WorldWideScience

Sample records for absorption spectrometry et-aas

  1. Simultaneous determination of Cr, Ni and V in urine by electrothermal atomic absorption spectrometry (ET AAS); Determinacion simultanea de Cr, Ni y V en orina mediante et aas

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Maria A.; Hermida, Jeymi [Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of). Escuela de Quimica. Centro de Quimica Analitica

    2011-07-01

    A procedure for the simultaneous determination of Cr, Ni, and V in urine by electrothermal atomic absorption spectrometry (ET AAS) was optimized by factorial design, and performed at a pyrolysis and atomization temperatures of 1300 and 2500 deg C, respectively, using 15 {mu}g de Mg(NO{sub 3}){sub 2} as chemical modifier. Characteristics mass of 14, 6 and 220 {rho}g and detection limits of the method of 0.07, 0.38 and 0.75 {mu}g L{sup -1} were obtained for Cr, Ni and V respectively. The methodology was validated using a Liphochek Urine Metals Control sample (Bio-Rad) (P=0.05). The methodology was applied to samples of voluntary Venezuelan people, not environmentally exposed to specific emissions, and results ranging from < LOD-1.1 and 1.3-3.3 {mu}g L{sup -1} was observed for Cr and V, respectively, and not detectable levels for Ni. (author)

  2. Paleodiet characterisation of an Etrurian population of Pontecagnano (Italy) by Isotope Ratio Mass Spectrometry (IRMS) and Atomic Absorption Spectrometry (AAS)(#).

    Science.gov (United States)

    Scarabino, Carla; Lubritto, Carmine; Proto, Antonio; Rubino, Mauro; Fiengo, Gilda; Marzaioli, Fabio; Passariello, Isabella; Busiello, Gaetano; Fortunato, Antonietta; Alfano, Davide; Sabbarese, Carlo; Rogalla, Detlef; De Cesare, Nicola; d'Onofrio, Antonio; Terrasi, Filippo

    2006-06-01

    Human bones recovered from the archaeological site of Pontecagnano (Salerno, Italy) have been studied to reconstruct the diet of an Etrurian population. Two different areas were investigated, named Library and Sant' Antonio, with a total of 44 tombs containing human skeletal remains, ranging in age from the 8th to the 3rd century B.C. This time span was confirmed by 14C dating obtained using Accelerator Mass Spectrometry (AMS) on one bone sample from each site. Atomic Absorption Spectrometry (AAS) was used to extract information about the concentration of Sr, Zn, Ca elements in the bone inorganic fraction, whilst stable isotope ratio measurements (IRMS) were carried out on bone collagen to obtain the delta13C and delta15N. A reliable technique has been used to extract and separate the inorganic and organic fractions of the bone remains. Both IRMS and AAS results suggest a mixed diet including C3 plant food and herbivore animals, consistent with archaeological indications.

  3. Direct determination of selenoproteins in polyvinylidene difluoride membranes by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Sidenius, U; Gammelgaard, Bente

    2000-01-01

    A method for the direct determination of selenoproteins in plastic membranes after protein separation by gel electrophoresis was developed. Quantification was based on the determination of the selenium content of the proteins by electrothermal atomic absorption spectrometry (ET-AAS) after manual...... were excised and chemical modifier was added on top of the excised membrane prior to atomic absorption measurement. Acceptable linearity was achieved in the range 2-10 ng Se, corresponding to selenium concentrations close to 1 mg/L, when aqueous solutions of selenomethionine standard as well...

  4. Molecular absorption spectrometry in flames and furnaces: A review

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, David J., E-mail: butcher@email.wcu.edu

    2013-12-04

    Graphical abstract: -- Highlights: •Theory and analytical considerations for molecular absorption spectrometry (MAS). •Critical review of low resolution MAS. •Critical review of the analytical performance of high-resolution continuum source (HR-CS) flame MAS. •Critical review of the analytical performance of HR-CS graphite furnace MAS. •Current status of HR-CS MAS and its future prospects for elemental analysis. -- Abstract: Molecular absorption spectrometry (MAS), originally developed in the 1970s, is a technique to determine non-metals in flames and graphite furnaces by monitoring the absorbance of diatomic molecules. Early studies employed low resolution instruments designed for line source atomic absorption, which provided a limited choice of analytical wavelengths, insufficient spectral resolution, and spectral interferences. However, the development of high-resolution continuum source atomic absorption spectrometry (HR-CS AAS) instrumentation has allowed the analysis of challenging samples for non-metals as well as some difficult elements to determine by AAS, such as aluminum and phosphorus. In this review, theory and analytical considerations for MAS are discussed. The principles and limitations of low resolution MAS are described, along with its applications. HR-CS AAS instrumentation is reviewed, emphasizing performance characteristics most relevant for MAS. Applications of flame and HR-CS GFMAS are reviewed, highlighting the most significant work to date. The paper concludes with an evaluation of the enhanced analytical capabilities provided by HR-CS MAS.

  5. Critical evaluation of analytical performance of atomic absorption spectrometry and inductively coupled plasma mass spectrometry for mercury determination

    International Nuclear Information System (INIS)

    Krata, A.; Bulska, E.

    2005-01-01

    The analytical performance of cold vapor atomic absorption spectrometry (CV AAS), graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS) for mercury determination have been investigated with the use of two reference materials SRM 2710 Montana I Soil and BCR-144R (sewage sludge from domestic origin). The digestion conditions and their influence on determination of mercury have been studied. Samples were decomposed by microwave digestion in closed vessels with the use of HCl alone or mixture of HCl+HNO 3 +HF. The digestion solutions were analyzed by CV AAS using NaBH 4 as a reducing agent, by GF AAS with Pd or mixture of Pd/Rh as modifiers and by ICP-MS with Rh as internal standard. In the case of CV AAS, results were not dependent on digestion conditions. In the case of GF AAS and ICP-MS, results depended significantly on digestion conditions; in both cases, the use of the mixture of acids as defined above suppressed the signal of mercury. Therefore, in those cases, the microwave digestion with HCl is recommended. Detection limits of 0.003, 0.01 and 0.2 μg g -1 were achieved by ICP-MS, CV AAS and GF AAS, respectively

  6. Proton Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrometry (AAS) applied in the environmental sample analysis

    International Nuclear Information System (INIS)

    Popescu, Ion V.; Iordan, M.; Stihi, C.; Bancuta, A.; Dima, G.; Busuioc, G.; Ciupina, V.; Belc, M.; Badica, T.

    2003-01-01

    The aim of this work is to determine the elemental composition of tree leaves using Proton-Induced X-Rays Emission (PIXE) and Atomic Absorption Spectrophotometry (AAS) methods. By PIXE Spectrometry we identified and determined the concentration of S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu Zn, As, Br, Sr and by AAS method the concentration of elements: Cr, Mn, Fe, Co, Cu, Zn, Se, Cd. Pb was identified in only 2 samples from 29. For tree leave samples collected at a large distance to the polluting source the Sr concentration decreased and the Mg, Ca, Se, Zn and Fe concentrations increased. Also, we can observe a small affinity of these leaves for the environmental Pb which was detected for two samples at a small distance to polluting source. (authors)

  7. Making ET AAS Determination Less Dependent on Vapourization ...

    African Journals Online (AJOL)

    NICO

    The quantification of the analytes in ET AAS is normally attained by the measurement and integration of transient absorbance. High degree of atomization and constant vapour transportation rate for the analyte atoms in the absorption volume are considered to be crucial to grant correctness of the measurements. However ...

  8. Investigation of artifacts caused by deuterium background correction in the determination of phosphorus by electrothermal atomization using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Borges, Daniel L.G.; Welz, Bernhard; Silva, Marcia M.; Heitmann, Uwe

    2008-01-01

    The artifacts created in the measurement of phosphorus at the 213.6-nm non-resonance line by electrothermal atomic absorption spectrometry using line source atomic absorption spectrometry (LS AAS) and deuterium lamp background correction (D 2 BC) have been investigated using high-resolution continuum source atomic absorption spectrometry (HR-CS AAS). The absorbance signals and the analytical curves obtained by LS AAS without and with D 2 BC, and with HR-CS AAS without and with automatic correction for continuous background absorption, and also with least-squares background correction for molecular absorption with rotational fine structure were compared. The molecular absorption due to the suboxide PO that exhibits pronounced fine structure could not be corrected by the D 2 BC system, causing significant overcorrection. Among the investigated chemical modifiers, NaF, La, Pd and Pd + Ca, the Pd modifier resulted in the best agreement of the results obtained with LS AAS and HR-CS AAS. However, a 15% to 100% higher sensitivity, expressed as slope of the analytical curve, was obtained for LS AAS compared to HR-CS AAS, depending on the modifier. Although no final proof could be found, the most likely explanation is that this artifact is caused by a yet unidentified phosphorus species that causes a spectrally continuous absorption, which is corrected without problems by HR-CS AAS, but which is not recognized and corrected by the D 2 BC system of LS AAS

  9. Atomic absorption spectrometry using tungsten and molybdenum tubes as metal atomizer

    International Nuclear Information System (INIS)

    Kaneco, Satoshi; Katsumata, Hideyuki; Ohta, Kiyohisa; Suzuki, Tohru

    2007-01-01

    We have developed a metal tube atomizer for the electrothermal atomization atomic absorption spectrometry (ETA-AAS). Tungsten, molybdenum, platinum tube atomizers were used as the metal atomizer for ETA-AAS. The atomization characteristics of various metals using these metal tube atomizers were investigated. The effects of heating rate of atomizer, atomization temperature, pyrolysis temperature, argon purge gas flow rate and hydrogen addition on the atomic absorption signal were investigated for the evaluation of atomization characteristics. Moreover, ETA-AAS with metal tube atomizer has been combined with the slurry-sampling techniques. Ultrasonic slurry-sampling ETA-AAS with metal tube atomizer were effective for the determination of trace metal elements in biological materials, calcium drug samples, herbal medicine samples, vegetable samples and fish samples. Furthermore, a preconcentration method of trace metals involving adsorption on a metal wire has been applied to ETA-AAS with metal tube atomizer. (author)

  10. Quantitative determination of impurities in nuclear grade aluminum by Flame-Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Jat, J.R.; Nayak, A.K.; Balaji Rao, Y.; Ravindra, H.R.

    2013-01-01

    The paper deals with quantitative determination of impurity elements in nuclear grade aluminum, used as fin tubes in research reactors, by Flame-Atomic Absorption Spectrometry (F-AAS). The results have been compared with those obtained by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) method. Experimental conditions used in both the methods are given in the paper. (author)

  11. Determination of mercury in hair: Comparison between gold amalgamation-atomic absorption spectrometry and mass spectrometry.

    Science.gov (United States)

    Domanico, Francesco; Forte, Giovanni; Majorani, Costanza; Senofonte, Oreste; Petrucci, Francesco; Pezzi, Vincenzo; Alimonti, Alessandro

    2017-09-01

    Mercury is a heavy metal that causes serious health problems in exposed subjects. The most toxic form, i.e., methylmercury (MeHg), is mostly excreted through human hair. Numerous analytical methods are available for total Hg analysis in human hair, including cold vapour atomic fluorescence spectrometry (CV-AFS), inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation atomic absorption spectrometry (TDA-AAS). The aim of the study was to compare the TDA-AAS with the ICP-MS in the Hg quantification in human hair. After the washing procedure to minimize the external contamination, from each hair sample two aliquots were taken; the first was used for direct analysis of Hg by TDA-AAS and the second was digested for Hg determination by the ICP-MS. Results indicated that the two data sets were fully comparable (median; TDA-AAS, 475ngg -1 ; ICP-MS, 437ngg -1 ) and were not statistically different (Mann-Whitney test; p=0.44). The two techniques presented results with a good coefficient of correlation (r=0.94) despite different operative ranges and method limits. Both techniques satisfied internal performance requirements and the parameters for method validation resulting sensitive, precise and reliable. Finally, the use of the TDA-AAS can be considered instead of the ICP-MS in hair analysis in order to reduce sample manipulation with minor risk of contamination, less time consuming due to the absence of the digestion step and cheaper analyses. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. SOME SPECIATION STUDIES IN FOODSTUFF BY ATOMIC ABSORPTION SPECTROMETRY

    OpenAIRE

    Gücer, S

    2000-01-01

    There has been increasing interest in speciation studies of essentialelements in foods. The main limitation of this studies, their levels in foodsamples and the difficulties for the determination in their own differentforms without any changes in their original forms.Atomic Absorption Spectrometry (AAS) coupled with separation methodswould be outline in this presentation. Analytical scheme was given for tea, olive and garlic samples forManganese, Magnesium and Selenium respectively. Activated...

  13. Bismuth as a general internal standard for lead in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bechlin, Marcos A.; Fortunato, Felipe M.; Ferreira, Edilene C.; Neto, José A. Gomes; Nóbrega, Joaquim A.; Donati, George L.; Jones, Bradley T.

    2014-01-01

    Highlights: • Single internal standard is commonly proposed for definite application in AAS. • Internal standard for general use in AAS techniques is original. • Bi showed efficiency as internal standard for Pb determinations by FAAS and GFAAS. • Assorted samples were analyzed and accurate results were found. - Abstract: Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A Pb /A Bi versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52–118% (without IS) to 97–109% (IS, LS FAAS); 74–231% (without IS) to 96–109% (IS, HR-CS FAAS); and 36–125% (without IS) to 96–110% (IS, LS GFAAS). The relative standard deviations (n = 12) were reduced from 0.6–9.2% (without IS) to 0.3–4.3% (IS, LS FAAS); 0.7–7.7% (without IS) to 0.1–4.0% (IS, HR-CS FAAS); and 2.1–13% (without IS) to 0.4–5.9% (IS, LS GFAAS)

  14. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  15. COMPREHENSIVE ANALYSIS OF BIOLOGICALLY RELEVANT ARSENICALS BY PH-SELECTIVE HYDRIDE GENERATION-ATOMIC ABSORPTION SPECTROMETRY

    Science.gov (United States)

    A method based on pH-selective generation and separation of arsines is commonly used for analysis of inorganic, methylated, and dimethylated trivalent and pentavalent arsenicals by hydride generation-atomic absorption spectrometry (HG-AAS). We have optimized this method to pe...

  16. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    Science.gov (United States)

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  17. The role of atomic absorption spectrometry in geochemical exploration

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.

    1992-01-01

    In this paper we briefly describe the principles of atomic absorption spectrometry (AAS) and the basic hardware components necessary to make measurements of analyte concentrations. Then we discuss a variety of methods that have been developed for the introduction of analyte atoms into the light path of the spectrophotometer. This section deals with sample digestion, elimination of interferences, and optimum production of ground-state atoms, all critical considerations when choosing an AAS method. Other critical considerations are cost, speed, simplicity, precision, and applicability of the method to the wide range of materials sampled in geochemical exploration. We cannot attempt to review all of the AAS methods developed for geological materials but instead will restrict our discussion to some of those appropriate for geochemical exploration. Our background and familiarity are reflected in the methods we discuss, and we have no doubt overlooked many good methods. Our discussion should therefore be considered a starting point in finding the right method for the problem, rather than the end of the search. Finally, we discuss the future of AAS relative to other instrumental techniques and the promising new directions for AAS in geochemical exploration. ?? 1992.

  18. High-resolution continuum-source atomic absorption spectrometry: what can we expect?

    Directory of Open Access Journals (Sweden)

    Welz Bernhard

    2003-01-01

    Full Text Available A new instrumental concept has been developed for atomic absorption spectrometry (AAS, using a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator and a CCD array detector, providing a resolution of ~2 pm per pixel. Among the major advantages of the system are: i an improved signal-to-noise ratio because of the high intensity of the radiation source, resulting in improved photometric precision and detection limits; ii for the same reason, there are no more 'weak' lines, i.e. secondary lines can be used without compromises; iii new elements might be determined, for which no radiation source has been available; iv the entire spectral environment around the analytical line becomes 'visible', giving a lot more information than current AAS instruments; v the CCD array detector allows a truly simultaneous background correction close to the analytical line; vi the software is capable of storing reference spectra, e.g. of a molecular absorption with rotational fine structure, and of subtracting such spectra from the spectra recorded for a sample, using a least squares algorithm; vii although not yet realized, the system makes possible a truly simultaneous multi-element AAS measurement when an appropriate two-dimensional detector is used, as is already common practice in optical emission spectrometry; vii preliminary experiments have indicated that the instrumental concept could result in a more rugged analytical performance in the determination of trace elements in complex matrices.

  19. The coupling of rapidly synergistic cloud point extraction with thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Wen, X.; Deng, Q.; Guo, J.; Zhao, X.; Zhao, Y.; Ji, S.

    2012-01-01

    Rapidly synergistic cloud point extraction (RS-CPE) was coupled with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) to result in new CPE patterns and accelerated (1 min) protocols. It is demonstrated, for the case of copper (II) ion, that TS-FF-AAS improves the sampling efficiency and the sensitivity of FAAS determinations. Problems of nebulization associated with previous methods based on the coupling of FAAS and RS-CPE are overcome. TS-FF-AAS also improves sensitivity and gives a limit of detection for copper of 0.20 μg L -1 , which is better by a factor of 32. Compared to direct FAAS, the factor is 114. (author)

  20. Analysis of soil reference materials for vanadium(+5) species by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mandiwana, Khakhathi L.; Panichev, Nikolay

    2010-01-01

    Solid Certified Reference Materials (CRMs) with known vanadium(+5) content are currently not commercially available. Because of this, vanadium species have been determined in solid CRMs of soil, viz. CRM023-50, CRM024-50, CRM049-50, SQC001 and SQC0012. These CRMs are certified with only total vanadium content. Vanadium(+5) was extracted from soil reference materials with 0.1 M Na 2 CO 3 . The quantification of V(+5) was carried out by electrothermal atomic absorption spectrometry (ET-AAS). The concentration of V(+5) in the analyzed CRMs was found to be ranging between 3.60 and 86.0 μg g -1 . It was also found that SQC001 contains approximately 88% of vanadium as V(+5) species. Statistical evaluation of the results of the two methods by paired t-test was in good agreement at 95% level of confidence.

  1. Flame emission, atomic absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Horlick, G.

    1980-01-01

    Six hundred and thirty references are cited in this review. The information in the review is divided into 12 major areas: books, reviews, and bibliographies; fundamental studies in flames; developments in instrumentation; measurement techniques and procedure; flame emission spectrometry; flame atomic absorption spectrometry; flame molecular absorption spectrometry; electrothermal atomization atomic absorption spectroscopy; hydride generation techniques; graphite furnace atomic emission spectrometry; atomic fluorescence spectrometry; and analytical comparisons

  2. Direct determination of Pb in raw milk by graphite furnace atomic absorption spectrometry (GF AAS) with electrothermal atomization sampling from slurries.

    Science.gov (United States)

    de Oliveira, Tatiane Milão; Augusto Peres, Jayme; Lurdes Felsner, Maria; Cristiane Justi, Karin

    2017-08-15

    Milk is an important food in the human diet due to its physico-chemical composition; therefore, it is necessary to monitor contamination by toxic metals such as Pb. Milk sample slurries were prepared using Triton X-100 and nitric acid for direct analysis of Pb using graphite furnace atomic absorption spectrometry - GF AAS. After dilution of the slurries, 10.00µl were directly introduced into the pyrolytic graphite tube without use of a chemical modifier, which acts as an advantage considering this type of matrix. The limits of detection and quantification were 0.64 and 2.14µgl -1 , respectively. The figures of merit studied showed that the proposed methodology without pretreatment of the raw milk sample and using external standard calibration is suitable. The methodology was applied in milk samples from the Guarapuava region, in Paraná State (Brazil) and Pb concentrations ranged from 2.12 to 37.36µgl -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  4. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    Science.gov (United States)

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  5. Design considerations regarding an atomizer for multi-element electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri A., E-mail: katskovda@tut.ac.za [Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001 (South Africa); Sadagov, Yuri M. [All-Russian Scientific Research Institute of Optical and Physical Measurements (VNIIOFI), Ozernaya St. 46, Moscow 119361 (Russian Federation)

    2011-06-15

    determination in Flame AAS with primary line source that is 50-1000 times higher than the limits obtainable with common ETAAS (Electrothermal Atomic Absorption Spectrometry) instrumentation.

  6. Flow Injection and Atomic Absorption Spectrometry (FI-AAS) -

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    1996-01-01

    One of the advantages of the flow injection (FI) concept is that it is compatible with virtually all detection techniques. Being a versatile vehicle for enhancing the performance of the individual detection devices, the most spectacular results have possibly been obtained in conjunction with atomic...... the point of sample injection/introduction to the point of detection. Hence, in FI-fAAS this feature allows not only to obtain improved repeatability but also improved accuracy, and because the wash to sample ratio is high it permits the handling of samples with elevated salt contents - which...

  7. Application of thermospray flame furnace atomic absorption spectrometry for investigation of silver nanoparticles.

    Science.gov (United States)

    Sirirat, Natnicha; Tetbuntad, Kornrawee; Siripinyanond, Atitaya

    2017-03-01

    Thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was applied to investigate the time-dependent absorption peak profile of various forms of silver. The thermospray flame furnace was set up with a 10-cm-long nickel tube with six holes, each 2.0 mm in diameter, to allow the flame to enter, and this nickel tube acted as a furnace. A sample of 300 μL was introduced into this furnace by use of water as a carrier at a flow rate of 0.5 mL min -1 through the ceramic capillary (0.5-mm inner diameter and 2.0-mm outer diameter), which was inserted into the front hole of the nickel tube. The system was applied to examine atomization behaviors of silver nanoparticles (AgNPs) with particle sizes ranging from 10 to 100 nm. The atomization rate of AgNPs was faster than that of the dissolved silver ion. With increased amount of silver, the decay time observed from the time-dependent absorption peak profile was shortened in the case of dissolved silver ion, but it was increased in the case of AgNPs. With the particle size ranging from 10 to 100 nm, the detection sensitivity was indirectly proportional to the particle size, suggesting that TS-FF-AAS may offer insights into the particle size of AgNPs provided that the concentration of the silver is known. To obtain quantitative information on AgNPs, acid dissolution of the particles was performed before TS-FF-AAS analysis, and recoveries of 80-110% were obtained.

  8. Direct microcomputer controlled determination of zinc in human serum by flow injection atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Nielsen, Bent; Jensen, Arne

    1986-01-01

    A procedure is described for the direct determination of zinc in human serum by fully automated, microcomputer controlled flow injection atomic absorption spectrometry (Fl-AAS). The Fl system is pumpless, using the negative pressure created by the nebuliser. It only consists of a three-way valve......, programmable from the microcomputer, to control the sample volume. No pre-treatment of the samples is necessary. The limit of detection is 0.14 mg l–1, and only small amounts of serum (

  9. The effect of different propolis harvest methods on its lead contents determined by ET AAS and UV-visS

    Energy Technology Data Exchange (ETDEWEB)

    Sales, A. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina)]. E-mail: amsales@fbqf.unt.edu.ar; Alvarez, A. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina); Areal, M. Rodriguez [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Maldonado, L. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina); Marchisio, P. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Rodriguez, M. [Department of Analytical Chemistry, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucuman, Ayacucho 471, 4000 Tucuman (Argentina); Bedascarrasbure, E. [National Institute of Agricultural Technology (INTA), Experimental Station Famailla, Ruta 301, Km 32, Famailla, Tucuman (Argentina)

    2006-10-11

    Argentinean propolis is exported to different countries, specially Japan. The market demands propolis quality control according to international standards. The analytical determination of some metals, as lead in food, is very important for their high toxicity even in low concentrations and because of their harmful effects on health. Flavonoids, the main bioactive compounds of propolis, tend to chelate metals as lead, which becomes one of the main polluting agents of propolis. The lead found in propolis may come from the atmosphere or it may be incorporated in the harvest, extraction and processing methods. The aim of this work is to evaluate lead level on Argentinean propolis determined by electrothermal atomic absorption spectrometry (ET AAS) and UV-vis spectrophotometry (UV-visS) methods, as well as the effect of harvest methods on those contents. A randomized test with three different treatments of collection was made to evaluate the effect of harvest methods. These procedures were: separating wedges (traditional), netting plastic meshes and stamping out plastic meshes. By means of the analysis of variance technique for multiple comparisons (ANOVA) it was possible to conclude that there are significant differences between scraped and mesh methods (stamped out and mosquito netting meshes). The results obtained in the present test would allow us to conclude that mesh methods are more advisable than scraped ones in order to obtain innocuous and safe propolis with minor lead contents. A statistical comparison of lead determination by both, ET AAS and UV-visS methods, demonstrated that there is not a significant difference in the results achieved with the two analytical techniques employed.

  10. Direct determination of Cu, Mn, Pb, and Zn in beer by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nascentes, Clesia C.; Kamogawa, Marcos Y.; Fernandes, Kelly G.; Arruda, Marco A.Z.; Nogueira, Ana Rita A.; Nobrega, Joaquim A.

    2005-01-01

    In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min -1 using 0.14 mol l -1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l -1 , respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25-50 μg l -1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0-155 μg l -1 ; Mn: 110-348 μg l -1 , Pb: 13.0-32.9 μg l -1 , and Zn: 52.7-226 μg l -1 . Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery

  11. International comparison of Cd content in a quality control material of Navajuelas (Tagelus dombeii) determined by anodic stripping voltammetry, atomic absorption spectrometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Queirolo, F.; Forschungszentrum Juelich GmbH; Universidad de Extremadura, Badajoz; Ostapczuk, P.; Valenta, P.; Stegen, S.; Universidad de Extremadura, Badajoz; Marin, C.; Vinagre, F.; Sanchez, A.

    1991-01-01

    The determination of Cd was performed by neutron activation analysis (NAA), atomic absorption spectrometry (AAS) with flame or in the electrothermal mode and anodic stripping voltammetry in the differential pulse mode (DPASV) and the square wave mode (SWASV). (orig./EF)

  12. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    International Nuclear Information System (INIS)

    Katskov, Dmitri

    2015-01-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D 2 and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground water

  13. Low-resolution continuum source simultaneous multi-element electrothermal atomic absorption spectrometry: steps into practice

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za

    2015-03-01

    The theory and practical problems of continuum source simultaneous multi-element electrothermal atomic absorption spectrometry (SMET AAS) are discussed by the example of direct analysis of underground water. The experimental methodology is based on pulse vaporization of the sample in a fast heated graphite tube and measurement of transient absorption of continuum spectrum radiation from D{sub 2} and Xe lamps within 200–400 nm wavelengths range with a low resolution spectral instrument and linear charge-coupled device. The setup permits the acquisition of 200 spectra during 1 s atomization pulse. Respective data matrix absorbance vs wavelength/time is employed for the quantification of elements in the sample. The calculation algorithm developed includes broad band and continuum background correction, linearization of function absorbance vs. concentration of atomic vapor and integration of thus modified absorbance at the resonance lines of the elements to be determined. Practical application shows that the method can be employed for the direct simultaneous determination of about 20 elements above microgram per liter level within 3–5 orders of the magnitude concentration range. The investigated sources of measurement errors are mainly associated with the atomization and vapor transportation problems, which are aggravated for the simultaneous release of major and minor sample constituents. Respective corrections concerning the selection of analytical lines, optimal sampling volume, matrix modification and cleaning of the atomizer have been introduced in the SMET AAS analytical technology. Under the optimized experimental conditions the calibration curves in Log-Log coordinates for all the investigated analytes in the single or multi-element reference solutions are approximated by the first order equations. The use of these equations as permanent characteristics of the setup enables instant quantification of Al, Ca, Co, Cr, Cu, Fe, Mg, Mn and Ni in the underground

  14. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry (GFAAS) and hydride generation atomic absorption spectrometry (HGAAS) for trace analysis of arsenic (As) in natural herbal products (NHPs). Method: Arsenic analysis in natural herbal products and standard reference ...

  15. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hartmann, Georg; Schuster, Michael

    2013-01-01

    Highlights: ► We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. ► A selective ligand (sodium thiosulphate) is introduced for species separation. ► A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. ► Measurement of samples with high natural organic mater content is possible. ► Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L −1 is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L −1 . The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L −1 is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  16. Derivative flame atomic absorption spectrometry and its application in trace analysis

    International Nuclear Information System (INIS)

    Sun, H. W.; Li, L. Q.

    2005-01-01

    Flame atomic absorption spectrometry is an accepted and widely used method for the determination of trace elements in a great variety of samples. But its sensitivity doesn't meet the demands of trace and ultra-trace analysis for some samples. The derivative signal processing technique, with a very high capability for enhancing sensitivity, was developed for flame atomic absorption spectrometry. The signal models of conventional flame atomic absorption spectrometry are described. The equations of derivative signals are established for flame atomic absorption spectrometry, flow injection atomic absorption spectrometry (FI-FAAS) and atom trapping flame atomic absorption spectrometry (AT-FAAS). The principle and performance of the derivative atomic absorption spectrometry are evaluated. The derivative technique based on determination of variation rate of signal intensity with time (dl/dt) is different from the derivative spectrophotometry based on determination of variation rate of signal intensity with wavelength (dl/dhλ). Derivative flame atomic absorption spectrometry has higher sensitivity, lower detection limits and better accuracy. It has been applied to the direct determination of trace elements without preconcentration. If the derivative technique was combined with several preconcentration techniques, the sensitivity would be enhanced further for ultra-trace analysis with good linearity. The applications of derivative flame atomic absorption spectroscopy are reviewed for trace element analysis in biological, pharmaceutical, environmental and food samples

  17. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  18. Determination of As(III) and As(V) by Flow Injection-Hydride Generation-Atomic Absorption Spectrometry via On-line Reduction of As(V) by KI

    DEFF Research Database (Denmark)

    Nielsen, Steffen; Hansen, Elo Harald

    1997-01-01

    A volume-based flow injection (FI) procedure is described for the determination and speciation of trace inorganic arsenic, As(III) and As(V), via hydride generation-atomic absorption spectrometry (HG-AAS) of As(III). The determination of total arsenic is obtained by on-line reduction of As(V) to As...

  19. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Ieggli, C. V. S.; Bohrer, D.; Noremberg, S.; do Nascimento, P. C.; de Carvalho, L. M.; Vieira, S. L.; Reis, R. N.

    2009-06-01

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L - 1 . The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  20. Surfactant/oil/water system for the determination of selenium in eggs by graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ieggli, C.V.S. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Bohrer, D. [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil)], E-mail: ndenise@quimica.ufsm.br; Noremberg, S.; Nascimento, P.C. do; Carvalho, L.M. de [Departamento de Quimica, Avenida Roraima, 1000, Universidade Federal de Santa Maria, CEP 97110-970, Santa Maria, RS (Brazil); Vieira, S.L.; Reis, R.N. [Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 7712, CEP 90540-000, Porto Alegre (Brazil)

    2009-06-15

    An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 {mu}g L{sup - 1}. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical.

  1. A low-cost vaporization-atomization system for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bruhn F, C.G.; Ambiado V, F.; Woerner V, R.

    1990-01-01

    A low-cost vaporization-atomization system for atomic absorption spectrometry is developed as an alternative to the use of a graphite furnace in electrothermal atomic absorption spectrometry. (Author)

  2. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sardans, Jordi; Montes, Fernando; Penuelas, Josep

    2010-01-01

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at μg L -1 levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages of

  3. Determination of As, Cd, Cu, Hg and Pb in biological samples by modern electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sardans, Jordi, E-mail: j.sardans@creaf.uab.ca [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain); Montes, Fernando [Departamento de Ciencias Analiticas, Facultad de Ciencias, Universidad Nacional de Educacion a Distancia (UNED), C/ Senda del Rey 9. 28040 Madrid (Spain); Penuelas, Josep [Ecophysiological and Global Change Unit CSIC-CREAF, Edifici C, Universitat Autonoma de Barcelona, Bellaterra 08193, Barcelona (Spain)

    2010-02-15

    Pollution from heavy metals has increased in recent decades and has become an important concern for environmental agencies. Arsenic, cadmium, copper, mercury and lead are among the trace elements that have the greatest impact and carry the highest risk to human health. Electrothermal atomic absorption spectrometry (ETAAS) has long been used for trace element analyses and over the past few years, the main constraints of atomic absorption spectrometry (AAS) methods, namely matrix interferences that provoked high background absorption and interferences, have been reduced. The use of new, more efficient modifiers and in situ trapping methods for stabilization and pre-concentration of these analytes, progress in control of atomization temperatures, new designs of atomizers and advances in methods to correct background spectral interferences have permitted an improvement in sensitivity, an increase in detection power, reduction in sample manipulation, and increase in the reproducibility of the results. These advances have enhanced the utility of Electrothermal atomic absorption spectrometry (ETAAS) for trace element determination at mug L{sup -1} levels, especially in difficult matrices, giving rise to greater reproducibility, lower economic cost and ease of sample pre-treatment compared to other methods. Moreover, the recent introduction of high resolution continuum source Electrothermal atomic absorption spectrometry (HR-CS-ETAAS) has facilitated direct solid sampling, reducing background noise and opening the possibility of achieving even more rapid quantitation of some elements. The incorporation of flow injection analysis (FIA) systems for automation of sample pre-treatment, as well as chemical vapor generation renders (ETAAS) into a feasible option for detection of As and Hg in environmental and food control studies wherein large numbers of samples can be rapidly analyzed. A relatively inexpensive approach with low sample consumption provide additional advantages

  4. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  5. Recent advances in on-line coupling of capillary electrophoresis to atomic absorption and fluorescence spectrometry for speciation analysis and studies of metal-biomolecule interactions

    International Nuclear Information System (INIS)

    Li Yan; Yin Xuebo; Yan Xiuping

    2008-01-01

    Speciation information is vital for the understanding of the toxicity, mobility and bioavailability of elements in environmental or biological samples. Hyphenating high resolving power of separation techniques and element-selective detectors provides powerful tools for studying speciation of trace elements in environmental and biological systems. During the last five years several novel hybrid techniques based on capillary electrophoresis (CE) and atomic spectrometry have been developed for speciation analysis and metal-biomolecule interaction study in our laboratory. These techniques include CE on-line coupled with atomic fluorescence spectrometry (AFS), chip-CE on-line coupled with AFS, CE on-line coupled with flame heated quartz furnace atomic absorption spectrometry (FHF-AAS), and CE on-line coupled with electrothermal atomic absorption spectrometry (ETAAS). The necessity for the development of these techniques, their interface design, and applications in speciation analysis and metal-biomolecule interaction study are reviewed. The advantages and limitations of the developed hybrid techniques are critically discussed, and further development is also prospected

  6. Study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst, by using Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Gomez, J.; Alonso, A.; Tumbarell, O.; Bustanmete, E.

    2003-01-01

    Atomic Absorption Spectrometry (AAS), has the advantage of its simplicity, speed and low cost. All this, together with its high sensibility and selectivity, makes the AAS one the most widely used analytic techniques. The present work shows, the study to determine the content of vanadium, aluminum, nickel, sodium, iron and copper in a catalytic cracking catalyst of a refinery, by using this technique. The results are compared to those of two laboratories which use the ICP-AES and AAS techniques and shows the processing of the statistics with the use of the t of Student and the F of Snedecor. The results using different methods are also shown as well as the recommended application of this results in the chemical characterization of this type of catalysts

  7. Atomic absorption assessment of mineral iron quantity in ferritin

    International Nuclear Information System (INIS)

    Marinova, M.; Vladimirova, L.

    2009-01-01

    Possibilities for quantitative determination of the number of iron atoms in the mineral core of ferritin by atomic absorption spectroscopy (AAS) are investigated in the work. Different measurements with AAS show an iron content from 1000 up to 4500 atoms per molecule ferritin. This motivated us to investigate the amount of iron in the Horse Spleen Ferritin with atomic absorption spectroscopy under application of the Bulgarian standard BDS EN 14082/2003 Foodstuffs - Determination of trace elements - Determination of lead, cadmium, zinc, copper, iron and chromium by atomic absorption spectrometry (AAS) after dry ashing. The obtained results give approx. 1800 atoms per molecule Ferritin. It is in accordance with previous results, published by leading researchers. The investigation of the iron content with AAS under the use of the Bulgarian standard is a good opportunity to study many other objects of biological interest. (authors)

  8. Absorption Mode FT-ICR Mass Spectrometry Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Donald F.; Kilgour, David P.; Konijnenburg, Marco; O' Connor, Peter B.; Heeren, Ronald M.

    2013-12-03

    Fourier transform ion cyclotron resonance mass spectrometry offers the highest mass resolving power for molecular imaging experiments. This high mass resolving power ensures that closely spaced peaks at the same nominal mass are resolved for proper image generation. Typically higher magnetic fields are used to increase mass resolving power. However, a gain in mass resolving power can also be realized by phase correction of the data for absorption mode display. In addition to mass resolving power, absorption mode offers higher mass accuracy and signal-to-noise ratio over the conventional magnitude mode. Here we present the first use of absorption mode for Fourier transform ion cyclotron resonance mass spectrometry imaging. The Autophaser algorithm is used to phase correct each spectrum (pixel) in the image and then these parameters are used by the Chameleon work-flow based data processing software to generate absorption mode ?Datacubes? for image and spectral viewing. Absorption mode reveals new mass and spatial features that are not resolved in magnitude mode and results in improved selected ion image contrast.

  9. Determination of cobalt in biological samples by line-source and high-resolution continuum source graphite furnace atomic absorption spectrometry using solid sampling or alkaline treatment

    International Nuclear Information System (INIS)

    Ribeiro, Anderson Schwingel; Vieira, Mariana Antunes; Furtado da Silva, Alessandra; Borges, Daniel L. Gallindo; Welz, Bernhard; Heitmann, Uwe; Curtius, Adilson Jose

    2005-01-01

    Two procedures for the determination of Co in biological samples by graphite furnace atomic absorption spectrometry (GF AAS) were compared: solid sampling (SS) and alkaline treatment with tetramethylammonium hydroxide (TMAH) using two different instruments for the investigation: a conventional line-source (LS) atomic absorption spectrometer and a prototype high-resolution continuum source atomic absorption spectrometer. For the direct introduction of the solid samples, certified reference materials (CRM) were ground to a particle size ≤50 μm. Alkaline treatment was carried out by placing about 250 mg of the sample in polypropylene flasks, adding 2 mL of 25% m/v tetramethylammonium hydroxide and de-ionized water. Due to its unique capacity of providing a 3-D spectral plot, a high-resolution continuum source (HR-CS) graphite furnace atomic absorption spectrometry was used as a tool to evaluate potential spectral interferences, including background absorption for both sample introduction procedures, revealing that a continuous background preceded the atomic signal for pyrolysis temperatures lower than 700 deg. C. Molecular absorption bands with pronounced rotational fine structure appeared for atomization temperatures >1800 deg. C probably as a consequence of the formation of PO. After optimization had been carried out using high resolution continuum source atomic absorption spectrometry, the optimized conditions were adopted also for line-source atomic absorption spectrometry. Six biological certified reference materials were analyzed, with calibration against aqueous standards, resulting in agreement with the certified values (according to the t-test for a 95% confidence level) and in detection limits as low as 5 ng g -1

  10. Atomic absorption spectrometry of the leaves of Newbouldia Laevis (Bignoniaceae)

    International Nuclear Information System (INIS)

    Mohammed, L.; Musa, A.; Isma'il, M. B.; Ahmed, Y. A.; Okunade, I.O.; Garba, M. A.

    2011-01-01

    In this study, fresh leaves samples of Newbouldia laevis, a medicinal plant, popularly known as African Border tree used traditionally for the treatment of a number of diseases, were collected in Dakace, (Lat. 11degree05'N Long. 7degree46'E) Zaria, Kaduna State, North-Central Nigeria, during the wet season (October to November) of 2008. The samples were digested using a tri-acid mixture (HNO 3 , HCIO 4 , and H 2 SO 4 ) in the ratio of 25:4:2 respectively. The concentrations of essential trace elements including magnesium, copper, iron, zinc, and cobalt in the samples were determined by Atomic Absorption Spectrometry (AAS). The results obtained showed that Fe has the highest mean concentration of 8.2481±3.689μg/g; whereas Co has the least mean concentration of 0.111±0.055μg/g. The study also revealed that the mean concentrations of Mg, Cu and Zn exceed the recommended limit set by FAO.

  11. Use of cetyltrimethylammonium bromide as surfactant for the determination of copper and chromium in gasoline emulsions by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Santos, Denilson S.S. dos; Teixeira, Alete P.; Barbosa, Jose T.P.; Ferreira, Sergio L.C.; Korn, Maria das Gracas A; Teixeira, Leonardo S.G.

    2007-01-01

    In this work, the use of cetyltrimethylammonium bromide as surfactant for the preparation of oil-in-water emulsions for the determination of Cu and Cr in gasoline by electrothermal atomic absorption spectrometry (ET AAS) was evaluated. The surfactant amount was tested in the range of 25 to 300 mg, added to 2 ml of gasoline, and completed to 10 mL with 0.1% (v/v) nitric acid solution. 150 mg of surfactant was found optimum, and a sonication time of 10 min sufficient to form an oil-in-water emulsion that was stable for several hours. The ET AAS temperature program was established based on pyrolysis and atomization curves. The pyrolysis temperatures were set at 700 and 1300 deg. C for Cu and Cr, respectively and the selected atomization temperatures were 2400 and 2500 deg. C. The time and temperature of the drying stage and the atomization time were experimentally tested to provide optimum conditions. The limits of detection were found to be 5 μg L -1 and 1.5 μg L -1 for Cu and Cr, respectively in the original gasoline samples. The relative standard deviation (RSD) ranged from 4 to 9% in oil-in-water emulsions spiked with 5 μg L -1 and 15 μg L -1 of each metal, respectively. Recoveries varied from 90 to 98%. The accuracy of the proposed method was tested by an alternate procedure using complete evaporation of the gasoline sample. The method was adequate for the determination of Cu and Cr in gasoline samples collected from different gas stations in Salvador, BA, Brazil

  12. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    Science.gov (United States)

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  13. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    OpenAIRE

    Abdollahi Atousa; Amirkavehei Mooud; Gheisari Mohammad Mehdi; Tadayon Fariba

    2014-01-01

    A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO) for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap). The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS). The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically ...

  14. Direct determination of beryllium, cadmium, lithium, lead and silver in thorium nitrate solution by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Thulasidas, S.K.; Kulkarni, M.J.; Porwal, N.K.; Page, A.G.; Sastry, M.D.

    1988-01-01

    An electrothermal atomization atomic absorption spectrometric (ET-AAS) method is developed for the direct determination of Ag, Be, Cd, Li and Pb in thorium nitrate solution. The method offers detection of sub-nanogram amounts of these analytes in 100-microgram thorium samples with a precision of around 10%. A number of spiked samples and pre-analyzed ThO 2 samples have been analyzed to evaluate the performance of the analytical methods developed here

  15. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Hartmann, Georg; Schuster, Michael

    2013-01-25

    The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L(-1) is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L(-1). The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L(-1) is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Detection of silver nanoparticles in parsley by solid sampling high-resolution-continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Feichtmeier, Nadine S; Leopold, Kerstin

    2014-06-01

    In this work, we present a fast and simple approach for detection of silver nanoparticles (AgNPs) in biological material (parsley) by solid sampling high-resolution-continuum source atomic absorption spectrometry (HR-CS AAS). A novel evaluation strategy was developed in order to distinguish AgNPs from ionic silver and for sizing of AgNPs. For this purpose, atomisation delay was introduced as significant indication of AgNPs, whereas atomisation rates allow distinction of 20-, 60-, and 80-nm AgNPs. Atomisation delays were found to be higher for samples containing silver ions than for samples containing silver nanoparticles. A maximum difference in atomisation delay normalised by the sample weight of 6.27 ± 0.96 s mg(-1) was obtained after optimisation of the furnace program of the AAS. For this purpose, a multivariate experimental design was used varying atomisation temperature, atomisation heating rate and pyrolysis temperature. Atomisation rates were calculated as the slope of the first inflection point of the absorbance signals and correlated with the size of the AgNPs in the biological sample. Hence, solid sampling HR-CS AAS was proved to be a promising tool for identifying and distinguishing silver nanoparticles from ionic silver directly in solid biological samples.

