and thus it is confirmed as a reusable chemosensor which can be clarified by the ;Read-Erase-Read-Write; logic system. The DFT and TD-DFT calculations give the detailed sensing mechanism of SDTSC towards fluoride ion. The potential energy surface (PES) analysis confirms the excited state electron transfer mechanism.

  6. Spectroscopic characterization of the atmospheres of potentially habitable planets: GL 581 d as a model case study

    CERN Document Server

    von Paris, Philip; Godolt, Mareike; Grenfell, J Lee; Hedelt, Pascal; Rauer, Heike; Schreier, Franz; Stracke, Barbara

    2011-01-01

    (abridged) The Super-Earth candidate GL 581 d is the first potentially habitable extrasolar planet. Therefore, GL 581 d is used to illustrate a hypothetical detailed spectroscopic characterization of such planets. Atmospheric profiles from 1D radiative-convective model scenarios of GL 581 d were used to calculate high-resolution synthetic spectra. From the spectra, signal-to-noise ratios were calculated for a telescope such as the planned James Webb Space Telescope. The presence of the model atmospheres could be clearly inferred from the calculated synthetic spectra due to strong water and carbon dioxide absorption bands. Surface temperatures could be inferred for model scenarios with optically thin spectral windows. Dense, CO2-rich scenarios did not allow for the characterization of surface temperatures and to assess habitability. Degeneracies between CO2 concentration and surface pressure further complicated the interpretation of the calculated spectra, hence the determination of atmospheric conditions. Sti...

  7. Theoretical studies on the spectroscopic properties and the substituent effects of pyridyl triazole Os(Ⅱ) complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    To explore the spectroscopic properties of pyridyl triazole Os(Ⅱ) complexes and how the substituent effects affect the spectroscopic properties of [Os(ptz)2L2] (L=PH3; ptzH=(2-pyridyl)-1,2,4-triazole) (1), [Os(bptz)2L2] (bptzH=3-tert-butyl-5-(2-pyridyl)-1,2,4-triazole) (2), [Os(fptz)2L2] (fptzH=3- (trifluoreomethyl)- 5-(2-pyridyl)-1,2,4-triazole) (3), and [Os(fbtz)2L2] (fbtzH=3-(trifluoreomethyl)-5-(4-tert-butyl- 2-pyridyl)-1,2, 4-triazole) (4), the density functional theory (DFT) method at the B3LYP level was used to optimize the geometrical structures in the ground and excited state. The absorption and emission properties of the dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model, the transitions characters of them were assigned. Important correlations between substituent effects and emission spectra and the quantum yield have been obtained by comparing and analyzing the calculated results.

  8. Theoretical studies on the spectroscopic properties and the substituent effects of pyridyl triazole Os(Ⅱ)complexes

    Institute of Scientific and Technical Information of China (English)

    WU Yu-Hui; ZHOU Xin; ZHANG Hong-Xing

    2009-01-01

    To explore the spectroscopic properties of pyridyl triazole Os(Ⅱ) complexes and how the substituent effects affect the spectroscopic properties of [Os(ptz)2L2] (L=PH3; ptzH=(2-pyridyl)-1,2,4-triazole) (1), [Os(bptz)2L2] (bptzH=3-tert-butyl-5-(2-pyridyl)-1,2,4-triazole) (2), [Os(fpt2)L2] (fptzH=3-(trifluoreomethyl)-5-(2-pyridyl)-1,2,4-triazole) (3), and [Os(fbtz)2L2] (fbtzH=3-(trifluoreomethyl)-5-(4-tert-butyl- 2-pyridyl)-1,2, 4-triazole) (4), the density functional theory (DFT) method at the B3LYP level was used to optimize the geometrical structures in the ground and excited state. The absorption and emission properties of the dichloromethane solution were predicted at the time-dependent density functional theory (TD-DFT, B3LYP) level associated with the PCM solvent effect model, the transitions characters of them were assigned. Important correlations between substituent effects and emission spectra and the quantum yield have been obtained by comparing and analyzing the calculated results.

  9. A comparative study of the PIFA and printed monopole antenna EM absorption.

    Science.gov (United States)

    Hossain, Md Ikbal; Iqbal Faruque, Mohammad Rashed; Islam, Mohammad Tariqul

    2017-02-01

    This paper represents a comparative study on electromagnetic (EM) absorption in the human head between a printed monopole antenna and a planar inverted-F antenna (PIFA). The specific absorption rate (SAR) values and total absorbed power in the human head phantom are used to evaluate EM absorption for both antennae. Moreover, antenna performances in terms of return loss, radiation efficiency, and gain are also investigated in this study. The finite integration technique (FIT) based on CST Microwave studio and SAM head phantom are used in this study. The antenna performances are measured in an anechoic chamber and the SAR is tested using COMOSAR measurement system. The obtained results indicate that the printed monopole antenna lead to higher EM absorption in the human head as compared to PIFA for both GSM frequencies.

  10. Study on NO2 absorption by ascorbic acid and various chemicals

    Institute of Scientific and Technical Information of China (English)

    LI Wei; WU Cheng-zhi; FANG He-liang; SHI Yao; LEI Le-cheng

    2006-01-01

    Study on NO2 absorption aimed at seeking a better NO2 absorption chemical at pH 4.5~7.0 for application to existing wet flue gas desulfurization (FGD). The results from the double-stirred reactor indicated thru ascorbic acid has very high absorption rate at this pH range. The rate constant of ascorbic acid reaction with NO2 (0~1000× 10-6 mol/mol) is about 3.54× 106 mol/(L.s)at pH 5.4~6.5 at 55 ℃.