  17. Atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Haswell, S.J.

    1991-01-01

    Atomic absorption spectroscopy is now well established and widely used technique for the determination of trace and major elements in a wide range analyte types. There have been many advances in the atomic spectroscopy over the last decade and for this reason and to meet the demand, it was felt that there was a need for an updated book. Whilst interest in instrumental design has tended to dominate the minds of the spectrocopist, the analyst concerned with obtaining reliable and representative data, in diverse areas of application, has been diligently modifying and developing sample treatment and instrumental introduction techniques. Such methodology is de fundamental part of analysis and form the basis of the fourteen application chapters of this book. The text focuses in the main on AAS; however, the sample handling techniques described are in many cases equally applicable to ICP-OES and ICP-MS analysis. (author). refs.; figs.; tabs

  18. A method optimization study for atomic absorption ...

    African Journals Online (AJOL)

    Sadia Ata

    2014-04-24

    Apr 24, 2014 ... Manufacturer brand Win 2.1 software was used for data inte- gration and processing. ... reagents and analyst) is suitable for the intended application. The % relative standard deviation for absorbance ... flame atomic absorption spectrometry. Table 2 Linearity data for analysis of zinc in insulin using AAS.

  19. Noise-immune cavity-enhanced analytical atomic spectrometry — NICE-AAS — A technique for detection of elements down to zeptogram amounts

    International Nuclear Information System (INIS)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-01-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10 −12 cm −1 Hz −1∕2 (corresponding to a single-pass absorbance of 7 × 10 −11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm 3 (10 fg/m 3 or 10 −5 ng/m 3 ), which corresponds to 25 atoms/cm 3 , and Na down to 0.5 zg (zg = zeptogram = 10 −21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:10 21 ) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated

  20. Speciation of arsenic in water samples by high-performance liquid chromatography-hydride generation-atomic absorption spectrometry at trace levels using a post-column reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Stummeyer, J. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Harazim, B. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Wippermann, T. [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany)

    1996-02-01

    Anion-exchange HPLC has been combined with hydride generation - atomic absorption spectrometry (HG-AAS) for the routine speciation of arsenite, arsenate, monomethylarsenic acid and dimethylarsinic acid. The sensitivity of the AAS-detection was increased by a post-column reaction system to achieve complete formation of volatile arsines from the methylated species and arsenate. The system allows the quantitative determination of 0.5 {mu}g/l of each arsenic compound in water samples. The stability of synthetical and natural water containing arsenic at trace levels was investigated. To preserve stored water samples, a method for quantitative separation of arsenate at high pH-values with the basic anion-exchange resin Dowex 1 x 8 was developed. (orig.)

  1. Fast neutron spectrometry and dosimetry; Spectrometrie et dosimetrie des neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Blaize, S; Ailloud, J; Mariani, J; Millot, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    We have studied fast neutron spectrometry and dosimetry through the recoil protons they produce in hydrogenated samples. In spectrometric, we used nuclear emulsions, in dosimetric, we used polyethylene coated with zinc sulphide and placed before a photomultiplier. (author)Fren. [French] Nous avons etudie la spectrometrie et la dosimetrie des neutrons rapides en utilisant les protons de recul qu'ils produisent dans une matiere hydrogenee. En spectrometrie, nous avons employe des emulsions nucleaires, en dosimetrie, du polyethylene recouvert de sulfure de zinc place devant un photomultiplicateur. (auteur)

  2. Method Comparison of Neutron Activation Analysis and Atomic Absorption Spectrometry for Determination of Zinc in Food Samples

    International Nuclear Information System (INIS)

    Endah Damastuti; Syukria Kurniawati; Natalia Adventini

    2009-01-01

    Zinc as a micro nutrient, has important roles in human metabolism system. It is required by the body in appropriate amount from food intake. Due to the very low concentration of Zinc in food, high selectivity and sensitivity analysis technique is required for the determination, such as Neutron Activation Analysis (NAA) and Atomic Absorption Spectrometry (AAS). In this experiment, both methods were compared in zinc analysis of food samples. The subject of this experiment is to examine of those methods conformity and improving the technique capability in zinc analysis in food sample. Those methods were validated by analyzing zinc in SRM NIST 1548a Typical Diet and were tested its accuracy and precision. The results of Zn concentration were 25.1 ± 2.14 mg/kg by NAA and 24.1 ± 1.40 mg/kg by AAS while the certificate value was 24.6 ± 1.80 mg/kg. Percentage of relative bias, %CV, μ-test score and HORRAT(Horwitz ratio) value given by NAA were 2%, 8.5%, 0.18 and 0.9 respectively, while %relative bias, %CV, μ-test score and HORRAT value given by AAS were 2%, 5.8 %, 0.20 and 0.6 respectively. The result obtained for Zn concentration in various food samples by NAA and AAS were varied from 13.7 – 29.3 mg/kg with mean value 19.8 mg/kg and 11.2 – 26.0 mg/kg with mean value 17.3 mg/kg (author)

  3. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  4. Determination of trace elements in ground water by two preconcentration methods using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Elhag, A. Y.

    2004-01-01

    This is a comparative study between two different methods of preconcentration done to separate the trace elements cadmium, nickel. chromium, manganese, copper, zinc, and lead in drinking (ground) water samples taken from different locations in Gezira State, central Sudan (the map); these methods are (coprecipitation) with aluminium hydroxide and by Ammonium Pyrrolidine Dithiocarbamate (APDC) using Methyl Isobutyl Ketone (MIBK) as an organic solvent; and subsequent analysis by Atomic Absorption Spectrometry (AAS) for both methods. The result of comparison showed the superiority of the (APDC) coprecipitation method over the aluminium hydroxide coprecipitation method in the total percentage recoveries of the studied trace elements in drinking (ground) water samples, such results confirm previous studies. This study also involves direct analysis of these water samples by atomic absorption spectrometry to determine the concentrations of trace elements Cadmium, Nickel, Chromium, Manganese, Copper, Zinc and Lead and compare it to the corresponding guide line values described by the World Health Organization and the maximum concentrations of trace elements in drinking water permitted by the Sudanese Standards and Metrology Organizations (SSMO), where the concentrations of some elements in some samples were found to be different than the described values by both of the organizations. The study includes a trial to throw light on the effect of the proximity of the water samples sources to the Blue Nile river on its trace elements concentrations; no relation was proved to exist in that respect.(Author)

  5. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  6. Comparison of 4 analytical techniques based on atomic spectrometry for the determination of total tin in canned foodstuffs

    OpenAIRE

    2011-01-01

    Abstract Different techniques for the determination of total tin in beverage and canned food by atomic spectrometry were compared. The performance characteristics of Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Hydride Generation Inductively Coupled Plasma Atomic Emission Spectrometry (HG-ICP-AES), Electrothermal Atomization Atomic Absorption Spectrometry (ETA-AAS) and Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) were determined in term of linearity, ...

  7. Optimization of Flame Atomic Absorption Spectrometry for ...

    African Journals Online (AJOL)

    Optimization of Flame Atomic Absorption Spectrometry for Measurement of High Concentrations of Arsenic and Selenium. ... This procedure allowed a rapid determination of As from minimum 4.462 mg/L to higher concentrations without sample pretreatment. Besides As, this method successfully measured Se concentrations ...

  8. Determination of hafnium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yoshida, Isao; Kobayashi, Hiroshi; Ueno, Keihei.

    1977-01-01

    Optimum conditions for atomic absorption spectrophotometric determination of hafnium were investigated by use of a Jarrel-Ash AA-1 instrument which was equipped with a premixed gas burner slotted 50 mm in length and 0.4 mm in width. Absorption of hafnium, which was atomized in an nitrous oxide-acetylene flame, was measured on a resonance line at 307.29 nm. The absorption due to hafnium was enhanced in the presence of ammonium fluoride and iron(III) ion, as shown in Figs. 2 and 3, depending on their concentration. The highest absorption was attained by the addition of (0.15 -- 0.3)M ammonium fluoride, 0.07 M of iron(III) ion and 0.05 M of hydrochloric acid. An excess of the additives decreased the absorption. The presence of zirconium, which caused a significant interference in the ordinary analytical methods, did not affect the absorption due to hafnium, if the zirconium concentration is less than 0.2 M. A standard procedure was proposed; A sample containing a few mg of hafnium was dissolved in a 25-ml volumetric flask, and ammonium fluoride, ferric nitrate and hydrochloric acid were added so that the final concentrations were 0.3, 0.07 and 0.05 M, respectively. Atomic absorption was measured on the aqueous solution in a nitrous oxide-acetylene flame and the hafnium content was calculated from the absorbance. Sensitivity was as high as 12.5 μg of Hf/ml/l% absorption. The present method is especially recommendable to the direct determination of hafnium in samples containing zirconium. (auth.)

  9. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zeini Jahromi, Elham; Bidari, Araz; Assadi, Yaghoub; Milani Hosseini, Mohammad Reza; Jamali, Mohammad Reza

    2007-01-01

    Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L -1 with detection limit of 0.6 ng L -1 . The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L -1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L -1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with

  10. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  11. Correction for sample self-absorption in activity determination by gamma spectrometry

    International Nuclear Information System (INIS)

    Galloway, R.B.

    1991-01-01

    Gamma ray spectrometry is a convenient method of determining the activity of the radioactive components in environmental samples. Commonly samples vary in gamma absorption or differ in absorption from the calibration standards available, so that accurate correction for self-absorption in the sample is essential. A versatile correction procedure is described. (orig.)

  12. Application of methane as a gaseous modifier for the determination of silicon using electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Hans-Joachim, E-mail: hans-joachim.heinrich@bam.de; Kipphardt, Heinrich

    2012-04-15

    For determination of silicon in aqueous solutions by electrothermal atomic absorption spectrometry methane/argon mixtures as a gaseous modifier were applied during the pyrolysis step to improve the analytical performance. The beneficial effects observed on thermal stabilization, signal enhancement and shape of absorbance signals were attributed to the thermal decomposition products of methane, which were hydrogen and carbon black (soot). Using a 5% CH{sub 4} mixture with argon, the optimized pyrolysis and atomization temperatures were 1350 Degree-Sign C and 2450 Degree-Sign C, respectively. A flushing step following the pyrolysis was mandatory to avoid background absorption and accelerated deposition of pyrolytic graphite. Characteristic masses of 50 and 30 pg were obtained for standard transversely heated graphite atomizer (THGA) tubes and end-capped THGA tubes, respectively, which were lower than with other previously applied modifiers. A limit of detection of 0.2 {mu}g L{sup -1} (3 s, n = 10) has been obtained. In addition, this gaseous modifier did not contribute to contamination which often was significant when a liquid modifier solution was co-injected. The proposed method has been applied to the determination of silicon in ultrapure water, nitric and hydrochloric acids. - Highlights: Black-Right-Pointing-Pointer CH{sub 4}/Ar gas mixtures act as new modifier in the determination of Si using ET AAS. Black-Right-Pointing-Pointer CH{sub 4} improved thermal stabilization, atomization efficiency and signal shape of Si. Black-Right-Pointing-Pointer Optimum performance by addition of 5% CH{sub 4} during pyrolysis at 1350 Degree-Sign C. Black-Right-Pointing-Pointer Gaseous modifier does not contribute to blank values. Black-Right-Pointing-Pointer Optimized method suitable for determination of Si in ultrapure reagents.

  13. Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation

    International Nuclear Information System (INIS)

    Aleixo, Poliana Carolina; Junior, Dario Santos; Tomazelli, Andrea Cristina; Rufini, Iolanda A.; Berndt, Harald; Krug, Francisco Jose

    2004-01-01

    A simple method for cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry (BIFF-AAS) was proposed. Food slurries were prepared by transferring an exact amount of cryogenic-ground homogenized material (50-100 mg) to centrifuge tubes, followed by addition of 5 ml (up to 2.8 mol l -1 ) nitric acid solution and sonication in an ultrasonic bath during 5-10 min. Thereafter, slurries were diluted with water to 10 ml, centrifuged during 5 min at 5400 rpm and 400 μl aliquot of the supernatant was analyzed by BIFF-AAS. The detection limits based on peak height measurements were 0.03 μg g -1 Cd and 1.6 μg g -1 Pb for 2% (m/v) slurry (200 mg/10 ml). For method validation, the certified reference materials Pig Kidney (BCR 186) and Rice Flour (NIES 10) were used. Quantitative cadmium and lead recoveries were obtained and no statistical differences were found at 95% level by applying the t-test

  14. Simultaneous Atomic Absorption Spectrometry for Cadmium and Lead Determination in Wastewater: A Laboratory Exercise

    Science.gov (United States)

    Correia, Paulo R. M.; Oliveira, Pedro V.

    2004-01-01

    The simultaneous determination of cadmium and lead by multi-element atomic absorption spectrometry with electrochemical atomization is proposed by employing a problem-based approach. The reports indicate that the students assimilated the principles of the simultaneous atomic absorption spectrometry (SIMAAS), the role of the chemical modifier, the…

  15. Direct determination of lead in human urine and serum samples by electrothermal atomic absorption spectrometry and permanent modifiers

    Directory of Open Access Journals (Sweden)

    Andrada Daniel

    2006-01-01

    Full Text Available The object of the present study was the development of alternative methods for the direct determination of lead in undigested samples of human urine and serum by electrothermal atomic absorption spectrometry (ET AAS. Thus, some substances have been investigated to act as chemical modifiers. Volumes of 20 µL of diluted samples, 1 + 1, v/v for urine and 1 + 4, v/v for serum, with HNO3 1% v/v and 0.02% v/v of cetil trimethyl ammonium chloride (CTAC were prepared directly in the autosampler cups and placed into the graphite furnace. For modifiers in solutions 10 µL were used. Pyrolysis and atomization temperature curves were used in all optimizations in the matrixes diluted as exposed. For urine with permanent iridium (500 µg, the best pyrolysis and atomization temperatures were 900 and 1600 ºC, respectively, with a characteristic mass of 12 pg (recommended of 10 pg, with symmetrical absorption pulses and corrected background. Spiked urine samples presented recoveries between 86 and 112% for Ir permanent. The analysis results of certified urine samples are in agreement with certified values (95% of confidence for two levels of the metal. For serum, good results were obtained with the mixture of Zr+Rh or Ir+Rh as permanent modifiers, with characteristic masses of 9.8 and 8.1 pg, respectively. Recoveries from spiked serum samples varied between 98.6 and 100.1% (Ir+Rh and between 93.9 and 105.2% (Zr+Rh. In both recovery studies, the relative standard deviation (n=3 was lower than 7%. Calibration for both samples were made with aqueous calibration curves and presented r² higher than 0.99. The limits of detection were 0.7 µg L-1 for serum samples, with Zr+Rh permanent, and 1.0 µg L-1 for urine with iridium permanent.

  16. A New Cross-Shaped Graphite Furnace with Ballast Body for Reduction of Interferences in Atomic Absorption Spectrometry

    Directory of Open Access Journals (Sweden)

    A. A. Asweisi

    2010-01-01

    Full Text Available A new crossed graphite furnace for atomic absorption spectrometry (GFAAS was designed and installed in heated graphite atomizer (HGA500 combined with Perkin-Elmer spectrometer (AAS1100. The Tungsten ballast body was inserted inside one part of the crossed furnace in a way perpendicular to light path. The analyzed sample was injected manually on the ballast body inside the cross and pushed into the measuring zone using the original inner and additional purge gas. The sample was adsorbed strongly on the ballast and evaporated and transferred with different rates at different temperatures during the temperature program allowing the separation of analyte and matrix signals. Analysis of middle volatile element such as copper and manganese in standard urine sample (seronorm 2525 showed complete separation of analyte and background signals with good sensitivity and repeatability.

  17. Target characterization by PIXE, alpha spectrometry and X-ray absorption

    International Nuclear Information System (INIS)

    Kheswa, N.Y.; Papka, P.; Pineda-Vargas, C.A.; Newman, R.T.

    2011-01-01

    We report on the thickness and homogeneity characterization of thin metallic targets of Zr-96 by means of alpha absorption spectrometry, Particle Induced X-ray Emission (PIXE) and X-ray absorption. The target thicknesses determined by means of the above mentioned methods are critically compared. The thicknesses were determined before and after irradiation with a 70 MeV beam of 14 N ions.

  18. ESTIMATION OF MEASUREMENT UNCERTAINTY IN THE DETERMINATION OF Fe CONTENT IN POWDERED TONIC FOOD DRINK USING GRAPHITE FURNACE ATOMIC ABSORPTION SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The evaluation of uncertainty measurement in the determination of Fe content in powdered tonic food drink using graphite furnace atomic absorption spectrometry was carried out. The specification of measurand, source of uncertainty, standard uncertainty, combined uncertainty and expanded uncertainty from this measurement were evaluated and accounted. The measurement result showed that the Fe content in powdered tonic food drink sample was 569.32 µg/5g, with the expanded uncertainty measurement ± 178.20 µg/5g (coverage factor, k = 2, at confidende level 95%. The calibration curve gave the major contribution to the uncertainty of the final results.   Keywords: uncertainty, powdered tonic food drink, iron (Fe, graphite furnace AAS

  19. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  20. Validation of an analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals in soil.

    Science.gov (United States)

    Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca

    2013-03-01

    The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric

  1. Evaluation of pyrolysis curves for volatile elements in aqueous standards and carbon-containing matrices in electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A.F. [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands); Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Welz, B. [Universidade Federal de Santa Catarina, Departamento de Quimica, 88040-900 Florianopolis, SC (Brazil); Loos-Vollebregt, M.T.C. de [Delft University of Technology, Faculty of Applied Sciences, DelftChemTech, Julianalaan 136, 2628 BL Delft (Netherlands)], E-mail: m.t.c.deloos-vollebregt@tudelft.nl

    2008-07-15

    Pyrolysis curves in electrothermal atomic absorption spectrometry (ET AAS) and electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) have been compared for As, Se and Pb in lobster hepatopancreas certified reference material using Pd/Mg as the modifier. The ET AAS pyrolysis curves confirm that the analytes are not lost from the graphite furnace up to a pyrolysis temperature of 800 deg. C. Nevertheless, a downward slope of the pyrolysis curve was observed for these elements in the biological material using ETV-ICP-MS. This could be related to a gain of sensitivity at low pyrolysis temperatures due to the matrix, which can act as carrier and/or promote changes in the plasma ionization equilibrium. Experiments with the addition of ascorbic acid to the aqueous standards confirmed that the higher intensities obtained in ETV-ICP-MS are related to the presence of organic compounds in the slurry. Pyrolysis curves for As, Se and Pb in coal and coal fly ash were also investigated using the same Pd/Mg modifier. Carbon intensities were measured in all samples using different pyrolysis temperatures. It was observed that pyrolysis curves for the three analytes in all slurry samples were similar to the corresponding graphs that show the carbon intensity for the same slurries for pyrolysis temperatures from 200 deg. C up to 1000 deg. C.

  2. Application of radiochemical neutron activation and atomic absorption spectrometry methods for the study of nutrition-pollution interactions in children

    Energy Technology Data Exchange (ETDEWEB)

    Tran Bang Diep [Institute for Nuclear Science and Technique, VAEC, P.O. Box 5T-160, Hanoi (Viet Nam)]. E-mail: tranfbangdiepj@yahoo.com; Tran Dai Nghiep [Institute for Nuclear Science and Technique, VAEC, P.O. Box 5T-160, Hanoi (Viet Nam)]. E-mail: tdnghiep@vaec.gov.vn

    2005-07-01

    The application of radiochemical neutron activation analysis (RNAA) and atomic absorption spectrometry (AAS) is expected to aid in understanding and evaluating the effects of environmental pollution on the nutritional status of children already exposed to marginal malnutrition. Samples of placenta, of low-weight and control newborns groups, were collected for determination of nutritional elements and pollutants. The mean ratios of pollutants and nutrients such as Cd/Zn, Hg/Se and Pb/Ca were evaluated for both groups. All these ratios in the placenta of the low-weight newborns are higher than that of the healthy group. The degree of the nutrient-pollutant interaction is evaluated by quantity R, with mercury considered as the most active pollutant while calcium the most active nutrient among the involved elements in process of the interaction. (author)

  3. Application of radiochemical neutron activation and atomic absorption spectrometry methods for the study of nutrition-pollution interactions in children

    International Nuclear Information System (INIS)

    Tran Bang Diep; Tran Dai Nghiep

    2005-01-01

    The application of radiochemical neutron activation analysis (RNAA) and atomic absorption spectrometry (AAS) is expected to aid in understanding and evaluating the effects of environmental pollution on the nutritional status of children already exposed to marginal malnutrition. Samples of placenta, of low-weight and control newborns groups, were collected for determination of nutritional elements and pollutants. The mean ratios of pollutants and nutrients such as Cd/Zn, Hg/Se and Pb/Ca were evaluated for both groups. All these ratios in the placenta of the low-weight newborns are higher than that of the healthy group. The degree of the nutrient-pollutant interaction is evaluated by quantity R, with mercury considered as the most active pollutant while calcium the most active nutrient among the involved elements in process of the interaction. (author)

  4. Bismuth as a general internal standard for lead in atomic absorption spectrometry.

    Science.gov (United States)

    Bechlin, Marcos A; Fortunato, Felipe M; Ferreira, Edilene C; Gomes Neto, José A; Nóbrega, Joaquim A; Donati, George L; Jones, Bradley T

    2014-06-11

    Bismuth was evaluated as internal standard for Pb determination by line source flame atomic absorption spectrometry (LS FAAS), high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS) and line source graphite furnace atomic absorption spectrometry (LS GFAAS). Analysis of samples containing different matrices indicated close relationship between Pb and Bi absorbances. Correlation coefficients of calibration curves built up by plotting A(Pb)/A(Bi)versus Pb concentration were higher than 0.9953 (FAAS) and higher than 0.9993 (GFAAS). Recoveries of Pb improved from 52-118% (without IS) to 97-109% (IS, LS FAAS); 74-231% (without IS) to 96-109% (IS, HR-CS FAAS); and 36-125% (without IS) to 96-110% (IS, LS GFAAS). The relative standard deviations (n=12) were reduced from 0.6-9.2% (without IS) to 0.3-4.3% (IS, LS FAAS); 0.7-7.7% (without IS) to 0.1-4.0% (IS, HR-CS FAAS); and 2.1-13% (without IS) to 0.4-5.9% (IS, LS GFAAS). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Determination of cadmium in aluminium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.

    1978-12-01

    A direct method for the determination of cadmium in elemental aluminium is described. Metal samples are dissolved in diluted hydrochloric acid and cadmium is determined by atomic absorption spectrometry in an air-acetylene flame. Interference by non-specific absorption observed at the analytical wavelength incorrected for by means of a non-absorbing line emitted by the hollow-cathode lamp. Relatively large amounts of arsenic do not interfere. The minimun determinable concentration of cadmium for this procedure is 2-3 ppm, expressed on aluminium basis. (author) [es

  6. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of arsenic and selenium in water and sediment by graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Jones, Sandra R.; Garbarino, John R.

    1999-01-01

    Graphite furnace-atomic absorption spectrometry (GF-AAS) is a sensitive, precise, and accurate technique that can be used to determine arsenic and selenium in samples of water and sediment. The GF-AAS method has been developed to replace the hydride generation-atomic absorption spectrometry (HG-AAS) methods because the method detection limits are similar, bias and variability are comparable, and interferences are minimal. Advantages of the GF-AAS method include shorter sample preparation time, increased sample throughput from simultaneous multielement analysis, reduced amount of chemical waste, reduced sample volume requirements, increased linear concentration range, and the use of a more accurate digestion procedure. The linear concentration range for arsenic and selenium is 1 to 50 micrograms per liter in solution; the current method detection limit for arsenic in solution is 0.9 microgram per liter; the method detection limit for selenium in solution is 1 microgram per liter. This report describes results that were obtained using stop-flow and low-flow conditions during atomization. The bias and variability of the simultaneous determination of arsenic and selenium by GF-AAS under both conditions are supported with results from standard reference materials--water and sediment, real water samples, and spike recovery measurements. Arsenic and selenium results for all Standard Reference Water Samples analyzed were within one standard deviation of the most probable values. Long-term spike recoveries at 6.25, 25.0, 37.5 micrograms per liter in reagent-, ground-, and surface-water samples for arsenic averaged 103 plus or minus 2 percent using low-flow conditions and 104 plus or minus 4 percent using stop-flow conditions. Corresponding recoveries for selenium were 98 plus or minus 13 percent using low-flow conditions and 87 plus or minus 24 percent using stop-flow conditions. Spike recoveries at 25 micrograms per liter in 120 water samples ranged from 97 to 99 percent

  7. Noise-immune cavity-enhanced analytical atomic spectrometry - NICE-AAS - A technique for detection of elements down to zeptogram amounts

    Science.gov (United States)

    Axner, Ove; Ehlers, Patrick; Hausmaninger, Thomas; Silander, Isak; Ma, Weiguang

    2014-10-01

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful technique for detection of molecular compounds in gas phase that is based on a combination of two important concepts: frequency modulation spectroscopy (FMS) for reduction of noise, and cavity enhancement, for prolongation of the interaction length between the light and the sample. Due to its unique properties, it has demonstrated unparalleled detection sensitivity when it comes to detection of molecular constituents in the gas phase. However, despite these, it has so far not been used for detection of atoms, i.e. for elemental analysis. The present work presents an assessment of the expected performance of Doppler-broadened (Db) NICE-OHMS for analytical atomic spectrometry, then referred to as noise-immune cavity-enhanced analytical atomic spectrometry (NICE-AAS). After a description of the basic principles of Db-NICE-OHMS, the modulation and detection conditions for optimum performance are identified. Based on a previous demonstrated detection sensitivity of Db-NICE-OHMS of 5 × 10- 12 cm- 1 Hz- 1/2 (corresponding to a single-pass absorbance of 7 × 10- 11 over 10 s), the expected limits of detection (LODs) of Hg and Na by NICE-AAS are estimated. Hg is assumed to be detected in gas phase directly while Na is considered to be atomized in a graphite furnace (GF) prior to detection. It is shown that in the absence of spectral interferences, contaminated sample compartments, and optical saturation, it should be feasible to detect Hg down to 10 zg/cm3 (10 fg/m3 or 10- 5 ng/m3), which corresponds to 25 atoms/cm3, and Na down to 0.5 zg (zg = zeptogram = 10- 21 g), representing 50 zg/mL (parts-per-sextillion, pps, 1:1021) in liquid solution (assuming a sample of 10 μL) or solely 15 atoms injected into the GF, respectively. These LODs are several orders of magnitude lower (better) than any previous laser-based absorption technique previously demonstrated under atmospheric

  8. Determination of Cd in urine by cloud point extraction-tungsten coil atomic absorption spectrometry.

    Science.gov (United States)

    Donati, George L; Pharr, Kathryn E; Calloway, Clifton P; Nóbrega, Joaquim A; Jones, Bradley T

    2008-09-15

    Cadmium concentrations in human urine are typically at or below the 1 microgL(-1) level, so only a handful of techniques may be appropriate for this application. These include sophisticated methods such as graphite furnace atomic absorption spectrometry and inductively coupled plasma mass spectrometry. While tungsten coil atomic absorption spectrometry is a simpler and less expensive technique, its practical detection limits often prohibit the detection of Cd in normal urine samples. In addition, the nature of the urine matrix often necessitates accurate background correction techniques, which would add expense and complexity to the tungsten coil instrument. This manuscript describes a cloud point extraction method that reduces matrix interference while preconcentrating Cd by a factor of 15. Ammonium pyrrolidinedithiocarbamate and Triton X-114 are used as complexing agent and surfactant, respectively, in the extraction procedure. Triton X-114 forms an extractant coacervate surfactant-rich phase that is denser than water, so the aqueous supernatant is easily removed leaving the metal-containing surfactant layer intact. A 25 microL aliquot of this preconcentrated sample is placed directly onto the tungsten coil for analysis. The cloud point extraction procedure allows for simple background correction based either on the measurement of absorption at a nearby wavelength, or measurement of absorption at a time in the atomization step immediately prior to the onset of the Cd signal. Seven human urine samples are analyzed by this technique and the results are compared to those found by the inductively coupled plasma mass spectrometry analysis of the same samples performed at a different institution. The limit of detection for Cd in urine is 5 ngL(-1) for cloud point extraction tungsten coil atomic absorption spectrometry. The accuracy of the method is determined with a standard reference material (toxic metals in freeze-dried urine) and the determined values agree with

  9. Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Feng Zhicao; Cheng Xuequn; Dong Chaofang; Xu Lin; Li Xiaogang

    2010-01-01

    Research highlights: → The polarization curve of 316L SS possesses five turning potentials in passive region. → Films formed at turning potentials perform different electrochemical and semiconductor properties. → Dissolutions and regenerations of passive film at turning potentials are obtained by AAS and XPS. → Turning potentials appearing in passive region are ascribed to the changes of the compositions of the passive films. - Abstract: The passivity of 316L stainless steel in borate buffer solution has been investigated by Mott-Schottky, atomic absorption spectrometry (AAS) and X-ray photoelectron spectroscopy (XPS). The results indicate that the polarization curve in the passive region possesses several turning potentials (0 V SCE , 0.2 V SCE , 0.4 V SCE , 0.6 V SCE and 0.85 V SCE ). The passive films formed at turning potentials perform different electrochemical and semiconductor properties. Further, the compositions of the passive films formed at turning potentials are investigated. The results reasonably explain why these potentials appear in the passive region and why specimens perform different properties at turning potentials.

  10. Micro-sampling method based on high-resolution continuum source graphite furnace atomic absorption spectrometry for calcium determination in blood and mitochondrial suspensions.

    Science.gov (United States)

    Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Satrústegui, Jorgina; Procopio, Jesús R

    2017-08-01

    A micro-sampling and straightforward method based on high resolution continuum source atomic absorption spectrometry (HR-CS AAS) was developed to determine extracellular and intracellular Ca in samples of interest in clinical and biomedical analysis. Solid sampling platforms were used to introduce the micro-samples into the graphite furnace atomizer. The secondary absorption line for Ca, located at 239.856nm, was selected to carry out the measurements. Experimental parameters such as pyrolysis and atomization temperatures and the amount of sample introduced for the measurements were optimized. Calibration was performed using aqueous standards and the approach to measure at the wings of the absorption lines was employed for the expansion of the linear response range. The limit of detection was of 0.02mgL -1 Ca (0.39ng Ca) and the upper limit of linear range was increased up to 8.0mgL -1 Ca (160ng Ca). The proposed method was used to determine Ca in mitochondrial suspensions and whole blood samples with successful results. Adequate recoveries (within 91-107%) were obtained in the tests performed for validation purposes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Alternative approaches to correct interferences in the determination of boron in shrimps by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pasias, I.N.; Pappa, Ch.; Katsarou, V.; Thomaidis, N.S., E-mail: ntho@chem.uoa.gr; Piperaki, E.A.

    2014-02-01

    The aim of this study is to propose alternative techniques and methods in combination with the classical chemical modification to correct the major matrix interferences in the determination of boron in shrimps. The performance of an internal standard (Ge) for the determination of boron by the simultaneous multi-element atomic absorption spectrometry was tested. The use of internal standardization increased the recovery from 85.9% to 101% and allowed a simple correction of errors during sampling preparation and heating process. Furthermore, a new preparation procedure based on the use of citric acid during digestion and dilution steps improved the sensitivity of the method and decreased the limit of detection. Finally, a comparative study between the simultaneous multi-element atomic absorption spectrometry with a longitudinal Zeeman-effect background correction system, equipped with a transversely-heated graphite atomizer and the single element atomic absorption spectrometry with a D{sub 2} background correction system, equipped with an end-heated graphite atomizer was undertaken to investigate the different behavior of boron in both techniques. Different chemical modifiers for the determination of boron were tested with both techniques. Ni-citric acid and Ca were the optimal chemical modifiers when simultaneous multi-element atomic absorption spectrometry and single-element atomic absorption spectrometry were used, respectively. By using the single-element atomic absorption spectrometry, the calculated characteristic mass was 220 pg and the calculated limit of detection was 370 μg/kg. On the contrary, with simultaneous multi-element atomic absorption spectrometry, the characteristic mass was 2200 pg and the limit of detection was 5.5 mg/kg. - Highlights: • New approaches were developed to cope with interferences of B determination by ETAAS • Ge was used as internal standard for the determination of B by simultaneous ETAAS • Citric acid was used during

  12. Determination of tellurium in lead and lead alloy using flow injection-hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mesko, Marcia F.; Pozebon, Dirce; Flores, Erico M.M.; Dressler, Valderi L.

    2004-01-01

    A method based on flow injection-hydride generation atomic absorption spectrometry (FI-HG AAS) for the determination of trace amount of Te in lead and lead alloy is described. A flow injection system (FI) and related analytical parameters as well as Te determination and interference caused by Pb, Bi and Ag on Te were investigated. The Pb interference could be overcome by using a small sample volume, while the Bi interference could be overcome by thiourea. However, it was not possible to minimise the interference caused by Ag on Te. The optimised conditions for Te determination in the analysed samples were: 6 mol l -1 HCl as sample carrier solution, 0.75% (m/v) sodium tetrahydroborate as Te reductant, 40 μl of sample solution, and 200 ml min -1 Ar flow rate as carrier gas. The limit of quantification (LOQ) was 1.0 μg g -1 Te (using 250 mg of sample in 50 ml final solution), the limit of detection (LOD) was 2.5 μg l -1 and the relative standard deviation (RSD) was 6% for five consecutive measurements of sample solution. The standard addition calibration method was used. Relatively high sample throughput (ca. 45 sample runs can be performed in a working hour), reduced sample manipulation since matrix separation is not necessary, and minor waste generation are the main advantages of the proposed method for Te determination by FI-HG AAS

  13. Comparison of electrothermal atomization diode laser Zeeman- and wavelength-modulated atomic absorption and coherent forward scattering spectrometry

    International Nuclear Information System (INIS)

    Blecker, Carlo R.; Hermann, Gerd M.

    2009-01-01

    Atomic absorption and coherent forward scattering spectrometry by using a near-infrared diode laser with and without Zeeman and wavelength modulation were carried out with graphite furnace electrothermal atomization. Analytical curves and limits of detection were compared. The magnetic field was modulated with 50 Hz, and the wavelength of the diode laser with 10 kHz. Coherent forward scattering was measured with crossed and slightly uncrossed polarizers. The results show that the detection limits of atomic absorption spectrometry are roughly the same as those of coherent forward scattering spectrometry with crossed polarizers. According to the theory with bright flicker noise limited laser sources the detection limits and linear ranges obtained with coherent forward scattering spectrometry with slightly uncrossed polarizers are significantly better than those obtained with crossed polarizers and with atomic absorption spectrometry. This is due to the fact that employing approaches of polarization spectroscopy reduce laser intensity fluctuations to their signal carried fractions

  14. Elimination of ionic interference effects in the atomic absorption spectrometric determination of ruthenium

    International Nuclear Information System (INIS)

    El-Defrawy, M.M.M.; Posta, J.; Beck, M.T.

    1978-01-01

    In connection with work on the catalytic effect of ruthenium complexes, new compounds were prepared. Atomic absorption spectrometry (a.a.s.) was to be used for their analysis. The standard methods could not be applied to the complexes studied, therefore the effect of cyanide ions for elimination of interfering effects has been studied, because of the great stability of cyanide complexes. (Auth.)

  15. Determination of palladium in various samples by atomic absorption spectrometry after preconcentration with dimethylglyoxime on silica gel

    International Nuclear Information System (INIS)

    Tokalioglu, Serife; Oymak, Tuelay; Kartal, Senol

    2004-01-01

    A preconcentration method based on the adsorption of palladium-dimethylglyoxime (DMG) complex on silica gel for the determination of palladium at trace levels by atomic absorption spectrometry (AAS) has been developed. The retained palladium as Pd(DMG) 2 complex was eluted with 1 mol l -1 HCl in acetone. The effect of some analytical parameters such as pH, amount of reagent and the sample volume on the recovery of palladium was examined in synthetic solutions containing street dust matrix. The influence of some matrix ions on the recovery of palladium was investigated by using the developed method when the elements were present both individually and together. The results showed that 2500 μg ml -1 Na + , K + , Mg 2+ , Al 3+ and Fe 3+ ; 5000 μg ml -1 Ca 2+ ; 500 μg ml -1 Pb 2+ ; 125 μg ml -1 Zn 2+ ; 50 μg ml -1 Cu 2+ and 25 μg ml -1 Ni 2+ did not interfere with the palladium signal. At the optimum conditions determined experimentally, the recovery for palladium was found to be 95.3±1.2% at the 95% confidence level. The relative standard deviation and limit of detection (3s/b) of the method were found to be 1.7% and 1.2 μg l -1 , respectively. In order to determine the adsorption behaviour of silica gel, the adsorption isotherm of palladium was studied and the binding equilibrium constant and adsorption capacity were calculated to be 0.38 l mg -1 and 4.06 mg g -1 , respectively. The determination of palladium in various samples was performed by using both flame AAS and graphite furnace AAS. The proposed method was successfully applied for the determination of palladium in the street dust, anode slime, rock and catalytic converter samples

  16. Feasibility of dispersive liquid–liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M.M.; Duarte, Fabio A.

    2015-01-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid–liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L −1 for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L −1 and from 1.38 to 3.74 mg L −1 , respectively. - Highlights: • Determination of Cu and Fe in wine using DLLME and F AAS • High preconcentration factors and low LODs were achieved. • Alternative method for the determination of Cu and Fe in wine for routine analysis

  17. Feasibility of dispersive liquid–liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Tassia S.; Rosa, Francisco C.; Bizzi, Cezar A.; Dressler, Valderi L.; Flores, Erico M.M.; Duarte, Fabio A., E-mail: fabioand@gmail.com

    2015-03-01

    A method for extraction and preconcentration of Cu and Fe in red and white wines using dispersive liquid–liquid microextraction (DLLME) and determination by flame atomic absorption spectrometry (F AAS) was developed. Extraction was performed using sodium diethyldithiocarbamate as chelating agent and a mixture of 40 μL of 1,2-dichlorobenzene (extraction solvent) and 900 μL of methanol (dispersive solvent). Some parameters that influencing the extraction efficiency such as pH (2 to 5), concentration of chelating agent (0 to 2%), effect of salt addition (0 to 10%), number of washing steps (1 to 4) and centrifugation time (0 to 15 min) were studied. Accuracy was evaluated after microwave-assisted digestion in closed vessels and analytes were determined by inductively coupled plasma optical emission spectrometry. Agreement with the proposed method ranged from 91 to 110 and from 89 to 113% for Cu and Fe, respectively. Calibration of F AAS instrument was performed using analyte addition method and limits of detection were 6.3 and 2.4 μg L{sup −1} for Cu and Fe, respectively. The proposed method was applied for the determination of Cu and Fe in five samples of red wine and three samples of white wine, with concentration ranging from 21 to 178 μg L{sup −1} and from 1.38 to 3.74 mg L{sup −1}, respectively. - Highlights: • Determination of Cu and Fe in wine using DLLME and F AAS • High preconcentration factors and low LODs were achieved. • Alternative method for the determination of Cu and Fe in wine for routine analysis.

  18. Determination of silicon in biomass and products of pyrolysis process via high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Nakadi, Flávio V; Prodanov, Caroline; Boschetti, Wiliam; Vale, Maria Goreti R; Welz, Bernhard; de Andrade, Jailson B

    2018-03-01

    Thermochemical processes can convert the biomass into fuels, such as bio-oil. The biomass submitted to pyrolysis process, such as fibers, are generally rich in silicon, an element that can lead to damages in an engine when there is high concentration in a fuel. High-resolution continuum source atomic absorption spectrometry (HR-CS AAS) is an interesting alternative for Si determination in the products and byproducts of the pyrolysis process because, besides the flame (F) and graphite furnace (GF) atomizers, it has enhanced the application of direct analysis of solid samples (SS) within GF. This study aimed the development of methods to determine Si in biomass samples, their products and byproducts using HR-CS AAS. A high-resolution continuum source atomic absorption spectrometer contrAA 700 equipped with F and GF atomizers was used throughout the study. HR-CS F AAS (λ = 251.611nm, 1 detection pixel, N 2 O/C 2 H 2 flame) was used to evaluate Si content in biomass and ash, after a microwave-assisted acid digestion with HNO 3 and HF. HR-CS GF AAS (T pyr = 1400°C, T atom = 2650°C) has evaluated Si in pyrolysis water and bio-oil at 251.611nm, and in peach pit biomass and ash at 221.174nm using SS, both wavelengths with 1 detection pixel. Rhodium (300μg) was applied as permanent modifier and 10μgPd + 6μg Mg were pipetted onto the standards/samples at each analysis. Three different biomass samples were studied: palm tree fiber, coconut fiber and peach pit, and three certified reference materials (CRM) were used to verify the accuracy of the methods. The figures of merit were LOD 0.09-20mgkg -1 , and LOQ 0.3-20mgkg -1 , considering all the methods. There were no significant differences between the CRM certified values and the determined ones, using a Student t-test with a confidence interval of 95% (n = 5). Si concentration ranged from 0.11-0.92% mm -1 , 1.1-1.7mgkg -1 , 3.3-13mgkg -1 , and 0.41-1.4%mm -1 , in biomass, bio-oil, pyrolysis water and ash, respectively

  19. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li Xun [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Department of Chemistry and Life Science, Gannan Teachers College, Ganzhou 341000 (China); Jia Jing [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Zhenghao [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)]. E-mail: zhwang@bnu.edu.cn

    2006-02-23

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l{sup -1} H{sub 2}SO{sub 4}. Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml{sup -1} for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml{sup -1} for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml{sup -1} As(III) and 2.5% for 20 ng ml{sup -1} As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine.

  20. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Xun; Jia Jing; Wang Zhenghao

    2006-01-01

    A simple procedure was developed for the speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry (EcHG-AAS), without pre-reduction of As(V). Glassy carbon was selected as cathode material in the flow cell. An optimum catholyte concentration for simultaneous generation of arsine from As(III) and As(V) was 0.06 mol l -1 H 2 SO 4 . Under the optimized conditions, adequate sensitivity and difference in ratio of slopes of the calibration curves for As(III) and As(V) can be achieved at the electrolytic currents of 0.6 and 1 A. The speciation of inorganic arsenic can be performed by controlling the electrolytic currents, and the concentration of As(III) and As(V) in the sample can be calculated according to the equations of absorbance additivity obtained at two selected electrolytic currents. The calibration curves were linear up to 50 ng ml -1 for both As(III) and As(V) at 0.6 and 1 A. The detection limits of the method were 0.2 and 0.5 ng ml -1 for As(III) and As(V) at 0.6 A, respectively. The relative standard deviations were of 2.1% for 20 ng ml -1 As(III) and 2.5% for 20 ng ml -1 As(V). The method was validated by the analysis of human hair certified reference material and successfully applied to speciation of soluble inorganic arsenic in Chinese medicine

  1. [A comparative study of cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc in brown rice and fish by inductively coupled plasma-mass spectrometry (ICP-MS) and atomic absorption spectrometry].

    Science.gov (United States)

    Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi

    2004-10-01

    A study was conducted to evaluate the applicability of ICP-MS techniques for determination of metals in brown rice and fish. Cadmium, lead, mercury, arsenic, selenium, manganese, copper and zinc were determined by this method. An open digestion with nitric acid (Method A) and a rapid open digestion with nitric acid and hydrochloric acid (Method B) were used to solubilize analytes in samples, and these procedures were followed by ICP-MS analysis. Recovery of certified elements from standard reference materials by Method A and Method B ranged from 92 to 110% except for mercury (70 to 100%). Analytical results of brown rice and fish samples obtained by this ICP-MS agreed with those obtained by atomic absorption spectrometry (AAS). The results of this study demonstrate that quadrupole ICP-MS provides precise and accurate measurements of the elements tested in brown rice and fish samples.

  2. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Science.gov (United States)

    Kowalewska, Zofia

    2011-07-01

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the ∆ν = 0 vibrational sequence within the electronic transition X 1∑ + → A 1П, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd xS y molecules. At the 258.056 nm line, with the wavelength range covering central pixel ± 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg -1 in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg -1 in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with sulphur content determined by X-ray fluorescence

  3. Feasibility of high-resolution continuum source molecular absorption spectrometry in flame and furnace for sulphur determination in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Kowalewska, Zofia, E-mail: zofia.kowalewska@obr.pl

    2011-07-15

    For the first time, high-resolution molecular absorption spectrometry with a high-intensity xenon lamp as radiation source has been applied for the determination of sulphur in crude oil and petroleum products. The samples were analysed as xylene solutions using vaporisation in acetylene-air flame or in an electrothermally heated graphite furnace. The sensitive rotational lines of the CS molecule, belonging to the {Delta}{nu} = 0 vibrational sequence within the electronic transition X{sup 1}{Sigma}{sup +} {yields} A{sup 1}{Pi}, were applied. For graphite furnace molecular absorption spectrometry, the Pd + Mg organic modifier was selected. Strong interactions with Pd atoms enable easier decomposition of sulphur-containing compounds, likely through the temporal formation of Pd{sub x}S{sub y} molecules. At the 258.056 nm line, with the wavelength range covering central pixel {+-} 5 pixels and with application of interactive background correction, the detection limit was 14 ng in graphite furnace molecular absorption spectrometry and 18 mg kg{sup -1} in flame molecular absorption spectrometry. Meanwhile, application of 2-points background correction found a characteristic mass of 12 ng in graphite furnace molecular absorption spectrometry and a characteristic concentration of 104 mg kg{sup -1} in flame molecular absorption spectrometry. The range of application of the proposed methods turned out to be significantly limited by the properties of the sulphur compounds of interest. In the case of volatile sulphur compounds, which can be present in light petroleum products, severe difficulties were encountered. On the contrary, heavy oils and residues from distillation as well as crude oil could be analysed using both flame and graphite furnace vaporisation. The good accuracy of the proposed methods for these samples was confirmed by their mutual consistency and the results from analysis of reference samples (certified reference materials and home reference materials with

  4. Investigation of chemical modifiers for phosphorus in a graphite furnace using high-resolution continuum source atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lepri, Fabio G.; Dessuy, Morgana B.; Vale, Maria Goreti R.; Borges, Daniel L.G.; Welz, Bernhard; Heitmann, Uwe

    2006-01-01

    Phosphorus is not one of the elements that are typically determined by atomic absorption spectrometry, but this technique nevertheless offers several advantages that make it attractive, such as the relatively great freedom from interferences. As the main resonance lines for phosphorus are in the vacuum-ultraviolet, inaccessible by conventional atomic absorption spectrometry equipment, L'vov and Khartsyzov proposed to use the non-resonance doublet at 213.5 / 213.6 nm. Later it turned out that with conventional equipment it is necessary to use a chemical modifier in order to get reasonable sensitivity, and lanthanum was the first one suggested for that purpose. In the following years more than 30 modifiers have been proposed for the determination of this element, and there is no consensus about the best one. In this work high-resolution continuum source atomic absorption spectrometry has been used to investigate the determination of phosphorus without a modifier and with the addition of selected modifiers of very different nature, including the originally recommended lanthanum modifier, several palladium-based modifiers and sodium fluoride. As high-resolution continuum source atomic absorption spectrometry is revealing the spectral environment of the analytical line at high resolution, it became obvious that without the addition of a modifier essentially no atomic phosphorus is formed, even at 2700 deg. C . The absorption measured with line source atomic absorption spectrometry in this case is due to the PO molecule, the spectrum of which is overlapping with the atomic line. Palladium, with or without the addition of calcium or ascorbic acid, was found to be the only modifier to produce almost exclusively atomic phosphorus. Lanthanum and particularly sodium fluoride produced a mixture of P and PO, depending on the atomization temperature. This fact can explain at least some of the discrepancies found in the literature and some of the phenomena observed in the

  5. In-situ pre-concentration through repeated sampling and pyrolysis for ultrasensitive determination of thallium in drinking water by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Liu, Liwei; Zheng, Huaili; Xu, Bincheng; Xiao, Lang; Chigan, Yong; Zhangluo, Yilan

    2018-03-01

    In this paper, a procedure for in-situ pre-concentration in graphite furnace by repeated sampling and pyrolysis is proposed for the determination of ultra-trace thallium in drinking water by graphite furnace atomic absorption spectrometry (GF-AAS). Without any other laborious enrichment processes that routinely result in analyte loss and contamination, thallium was directly concentrated in the graphite furnace automatically and subsequently subject to analysis. The effects of several key factors, such as the temperature for pyrolysis and atomization, the chemical modifier, and the repeated sampling times were investigated. Under the optimized conditions, a limit of detection of 0.01µgL -1 was obtained, which fulfilled thallium determination in drinking water by GB 5749-2006 regulated by China. Successful analysis of thallium in certified water samples and drinking water samples was demonstrated, with analytical results in good agreement with the certified values and those by inductively coupled plasma mass spectrometry (ICP-MS), respectively. Routine spike-recovery tests with randomly selected drinking water samples showed satisfactory results of 80-96%. The proposed method is simple and sensitive for screening of ultra-trace thallium in drinking water samples. Copyright © 2017. Published by Elsevier B.V.

  6. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  7. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  8. Multiple microflame quartz tube atomizer: Study and minimization of interferences in quartz tube atomizers in hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Moraes Flores, Erico Marlon de [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil)], E-mail: flores@quimica.ufsm.br; Medeiros Nunes, Adriane; Luiz Dressler, Valderi [Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS (Brazil); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, CZ-142 20 Prague (Czech Republic)

    2009-02-15

    A systematic study was performed to evaluate the performance of a multiple microflame (MM) quartz tube atomizer (QTA) for minimizing interferences and to improve the extent of the calibration range using a batch system for hydride generation atomic absorption spectrometry (HG AAS). A comparison of the results with conventional QTA on the determination of antimony, arsenic, bismuth and selenium was performed. The interference of As, Bi, Se, Pb, Sn and Sb was investigated using QTA and MMQTA atomizers. Better performance was found for MMQTA, and no loss of linearity was observed up to 160 ng for Se and Sb and 80 ng for As, corresponding to an enhancement of two times for both analytes when compared to QTA (analyte mass refers to a volume of 200 {mu}l). For Bi, the linear range was the same for QTA and MMQTA (140 ng). With the exception of Bi, the tolerance limits for hydride-forming elements were improved more than 50% in comparison to the conventional QTA system, especially for the interferences of As, Sb and Se. However, for Sn as an interferent, no difference was observed in the determination of Se and Sb using the MMQTA system. The use of MMQTA-HG AAS complied with the relatively high sensitivity of conventional QTA and also provided better performance for interferences and the linear range of calibration.

  9. Introduction of Flame Atomic Absorption Spectrometry (FAAS) For River Water Samples Analysis

    International Nuclear Information System (INIS)

    Shakirah Abd Shukor; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2015-01-01

    Metal contamination in water is a major component in the determination of water quality monitoring. In spite of the viability of several other metal ion analysis techniques for river water, atomic absorption spectroscopy (AAS) method is most commonly used due to the reproducibility results, short analysis time, cost effective, lower level detection and robust. Therefore, this article gives an overview on the principles, instrumentation techniques, sample preparations, instrument calibration and data analysis in a simple manner for beginner. (author)

  10. Study on the application of electrothermal atomization atomic absorption spectrometry for the determination of metallic Cu, Pb, Zn, Cd traces in sea water samples

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Dung; Doan Thanh Son; Tran Thi Ngoc Diep

    2004-01-01

    The trace amount of some heavy metallic elements (Cu, Zn, Pb, Cd) in sea water samples were determined directly (without separation) and quantitatively by using Electro-Thermal Atomization Atomic Absorption Spectrometry (ETA-AAS). The effect of mainly major constituents such as Na, Mg, Ca, K, and the mutual effect of the trace elements, which were present in the matrix on the absorption intensity of each analyzed element was studied. The adding of a certain chemical modification for each trace element was also investigated in order to eliminate the overall effect of the background during the pyrolysis and atomization. The sea water sample after fitrating through a membrane with 0.45 μm-hole size was injected in to the graphite tube via an autosampler (MPE50). The absorption intensity of each element was then measured on the VARIO-6 under the optimum parameters for spectrometer such as: maximum wavelength, current of hollow cathode lamp, and that for graphite furnace such as dry temperature, pyrolysis temperature, atomization temperature, ect. The analytical procedures were set-up and applied for the determination of these above mentioned elements in the synthesized sea water sample and in the real sea water samples with high precision and accuracy. (author)

  11. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    Energy Technology Data Exchange (ETDEWEB)

    Kılınç, Ersin, E-mail: kilincersin@gmail.com [Medical Laboratory Techniques, Vocational Higher School of Healthcare Studies, Mardin Artuklu University, 47200 Mardin (Turkey); Bakırdere, Sezgin [Yıldız Technical University, Art and Science Faculy, Department of Chemistry, Esenler, TR 34220 İstanbul (Turkey); Aydın, Fırat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbakır (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2013-11-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL{sup −1} and 0.51 ng mL{sup −1}, respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL{sup −1} for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL{sup −1}. • The technique is suggested for laboratories equipped with only a flame AA spectrometer.

  12. In situ atom trapping of Bi on W-coated slotted quartz tube flame atomic absorption spectrometry and interference studies

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2013-01-01

    Analytical performances of metal coated slotted quartz tube flame atomic absorption spectrometry (SQT-FAAS) and slotted quartz tube in situ atom trapping flame atomic absorption spectrometry (SQT-AT-FAAS) systems were evaluated for determination of Bi. Non-volatile elements such as Mo, Zr, W and Ta were tried as coating materials. It was observed that W-coated SQT gave the best sensitivity for the determination of Bi for SQT-FAAS and SQT-AT-FAAS. The parameters for W-coated SQT-FAAS and W-coated SQT-AT-FAAS were optimized. Sensitivity of FAAS for Bi was improved as 4.0 fold by W-coated SQT-FAAS while 613 fold enhancement in sensitivity was achieved by W-coated SQT-AT-FAAS using 5.0 min trapping with respect to conventional FAAS. MIBK was selected as organic solvent for the re-atomization of Bi from the trapping surface. Limit of detection values for W-coated SQT-FAAS and W-coated SQT-AT-FAAS was obtained as 0.14 μg mL −1 and 0.51 ng mL −1 , respectively. Linear calibration plot was obtained in the range of 2.5–25.0 ng mL −1 for W-coated SQT-AT-FAAS. Accuracy of the W-coated SQT-AT-FAAS system was checked by analyzing a standard reference material, NIST 1643e. - Highlights: • Further increasing in sensitivity of SQT-AT-FAAS was obtained by using a W coated SQT. • 613 fold sensitivity enhancement was achieved by W coated SQT-AT-FAAS versus FAAS. • A sensitive, rapid and simple technique for Bi was developed with an LOD of 0.51 ng mL −1 . • The technique is suggested for laboratories equipped with only a flame AA spectrometer

  13. Inclusive cross sections in AA collisions at high energies

    International Nuclear Information System (INIS)

    Braun, M.A.

    1988-01-01

    Inclusive cross sections in AA collisions at high energies are considered in the Glauber multiple scattering theory taking into account many-nucleon collisions. Correspondence is found between the AA amplitude and the effective action of the two-dimensional quantum field theory with exponential interaction. The tree and one-loop contributions are calculated in this formalism. The rules are derived, which relate the absorption part of the AA-collision amplitudes associated with various inclusive cross sections to the absorption parts of NN amplitudes. These rules generalize the well-known Agranowsky-Gribov-Kanchelli rules for hh and hA collisions. Formulas are written for single and double inclusive cross sections in AA collisions

  14. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vallinoto, Priscila

    2013-01-01

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  15. Determination of technetium by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Kaye, J.H.; Ballou, N.E.

    1978-01-01

    A detection limit of 6 x 10 -11 g has been achieved for measurement of technetium by graphite furnace atomic absorption spectrometry. A commercially available, demountable, hollow cathode lamp was used and both argon and neon were used as fill gases for the lamp. The range of applicability of the method, when the unresolved 2614.23 to 2615.87 A doublet is used for analysis, is from 60 pg to at least 3 ng of technetium per aliquot analyzed. 3 figures, 1 table

  16. Investigation of chemical modifiers for the direct determination of arsenic in fish oil using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Pereira, Éderson R; de Almeida, Tarcísio S; Borges, Daniel L G; Carasek, Eduardo; Welz, Bernhard; Feldmann, Jörg; Campo Menoyo, Javier Del

    2016-04-01

    High-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS) has been applied for the development of a method for the determination of total As in fish oil samples using direct analysis. The method does not use any sample pretreatment, besides dilution with 1-propanole, in order to decrease the oil viscosity. The stability and sensitivity of As were evaluated using ruthenium and iridium as permanent chemical modifiers and palladium added in solution over the sample. The best results were obtained with ruthenium as the permanent modifier and palladium in solution added to samples and standard solutions. Under these conditions, aqueous standard solutions could be used for calibration for the fish oil samples diluted with 1-propanole. The pyrolysis and atomization temperatures were 1400 °C and 2300 °C, respectively, and the limit of detection and characteristic mass were 30 pg and 43 pg, respectively. Accuracy and precision of the method have been evaluated using microwave-assisted acid digestion of the samples with subsequent determination by HR-CS GF AAS and ICP-MS; the results were in agreement (95% confidence level) with those of the proposed method. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Titretir, Serap, E-mail: serap.titretir@inonu.edu.tr [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); S Latin-Small-Letter-Dotless-I k, Ahmet Inanc [Department of Chemistry, Faculty of Arts and Sciences, Inoenue University, 44280 Malatya (Turkey); Arslan, Yasin [Department of Chemistry, Faculty of Arts and Sciences, Mehmet Akif Ersoy University, Istiklal Yerleskesi, 15030 Burdur (Turkey); Ataman, O. Yavuz [Department of Chemistry, Faculty of Arts and Sciences, Middle East Technical University, 06800 Ankara (Turkey)

    2012-11-15

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 {mu}g L{sup -1} when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: Black-Right-Pointing-Pointer Atom trapping in a quartz tube was used for Sb with flame AAS. Black-Right-Pointing-Pointer An inexpensive, simple and sensitive analytical method was suggested for Sb. Black-Right-Pointing-Pointer Almost no background absorption was observed. Black-Right-Pointing-Pointer Range is in microgram per liter level.

  18. Sensitivity improvement for antimony determination by using in-situ atom trapping in a slotted quartz tube and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Titretir, Serap; Şık, Ahmet İnanç; Arslan, Yasin; Ataman, O. Yavuz

    2012-01-01

    Significant improvement has been achieved for antimony determination using a slotted quartz tube (SQT) as an atom trap (AT) for in situ preconcentration and flame atomic absorption spectrometry (FAAS). The suggested technique consists of trapping analyte species during ordinary nebulization followed by releasing the collected analyte via introducing organic solvent. Procedures and analytical figures of merit have been presented for the techniques called FAAS, SQT-FAAS and finally SQT-AT-FAAS with the relevant comparisons. Analytical parameters, namely composition of the aqueous medium, sample flow rate, flame conditions, distance between burner head and SQT, sampling period and type of organic solvent and its volume have been optimized. Using SQT-AT-FAAS, a sensitivity enhancement of 369 fold has been obtained, 3 s limit of detection was 3.9 μg L −1 when 25.0 mL of sample was collected in 4.0 min. Interference effects of some elements on antimony signal were studied. - Highlights: ► Atom trapping in a quartz tube was used for Sb with flame AAS. ► An inexpensive, simple and sensitive analytical method was suggested for Sb. ► Almost no background absorption was observed. ► Range is in microgram per liter level.

  19. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: A comparative study

    International Nuclear Information System (INIS)

    Cabon, J.Y.; Giamarchi, P.; Le Bihan, A.

    2010-01-01

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L -1 (20 μL, 3σ) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3σ) of 3 ng L -1 (i.e. 54 pM) for total Fe concentration with the use a 20 μL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 μg L -1 ) seawater sample were in good agreement with the certified values.

  20. Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes

    Directory of Open Access Journals (Sweden)

    Yuya Koike

    2017-03-01

    Full Text Available Trace amounts of Cr, Zn, Cd, and Pb were determined by metal furnace atomic absorption spectrometry using absorption tubes. Various absorption tubes were designed as roof- and tube-types, and fixed above the metal furnace in order to extend the light path length. Aqueous standards and samples were injected in the metal furnace and atomized in a metal atomizer with an absorption tube (6 cm length, 15.5 mm diameter. The used of an absorption tube resulted in an enhancement of the atomic absorbance. The ratios of absorbance values with and without the roof- and tube-type absorption tubes were 1.33 and 1.11 for Cr; 1.42 and 1.99 for Zn; 1.66 and 1.98 for Cd; and 1.31 and 1.16 for Pb, respectively. The use of an absorption tube was effective for Zn and Cd analysis, as the absorbance values for these low boiling point metals doubled. The proposed method was successfully applied in the determination of Zn in tap water.

  1. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  2. Implementation of suitable flow injection/sequential-sample separation/preconcentration schemes for determination of trace metal concentrations using detection by electrothermal atomic absorption spectrometry and inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald; Wang, Jianhua

    2002-01-01

    Various preconditioning procedures encomprising appropriate separation/preconcentration schemes in order to obtain optimal sensitivity and selectivity characteristics when using electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS...

  3. Determination of iron in seawater by electrothermal atomic absorption spectrometry and atomic fluorescence spectrometry: a comparative study.

    Science.gov (United States)

    Cabon, J Y; Giamarchi, P; Le Bihan, A

    2010-04-07

    Two methods available for direct determination of total Fe in seawater at low concentration level have been examined: electrothermal atomization atomic absorption spectrometry (ETAAS) and electrothermal atomization laser excited atomic fluorescence spectrometry (ETA-LEAFS). In a first part, we have optimized experimental conditions of ETAAS (electrothermal program, matrix chemical modification) for the determination of Fe in seawater by minimizing the chemical interference effects and the magnitude of the simultaneous background absorption signal. By using the best experimental conditions, a detection limit of 80 ng L(-1) (20 microL, 3sigma) for total Fe concentration was obtained by ETAAS. Using similar experimental conditions (electrothermal program, chemical modification), we have optimized experimental conditions for the determination of Fe by LEAFS. The selected experimental conditions for ETA-LEAFS: excitation wavelength (296.69 nm), noise attenuation and adequate background correction led to a detection limit (3sigma) of 3 ng L(-1) (i.e. 54 pM) for total Fe concentration with the use a 20 microL seawater sample. For the two methods, concentration values obtained for the analysis of Fe in a NASS-5 (0.2 microg L(-1)) seawater sample were in good agreement with the certified values. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Matusiewicz, H.; Krawczyk, M. [Politechn Poznanska, Poznan (Poland)

    2007-03-15

    The analytical performance of coupled hydride generation - integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H{sub 2}Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangernents (a water-cooled single silica tube, double-slotted quartz tube or an 'integrated trap') was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3{sigma}), was 0.9 ng mL{sup -1} for Te. For a 2 min in situ preconcentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% (n = 6) for Te. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  5. On-line preconcentration using a resin functionalized with 3,4-dihydroxybenzoic acid for the determination of trace elements in biological samples by thermospray flame furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Lemos, Valfredo A.; Bezerra, Marcos A.; Amorim, Fabio A.C.

    2008-01-01

    In the present paper, an on-line preconcentration procedure for determination of cadmium, copper and zinc by thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) is proposed. Amberlite XAD-4 functionalized with 3,4-dihydroxybenzoic acid (XAD4-DHB) packed in a minicolumn was used as sorbent material. The metals were retained on the XAD-DHB resin, from which it could be eluted directly to the thermospray flame furnace system. The detection limits were 28 (Cd), 100 (Cu) and 77 ng L -1 (Zn) for 60 s preconcentration time, at a sample flow rate of 7.0 mL min -1 . Enrichment factors were 102, 91 and 62, for cadmium, copper and zinc, respectively. The procedure has been applied successfully to metal determination in biological standard reference materials

  6. Inorganic arsenic –spe hg–aas method for rice tested in-house and collaboratively

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Qian, Yiting; Sloth, Jens Jørgen

    2013-01-01

    and is one of the major contributors to the iAs exposure in many countries. The work presented here describes the development, validation and application of a simple and inexpensive method for inorganic arsenic (iAs) determination in rice samples. The separation of iAs from organoarsenic compounds (MA...... sample extracts (pH 6±1) followed by selective elution of arsenate from a strong anion exchange SPE cartridge enabled the selective iAs quantification by HG-AAS, measuring total arsenic (As) in the SPE eluate. The in-house validation gave mean recoveries of 101–106 % for spiked rice samples and in two...... and DMA) was done by off-line solidphase extraction (SPE) followed by hydride generation atomic absorption spectrometry (HG-AAS) detection. Water bath heating (90 °C, 60 min) of samples with dilute nitric acid and hydrogen peroxide solubilised and oxidized all iAs to arsenate (AsV). Loading of buffered...

  7. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Science.gov (United States)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6-4.3%), repeatability (4-9%), reproducibility (9-11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as straightforward

  8. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nakadi, Flávio V.; Rosa, Lilian R.; Veiga, Márcia A.M.S. da, E-mail: mamsveiga@ffclrp.usp.br

    2013-10-01

    We propose a procedure for the determination of sulfur in coal slurries by high resolution continuum source electrothermal molecular absorption spectrometry. The slurry, whose concentration is 1 mg mL{sup −1}, was prepared by mixing 50 mg of the sample with 5% v/v nitric acid and 0.04% m/v Triton X-100 and was homogenized manually. It sustained good stability. The determination was performed via CS molecular absorption at 257.592 nm, and the optimized vaporization temperature was 2500 °C. The accuracy of the method was ensured by analysis of certified reference materials SRM 1632b (trace elements in coal) and SRM 1633b (coal fly ash) from the National Institute of Standards and Technology, using external calibration with aqueous standards prepared in the same medium and used as slurry. We achieved good agreement with the certified reference materials within 95% confidence interval, LOD of 0.01% w/w, and RSD of 6%, which confirms the potential of the proposed method. - Highlights: • HR-CS ET MAS as a technique to determine sulfur in coal and ash • Utilization of (coal and coal fly ash) slurry as a sample preparation • Simple and fast method, which uses external calibration with aqueous standards without chemical modifier.

  9. Gold volatile species atomization and preconcentration in quartz devices for atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Arslan, Y.; Musil, Stanislav; Matoušek, Tomáš; Kratzer, Jan; Dědina, Jiří

    103-104, JAN-FEB (2015), s. 155-163 ISSN 0584-8547 R&D Projects: GA ČR GA14-23532S Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : gold * volatile species generation * quartz atomizers * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  10. Selective and sensitive speciation analysis of Cr(VI) and Cr(III), at sub-μgL-1 levels in water samples by electrothermal atomic absorption spectrometry after electromembrane extraction.

    Science.gov (United States)

    Tahmasebi, Zeinab; Davarani, Saied Saeed Hosseiny

    2016-12-01

    In this work, electromembrane extraction in combination with electrothermal atomic absorption spectrometry (ET-AAS) was investigated for speciation, preconcentration and quantification of Cr(VI) and Cr(III) in water samples through the selective complexation of Cr(VI) with 1,5-diphenylcarbazide (DPC) as a complexing agent. DPC reduces Cr(VI) to Cr(III) ions and then Cr(III) species are extracted based on electrokinetic migration of their cationic complex (Cr(III)-DPC) toward the negative electrode placed in the hollow fiber. Also, once oxidized to Cr(VI), Cr(III) ions in initial sample were determined by this procedure. The influence of extraction parameters such as pH, type of organic solvent, chelating agent concentration, stirring rate, extraction time and applied voltage were evaluated following a one-at-a-time optimization approach. Under optimized conditions, the extracted analyte was quantified by ETAAS, with an acceptable linearity in the range of 0.05-5ngmL -1 (R 2 value=0.996), and a repeatability (%RSD) between 3.7% and 12.2% (n=4) for 5.0 and 1.0ngmL -1 of Cr(VI), respectively. Also, we obtained an enrichment factor of 110 that corresponded to the recovery of 66%. The detection limit (S/N ratio of 3:1) was 0.02ngmL -1 . Finally, this new method was successfully employed to determine Cr(III) and Cr(VI) species in real water samples. Copyright © 2016. Published by Elsevier B.V.

  11. Investigation of an alternating current plasma as an element selective atomic emission detector for high-resolution capillary gas chromatography and as a source for atomic absorption and atomic emission spectrometry

    Science.gov (United States)

    Ombaba, Jackson M.

    This thesis deals with the construction and evaluation of an alternating current plasma (ACP) as an element-selective detector for high resolution capillary gas chromatography (GC) and as an excitation source for atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). The plasma, constrained in a quartz discharge tube at atmospheric pressure, is generated between two copper electrodes and utilizes helium as the plasma supporting gas. The alternating current plasma power source consists of a step-up transformer with a secondary output voltage of 14,000 V at a current of 23 mA. The device exhibits a stable signal because the plasma is self-seeding and reignites itself every half cycle. A tesla coil is not required to commence generation of the plasma if the ac voltage applied is greater than the breakdown voltage of the plasma-supporting gas. The chromatographic applications studied included the following: (1) the separation and selective detection of the organotin species, tributyltin chloride (TBT) and tetrabutyltin (TEBT), in environmental matrices including mussels (Mvutilus edullus) and sediment from Boston Harbor, industrial waste water and industrial sludge, and (2) the detection of methylcyclopentadienyl manganesetricarbonyl (MMT) and similar compounds used as gasoline additives. An ultrasonic nebulizer (common room humidifier) was utilized as a sample introduction device for aqueous solutions when the ACP was employed as an atomization source for atomic absorption spectrometry and as an excitation source for atomic emission spectrometry. Plasma diagnostic parameters studied include spatial electron number density across the discharge tube, electronic, excitation and ionization temperatures. Interference studies both in absorption and emission modes were also considered. Figures of merits of selected elements both in absorption and emission modes are reported. The evaluation of a computer-aided optimization program, Drylab GC, using

  12. Determination of trace and toxic elements in Koran rice CRM by INAA, ICP and AAS

    International Nuclear Information System (INIS)

    Yong Sam Chung; Young Ju Chung; Kyung Haeng Cho; Joung Hae Lee

    1997-01-01

    Trace and toxic elements in Certified Reference Material (CRM) made of Korean rice at the Korea Research Institute of Standards and Science have been analyzed by Instrumental Neutron Activation Analysis (INAA). Data intercomparison from the measurement with those of Atomic Absorption Spectrometry (AAS) and Induced Coupled Plasma Spectrometry (ICPS) has been studied. The powdered samples were sterilized at 1.5 x 10 6 rad in the bottles using a 60 Co source after sieving and spiking to specific elements such as As, Cd, Cr, Cu and Hg and then the homogeneity of samples was assessed. Rice flour (SRM 1568a) and standard solutions made by the National Institute of Standards Technology (NIST) were used to construct the calibration curves for the INAA and the chemical methods, respectively. The uncertainties and concentration of constituent elements were determined and the possibility of their use for analytical quality control was considered. (author)

  13. Determination of iron absorption and excretion by whole-body counting; Determination de l'absorption et de l'excretion du fer par la methode de comptage global humain

    Energy Technology Data Exchange (ETDEWEB)

    Hollard, D; Benabid, Y; Berard, M; Bonnin, J; Darnault, J; Millet, M [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Using a whole-body counter, the authors have studied {sup 59}Fe absorption and loss in 8 normal subjects and in 30 iron deficient patients. Results showed that whole-body counting provided an excellent and simple method for iron retention measurements, obviating many inaccuracies of previous technic. Normal absorption of radio iron with this procedure has ranged from 9 per cent to 20 per cent of the administered tracer in normal subjects, with a mean of 15 per cent. A significant increase in {sup 59}Fe absorption was noted in 21 iron-deficient patients in whom the retention ranged from 40 to 100 per cent. However, 3 iron-deficient patients were found to have low absorption, and their severe iron deficiency could be correlated with this defect in absorption. This method permits also the determination of the rate of iron excretion during the following months and therefore the study of the mechanism of some pathological loss. (authors) [French] L'utilisation de la methode de comptage humain global a permis aux auteurs d'etudier l'absorption et l'excretion du fer-59 chez 8 sujets temoins et 30 sujets hyposideremiques. Les resultats montrent que cette technique simple et directe offre de nombreux avantages sur les methodes employees jusqu'a maintenant pour cette determination. La valeur normale de l'absorption du fer chez les temoins est d'environ 15 pour cent de la dose ingeree. Ce chiffre est tres fortement augmente chez 21 sujets hyposideremiques, pouvant atteindre 100 pour cent de la dose ingeree. Par contre, pour 3 malades, cette absorption est si faible qu'elle suggere une carence par defaut d'absorption. Cette methode permet egalement de suivre l'excretion du fer au cours des mois qui suivent l'examen et de determiner le mecanisme de fuites anormales. (auteurs)

  14. Accuracy of a method based on atomic absorption spectrometry to determine inorganic arsenic in food: Outcome of the collaborative trial IMEP-41.

    Science.gov (United States)

    Fiamegkos, I; Cordeiro, F; Robouch, P; Vélez, D; Devesa, V; Raber, G; Sloth, J J; Rasmussen, R R; Llorente-Mirandes, T; Lopez-Sanchez, J F; Rubio, R; Cubadda, F; D'Amato, M; Feldmann, J; Raab, A; Emteborg, H; de la Calle, M B

    2016-12-15

    A collaborative trial was conducted to determine the performance characteristics of an analytical method for the quantification of inorganic arsenic (iAs) in food. The method is based on (i) solubilisation of the protein matrix with concentrated hydrochloric acid to denature proteins and allow the release of all arsenic species into solution, and (ii) subsequent extraction of the inorganic arsenic present in the acid medium using chloroform followed by back-extraction to acidic medium. The final detection and quantification is done by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS). The seven test items used in this exercise were reference materials covering a broad range of matrices: mussels, cabbage, seaweed (hijiki), fish protein, rice, wheat, mushrooms, with concentrations ranging from 0.074 to 7.55mgkg(-1). The relative standard deviation for repeatability (RSDr) ranged from 4.1 to 10.3%, while the relative standard deviation for reproducibility (RSDR) ranged from 6.1 to 22.8%. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Almeida, Jorge S.; Anunciação, Taiana A.; Brandão, Geovani C.; Dantas, Alailson F.; Lemos, Valfredo A.

    2015-01-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO 3 gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L −1 HNO 3 as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg −1 . Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and samples

  16. The new concept of hyphenated analytical system: Simultaneous determination of inorganic arsenic(III), arsenic(V), selenium(IV) and selenium(VI) by high performance liquid chromatography-hydride generation-(fast sequential) atomic absorption spectrometry during single analysis

    International Nuclear Information System (INIS)

    Niedzielski, P.

    2005-01-01

    The paper presents a new conception of determination of inorganic speciation forms of arsenic: As(III) and As(V) as well selenium Se(IV) and Se(VI) by means of the high performance liquid chromatography hyphenated with a detection by the atomic absorption spectrometry with hydride generation (HPLC-HG-AAS). The application of optimization procedure conditions of chromatographic separation of arsenic and selenium speciation forms (using anion-exchange Supelco LC-SAX1 column and phosphate buffer at pH 5.40 as a mobile phase) as well as the use of the atomic absorption spectrometry as a detector, which enables work in fast sequential mode, allowed to develop original detection methodology of simultaneous determination of arsenic As(III), As(V) and selenium Se(IV) and Se(VI) speciation forms within a 220 s single analysis. The obtained detection limits were 7.8 ng mL -1 for As(III); 12.0 ng mL -1 for As(V); 2.4 ng mL -1 for Se(IV) and 18.6 ng mL -1 for Se(VI) and precision 10.5%, 12.1%, 14.2% and 17.3%, respectively, for 100 ng mL -1 . The described method was used for ground water analysis

  17. Analysis of Dithiocarbamate Fungicides in Vegetable Matrices Using HPLC-UV Followed by Atomic Absorption Spectrometry.

    Science.gov (United States)

    Al-Alam, Josephine; Bom, Laura; Chbani, Asma; Fajloun, Ziad; Millet, Maurice

    2017-04-01

    A simple method combining ion-pair methylation, high-performance liquid chromatography (HPLC) analysis with detection at 272 nm and atomic absorption spectrometry was developed in order to determine 10 dithiocarbamate fungicides (Dazomet, Metam-sodium, Ferbam, Ziram, Zineb, Maneb, Mancozeb, Metiram, Nabam and Propineb) and distinguish ethylenbisdithiocarbamates (EBDTCs) Zineb, Maneb and Mancozeb in diverse matrices. This method associates reverse phase analysis by HPLC analysis with detection at 272 nm, with atomic absorption spectrometry in order to distinguish, with the same extraction protocol, Maneb, Mancozeb and Zineb. The limits of detection (0.4, 0.8, 0.5, 1.25 and 1.97) and quantification (1.18, 2.5, 1.52, 4.2 and 6.52) calculated in injected nanogram, respectively, for Dazomet, Metam-Na, dimethyldithiocarbamates (DMDTCs), EBDTCs and propylenebisdithiocarbamates (PBDTCs) justify the sensitivity of the method used. The coefficients of determination R2 were 0.9985, 0.9978, 0.9949, 0.988 and 0.9794, respectively, for Dazomet, Metam-Na, DMDTCs, EBDTCs and PBDTCs, and the recovery from fortified apple and leek samples was above 90%. Results obtained with the atomic absorption method in comparison with spectrophotometric analysis focus on the importance of the atomic absorption as a complementary specific method for the distinction between different EBDTCs fungicides. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  19. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Rahman, S.

    2009-01-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  20. Evaluation of trace elements in chewing tobacco and snuff using instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS)

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, S.; Siddique, N.; Rahman, S. [Chemistry Div., Directorate of Science, Pakistan Inst. of Nuclear Science and Tech., Islamabad (Pakistan)

    2009-07-01

    Nine samples of chewing tobacco, snuff, tobacco leaf and ash were analyzed using Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS). Almost all samples of chewing tobacco and snuff studied in this work contain substantial amounts of Mg, Mn, Na, K. V. Sc, Rb and Fe. Furthermore, varying amounts of Al, Ba, Ca, Ce, Co and Zn were also detected in all tobacco samples. Of the toxic elements which were determined using INAA. As, Sb and Hg were quantified in only few tobacco samples. However, other toxic elements, which were determined using AAS, such as Cu, Pb and Cd were detected in almost all samples of chewing tobacco and snuff. The concentration of majority of the detected elements is high in ash samples which imply that most elements in chewing tobacco and snuff may originate from the addition of ash. (orig.)

  1. Determination of metals in atmospheric particulates using atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F.A.; Capdevila, C.

    1979-01-01

    Nineteen trace metals in atmospheric samples have been determined by atomic absorption spectrometry, using a graphite furnace for most elements. Paper filters have been used to collect air samples. The sample preparation procedure involves the removal of organic matter and the conversion of the metals to soluble salts by ashing the filters in an oxygen plasma at 125 deg C for 6 h. and by subsequent dissolution in HN0 3 HCl solution. The sensitivities achieved are in the range of 2,5.10 -5 and 6,3.10 -3 μg/m 3 , for an air volume of 2000 m 3 . (author)

  2. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Kahe, Hadi; Chamsaz, Mahmoud

    2016-11-01

    A simple and reliable supramolecule-aggregated liquid solid microextraction method is described for preconcentration and determination of trace amounts of bismuth in water as well as human blood serum and hair samples. Catanionic microstructures of cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) surfactants, dissolved in deionized water/propanol, are used as a green solvent to extract bismuth (III)-diethyldithiocarbamate complexes by dispersive microextraction methodology. The extracted solid phase is easily removed and dissolved in 50 μL propanol for subsequent measurement by electrothermal atomic absorption spectrometry (ET-AAS). The procedure benefits the merits of supramolecule aggregates' properties and dispersive microextraction technique using water as the main component of disperser solvent, leading to direct interaction with analyte. Phase separation behavior of extraction solvent and different parameters influencing the extraction efficiency of bismuth ion such as salt concentration, pH, centrifugation time, amount of chelating agent, SDS:CTAB mole ratio, and solvent amounts were thoroughly optimized. Under the optimal experimental conditions, the calibration curve was linear in the range of 0.3-6 μg L -1 Bi (III) with a limit of detection (LOD) of 0.16 μg L -1 (S/N = 3). The relative standard deviations (RSD) of determination were obtained to be 5.1 and 6.2 % for 1 and 3 μg L -1 of Bi (III), respectively. The developed method was successfully applied as a sensitive and accurate technique for determination of bismuth ion in human blood serum, hair samples, and a certified reference material.

  3. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    International Nuclear Information System (INIS)

    Ataman, O. Yavuz

    2008-01-01

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C 0 , where the change in characteristic mass, m 0 , can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E max , maximum enhancement factor; E t , enhancement for 1.0 minute sampling and E v , enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps

  4. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bentlin, Fabrina R.S.; Pozebon, Dirce; Mello, Paola A.; Flores, Erico M.M.

    2007-01-01

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO 3 ) 2 was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 μg g -1 of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  5. Flow injection on-line dilution for zinc determination in human saliva with electrothermal atomic absorption spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Burguera-Pascu, Margarita [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain)], E-mail: margaburpas@hotmail.com; Rodriguez-Archilla, Alberto [Department of Oral Medicine, School of Dentistry, University of Granada, Granada (Spain); Burguera, Jose Luis; Burguera, Marcela; Rondon, Carlos; Carrero, Pablo [Department of Chemistry, Faculty of Sciences, University of Los Andes, Merida (Venezuela)

    2007-09-26

    An automated method is described for the determination of zinc in human saliva by electrothermal atomic absorption spectrometry (ET AAS) after on-line dilution of samples with a significant reduction of sample consumption per analysis (<0.4 mL including the dead volume of the system). In order to fulfill this aim without changing the sample transport conduits during the experiments, a flow injection (FI) dilution system was constructed. Its principal parts are: one propulsion device (peristaltic pump, PP) for either samples, standards or washing solution all located in an autosampler tray and for the surfactant solution (Triton X-100) used as diluent, and a two-position time based solenoid injector (TBSI{sub 1}) which allowed the introduction of 10 {mu}L of either solution in the diluent stream. To avoid unnecessary waste of samples, the TBSI{sub 1} also permitted the recirculation of the solutions to their respective autosampler cups. The downstream diluted solution fills a home made sampling arm assembly. The sequential deposition of 20 {mu}L aliquots of samples or standards on the graphite tube platform was carried out by air displacement with a similar time based solenoid injector (TBSI{sub 2}). The dilution procedure and the injection of solutions into the atomizer are computer controlled and synchronized with the operation of the temperature program. Samples or standards solutions were submitted to two drying steps (at 90 and 130 deg. C), followed by pyrolysis and atomization at 700 and 1700 deg. C, respectively. The aqueous calibration was linear up to 120.0 {mu}g L{sup -1} for diluted standard solutions/samples and its slope was similar (p > 0.05) to the standard addition curve, indicating lack of matrix effect. The precision tested by repeated analysis of real saliva samples was less than 3% and the detection limit (3{sigma}) was of 0.35 {mu}g L{sup -1}. To test the accuracy of the proposed procedure, recovery tests were performed, obtaining mean recovery

  6. Determination of total arsenic in fish by hydride-generation atomic absorption spectrometry: method validation, traceability and uncertainty evaluation

    Science.gov (United States)

    Nugraha, W. C.; Elishian, C.; Ketrin, R.

    2017-03-01

    Fish containing arsenic compound is one of the important indicators of arsenic contamination in water monitoring. The high level of arsenic in fish is due to absorption through food chain and accumulated in their habitat. Hydride generation (HG) coupled with atomic absorption spectrometric (AAS) detection is one of the most popular techniques employed for arsenic determination in a variety of matrices including fish. This study aimed to develop a method for the determination of total arsenic in fish by HG-AAS. The method for sample preparation from American of Analytical Chemistry (AOAC) Method 999.10-2005 was adopted for acid digestion using microwave digestion system and AOAC Method 986.15 - 2005 for dry ashing. The method was developed and validated using Certified Reference Material DORM 3 Fish Protein for trace metals for ensuring the accuracy and the traceability of the results. The sources of uncertainty of the method were also evaluated. By using the method, it was found that the total arsenic concentration in the fish was 45.6 ± 1.22 mg.Kg-1 with a coverage factor of equal to 2 at 95% of confidence level. Evaluation of uncertainty was highly influenced by the calibration curve. This result was also traceable to International Standard System through analysis of Certified Reference Material DORM 3 with 97.5% of recovery. In summary, it showed that method of preparation and HG-AAS technique for total arsenic determination in fish were valid and reliable.

  7. Répartition des paramètres physico-chimiques et métalliques des ...

    African Journals Online (AJOL)

    ibaa

    Mots clés: Eaux usées, eau de mer, paramètres physiques et métalliques, spectrophotométrie, interaction, .... la solubilité des gaz. Elle favorise aussi l'auto épuration et accroit la vitesse de sédimentation, ce qui peut présenter un intérêt dans les stations d'épuration (Djermakoye,. 2005). ..... atomic absorption spectrometry. J.

  8. Atomic Absorption Spectroscopy. The Present and the Future.

    Science.gov (United States)

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  9. Dielectric barrier discharge plasma atomizer for hydride generation atomic absorption spectrometry-Performance evaluation for selenium

    Czech Academy of Sciences Publication Activity Database

    Duben, Ondřej; Boušek, J.; Dědina, Jiří; Kratzer, Jan

    2015-01-01

    Roč. 111, SEP (2015), s. 57-63 ISSN 0584-8547 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation-atomic absorption spectrometry * selenium Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.289, year: 2015

  10. Determination of serum aluminum by electrothermal atomic absorption spectrometry: A comparison between Zeeman and continuum background correction systems

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, Pamela C. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Parsons, Patrick J. [Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, P.O. Box 509, Albany, NY 12201-0509 (United States); Lead Poisoning/Trace Elements Laboratory, Wadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201-0509 (United States)], E-mail: patrick.parsons@wadsworth.org

    2007-03-15

    Excessive exposure to aluminum (Al) can produce serious health consequences in people with impaired renal function, especially those undergoing hemodialysis. Al can accumulate in the brain and in bone, causing dialysis-related encephalopathy and renal osteodystrophy. Thus, dialysis patients are routinely monitored for Al overload, through measurement of their serum Al. Electrothermal atomic absorption spectrometry (ETAAS) is widely used for serum Al determination. Here, we assess the analytical performances of three ETAAS instruments, equipped with different background correction systems and heating arrangements, for the determination of serum Al. Specifically, we compare (1) a Perkin Elmer (PE) Model 3110 AAS, equipped with a longitudinally (end) heated graphite atomizer (HGA) and continuum-source (deuterium) background correction, with (2) a PE Model 4100ZL AAS equipped with a transversely heated graphite atomizer (THGA) and longitudinal Zeeman background correction, and (3) a PE Model Z5100 AAS equipped with a HGA and transverse Zeeman background correction. We were able to transfer the method for serum Al previously established for the Z5100 and 4100ZL instruments to the 3110, with only minor modifications. As with the Zeeman instruments, matrix-matched calibration was not required for the 3110 and, thus, aqueous calibration standards were used. However, the 309.3-nm line was chosen for analysis on the 3110 due to failure of the continuum background correction system at the 396.2-nm line. A small, seemingly insignificant overcorrection error was observed in the background channel on the 3110 instrument at the 309.3-nm line. On the 4100ZL, signal oscillation was observed in the atomization profile. The sensitivity, or characteristic mass (m{sub 0}), for Al at the 309.3-nm line on the 3110 AAS was found to be 12.1 {+-} 0.6 pg, compared to 16.1 {+-} 0.7 pg for the Z5100, and 23.3 {+-} 1.3 pg for the 4100ZL at the 396.2-nm line. However, the instrumental detection

  11. Trace mercury determination in drinking and natural water after preconcentration and separation by DLLME-SFO method coupled with cold vapor atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Abdollahi Atousa

    2014-07-01

    Full Text Available A novel dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME-SFO for simultaneous separation/preconcentration of ultra trace amounts of mercury was used. A method based on amalgamation was used for collection of gaseous mercury on gold coated sand (Gold trap. The concentration of mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS. The DLLME-SFO behavior of mercury by using dithizone as complexing agent was systematically investigated. The factors influencing, the complex formation and extraction of DLLME-SFO method such as type and volume of extraction and disperser solvents, pH, concentration of salt, centrifuging time and concentration of the chelating agent were optimized. The method was successfully applied to the determination of mercury in drinking and natural water and satisfactory relative recoveries (95–105% were achieved. The proposed procedure was based on very low consumption of organic solvents. The other benefits of the system were sensitive, simple, friendly to the environment, rejection of matrix constituent, low cost, the time consuming and high enrichment factor.