  11. Experimental Study on the Energy Absorption Properties of MWK Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rong-xing; LI Wei; CHEN Nan-liang; FENG Xun-wei

    2002-01-01

    The energy absorption properties of MWK fabric reinforced composite plates were studied. Low velocity and low energy impact experiments were carried out for MWK fabric reinforced Glassfibre/Epoxy composite plate, by setting up a drop weight impact test system.Using this system, the drop weight velocity during impacting was obtained and recorded by transducer and corresponding signal processing system. Based on the velocity record, the impact energy and dissipated impact energy (energy absorption) were obtained. The influences of structure parameters of MWK on the impact behavior and energy absorption properties were then investigated.

  12. Spectroscopic study of humic acids fractionated by means of tangential ultrafiltration

    Science.gov (United States)

    Francioso, O.; Sánchez-Cortés, S.; Casarini, D.; Garcia-Ramos, J. V.; Ciavatta, C.; Gessa, C.

    2002-05-01

    Different chemical and spectroscopic techniques—diffuse reflectance infrared Fourier transform (DRIFT), surface-enhanced Raman spectroscopy (SERS), and 1H, 13C nuclear magnetic resonance (NMR) have been applied to investigate a peat humic acid (HA) separated by tangential ultrafiltration into different nominal molecular weight (NMW) fractions. Each fraction analyzed showed a characteristic DRIFT and NMR pattern. High nominal molecular weight fractions were mainly characterized by long chains of methyl and methylene groups and poorly substituted aromatic rings, while in low nominal molecular weight fractions (L-NMW), phenolic and oxygen-containing groups were predominant. A comparative study on fractions before and after treatment with 0.5 M HCl was carried out. Purified fractions showed either an increase in the carboxylate and phenolic OH groups or an improvement in signal-to-noise ratio of their NMR spectra. The SERS study of NMW fractions allowed significative information on structure and conformation of these fractions. In particular, L-NMW fractions showed a great structural modification, when different alkaline extractants or treatment with HCl were used. Humic-like substances obtained by catechol and gallic acid polymerization on metal surface were investigated using SERS. The SERS spectra of these polymers were compared and discussed with those of NMW HA fractions.

  13. Molecular interaction of PCB153 to human serum albumin: Insights from spectroscopic and molecular modeling studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chao; Fang, Senbiao; Cao, Huiming; Lu, Yan; Ma, Yaqiong [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Wei, Dongfeng [Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700 (China); Xie, Xiaoyun [College of Earth and Environmental Science, Lanzhou University, Lanzhou 730000 (China); Liu, Xiaohua [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Li, Xin [College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471003 (China); Fei, Dongqing [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Zhao, Chunyan, E-mail: zhaochy07@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2013-03-15

    Highlights: ► We identify the binding mode of PCB153 to human serum albumin (HSA). ► Spectroscopic and molecular modeling results reveal that PCB153 binds at the site II. ► The interaction is mainly governed by hydrophobic and hydrogen bond forces. ► The work helps to probe transporting, distribution and toxicity effect of PCBs. -- Abstract: Polychlorinated biphenyls (PCBs) possessed much potential hazard to environment because of its chemical stability and biological toxicity. Here, we identified the binding mode of a representative compound, PCB153, to human serum albumin (HSA) using fluorescence and molecular dynamics simulation methods. The fluorescence study showed that the intrinsic fluorescence of HSA was quenched by addition of PCB153 through a static quenching mechanism. The thermodynamic analysis proved the binding behavior was mainly governed by hydrophobic force. Furthermore, as evidenced by site marker displacement experiments using two probe compounds, it revealed that PCB153 acted exactly on subdomain IIIA (site II) of HSA. On the other hand, the molecular dynamics studies as well as free energy calculations made another important contribution to understand the conformational changes of HSA and the stability of HSA-PCB153 system. Molecular docking revealed PCB153 can bind in a large hydrophobic activity of subdomain IIIA by the hydrophobic interaction and hydrogen bond interactions between chlorine atoms and residue ASN391. The present work provided reasonable models helping us further understand the transporting, distribution and toxicity effect of PCBs when it spread into human blood serum.

  14. Theoretical spectroscopic study of the conjugate microcystin-LR-europium cryptate

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Julio G.; Dutra, Jose Diogo L.; Costa Junior, Nivan B. da; Freire, Ricardo O., E-mail: rfreire@ufs.br [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Departamento de Quimica; Alves Junior, Severino; Sa, Gilberto F. de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Quimica Fundamental

    2013-02-15

    In this work, theoretical tools were used to study spectroscopic properties of the conjugate microcystin-LR-europium cryptate. The Sparkle/AM1 model was applied to predict the geometry of the system and the INDO/S-CIS model was used to calculate the excited state energies. Based on the Judd-Ofelt theory, the intensity parameters were predicted and a theoretical model based on the theory of the 4f-4f transitions was applied to calculate energy transfer and backtransfer rates, radiative and non-radiative decay rates, quantum efficiency and quantum yield. A detailed study of the luminescent properties of the conjugate Microcystin-LR-europium cryptate was carried out. The results show that the theoretical quantum yield of luminescence of 23% is in good agreement with the experimental value published. This fact suggests that this theoretical protocol can be used to design new systems in order to improve their luminescence properties. The results suggest that this luminescent system may be a good conjugate for using in assay ELISA for detection by luminescence of the Microcystin-LR in water. (author)

  15. Infrared spectroscopic study of a phosphoryl-containing enzyme: cytosolic aspartate aminotransferase

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Ruiz, J.M.; Martinez-Carrion, M.

    1986-05-01

    A Fourier Transform Infrared spectroscopic study of cytosolic aspartate aminotransferase has been carried out in order to determine the ionization state of the phosphate group of the bound pyridoxal phosphate. The band arising from the symmetric stretching of the dianionic phosphate monoester has been identified in holoenzyme spectra in solution. Its integrated intensity does not change with pH in the range 5.3-8.6, the value being close to the integrated intensity of the same band in free pyridoxal phosphate in solution at pH 8-9. On the other hand, for free cofactor, the integrated intensity changes with pH according to the pK expected for a 5'-phosphate group in solution. It appears, therefore, that the 5'-phosphate group of the bound cofactor remains mostly dianionic in the pH range 5.3-8.6, and a small /sup 31/P-NMR chemiCal shift/pH titration dependent curve observed in holoenzyme solutions seems due to the phosphate group in the protein, likely the Lys 258-pyridoxal phosphate Schiff's base. These results also show Fourier Transform Infrared Spectroscopy as a valuable technique in the study of phosphoryl-containing proteins.

  16. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors.

    Science.gov (United States)

    Nashy, El-Shahat H A; Al-Ashkar, Emad; Moez, A Abdel

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Potentiometric and spectroscopic study of the interaction of 3d transition metal ions with inositol hexakisphosphate

    Science.gov (United States)

    Veiga, Nicolás; Macho, Israel; Gómez, Kerman; González, Gabriel; Kremer, Carlos; Torres, Julia

    2015-10-01

    Among myo-inositol phosphates, the most abundant in nature is the myo-inositol hexakisphosphate, InsP6. Although it is known to be vital to cell functioning, the biochemical research into its metabolism needs chemical and structural analysis of all the protonation, complexation and precipitation processes that it undergoes in the biological media. In view of its high negative charge at physiological level, our group has been leading a thorough research into the InsP6 chemical and structural behavior in the presence of the alkali and alkaline earth metal ions essential for life. The aim of this article is to extend these studies, dealing with the chemical and structural features of the InsP6 interaction with biologically relevant 3d transition metal ions (Fe(II), Fe(III), Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)), in a non-interacting medium and under simulated physiological conditions. The metal-complex stability constants were determined by potentiometry, showing under ligand-excess conditions the formation of mononuclear species in different protonation states. Under metal ion excess, polymetallic species were detected for Fe(II), Fe(III), Zn(II) and Cu(II). Additionally, the 31P NMR and UV-vis spectroscopic studies provided interesting structural aspects of the strong metal ion-InsP6 interaction.

  18. Hydrogen bonding interactions in nicotinamide Ionic Liquids: A comparative spectroscopic and DFT studies

    Science.gov (United States)

    Shukla, Madhulata

    2017-03-01

    Being biodegradable in nature nicotinamide based Ionic Liquids (ILs) are gaining much attention now a day. Nicotinamide iodide (i.e 1-methyl-3ethoxy carbonyl pyridinium iodide (mNicI)) and 1-methyl-3ethoxy carbonyl pyridinium trifilimide (mNicNTf2) new ILs has been synthesized and has been characterized using different spectroscopic techniques like NMR, UV visible and infrared spectroscopy. Theoretical studies have been performed on several nicotinamide ILs. Geometry and spectral features were further characterized by Density Functional Theory (DFT) calculation. NBO charge distribution and electrostatic potential diagram presents in depth knowledge about interactions between cation and anion. A comparative theoretical study between mNicI and its other analogues i. e 1-methyl-3 ethoxy carbonyl pyridinium chloride and bromide i. e mNicCl and mNicBr has also been performed. Csbnd H⋯X hydrogen bonding along with C⋯X interaction has been reported for the first time for the nicotinamide based ILs. C2sbnd H stretching frequency shifts to higher wavenumber with change to a lesser electronegative anion. mNicCl and mNicBr are expected to be solid in nature with the evidence from the red shift in stretching frequency as compared to mNicI. TD-DFT calculation of mNicI proved that pale yellow color of liquid is due to inherent transition from anion to cation.

  19. Optical and spectroscopic studies on tannery wastes as a possible source of organic semiconductors

    Science.gov (United States)

    Nashy, El-Shahat H. A.; Al-Ashkar, Emad; Abdel Moez, A.