  12. Role and mechanism of AT1-AA in the pathogenesis of HELLP syndrome.

    Science.gov (United States)

    Bu, Shurui; Wang, Yuxian; Sun, Shuqing; Zheng, Yanqian; Jin, Zhu; Zhi, Jianming

    2018-01-10

    HELLP syndrome remains a leading cause of maternal and neonatal mortality and morbidity worldwide, which symptoms include hemolysis, elevated liver enzymes and low platelet count. The objective of this study was to determine whether HELLP is associated with AT1-AA. The positive rate and titer of AT1-AA in plasma from pregnant women were determined, and the correlation of AT1-AA titer with the grade of HELLP was analyzed. A HELLP rat model established by intravenous injection of AT1-AA. Our experimental results show the AT1-AA titer and positive rate were significantly higher in HELLP group, and AT1-AA titer were positively correlated with the level of TNF-α and ET-1 in plasma and the grade of HELLP syndrome. The results of animal experiments showed that the typical features of HELLP in the pregnant rats after AT1-AA injection. The levels of TNF-α and ET-1 in plasma and liver tissue were significantly increased in AT1-AA-treated rats compared with control rats. The HELLP syndrome induced by AT1-AA was attenuated markedly after administration of losartan. These data support the hypothesis that one the potential pathway that AT1-AA induce damage to capillary endothelial cells and liver during pregnancy is through activation of TNF-α and ET-1.

  13. Direct determination of chromium in infant formulas employing high-resolution continuum source electrothermal atomic absorption spectrometry and solid sample analysis.

    Science.gov (United States)

    Silva, Arlene S; Brandao, Geovani C; Matos, Geraldo D; Ferreira, Sergio L C

    2015-11-01

    The present work proposed an analytical method for the direct determination of chromium in infant formulas employing the high-resolution continuum source electrothermal atomic absorption spectrometry combined with the solid sample analysis (SS-HR-CS ET AAS). Sample masses up to 2.0mg were directly weighted on a solid sampling platform and introduced into the graphite tube. In order to minimize the formation of carbonaceous residues and to improve the contact of the modifier solution with the solid sample, a volume of 10 µL of a solution containing 6% (v/v) H2O2, 20% (v/v) ethanol and 1% (v/v) HNO3 was added. The pyrolysis and atomization temperatures established were 1600 and 2400 °C, respectively, using magnesium as chemical modifier. The calibration technique was evaluated by comparing the slopes of calibration curves established using aqueous and solid standards. This test revealed that chromium can be determined employing the external calibration technique using aqueous standards. Under these conditions, the method developed allows the direct determination of chromium with limit of quantification of 11.5 ng g(-1), precision expressed as relative standard deviation (RSD) in the range of 4.0-17.9% (n=3) and a characteristic mass of 1.2 pg of chromium. The accuracy was confirmed by analysis of a certified reference material of tomato leaves furnished by National Institute of Standards and Technology. The method proposed was applied for the determination of chromium in five different infant formula samples. The chromium content found varied in the range of 33.9-58.1 ng g(-1) (n=3). These samples were also analyzed employing ICP-MS. A statistical test demonstrated that there is no significant difference between the results found by two methods. The chromium concentrations achieved are lower than the maximum limit permissible for chromium in foods by Brazilian Legislation. Copyright © 2015. Published by Elsevier B.V.

  14. Determination of trace elements in paints by direct sampling graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bentlin, Fabrina R.S. [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil); Pozebon, Dirce [Instituto de Quimica, Universidade Federal do Rio Grande do Sul, UFRGS, 91501-970 Porto Alegre, RS (Brazil)], E-mail: dircepoz@iq.ufrgs.br; Mello, Paola A.; Flores, Erico M.M. [Departamento de Quimica, Universidade Federal de Santa Maria, UFSM, 97105-900 Santa Maria, RS (Brazil)

    2007-10-17

    A direct sampling graphite furnace atomic absorption spectrometric (DS-GFAAS) method for the determination of Cd, Pb, Cr, Ni, Co and Cu in paints has been developed. Serigraphy, acrylic and tattoo paints were analysed. Approaches like pyrolysis and atomization temperatures, modifiers and sample mass introduced in the atomizer were studied. Quantification was performed using calibration curves measured with aqueous standard solutions pipetted onto the platform. The sample mass introduced in the graphite tube ranged from 0.02 to 8.0 mg. Palladium was used as modifier for Cd, Pb and Cu, while Mg(NO{sub 3}){sub 2} was used for Co. For Ni determination, the graphite platform was covered with carbon powder. The characteristic masses of Cd, Pb, Cr, Ni, Co and Cu were 1.4, 22.5, 7.9, 11.0, 9.6 and 12.5 pg, while the limits of detection were 0.0004, 0.001, 0.03, 0.22, 0.11 and 0.05 {mu}g g{sup -1} of Cd, Pb, Cr, Ni, Co and Cu, respectively. The accuracy was determined by comparison of the results with those obtained by inductively coupled plasma mass spectrometry (ICP-MS) and graphite furnace atomic absorption spectrometry (GFAAS), using liquid sampling of digests. For matrix characterization, major and minor elements (Al, Mg, Ba, Ca, Cr, Cu, Pb, Sr, Ti and Mg) were determined by inductively coupled plasma optical emission spectrometry (ICP OES)

  15. [Determination of mercury in Boletus impolitus by flow injection-atomic absorption spectrometry].

    Science.gov (United States)

    Li, Tao; Wang, Yuan-Zhong

    2008-04-01

    Various test conditions and effect factors for the determination of mercury by flow injection-atomic absorption spectrometry were discussed, and a method for the determination of mercury in Boletus impolitus has been developed. The linear range for mercury is 0-60 microg x L(-1). The relative standard deviation is less than 3.0%, and the recovery is 96%-107%. This method is simple, rapid and has been applied to the determination of mercury in Boletus impolitus samples with satisfactory results.

  16. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Martinis, Estefanía M; Bertón, Paula; Olsina, Roberto A; Altamirano, Jorgelina C; Wuilloud, Rodolfo G

    2009-08-15

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)mim][PF(6)]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 microl of 9.0 mol L(-1) hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3ngL(-1) and the relative standard deviation (RSD) for 10 replicates at 1 microg L(-1) Hg(2+) was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  17. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Martinis, Estefania M.; Berton, Paula; Olsina, Roberto A.; Altamirano, Jorgelina C.; Wuilloud, Rodolfo G.

    2009-01-01

    A liquid-liquid extraction procedure (L-L) based on room temperature ionic liquid (RTIL) was developed for the preconcentration and determination of mercury in different water samples. The analyte was quantitatively extracted with 1-butyl-3-methylimidazolium hexafluorophosphate ([C 4 mim][PF 6 ]) under the form of Hg-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Hg-5-Br-PADAP) complex. A volume of 500 μl of 9.0 mol L -1 hydrochloric acid was used to back-extract the analyte from the RTIL phase into an aqueous media prior to its analysis by flow injection-cold vapor atomic absorption spectrometry (FI-CV-AAS). A preconcentration factor of 36 was achieved upon preconcentration of 20 mL of sample. The limit of detection (LOD) obtained under the optimal conditions was 2.3 ng L -1 and the relative standard deviation (RSD) for 10 replicates at 1 μg L -1 Hg 2+ was 2.8%, calculated with peaks height. The method was successfully applied to the determination of mercury in river, sea, mineral and tap water samples and a certified reference material (CRM).

  18. Cloud point extraction for the determination of lead and cadmium in urine by graphite furnace atomic absorption spectrometry with multivariate optimization using Box-Behnken design

    International Nuclear Information System (INIS)

    Maranhao, Tatiane de A; Martendal, Edmar; Borges, Daniel L.G.; Carasek, Eduardo; Welz, Bernhard; Curtius, Adilson J.

    2007-01-01

    Cloud point extraction (CPE) is proposed as a pre-concentration procedure for the determination of Pb and Cd in undigested urine by graphite furnace atomic absorption spectrometry (GF AAS). Aliquots of 0.5 mL urine were acidified with HCl and the chelating agent ammonium O,O-diethyl dithiophosphate (DDTP) was added along with the non-ionic surfactant Triton X-114 at the optimized concentrations. Phase separation was achieved by heating the mixture to 50 deg. C for 15 min. The surfactant-rich phase was analyzed by GF AAS, employing the optimized pyrolysis temperatures of 900 deg. C for Pb and 800 deg. C for Cd, using a graphite tube with a platform treated with 500 μg Ru as permanent modifier. The reagent concentrations for CPE (HCl, DDTP and Triton X-114) were optimized using a Box-Behnken design. The response surfaces and the optimum values were very similar for aqueous solutions and for the urine samples, demonstrating that aqueous standards submitted to CPE could be used for calibration. Detection limits of 40 and 2 ng L -1 for Pb and Cd, respectively, were obtained along with an enhancement factor of 16 for both analytes. Three control urine samples were analyzed using this approach, and good agreement was obtained at a 95% statistical confidence level between the certified and determined values. Five real samples have also been analyzed before and after spiking with Pb and Cd, resulting in recoveries ranging from 97 to 118%

  19. Vapor generation and atom traps: Atomic absorption spectrometry at the ng/L level

    Energy Technology Data Exchange (ETDEWEB)

    Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2008-08-15

    Atom-trapping atomic absorption spectrometry is a technique that allows detection at the ng/L level for several analytes such as As, Se, Sb, Pb, Bi, Cd, In, Tl, Te, Sn and Hg. The principle involves generation of volatile species, usually hydrides, trapping these species on the surface of an atom trap held at an optimized temperature and, finally, revolatilizing the analyte species by rapid heating of the trap and transporting them in a carrier gas to a heated quartz tube, as commonly used with hydride generation AAS systems. A transient signal having, in most cases, a full width at half maximum of less than 1 s is obtained. The atom trap may be a quartz surface or a W-coil; the former is heated externally and the latter is heated resistively. Both collection and revolatilization temperatures are optimized. In some cases, the W-coil itself is used as an electrothermal atomizer and a heated quartz tube is then not needed. The evolution of these traps starts with the well-known Watling's slotted quartz tube (SQT), continues with atom trapping SQT and finally reaches the present traps mentioned above. The analytical figures of merit for these traps need to be standardized. Naturally, enhancement is on characteristic concentration, C{sub 0}, where the change in characteristic mass, m{sub 0}, can be related to trapping efficiency. Novel terms are suggested for E, enhancement factor; such as E{sub max}, maximum enhancement factor; E{sub t}, enhancement for 1.0 minute sampling and E{sub v}, enhancement for 1.0 mL of sample. These figures will allow easy comparison of results from different laboratories as well as different analytes and/or traps.

  20. On-line preconcentration and determination of mercury in biological and environmental samples by cold vapor-atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ferrua, N.; Cerutti, S.; Salonia, J.A.; Olsina, R.A.; Martinez, L.D.

    2007-01-01

    An on-line procedure for the determination of traces of total mercury in environmental and biological samples is described. The present methodology combines cold vapor generation associated to atomic absorption spectrometry (CV-AAS) with preconcentration of the analyte on a minicolumn packed with activated carbon. The retained analyte was quantitatively eluted from the minicolumn with nitric acid. After that, volatile specie of mercury was generated by merging the acidified sample and sodium tetrahydroborate(III) in a continuous flow system. The gaseous analyte was subsequently introduced via a stream of Ar carrier into the atomizer device. Optimizations of both, preconcentration and mercury volatile specie generation variables were carried out using two level full factorial design (2 3 ) with 3 replicates of the central point. Considering a sample consumption of 25 mL, an enrichment factor of 13-fold was obtained. The detection limit (3σ) was 10 ng L -1 and the precision (relative standard deviation) was 3.1% (n = 10) at the 5 μg L -1 level. The calibration curve using the preconcentration system for mercury was linear with a correlation coefficient of 0.9995 at levels near the detection limit up to at least 1000 μg L -1 . Satisfactory results were obtained for the analysis of mercury in tap water and hair samples

  1. Determination of total mercury for marine environmental monitoring studies by solid sampling continuum source high resolution atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Mandjukov, Petko; Orani, Anna Maria; Han, Eunmi; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    The most critical step in almost all commonly used analytical procedures for Hg determination is the sample preparation due to its extreme volatility. One of the possible solutions of this problem is the application of methods for direct analysis of solid samples. The possibilities for solid sampling high resolution continuum source atomic absorption spectrometry (HR CS AAS) determination of total mercury in various marine environmental samples e.g. sediments and biota are object of the present study. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signal. A calibration technique based on the use of solid standard certified reference materials similar to the nature of the analyzed sample was developed and applied to various CRMs and real samples. This technique allows simple and reliable evaluation of the uncertainty of the result and the metrological characteristics of the method. A validation approach in line with the requirements of ISO 17025 standard and Eurachem guidelines was followed. With this in mind, selectivity, working range (0.06 to 25 ng for biota and 0.025 to 4 ng for sediment samples, expressed as total Hg) linearity (confirmed by Student's t-test), bias (1.6–4.3%), repeatability (4–9%), reproducibility (9–11%), and absolute limit of detection (0.025 ng for sediment, 0.096 ng for marine biota) were systematically assessed using solid CRMs. The relative expanded uncertainty was estimated at 15% for sediment sample and 8.5% for marine biota sample (k = 2). Demonstration of traceability of measurement results is also presented. The potential of the proposed analytical procedure, based on solid sampling HR CS AAS technique was demonstrated by direct analysis of sea sediments form the Caribbean region and various CRMs. Overall, the use of solid sampling HR CS AAS permits obtaining significant advantages for the determination of this complex analyte in marine samples, such as

  2. Determination of tellurium in coal samples by means of graphite furnace atomic absorption spectrometry after coprecipitation with iron(III) hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Oda, S.; Arikawa, Y. [Japan Womens University, Tokyo (Japan)

    2005-11-01

    A simple and accurate method for the determination of tellurium in coal samples was investigated by the combustion of samples under a high pressure of oxygen and coprecipitation with Fe(OH){sub 3}, followed by a measurement by graphite furnace atomic absorption spectrometry (GF-AAS). About 0.5 g of an accurately weighed ground coal sample and 0.5 g of starch were combusted in an oxygen combustion bomb filled with oxygen to 3 MPa and added with 3 ml of water as an absorbing solution. The formed tellurium trioxide TeOs dissolved in water as TeO{sub 4}{sup 2-}, which was in turn reduced to TeO{sub 3}{sup 2-} by heating. After diluting the above-mentioned solution up to about 50 ml with water, Fe(OH){sub 3} is formed upon adding Fe(NO{sub 3}){sub 3} and sodium hydroxide solutions at pH 8-9 and left standing overnight. After dissolving the precipitate by HCl, the solution was diluted to 10 ml with water and the concentration of tellurium was measured by GF-AAS at a wavelength of 214.3 nm. The standard addition method was employed for the determination of tellurium in real coal samples, because those processes for the formation of tellurium(VI) oxide and coprecipitation with Fe(OH)3 were interfered by matrices. For NIST SRM 1632c, the standard coal sample tellurium content of 0.057 {+-} 0.004 mg kg{sup -1} was in good agreement with the information value of 0.05 mg kg{sup -1} with 7% of RSD in five replicate analyses. The tellurium contents in 20 real coal samples given by Center for Coal Utilization, Japan were also determined. The tellurium contents in these samples were scattered over the narrow range between 0.032 and 0.100 mg kg{sup -1}.

  3. Determination of trace impurities in titanium dioxide by direct solid sampling electrothermal atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Vojtková, Blanka; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s489-s491 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] Institutional research plan: CEZ:AV0Z40310501 Keywords : solid sampling * electrothermal atomic absorption spectrometry * trace analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  4. Air quality evaluation of some industrial cities of Pakistan using INAA and AAS

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, A.; Daud, M.; Rahman, S.; Ahmad, S.; Islam, Z.

    2005-01-01

    Instrumental neutron activation analysis technique (INAA) and atomic absorption spectrometry (AAS) have been employed for the characterization of 40 trace elements in suspended particulate matter (SPM) and soil samples from Pakistan's industrially important cities of Gujranwala and Faisalabad. The air particulates, which were collected from five different locations of each city, indicate moderate to unhealthy air quality with SPM levels above the World Health Organization (WHO) guidelines. Enrichment factors (EF) for all the elements have been calculated with respect to their concentrations in the soils. Some of the areas of Gujranwala show high EF values for Pb, Cr, Cu, Cd and Ca, which may indicate contributions due to heavy traffic with automotive exhaust, tanneries and many other acute anthropogenic activities in this area. The presence of high concentration of Cr is due to chrome plating units and leather industry in the adjoining areas. Similarly few sites from Faisalabad have high Pb, Cd and Sb contents from vehicular aerosols with the contributions from coal combustion, battery manufacturing industries, lead smelters and numerous other industries. IAEA Reference Materials were analyzed for the validation of INAA and AAS procedures employed and to ensure the accuracy and precision of the characterized data. (orig.)

  5. SPE HG-AAS method for the determination of inorganic arsenic in rice—results from method validation studies and a survey on rice products

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Qian, Yiting; Sloth, Jens Jørgen

    2013-01-01

    spectrometry (HG-AAS) detection. This approach was earlier developed for seafood samples (Rasmussen et al., Anal Bioanal Chem 403:2825–2834, 2012) and has in the present work been tailored for rice products and further optimised for a higher sample throughput and a lower detection limit. Water bath heating (90...... °C, 60 min) of samples with dilute HNO3 and H2O2 solubilised and oxidised all iAs to arsenate (AsV). Loading of buffered sample extracts (pH 6 ± 1) followed by selective elution of arsenate from a strong anion exchange SPE cartridge enabled the selective iAs quantification by HG-AAS, measuring total...... arsenic (As) in the SPE eluate. The in-house validation gave mean recoveries of 101–106 % for spiked rice samples and in two reference samples. The limit of detection was 0.02 mg kg−1, and repeatability and intra-laboratory reproducibility were less than 6 and 9 %, respectively. The SPE HG-AAS method...

  6. Organic solvents as interferents in arsenic determination by hydride generation atomic absorption spectrometry with flame atomization

    Czech Academy of Sciences Publication Activity Database

    Karadjova, I.B.; Lampugnani, L.; Dědina, Jiří; D'Ulivo, A.; Onor, M.; Tsalev, D.L.

    2006-01-01

    Roč. 61, č. 5 (2006), s. 525-531 ISSN 0584-8547 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * atomic absorption spectrometry * interferences Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.092, year: 2006

  7. Influência da geometria da plataforma na determinação de chumbo em zidovudina (AZT por ET AAS Influence of the platform geometry on lead determination in zidovudine (AZT by ET AAS

    Directory of Open Access Journals (Sweden)

    Fátima R. Moreira

    2002-05-01

    Full Text Available The aim of this work was to compare the performances of the L'vov and integrated platforms in order to overcome the interferences found on lead determination in zidovudine by ET AAS. Pyrolysis and atomization temperatures found with integrated platform were 700 and 1400°C, respectively. The characteristic masses were 12.7 ± 1.2 pg with integrated platform and 11.1 ± 1.3 pg with grooved platform. The ratio between the slopes of zidovudine and aqueous curves shows a decrease in the interferences when the L'vov platform is used (bAZT/b aq = 0.97 ± 0.10 and the detection limit found was 0.03 µg.g-1. That ratio was 0.85 ± 0.07 with the integrated platform.

  8. Study on aroma components of osmanthus by absorption wire gas chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Feng Janyue; Zhao Jing; Huang Qiaoqiao; Feng Lianmei

    2001-01-01

    The aroma components of fresh osmanthus are captured by absorption wires. The fragrant components absorbed in the wires are desorbed immediately at 358 degree C in Curie-point pyrolyzed, and then led into GC/MS to analyze. As a result, 41 aroma compounds such as β-linalool, linalooloxide, β-ocimene etc. in osmanthus are detected qualitatively by gas chromatography/mass spectrometry. This method can be used to analyze the change of aroma compounds of fresh flowers while blossoming

  9. Determination of lead and cadmium in urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Vasil'eva, L.A.; Grinshtejn, I.L.; Gucher, Sh.; Izgi, B.

    2008-01-01

    The applicability of a DETATA sorbent to the preconcentration of lead and cadmium followed by the determination of these elements in urine using atomic absorption spectrometry with electrothermal atomization was demonstrated. After preconcentration by a factor of 10, the limits of detection were 0.01 and 0.2 μg/l for cadmium and lead, respectively. The accuracy of the results was supported by the analysis of Seronorm TM Trace Elements Urine Batch no.101021 [ru

  10. Atomization of volatile compounds for atomic absorption and atomic fluorescence spectrometry: On the way towards the ideal atomizer

    International Nuclear Information System (INIS)

    Dedina, Jiri

    2007-01-01

    This review summarizes and discusses the individual atomizers of volatile compounds. A set of criteria important for analytical praxis is used to rank all the currently existing approaches to the atomization based on on-line atomization for atomic absorption (AAS) and atomic fluorescence spectrometry (AFS) as well as on in-atomizer trapping for AAS. Regarding on-line atomization for AAS, conventional quartz tubes are currently the most commonly used devices. They provide high sensitivity and low baseline noise. Running and investment costs are low. The most serious disadvantage is the poor resistance against atomization interferences and often unsatisfactory linearity of calibration graphs. Miniature diffusion flame (MDF) is extremely resistant to interferences, simple, cheap and user-friendly. Its essential disadvantage is low sensitivity. A novel device, known as a multiatomizer, was designed to overcome disadvantages of previous atomizers. It matches performance of conventional quartz tubes in terms of sensitivity and baseline noise as well as in running and investment costs. The multiatomizer, however, provides much better (i) resistance against atomization interferences and (ii) linearity of calibration graphs. In-atomizer trapping enhances the sensitivity of the determination and eliminates the effect of the generation kinetics and of surges in gas flow on the signal shape. This is beneficial for the accuracy of the determination. It could also be an effective tool for reducing some interferences in the liquid phase. In-situ trapping in graphite furnaces (GF) is presently by far the most popular approach to the in-atomizer trapping. Its resistance against interferences is reasonably good and it can be easily automated. In-situ trapping in GF is a mature method well established in various application fields. These are the reasons to rank in-situ trapping in GF as currently the most convenient approach to hydride atomization for AAS. The recently suggested

  11. Ascorbic acid (AA) metabolism in protection against radiation damage

    International Nuclear Information System (INIS)

    Rose, R.C.; Koch, M.J.

    1986-01-01

    The possibility is considered that AA protects tissues against radiation damage by scavenging free radicals that result from radiolysis of water. A physiologic buffer (pH 6.7) was incubated with 14 C-AA and 1 mM thiourea (to slow spontaneous oxidation of AA). Aliquots were assayed by HPLC and scintillation spectrometry to identify the 14 C-label. Samples exposed to Cobalt-60 radiation had a half time of AA decay of 30 minutes) indicating that AA scavenges radiation-induced free radicals and forms the ascorbate free radical (AFR). Pairs of 14 C-AFR disproportionate, with the net effect of 14 C-dehydroascorbic acid formation from 14 C-AA. Having established that AFR result from ionizing radiation in an aqueous solution, the possibility was evaluated that a tissue factor reduces AFR. Cortical tissue from the kidneys of male rats was minced, homogenized in buffer and centrifuged at 8000 xg. The supernatant was found to slow the rate of radiation-induced AA degradation by > 90% when incubated at 23 0 C in the presence of 15 μM 14 C-AA. Samples of supernatant maintained at 100 0 C for 10 minutes or precipitated with 5% PCA did not prevent radiation-induced AA degradation. AA may have a specific role in scavenging free radicals generated by ionizing radiation and thereby protect body tissues

  12. Investigation of phosphorus atomization using high-resolution continuum source electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Dessuy, Morgana B.; Vale, Maria Goreti R.; Lepri, Fabio G.; Welz, Bernhard; Heitmann, Uwe

    2007-01-01

    The atomization of phosphorus in electrothermal atomic absorption spectrometry has been investigated using a high-resolution continuum source atomic absorption spectrometer and atomization from a graphite platform as well as from a tantalum boat inserted in a graphite tube. A two-step atomization mechanism is proposed for phosphorus, where the first step is a thermal dissociation, resulting in a fast atomization signal early in the atomization stage, and the second step is a slow release of phosphorus atoms from the graphite tube surface following the adsorption of molecular phosphorus at active sites of the graphite surface. Depending on experimental conditions only one of the mechanisms or both might be active. In the absence of a modifier and with atomization from a graphite or tantalum platform the second mechanism appears to be dominant, whereas in the presence of sodium fluoride as a modifier both mechanisms are observed. Intercalation of phosphorus into the graphite platform in the condensed phase has also been observed; this phosphorus, however, appears to be permanently trapped in the structure of the graphite and does not contribute to the absorption signal

  13. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    International Nuclear Information System (INIS)

    Kılınç, Ersin; Bakırdere, Sezgin; Aydın, Fırat; Ataman, O. Yavuz

    2012-01-01

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL −1 . %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL −1 Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  14. Sensitive determination of bismuth by flame atomic absorption spectrometry using atom trapping in a slotted quartz tube and revolatilization with organic solvent pulse

    Energy Technology Data Exchange (ETDEWEB)

    K Latin-Small-Letter-Dotless-I l Latin-Small-Letter-Dotless-I nc, Ersin, E-mail: ekilinc@dicle.edu.tr [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Bak Latin-Small-Letter-Dotless-I rdere, Sezgin [Y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z Technical University, Faculty of Education, Department of Science Education, TR 34210 Esenler-Istanbul (Turkey); Ayd Latin-Small-Letter-Dotless-I n, F Latin-Small-Letter-Dotless-I rat [Dicle University, Faculty of Science, Department of Chemistry, Laboratory of Chemical Analysis, TR 21280 Diyarbak Latin-Small-Letter-Dotless-I r (Turkey); Ataman, O. Yavuz [Middle East Technical University, Faculty of Arts and Sciences, Department of Chemistry, 06800 Ankara (Turkey)

    2012-07-15

    Sensitivity of flame atomic absorption spectrometry (FAAS) for Bi determination was improved by slotted quartz tube (SQT) that was used also for atom trapping (AT). The trapped analyte was released by aspirating a small volume of organic solvent after a reasonable analyte collection time. Sensitivity was improved by 2.9 times by SQT-FAAS and 256 times by SQT-AT-FAAS with respect to FAAS. Optimum trapping period was found to be 6.0 min (36.0 mL of solution). Limit of detection (LOD) for SQT-AT-FAAS was found to be 1.6 ng mL{sup -1}. %RSD was calculated as 4.0% for five replicate measurements of 7.5 ng mL{sup -1} Bi by SQT-AT-FAAS. Accuracy of the method developed was checked by analyzing a standard reference material of simulated fresh water (NIST 1643e) and result found was in good agreement with the certified one. The method can be applied in any laboratory equipped with a flame AA spectrometer. The consumption of time and sample volume is fairly low and application is simple and easy.

  15. Graphite furnace atomic absorption spectrometry with a tantalum boat for the determination of yttrium, samarium, and dysprosium in a mish metal

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro; Tamura, Shohei

    1982-01-01

    The determination of yttrium, samarium, and dysprodium by means of graphite-furnace atomic absorption spectrometry (AAS) was studied by a tantalum boat inserted into a graphite tube atomizer. These elements could not be determined by the use of a commercial graphite tube, In the atomization from a tantalum boat, better analytical sensitivities and negligible memory effects for these rare earths are obtained. The analytical sensitivities of yttrium, samarium, and dysprodium with the tantalum boat were 0.60 ng, 0.86 ng, and 0.17 ng respectively. This method was applied for the determination of yttrium, samarium, and dysprosium in a mish metal. The measurements were performed with slightly acidified solutions (0.01 mol dm 3 HCI or HNO 3 ). The sensitivities and the precisions for these elements decreased with increasing acid concentration. An enhancement in the sensitivities of yttrium and dysprosium upon the addition of a large excess of lanthanum, neodymium, and praseodymium salts were observed. The yttrium, samarium, and dysprosium in a mish metal were determined with both analytical curves of standard solutions containing an excess of lanthanum, cerium, and neodymium ions and of the standard addition. The precisions for this work were in the 3 - 9.3% range. (author)

  16. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    International Nuclear Information System (INIS)

    Virgilio, Alex; Nóbrega, Joaquim A.; Rêgo, Jardes F.; Neto, José A. Gomes

    2012-01-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 °C and 2400 °C, respectively. Slopes of calibration curves (50–750 pg Cr, R 2 > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3–17.7 μg g −1 Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 ± 2.1 μg g −1 Cr. The limit of detection was 3.3 ng g −1 Cr. - Highlights: ► Direct solid sampling is first time employed for Cr in plant materials. ► Calibration curves with liquids and solids are coincident. ► Microanalysis of plants for Cr is validated by reference materials. ► The proposed HR-CS GF AAS method is environmental friendly.

  17. Evaluation of solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry for direct determination of chromium in medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, Alex; Nobrega, Joaquim A. [Department of Chemistry, Federal University of Sao Carlos, Post Office Box 676, 13560-970, Sao Carlos-SP (Brazil); Rego, Jardes F. [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil); Neto, Jose A. Gomes, E-mail: anchieta@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, Sao Paulo State University-UNESP, Post Office Box 355, 14801-970, Araraquara-SP (Brazil)

    2012-12-01

    A method for Cr determination in medicinal plants using direct solid sampling graphite furnace high-resolution continuum source atomic absorption spectrometry was developed. Modifiers were dispensable. Pyrolysis and atomization temperatures were 1500 Degree-Sign C and 2400 Degree-Sign C, respectively. Slopes of calibration curves (50-750 pg Cr, R{sup 2} > 0.999) using aqueous and solid standards coincides in 96%, indicated feasibility of aqueous calibration for solid sampling of medicinal plants. Accuracy was checked by analysis of four plant certified reference materials. Results were in agreement at 95% confidence level with certified and non-certified values. Ten samples of medicinal plants were analyzed and Cr contents were in the 1.3-17.7 {mu}g g{sup -1} Cr range. The highest RSD (n = 5) was 15.4% for the sample Melissa officinalis containing 13.9 {+-} 2.1 {mu}g g{sup -1} Cr. The limit of detection was 3.3 ng g{sup -1} Cr. - Highlights: Black-Right-Pointing-Pointer Direct solid sampling is first time employed for Cr in plant materials. Black-Right-Pointing-Pointer Calibration curves with liquids and solids are coincident. Black-Right-Pointing-Pointer Microanalysis of plants for Cr is validated by reference materials. Black-Right-Pointing-Pointer The proposed HR-CS GF AAS method is environmental friendly.

  18. Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Jorge S.; Anunciação, Taiana A. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Brandão, Geovani C. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); INCT de Energia e Ambiente, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Dantas, Alailson F. [Departamento de Química Analítica, Instituto de Química, Universidade Federal da Bahia, Campus Universitário de Ondina, Salvador, Bahia 40170-280 (Brazil); Lemos, Valfredo A. [Laboratório de Química Analítica (LQA), Universidade Estadual do Sudoeste da Bahia, Campus de Jequié, Jequié, Bahia 45506-191 (Brazil); and others

    2015-05-01

    This work presents an ultrasound-assisted single-drop microextraction procedure for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Some initial tests showed that the best extraction efficiency was obtained when using ultrasound instead of mechanical agitation, indicating that acoustic cavitation improved the extraction process. Nitric, hydrochloric and acetic acids were evaluated for use in the extraction process, and HNO{sub 3} gave the best results. A two-level full-factorial design was applied to investigate the best conditions for the extraction of Cd from the oil samples. The influences of the sonication amplitude, time and temperature of the extraction were evaluated. The results of the design revealed that all of the variables had a significant effect on the experimental results. Afterward, a Box–Behnken design was applied to determine the optimum conditions for the determination of cadmium in vegetable oil samples. According to a multivariate study, the optimum conditions were as follows: sonication amplitude of 60%, extraction time of 15 min, extraction temperature of 46 °C and 0.1 mol L{sup −1} HNO{sub 3} as the extractor solution. Under optimized conditions, the developed method allows for the determination of Cd in oil samples with a limit of quantification of 7.0 ng kg{sup −1}. Addition and recovery experiments were performed in vegetable oil samples to evaluate the accuracy of the method, and the recoveries obtained varied from 90% to 115%. The samples were also analyzed after the acid digestion procedure, and the paired t-test (95% confidence level) did not show significant differences from the proposed method. - Highlights: • The determination of cadmium in vegetable oils was developed using UA-SDME. • HR-CS ET-AAS was employed as a detection technique with direct drop sampling. • The procedure allowed for a reduction in the consumption of reagents and

  19. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic)], E-mail: kaiser@fme.vutbr.cz; Galiova, M.; Novotny, K.; Cervenka, R. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Reale, L. [Faculty of Sciences, University of L' Aquila, Via Vetoio (Coppito 1), 67010 L' Aquila (Italy); Novotny, J.; Liska, M.; Samek, O. [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, V.; Hrdlicka, A. [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Stejskal, K.; Adam, V.; Kizek, R. [Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University of Agriculture and Forestry, Zemedelska 1, 613 00 Brno (Czech Republic)

    2009-01-15

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 {mu}m in a up to cm x cm area of sunflower (Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  20. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  1. Trace metal analysis of road dust by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Powell, M.J.; Liu, L.; Gnanalingham, N.; Peters, L.

    2000-01-01

    Dust from roads in an air impingement zone close to anthropogenic sources of air pollutants can be a concern for people living in the immediate vicinity. The Ministry of the Environment (MOE) has conducted a case study to monitor the concentration of uranium, strontium, thorium and arsenic in road dust from one such area. A method for the analysis of road dust by inductively coupled plasma mass spectrometry (ICP-MS) has been developed with detection limits in the ng/1 range. A digestion technique has been developed by conducting experiments using single and combinations of acids in open-vessel wet digestions. Accuracy has been determined by the use of matrix representative certified reference materials (CRMs). Digestion precision was determined by elemental concentration measurements of the most representative CRM through replicates. Spike recovery data were from 95% to 110% for all elements, and inter-method comparison studies between hydride generation atomic absorption spectrometry (AAS) inductively coupled plasma atomic emission spectrometry (ICP-AES) and ICP-MS for arsenic and strontium show good agreement. (author)

  2. An indirect method for determining phosphorus in aluminium alloys by atomic-absorption spectrometry.

    Science.gov (United States)

    Bernal, J L; Del Nozal, M A; Deban, L; Aller, A J

    1981-07-01

    An indirect method is described for the determination of phosphorus in aluminium alloys. Ammonium molybdate is added to a solution of the aluminium alloy and the molybdophosphoric acid formed is selectively extracted into n-butyl acetate. The twelve molybdenum atoms associated with each phosphate ion are determined by direct atomic-absorption spectrometry with the n-butyl acetate phase in a nitrous oxide-acetylene flame, with measurement at 313.2 nm. The most suitable conditions have been established and the effect of other ions has been studied.

  3. ICP OES and CV AAS in determination of mercury in an unusual fatal case of long-term exposure to elemental mercury in a teenager.

    Science.gov (United States)

    Lech, Teresa

    2014-04-01

    In this work, a case of deliberate self-poisoning is presented. A 14-year-old girl suddenly died during one of the several hospitalizations. Abdominal computer tomography showed a large number of metallic particles in the large intestine. Analysis of blood and internal organs for mercury and other toxic metals carried out by inductively coupled plasma optical emission spectrometry (ICP OES) revealed high concentrations of mercury in kidneys and liver (64,200 and 2470ng/g, respectively), less in stomach (90ng/g), and none in blood. Using cold vapor-atomic absorption spectrometry (CV AAS), high levels of mercury were confirmed in all examined materials, including blood (87ng/g), and additionally in hair. The results of analysis obtained by two techniques revealed that the exposure to mercury was considerable (some time later, it was stated that the mercury originated from thermometers that had been broken over the course of about 1 year, because of Münchausen syndrome). CV AAS is a more sensitive technique, particularly for blood samples (negative results using ICP OES), and tissue samples - with LOQ: 0.63ng/g of Hg (CV AAS) vis-à-vis 70ng/g of Hg (ICP OES). However, ICP OES may be used as a screening technique for autopsy material in acute poisoning by a heavy metal, even one as volatile as mercury. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Investigation of spectral interferences in the determination of lead in fertilizers and limestone samples using high-resolution continuum source graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Aline R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Becker, Emilene M.; François, Luciane L.; Jesus, Alexandre de [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Vale, Maria Goreti R. [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Welz, Bernhard [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil); Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Dessuy, Morgana B., E-mail: mbdessuy@ufrgs.br [Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq — INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA (Brazil)

    2014-11-01

    In the present work, spectral interferences on the determination of lead in fertilizer and limestone samples were investigated using high-resolution continuum source graphite furnace atomic absorption spectrometry at the main analytical lines: 217.001 and 283.306 nm. For these investigations, samples were introduced into the furnace as slurry together with a mixture of Pd and Mg as chemical modifier. Spectral interferences were observed for some samples at both analytical lines. In order to verify whether a wet digestion procedure would avoid these interferences, a reference method for wet digestion of fertilizers was employed as an alternative sample preparation procedure. However, the same interferences were also observed in the digested samples. In order to identify and eliminate the fine-structured background using a least-squares background correction, reference spectra were generated using the combination of different species. The use of the latter technique allowed the elimination of spectral interferences for most of the investigated samples, making possible the determination of lead in fertilizer and limestone samples free of interferences. The best results were found using a reference spectrum of NH{sub 4}H{sub 2}PO{sub 4} at 217.001 nm, and a mixture of H{sub 2}SO{sub 4} + Ca and HNO{sub 3} + Ca at the 283.306 nm line. The accuracy of the method was evaluated using a certified reference material “Trace Elements in Multi-Nutrient Fertilizer”. Similar results were obtained using line source graphite furnace atomic absorption spectrometry with Zeeman-effect background correction, indicating that the latter technique was also capable to correct the spectral interferences, at least in part. - Highlights: • Spectral interferences on the determination of lead in fertilizers and limestone. • The analytical lines at 217.001 nm and 283.306 nm using HR-CS GF AAS. • Various combinations of compounds were used to create reference spectra. • LSBC

  5. Development and validation of an SPE HG-AAS method for determination of inorganic arsenic in samples of marine origin

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Rie R.; Larsen, Erik H.; Sloth, Jens J. [Technical University of Denmark, National Food Institute, Division of Food Chemistry, Soeborg (Denmark); Hedegaard, Rikke V. [Technical University of Denmark, National Food Institute, Division of Food Chemistry, Soeborg (Denmark); University of Copenhagen, Faculty of Life Sciences, Department of Food Science, Frederiksberg (Denmark)

    2012-07-15

    The present paper describes a novel method for the quantitative determination of inorganic arsenic (iAs) in food and feed of marine origin. The samples were subjected to microwave-assisted extraction using diluted hydrochloric acid and hydrogen peroxide, which solubilised the analytes and oxidised arsenite (As{sup III}) to arsenate (As{sup V}). Subsequently, a pH buffering of the sample extract at pH 6 enabled selective elution of As{sup V} from a strong anion exchange solid-phase extraction (SPE) cartridge. Hydride generation atomic absorption spectrometry (HG-AAS) was applied to quantify the concentration of iAs (sum of As{sup III} and As{sup V}) as the total arsenic (As) in the SPE eluate. The results of the in-house validation showed that mean recoveries of 101-104% were achieved for samples spiked with iAs at 0.5, 1.0 and 1.5 mg.kg{sup -1}, respectively. The limit of detection was 0.08 mg kg{sup -1}, and the repeatability (RSD{sub r}) and intra-laboratory reproducibility (RSD{sub IR}) were less than 8% and 13%, respectively, for samples containing 0.2 to 1.5 mg kg{sup -1} iAs. The trueness of the SPE HG-AAS method was verified by confirming results obtained by parallel analysis using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. It was demonstrated that the two sets of results were not significantly different (P < 0.05). The SPE HG-AAS method was applied to 20 marine food and feed samples, and concentrations of up to 0.14 mg kg{sup -1} of iAs were detected. (orig.)

  6. Method validation for control determination of mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry.

    Science.gov (United States)

    Torres, Daiane Placido; Martins-Teixeira, Maristela Braga; Cadore, Solange; Queiroz, Helena Müller

    2015-01-01

    A method for the determination of total mercury in fresh fish and shrimp samples by solid sampling thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) has been validated following international foodstuff protocols in order to fulfill the Brazilian National Residue Control Plan. The experimental parameters have been previously studied and optimized according to specific legislation on validation and inorganic contaminants in foodstuff. Linearity, sensitivity, specificity, detection and quantification limits, precision (repeatability and within-laboratory reproducibility), robustness as well as accuracy of the method have been evaluated. Linearity of response was satisfactory for the two range concentrations available on the TDA AAS equipment, between approximately 25.0 and 200.0 μg kg(-1) (square regression) and 250.0 and 2000.0 μg kg(-1) (linear regression) of mercury. The residues for both ranges were homoscedastic and independent, with normal distribution. Correlation coefficients obtained for these ranges were higher than 0.995. Limits of quantification (LOQ) and of detection of the method (LDM), based on signal standard deviation (SD) for a low-in-mercury sample, were 3.0 and 1.0 μg kg(-1), respectively. Repeatability of the method was better than 4%. Within-laboratory reproducibility achieved a relative SD better than 6%. Robustness of the current method was evaluated and pointed sample mass as a significant factor. Accuracy (assessed as the analyte recovery) was calculated on basis of the repeatability, and ranged from 89% to 99%. The obtained results showed the suitability of the present method for direct mercury measurement in fresh fish and shrimp samples and the importance of monitoring the analysis conditions for food control purposes. Additionally, the competence of this method was recognized by accreditation under the standard ISO/IEC 17025.

  7. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    Science.gov (United States)

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  8. High-resolution continuum source atomic absorption spectrometry for the simultaneous or sequential monitoring of multiple lines. A critical review of current possibilities

    International Nuclear Information System (INIS)

    Resano, M.; Flórez, M.R.; García-Ruiz, E.

    2013-01-01

    This work examines the capabilities and limitations of commercially available high-resolution continuum source atomic absorption spectrometry instrumentation for multi-line monitoring, discussing in detail the possible strategies to develop multi-element methodologies that are truly simultaneous, or else sequential, but from the same sample aliquot. Moreover, the simultaneous monitoring of various atomic or molecular lines may bring other important analytical advantages, such as: i) expansion of the linear range by monitoring multiplets; ii) improvements in the limit of detection and in precision by summing the signals from different lines of the same element or molecule; iii) simple correction for matrix-effects by selecting a suitable internal standard; or iv) accurate mathematical correction of spectral overlaps by simultaneous monitoring of free lines of the interfering molecule or element. This work discusses how authors have made use of these strategies to develop analytical methodologies that permit the straightforward analysis of complex samples. - Highlights: • HR CS AAS potential for simultaneous multi-line monitoring is critically examined. • Strategies to develop simultaneous multi-element methods are discussed. • Other benefits of multi-line monitoring (e.g., use of an IS or LSBC) are highlighted. • Selected examples from the literature are discussed in detail

  9. Elemental analysis of the suspended particulate matter in the air of Tehran using INAA and AAS techniques. Appendix 11

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Rostami, S.; Athari, M.

    1995-01-01

    A network of ten sampling stations for monitoring the elemental concentration of the suspended particulate matter (SPM) in the air of Tehran has been established. Instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS) techniques have been used for analysis of the Whatman-41 filters collected during the year 1994. Assessment of the preliminary results using the two techniques has produced the following twenty-one elements: Al, Br, Ca, Cd, Ce, Cl, Co, Cr, Cs, Fe, K, Mg, Mn, Na, Ni, Pb, Sb, Sc, Ti, V, Zn. Various standard solutions with known concentrations of elements, together with standard reference materials, have been used for quality assurance of the measured concentrations. (author)

  10. Minerals from Macedonia. XII. The dependence of quartz and opal color on trace element composition - AAS, FT IR and micro-Raman spectroscopy study

    International Nuclear Information System (INIS)

    Makreski, Petre; Jovanovski, Gligor; Stafilov, Trajce; Boev, Blazho

    2004-01-01

    The dependence of the color of quartz and opal natural minerals, collected from different localities in the Republic of Macedonia (Alinci, Belutche, Budinarci, Mariovo, Sasa, Sazhdevo, Chanishte, Cheshinovo, Zletovo) on their element composition is studied using Fourier transform infrared spectroscopy (FT IR), micro-Raman spectroscopy and atomic absorption spectrometry (AAS). In order to determine the content of different trace elements (Al, Cd, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb and Zn), 15 quartz and 2 opal mineral samples, using flame atomic absorption spectrometry (FAAS) and Zeeman electrothermal atomic absorption spectrometry (ETAAS) are studied. To avoid matrix interferences, the method for elimination of silicium is proposed. Optimal instrumental parameters for ETAAS determination (temperature and time for drying, pyrolysis and atomizing) are established by extensive testing for each investigated element. It is found that the milky white color of quartz minerals is due to the presence of traces of Ca, the appearance of black color is the result of the existence of Pb, Mn and Al impurities, and the occurrence of Fe and Cr introduce appearance of red and green color, respectively. Preliminary identification of the minerals is based on the comparison of our results, obtained by using the infrared and Raman vibrational spectroscopy, with the corresponding literature data for the analogous mineral species originating all over the world. An overview of the basic morphological and physico-chemical characteristics of the quartz and opal minerals and the geology of the localities is given. The colored pictures of the studied quartz and opal minerals are presented as well. (Author)

  11. Determination of trace amounts of selenium in minerals and rocks by flemeless atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Capdevila, C.; Alduan, F.A.

    1980-01-01

    The determination of trace amounts of selenium in silicate rocks and feldspart by solvent extraction and graphite furnace atomic-absorption spectrometry has been studied. Sodium diethyl-ditiocarbamate and ammonium pyrrolidinedithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted into carbon tetrachloride as the sodium diethylditiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (author)

  12. Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry Modelling Under Saturated Absorption

    Science.gov (United States)

    Dupré, Patrick

    2015-06-01

    The Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry (NICE-OHMS) is a modern technique renowned for its ultimate sensitivity, because it combines long equivalent absorption length provided by a high finesse cavity, and a detection theoretically limited by the sole photon-shot-noise. One fallout of the high finesse is the possibility to accumulating strong intracavity electromagnetic fields (EMF). Under this condition, molecular transitions can be easy saturated giving rise to the usual Lamb dips (or hole burning). However, the unusual shape of the basically trichromatic EMF (due to the RF lateral sidebands) induces nonlinear couplings, i.e., new crossover transitions. An analytical methodology will be presented to calculate spectra provided by NICE-OHMS experiments. It is based on the solutions of the equations of motion of an open two-blocked-level system performed in the frequency-domain (optically thin medium). Knowing the transition dipole moment, the NICE-OHMS signals (``absorption-like'' and ``dispersion-like'') can be simulated by integration over the Doppler shifts and by paying attention to the molecular Zeeman sublevels and to the EMF polarization The approach has been validated by discussion experimental data obtained on two transitions of {C2H2} in the near-infrared under moderated saturation. One of the applications of the saturated absorption is to be able to simultaneously determine the transition intensity and the density number while only one these 2 quantities can only be assessed in nonlinear absorption. J. Opt. Soc. Am. B 32, 838 (2015) Optics Express 16, 14689 (2008)

  13. Evaluation of atomic absorption Spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    Three commonly used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and AAS-Non Ashing) and titrimetry (potassium permanganate titration) have been evaluated in this study to determine the calcium content in six food samples whose calcium levels ranged from 0 to more than 250mg/100g ...

  14. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    Science.gov (United States)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  15. Evaluation of a method for the determination of chromium in urine by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Garcia, M.; Sardinas, O.; Castaneda, I.; Sanchez, R.

    1990-01-01

    A method for the determination of chromium in urine by atomic absorption spectrometry, using electrothermic atomization with pyrolytic graphite tubes, is proposed. The determinations are performed by standard addition. The method is applicable to biologic monitoring of populations with different degrees of exposition. It is also used in the analysis of chromium in sediments. Results of chromium in urine of a population group non-exposed to the metal are presented. 11 refs

  16. [Evaluation of uncertainty for determination of tin and its compounds in air of workplace by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wei, Qiuning; Wei, Yuan; Liu, Fangfang; Ding, Yalei

    2015-10-01

    To investigate the method for uncertainty evaluation of determination of tin and its compounds in the air of workplace by flame atomic absorption spectrometry. The national occupational health standards, GBZ/T160.28-2004 and JJF1059-1999, were used to build a mathematical model of determination of tin and its compounds in the air of workplace and to calculate the components of uncertainty. In determination of tin and its compounds in the air of workplace using flame atomic absorption spectrometry, the uncertainty for the concentration of the standard solution, atomic absorption spectrophotometer, sample digestion, parallel determination, least square fitting of the calibration curve, and sample collection was 0.436%, 0.13%, 1.07%, 1.65%, 3.05%, and 2.89%, respectively. The combined uncertainty was 9.3%.The concentration of tin in the test sample was 0.132 mg/m³, and the expanded uncertainty for the measurement was 0.012 mg/m³ (K=2). The dominant uncertainty for determination of tin and its compounds in the air of workplace comes from least squares fitting of the calibration curve and sample collection. Quality control should be improved in the process of calibration curve fitting and sample collection.

  17. Determination of copper and mercury in phosphate fertilizers employing direct solid sampling analysis and high resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    de Oliveira Souza, Sidnei; François, Luciane Luiza; Borges, Aline Rocha; Vale, Maria Goreti Rodrigues; Araujo, Rennan Geovanny Oliveira

    2015-12-01

    The present study proposes the determination of copper and mercury in phosphate fertilizers by direct solid sampling analysis (SS) employing high resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). For Cu determination, two analytical lines were used: 327.3960 nm and 249.2146 nm. Hg determination was carried out on the line 253.6521 nm and 100 μg KMnO4 was used as chemical modifier. The optimal pyrolysis temperature for Cu determination was 1300 °C. Atomization temperatures for Cu and Hg were 2400 and 1100 °C, respectively. External calibration with aqueous standard solutions was adopted for both elements. The limits of quantification (LoQs) and characteristic mass (m0) obtained for Cu determination were 0.4 μg g- 1 and 1.12 ng, respectively, on line 249.2146 nm, and 64 μg g- 1 and 25 pg on 327.3960 nm. For mercury, LoQ and m0 were 4.8 ng g- 1 and 39 pg, respectively. The accuracy of the proposed methods was confirmed by the analysis of standard reference material (SRM) of Trace Elements in Multi-Nutrient Fertilizer (SRM NIST 695). The precision expressed as relative standard deviation (RSD), was better than 8.2% for Hg and 7.7% for the Cu (n = 5), considered satisfactory for microanalysis in solid sample. Four fertilizer samples acquired in commercial establishments in the city of Salvador, Bahia, Brazil, were analyzed. The optimized analytical methods were simple, fast, accurate, precise and free of spectral interferences for the determination of Cu and Hg in phosphate fertilizer samples by SS-HR-CS GF AAS, avoiding the dissolution of the sample, the use of harmful reagents and the generation of residues.

  18. Classification of calcium supplements through application of principal component analysis: a study by inaa and aas

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Siddique, N.

    2013-01-01

    Different types of Ca supplements are available in the local markets of Pakistan. It is sometimes difficult to classify these with respect to their composition. In the present work principal component analysis (PCA) technique was applied to classify different Ca supplements on the basis of their elemental data obtained using instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS) techniques. The graphical representation of principal component analysis (PCA) scores utilizing intricate analytical data successfully generated four different types of Ca supplements with compatible samples grouped together. These included Ca supplements with CaCO/sub 3/as Ca source along with vitamin C, the supplements with CaCO/sub 3/ as Ca source along with vitamin D, Supplements with Ca from bone meal and supplements with chelated calcium. (author)

  19. Method Performance of Total Mercury (Hg) Testing in the Biological Samples by Using Cold Vapour Atomic Absorption Spectrophotometer (CV-AAS)

    International Nuclear Information System (INIS)

    Susanna TS; Samin

    2007-01-01

    Method performance (validation) of total mercury (Hg) testing in the biological samples by using cold vapour atomic absorption spectrophotometer (CV-AAS) has been done. The objective of this research is to know the method performance of CV-AAS as one of points for the accreditation testing of laboratory according IS0/IEC 17025-2005. The method performance covering limit of detection (LOD), accuracy, precision and bias. As a standard material used SRM Oyster Tissue 15660 from Winopal Forshung Germany, whereas the biological samples were human hair. In principle of mercury testing for solid samples using CV-AAS is dissolving this sample and standard with 10 mL HNO 3 supra pure into a closed quartz tube and heating at 150 °C for 4 hours. The concentration of mercury in each samples was determined at the condition of operation were stirring time (T 1 ) 70 seconds, delay time (T 2 ) 15 seconds, heating time (T 3 ) 13 seconds and cooling time (T 4 ) of 25 seconds. Mercury ion in samples are reduced with SnCl 2 10 % in H 2 SO 4 20 %, and then the vapour of mercury from reduction is passed in NaOH 20 % solution and aquatridest. The result of method performance were: limit of detection (LOD) = 0.085 ng, accuracy 99.70 %, precision (RSD) = 1.64 % and bias = 0.30 %. From the validation result showed that the content of mercury total was in the range of certified values. The total mercury content (Hg) in human hair were varied from 406.93 - 699.07 ppb. (author)

  20. Sample Preprocessing For Atomic Spectrometry

    International Nuclear Information System (INIS)

    Kim, Sun Tae

    2004-08-01

    This book gives descriptions of atomic spectrometry, which deals with atomic absorption spectrometry such as Maxwell-Boltzmann equation and Beer-Lambert law, atomic absorption spectrometry for solvent extraction, HGAAS, ETASS, and CVAAS and inductively coupled plasma emission spectrometer, such as basic principle, generative principle of plasma and device and equipment, and interferences, and inductively coupled plasma mass spectrometry like device, pros and cons of ICP/MS, sample analysis, reagent, water, acid, flux, materials of experiments, sample and sampling and disassembling of sample and pollution and loss in open system and closed system.

  1. Zeeman atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hadeishi, T.; McLaughlin, R.

    1978-08-01

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  2. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  3. Integration of Solid-phase Extraction with Electrothermal Atomic Absorption Spectrometry for Determination of Trace Elements

    OpenAIRE

    NUKATSUKA, Isoshi; OHZEKI, Kunio

    2006-01-01

    An enrichment step in a sample treatment is essential for trace analysis to improve the sensitivity and to eliminate the matrix of the sample. Solid-phase extraction (SPE) is one of the widely used enrichment technique. Electrothermal atomic absorption spectrometry (ETAAS) is a well-established determination technique for trace elements. The integration of SPE with ETAAS leads to further improvement of sensitivity, an automation of the measurement and the economy in the sample size, amounts o...

  4. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    International Nuclear Information System (INIS)

    Ahmad Saat; Appleby, P.G.; Nolan, P.J.

    1997-01-01

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  5. Speciation of arsenic in baby foods and the raw fish ingredients using liquid chromatography-hydride generation-atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Vinas, P.; Lopez-Garcia, I.; Merino-Merono, B.; Campillo, N.; Hernandez-Cordoba, M. [Murcia Univ. (Spain). Dept. of Analytical Chemistry

    2003-07-01

    The speciation of arsenic in different baby foods and the raw fish ingredients using the direct hybridisation of liquid chromatography (LC) and hydride generation atomic absorption spectrometry (HGAAS) is described. Good resolution of the species, arsenic(III), dimethylarsinic acid (DMAA), monomethylarsenic acid (MMAA) and arsenic(V) is achieved using an anion-exchange column with potassium phosphate as the mobile phase and gradient elution. Arsenobetaine (AsB) is determined by on-line oxidation using peroxydisulphate and hydride generation. The arsenicals were extracted by an enzymatic digestion procedure based on the action of trypsin or pancreatin. Arsenobetaine was the only arsenic species detected. The reliability of the procedure was checked by analyzing the total arsenic content of the samples by electrothermal atomic absorption spectrometry with microwave-oven digestion and by analyzing a certified reference material. The arsenic content in the baby foods comes from the raw fish ingredients and is highest when plaice is used. (orig.)

  6. Speciation analysis of organomercurial compounds in Fish Tissue by capillary gas chromatography coupled to microwave-induced plasma atomic emission detection

    Directory of Open Access Journals (Sweden)

    Dorfe Díaz

    Full Text Available This paper describes a novel approach for analysis of mercury speciation in fish using gas chromatography coupled with microwave-induced plasma optical emission spectrometry (GC-MIP-OES in surfatron resonant cavity. Sample treatment was based on quantitative leaching of mercury species from fish tissue with ultrasound-assisted acid-toluene extraction. The extracted mercury species analyzed with GC-MIP-OES attained detection limits of 5 and 9 pg for methylmercury (MeHg and ethylmercury (EtHg, respectively. A complete chromatogram could be completed in 1.5 min. MeHg values obtained with GC-MIP-OES were matched with organic mercury values obtained with selective reduction cold vapour- atomic absorption spectrometry (CV-AAS.

  7. Silica gel modified with N-(3-propyl)-O-phenylenediamine: functionalization, metal sorption equilibrium studies and application to metal enrichment prior to determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Akl, Magda Ali Abd-elAziz; Kenawy, Ibraheim Mohamed; Lasheen, Rabab Ramadan

    2005-08-01

    The use of the chemically modified silica gel N-(3-propyl)-O-phenylenediamine (SiG-NPPDA) adsorbent, for the preconcentration and separation of trace heavy metals, was described. SiG-NPPDA sorbs quantitatively (90-100% recovery) trace amounts of nine heavy metals, viz., Cd(II), Zn(II), Fe(III), Cu(II), Pb(II), Mn(II), Cr(III), Co(II) and Ni(II) at pH 7-8. The sorption capacity varies from 350 to 450 micromol g(-1). Desorption was found to be quantitative with 1-2 M HNO3 or 0.05 M Na2EDTA. The distribution coefficient, Kd and the percentage concentration of the investigated metal ions on the adsorbent at equilibrium, C(M,eqm)% (Recovery, R%), were studied as a function of experimental parameters. The logarithmic values of the distribution coefficient, log Kd, ranges between 4.0 and 6.4. Some foreign ions caused little interference in the preconcentration and determination of the investigated nine metals by flame atomic absorption spectrometry (AAS). The adsorbent and its formed metal chelates were characterized by IR (absorbance and/or reflectance), potentiometric titrations and thermogravimetric analysis (TGA and DTG). The mode of chelation between the SiG-NPPDA adsorbent and the investigated metal ions is proposed to be due to the reaction of the investigated metal ions with the two nitrogen atoms of the SiG-NPPDA adsorbent. The present adsorbent coupled with flame AAS has been used to enrich and determine the nine metal ions in natural aqueous systems and in certified reference materials (RSD < or = 5%). The copper, iron, manganese and zinc present in some pharmaceutical vitamin samples were also preconcentrated on SiG-NPPDA adsorbent and determined by flame AAS (RSD < or = 4.2%). Nanogram concentrations (0.07-0.14 ng ml(-1)) of Cd(II), Zn(II), Fe(III), Pb(II), Cr(III), Mn(II), Cu(II), Co(II) and Ni(II) can be determined reliably with a preconcentration factor of 100.

  8. Multianalytical determination of trace elements in atmospheric biomonitors by k0-INAA, ICP-MS and AAS

    Science.gov (United States)

    Freitas, M. C.; Pacheco, A. M. G.; Dionísio, I.; Sarmento, S.; Baptista, M. S.; Vasconcelos, M. T. S. D.; Cabral, J. P.

    2006-08-01

    Elemental contents of atmospheric biomonitors—epiphytic lichens and tree bark, exposed in continuous and discontinuous modes—have been assessed through k0-standardised instrumental neutron activation analysis ( k0-INAA) (two different institutions), inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS). Certified reference materials—ISE-921 (river clay), NIST-1547 (peach leaves), ICHTJ-INCT-TL-1 (tea leaves; TL-1 hereinafter) and IAEA-336 (lichen material), and nonparametric statistics—rank-order correlations (Spearman RS) and enhanced-sign tests (Wilcoxon T)—were used for analytical control and data comparison, respectively. In general, quality of procedures was deemed good, except for k0-INAA in determining Br, Cu and Na, all likely affected by high counting statistics, and/or contamination issues (the latter). Results for Cu, Ni, Pb and Sr (by both ICP-MS and AAS) revealed that, despite an outstanding correlation (asymptotic p=0.000), they could be viewed as statistically equal for Cu only: AAS tended to yield higher values for Pb and Ni, and lower ones for Sr. The comparison between ICP-MS and k0-INAA data from TUDelft, for Al, Ca, Cu, Mg, Mn, Na, Ti and V, showed an excellent correlation (as above) and random (relative) magnitude for Cu, Mg, Mn and Ti only: ICP-MS tended to yield higher values for Al, Na and V, and lower ones for Ca, whereas between k0-INAA data from TUDelft and ITN, for Br, Ca and Na, resulted in systematically higher [Br] and [Ca] variates from TUDelft, even if all corresponding data sets were found to correlate at stringent significance levels. In a few cases, though—Ca, Sr in lichens; Pb in bark—matrix effects did appear to interfere in the outcome of matched-pairs, signed-rank tests, since random hierarchy of variates could be asserted just when lichen and bark data sets were processed separately.

  9. Comparison of two methods for blood lead analysis in cattle: graphite-furnace atomic absorption spectrometry and LeadCare(R) II system.

    Science.gov (United States)

    Bischoff, Karyn; Gaskill, Cynthia; Erb, Hollis N; Ebel, Joseph G; Hillebrandt, Joseph

    2010-09-01

    The current study compared the LeadCare(R) II test kit system with graphite-furnace atomic absorption spectrometry for blood lead (Pb) analysis in 56 cattle accidentally exposed to Pb in the field. Blood Pb concentrations were determined by LeadCare II within 4 hr of collection and after 72 hr of refrigeration. Blood Pb concentrations were determined by atomic absorption spectrometry, and samples that were coagulated (n = 12) were homogenized before analysis. There was strong rank correlation (R(2) = 0.96) between atomic absorption and LeadCare II (within 4 hr of collection), and a conversion formula was determined for values within the observed range (3-91 mcg/dl, although few had values >40 mcg/dl). Median and mean blood pb concentrations for atomic absorption were 7.7 and 15.9 mcg/dl, respectively; for LeadCare II, medians were 5.2 mcg/dl at 4 hr and 4.9 mcg/dl at 72 hr, and means were 12.4 and 11.7, respectively. LeadCare II results at 4 hr strongly correlated with 72 hr results (R(2) = 0.96), but results at 72 hr were lower (P atomic absorption. Although there have been several articles that compared LeadCare with other analytical techniques, all were for the original system, not LeadCare II. The present study indicated that LeadCare II results correlated well with atomic absorption over a wide range of blood Pb concentrations and that refrigerating samples for up to 72 hr before LeadCare II analysis was acceptable for clinical purposes.

  10. Fast neutron dosimetry and spectrometry using radioactivation (1963); Dosimetrie et spectrometrie des neutrons rapides par radioactivation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Lamberieux, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The author first recalls rapidly a few generalities concerning induced radioactivity detectors and gives, in an appendix, tables summarizing the properties of detector elements which may be used in radioprotection. The excitation functions found in the literature and also given. The technological characteristics of the detectors used are given, together with the counting methods. The many advantages of activation dosimetry for strong or periodic neutron fluxes and for those in the presence of {gamma}-radiation are stressed. The main problem in activation dosimetry is, however, the calculation of the dose absorbed from the results of the measurements. It is shown how the dose is expressed, fairly accurately, as a function of the radioactivities induced in a series of detectors. As an example, the spectrometry and the dosimetry of the neutron flux emitted by a Po-Be source are presented. (author) [French] L'auteur fait d'abord un bref rappel des generalites sur les detecteurs a radioactivite induite, accompagne, en annexe, des tableaux resumant les proprietes d'elements detecteurs utilisables en radioprotection. Les fonctions d'excitation trouvees dans la litterature y sont egalement annexees. On donne ensuite les caracteristiques technologiques des detecteurs employes ainsi que les methodes de comptage utilisees. On souligne les nombreux avantages de la dosimetrie par activation dans les flux de neutrons intenses ou periodiques et en presence de rayonnement {gamma}. Il reste que le probleme central de la dosimetrie par activation est le calcul de la dose absorbee a partir des resultats de mesure. On montre comment la dose s'exprime, de maniere approchee, en fonction des radioactivites induites dans une serie de detecteurs. A titre d'exemple, la spectrometrie et la dosimetrie du flux de neutrons emis par une source de Po-Be sont presentees. (auteur)

  11. Measurements of sulfur compounds in CO2 by diode laser atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Franzke, J.; Stancu, D.G.; Niemax, K.

    2003-01-01

    Two simple methods for the analysis of the total concentration of sulfur in CO 2 by diode laser atomic absorption spectrometry of excited, metastable sulfur atoms in a direct current discharge are presented. In the first method, the CO 2 sample gas is mixed with the plasma gas (Ar or He) while the second is based on reproducible measurements of the sulfur released from the walls in a helium discharge after being deposited as a result of operating the discharge in pure CO 2 sample gas. The detection limits obtained satisfy the requirements for the control of sulfur compounds in CO 2 used in the food and beverage industry

  12. Determination of cobalt in human liver by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Caldas, E.D.; Gine-Rosias, M.F.; Dorea, J.G.

    1991-01-01

    A detailed study of the use of electrothermal atomic absorption spectrometry for the determination of cobalt in human liver is described. Comparisons of sample digestion using nitric acid or nitric acid plus perchloric acid, atomization procedures and the application of palladium and magnesium nitrate chemical modifiers were studied using NBS SRM 1577a Bovine Liver. The best results were achieved with sample decomposition in nitric acid, atomization from the tube wall and no chemical modifier. Cobalt was determined in 90 samples of livers from foetuses and deceased newborns using the standard addition method with an average recovery of 99.8%. (author). 30 refs.; 4 figs.; 2 tabs

  13. Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry.

    Science.gov (United States)

    Leao, Danilo J; Junior, Mario M S; Brandao, Geovani C; Ferreira, Sergio L C

    2016-06-01

    A method was established to simultaneously determine cadmium, iron and tin in canned-food samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR-CS GF AAS). The quantification step has been performed using the primary line (228.802nm) for cadmium and the adjacent secondary lines (228.725nm and 228.668nm) for iron and tin, respectively. The selected chemical modifier was an acid solution that contained a mixture of 0.1% (w/v) Pd and 0.05% (w/v) Mg. The absorbance signals were measured based on the peak area using 3 pixels for cadmium and 5 pixels for iron and tin. Under these conditions, cadmium, iron and tin have been determined in canned-food samples using the external calibration technique based on aqueous standards, where the limits of quantification were 2.10ngg(-1) for cadmium, 1.95mgkg(-1) for iron and 3.00mgkg(-1) for tin, and the characteristic masses were 1.0pg for cadmium, 0.9ng for iron and 1.1ng for tin. The precision was evaluated using two solutions of each metal ion, and the results, which were expressed as the relative standard deviation (RSD%), were 3.4-6.8%. The method accuracy for cadmium and iron was confirmed by analyzing a certified reference material of apple leaves (NIST 1515), which was supplied by NIST. However, for tin, the accuracy was confirmed by comparing the results of the proposed method and another analytical technique (inductively coupled plasma optical emission spectrometry). The proposed procedure was applied to determine cadmium, iron and tin in canned samples of peeled tomato and sardine. Eleven samples were analyzed, and the analyte concentrations were 3.57-62.9ngg(-1), 2.68-31.48mgkg(-1) and 4.06-122.0mgkg(-1) for cadmium, iron and tin, respectively. In all analyzed samples, the cadmium and tin contents were lower than the permissible maximum levels for these metals in canned foods in the Brazilian legislation. Copyright © 2016. Published by Elsevier B.V.

  14. Characterization of Polish rape and honeydew honey according to their mineral contents using ICP-MS and F-AAS/AES

    International Nuclear Information System (INIS)

    Madejczyk, Maria; Baralkiewicz, Danuta

    2008-01-01

    In this work twelve elements (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni and Zn) were determined in 30 honey samples from various locations within Poland and in two different types of honey- rape and honeydew. Trace elements (Al, B, Cr, Mn and Ni) were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), however, major elements (Ca, K, Mg, Na) and Cu, Fe, Zn were determined by Flame Atomic Absorption Spectrometry (F-AAS). Cluster analysis of honey data revealed that the origin of honey samples correlated with their chemical composition. It was shown that rape honey includes lower amounts of manganese than honeydew honeys. Also honeydew honey includes much higher concentrations of Al, Cu, K, Fe and Ni in comparison with rape honey. Moreover honeydew honey was found to have a higher mineral content, which reflects sources from which the honey is composed. Trace element analysis showed that the differences in the values found in honey samples could be used as evidence of the quality of honey samples

  15. Combination of solid phase extraction and flame atomic absorption spectrometry for trace analysis of cadmium

    OpenAIRE

    Ensafi, Ali A.; Shiraz, Ameneh Zendegi

    2008-01-01

    A new selective method was developed for the separation and preconcentration of Cd(II) ions based on its complex formation with Xylenol orange loaded on activated carbon as a solid support in a mini-column. The preconcentrated ions were eluted by passing 5.0 mL 0.5 mol L-1 HNO3 solution through the solid support and then the Cd(II) contents was measured by flame atomic absorption spectrometry. Conditions for preparation of the modified activated carbon, pH and flow variables were studied, as ...

  16. [Graphite furnace atomic absorption spectrometry for determination of thallium in blood].

    Science.gov (United States)

    Zhang, Q L; Gao, G

    2016-04-20

    Colloidal palladium was used as chemical modifier in the determination of blood thallium by graphite furnace atomic absorption spectrometry. Blood samples were precipitated with 5% (V/V)nitric acid, and then determined by GFAAS with colloidal palladium used as a chemical modifier. 0.2% (W/V)sodium chloride was added in the standard series to improve the matrix matching between standard solution and sample. The detection limit was 0.2 μg/L. The correlation coefficient was 0.9991. The recoveries were between 93.9% to 101.5%.The relative standard deviations were between 1.8% to 2.7%.The certified reference material of whole blood thallium was determined and the result was within the reference range Conclusion: The method is accurate, simple and sensitive, and it can meet the needs of detection thallium in blood entirely.

  17. Determination of sub-ng g-1 levels of total inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry after pre-concentration.

    Science.gov (United States)

    Altunay, Nail; Gürkan, Ramazan

    2017-03-01

    A new and simple ultrasonic-assisted extraction (UAE) procedure was developed for the determination of inorganic arsenic and selenium in foods by hydride-generation atomic absorption spectrometry (HG-AAS). The various analytical variables affecting complex formation and extraction efficiency were investigated and optimised. The method is based on selective complex formation of As(III) and Se(IV) in the presence of excess As(V) and Se(VI) with toluidine red in the presence of tartaric acid at pH 4.5, and then extraction of the resulting condensation products into the micellar phase of non-ionic surfactant, polyethylene glycol dodecyl ether, Brij 35. Under optimised conditions, good linear relationships were obtained in the ranges of 4-225 and 12-400 ng l - 1 with limits of detection of 1.1 and 3.5 ng l - 1 for As(III) and Se(IV), respectively. The repeatability was better than 3.9% for both analytes (n = 10, 25 ng l - 1 ) while reproducibility ranged from 4.2% to 4.8%. The recoveries of As(III) and Se(IV) spiked at 25-100 ng l - 1 were in the range of 94.2-104.8%. After pre-concentration of a 5.0 ml sample, the sensitivity enhancement factors for As(III) and Se(IV) were 185 and 140, respectively. Accuracy was assessed by analysis of two standard reference materials (SRMs) and spiked recovery experiments. The method was successfully applied to the accurate and reliable determination of total As and total Se by HG-AAS after pre-reduction with a mixture of L-cysteine and tartaric acid. Finally, the method was shown to be rapid and sensitive, with good results for extraction, pre-concentration and determination of total As and Se contents (as As(III) and Se(IV)) from food samples.

  18. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406 -412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  19. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection

    Czech Academy of Sciences Publication Activity Database

    Huber, C. S.; Vale, M. G. R.; Dessuy, M. B.; Svoboda, Milan; Musil, Stanislav; Dědina, Jiří

    2017-01-01

    Roč. 175, DEC (2017), s. 406-412 ISSN 0039-9140 R&D Projects: GA MŠk(CZ) LH15174 Institutional support: RVO:68081715 Keywords : slurry sampling * methyl-substituted arsenic species * hydride generation-cryotrapping-atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.162, year: 2016

  20. Speciation analysis of arsenic in biological matrices by automated hydride generation-cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer).

    Science.gov (United States)

    This paper describes an automated system for the oxidation state specific speciation of inorganic and methylated arsenicals by selective hydride generation - cryotrapping- gas chromatography - atomic absorption spectrometry with the multiatomizer. The corresponding arsines are ge...

  1. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    Science.gov (United States)

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  2. Determination of trace amounts of selenium in minerals and rocks by flame less atomic-absorption spectrometry

    International Nuclear Information System (INIS)

    Alduan, F. A.; Capdevilla, C.

    1980-01-01

    The determination of trace amounts of selenium In silicate rocks and feldspar by solvent extraction and graphite furnace atomic-absorption spectrometry has been stu- died. Sodium diethyl-ditio carbamate and ammonium pyrrolidine dithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted Into carbon tetrachloride as the sodium diethyldithiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (Author) 7 refs

  3. Determination of five trace elements in leaves in Nanfang sweet orange by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Li Fangqing

    2006-01-01

    The five trace elements of copper, zinc, manganese, iron and cobalt in leaves of Nanfang sweet orange are determined by flame atomic absorption spectrometry. The technique is simple, precise and sensitive. The effect of the type of digesting solution (mixed acid), the ratio of mixed acid, the volume of digesting solution and the time of digesting are investigated in details. The results show that leaves of Nanfang sweet orange contain higher amount of iron and zinc. (authors)

  4. Measurements of total lead concentrations and of lead isotope ratios in whole blood by use of inductively coupled plasma source mass spectrometry

    International Nuclear Information System (INIS)

    Delves, H.T.; Campbell, M.J.

    1988-01-01

    Methods are described for the accurate and precise determination of total lead and its isotopic composition in whole blood using inductively coupled plasma source mass spectrometry (ICP-MS). Sensitivities of up to 3 x 10 6 counts s -1 for 208 Pb at a total lead concentration of 5 μmol l -1 (1 μg ml -1 ) enabled total blood lead levels to be measured in 4 min per sample, with a detection limit of 0.072 μmol l -1 (15 μg l -1 ). The agreement between ICP-MS and atomic absorption spectrometry (AAS) for this analysis was excellent: ICP-MS 0.996 x AAS -0.0165 μmol l -1 ; r 0.994. Isotope ratio measurements required 15 min to achieve the required accuracy and precision both of which were generally better than 0.5% for 206 Pb: 207 Pb and 208 Pb: 206 Pb isotopic lead ratios. The ICP-MS data for these ratios in ten quality control blood specimens has a mean bias relative to isotope dilution mass spectrometry of -0.412% for 206 Pb: 207 Pb ratios and of +0.055% for the 208 Pb: 206 Pb ratios. This level of accuracy and that of the total blood lead measurements is sufficient to permit application of these ICP-MS methods to environmental studies. (author)

  5. Determination of Mercury in an Assortment of Dietary Supplements Using an Inexpensive Combustion Atomic Absorption Spectrometry Technique

    OpenAIRE

    Levine, Keith E.; Levine, Michael A.; Weber, Frank X.; Hu, Ye; Perlmutter, Jason; Grohse, Peter M.

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a res...

  6. Optimization of trace elements determination (Arsenic and chromium) in blood and serum of human by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ahmadi Faghih, M. A.; Aflaki, F.

    2003-01-01

    Trace elements play an important role in the bio physiology of cells by affecting their growth and contributions to various biological processes such as wound healing. Determination of toxic trace elements in biological fluids is an important subject of interest for toxicological purposes. Increasing the concentration of these elements in the blood levels, cause serious diseases in patients. Recently instrumental analysis procedures such as atomic absorption spectrometry have been used in clinical measurements for determination of many toxic trace elements in the biological samples. In this paper we are reporting the study of various methods of blood and serum samples preparation for determining the toxic trace elements of Arsenic and Chromium. The measurement of this elements performed by using electrothermal atomic absorption spectrometry. The best and reliable results for Chromium analysis was achieved by injection of diluted serum samples, where the samples were diluted with H CI 0.1N. In Arsenic analysis, the best results obtained by extraction with aqueous solution of TCA. For determining all of these elements the RSD% was less than 5%

  7. Multielement atmospheric deposition study in Croatia using moss biomonitoring, NAA, AAS and GIS technologies

    International Nuclear Information System (INIS)

    Spiric, Z.; Frontas'eva, M.V.; Gundorina, S.F.; Ostrovnaya, T.M.; Stafilov, T.; Enimiteva, V.; Steinnes, E.; Bukovec, D.

    2009-01-01

    For the first time the moss biomonitoring technique and two complementary analytical techniques - neutron activation analysis (NAA) and atomic absorption spectrometry (AAS) - were applied to study multielement atmospheric deposition in the Republic of Croatia. Moss samples were collected during the summer 2006 from 98 sites evenly distributed over the country. Sampling was performed in accordance with the LRTAP Convention - ICP Vegetation protocol and sampling strategy of the European Programme on Biomonitoring of Heavy Metal Atmospheric Deposition. Conventional and epithermal neutron activation analyses made it possible to determine concentrations of 41 elements including key heavy metals such as Pb, Cd, Hg, and Cu determined by AAS. Principal component analysis (factor analysis with VARIMAX rotation) was applied to distinguish elements mainly of anthropogenic origin from those predominantly originating from natural sources. Geographical distribution maps of the elements over the sampled territory were constructed using GIS technology. The median values for Croatia are consistent with the corresponding values for all Europe for most elements. It was shown that the Adriatic coastline of Croatia may be considered as an environmentally pristine area. This study was conducted for providing reliable assessment of air quality throughout Croatia and producing information needed for better identification of pollution sources and improving the potential for assessing environmental and health risks in Croatia associated with toxic metals

  8. [Exposure to metal compounds in occupational galvanic processes].

    Science.gov (United States)

    Surgiewicz, Jolanta; Domański, Wojciech

    2006-01-01

    Occupational galvanic processes are provided in more than 600 small and medium enterprises in Poland. Workers who deal with galvanic coating are exposed to heavy metal compounds: tin, silver, copper and zinc. Some of them are carcinogenic, for example, hexavalent chromium compounds, nickel and cadmium compounds. Research covered several tens of workstations involved in chrome, nickel, zinc, tin, silver, copper and cadmium plating. Compounds of metals present in the air were determined: Cr, Ni, Cd, Sn, Ag--by atomic absorption spectrometry with electrothermal atomization (ET-AAS) and Zn--by atomic absorption spectrometry with flame atomization (F-AAS). The biggest metal concentrations--of silver and copper--were found at workstations of copper, brass, cadmium, nickel and chrome plating, conducted at the same time. Significant concentrations of copper were found at workstations of maintenance bathing and neutralizing of sewage. The concentrations of metals did not exceed Polish MAC values. MAC values were not exceeded for carcinogenic chromium(VI), nickel or cadmium, either. In galvanic processes there was no hazard related to single metals or their compounds, even carcinogenic ones. Combined exposure indicators for metals at each workstation did not exceed 1, either. However, if there are even small quantities of carcinogenic agents, health results should always be taken into consideration.

  9. Standardization of digestion procedure for the determination of heavy metals in biological materials by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Khalid, N.; Chaudhri, S.A.

    1999-01-01

    Proper decomposition of the sample is one of the basic requirements of the atomic absorption spectroscopic analysis. In the present studies, heavy metals (Cu, Fe, Mn and Zn) were determined in biological samples by designating them in a mixture of nitric acid and perchloric acid. The quantification was made with atomic absorption spectrometry using an air-acetylene flame. The reliability of the procedure used was checked by analysing standard reference materials from NBS and IAEA, such as Rice flour (NBS-SRM-1568), Horse Kidney (IAEA H-8), Mixed Human diet(IAEA H-9), Copepod (IAEA MA-A-1) and fish flesh (IAEA MA-A-2) under identical conditions. A good agreement was observed between determined and the certified values reported by NBS and IAEA. (author)

  10. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  11. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review.

    Science.gov (United States)

    de la Calle, Inmaculada; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Determination of calcium, copper, chromium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fernandes, E.A.N.

    1981-01-01

    The direct determinacao of calcium, copper, chomium, iron, magnesium, manganese, potassium, sodium and zinc in ethanol by atomic absorption spectrometry with, air-acetylene flame is proposed. Effects of fuel/oxidant ratio, burner height and water content in the samples were investigated in detail. The method allows the determition of the elements with good precision (r.s.d. -1 for the elements tested. (author) [pt

  13. Determination of silver in fresh water by atomic absorption spectrometry following flotation preconcentration by iron(III) collectors

    Energy Technology Data Exchange (ETDEWEB)

    Cundeva, K.; Stafilov, T. [Institute of Chemistry, Faculty of Science, St. Cyril and Methodius University, Skopje (Yugoslavia)

    1997-08-01

    Colloid precipitate flotation of silver from fresh water is applied for preconcentration and separation. Optimal conditions using hydrated iron(III) oxide and iron(III) tetramethylenedithiocarbamate as collectors were investigated. Various factors affecting the silver recovery, including collector mass, nature of the supporting electrolyte, pH of the working medium, electrokinetic potential of the collector particle surfaces, type of surfactant, induction time etc., were checked. Within the optimal pH range (5.5-6.5) silver was separated quantitatively (94.9- 100.0%) with 30 mg Fe(III) as collector. The content of silver was determined by electrothermal atomic absorption spectrometry and compared to that from inductively coupled plasma-atomic emission spectrometry. The detection limit of silver by the method described is 0.01 {mu}g/L. (orig.) With 2 figs., 3 tabs.

  14. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    Science.gov (United States)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of "fluorine as a probe in medicinal chemistry" an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells.

  15. Feasibility of using in situ fusion for the determination of Co, Cr and Mn in Portland cement by direct solid sampling graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Intima, Danielle Polidorio; de Oliveira, Elisabeth; Oliveira, Pedro Vitoriano

    2009-01-01

    In situ fusion on the boat-type graphite platform has been used as a sample pretreatment for the direct determination of Co, Cr and Mn in Portland cement by solid sampling graphite furnace atomic absorption spectrometry (SS-GF AAS). The 3-field Zeeman technique was adopted for background correction to decrease the sensitivity during measurements. This strategy allowed working with up to 200 μg of sample. The in situ fusion was accomplished using 10 μL of a flux mixture 4.0% m/v Na 2 CO 3 + 4.0% m/v ZnO + 0.1% m/v Triton (registered) X-100 added over the cement sample and heated at 800 deg. C for 20 s. The resulting mould was completely dissolved with 10 μL of 0.1% m/v HNO 3 . Limits of detection were 0.11 μg g - 1 for Co, 1.1 μg g - 1 for Cr and 1.9 μg g - 1 for Mn. The accuracy of the proposed method has been evaluated by the analysis of certified reference materials. The values found presented no statistically significant differences compared to the certified values (Student's t-test, p < 0.05). In general, the relative standard deviation was lower than 12% (n = 5).

  16. Determination of bismuth by dielectric barrier discharge atomic absorption spectrometry coupled with hydride generation: Method optimization and evaluation of analytical performance

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Boušek, J.; Sturgeon, R. E.; Mester, Z.; Dědina, Jiří

    2014-01-01

    Roč. 86, č. 19 (2014), s. 9620-9625 ISSN 0003-2700 Grant - others:GA AV ČR(CZ) M200311202 Institutional support: RVO:68081715 Keywords : dielectric barrier discharge * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.636, year: 2014

  17. Determination of Sodium, Potassium, Magnesium, and Calcium Minerals Level in Fresh and Boiled Broccoli and Cauliflower by Atomic Absorption Spectrometry

    Science.gov (United States)

    Nerdy

    2018-01-01

    Vegetables from the cabbage family vegetables consumed by many people, which is known healthful, by eaten raw, boiled, or cooked (stir fry or soup). Vegetables like broccoli and cauliflower contain vitamins, minerals, and fiber. This study aims to determine the decrease percentage of sodium, potassium, magnesium, and calcium minerals level caused by boiled broccoli and cauliflower by atomic absorption spectrometry. Boiled broccoli and cauliflower prepared by given boiled treatment in boiling water for 3 minutes. Fresh and boiled broccoli and cauliflower carried out dry destruction, followed by quantitative analysis of sodium, potassium, magnesium, and calcium minerals respectively at a wavelength of 589.0 nm; 766.5 nm; 285.2 nm; and 422.7 nm, using atomic absorption spectrometry methods. After the determination of the sodium, potassium, magnesium, and calcium minerals level followed by validation of analytical methods with accuracy, precision, linearity, range, limit of detection (LOD), and limit of quantitation (LOQ) parameters. Research results show a decrease in the sodium, potassium, magnesium, and calcium minerals level in boiled broccoli and cauliflower compared with fresh broccoli and cauliflower. Validation of analytical methods gives results that spectrometry methods used for determining sodium, potassium, magnesium, and calcium minerals level are valid. It concluded that the boiled gives the effect of decreasing the minerals level significantly in broccoli and cauliflower.

  18. AA, inner conductor of a magnetic horn

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    At the start-up of the AA and during its initial operation, magnetic horns focused the antiprotons emanating from the production target. These "current-sheet lenses" had a thin inner conductor (for minimum absorption of antiprotons), machined from aluminium to wall thicknesses of 0.7 or 1 mm. The half-sine pulses rose to 150 kA in 8 microsec. The angular acceptance was 50 mrad.