    2012-02-01

    Tanning industry produces a large quantity of solid wastes which contain hide proteins in the form of protein shavings containing chromium salts. The chromium wastes are the main concern from an environmental stand point of view, because chrome wastes posses a significant disposal problem. The present work is devoted to investigate the possibility of utilizing these wastes as a source of organic semi-conductors as an alternative method instead of the conventional ones. The chemical characterization of these wastes was determined. In addition, the Horizontal Attenuated Total Reflection (HATR) FT-IR spectroscopic analysis and optical parameters were also carried out for chromated samples. The study showed that the chromated samples had suitable absorbance and transmittance in the wavelength range (500-850 nm). Presence of chromium salt in the collagen samples increases the absorbance which improves the optical properties of the studied samples and leads to decrease the optical energy gap. The obtained optical energy gap gives an impression that the environmentally hazardous chrome shavings wastes can be utilized as a possible source of natural organic semiconductors with direct and indirect energy gap. This work opens the door to use some hazardous wastes in the manufacture of electronic devices such as IR-detectors, solar cells and also as solar cell windows.

  20. Hydrogeochemical and spectroscopic studies of radioactive materials in Ayrakan and Cheshmeh Shotori areas, northeastern Isfahan province

    Directory of Open Access Journals (Sweden)

    Mostafa Esmaeili Vardanjani

    2011-11-01

    Full Text Available Groundwaters hydrochemistry of Ayrakan and Cheshmeh Shotori areas and geochemistry of rare earth elements, indicate Ayrakan alkali granite as the origin of uranium and other dissolved elements in groundwaters of these areas. Geochemical and hydrogeochemical studies as well as the trend of uranium and thorium transition and mobility in aqueous environments of these areas indicate uranium adsorption by iron hydroxide (goethite as the deterrent agent against uranium transition and mobility from depth to surface. Gamma-ray spectroscopic study of sediments from Cheshmeh Shotori area by HPGe detector indicates the presence of 226Ra in high contents and as the radioactive nuclide that is the reason for high activity of these sediments. Production of 226Ra from 238U decay, shorter half-life of 226Ra compared to 238U, radium transition by groundwaters from depth to surface as well as hydrogeochemical evidences, all suggest the possibility of existence of hidden uranium deposit and uranium mineralization in depth and the distance between Ayrakan and Cheshmeh Shotori areas.

  1. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    Science.gov (United States)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  2. Scanning Tunnelling Spectroscopic Studies of Dirac Fermions in Graphene and Topological Insulators

    Directory of Open Access Journals (Sweden)

    wang K.-L.

    2012-03-01

    Full Text Available We report novel properties derived from scanning tunnelling spectroscopic (STS studies of Dirac fermions in graphene and the surface state (SS of a strong topological insulator (STI, Bi2Se3. For mono-layer graphene grown on Cu by chemical vapour deposition (CVD, strain-induced scalar and gauge potentials are manifested by the charging effects and the tunnelling conductance peaks at quantized energies, respectively. Additionally, spontaneous time-reversal symmetry breaking is evidenced by the alternating anti-localization and localization spectra associated with the zero-mode of two sublattices while global time-reversal symmetry is preserved under the presence of pseudo-magnetic fields. For Bi2Se3 epitaxial films grown on Si(111 by molecular beam epitaxy (MBE, spatially localized unitary impurity resonances with sensitive dependence on the energy difference between the Fermi level and the Dirac point are observed for samples thicker than 6 quintuple layers (QL. These findings are characteristic of the SS of a STI and are direct manifestation of strong topological protection against impurities. For samples thinner than 6-QL, STS studies reveal the openup of an energy gap in the SS due to overlaps of wave functions between the surface and interface layers. Additionally, spin-preserving quasiparticle interference wave-vectors are observed, which are consistent with the Rashba-like spin-orbit splitting.

  3. MHD Spectroscopic Study of the Stabilizing Effect of Plasma Flow on the Resistive Wall Mode

    Science.gov (United States)

    Reimerdes, H.; Garofalo, A. M.; Navratil, G. A.; Chu, M. S.; Jackson, G. L.; Jensen, T. H.; La Haye, R. J.; Scoville, J. T.; Strait, E. J.; Edgell, D. H.; Jayakumar, R. J.; Okabayashi, M.

    2003-10-01

    MHD Spectroscopic Study of the Stabilizing Effect of Plasma Flow on the Resistive Wall Mode,* H. Reimerdes, A.M. Garofalo, G.A. Navratil, Columbia U, M.S. Chu, G.L. Jackson, T.H. Jensen, R.J. La Haye, J.T. Scoville, E.J. Strait, GA, D.H. Edgell, FAR-TECH, Inc., R.J. Jayakumar, LLNL, M. Okabayashi, PPPL - Resistive wall mode (RWM) stabilization by plasma rotation has been under study for the last decade. Dissipation caused by an interaction between the quasi-static magnetic perturbation and a near-sonic plasma flow alters the RWM stability [Bondeson, Phys. Rev. Lett. 72, 2709 (1994)]. To probe the RWM stability in DIII-D, we extend the technique of MHD spectroscopy, which was previously applied at frequencies above 10 kHz [Fasoli, et al., Phys. Rev. Lett. 75, 645 (1995)], to frequencies of a few Hz. Internal coils generate a rotating magnetic field, whose spatial structure largely overlaps with the RWM structure. The plasma response, measured as the perturbed field at the wall, is rigid and peaks when the external field rotates at a fraction of the inverse wall time in the direction of the plasma rotation, which is in good agreement with a single mode model [Garofalo, et al., Phys. Plasmas 9, 4573 (2002)]. This measurement is used to determine the contribution of the proposed dissipation mechanisms to the stabilization of the RWM.

  4. Spectroscopic Study of ThCl+ by Two-Photon Ionization

    Science.gov (United States)

    Bartlett, Joshua; VanGundy, Robert A.; Heaven, Michael; Peterson, Kirk

    2016-06-01

    Despite the irreplaceable role experimental data plays for evaluating the performance of computational predictions, diatomic actinide species have not received much spectroscopic attention. As an early actinide element, thorium-containing species are ideal candidates for these types of studies. The electronic structure is expected to be relatively simple compared to later actinides, and therefore allows straightforward assessment of calculations. Here, we have studied ThCl+ for the first time via resonant two-photon ionization of jet-cooled ThCl produced by laser ablation of the metal reacted with dilute Cl2. Laser-induced Fluorescence (LIF) spectra have been recorded for the neutral molecule from 16000 - 23500 cm-1 in search of a suitable intermediate state for subsequent two-photon ionization experiments. Monochromator dispersion of the fluorescence has recovered the ground state vibration and anharmonic constants of ThCl. Resonant Two-Photon Ionization (R2PI) within a time-of-flight mass spectrometer was used to confirm ThCl production, and Pulsed Field Ionization Zero Kinetic Energy photoelectron spectroscopy (PFI-ZEKE) has been performed to identify the ionization energy as well as several of the low-lying states of the ThCl+ molecule. These constants have been predicted at the CASPT2 and CCSD(T) levels of theory, and a discussion of the calculations' performance will be presented alongside the recorded spectra.

  5. Behind the reactivity of lactones: a computational and spectroscopic study of phenol·γ-butyrolactone.

    Science.gov (United States)

    León, Iker; González, Jorge; Millán, Judith; Castaño, Fernando; Fernández, José A

    2014-04-10

    In this work, the intermolecular interaction between phenol and γ-butyrolactone (GBL) has been studied by a combination of spectroscopic and computational techniques. The electronic and vibrational transitions of phenol · GBL were measured in a supersonic jet expansion by resonant two-photon ionization (R2PI) and ion dip IR (IDIR) spectroscopy. The results obtained were compared with calculations carried out with both M06-2X and MP2 molecular orbital methods in order to characterize the intermolecular interactions. The singly detected conformer is stabilized by a relatively strong hydrogen bond in which phenol acts as a proton donor to the carbonyl group of GBL. The phenol · GBL2 cluster has also been studied, finding up to three populated conformers. Nevertheless, in the three species, the main interaction between the phenolic hydroxyl group and the GBL's carbonyl group remains similar to that of phenol · GBL. Furthermore, the C ═ O · · · H interaction is reinforced.

  6. Interaction of imatinib mesylate with human serum transferrin: The comparative spectroscopic studies

    Science.gov (United States)

    Śliwińska-Hill, Urszula

    2017-02-01

    Imatinib mesylate (Imt) is a tyrosine kinase inhibitor mainly used in the treatment of Philadelphia chromosome-positive chronic myelogenous leukemia (Ph + CML). Human serum transferrin is the most abundant serum protein responsible for the transport of iron ions and many endogenous and exogenous ligands. In this study the mechanism of interactions between the imatinib mesylate and all states of transferrin (apo-Tf, Htf and holo-Tf) has been investigated by fluorescence, ultraviolet-visible (UV-vis), circular dichroism (CD) and zeta potential spectroscopic methods. Based on the experimental results it was proved that under physiological conditions the imatinib mesylate binds to the each form of transferrin with a binding constant c.a. 105 M- 1. The thermodynamic parameters indicate that hydrogen bonds and van der Waals were involved in the interaction of apo-Tf with the drug and hydrophobic and ionic strength participate in the reaction of Htf and holo-Tf with imatinib mesylate. Moreover, it was shown that common metal ions, Zn2 + and Ca2 + strongly influenced apo-Tf-Imt binding constant. The CD studies showed that there are no conformational changes in the secondary structure of the proteins. No significant changes in secondary structure of the proteins upon binding with the drug and instability of apo-Tf-Imt system are the desirable effects from pharmacological point of view.

  7. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide.

    Science.gov (United States)

    Henriques, M S C; Del Amparo, R; Pérez-Álvarez, D; Nogueira, B A; Rodríguez-Argüelles, M C; Paixão, J A

    2017-02-05

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P21/c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P212121. Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution.

  8. Synthesis, structural and spectroscopic studies of 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide

    Science.gov (United States)

    Henriques, M. S. C.; Del Amparo, R.; Pérez-Álvarez, D.; Nogueira, B. A.; Rodríguez-Argüelles, M. C.; Paixão, J. A.

    2017-02-01

    The synthesis of a new hydrazone, 2-oxoacenaphthylen-1(2H)-ylidene nicotinohydrazide, and its structural and spectroscopic characterization is reported. The obtained powder was recrystallized from DMSO and ethanol that afforded small crystals used for single-crystal X-ray diffraction studies. The compound was found to crystallize in two polymorphs, depending on the crystallization conditions. One of the polymorphs (form I) crystallizes in the centrosymmetric P21/c monoclinic space group, the other (form II) crystallizes in the non-centrosymmetric, but achiral, orthorhombic space group P212121. Conformation of the molecules is similar in both polymorphs, but the network of weak intermolecular interactions determining the crystal packing is different. In form II an additional C-H⋯O bond connects molecules related by the screw-axis running parallel to the a-axis. Crystals of both polymorphs were also screened by FT-IR and Raman microscopy; a detailed analysis of the spectra and comparison with those of the isolated molecule calculated by ab-initio HF/MP2 and DFT/B3LYP methods using a correlation consistent cc-pVDZ basis set is presented. In addition, UV-vis and NMR studies were performed in solution.