  19. Correlation between Wavelength Dispersive X-ray Fluorescence (WDXRF) analysis of hardened concrete for chlorides vs. Atomic Absorption (AA) analysis in accordance with AASHTO T- 260; sampling and testing for chloride ion in concrete and concrete raw mater

    Science.gov (United States)

    2014-04-01

    A correlation between Wavelength Dispersive X-ray Fluorescence(WDXRF) analysis of Hardened : Concrete for Chlorides and Atomic Absorption (AA) analysis (current method AASHTO T-260, procedure B) has been : found and a new method of analysis has been ...

  20. Determination of trace amounts of cadmium in zirconium and its alloys by graphite furnace AAS

    International Nuclear Information System (INIS)

    Takashima, Kyoichiro; Toida, Yukio

    1994-01-01

    Trace amount of cadmium in zirconium and its alloys was determined by graphite furnace atomic absorption spectrometry (GF-AAS) after ion exchange separation. A 2g chip sample was decomposed with 20ml of hydrofluoric acid (1+9) and a few drops of nitric acid. A trace amount of cadmium was separated from zirconium by strongly acidic cation-exchange resin (MCI GEL CK 08P) using 50ml of hydrochloric acid as an eluent. The solution was gently evaporated to dryness on an electric hot plate heater and under an infrared lamp. The residue was dissolved in 1ml of nitric acid (1+14) and diluted to 10ml in a volumetric glass flask with distilled water. Ten microliters of this solution was injected into a graphite furnace and then atomized at 2200degC for 4s in argon at a flow rate of 3.0l/min. Acids used in the analytical procedure were purified by azeotropic distillation and cation-exchange resin. The limit of determination (3σ BK ) for cadmium was 0.5ngCd/g and the relative standard deviation (RSD) at 1ngCd/g level was less than 20% for the GF-AAS. The accuracy of this technique was confirmed by NIST SRM 1643b (trace elements in water). (author)

  1. Determination of vanadium in mussels by electrothermal atomic absorption spectrometry without chemical modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, Y.; Fernandez, P. [Centro de Control do Medio Marino, Peirao de Vilaxoan s/n, Vilagarcia de Arousa, 36611 Pontevedra (Spain); Gonzalez, A. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Quimica, 15706, Santiago de Compostela (Spain)

    2004-05-01

    A method was developed for the quantitative determination of total vanadium concentration in mussels via electrothermal atomic absorption spectrometry (ETAAS). After the microwave digestion of the samples, a program using temperatures of 1600 C and 2600 C for ashing and atomization respectively, without any matrix modifiers, allowed us to obtain results that were satisfactory since they agreed closely with certified reference material values. The detection limit was 0.03 mg kg{sup -1} (dry weight), indicating that the method is suitable for the analysis of mussel samples. This determination was compared with matrix modifiers that have been reported previously. The method was applied to various cultivated and wild mussels from the Galician coast, yielding levels below 1 mg kg{sup -1} (wet weight). (orig.)

  2. Analysis of nuclear grade uranium oxides by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Batistoni, D.A.; Erlijman, L.H.; Pazos, A.L.

    1986-01-01

    The application of atomic absorption spectrometry for the determination of five trace impurities in nuclear grade uranium oxides is described. The elements were separated from the uranium matrix by extraction chromatography and determined in 5.5 M nitric acid by electrothermal atomization using pyrolytic graphite coated tubes. Two elements, cadmium and chromium, with different volatility characteristics were employed to investigate the operating conditions. Drying and ashing conditions were studied for both elements. Ramp and constant potential (step) heating modes have also been studied and compared. Good reproducibility and a longer life of graphite tubes were obtained with ramp atomization. Detection limits (in micrograms per gram of uranium) were: Cd 0.01; Cr 0.1; Cu 0.4; Mn 0.04 and Ni 0.2. (author) [es

  3. Reve et action: Bloch, Heidegger et Levinas

    Czech Academy of Sciences Publication Activity Database

    Bierhanzl, Jan

    2016-01-01

    Roč. 12, č. 3 (2016), s. 1-6 ISSN 1336-6556 R&D Projects: GA ČR(CZ) GA16-23046S Institutional support: RVO:67985955 Keywords : possibility * wishing * decision * action * dream * utopia Subject RIV: AA - Philosophy ; Religion http://www.ostium.sk/sk/r%C8%87ve-er-action-bloch-heidegger-et-levinas/

  4. Ionic liquid ultrasound assisted dispersive liquid-liquid microextraction method for preconcentration of trace amounts of rhodium prior to flame atomic absorption spectrometry determination

    Energy Technology Data Exchange (ETDEWEB)

    Molaakbari, Elaheh [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Young Research Society, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Mostafavi, Ali, E-mail: mostafavi.ali@gmail.com [Chemistry Department, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Afzali, Daryoush [Environment and Nanochemistry Department, Research Institute of Environmental Science, International Center for Science, High Technology and Environmental Science, Kerman (Iran, Islamic Republic of); Mineral Industries Research Center, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of)

    2011-01-30

    In this article, we consider ionic liquid based ultrasound-assisted dispersive liquid-liquid microextraction of trace amounts of rhodium from aqueous samples and show that this is a fast and reliable sample pre-treatment for the determination of rhodium ions by flame atomic absorption spectrometry. The Rh(III) was transferred into its complex with 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol as a chelating agent, and an ultrasonic bath with the ionic liquid, 1-octyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide at room temperature was used to extract the analyte. The centrifuged rhodium complex was then enriched in the form of ionic liquid droplets and prior to its analysis by flame atomic absorption spectrometry, 300 {mu}L ethanol was added to the ionic liquid-rich phase. Finally, the influence of various parameters on the recovery of Rh(III) was optimized. Under optimum conditions, the calibration graph was linear in the range of 4.0-500.0 ng mL{sup -1}, the detection limit was 0.37 ng mL{sup -1} (3S{sub b}/m, n = 7) and the relative standard deviation was {+-}1.63% (n = 7, C = 200 ng mL{sup -1}). The results show that ionic liquid based ultrasound assisted dispersive liquid-liquid microextraction, combined with flame atomic absorption spectrometry, is a rapid, simple, sensitive and efficient analytical method for the separation and determination of trace amounts of Rh(III) ions with minimum organic solvent consumption.

  5. Preparation and Characteristics of Corn Straw-Co-AMPS-Co-AA Superabsorbent Hydrogel

    Directory of Open Access Journals (Sweden)

    Wei-Min Cheng

    2015-11-01

    Full Text Available In this study, the corn straw after removing the lignin was grafted with 2-acrylamido-2-methylpropanesulfonic acid (AMPS to prepare sulfonated cellulose. The grafting copolymerization between the sulfonated cellulose and acrylic acid (AA was performed using potassium persulfate and N,N′-methylenebisacrylamide as the initiator and crosslinking agent, respectively, to prepare corn straw-co-AMPS-co-AA hydrogels. The structure and properties of the resulting hydrogels were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, and dynamic rheometry. The effects of initiator, crosslinker, monomer neutralization degree, and temperature on the swelling ratio of the hydrogels were studied. The water retention, salt resistance, and recyclability of the corn straw-co-AMPS-co-AA hydrogels were also investigated. The optimum water absorptivity of the corn straw hydrogels was obtained at a polymerization temperature of 50 °C with 1.2% crosslinker, 1:7 ratio of the pretreated corn straw and AA, 2% initiator, and 50% neutralized AA.

  6. Validation of an analytical method for the determination of total mercury in urine samples using cold vapor atomic absorption spectrometry (CV-AAS)

    International Nuclear Information System (INIS)

    Guilhen, Sabine Neusatz

    2009-01-01

    Mercury (Hg) is a toxic metal applied to a variety of products and processes, representing a risk to the health of occupationally or accidentally exposed subjects. Dental amalgam is a restorative material composed of metallic mercury, which use has been widely debated in the last decades. Due to the dubiety of the studies concerning dental amalgam, many efforts concerning this issue have been conducted. The Tropical Medicine Foundation (Tocantins, Brazil) has recently initiated a study to evaluate the environmental and occupational levels of exposure to mercury in dentistry attendants at public consulting rooms in the city of Araguaina (TO). In collaboration with this study, the laboratory of analysis at IPEN's Chemistry and Environment Center is undertaking the analysis of mercury levels in exposed subjects' urine samples using cold vapor atomic absorption spectrometry. This analysis requires the definition of a methodology capable of generating reliable results. Such methodology can only be implemented after a rigorous validation procedure. As part of this work, a series of tests were conducted in order to confirm the suitability of the selected methodology and to assert that the laboratory addresses all requirements needed for a successful implementation of the methodology. The following parameters were considered in order to test the method's performance: detection and quantitation limits, selectivity, sensitivity, linearity, accuracy and precision. The assays were carried out with certified reference material, which assures the traceability of the results. Taking into account the estimated parameters, the method can be considered suitable for the afore mentioned purpose. The mercury concentration found for the reference material was of (95,12 +- 11,70)mug.L -1 with a recovery rate of 97%. The method was also applied to 39 urine samples, six of which (15%) showing urinary mercury levels above the normal limit of 10μg.L -1 . The obtained results fall into a

  7. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers

    Science.gov (United States)

    Abad, Carlos; Florek, Stefan; Becker-Ross, Helmut; Huang, Mao-Dong; Heinrich, Hans-Joachim; Recknagel, Sebastian; Vogl, Jochen; Jakubowski, Norbert; Panne, Ulrich

    2017-10-01

    Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0 → 0) and (1 → 1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements.

  8. MERCURY QUANTIFICATION IN SOILS USING THERMAL DESORPTION AND ATOMIC ABSORPTION SPECTROMETRY: PROPOSAL FOR AN ALTERNATIVE METHOD OF ANALYSIS

    Directory of Open Access Journals (Sweden)

    Liliane Catone Soares

    2015-08-01

    Full Text Available Despite the considerable environmental importance of mercury (Hg, given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique, were used in validation of the method, which proved to be accurate and precise.

  9. A study of nanostructured gold modified glassy carbon electrode for ...

    Indian Academy of Sciences (India)

    Wintec

    strument, and also atomic absorption spectrometry. (AAS) and inductively coupled plasma atomic emis- sion spectrometry can only yield information on total. Cr concentration. 9. Therefore, electrochemical methods have been applied for the determination of chromium, which have shown numerous advantages including.

  10. Determination of gold in copper-bearing sulphide ores and metallurgical flotation products by atomic-absorption spectrometry.

    Science.gov (United States)

    Strong, B; Murray-Smith, R

    1974-12-01

    A method is described which is specific for the determination of gold in sulphide copper ores and concentrates. Direct decomposition with aqua regia was found to be incomplete. A carefully controlled roasting stage followed by treatment with hydrochloric acid and then aqua regia was effective for dissolving all the gold. The gold is extracted into 4-methylpentan-2-one (methyli-sobutylketone) then aspirated into a very lean air-acetylene flame and the gold determined by atomic-absorption spectrometry. No interferences were observed from large concentrations of copper, iron or nickel.

  11. Exploiting flow Injection and sequential injection schemes for trace metal determinations by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Hansen, Elo Harald

    Determination of low or trace-level amounts of metals by electrothermal atomic absorption spectrometry (ETAAS) often requires the use of suitable preconcentration and/or separation procedures in order to attain the necessary sensitivity and selectivity. Such schemes are advantageously executed...... by superior performance and versatility. In fact, two approaches are conceivable: The analyte-loaded ion-exchange beads might either be transported directly into the graphite tube where they are pyrolized and the measurand is atomized and quantified; or the loaded beads can be eluted and the eluate forwarded...

  12. Gamow-Teller strength distribution in the beta-decay of 100Ag from total-absorption gamma spectrometry

    International Nuclear Information System (INIS)

    Batist, L.; Bykov, A.; Moroz, F.; Wittmann, V.; Alkhazov, G.D.; Keller, H.; Kirchner, R.; Klepper, O.; Roeckl, E.; Huyse, M.; Duppen, P. van; Reusen, G.; Plochocki, A.; Pfuetzner, M.; Rykaczewski, K.; Szerypo, J.; Zylicz, J.; Brown, B.A.

    1994-10-01

    The EC/β + -decay of the odd-odd nucleus 100 Ag was studied by means of total absorption γ-ray spectrometry. Most of the Gamow-Teller strength was found to be concentrated at an excitation energy of 5.6 MeV in 100 Pd, the FWHM of this resonance being 1.5 MeV. The measured strength distribution which is interpreted within the BCS approximation as being due to the dominant population of four-quasiparticle excitations, resembles the distribution predicted by an advanced shell-model calculation for the 98 Ag→ 98 Cd decay. (orig.)

  13. Determination of cadmium in human urine by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Shijo, Yoshio; Sakai, Kaoru

    1981-01-01

    A trace amount of cadmium in human urine was determined by graphite furnace atomic absorption spectrometry. A urine sample (25 ml) was digested with 5 ml of HNO 3 and 30 ml of H 2 O 2 in a long-neck flask on a hot-plate (200 0 C), then diluted to 50 ml. The standard addition method was carried out before digesting. Ten μl of the resulted solution was injected into a tube treated with tungsten carbide, and the cadmium signal was measured with the ramp mode atomization. Interference induced by organic materials in urine was avoided by HNO 3 -H 2 O 2 digestion. Interference induced by inorganic salts could be reduced by 2-fold dilution and tungsten carbide treatment. The cadmium signal was separated sufficiently from the molecular absorption due to NaCl etc. by the ramp mode atomization. Since the blank level of H 2 O 2 was relatively high, the determination was limited to about 0.1 μg/l. The coefficient of variation was 1.76% at 0.36 μg/l in 24 h human urine (n = 4). The time required was (8 -- 10)h. The precision of this method was higher than those of direct methods, and the reasonable values of urine levels of cadmium were obtained. (author)

  14. Flow injection analysis-flame atomic absorption spectrometry system for indirect determination of sulfite after on-line reduction of solid-phase manganese (IV) dioxide reactor.

    Science.gov (United States)

    Zare-Dorabei, Rouholah; Boroun, Shokoufeh; Noroozifar, Meissam

    2018-02-01

    A new and simple flow injection method followed by atomic absorption spectrometry was developed for indirect determination of sulfite. The proposed method is based on the oxidation of sulfite to sulphate ion using solid-phase manganese dioxide (30% W/W suspended on silica gel beads) reactor. MnO 2 will be reduced to Mn(II) by sample injection in to the column under acidic carrier stream of HNO 3 (pH 2) with flow rate of 3.5mLmin -1 at room temperature. Absorption measurement of Mn(II) which is proportional to the concentration of sulfite in the sample was carried out by atomic absorption spectrometry. The calibration curve was linear up to 25mgL -1 with a detection limit (DL) of 0.08mgL -1 for 400µL injection sample volume. The presented method is efficient toward sulfite determination in sugar and water samples with a relative standard deviation (RSD) less than 1.2% and a sampling rate of about 60h -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    International Nuclear Information System (INIS)

    Krüger, Magnus; Huang, Mao-Dong; Becker-Roß, Helmut; Florek, Stefan; Ott, Ingo; Gust, Ronald

    2012-01-01

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of “fluorine as a probe in medicinal chemistry” an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells. - Highlights: ► Development of HR-CS MAS for quantification of fluorine bound to organic molecules ► Measuring as molecular absorption of gallium monofluoride ► Quantification of organic-bound fluorine in biological material ► The concept of “fluorine as a probe in medicinal chemistry” could be established

  16. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    International Nuclear Information System (INIS)

    Mironenko, V.R.; Kuritsyn, Yu.A.; Bolshov, M.A.; Liger, V.V.

    2017-01-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm"−"1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected – (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  17. evaluation of atomic absorption spectrophotometry (ashing, non ...

    African Journals Online (AJOL)

    cistvr

    1Department of Agricultural and Food Science and 2Department of ... used techniques, namely atomic absorption spectrophotometry (AAS-Ashing and ..... fact that more preparation steps were involved in the Ashing procedure and thus.

  18. The determination of magnesium in simulated PWR coolant by graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gatford, C.; Torrance, K.

    1988-06-01

    The determination of magnesium in simulated PWR coolant has been investigated by graphite furnace atomic absorption spectrometry with atomization from a L'vov platform. The presence of boric acid in the coolant suppresses the magnesium absorption to such an extent that removal of the boron is necessary and three variations of a methyl borate volatilization technique for the in situ removal of boron from the sample platform were investigated. This work has shown that dilution of the sample with an equal volume of acidified methanol and volatilization of the methyl borate was adequate for the determination of magnesium in coolant samples containing up to 2000 mg 1 -1 of boron. In simulated coolant samples containing 25 and 4 μg 1 -1 of magnesium, positive biases of about 2 and 0.5 μg 1 -1 were measured and these errors were considered to be due to contamination. The limit of detection in the presence of 100 and 2000 mg 1 -1 boron were 0.14 and 0.93 μg 1 -1 respectively. These performance characteristics suggest the method is completely acceptable for monitoring the chemical purity of PWR coolant and associated waters containing boric acid. If, however, more precise analyses were to be required for research purposes then any significant improvement in the above figures would require increased purity of reagents, clean-room conditions to reduce contamination and a more versatile atomic absorption spectrophotometer. (author)

  19. Determination of total sulfur in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry.

    Science.gov (United States)

    Virgilio, Alex; Raposo, Jorge L; Cardoso, Arnaldo A; Nóbrega, Joaquim A; Gomes Neto, José A

    2011-03-23

    The usefulness of molecular absorption was investigated for the determination of total sulfur (S) in agricultural samples by high-resolution continuum source flame molecular absorption spectrometry. The lines for CS at 257.595, 257.958, and 258.056 nm and for SH at 323.658, 324.064, and 327.990 nm were evaluated. Figures of merit, such as linear dynamic range, sensitivity, linear correlation, characteristic concentration, limit of detection, and precision, were established. For selected CS lines, wavelength-integrated absorbance equivalent to 3 pixels, analytical curves in the 100-2500 mg L(-1) (257.595 nm), 250-2000 mg L(-1) (257.958 nm), and 250-5000 mg L(-1) (258.056 nm) ranges with a linear correlation coefficient better than 0.9980 were obtained. Results were in agreement at a 95% confidence level (paired t test) with those obtained by gravimetry. Recoveries of S in fungicide and fertilizer samples were within the 84-109% range, and the relative standard deviation (n=12) was typically <5%.

  20. Raman spectra of ordinary and deuterated liquid ammonias; Spectres Raman des ammoniacs ordinaire et deuteries liquides

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Leicknam, J P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires, direction des materiaux et des combustibles nucleaires, departement de physico-chimie, service des isotopes stables, service de spectrometrie de masse

    1968-12-01

    The three deuterated ammonia molecules, as well as ordinary ammonia, have been examined in the liquid state by Raman spectroscopy using a high-pressure cell described elsewhere. This work thus completes the infrared spectrometry studies. We have examined the NH and ND valency absorption regions. The polarization measurements and isotope effect considerations make it possible to confirm most of the attributions recently proposed for interpreting the infrared spectra of the four isotopic molecules: the apparent disagreement between the NH{sub 3} and ND{sub 3} spectra obtained in this region by infrared and Raman spectroscopy is discussed: by the first technique the number of bands in the spectra corresponds well to the theoretically expected number, and the relative intensities conform more or less to expectations; the Raman spectra however have a strong supplementary band in the same region, produced by a Fermi resonance; it is possible to explain, from theoretical considerations, why this resonance appears so easily in the Raman spectrum, whereas it is detected in the infrared only by a very detailed analysis of the effects of solvents on the ammonia. (authors) [French] Les trois ammoniacs deuteries, ainsi que l'ammoniac ordinaire, sont examines a l'etat liquide par spectrometrie Raman, a l'aide d'une cuve haute pression decrite par ailleurs. Ce travail complete donc les etudes effectuees par spectrometrie infra-rouge. Nous avons examine les regions d'absorption de valence NH et ND. Les mesures de polarisation et des considerations sur les effets isotopiques permettent de confirmer la plupart des attributions proposees recemment pour interpreter les spectres infra-rouges des quatre molecules isotopiques: on discute egalement l'apparent desaccord entre les spectres de NH{sub 3} et de ND{sub 3} obtenus dans cette region par infra-rouge et Raman: par la premiere technique le nombre de bandes relevees sur les spectres correspond bien au nombre theoriquement attendu et

  1. Trends in preconcentration procedures for metal determination using atomic spectrometry techniques

    International Nuclear Information System (INIS)

    Godoi Pereira, M. de; Arruda, M.A.Z.

    2003-01-01

    Methods for metal preconcentration are often described in the literature. However, purposes are often different, depending on whether the methods are applied in environmental, clinical or technological fields. The respective method needs to be efficient, give high sensitivity, and ideally also is selective which is useful when used in combination with atomic spectroscopy. This review presents the actual tendencies in metal preconcentration using techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), hydride generation atomic absorption spectrometry (HGAAS), inductively coupled plasma optical emission spectrometry (ICP OES) and inductively coupled plasma mass spectrometry (ICP-MS). Procedures based on related to electrochemical, coprecipitation/precipitation, liquid-liquid and solid-liquid extraction and atom trapping mechanisms are presented. (author)

  2. Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction.

    Science.gov (United States)

    Krawczyk-Coda, Magdalena; Stanisz, Ewa

    2017-11-01

    This work presents ultrasound-assisted dispersive micro solid phase extraction (USA DMSPE) for preconcentration of fluorine (F) in water and herb samples. TiO 2 nanoparticles (NPs) were used as an adsorbent. The determination with slurry sampling was performed via molecular absorption of calcium monofluoride (CaF) at 606.440 nm using a high-resolution continuum source electrothermal absorption spectrometry (HR-CS ET MAS). Several factors influencing the efficiency of the preconcentration technique, such as the amount of TiO 2 , pH of sample solution, ultrasonication and centrifugation time and TiO 2 slurry solution preparation before injection to HR-CS ET MAS, were investigated in detail. The conditions of detection step (wavelength, calcium amount, pyrolysis and molecule-forming temperatures) were also studied. After extraction, adsorbent with the analyte was mixed with 200 μL of H 2 O to prepare a slurry solution. The concentration limit of detection was 0.13 ng mL -1 . The achieved preconcentration factor was 7. The relative standard deviations (RSDs, %) for F in real samples were 3-15%. The accuracy of this method was evaluated by analyses of certified reference materials after spiking: INCT-MPH-2 (Mixed Polish Herbs), INCT-SBF-4 (Soya Bean Flour), ERM-CAO11b (Hard Drinking Water) and TMDA-54.5 (Lake Ontario Water). The measured F contents in reference materials were in satisfactory agreement with the added amounts, and the recoveries were found to be 97-109%. Under the developed extraction conditions, the proposed method has been successfully applied for the determination of F in real water samples (lake, sea, tap water) and herbs.

  3. Theory and technique of spark source mass spectrometry; Theorie et technique de la spectrometrie de masse a etincelles

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    Trace analysis in solids by spark source mass spectrometry involves complicated phenomena: element ionization in spark and blacking of sensitive emulsion by focused ion beam. However the principal risk of selectivity lies in analyser system, which realizes double focusing only for a part of the ions. Therefore, each analyst has to known ionic optics of his apparatus, for ensuring the transmission of mean energetic ions, which are representative of sample composition. By a careful photometry of mass spectrum, good reproducibility can be obtained. Thereafter accuracy depends on the knowledge of sensitivity coefficients proper to this apparatus. (author) [French] L'analyse de traces dans les solides par spectrometrie de masse a etincelles met en jeu des phenomenes complexes qui sont l'ionisation des elements dans l'etincelle, et le noircissement de l'emulsion sensible par les faisceaux ioniques focalises. Cependant, le risque majeur de selectivite provient de l'ensemble analyseur, qui realise la double focalisation sur une fraction seulement du faisceau d'ions. L'analyste doit donc connaitre en detail l'optique ionique de son appareil, pour assurer le passage de la bande d'energie moyenne des ions, qui seule caracterise quantitativement la composition chimique de l'echantillon. Une exploitation photometrique soignee du spectrogramme donne alors des resultats reproductibles, dont la justesse ne depend plus que des coefficients de sensibilite propres a ce type d'instrument. (auteur)

  4. Multielement preconcentration of trace heavy metals in seawater with an emulsion containing 8-quinolinol for graphite-furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Matsumiya, Hiroaki; Kageyama, Tomohiro; Hiraide, Masataka

    2004-01-01

    A water-in-oil type emulsion containing 8-quinolinol has been used for the concentration of traces of heavy metals from seawater prior to their determinations by graphite-furnace atomic absorption spectrometry. The emulsion used was prepared by dissolving 40 mg of 8-quinolinol and 60 mg of sorbitan monooleate (Span-80) in 3.0 ml of toluene and vigorously mixing with 0.70 ml of aqueous hydrochloric acid solution (1.5 mol l -1 ) by ultrasonic irradiation. The resulting emulsion was gradually injected into 100 ml of sample solution (pH 8.5) and dispersed by stirring as numerous tiny globules. Four heavy metals (Co, Ni, Cu, and Cd) in the sample solution were quantitatively transported through the organic layer into the acidic aqueous droplets encapsulated in the emulsion. After collecting the dispersed emulsion globules, they were demulsified by heating and the heavy metals in the segregated aqueous phase were determined by atomic absorption spectrometry. Owing to the highly efficient concentration (100-fold), these heavy metals at sub-ng ml -1 levels in seawater were determined with satisfactory accuracy and precision, being confirmed with certified reference samples

  5. Study of some Ayurvedic Indian medicinal plants for the essential trace elemental contents by instrumental neutron activation analysis and atomic absorption spectroscopy techniques

    International Nuclear Information System (INIS)

    Lokhande, R.S.; Singare, P.U.; Andhele, M.L.; Acharya, R.; Nair, A.G.C.; Reddy, A.V.R.

    2009-01-01

    Elemental analysis of some medicinal plants used in the Indian Ayurvedic system was performed by employing instrumental neutron activation analysis (INAA) and atomic absorption spectroscopy (AAS) techniques. The samples were irradiated with thermal neutrons in a nuclear reactor and the induced activity was counted by gamma ray spectrometry using an efficiency calibrated high resolution high purity germanium (HPGe) detector. Most of the medicinal plants were found to be rich in one or more of the elements under study. The variation in elemental concentration in same medicinal plants samples collected in summer, winter and rainy seasons was studied and the biological effects of these elements on human beings are discussed. (orig.)

  6. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Magnus [Freie Universitaet Berlin, Institut fuer Pharmazie, Pharmazeutische Chemie, Koenigin-Luise-Str. 2-4, 14195 Berlin (Germany); Huang, Mao-Dong; Becker-Ross, Helmut; Florek, Stefan [Leibniz Institut fuer Analytische Wissenschaften, ISAS-e.V., Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Ott, Ingo [Technische Universitaet Carolo Wilhelmina zu Braunschweig, Institut fuer Medizinische und Pharmazeutische Chemie, Beethovenstr. 55, 38106 Braunschweig (Germany); Gust, Ronald, E-mail: ronald.gust@uibk.ac.at [Universitaet Innsbruck, Institut fuer Pharmazie, Pharmazeutische Chemie, Innrain 80/82, 6020 Innsbruck (Austria)

    2012-03-15

    The development of high-resolution continuum source molecular absorption spectrometry made the quantification of fluorine feasible by measuring the molecular absorption as gallium monofluoride (GaF). Using this new technique, we developed on the example of 5-fluorouracil (5-FU) a graphite furnace method to quantify fluorine in organic molecules. The effect of 5-FU on the generation of the diatomic GaF molecule was investigated. The experimental conditions such as gallium nitrate amount, temperature program, interfering anions (represented as corresponding acids) and calibration for the determination of 5-FU in standard solution and in cellular matrix samples were investigated and optimized. The sample matrix showed no effect on the sensitivity of GaF molecular absorption. A simple calibration curve using an inorganic sodium fluoride solution can conveniently be used for the calibration. The described method is sensitive and the achievable limit of detection is 0.23 ng of 5-FU. In order to establish the concept of 'fluorine as a probe in medicinal chemistry' an exemplary application was selected, in which the developed method was successfully demonstrated by performing cellular uptake studies of the 5-FU in human colon carcinoma cells. - Highlights: Black-Right-Pointing-Pointer Development of HR-CS MAS for quantification of fluorine bound to organic molecules Black-Right-Pointing-Pointer Measuring as molecular absorption of gallium monofluoride Black-Right-Pointing-Pointer Quantification of organic-bound fluorine in biological material Black-Right-Pointing-Pointer The concept of 'fluorine as a probe in medicinal chemistry' could be established.

  7. Determination of cobalt in human biological liquids from electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dragan, Felicia [University of Oradea, Faculty of Medicine and Pharmacy, 29 N Jiga, 410028 Oradea (Romania); HIncu, Lucian [University of Medicine and Pharmacy ' Carol Davila' , Faculty of Pharmacy, 6 Traian Vuia, 020956 Bucuresti (Romania); Bratu, Ioan, E-mail: fdragan@uoradea.r [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath, 400293 Cluj-Napoca (Romania)

    2009-08-01

    Problems and possibilities of the determination of Co in serum and urine samples by electrothermal atomic absorption spectrometry (ETAAS) are described. Optimal instrumental parameters as well as a suitable atomizer, calibration procedure and hydrogen peroxide as modifier are proposed for direct ETAAS measurement of Co in serum and urine. The detection limit achieved was 0.1 {mu}g L{sup -1} for both matrices and relative standard deviations varied in the range 5-20% depending on the Co concentration in the sample. The validity of the method was verified by the analyses of standard reference materials. For serum samples with Co content lower than the detection limit, a separation and preconcentration procedure based on liquid/liquid extraction is suggested prior to determination of Co in the organic phase by ETAAS. This procedure permits determination of 0.02 {mu}g L{sup -1} Co in serum samples with a relative standard deviation of 10-18%.

  8. Lead and cadmium in human teeth from Jordan by atomic absorption spectrometry: Some factors influencing their concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Alomary, A. [Department of Chemistry, Yarmouk University, Irbid (Jordan)]. E-mail: ahmedalomary1000@hotmail.com; Al-Momani, I.F. [Department of Chemistry, Yarmouk University, Irbid (Jordan); Massadeh, A.M. [Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid (Jordan)

    2006-10-01

    The aim of this study was to measure the concentrations of lead (Pb) and cadmium (Cd) in human teeth and to investigate the affecting factors. Teeth samples (n = 268) were collected from people living in different cities in Jordan including Amman, Zarqa, Al-Mafraq and Irbid and analyzed for Pb and Cd using atomic absorption spectrometry (AAS). A questionnaire was used to gather information on each person, such as age, sex, place where the patient lives, smoking, presence of amalgam fillings inside the mouth, and whether the patient uses toothpaste or not. The mean concentrations of Pb and Cd were 28.91 {mu}g/g and 0.44 {mu}g/g, respectively. The results indicate that there is a clear relation between Pb and Cd concentrations and the presence of amalgam fillings, smoking, and place of living. Pb was sex-dependent, whereas Cd was not. Our results show that Pb and Cd concentrations in samples obtained from Al-Mafraq and Irbid are higher than those obtained from Amman and Zarqa. Pb was highest in Mafraq, whereas Cd was highest in Irbid. The Pb and Cd concentrations in teeth from smokers (means: Pb = 31.89 {mu}g/g, Cd = 0.49 {mu}g/g) were significantly higher than those from nonsmokers (means: Pb = 24.07 {mu}g/g, Cd = 0.37 {mu}g/g). Pb and Cd concentrations in teeth of patients with amalgam fillings (means: Pb = 31.02 {mu}g/g and Cd = 0.52 {mu}g/g) were significantly higher than those from patients without amalgam fillings (means: Pb = 26.87 {mu}g/g and Cd = 0.41 {mu}g/g). Our results show that brushing the teeth daily with toothpaste does not significantly decrease the concentration of both Pb and Cd. The mean concentrations of Pb and Cd do not vary significantly between the ages 20-30, 31-40, and 41-50, but both increased rapidly at age 51-60.

  9. Lead and cadmium in human teeth from Jordan by atomic absorption spectrometry: Some factors influencing their concentrations

    International Nuclear Information System (INIS)

    Alomary, A.; Al-Momani, I.F.; Massadeh, A.M.

    2006-01-01

    The aim of this study was to measure the concentrations of lead (Pb) and cadmium (Cd) in human teeth and to investigate the affecting factors. Teeth samples (n = 268) were collected from people living in different cities in Jordan including Amman, Zarqa, Al-Mafraq and Irbid and analyzed for Pb and Cd using atomic absorption spectrometry (AAS). A questionnaire was used to gather information on each person, such as age, sex, place where the patient lives, smoking, presence of amalgam fillings inside the mouth, and whether the patient uses toothpaste or not. The mean concentrations of Pb and Cd were 28.91 μg/g and 0.44 μg/g, respectively. The results indicate that there is a clear relation between Pb and Cd concentrations and the presence of amalgam fillings, smoking, and place of living. Pb was sex-dependent, whereas Cd was not. Our results show that Pb and Cd concentrations in samples obtained from Al-Mafraq and Irbid are higher than those obtained from Amman and Zarqa. Pb was highest in Mafraq, whereas Cd was highest in Irbid. The Pb and Cd concentrations in teeth from smokers (means: Pb = 31.89 μg/g, Cd = 0.49 μg/g) were significantly higher than those from nonsmokers (means: Pb = 24.07 μg/g, Cd = 0.37 μg/g). Pb and Cd concentrations in teeth of patients with amalgam fillings (means: Pb = 31.02 μg/g and Cd = 0.52 μg/g) were significantly higher than those from patients without amalgam fillings (means: Pb = 26.87 μg/g and Cd = 0.41 μg/g). Our results show that brushing the teeth daily with toothpaste does not significantly decrease the concentration of both Pb and Cd. The mean concentrations of Pb and Cd do not vary significantly between the ages 20-30, 31-40, and 41-50, but both increased rapidly at age 51-60

  10. Combined discrete nebulization and microextraction process for molybdenum determination by flame atomic absorption spectrometry (FAAS)

    International Nuclear Information System (INIS)

    Oviedo, Jenny A.; Jesus, Amanda M.D. de; Fialho, Lucimar L.; Pereira-Filho, Edenir R.

    2014-01-01

    Simple and sensitive procedures for the extraction/preconcentration of molybdenum based on vortex-assisted solidified floating organic drop microextraction (VA-SFODME) and cloud point combined with flame absorption atomic spectrometry (FAAS) and discrete nebulization were developed. The influence of the discrete nebulization on the sensitivity of the molybdenum preconcentration processes was studied. An injection volume of 200 μ resulted in a lower relative standard deviation with both preconcentration procedures. Enrichment factors of 31 and 67 and limits of detection of 25 and 5 μ L -1 were obtained for cloud point and VA-SFODME, respectively. The developed procedures were applied to the determination of Mo in mineral water and multivitamin samples. (author)

  11. Marine sediments monitoring studies for trace elements with the application of fast temperature programs and solid sampling high resolution continuum source atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Orani, Anna Maria; Han, Eunmi; Mandjukov, Petko; Vassileva, Emilia, E-mail: e.vasileva-veleva@iaea.org

    2015-01-01

    Analytical procedure for the determination of As, Cd, Cu, Ni, Co and Cr in marine sediment samples using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS AAS) and direct solid sample analysis has been developed. The application of fast programs in combination with direct solid sampling allows to eliminate the drying and pretreatment steps, however makes impossible the use of liquid standards for calibration. Iridium treated platforms were applied throughout the present study. Calibration technique based on the use of solid certified reference materials (marine sediments) similar to the nature of the analyzed sample and statistics of regression analysis were applied to the real sediment samples. The instrumental parameters were optimized in order to obtain reproducible and interference free analytical signals. The ISO-17025 requirements and Eurachem guidelines were followed in the validation of the proposed analytical procedure. Accordingly, blanks, selectivity, calibration, linearity, working range, trueness, repeatability reproducibility, limits of detection and quantification and expanded uncertainty (k = 2) for all investigated elements were assessed. Two different approaches for the estimation of measurement uncertainty were applied and obtained results compared. The major contributors to the combined uncertainty of the analyte mass fraction were found to be the homogeneity of the samples and the microbalance precision. The influence of sample particle sizes on the total combined uncertainty was also evaluated. Traceability to SI system of units of the obtained by the proposed analytical procedure results was demonstrated. Additionally, validation of the methodology developed was effectuated by the comparison of the obtained results with independent method e.g. ICP-MS with external calibration. The use of solid sampling HR CS AAS for the determination of trace elements in marine sediment matrix gives significant advantages

  12. Air Pollution Studies in Central Russia (Tula Region) Using Moss Biomonitoring Technique, NAA and AAS

    CERN Document Server

    Ermakova, E V; Steinnes, E

    2002-01-01

    For the first time the moss biomonitoring technique has been applied to air pollution monitoring in Central Russia (Tula Region). Moss samples were collected from 83 sites in accordance with the sampling strategy of European projects on biomonitoring of atmospheric deposition. Neutron activation analysis (NAA) at the IBR-2 reactor has made it possible to determine the concentration of 33 elements (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, As, Br, Rb, Sr, Mo, Sb, I, Cs, Ba, La, Ce, Sm, Tb, Yb, Hf, Ta, W, Th, U) over a large concentration range (from 10000 mg/kg for K to 0.001 mg/kg for Tb and Ta). In addition to NAA, flame AAS (atomic absorption spectrometry) was applied to determine the concentration of Cd, Cu and Pb. Factor analysis was applied to determine possible sources of elements detected in the investigated mosses. Eight factors were identified. The geographical distribution of factor scores is presented. The interpretation of the factor analysis findings points to natural as well as anthr...

  13. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    International Nuclear Information System (INIS)

    Brum, Daniel M.; Lima, Claudio F.; Robaina, Nicolle F.; Fonseca, Teresa Cristina O.; Cassella, Ricardo J.

    2011-01-01

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO 3 , the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO 3 medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  14. Multiple response optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry with sample injection as detergent emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Brum, Daniel M.; Lima, Claudio F. [Departamento de Quimica, Universidade Federal de Vicosa, A. Peter Henry Rolfs s/n, Vicosa/MG, 36570-000 (Brazil); Robaina, Nicolle F. [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil); Fonseca, Teresa Cristina O. [Petrobras, Cenpes/PDEDS/QM, Av. Horacio Macedo 950, Ilha do Fundao, Rio de Janeiro/RJ, 21941-915 (Brazil); Cassella, Ricardo J., E-mail: cassella@vm.uff.br [Departamento de Quimica Analitica, Universidade Federal Fluminense, Outeiro de S.J. Batista s/n, Centro, Niteroi/RJ, 24020-141 (Brazil)

    2011-05-15

    The present paper reports the optimization for Cu, Fe and Pb determination in naphtha by graphite furnace atomic absorption spectrometry (GF AAS) employing a strategy based on the injection of the samples as detergent emulsions. The method was optimized in relation to the experimental conditions for the emulsion formation and taking into account that the three analytes (Cu, Fe and Pb) should be measured in the same emulsion. The optimization was performed in a multivariate way by employing a three-variable Doehlert design and a multiple response strategy. For this purpose, the individual responses of the three analytes were combined, yielding a global response that was employed as a dependent variable. The three factors related to the optimization process were: the concentration of HNO{sub 3}, the concentration of the emulsifier agent (Triton X-100 or Triton X-114) in aqueous solution used to emulsify the sample and the volume of solution. At optimum conditions, it was possible to obtain satisfactory results with an emulsion formed by mixing 4 mL of the samples with 1 mL of a 4.7% w/v Triton X-100 solution prepared in 10% v/v HNO{sub 3} medium. The resulting emulsion was stable for 250 min, at least, and provided enough sensitivity to determine the three analytes in the five samples tested. A recovery test was performed to evaluate the accuracy of the optimized procedure and recovery rates, in the range of 88-105%; 94-118% and 95-120%, were verified for Cu, Fe and Pb, respectively.

  15. Use of the helium-3 proportional counter for neutron spectrometry; Utilisation du compteur proportionnel a helium 3 pour la spectrometrie des neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Vialettes, H; Le Thanh, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Up to now, two methods have been mainly used for neutron spectrometry near nuclear installations: - photographic emulsion spectrometry - the so-called, 'multisphere' technique spectrometry. The first method, which is fairly difficult to apply, has a threshold energy of about 500 keV; this is a big disadvantage for an apparatus which has to be used for spectrometry around nuclear installations where the neutron radiation is very much degraded energetically. The second method does not suffer from this disadvantage but the results which it yields are only approximate. In order to extend the energy range of the neutron spectra studied with sufficient accuracy the use of a helium-3 proportional counter has been considered. This report presents the principles of operation of the helium-3 spectrometer, and the calculation methods which make it possible to take into account the two main effects tending to deform the spectra obtained: - energy absorption by the walls of the counter, - energy loss of the incident neutrons due to elastic collisions with helium-3 nuclei. As an example of the application, the shape of the neutron spectrum emitted by a polonium-lithium source is given; the results obtained are in excellent agreement with theoretical predictions. (authors) [French] Jusqu'ici deux methodes ont ete utilisees principalement pour la spectrometrie des neutrons autour des installations nucleaires: - la spectrometrie par emulsions photographiques - la spectrometrie par la technique dite des multispheres. La premiere methode, d'un emploi assez delicat presente un seuil en energie d'environ 500 keV qui est un obstacle serieux a la spectrometrie autour des installations nucleaires ou le rayonnement neutronique est tres degrade en energie. La deuxieme methode ne presente pas cet inconvenient mais les resultats qu'elle permet d'obtenir ne sont qu'approches. Pour etendre la gamme d'energie des spectres de neutrons etudies avec une precision suffisante, l'utilisation du

  16. Investigating effects of sample pretreatment on protein stability using size-exclusion chromatography and high-resolution continuum source atomic absorption spectrometry.

    Science.gov (United States)

    Rakow, Tobias; El Deeb, Sami; Hahne, Thomas; El-Hady, Deia Abd; AlBishri, Hassan M; Wätzig, Hermann

    2014-09-01

    In this study, size-exclusion chromatography and high-resolution atomic absorption spectrometry methods have been developed and evaluated to test the stability of proteins during sample pretreatment. This especially includes different storage conditions but also adsorption before or even during the chromatographic process. For the development of the size exclusion method, a Biosep S3000 5 μm column was used for investigating a series of representative model proteins, namely bovine serum albumin, ovalbumin, monoclonal immunoglobulin G antibody, and myoglobin. Ambient temperature storage was found to be harmful to all model proteins, whereas short-term storage up to 14 days could be done in an ordinary refrigerator. Freezing the protein solutions was always complicated and had to be evaluated for each protein in the corresponding solvent. To keep the proteins in their native state a gentle freezing temperature should be chosen, hence liquid nitrogen should be avoided. Furthermore, a high-resolution continuum source atomic absorption spectrometry method was developed to observe the adsorption of proteins on container material and chromatographic columns. Adsorption to any container led to a sample loss and lowered the recovery rates. During the pretreatment and high-performance size-exclusion chromatography, adsorption caused sample losses of up to 33%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tin Content Determination in Canned Fruits and Vegetables by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry

    Directory of Open Access Journals (Sweden)

    Sanda Rončević

    2012-01-01

    Full Text Available Tin content in samples of canned fruits and vegetables was determined by hydride generation inductively coupled plasma atomic emission spectrometry (HG-ICP-OES, and it was compared with results obtained by standard method of flame atomic absorption spectrometry (AAS. Selected tin emission lines intensity was measured in prepared samples after addition of tartaric acid and followed by hydride generation with sodium borohydride solution. The most favorable line at 189.991 nm showed the best detection limit (1.9 μg L−1 and limit of quantification (6.4 μg kg−1. Good linearity and sensitivity were established from time resolved analysis and calibration tests. Analytical accuracy of 98–102% was obtained by recovery study of spiked samples. Method of standard addition was applied for tin determination in samples from fully protected tinplate. Tin presence at low-concentration range was successfully determined. It was shown that tenth times less concentrations of Sn were present in protected cans than in nonprotected or partially protected tinplate.