  9. Constraining the N2O5 UV absorption cross-section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Science.gov (United States)

    Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.

    2014-02-01

    The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.

  10. Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal

    Science.gov (United States)

    Sanches, Ieda Del´Arco; Souza Filho, Carlos Roberto de; Kokaly, Raymond

    2014-01-01

    This paper explores the use of spectral feature analysis to detect plant stress in visible/near infrared wavelengths. A time series of close range leaf and canopy reflectance data of two plant species grown in hydrocarbon-contaminated soil was acquired with a portable spectrometer. The ProSpecTIR-VS airborne imaging spectrometer was used to obtain far range hyperspectral remote sensing data over the field experiment. Parameters describing the chlorophyll 680 nm absorption feature (depth, width, and area) were derived using continuum removal applied to the spectra. A new index, the Plant Stress Detection Index (PSDI), was calculated using continuum-removed values near the chlorophyll feature centre (680 nm) and on the green-edge (560 and 575 nm). Chlorophyll feature’s depth, width and area, the PSDI and a narrow-band normalised difference vegetation index were evaluated for their ability to detect stressed plants. The objective was to analyse how the parameters/indices were affected by increasing degrees of plant stress and to examine their utility as plant stress indicators at the remote sensing level (e.g. airborne sensor). For leaf data, PSDI and the chlorophyll feature area revealed the highest percentage (67–70%) of stressed plants. The PSDI also proved to be the best constraint for detecting the stress in hydrocarbon-impacted plants with field canopy spectra and airborne imaging spectroscopy data. This was particularly true using thresholds based on the ASD canopy data and considering the combination of higher percentage of stressed plants detected (across the thresholds) and fewer false-positives.

  11. Infrared spectroscopic and electron paramagnetic resonance studies on Dy substituted magnesium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Bamzai, K.K., E-mail: kkbamz@yahoo.com [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu (India); Kour, Gurbinder; Kaur, Balwinder [Crystal Growth and Materials Research Laboratory, Department of Physics and Electronics, University of Jammu, Jammu (India); Arora, Manju; Pant, R.P. [National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi (India)

    2013-11-15

    Dysprosium substituted magnesium ferrite with composition MgDy{sub x}Fe{sub 2−x}O{sub 4} with 0.00≤x≤0.07 synthesized by the solid state reaction technique was subjected to Fourier transform infrared spectroscopy and electron paramagnetic resonance studies. Infrared spectrum analysis were carried out to confirm the spinel phase formation and to ascertain the cation distribution in the ferrite phase. The absorption spectra show two significant absorption bands between 400 and 1000 cm{sup −1} which are attributed to tetrahedral (A) and octahedral (B) sites of the spinel phase. The positions of bands were found to be composition dependent. Splitting of bands as well as appearance of shoulders shows the presence of Fe{sup 2+} ions in the system. The force constants for tetrahedral and octahedral sites were calculated and found to vary with Dy{sup 3+} ions content. Electron paramagnetic resonance spectra of these samples exhibit broad, asymmetric resonance signal due to Fe{sup 3+}/Dy{sup 3+} ions present in the host lattice. The spectra become broader with Dy{sup 3+} ions substitution in pure Mg-ferrite and this broadening is attributed to surface spin disorder (spin frustration) possibly coming from mainly antiferromagnetic interactions between the neighbouring spins in the magnetic grains. The weak superexchange interactions results in the broadening of the resonance line width and large g-value as compared to the free electron value. - Highlights: • Absorption bands between 400 and 1000 cm{sup −1} reveal the formation of spinel phase. • The force constant on tetrahedral and octahedral site is used to explain the bond length. • Electron paramagnetic resonance spectra exhibit broad, asymmetric resonance peaks. • Spin frustration in spinel ferrites is explained by the broadening of line width.

  12. Structural transition in alcohol-water binary mixtures: A spectroscopic study

    Indian Academy of Sciences (India)

    Tuhin Pradhan; Piue Ghoshal; Ranjit Biswas

    2008-03-01

    The strengthening of the hydrogen bonding (H-bond) network as well as transition from the tetrahedral-like water network to the zigzag chain structure of alcohol upon increasing the alcohol concentration in ethanol-water and tertiary butanol (TBA) - water mixtures have been studied by using both steady state and time resolved spectroscopy. Absorption and emission characteristics of coumarin 153 (C153), a widely used non-reactive solvation probe, have been monitored to investigate the structural transition in these binary mixtures. The effects of the hydrogen bond (H-bond) network with alcohol concentration are revealed by a minimum in the peak frequency of the absorption spectrum of C153 which occur at alcohol mole fraction ∼ 0.10 for water-ethanol and at ∼ 0.04 for water-TBA mixtures. These are the mole fractions around which several thermodynamic properties of these mixtures show anomalous change due to the enhancement of H-bonding network. While the strengthening of H-bond network is revealed by the absorption spectra, the emission characteristics show the typical non-ideal alcohol mole fraction dependence at all concentrations. The time resolved anisotropy decay of C153 has been found to be bi-exponential at all alcohol mole fractions. The sharp change in slopes of average rotational correlation time with alcohol mole fraction indicates the structural transition in the environment around the rotating solute. The changes in slopes occur at mole fraction ∼ 0.10 for TBA-water and at ∼ 0.2 for ethanol-water mixtures, which are believed to reflect alcohol mole fraction induced structural changes in these alcohol-water binary mixtures.