  18. Analysis of aluminium by atomic absorption spectrometry and analysis of thorium and uranium by alpha spectrometry in the black sand of Egypt

    International Nuclear Information System (INIS)

    Hannachi, Dhouha; Mathlouthi, Nadia

    2008-01-01

    Throughout the period of our project of end of study carried out in the Center ; main road Sciences and Nuclear Engineering's CNSTN in one is tallied took one Egypt black sand simple with an aim has of knowing the activities of the existing radio elements and especially Uranium and Thorium. In the same mining, we try to take another Egypt black sand simple an aim has knowing the mass of aluminum by using a techniques in Atomique Absorption Spectrophotometer. After the radio chemical and Spectrometry analysis of the black sand sample we found the results following: - Egypt black sand is contains isotopes of Uranium such as 234 U and 238 U; - The Egypt black sand is contains isotopes of Thorium such as 230 Th and 232 Th. - L' Aluminum is a major. (Author)

  19. Solid sampling graphite furnace atomic absorption spectrometry for the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration

    Science.gov (United States)

    González-Álvarez, Rafael Jesús; Pinto, Juan J.; Bellido-Milla, Dolores; Moreno, Carlos

    2017-09-01

    The potential applicability of the continuum source solid sampling graphite furnace atomic absorption spectroscopy (CS SS-GF AAS) technique has been studied to carry out the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration in natural waters. An optimisation of the temperature program was developed for this purpose. Preliminary chamber furnace studies were performed in order to understand the behaviour of the bars with the increasing temperature. Solvent bars were filled with an acceptor solution, impregnated with an organic extractant and placed into the chamber furnace to carry out several temperature programs. Results led to perform a correct optimisation of the drying and pyrolysis steps of the furnace temperature program, which was tested with silver once completed. Blank solvent bars as well as standards containing silver were measured, obtaining a calibration curve with a correlation coefficient of 0.991. The results exhibited good repeatability and reproducibility, with relative standard deviations below 10% in both cases, indicating a promising applicability of the CS SS-GF AAS technique to directly determine metallic species in microextraction solvent bars.

  20. Sequential determination of arsenic, selenium, antimony, and tellurium in foods via rapid hydride evolution and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Fiorino, J.A.; Jones, J.W.; Capar, S.G.

    1976-01-01

    Analysis of acid digests of foods for As, Se, Sb, and Te was semiautomated. Hydrides generated by controlled addition of base stabilized NaBH 4 solution to acid digests are transported directly into a shielded, hydrogen (nitrogen diluted), entrained-air flame for atomic absorption spectrophotometric determination of the individual elements. The detection limits, based on 1 g of digested sample, are approximately 10 to 20 ng/g for all four elements. Measurement precision is 1 to 2 percent relative standard deviation for each element measured at 0.10 μg. A comparison is made of results of analysis of lyophilized fish tissues for As and Se by instrumental neutron activation (INAA), hydride generation with atomic absorption spectrometry, fluorometry, and spectrophotometry. NBS standard reference materials (orchard leaves and bovine liver) analyzed for As, Se, and Sb by this method show excellent agreement with certified values and with independent NAA values

  1. Determination of essential and toxic elements in commercial baby foods by instrumental neutron activation analysis and atomic absorption spectrometry; Determinacao dos elementos essenciais e toxicos em alimentos comerciais infantis por analise por ativacao com neutrons e espectrometria de absorcao atomica

    Energy Technology Data Exchange (ETDEWEB)

    Vallinoto, Priscila

    2013-08-01

    The World Health Organization recommends that infants should be breast fed exclusively for at least six months after birth. After this period, it is recommended to start introducing complementary foods, in order to meet the child's nutritional, mineral and energy needs. Commercial food products for infants form an important part of the diet for many babies. Thus, it is very important that such food contains sufficient amounts of minerals. Inadequate complementary feeding is a major cause of high rates of infant malnutrition in developing countries. In this study, essential elements: Ca, Cl, Co, Cr, Fe, K, Mg, Mn, Na, Se and Zn and toxic elements: As, Cd, Hg levels were determined in twenty seven different commercial infant food product samples by Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometry (AAS). In order to validate both methodologies the reference material: INCT MPH-2 Mixed Polish Herbs and NIST - SRM 1577b Bovine Liver by INAA and NIST - SRM 1548th Typical Diet and NIST - SRM 1547 Peach Leaves by AAS were analyzed. The twenty seven baby food samples were acquired from Sao Paulo city supermarkets and stores. Essential and toxic elements were determined. Most of the essential element concentrations obtained were lower than the World Health Organization requirements, while concentrations of toxic elements were below the tolerable upper limit. These low essential element concentrations in these samples indicate that infants should not be fed only with commercial complementary foods. (author)

  2. The determination, by atomic-absorption spectrophotometry, of impurities in manganese dioxide

    International Nuclear Information System (INIS)

    Balaes, G.E.E.; Robert, R.V.D.

    1981-01-01

    This report describes various methods for the determination of impurities in electrolytic manganese dioxide by atomic-absorption spectrophotometry (AAS). The sample is dissolved in a mixture of acids, any residue being ignited and retreated with acid. Several AAS methods were applied so that the analysis required to meet the specifications could be attained. These involved conventional flame AAS, AAS with electrothermal atomization (ETA), hydride generation coupled with AAS, and cold-vapour AAS. Of the elements examined, copper, iron, zinc, and lead can be determined direct with confidence with or without corrections based on recoveries obtained from spiked solutions. Nickel can be determined direct by use of the method of standard additions, and copper, nickel, and lead by ETA with the method of standard additions. Arsenic and antimony are determined by hydride generation coupled with AAS, and mercury by cold-vapour AAS. The precision of analysis (relative standard deviation) is generally less than 0,050. Values were obtained for aluminium, molybdenum, magnesium, sodium, copper, chromium, and cadmium, but the accuracy of these determinations has not been fully established

  3. The application of atomic absorption spectrometry to chemical analysis

    International Nuclear Information System (INIS)

    Walsh, A.

    1980-01-01

    YhThe history of the development of atomic absorption methods of elemental analysis is outlined. The theoretical basis of atomic absorption methods is discussed and the principle of modern methods of atomic absorption measurements is described. The advantages, scope and limations of these methods are discussed. Related methods based on the measurement of atomic fluorescence are also described

  4. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    Science.gov (United States)

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Uranium absorption study pile; Empilement pour le controle de l'absorption de l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Sautiez, B [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The report describes a pile designed to measure the absorption of fuel slugs. The pile is of graphite and comprises a central section composed of uranium rods in a regular lattice. RaBe sources and BF{sub 3} counters are situated on either side of the center. A given uranium charge is compared with a specimen charge of about 560 kg, and the difference in absorption between the two noted. The sensitivity of the equipment will detect absorption variations of about a few ppm boron (10{sup -6} boron per gr. of uranium) or better. (author) [French] Nous decrivons un dispositif permettant de mesurer l'absorption des elements combustibles d'une pile. Ce dispositif est constitue par un empilement de graphite dont la region centrale est formee par un reseau regulier de barres d'uranium. Des sources de RaBe et des compteurs a BF{sub 3} sont places de part et d'autre de cette region. En comparant un chargement d'uranium a un chargement etalon d'environ 560 kg, on peut determiner la difference d'absorption entre ces deux chargements. La sensibilite permettrait de deceler une variation d'absorption de l'ordre du ppm de bore (10{sup -6} g de bore par gramme d'uranium) et peut-etre mieux. (auteur)

  6. new polythiophenes with oligo(oxyethylene) side chains

    African Journals Online (AJOL)

    USER

    Due to the industrial facilities, heavy metal contents in environmental samples increase ... High performance liquid chromatography (HPLC) ... environmental waters by atomic absorption spectrometry (AAS) is very difficult due to the low.

  7. Determination of molybdenum in human urine by electrothermal atomization atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Pita Calvo, C.; Bermejo Barrera, P.; Bermejo Barrera, A.

    1995-01-01

    Various matrix modifiers were investigated for the determination of molybdenum in human urine samples by electrothermal atomization atomic absorption spectrometry. Methods with nitric acid, barium difluoride, magnesium nitrate, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride were studied by introducing the urine samples directly into the graphite furnace with 0.3% Triton X-100. The charring and atomization curves, the amount of modifier and the calibration and addition graphs were studied in all instances. The precision, accuracy and chemical interferences of the methods were also investigated. The matrix interferences have been removed with the modifiers barium difluoride, palladium-magnesium nitrate and palladium-hydroxylamine hydrochloride. The limits of detection and quantification were 0.2 and 0.7 μg l -1 , respectively, for these modifiers. The characteristic masses were 14.1, 18.0 and 14.9 pg of Mo for palladium-magnesium nitrate, palladium-hydroxylamine hydrochloride and barium difluoride, respectively. The method with palladium-magnesium nitrate has been applied to the study of the amount of molybdenum in human urine samples. The molybdenum levels found lie between 4.8-205.6 μg l -1

  8. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos, E-mail: bendicho@uvigo.es

    2016-09-14

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  9. Liquid-phase microextraction combined with graphite furnace atomic absorption spectrometry: A review

    International Nuclear Information System (INIS)

    Calle, Inmaculada de la; Pena-Pereira, Francisco; Lavilla, Isela; Bendicho, Carlos

    2016-01-01

    An overview of the combination of liquid-phase microextraction (LPME) techniques with graphite furnace atomic absorption spectrometry (GFAAS) is reported herein. The high sensitivity of GFAAS is significantly enhanced by its association with a variety of miniaturized solvent extraction approaches. LPME-GFAAS thus represents a powerful combination for determination of metals, metalloids and organometallic compounds at (ultra)trace level. Different LPME modes used with GFAAS are briefly described, and the experimental parameters that show an impact in those microextraction processes are discussed. Special attention is paid to those parameters affecting GFAAS analysis. Main issues found when coupling LPME and GFAAS, as well as those strategies reported in the literature to solve them, are summarized. Relevant applications published on the topic so far are included. - Highlights: • We review the LPME-GFAAS combination in a comprehensive way. • A brief description of main LPME modes is included. • Effect of experimental parameters in the performance of LPME-GFAAS is discussed. • Main applications for trace element analysis and speciation are reviewed.

  10. Determination of calcium in Mashhad city tap water by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mashhadian, N.V.

    2012-01-01

    Summary: Calcium in drinking water is one of the sources of calcium that may contribute significantly to the daily calcium intake. In this study, the samples of tap water were randomly taken from five zones of Mashhad city. Calcium concentration was determined by flame atomic absorption spectrometry (FAAS) technique. The precision of the method was evaluated. The CV% of 6 replicate determinations at 5 macro g/ml Ca was 4.2 in one day and 4.5, among 6 consecutive days. The recovery of spiked samples (98.7%) also showed that the proposed method is reliable for the determination of amounts of calcium in water samples. The mean of calcium in tap water in the city of Mashhad was 52.61+-12.91 (SD) macro g/ml. At present, the amount of calcium in Mashhad tap waters is within the national standard. However, due to the climate and environmental changes, determination of calcium in tap water of Mashhad in different seasons is recommended. (author)

  11. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duta, S.; Robouch, P.; Barbu, L.; Taylor, P.

    2007-01-01

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out

  12. Practical aspects of the uncertainty and traceability of spectrochemical measurement results by electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duta, S. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium); National Institute of Metrology, 042122 Vitan Barzesti 11, sector 4 Bucharest (Romania)], E-mail: steluta.duta@inm.ro; Robouch, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Piotr.Robouch@ec.europa.eu; Barbu, L. [Coca-Cola Entreprise, Analytical Department, Bucharest (Romania); Taylor, P. [Institute for Reference Materials and Measurements, Joint Research Centre, European Commission, Retieseweg 111, B-2440 Geel (Belgium)], E-mail: Philip.Taylor@ec.europa.eu

    2007-04-15

    The determination of trace elements concentration in water by electrothermal atomic absorption spectrometry (ETAAS) is a common and well established technique in many chemical testing laboratories. However, the evaluation of measurement uncertainty results is not systematically implemented. The paper presents an easy step-by-step example leading to the evaluation of the combined standard uncertainty of copper determination in water using ETAAS. The major contributors to the overall measurement uncertainty are identified due to amount of copper in water sample that mainly depends on the absorbance measurements, due to certified reference material and due to auto-sampler volume measurements. The practical aspects how the traceability of copper concentration in water can be established and demonstrated are also pointed out.

  13. Investigations into the Role of Modifiers for Entrapment of Hydrides in Flow Injection Hydride Generation Electrothermal Atomic Absorption Spectrometry as Exemplified for the Determination of Germanium

    DEFF Research Database (Denmark)

    Hilligsøe, Bo; Andersen, Jens Enevold Thaulov; Hansen, Elo Harald

    1997-01-01

    Pd-conditioned graphite tubes, placed in the furnace of an atomic absorption spectrometry instrument, are used for entrapment of germane as generated in an associated flow injection system. Two different approaches are tested with the ultimate aim to allow multiple determinations, that is...

  14. Ultratrace determination of tin by hydride generation in-atomizer trapping atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Průša, Libor [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Hlavova 8, Prague 2, CZ 128 43 Czech Republic (Czech Republic); Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Kratzer, Jan, E-mail: jkratzer@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2013-12-04

    Graphical abstract: -- Highlights: •In-atomizer trapping HG-AAS was optimized for Sn. •A compact quartz trap-and-atomizer device was employed. •Generation, preconcentration and atomization steps were investigated in detail. •Hundred percent preconcentration efficiency for tin was reached. •Routine analytical method was developed for Sn determination (LOD of 0.03 ng mL{sup −1} Sn). -- Abstract: A quartz multiatomizer with its inlet arm modified to serve as a trap (trap-and-atomizer device) was employed to trap tin hydride and subsequently to volatilize collected analyte species with atomic absorption spectrometric detection. Generation, atomization and preconcentration conditions were optimized and analytical figures of merit of both on-line atomization as well as preconcentration modes were quantified. Preconcentration efficiency of 95 ± 5% was found. The detection limits reached were 0.029 and 0.14 ng mL{sup −1} Sn, respectively, for 120 s preconcentration period and on-line atomization mode without any preconcentration. The interference extent of other hydride forming elements (As, Se, Sb and Bi) on tin determination was found negligible in both modes of operation. The applicability of the developed preconcentration method was verified by Sn determination in a certified reference material as well as by analysis of real samples.

  15. Water analysis. Determination of elements by atomic absorption

    International Nuclear Information System (INIS)

    Anon.

    Analysis of homogeneous water solutions (plain water, polluted waters, effluents...) by atomic absorption spectrometry with correction for non specific absorption. The quantity ratio is determined by comparison with standard solutions, correction tables are given [fr

  16. Development of an automated sequential injection on-line solvent extraction-back extraction procedure as demonstrated for the determination of cadmium with detection by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium pyrrolidinedithioc......An automated sequential injection (SI) on-line solvent extraction-back extraction separation/preconcentration procedure is described. Demonstrated for the assay of cadmium by electrothermal atomic absorption spectrometry (ETAAS), the analyte is initially complexed with ammonium....../preconcentration process of the ensuing sample. An enrichment factor of 21.4, a detection limit of 2.7 ng/l, along with a sampling frequency of 13s/h were obtained at a sample flow rate of 6.0mlmin/sup -1/. The precision (R.S.D.) at the 0.4 mug/l level was 1.8% as compared to 3.2% when quantifying the organic extractant...

  17. Elemental characterization of herbal medicines used in Ghana by instrumental neutron activation analysis and atomic absorption spectrometry and multivariate statistical analysis

    International Nuclear Information System (INIS)

    Ayivor, J.E.; Nyarko, B.J.B.; Dampare, S.B.; Okine, L.K.

    2010-01-01

    k 0 instrumental neutron activation analysis and atomic absorption spectrometry were applied to determine multi elements in thirteen Ghanaian herbal medicines used for the management of various diseases. Concentrations of AI, Cu, Mg, Mn and Na were determined. As, Br, K, CI, and Na were determined by short and medium irradiations at a thermal neutron flux of 5x10ncm -2 s -1 . Fe, Cr, Pb, Co, Ni, Sn, Ca, Ba, Li and Sb were determined using atomic absorption spectrometry. Ba, Cu, Li and V were present at trace levels whereas AI, CI, Na, Ca were present at major levels. K, Br, Mg, Mn, Co, Ni, Fe and Sb were also present at minor levels. The precision and accuracy of the method using real samples and standard reference materials were within ±10% of the reported value. Multivariate analytical techniques, such as cluster analysis and principal component analysis (PCA)/factor analysis (FA), have been applied to evaluate the chemical variations in the herbal medicine dataset. All the 13 samples may be grouped into two statistically significant clusters, reflecting the different chemical compositions. The concentrations of elements were within the recommended daily allowances or maximum permissible levels posing no adverse effects on human health.

  18. PIXE analysis on the absorption of strontium by plants under hydroponic culture

    International Nuclear Information System (INIS)

    Oguri, Yoshiyuki; Kondo, Kotaro

    2016-01-01

    90 Sr is one of the most toxic radioactive nuclides emitted from nuclear disasters. By experiments using the compounds of stable isotopes of Sr, the behavior of this nuclide in plants can be simulated very well (R. S. Russell and H. M. Squire: J. Exp. Bot., Vol. 9, No. 2, pp. 262-276 (1958)). In this paper, we present an application of PIXE (Particle-Induced X-ray Emission) analysis (S. A. E. Johansson, et al.: Particle-Induced X-Ray Emission Spectrometry (PIXE), Wiley-Interscience, New York, ISBN-13: 978-0471589440 (1995)) in the study of Sr absorption by a herbal plant grown in a compact hydroponic setup. (J.P.N.)

  19. Determination of lead in water by electrothermal atomic absorption spectrometry with a nickel(II)-ammonium tartrate modifier

    International Nuclear Information System (INIS)

    Sekerka, I.; Lechner, J.F.

    1991-01-01

    A method is described for the determination of low concentrations of lead in water samples. Atomic absorption spectrometry is used with a tungsten ribbon furnace and Zeeman background correction. Interferences are eliminated by the addition of ammonium tartrate and nickel(II) nitrate to the samples to act as a matrix modifier and adjust the pH. The results show the superior performance of this modifier over other types used conventionally. The detection limit is 1 μg l -1 relative standard deviation of -1 can be obtained. The instrumentation is simple and the method is efficient for the determination of lead in various water samples. 25 refs.; 7 figs.; 6 tabs

  20. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    Science.gov (United States)

    Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa

    2005-03-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, oil, oil and 140-300 ng g - 1 in distillation residue.

  1. Determination of Aluminum in Dialysis Concentrates by Atomic Absorption Spectrometry after Coprecipitation with Lanthanum Phosphate.

    Science.gov (United States)

    Selvi, Emine Kılıçkaya; Şahin, Uğur; Şahan, Serkan

    2017-01-01

    This method was developed for the determination of trace amounts of aluminum(III) in dialysis concentrates using atomic absorption spectrometry after coprecipitation with lanthanum phosphate. The analytical parameters that influenced the quantitative coprecipitation of analyte including amount of lanthanum, amount of phosfate, pH and duration time were optimized. The % recoveries of the analyte ion were in the range of 95-105 % with limit of detection (3s) of 0.5 µg l -1 . Preconcentration factor was found as 1000 and Relative Standard Deviation (RSD) % value obtained from model solutions was 2.5% for 0.02 mg L -1 . The accuracy of the method was evaluated with standard reference material (CWW-TMD Waste Water). The method was also applied to most concentrated acidic and basic dialysis concentrates with satisfactory results.

  2. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Science.gov (United States)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L- 1 HNO3 solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L- 1 and 36.4 mg L- 1, respectively. The repeatability of the results expressed as relative standard deviation was typically beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93-105% with the repeatability in the range of 4.1-5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg- 1), egg white (2188 ± 29 mg kg- 1), mineral water (31.0 ± 0.9 mg L- 1), white wine (260 ± 4 mg L- 1) and red wine (82 ± 2 mg L- 1), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L- 1).

  3. The Use of a Microprocessor-Controlled, Video Output Atomic Absorption Spectrometer as an Educational Tool in a Two-Year Technical Curriculum.

    Science.gov (United States)

    Kerfoot, Henry B.

    Based on instructional experiences at Charles County Community College, Maryland, this report examines the pedagogical advantage of teaching atomic absorption (AA) spectroscopy with an AA spectrophotometer that is equipped with a microprocessor and video output mechanism. The report first discusses the growing importance of AA spectroscopy in…

  4. Reduction of interferences in graphite furnace atomic absorption spectrometry by multiple linear regression modelling

    Science.gov (United States)

    Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Tiberiade, Christian; Frache, Roberto

    2000-12-01

    The multivariate effects of Na, K, Mg and Ca as nitrates on the electrothermal atomisation of manganese, cadmium and iron were studied by multiple linear regression modelling. Since the models proved to efficiently predict the effects of the considered matrix elements in a wide range of concentrations, they were applied to correct the interferences occurring in the determination of trace elements in seawater after pre-concentration of the analytes. In order to obtain a statistically significant number of samples, a large volume of the certified seawater reference materials CASS-3 and NASS-3 was treated with Chelex-100 resin; then, the chelating resin was separated from the solution, divided into several sub-samples, each of them was eluted with nitric acid and analysed by electrothermal atomic absorption spectrometry (for trace element determinations) and inductively coupled plasma optical emission spectrometry (for matrix element determinations). To minimise any other systematic error besides that due to matrix effects, accuracy of the pre-concentration step and contamination levels of the procedure were checked by inductively coupled plasma mass spectrometric measurements. Analytical results obtained by applying the multiple linear regression models were compared with those obtained with other calibration methods, such as external calibration using acid-based standards, external calibration using matrix-matched standards and the analyte addition technique. Empirical models proved to efficiently reduce interferences occurring in the analysis of real samples, allowing an improvement of accuracy better than for other calibration methods.

  5. Comparison of total Hg results in sediment samples from Rio Grande reservoir determine by NAA and CV AAS

    International Nuclear Information System (INIS)

    Franklin, Robson L.

    2011-01-01

    The Rio Grande reservoir is located in the Metropolitan area of Sao Paulo and it is used for recreation purposes and as source water for drinking water production. During the last decades has been detected mercury contamination in the sediments of this reservoir, mainly in the eastern part, near the main affluent of the reservoir, in the Rio Grande da Serra and Ribeirao Pires counties. In the present study bottom sediment samples were collected in four different sites into four sampling campaigns during the period of September 2008 to January 2010. The samples were dried at room temperature, ground and passed through a 2 mm sieve. Total Hg determination in the sediment samples was carried out by two different analytical techniques: neutron activation analysis (NAA) and cold vapor atomic absorption spectrometry (CV AAS). The methodology validation, in terms of precision and accuracy, was performed by reference materials, and presented a recovery of 83 to 108%. The total Hg results obtained by both analytical techniques ranged from 3 to 71 mg kg-1 and were considered similar by statistical analysis, even though NAA technique furnishes the total concentration while CV AAS using the 3015 digestion procedure characterizes only the bioavailable Hg. These results confirm that both analytical techniques were suitable to detect the Hg concentration levels in the Rio Grande sediments studied. The Hg levels in the sediment of the Rio Grande reservoir confirm the anthropogenic origin for this element in this ecosystem. (author)

  6. Molecular absorption spectra of beryllium, cerium, lanthanum, iron, and platinum salts

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1980-01-01

    The absorption spectra of some salts of beryllium, cerium, lanthanum, iron and platinum in air-acetylene flame were measured in the wavelength range from 200 to 400 nm. A Hitachi 207 type atomic absorption spectrophotometer was used. A deuterium lamp, a home-made continuous radiation lamp and some hollow cathode lamps were used as light sources. The new molecular absorption spectra of cerium, lanthanum and platinum and the absorption spectra due to Be(OH) 2 , LaO, PtH, FeO and FeCl in 200-400 nm region were obtained. Emission spectra of CeO, LaO and FeOH were also obtained. These molecular absorption bands were estimated as absorption errors of maximum 15 times to the sensitivity of each elements in atomic absorption spectrometry. In addition, spectral line interferences of iron were observed in atomic absorption spectrometry of Zn, Cd, Ni, Cu and Cr. (author)

  7. Qualitative soil mineral analysis by EDXRF, XRD and AAS probes

    International Nuclear Information System (INIS)

    Singh, Virendra; Agrawal, H.M.

    2012-01-01

    Soil minerals study is vital in terms of investigating the major soil forming compounds and to find out the fate of minor and trace elements, essential for the soil–plant interaction purpose. X-ray diffraction (XRD) has been a popular technique to search out the phases for different types of samples. For the soil samples, however, employing XRD is not so straightforward due to many practical problems. In the current approach, principal component analysis (PCA) has been used to have an idea of the minerals present, in qualitative manner, in the soil under study. PCA was used on the elemental concentrations data of 17 elements, determined by the energy dispersive X-ray fluorescence (EDXRF) technique. XRD analysis of soil samples has been done also to identify the minerals of major elements. Some prior treatments, like removal of silica by polytetrafluoroethylene (PTFE) slurry and grinding with alcohol, were given to samples to overcome the peak overlapping problems and to attain fine particle size which is important to minimize micro-absorption corrections, to give reproducible peak intensities and to minimize preferred orientation. A 2θ step of 0.05°/min and a longer dwell time than normal were used to reduce interferences from background noise and to increase the counting statistics. Finally, the sequential extraction procedure for metal speciation study has been applied on soil samples. Atomic absorption spectroscopy (AAS) was used to find the concentrations of metal fractions bound to various forms. Applying all the three probes, the minerals in the soils can be studied and identified, successfully. - Highlights: ► Qualitative soil minerals analysis by EDXRF, AAS and XRD methods. ► There is a requirement of other means and methods due to inadequacy of XRD. ► Principal component analysis (PCA) provides an idea of minerals present in soil. ► Trace elements complexes can be determined by AAS probe. ► EDXRF, AAS and XRD, in combination, enable

  8. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  9. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-A review

    International Nuclear Information System (INIS)

    Welz, Bernhard; Lepri, Fabio G.; Araujo, Rennan G.O.; Ferreira, Sergio L.C.; Huang Maodong; Okruss, Michael; Becker-Ross, Helmut

    2009-01-01

    The literature about the investigation of molecular spectra of phosphorus, sulfur and the halogens in flames and furnaces, and the use of these spectra for the determination of these non-metals has been reviewed. Most of the investigations were carried out using conventional atomic absorption spectrometers, and there were in essence two different approaches. In the first one, dual-channel spectrometers with a hydrogen or deuterium lamp were used, applying the two-line method for background correction; in the second one, a line source was used that emitted an atomic line, which overlapped with the molecular spectrum. The first approach had the advantage that any spectral interval could be accessed, but it was susceptible to spectral interference; the second one had the advantage that the conventional background correction systems could be used to minimize spectral interferences, but had the problem that an atomic line had to be found, which was overlapping sufficiently well with the maximum of the molecular absorption spectrum. More recently a variety of molecular absorption spectra were investigated using a low-resolution polychromator with a CCD array detector, but no attempt was made to use this approach for quantitative determination of non-metals. The recent introduction and commercial availability of high-resolution continuum source atomic absorption spectrometers is offering completely new possibilities for molecular absorption spectrometry and its use for the determination of non-metals. The use of a high-intensity continuum source together with a high-resolution spectrometer and a CCD array detector makes possible selecting the optimum wavelength for the determination and to exclude most spectral interferences.

  10. Monitoring content of cadmium, calcium, copper, iron, lead, magnesium and manganese in tea leaves by electrothermal and flame atomizer atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Prkić Ante

    2017-08-01

    Full Text Available Due to the simplicity of tea preparation (pouring hot water onto different dried herbs and its high popularity as a beverage, monitoring and developing a screening methodology for detecting the metal content is very important. The concentrations of Cd, Ca, Cu, Fe, Pb, Mg and Mn in 11 different samples of sage (Salvia officinalis L., linden (Tilia L. and chamomile (Matricaria chamomilla L. purchased at local herbal pharmacy were determined using electrothermal atomizer atomic absorption spectrometry (ETAAS and flame atomizer atomic absorption spectrometry (FAAS. The concentrations determined were: Cd (0.012 – 0.470 mg kg−1, Ca (5209 – 16340 mg kg−1, Cu (22.01 – 33.05 mg kg−1, Fe (114.2 – 440.3 mg kg−1, Pb (0.545 – 2.538 mg kg−1, Mg (2649 – 4325 mg kg−1 and Mn (34.00 – 189.6 mg kg−1. Principal Component Analysis (PCA was applied to identify factors (soil and climate influencing the content of the measured elements in herbal samples. The proposed methodology developed in this work was successfully applied to the detection of metals in herbal samples. The analysis showed that the content of toxic metals in herbal teas was below the maximum dose recommended by the World Health Organization (WHO.

  11. Sequential injection on-line matrix removal and trace metal preconcentration using a PTFE beads packed column as demonstrated for the determination of cadmium by electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2002-01-01

    A sequential injection (SI) on-line matrix removal and trace metal preconcentration procedure by using a novel microcolumn packed with PTFE beads is described, and demonstrated for trace cadmium analysis with detection by electrothermal atomic absorption spectrometry (ETAAS). The analyte...

  12. Identifying a typology of men who use anabolic androgenic steroids (AAS).

    Science.gov (United States)

    Zahnow, Renee; McVeigh, Jim; Bates, Geoff; Hope, Vivian; Kean, Joseph; Campbell, John; Smith, Josie

    2018-05-01

    Despite recognition that the Anabolic Androgenic Steroid (AAS) using population is diverse, empirical studies to develop theories to conceptualise this variance in use have been limited. In this study, using cluster analysis and multinomial logistic regression, we identify typologies of people who use AAS and examine variations in motivations for AAS use across types in a sample of 611 men who use AAS. The cluster analysis identified four groups in the data with different risk profiles. These groups largely reflect the ideal types of people who use AAS proposed by Christiansen et al. (2016): Cluster 1 (You Only Live Once (YOLO) type, n = 68, 11.1%) were younger and motivated by fat loss; Cluster 2 (Well-being type, n = 236, 38.6%) were concerned with getting fit; Cluster 3 (Athlete type, n = 155, 25.4%) were motivated by muscle and strength gains; Cluster 4 (Expert type, n = 152, 24.9%) were focused on specific goals (i.e. not 'getting fit'). The results of this study demonstrate the need to make information about AAS accessible to the general population and to inform health service providers about variations in motivations and associated risk behaviours. Attention should also be given to ensuring existing harm minimisation services are equipped to disseminate information about safe intra-muscular injecting and ensuring needle disposal sites are accessible to the different types. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    Science.gov (United States)

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Modular L-design of hydride atomizers for atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rezacova, Olga; Dedina, Jiri

    2009-01-01

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 μg ml - 1 does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 μg ml - 1 ; interferent concentration of 1 μg ml - 1 causing 20% signal depression.

  15. Determination of microquantities of cesium in leaching tests by atomic absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Crubellati, R.O.; Di Santo, N.R.

    1988-01-01

    An original method for cesium determinations by atomic absorption spectrometry with electrothermal atomization is described. The effect of foreign ions (alkali and earth alkaline metals) present in leaching test of glasses with incorporated radioactive wastes was studied. The effect of different mineral acids was also investigated. A comparison between the flame excitation method and the electrothermal atomization one was made. Under optimum conditions, cesium in quantities down to 700 ng in 1000 ml of sample could be determined. The calibration curve was linear in the range of 0.7 - 15 ng/mL. The fact that the proposed determinations can be performed in a short time and that a small sample volume is required are fundamental advantages of this method, compared with the flame excitation procedure. Besides, it is adaptable to be applied in hot cells and glove boxes. (Author) [es

  16. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution

    International Nuclear Information System (INIS)

    Kowalewska, Zofia; Ruszczynska, Anna; Bulska, Ewa

    2005-01-01

    Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system (ii) mineralization in a closed microwave system (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g -1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g -1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g -1 in crude oil, -1 in gasoline, -1 in atmospheric oil, -1 in heavy vacuum oil and 140-300 ng g -1 in distillation residue

  17. Pre-analytic evaluation of volumetric absorptive microsampling and integration in a mass spectrometry-based metabolomics workflow.

    Science.gov (United States)

    Volani, Chiara; Caprioli, Giulia; Calderisi, Giovanni; Sigurdsson, Baldur B; Rainer, Johannes; Gentilini, Ivo; Hicks, Andrew A; Pramstaller, Peter P; Weiss, Guenter; Smarason, Sigurdur V; Paglia, Giuseppe

    2017-10-01

    Volumetric absorptive microsampling (VAMS) is a novel approach that allows single-drop (10 μL) blood collection. Integration of VAMS with mass spectrometry (MS)-based untargeted metabolomics is an attractive solution for both human and animal studies. However, to boost the use of VAMS in metabolomics, key pre-analytical questions need to be addressed. Therefore, in this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. We first evaluated the best extraction procedure for the polar metabolome and found that the highest number and amount of metabolites were recovered upon extraction with acetonitrile/water (70:30). In contrast, basic conditions (pH 9) resulted in divergent metabolite profiles mainly resulting from the extraction of intracellular metabolites originating from red blood cells. In addition, the prolonged storage of blood samples at room temperature caused significant changes in metabolome composition, but once the VAMS devices were stored at - 80 °C, the metabolome remained stable for up to 6 months. The time used for drying the sample did also affect the metabolome. In fact, some metabolites were rapidly degraded or accumulated in the sample during the first 48 h at room temperature, indicating that a longer drying step will significantly change the concentration in the sample. Graphical abstract Volumetric absorptive microsampling (VAMS) is a novel technology that allows single-drop blood collection and, in combination with mass spectrometry (MS)-based untargeted metabolomics, represents an attractive solution for both human and animal studies. In this work, we integrated VAMS in a MS-based untargeted metabolomics workflow and investigated pre-analytical strategies such as sample extraction procedures and metabolome stability at different storage conditions. The latter revealed that

  18. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Surtipanti, S; Suwirma, S; Yumiarti, S; Mellawati, Yune [National Atomic Energy Agency, Jakarta (Indonesia), Center for the Application of Isotopes Radiation

    1995-01-01

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs.

  19. Determination of Heavy Metals in Meat, Intestine, Liver, Eggs, and Chicken Using Neutron Activation Analysis and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Surtipanti, S.; Suwirma, S.; Yumiarti, S.; Mellawati, Yune

    1995-01-01

    The elements As, Cd, Co, Cr, Fe, Hg, Ni, Pb, Sb, se and Zn in meat, intestine, and liver of cow and goat, as well as in broiler, local breed chicken and eggs have been determined using Neutron Activation Analysis and Atomic Absorption Spectrometry. Mercury was determined after being separated radiochemically. The results showed that concentration of the essential elements studied i.e. Cr, Cu, Fe, Zn, Co, and Ni were higher in liver and intestine than in the meat, but still in the normal range, while toxic elements As, Cd, and Pb were undetectable in all samples. (author). 8 refs., 6 tabs

  20. Aa Ah Nak

    Science.gov (United States)

    Tha, Na Gya; Wus, Thay

    2017-01-01

    In this article, Aa Ah Nak, the authors' methodology presents not only various reflections but also diverse contradictions about the Aa Nii language as well as language revitalization. This article explores language foundation and how the Aa Nii language revitalization is inextricably linked to the genocide and resulting historic trauma pervasive…

  1. Total reflection X-ray fluorescence and energy-dispersive X-ray ...

    Indian Academy of Sciences (India)

    (ICP-AES), atomic absorption spectrometry (AAS) and spark source mass spectrome- ... actinide oxides, for trace element determinations normal XRF cannot ... at a flat polished sample support at an angle less than the critical angle and thus ...

  2. A modified routine analysis of arsenic content in drinking-water in Bangladesh by hydride generation-atomic absorption spectrophotometry.

    Science.gov (United States)

    Wahed, M A; Chowdhury, Dulaly; Nermell, Barbro; Khan, Shafiqul Islam; Ilias, Mohammad; Rahman, Mahfuzar; Persson, Lars Ake; Vahter, Marie

    2006-03-01

    The high prevalence of elevated levels of arsenic in drinking-water in many countries, including Bangladesh, has necessitated the development of reliable and rapid methods for the determination of a wide range of arsenic concentrations in water. A simple hydride generation-atomic absorption spectrometry (HG-AAS) method for the determination of arsenic in the range of microg/L to mg/L concentrations in water is reported here. The method showed linearity over concentrations ranging from 1 to 30 microg/L, but requires dilution of samples with higher concentrations. The detection limit ranged from 0.3 to 0.5 microg/L. Evaluation of the method, using internal quality-control (QC) samples (pooled water samples) and spiked internal QC samples throughout the study, and Standard Reference Material in certain lots, showed good accuracy and precision. Analysis of duplicate water samples at another laboratory also showed good agreement. In total, 13,286 tubewell water samples from Matlab, a rural area in Bangladesh, were analyzed. Thirty-seven percent of the water samples had concentrations below 50 microg/L, 29% below the WHO guideline value of 10 microg/L, and 17% below 1 microg/L. The HG-AAS was found to be a precise, sensitive, and reasonably fast and simple method for analysis of arsenic concentrations in water samples.

  3. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Zhang Yanlin; Adeloju, Samuel B.

    2012-01-01

    Highlights: ► Successful speciation of inorganic and organic Hg with Fe 3+ , Cu 2+ and thiourea as catalysts. ► Best sensitivity enhancement and similar sensitivity for MeHg and Hg 2+ with Fe 3+ . ► Successful use of Hg 2+ as the primary standard for quantification of inorganic and total-Hg. ► Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. ► Integration with FIA for rapid analysis with a sample throughput of 180 h −1 . - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH 4 were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe 3+ , Cu 2+ and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu 2+ and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe 3+ gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg 2+ . Due to similarity of resulting sensitivity, Hg 2+ was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury, respectively. The use of flow injection enabled rapid analysis with a sample throughput of 180 h −1 .

  4. Chemical vapor generation of silver for atomic absorption spectrometry with the multiatomizer: Radiotracer efficiency study and characterization of silver species

    Energy Technology Data Exchange (ETDEWEB)

    Musil, Stanislav [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic); Charles University in Prague, Faculty of Science, Dept. of Analytical Chemistry, Albertov 8, 128 43 Prague 2 (Czech Republic); Kratzer, Jan; Vobecky, Miloslav [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic); Hovorka, Jan [Charles University in Prague, Faculty of Science, Institute for Environmental Studies, Benatska 2, 128 01 Prague 2 (Czech Republic); Benada, Oldrich [Institute of Microbiology of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic); Matousek, Tomas, E-mail: matousek@biomed.cas.c [Institute of Analytical Chemistry of the ASCR, v.v.i., Videnska 1083, 142 20 Prague 4 (Czech Republic)

    2009-11-15

    Volatile Ag species were generated in flow injection arrangement from nitric acid environment in the presence of surfactants (Triton X-100 and Antifoam B) and permanent Pd deposits as the reaction modifiers. Atomic absorption spectrometry (AAS) with multiple microflame quartz tube atomizer heated to 900 deg. C was used for atomization; evidence was found for thermal mechanism of atomization. Relative and absolute limits of detection (3sigma, 250 mul sample loop) measured under optimized conditions were: 1.4 mug l{sup -1} and 0.35 ng, respectively. The efficiency of chemical vapor generation (CVG) as well as spatial distribution of residual analyte in the apparatus was studied by {sup 111}Ag radioactive indicator (half-life 7.45 days) of high specific activity. It was found out that 23% of analyte was released into the gaseous phase. However, only 8% was found on filters placed at the entrance to the atomizer due to transport losses. About 40% of analyte remained in waste liquid, whereas the rest was found deposited over the CVG system. Presented study follows the hypothesis that the 'volatile' Ag species are actually metallic nanoparticles formed upon reduction in liquid phase and then released with good efficiency to the gaseous phase. Number/charge size distributions of dry aerosol were determined by Scanning Mobility Particle Sizer. Ag was detected in 40-45 nm particles holding 10 times more charge if compared to Boltzmann equilibrium. At the same time, Ag was also present on 150 nm particles, the main size mode of the CVG generator. The increase of Ag in standards was reflected by proportional increase in particle number/charge for 40-45 nm size particles only. Transmission electron microscopy revealed particles of 8 +- 2 nm sampled from the gaseous phase, which were associated in isolated clusters of few to few tens of nanometres. Ag presence in those particles was confirmed by Energy Dispersive X-ray Spectroscopy (EDS) analysis.

  5. Defluoridation of drinking water using Al3+-modified bentonite clay: Optimization of fluoride adsorption conditions

    CSIR Research Space (South Africa)

    Vhahangwele, M

    2014-11-01

    Full Text Available , cation exchange capacity (CEC) by ammonium acetate method, and pH(subpzc) by solid addition method. Chemical constituents of water were determined by atomic absorption spectrometry (AAS), ion selective electrode (Crison 6955 Fluoride selective electrode...

  6. Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    do Lago, Ayla Campos; Marchioni, Camila; Mendes, Tássia Venga; Wisniewski, Célio; Fadini, Pedro Sergio; Luccas, Pedro Orival

    2016-11-01

    This work proposes a preconcentration method using an ion imprinted polymer (IIP) for determination of cadmium, in several samples, employing a mini-column filled with the polymer coupled into a flow injection analysis system with detection by thermospray flame furnace atomic absorption spectrometry (FIA-TS-FF-AAS). The polymer was synthesized via bulk using methacrylic acid and vinylimidazole as a functional monomer. For the FIA system initial assessment, the variables: pH, eluent concentration and buffer concentration were studied, employing a 23 full factorial design. To obtain the optimum values for each significant variable, a Doehlert matrix was employed. After the optimization conditions as: pH 5.8, eluent (HNO3) concentration of 0.48 mol L -1 and buffer concentration of 0.01 mol L -1 , were adopted. The proposed method showed a linear response in the range of 0.081-10.0 μg L -1 , limits detection and quantification of 0.024 and 0.081 μg L -1 , respectively; preconcentration factor of 165, consumptive index of 0.06 mL, concentration efficiency 132 min -1 , and frequency of readings equal to 26 readings h -1 The accuracy was checked by analysis of certified reference materials for trace metals and recovery tests. The obtained results were in agreement with 95% confidence level (t-test). The method was adequate to apply in samples of: jewelry (earrings) (2.38 ± 0.28 μg kg -1 ), black tea (1.09 ± 0.15 μg kg -1 ), green tea (3.85 ± 0.13 μg kg -1 ), cigarette tobacco (38.27 ± 0.22 μg kg -1 ), and hair (0.35 ± 0.02 μg kg -1 ). © The Author(s) 2016.

  7. Application Of NAA And AAS In Environmental Research In Slovakia

    International Nuclear Information System (INIS)

    Florek, M.; Holy, K.; Meresova, J.; Sykora, I.; Frontasveva, M. V.; Ermakova, E.E.; Pavlov, S.S.; Mankovska, B.

    2007-01-01

    The concentrations of 41 chemical elements (heavy metals, rare earths, and actinides) were determined in atmospheric aerosol using nuclear and related analytical techniques. The sampling location was in Bratislava (Slovak Republic). The main goal of this study is the quantification of the atmospheric pollution and its trend. The elemental content in filters was measured using instrumental neutron activation analysis (NAA) at IBR-2 reactor in JINR Dubna and by atomic absorption spectrometry (AAS) in Bratislava. The obtained results confirm the decreasing trend of pollution by most of the heavy metals in Bratislava atmosphere, and they are compared with the contents of pollutants in atmosphere of other cities, including Cairo. We determined also the composition of clear filter materials. Results on atmospheric deposition of heavy metals and other trace elements in the whole territory Slovakia using the moss bio monitoring technique are presented, too. The level of the elements found in the bryophytes reflects the relative atmospheric deposition loads of the elements at the investigated sites. Factor analysis was applied to determine possible sources of trace element deposition in the Slovakian moss. The marginal hot spots were revealed near nonferrous ores processing and factories and dumps of stone chips. The trans-boundary contamination by Hg through dry and wet deposition from Czech Republic and Polish is evident in the bordering territory in the north-west part of Slovakia (The Small Black Triangle), known for metallurgical works, coal processing and chemical industries

  8. Comparison of liquid chromatography-isotope ratio mass spectrometry (LC/IRMS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) for the determination of collagen amino acid δ13C values for palaeodietary and palaeoecological reconstruction.