  13. [Study on intestinal absorption features of oligosaccharides in Morinda officinalis How. with sigle-pass perfusion].

    Science.gov (United States)

    Deng, Shao-Dong; Zhang, Peng; Lin, Li; Xiao, Feng-Xia; Lin, Jing-Ran

    2015-01-01

    To study the in situ intestinal absorption of five oligosaccharides contained in Morinda officinalis How. (sucrose, kestose, nystose, 1F-Fructofuranosyinystose and Bajijiasu). The absorption of the five oligosaccharides in small intestine (duodenum, jejunum and ileum) and colon of rats and their contents were investigated by using in situ single-pass perfusion model and HPLC-ELSD. The effects of drug concentration, pH in perfusate and P-glycoprotein inhibitor on the intestinal absorption were investigated to define the intestinal absorption mechanism of the five oligosaccharides in rats. According to the results, all of the five oligosaccharides were absorbed in the whole intestine, and their absorption rates were affected by the pH of the perfusion solution, drug concentration and intestinal segments. Verapamil Hydrochloride could significantly increase the absorptive amount of sucrose and Bajijiasu, suggesting sucrose and Bajijiasu are P-gp's substrate. The five oligosaccharides are absorbed mainly through passive diffusion in the intestinal segments, without saturated absorption. They are absorbed well in all intestines and mainly in duodenum and jejunum.

  14. A Spectroscopic Study of the Rich Supernova Remnant Population in M83

    Science.gov (United States)

    Winkler, P. Frank; Blair, William P.; Long, Knox S.

    2017-04-01

    We report the results from a spectrophotometric study sampling the ≳ 300 candidate supernova remnants (SNRs) in M83 identified through optical imaging with Magellan/IMACS and Hubble Space Telescope/WFC3. Of the 118 candidates identified based on a high [S ii] λλ 6716, 6731 to Hα emission ratio, 117 show spectroscopic signatures of shock-heated gas, confirming them as SNRs—the largest uniform set of SNR spectra for any galaxy. Spectra of 22 objects with a high [O iii] λ5007 to Hα emission ratio, selected in an attempt to identify young ejecta-dominated SNRs like Cas A, reveal only one (previously reported) object with the broad (≳ 1000 {km} {{{s}}}-1) emission lines characteristic of ejecta-dominated SNRs, beyond the known SN1957D remnant. The other 20 [O iii]-selected candidates include planetary nebulae, compact H ii regions, and one background QSO. Although our spectroscopic sample includes 22 SNRs smaller than 11 pc, none of the other objects show broad emission lines; instead their spectra stem from relatively slow (˜ 200 {km} {{{s}}}-1) radiative shocks propagating into the metal-rich interstellar medium of M83. With six SNe in the past century, one might expect more of M83's small-diameter SNRs to show evidence of ejecta; this appears not to be the case. We attribute their absence to several factors, including that SNRs expanding into a dense medium evolve quickly to the ISM-dominated phase, and that SNRs expanding into regions already evacuated by earlier SNe are probably very faint. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  15. Inhibitory effects of deferasirox on the structure and function of bovine liver catalase: a spectroscopic and theoretical study.

    Science.gov (United States)

    Moradi, M; Divsalar, A; Saboury, A A; Ghalandari, B; Harifi, A R

    2015-01-01

    Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV-visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. KI value was calculated 39 nM according to the Lineweaver-Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 10(7) and 3 × 10(7) M(-1), respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV-vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading

  16. Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies.

    Science.gov (United States)

    Pawar, Suma K; Naik, Roopa S; Seetharamappa, J

    2017-08-29

    Bosutinib (BST) and imatinib mesylate (IMT) are tyrosine kinase inhibitors (TKIs). In view of the importance of these inhibitors in cancer treatment, we investigated the mechanism of interaction between BST/IMT and bovine serum albumin (BSA) using various spectroscopic and molecular docking methods. Fluorescence studies indicated that BST/IMT interacted with BSA without affecting the microenvironment around the residue Trp213 of BSA. The quenching mechanism associated with the BST-BSA and IMT-BSA interactions was determined by performing fluorescence measurements at different temperatures. These results suggested that BST and IMT quenched the fluorescence intensity of BSA through static and dynamic processes, respectively, which was confirmed by time-resolved fluorescence measurements. Evaluation of the thermodynamic parameters ∆H°, ∆S°, and ∆G° suggested that hydrophobic and electrostatic interactions played significant roles in the BST-BSA interaction, while IMT-BSA was stabilized by hydrophobic forces. Competitive experimental results revealed that the primary binding sites for BST and IMT on BSA were sites II and I, respectively. This was supported by the results of molecular docking and dynamic simulation studies. The change in the secondary structure of BSA upon binding with BST/IMT was investigated by 3D fluorescence, absorption, and CD spectroscopic studies. In addition, the influences of β-cyclodextrin and metal ions (Cu(2+) and Zn(2+)) on the binding affinities of BST and IMT to BSA were examined. Graphical abstract Binding of BST and IMT in BSA at site II and site I respectively.

  17. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods

    Science.gov (United States)

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6 × 105 M- 1from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7 °C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.

  18. Optimization and spectroscopic studies of CdS/poly(vinyl alcohol) nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Elashmawi, I.S. [Spectroscopy Department, Physics Division, National Research Centre, Giza (Egypt)], E-mail: islam_shukri2000@yahoo.com; Hakeem, N.A. [Spectroscopy Department, Physics Division, National Research Centre, Giza (Egypt); Selim, M. Soliman [Electron Microscopy Department, Physics Division, National Research Centre, Giza (Egypt)

    2009-05-15

    Polyvinyl alcohol (PVA) capped CdS nanorods were prepared using solvothermal method which employed ethylenediamine as solvent. X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), Ultraviolet-visible (UV-vis) and fluorescence spectra were used to characterize the final nanorods product. X-ray results indicated the formation of CdS nanorods with hexagonal phase in PVA polymeric matrix. The prepared CdS nanorods were dispersed and nearly uniform in length and the diameter of the particles was confined within 222 {+-} 5 and 33 {+-} 2 nm, respectively. The optical properties have been studied by UV-vis and fluorescence. UV-vis absorption spectra were used to study the confined growth process of PVA-capped CdS nanorods. The absorption spectra showed a blue shift as compared to the bulk CdS band gap. Fluorescence measurement showed the emission band could be assigned to the optical transition of the first excitonic state of Cd nanoparticles. This band was shifted to higher energy with increasing of Cd{sup 2+}.

  19. New Developments of Broadband Cavity Enhanced Spectroscopic Techniques

    Science.gov (United States)

    Walsh, A.; Zhao, D.; Linnartz, H.; Ubachs, W.

    2013-06-01

    In recent years, cavity enhanced spectroscopic techniques, such as cavity ring-down spectroscopy (CRDS), cavity enhanced absorption spectroscopy (CEAS), and broadband cavity enhanced absorption spectroscopy (BBCEAS), have been widely employed as ultra-sensitive methods for the measurement of weak absorptions and in the real-time detection of trace species. In this contribution, we introduce two new cavity enhanced spectroscopic concepts: a) Optomechanical shutter modulated BBCEAS, a variant of BBCEAS capable of measuring optical absorption in pulsed systems with typically low duty cycles. In conventional BBCEAS applications, the latter substantially reduces the signal-to-noise ratio (S/N), consequently also reducing the detection sensitivity. To overcome this, we incorporate a fast optomechanical shutter as a time gate, modulating the detection scheme of BBCEAS and increasing the effective duty cycle reaches a value close to unity. This extends the applications of BBCEAS into pulsed samples and also in time-resolved studies. b) Cavity enhanced self-absorption spectroscopy (CESAS), a new spectroscopic concept capable of studying light emitting matter (plasma, flames, combustion samples) simultaneously in absorption and emission. In CESAS, a sample (plasma, flame or combustion source) is located in an optically stable cavity consisting of two high reflectivity mirrors, and here it acts both as light source and absorbing medium. A high detection sensitivity of weak absorption is reached without the need of an external light source, such as a laser or broadband lamp. The performance is illustrated by the first CESAS result on a supersonically expanding hydrocarbon plasma. We expect CESAS to become a generally applicable analytical tool for real time and in situ diagnostics. A. Walsh, D. Zhao, W. Ubachs, H. Linnartz, J. Phys. Chem. A, {dx.doi.org/10.1021/jp310392n}, in press, 2013. A. Walsh, D. Zhao, H. Linnartz Rev. Sci. Instrum. {84}(2), 021608 2013. A. Walsh, D. Zhao

  20. Sulfur donor ligand binding to ferric cytochrome P-450-CAM and myoglobin. Ultraviolet-visible absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopic investigation of the complexes.

    Science.gov (United States)

    Sono, M; Andersson, L A; Dawson, J H

    1982-07-25

    The binding of thiol, thiolate, thioether, and disulfide sulfur donor ligands to ferric cytochrome P-450-CAM and myoglobin has been investigated by UV-visible absorption, magnetic circular dichroism (MCD), and EPR spectroscopy. For ferric P-450, the binding of all sulfur donors is competitive with substrate binding. Addition of thiols to P-450 leads to interconvertible thiol or thiolate-bound species depending on the thiol acidity (pKa) and the solution ph; ligation of thiols lowers their pKa by about 4 units. In contrast, only the thiolate-bound form is seen for myoglobin regardless of thiol acidity or solution pH (5.5-11.0), indicating that the heme iron of myoglobin is less electron-rich than that of P-450. Thiolate ligands show much higher affinity (Kd approximately 10(-6) M) for ferric P-450 than do thiols (Kd approximately 10(-3) M). The affinity of thioethers for P-450 (Kd approximately 10(-3) M) is pH-independent (pH 5.5-9.0). The observed disulfide coordination to P-450 represents the first example of disulfide ligation to heme iron; no significant evidence for thioether or disulfide binding