    Science.gov (United States)

    Dunn, Philip J H; Honch, Noah V; Evershed, Richard P

    2011-10-30

    Results are presented of a comparison of the amino acid (AA) δ(13)C values obtained by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS) and liquid chromatography-isotope ratio mass spectrometry (LC/IRMS). Although the primary focus was the compound-specific stable carbon isotope analysis of bone collagen AAs, because of its growing application for palaeodietary and palaeoecological reconstruction, the results are relevant to any field where AA δ(13)C values are required. We compare LC/IRMS with the most up-to-date GC/C/IRMS method using N-acetyl methyl ester (NACME) AA derivatives. This comparison involves the analysis of standard AAs and hydrolysates of archaeological human bone collagen, which have been previously investigated as N-trifluoroacetyl isopropyl esters (TFA/IP). It was observed that, although GC/C/IRMS analyses required less sample, LC/IRMS permitted the analysis of a wider range of AAs, particularly those not amenable to GC analysis (e.g. arginine). Accordingly, reconstructed bulk δ(13)C values based on LC/IRMS-derived δ(13)C values were closer to the EA/IRMS-derived δ(13)C values than those based on GC/C/IRMS values. The analytical errors for LC/IRMS AA δ(13)C values were lower than GC/C/IRMS determinations. Inconsistencies in the δ(13)C values of the TFA/IP derivatives compared with the NACME- and LC/IRMS-derived δ(13)C values suggest inherent problems with the use of TFA/IP derivatives, resulting from: (i) inefficient sample combustion, and/or (ii) differences in the intra-molecular distribution of δ(13)C values between AAs, which are manifested by incomplete combustion. Close similarities between the NACME AA δ(13)C values and the LC/IRMS-derived δ(13)C values suggest that the TFA/IP derivatives should be abandoned for the natural abundance determinations of AA δ(13)C values. Copyright © 2011 John Wiley & Sons, Ltd.

  9. Modular L-design of hydride atomizers for atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rezacova, Olga [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, Prague 2, CZ 128 43 (Czech Republic); Dedina, Jiri [Institute of Analytical Chemistry of the ASCR, v.v.i., Laboratory of Trace Element Analysis, Videnska 1083, CZ-142 20 Prague (Czech Republic)], E-mail: dedina@biomed.cas.cz

    2009-07-15

    A novel modular L-shaped design of hydride atomizer for atomic absorption spectrometry is described. It makes it possible to replace the optical tube of the atomizer and, mainly, to employ optical tubes made also from other materials than fused quartz. The design is useful mainly for further improvement of hydride atomizers based on the multiatomizer concept. Employing selenium hydride as the analyte and arsine as the interferent, a preliminary evaluation of performance of three types of L-shaped multiatomizers based on various optical tubes in terms of sensitivity, linearity of calibration graph and resistance to atomization interferences is made. The 'classical' T-shaped multiatomizer was employed as a reference. The L-shaped multiatomizer with the optical tube analogous to that employed in the 'classical' T-shaped multiatomizer offers virtually the same performance as the reference multiatomizer. Optical tube made of fused quartz with holes with smaller diameters does not offer significantly better performance compared to the reference T-shaped multiatomizer. However, the L-shaped multiatomizer with optical tube fabricated from porous quartz glass overpowers all the other multiatomizers substantially in terms of the resistance against interferences: even the maximum As interferent concentration of 5 {mu}g ml{sup - 1} does not significantly influence the observed signal. This should be compared with multiatomizers based on plain fused quartz tubes with holes: tolerance limit around 0.5 {mu}g ml{sup - 1}; interferent concentration of 1 {mu}g ml{sup - 1} causing 20% signal depression.

  10. Estimate of the uncertainty in measurement for the determination of mercury in seafood by TDA AAS.

    Science.gov (United States)

    Torres, Daiane Placido; Olivares, Igor R B; Queiroz, Helena Müller

    2015-01-01

    An approach for the estimate of the uncertainty in measurement considering the individual sources related to the different steps of the method under evaluation as well as the uncertainties estimated from the validation data for the determination of mercury in seafood by using thermal decomposition/amalgamation atomic absorption spectrometry (TDA AAS) is proposed. The considered method has been fully optimized and validated in an official laboratory of the Ministry of Agriculture, Livestock and Food Supply of Brazil, in order to comply with national and international food regulations and quality assurance. The referred method has been accredited under the ISO/IEC 17025 norm since 2010. The approach of the present work in order to reach the aim of estimating of the uncertainty in measurement was based on six sources of uncertainty for mercury determination in seafood by TDA AAS, following the validation process, which were: Linear least square regression, Repeatability, Intermediate precision, Correction factor of the analytical curve, Sample mass, and Standard reference solution. Those that most influenced the uncertainty in measurement were sample weight, repeatability, intermediate precision and calibration curve. The obtained result for the estimate of uncertainty in measurement in the present work reached a value of 13.39%, which complies with the European Regulation EC 836/2011. This figure represents a very realistic estimate of the routine conditions, since it fairly encompasses the dispersion obtained from the value attributed to the sample and the value measured by the laboratory analysts. From this outcome, it is possible to infer that the validation data (based on calibration curve, recovery and precision), together with the variation on sample mass, can offer a proper estimate of uncertainty in measurement.

  11. Application of Plackett-Burman and Doehlert designs for optimization of selenium analysis in plasma with electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    El Ati-Hellal, Myriam; Hellal, Fayçal; Hedhili, Abderrazek

    2014-10-01

    The aim of this study was the optimization of selenium determination in plasma samples with electrothermal atomic absorption spectrometry using experimental design methodology. 11 variables being able to influence selenium analysis in human blood plasma by electrothermal atomic absorption spectrometry (ETAAS) were evaluated with Plackett-Burman experimental design. These factors were selected from sample preparation, furnace program and chemical modification steps. Both absorbance and background signals were chosen as responses in the screening approach. Doehlert design was used for method optimization. Results showed that only ashing temperature has a statistically significant effect on the selected responses. Optimization with Doehlert design allowed the development of a reliable method for selenium analysis with ETAAS. Samples were diluted 1/10 with 0.05% (v/v) TritonX-100+2.5% (v/v) HNO3 solution. Optimized ashing and atomization temperatures for nickel modifier were 1070°C and 2270°C, respectively. A detection limit of 2.1μgL(-1) Se was obtained. Accuracy of the method was checked by the analysis of selenium in Seronorm™ Trace element quality control serum level 1. The developed procedure was applied for the analysis of total selenium in fifteen plasma samples with standard addition method. Concentrations ranged between 24.4 and 64.6μgL(-1), with a mean of 42.6±4.9μgL(-1). The use of experimental designs allowed the development of a cheap and accurate method for selenium analysis in plasma that could be applied routinely in clinical laboratories. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  12. Rapid determination of main components by means of flame-atomic-absorption spectrometry for chromium, silicon and tungsten in CrSiW materials

    International Nuclear Information System (INIS)

    Mueller, E.; Stahlberg, R.

    1985-01-01

    The application of Flame-Atomic-Absorption Spectrometry (FAAS) for determining chromium, silicon and tungsten in CrSiW materials is described. The FAAS determinations of the main components are shown under optimum conditions. Sufficient precision and reliability have been achieved for routine analysis. The application of a mixture of acids for preparing CrSiW solutions is proposed. The preparation of samples is discussed in detail. Optimum conditions are recommended for determining chromium, silicon and tungsten using one solution only. (orig.) [de

  13. Wet sample digestion for quantification of vanadium(V) in serum by electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Heinemann, G.; Vogt, W.; Jacob, K.

    1999-01-01

    Three types of pressure digestion systems used prior to the determination of the ultratrace element vanadium by electrothermal atomic absorption spectrometry were evaluated: The high-pressure ashing (HPA) system, the DAB III pressure digestion system and the pressurized microwave digestion (PMD) system. Complete sample digestion and no loss of graphite tube sensitivity as well as reliable vanadium values could only be achieved with HPA digests of freeze-dried serum. The mean recovery rate was 98% and no loss of tube sensitivity could be observed. Using non-lyophilized serum the mean recovery rate was 70%. The DAB III digestion system, vicarious for closed pressure digestion in steel bombs with an allowable temperature up to about 200C, cannot be recommended to mineralize human biological material for vanadium determinations, because the remaining not completely decomposed organic compounds extracted together with the vanadium-cupferron complex caused a marked carbon-buildup and formation of carbides in the graphite tube were found to change the shape of the absorption signals distinctly, and to decline the tube sensitivity strongly (about 25%) so that reliable results cannot be achieved. The recovery rate was too low in general (about 50%). In addition, a subsequent treatment of the DAB III digests with perchloric acid was unsuccessful. The PMD system proved to be not suited, because the samples became highly contaminated by vanadium possibly from the titan seal. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Determination of heavy metals in solid emission and immission samples using atomic absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fara, M.; Novak, F. [EGU Prague, PLC, Bichovice, Prague (Czechoslovakia)

    1995-12-01

    Both flame and electrothermal methods of atomic absorption spectroscopy (AAS) have been applied to the determination of Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, TI, Se, V and Zn in emission and emission (deposition) samples decomposed in open PTFE test-tubes by individual fuming-off hydrofluoric, perchloroic and nitric acid. An alternative hydride technique was also used for As and Se determination and Hg was determined using a self-contained AAS analyzer. A graphite platform proved good to overcome non-spectral interferences in AAS-ETA. Methods developed were verified by reference materials (inc. NBS 1633a).

  15. Análise direta de sólidos por espectrometria de absorção atômica com atomização em forno de grafite: uma revisão Solid sampling graphite furnace atomic absorption spectrometry: a review

    Directory of Open Access Journals (Sweden)

    Cassiana Seimi Nomura

    2008-01-01

    Full Text Available This is a review of direct analysis using solid sampling graphite furnace atomic absorption spectrometry. Greater emphasis is dedicated to sample preparation, sample homogeneity, calibration and its application to microanalysis and micro-homogeneity studies. The main advantages and some difficulties related to the applicability of this technique are discussed. A literature search on the application of solid sampling graphite furnace atomic absorption spectrometry in trace element determination in many kinds of samples, including biological, clinical, technological and environmental ones, is also presented.

  16. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Pourreza, N.; Ghanemi, K.

    2010-01-01

    A novel solid phase extractor for preconcentration of cadmium at ng L -1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] + PF 6 - ) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L -1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L -1 of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S b , n = 10) was 4.6 ng L -1 . The relative standard deviation (R.S.D.) of 25 and 150 ng L -1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  17. Electrochemical preconcentration and hydride generation methods for trace determination of selenium by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Bye, R.

    1986-01-01

    The use of atomic absorption spectrometry in combination with two different preconcentration/separation techniques for the determination of trace concentrations of selenium is described. Electrochemical preconcentration onto a platinum electrode with a subsequent atomization of selenium is discussed briefly. Several parameters are considered such as the presence of depolarizers, and the temperature of the electrolyzed solutions. Special attention is payed to the efficiency of the atomization step, and a method to improve this is proposed. Applications of the technique to real samples are also reported. Secondly, the separation of the selenium as the volatile selenium hydride from the sample solution is considered. Several papers in this thesis deal with commonly occurring interferants as nickel and copper and with ways of minimizing or avoiding the interferring effects, whereas other papers relate to more theoretical aspects of the hydride generation process. New methods for the determination of selenium in technical samples with high contents of nickel and copper are also presented

  18. Liquid-Liquid Extraction and Determination of Trace Elements in Iron Minerals by Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Taseska, Milena; Stafilov, Trajche; Makreski, Petre; Jacimovic, Radojko; Jovanovski, Gligor

    2006-01-01

    Various trace elements (cadmium, chromium, cobalt, nickel, manganese) in some iron minerals were determined by flame (FAAS) and electrothermal atomic absorption spectrometry (ETAAS). The studied minerals were chalcopyrite (CuFeS 2 ), hematite (Fe 2 O 3 ) and pyrite (FeS 2 ). To avoid the interference of iron, a method for liquid-liquid extraction of iron and determination of investigated elements in the inorganic phase was proposed. Iron was extracted by diisopropyl ether in hydrochloride acid solution and the extraction method was optimized. Some parameters were obtained to be significantly important: Fe mass in the sample should not exceed 0.3 g, the optimal concentration of HCI should be 7.8 mol 1 -1 and ratio of the inorganic and organic phase should be 1: 1. The procedure was verified by the method of standard additions and by its applications to reference standard samples. The investigated minerals originate from various mines in the Republic of Macedonia. (Author)

  19. Preparation and certification of rice flour reference materials for trace elements analysis

    International Nuclear Information System (INIS)

    Cho, Kyung Haeng; Park, Chang Joon; Woo, Jin Choon; Suh, Jung Ki; Han, Myung Sub; Lee, Jong Hae

    1998-01-01

    Rice flour reference materials were prepared from the unpolished rice grown in korea and certified for elemental composition. The reference materials consist of two samples containing normal and high level. The reference material at elevated level was prepared by spiking to the normal rice flour six toxic elements of As, Cd, Cu, Cr, Hg, Pb with 1.0μg/g on a dry weight basis. Homogeneity of the prepared materials was evaluated through the determination of Ca, Cu, Fe, Mn, Zn by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). Small variance of elemental composition among inter-bottled samples assured homogeneity of the prepared materials. The materials were decomposed by high pres-sure digestion and microwave digestion method. INAA, AAS, inductively coupled plasma-atomic absorption spectrometry (ICP-AES), ICP-mass spectrometry (MS) and vapour generation techniques were employed to analyze the reference materials. From this independent analytical results, the certified or reference values are determined for As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, P, Pb, Se, Zn

  20. A self-sufficient and general method for self-absorption correction in gamma-ray spectrometry using GEANT4

    International Nuclear Information System (INIS)

    Hurtado, S.; Villa, M.; Manjon, G.; Garcia-Tenorio, R.

    2007-01-01

    This paper presents a self-sufficient and general method for measurement of the activity of low-level gamma-emitters in voluminous samples by gamma-ray spectrometry with a coaxial germanium detector. Due to self-absorption within the sample, the full-energy peak efficiency of low-energy emitters in semiconductor gamma-spectrometers depends strongly on a number of factors including sample composition, density, sample size and gamma-ray energy. As long as those commented factors are well characterized, the influence of self-absorption in the full-energy peak efficiency of low-energy emitters can be calculated using Monte Carlo method based on GEANT4 code for each individual sample. However this task is quite tedious and time consuming. In this paper, we propose an alternative method to determine this influence for voluminous samples of unknown composition. Our method combines both transmission measurements and Monte Carlo simulations, avoiding the application of Monte Carlo full-energy peak efficiency determinations for each individual sample. To test the accuracy and precision of the proposed method, we have calculated 210 Pb activity in sediments samples from an estuary located in the vicinity of several phosphates factories with the proposed method, comparing the obtained results with the ones determined in the same samples using two alternative radiometric techniques

  1. Antiproton Accumulator (AA)

    CERN Multimedia

    Photographic Service

    1980-01-01

    The AA in its final stage of construction, before it disappeared from view under concrete shielding. Antiprotons were first injected, stochastically cooled and accumulated in July 1980. From 1981 on, the AA provided antiprotons for collisions with protons, first in the ISR, then in the SPS Collider. From 1983 on, it also sent antiprotons, via the PS, to the Low-Energy Antiproton Ring (LEAR). The AA was dismantled in 1997 and shipped to Japan.

  2. Determination of trace elements in soy milk using ICP atomic emission spectrometry

    International Nuclear Information System (INIS)

    Tanaka, Satoko; Chayama, Kenji

    2009-01-01

    The present study investigated the optimal method for the multi-element quantification of 9 elements in soy milk: calcium, copper, iron, potassium, magnesium, manganese, sodium, phosphorus, and zinc. Results obtained using ICP atomic emission spectrometry were compared with those obtained by atomic absorption spectrometry, which is the standard method. The same sample was measured using both ICP atomic emission spectrometry and atomic absorption spectrometry. The percentage of minerals recovered by ICP atomic emission spectrometry ranged from 99.3% to 102%, which was equivalent to that by atomic absorption spectrometry. Therefore, a good result with standard deviation was obtained. The mineral contents of 16 samples of commercially-available soy milk products were measured. The Cu content was significantly proportional to the amount of soybean solids (P < 0.001). Moreover, although relation-ships did not attain statistical significance, the consents of Fe, Zn, K, Mg and P were proportional to the amount of soybean solids, and were highest in soy milk, followed by prepared soy milk and so milk beverage. The Ca content of modified soy milk was significantly higher than that of soy milk and soy milk-based beverages (P < 0.001). Furthermore, the Na content in soy milk was significantly lower. (author)

  3. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Aklamati, E.K.; Mulenga, M.; Dueker, S.R.; Buchholz, B.A.; Peerson, J.M.; Kafwembe, E.; Brown, K.H.; Haskell, M.J.

    2009-01-01

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children 14 C 2 )-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of 14 C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting 14 C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 ± 7.1%, 76.3 ± 6.7%, and 1.9 ± 0.6%/d, respectively, for the HD-VAS and 76.5 ± 9.5%, 71.1 ± 9.4%, and 1.8 ± 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

  4. Programmer for automatic gamma spectrometry; Ordonnateur de sequence pour spectrometrie gamma automatique

    Energy Technology Data Exchange (ETDEWEB)

    Romanetti, R [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1968-04-01

    With this apparatus, which is constructed of logical integrated circuits, it is possible both to synchronize an automatic gamma spectrometry assembly and to record the spectra on punched cards. An IBM terminal will make it possible with the help of analysis by the least squares method and by a direct dialogue with an IBM 360 computer to obtain analytical results almost instantaneously. (author) [French] Cet appareil, realise en circuits integres logiques, permet d'une part de synchroniser un ensemble automatique de spectrometrie gamma et d'autre part d'enregistrer les spectres sur cartes perforees. Un terminal IBM permettra, a l'aide d'un programme d'analyse par la methode des moindres carres et par un dialogue direct avec un ordinateur IBM 360, de disposer presque intanstanement des resultats des analyses. (auteur)

  5. Fotólise no estado estacionário e com pulso de laser de 1-benzociclanonas e de seus derivados a,a -dimetilados Steady-state and laser flash photolysis of 1 - benzocyclanones and their a,a -dimethyl derivatives

    Directory of Open Access Journals (Sweden)

    José Carlos Netto-Ferreira

    1999-07-01

    Full Text Available Laser excitation of 0.01 M solutions of 1-indanone (Ia, 1-tetralone (Ib, 1-benzosuberone (Ic, and their a,a -dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum absorption at 425 nm, and lifetimes ranging from 62 ns (IIa to 5.5ms (Ic. Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, i.e. IIIa-c, which show absorption spectra very similar to the parent ketone, with lmax at 430 nm and lifetime in excess of 20 ms. Steady state irradiations show that the a,a -dimethyl ketones IIa and IIc form ortho-alkyl benzaldehydes probably derived from an initial a-cleavage of the corresponding triplet excited states.

  6. Gamma spectrometry of infinite 4Π geometry

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.

    1987-07-01

    Owing to the weak absorption og gamma radiation by matter, gamma-ray spectrometry may be applied to samples of great volume. A very interesting case is that of the gamma-ray spectrometry applied with 4Π geometry around the detector on a sample assumed to be of infinite extension. The determination of suitable efficiencies allows this method to be quantitative. (author) [pt

  7. Organic, inorganic and total mercury determination in fish by chemical vapor generation with collection on a gold gauze and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Duarte, Fabio Andrei; Bizzi, Cezar Augusto; Goldschmidt Antes, Fabiane; Dressler, Valderi Luiz; Flores, Erico Marlon de Moraes

    2009-01-01

    A method for organic, inorganic and total mercury determination in fish tissue has been developed using chemical vapor generation and collection of mercury vapor on a gold gauze inside a graphite tube and further atomization by electrothermal atomic absorption spectrometry. After drying and cryogenic grinding, potassium bromide and hydrochloric acid solution (1 mol L - 1 KBr in 6 mol L - 1 HCl) was added to the samples. After centrifugation, total mercury was determined in the supernatant. Organomercury compounds were selectively extracted from KBr solution using chloroform and the resultant solution was back extracted with 1% m/v L-cysteine. This solution was used for organic Hg determination. Inorganic Hg remaining in KBr solution was directly determined by chemical vapor generation electrothermal atomic absorption spectrometry. Mercury vapor generation from extracts was performed using 1 mol L - 1 HCl and 2.5% m/v NaBH 4 solutions and a batch chemical vapor generation system. Mercury vapor was collected on the gold gauze heated resistively at 80 deg. C and the atomization temperature was set at 650 deg. C. The selectivity of extraction was evaluated using liquid chromatography coupled to chemical vapor generation and determination by inductively coupled plasma mass spectrometry. The proposed method was applied for mercury analysis in shark, croaker and tuna fish tissues. Certified reference materials were used to check accuracy and the agreement was better than 95%. The characteristic mass was 60 pg and method limits of detection were 5, 1 and 1 ng g - 1 for organic, inorganic and total mercury, respectively. With the proposed method it was possible to analyze up to 2, 2 and 6 samples per hour for organic, inorganic and total Hg determination, respectively.

  8. Pollution from mining in South Greenland: Uptake and release of Pb by blue mussels (Mytilus edulis L.) documented by transplantation experiments

    DEFF Research Database (Denmark)

    Zimmer, L.A.; Asmund, G.; Johansen, P.

    2011-01-01

    Long-term impact of former mining activities on the marine sub-Arctic ecosystem in the Ivittuut area, Arsuk Fjord, South Greenland, was studied by transplantation experiments with the blue mussel Mytilus edulis. Measurements of metal concentration in mussels were conducted using atomic absorption...... spectrometry (flame AAS) and graphite furnace atomic absorption spectrometry (graphite furnace AAS). Uptake and release of Pb were documented to be slow processes. For mussels transplanted from the pristine Kugnait Bay to the polluted mining site at Ivittuut, a continuous accumulation throughout...... the experiments was found. Linear uptake rates of 5.86, 6.94 and 11.62 μg Pb month−1 for small, medium and large mussels were found for a 6-week experiment, whereas exponential uptake rates of 0.26, 0.20 and 0.28 month−1 were found for a 9-month experiment. It is estimated that the transplanted mussels will reach...

  9. Constitutive behavior of as-cast AA1050, AA3104, and AA5182

    Science.gov (United States)

    van Haaften, W. M.; Magnin, B.; Kool, W. H.; Katgerman, L.

    2002-07-01

    Recent thermomechanical modeling to calculate the stress field in industrially direct-chill (DC) cast-aluminum slabs has been successful, but lack of material data limits the accuracy of these calculations. Therefore, the constitutive behavior of three aluminum alloys (AA1050, AA3104, and AA5182) was determined in the as-cast condition using tensile tests at low strain rates and from room temperature to solidus temperature. The parameters of two constitutive equations, the extended Ludwik equation and a combination of the Sellars-Tegart equation with a hardening law, were determined. In order to study the effect of recovery, the constitutive behavior after prestraining at higher temperatures was also investigated. To evaluate the quantified constitutive equations, tensile tests were performed simulating the deformation and cooling history experienced by the material during casting. It is concluded that both constitutive equations perform well, but the combined hardening-Sellars-Tegart (HST) equation has temperature-independent parameters, which makes it easier to implement in a DC casting model. Further, the deformation history of the ingot should be taken into account for accurate stress calculations.

  10. Mass attenuation and mass energy absorption coefficients for 10 keV to 10 MeV photons; Coefficients d'attenuation massique et d'absorption massique en energie pour les photons de 10 keV a 10 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Joffre, H; Pages, L [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this report are given the elements allowing the definition of the values of mass attenuation coefficients and mass energy absorption coefficients for some elements and mixtures, necessary for the study of tissue equivalent materials, for photons in the energy range 10 keV to 10 MeV. After a short reminding of the definitions of the two coefficients, follows, in table form, a compilation of these coefficients, as a function of energy, for simple elements, for certain mineral compounds, organic compounds, gases and particularly of soft tissues. (author) [French] Dans ce rapport, sont donnes les elements permettant de determiner les valeurs des coefficients d'attenuation massique et d'absorption massique en energie pour certains elements et melanges necessaires a l'etude des materiaux equivalents aux tissus pour les photons dans le domaine d'energie allant de 10 keV a 10 MeV. Apres un bref rappel des definitions des deux coefficients, suit, sous forme de tableaux, un recueil de ces coefficients, en fonction de l'energie, pour les elements simples, certains composes mineraux, composes organiques, gaz, et, particulierement, pour les tissus mous. (auteur)

  11. [Determination of inorganic elements in different parts of Sonchus oleraceus L by flame atomic absorption spectrometry].

    Science.gov (United States)

    Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi

    2007-06-01

    Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.

  12. Absorption of radionuclide through wounded skin

    International Nuclear Information System (INIS)

    Kusama, Tomoko; Ogaki, Kazushi; Yoshizawa, Yasuo

    1982-01-01

    The translocation and absorption of 58 Co(CoCl 2 ) through a wound was investigated experimentally with mice. Physical and chemical skin damages became the objects of the investigation. Abrasion, puncture and incision were made for types of the physical damage. The chemical damage included both acid and alkaline burns. The absorptions of the radionuclide through the contaminated wounds were measured with both a 2 inches NaI(Tl) scintillation detector and an auto well gamma counter at 15,30 and 60 min after the contamination. The radionuclide was hardly absorbed through an undamaged skin. After 30 min, 20 to 40% of the radionuclide applied on the physically damaged skin was absorbed, but was not absorbed through the chemically damaged skin. The absorption rate through the physically damaged skin reached a maximum at 15 to 60 min after the contamination. The velocity of the absorption through the physically damaged skin was 100 times as much as the chemically damaged skin. The absorption rates through the physically and the chemically damaged skins were expressed by the following formulas: A=a(1-e sup(-bt)) and A=a(e sup(bt)-1), where a and b is constant, respectively. (author)

  13. Air pollution studies in Bulgaria using the moss biomonitoring technique, NAA and AAS

    International Nuclear Information System (INIS)

    Marinova, S.; Karadzhinova, A.G.; Yurukova, L.; Frontas'eva, M.V.; Strelkova, L.P.; Marinov, A.; Steinnes, E.

    2009-01-01

    The moss biomonitoring technique was used to study trace element atmospheric deposition in four areas of Bulgaria (the western Thracian-Rhodope, the eastern Thracian-Rhodope, the south-eastern and the northern central regions) during the European moss survey in 2005. A total of 41 elements (Na, Al, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rd, Sr, Mo, Cd, Sb, I, Cs, Ba, La, Ce, Nd, Sm, Tb, Dy, Tm, Yb, Hf, Ta, W, Au, Pb, Th, and U) were determined by instrumental epithermal Neutron Activation Analysis (NAA) and Atomic Absorption Spectrometry (AAS) in 97 samples of terrestrial moss. The moss species used was Hypnum cupressiforme. Principal component analysis (factor analysis)was used to identify and characterize different pollution sources and to point out the most polluted areas. The interpretation of the factor analysis findings points to natural crust, marine, and vegetation components as well as to anthropogenic sources: ferrous (Plovdiv, Haskovo) and non-ferrous industries (Plovdiv, Kardzhali, Burgas); and central heating stations (Plovdiv, Haskovo, Stara Zagora, Burgas). Comparison of the medians of the elemental concentrations in moss samples collected in Bulgaria with those in the Balkan and other European countries reveals that the Balkan countries show considerably higher concentrations of most elements in moss than observed in other European countries where moss sampling has been employed

  14. Measurement of the quantity of water in organic solvents by infrared absorption an measurement of the dielectric constants; Dosage de l'eau dans les solvants organiques par absorption infra-rouge et mesure des constantes dielectriques

    Energy Technology Data Exchange (ETDEWEB)

    Desnoyer, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1959-06-15

    Some chemical methods for the analysis of the quantity of water in solvents are first described, their object being the determination of the maximum error for cases where the water content is less than 1 per cent. - The first part of the work consists in describing infrared spectrometry as applied to the analysis of water in carbon tetrachloride, chloroform aniline, acetone and dioxane. A method based on isotopic exchange between heavy and light water is used on the one hand for determining the solubility of water in carbon tetrachloride and on the other hand for establishing standard solutions (sensitivity of the method). - In the second part the dielectric constant of water solvent solutions is measured. A table is presented giving the precision obtained by the two principal methods. These are comparable and further than that the appearance of the spectra suggests an interpretation of the anomalies observed in calibration curves obtained by the dielectric constant method. (author) [French] Quelques methodes chimiques d'analyses de l'eau dissoute dans les solvants sont decrites tout d'abord en vue de determiner l'erreur maxima dans le cas ou la teneur en eau ne depasse pas 1 pour cent. - Une premiere partie du travail expose la technique utilisee en spectrometrie infrarouge pour doser l'eau dans le tetrachlorure de carbone, chloroforme, aniline, acetone et le dioxane. Une methode basee sur l'echange isotopique entre l'eau legere et l'eau lourde permet de determiner d'une part la solubilite de l'eau dans le tetrachlorure de carbone et le chloroforme et d'autre part le titre en valeur absolue des solutions etalons (sensibilite de la methode). - Dans une deuxieme partie, on mesure la constante dielectrique des solutions eau-solvant. On dresse un tableau des precisions obtenues par les deux methodes principales. Celles-ci sont comparables et en outre, l'aspect du spectre suggere une interpretation des anomalies observees dans les courbes d'etalonnage tracees par la

  15. Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS.

    Science.gov (United States)

    Pistón, Mariela; Silva, Javier; Pérez-Zambra, Ramiro; Dol, Isabel; Knochen, Moisés

    2012-04-01

    A multicommutated flow system was designed and evaluated for the determination of total arsenic and selenium by Hydride Generation Atomic Absorption Spectrometry (HG-AAS). It was applied to the determination of arsenic and selenium in samples of natural and drinking water. Detection limits were 0.46 and 0.08 μg l(-1) for arsenic and selenium, respectively; sampling frequency was 120 samples h(-1) for arsenic and 160 samples h(-1) for selenium. Linear ranges found were 1.54-10 μg l(-1) (R = 0.999) for arsenic and 0.27-27 μg l(-1) (R = 0.999) for selenium. Accuracy was evaluated by spiking various water samples and using a reference material. Recoveries were in the range 95-116%. Analytical precision (s ( r ) (%), n = 10) was 6% for both elements. Compared with the Standard Methods, APHA, 3114B manual method, the system consumes at least 10 times less sample per determination, and the quantities of acid and reducing agent used are significantly lower with a reduction in the generation of pollutants and waste. As an additional advantage, the system is very fast, efficient and environmentally friendly for monitoring total arsenic and selenium levels in waters.

  16. INAA and AAS of different products from sugar cane industry in Pakistan. Toxic trace elements for nutritional safety

    International Nuclear Information System (INIS)

    Waheed, S.; Rahman, S.; Gill, K.P.

    2009-01-01

    Instrumental neutron activation analysis (INAA) have been used to determine As, Br, Hg, Sb and Se in combination with atomic absorption spectrometry (AAS) as a complementary technique for the quantification of Cd and Pb in jaggery, brown sugar, white sugar and molasses. All sugar cane products were collected from the local sugar cane industry of Pakistan. The highest concentration of these potentially toxic elements was quantified in molasses; however, molasses together with jaggery, brown sugar and white sugar contains trace amounts of all of these elements. Due to very low concentration of Cd it could only be detected in molasses. To evaluate the percentage contribution of these elements in the sugar cane products to the weekly recommended values, intakes on weekly consumption of 100 g of each item have also been calculated which follow the pattern Br>Se>Pb>Hg>As>Sb. The elevated Br contents may be attributed to the use of Br-containing chemicals for fumigation; however, these contents are well within the tolerance levels. The estimated weekly intake of all toxic elements is very low indicating that sugar cane products can be safely ingested as part of the diets. (author)

  17. Determination of sulfur in bovine serum albumin and L-cysteine using high-resolution continuum source molecular absorption spectrometry of the CS molecule

    Science.gov (United States)

    Andrade-Carpente, Eva; Peña-Vázquez, Elena; Bermejo-Barrera, Pilar

    2016-08-01

    In this study, the content of sulfur in bovine serum albumin and L-cysteine was determined using high-resolution continuum source molecular absorption spectrometry of the CS molecule, generated in a reducing air-acetylene flame. Flame conditions (height above the burner, measurement time) were optimized using a 3.0% (v/v) sulfuric acid solution. A microwave lab station (Ethos Plus MW) was used for the digestion of both compounds. During the digestion step, sulfur was converted to sulfate previous to the determination. Good repeatability (4-10%) and analytical recovery (91-106%) was obtained.

  18. Determination of total selenium and selenium distribution in the milk phases in commercial cow's milk by HG-AAS

    Energy Technology Data Exchange (ETDEWEB)

    Muniz-Naveiro, Oscar; Dominguez-Gonzalez, Raquel; Bermejo-Barrera, Adela; Bermejo-Barrera, Pilar [University of Santiago de Compostela, Department of Analytical Chemistry, Nutrition and Bromatology, Santiago de Compostela (Spain); Cocho, Jose A. [University Clinical Hospital, Laboratory of Metabolic and Nutritional Disorders, Santiago de Compostela (Spain); Fraga, Jose M. [University Clinical Hospital, Department of Pediatrics, Santiago de Compostela (Spain)

    2005-03-01

    A procedure has been developed for determining the selenium in cow's milk using hydride generation-atomic absorption spectrometry (HG-AAS) following microwave-assisted acid digestion. The selenium distributions in milk whey, fat and micellar casein phases were studied after separating the different phases by ultracentrifugation and determining the selenium in all of them. The detection limits obtained by HG-AAS for the whole milk, milk whey and micellar casein were 0.074, 0.065 and 0.075 {mu}g l{sup -1}, respectively. The accuracy for the whole milk was checked by using a Certified Reference Material CRM 8435 whole milk powder from NIST, and the analytical recoveries for the milk whey and casein micelles were 100.9 and 96.9%, respectively. A mass balance study of the determination of selenium in the different milk phases was carried out, obtaining values of 95.5-100.8%. The total content of selenium was determined in 37 milk samples from 15 different manufacturers, 19 whole milk samples and 18 skimmed milk samples. The selenium levels found were within the 8.5-21 {mu}g l{sup -1} range. The selenium distributions in the different milk phases were studied in 14 whole milk samples, and the highest selenium levels were found in milk whey (47.2-73.6%), while the lowest level was found for the fat phase (4.8-16.2%). A strong correlation was found between the selenium levels in whole milk and the selenium levels in the milk components. (orig.)

  19. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  20. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  1. Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yanlin [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia); Adeloju, Samuel B., E-mail: Sam.Adeloju@monash.edu [NanoScience and Sensor Technology Research Group, School of Applied Sciences and Engineering, Monash University, Churchill, Victoria 3842 (Australia)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Successful speciation of inorganic and organic Hg with Fe{sup 3+}, Cu{sup 2+} and thiourea as catalysts. Black-Right-Pointing-Pointer Best sensitivity enhancement and similar sensitivity for MeHg and Hg{sup 2+} with Fe{sup 3+}. Black-Right-Pointing-Pointer Successful use of Hg{sup 2+} as the primary standard for quantification of inorganic and total-Hg. Black-Right-Pointing-Pointer Quantitative extraction of Hg and MeHg with 2 M HCl which contained thiourea. Black-Right-Pointing-Pointer Integration with FIA for rapid analysis with a sample throughput of 180 h{sup -1}. - Abstract: A rapid flow injection catalytic cold vapour atomic absorption spectrometric (FI-CCV-AAS) method is described for speciation and determination of mercury in biological samples. Varying concentrations of NaBH{sub 4} were employed for mercury vapour generation from inorganic and mixture of inorganic and organic (total) Hg. The presence of Fe{sup 3+}, Cu{sup 2+} and thiourea had catalytic effect on mercury vapour generation from methylmercury (MeHg) and, when together, Cu{sup 2+} and thiourea had synergistic catalytic effect on the vapour generation. Of the two metal ions, Fe{sup 3+} gave the best sensitivity enhancement, achieving the same sensitivity for MeHg and inorganic Hg{sup 2+}. Due to similarity of resulting sensitivity, Hg{sup 2+} was used successfully as a primary standard for quantification of inorganic and total Hg. The catalysis was homogeneous in nature, and it was assumed that the breaking of the C-Hg bond was facilitated by the delocalization of the 5d electron pairs in Hg atom. The extraction of MeHg and inorganic mercury (In-Hg) in fish samples were achieved quantitatively with hydrochloric acid in the presence of thiourea and determined by FI-CCV-AAS. The application of the method to the quantification of mercury species in a fish liver reference material DOLT-4 gave 91.5% and 102.3% recoveries for total and methyl mercury

  2. Determination of sulfur in food by high resolution continuum source flame molecular absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zambrzycka, Elżbieta; Godlewska-Żyłkiewicz, Beata, E-mail: bgodlew@uwb.edu.pl

    2014-11-01

    In the present work, a fast, simple and sensitive analytical method for determination of sulfur in food and beverages by high resolution continuum source flame molecular absorption spectrometry was developed. The determination was performed via molecular absorption of carbon monosulfide, CS. Different CS rotational lines (257.959 nm, 258.033 nm, 258.055 nm), number of pixels and types of standard solution of sulfur, namely: sulfuric acid, sodium sulfate, ammonium sulfate, sodium sulfite, sodium sulfide, DL-cysteine, and L-cystine, were studied in terms of sensitivity, repeatability of results as well as limit of detection and limit of quantification. The best results were obtained for measurements of absorption of the CS molecule at 258.055 nm at the wavelength range covering 3 pixels and DL-cysteine in 0.2 mol L{sup −1} HNO{sub 3} solution as a calibration standard. Under optimized conditions the limit of detection and the limit of quantification achieved for sulfur were 10.9 mg L{sup −1} and 36.4 mg L{sup −1}, respectively. The repeatability of the results expressed as relative standard deviation was typically < 5%. The accuracy of the method was tested by analysis of digested biological certified reference materials (soya bean flour, corn flour and herbs) and recovery experiment for beverage samples with added known amount of sulfur standard. The recovery of analyte from such samples was in the range of 93–105% with the repeatability in the range of 4.1–5.0%. The developed method was applied for the determination of sulfur in milk (194 ± 10 mg kg{sup −1}), egg white (2188 ± 29 mg kg{sup −1}), mineral water (31.0 ± 0.9 mg L{sup −1}), white wine (260 ± 4 mg L{sup −1}) and red wine (82 ± 2 mg L{sup −1}), as well as in sample rich in ions, such as bitter mineral water (6900 ± 100 mg L{sup −1}). - Highlights: • HR-CS FMAS technique was used for sulfur measurement via molecular absorption of carbon monosulfide, CS. • Organic DL

  3. Determination of Arsenic Content of Available Traditional Medicines ...

    African Journals Online (AJOL)

    Purpose: To determine the content of arsenic (As) in some locally available traditional medicines in the East Coast region of Malaysia. Methods: The determination of As was conducted using hydride generation-atomic absorption spectrometry (HG-AAS). Sample preparation entailed mineral acid digestion using ...

  4. levels of heavy metals in drinking water, cosmetics and fruit juices ...

    African Journals Online (AJOL)

    Dr John A. M. Mahugija

    Heavy metals were determined in samples of drinking water, cosmetics (nail polish, lip glosses ... The samples were analyzed using Atomic. Absorption Spectrometry (AAS) after digestion with concentrated acids, filtration and dilution. Lead, zinc ... concentrations of lead in cosmetics exceeded the EU/US permissible limits.

  5. Cold vapor-solid phase microextraction using amalgamation in different Pd-based substrates combined with direct thermal desorption in a modified absorption cell for the determination of Hg by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Romero, Vanesa; Costas-Mora, Isabel; Lavilla, Isela; Bendicho, Carlos

    2011-01-01

    In this work, different Pd-based substrates (i.e. Pd wire, Pd-coated stainless steel wire and Pd-coated SiO 2 ) are tried for microextraction of Hg prior to its release into a modified quartz T-cell so as to develop a cost-effective, sensitive and easy-to-handle coupling between solid-phase microextraction (SPME) and atomic absorption spectrometry. The new design allows a direct sample injection from the SPME device into a quartz T-cell thus avoiding analyte dilution. Mercury amalgamation onto a Pd wire provided the best performance in respect to sensitivity and fiber lifetime, but Pd wires could not be implemented in the SPME device due to their poor mechanical characteristics. On the contrary, Pd-coated SiO 2 fibers could be easily adapted to the typical sampling device used for SPME. Narrow time-dependent absorption signal profiles that could be integrated within 25 s were obtained. The detection limit was 90 pg mL -1 of Hg, and the repeatability expressed as relative standard deviation was 4.3%.

  6. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  7. Developing a Transdisciplinary Teaching Implement for Atomic Absorption Spectroscopy

    Science.gov (United States)

    Drew, John

    2008-01-01

    In this article I explain why I wrote the set of teaching notes on Atomic Absorption Spectroscopy (AAS) and why they look the way they do. The notes were intended as a student reference to question, highlight and write over as much as they wish during an initial practical demonstration of the threshold concept being introduced, in this case…

  8. Results of several years experiments on the absorption of radioactive strontium and caesium by cultivated plants (1962); Compte rendu d'experiences de plusieurs annees sur l'absorption du strontium et du cesium radioactifs par des plantes cultivees (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Michon, M [Commissariat a l' Energie Atomique, Dept. de Protection Sanitaire, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Benard, M; Flanzy, M [Station Centrale de Technologie des Produits Vegetaux, 11 - Narbonne (France); Fioramonti, M; Marty, M [Station Agronomique de Toulouse, 31 (France); Barbier, M; Le Blaye, M; Brossard, M [Societe Centrale d' Agronomie, 78 - Versailles (France)

    1962-07-01

    This report follows on to the report number CEA 1860 and uses results obtained in 1960 to give more precise details concerning the data presented in the preceding report. First results obtained on the vine are given. The Sr absorption coefficient has varied very little from one year to the next and that of caesium has slightly diminished. The values obtained suggest that the concentrations of {sup 90}Sr and {sup 137}Cs in irrigation water should not exceed 1/5 of the maximum permissible concentration in drinking water. (authors) [French] Ce rapport fait suite au rapport CEA 1860 et precise grace aux resultats acquis en 1960 les donnees exprimees dans le precedent rapport. Il y est fait mention des premiers resultats obtenus pour la vigne. Le coefficient d'absorption du Sr a peu varie d'une annee sur l'autre et celui du cesium legerement diminue. Les valeurs obtenues permettent de penser qu'il serait souhaitable que la concentration en {sup 90}Sr et en {sup 137}Cs dans l'eau d'irrigation ne depasse pas le 1/5 de la concentration maxima admissible pour l'eau de boisson. (auteurs)

  9. Longitudinal study of experimental induction of AA amyloidosis in mice seeded with homologous and heterologous AA fibrils.

    Science.gov (United States)

    Muhammad, Naeem; Murakami, Tomoaki; Inoshima, Yasuo; Ishiguro, Naotaka

    2016-09-01

    To investigate pathogenesis and kinetics of experimentally induced murine AA amyloidosis seeded with homologous (murine) and heterologous (bovine) AA fibrils. Experimental AA amyloidosis was induced by administration of inflammatory stimulus and preformed AA fibrils to a total of 111 female C57/Black mice. In this longitudinal study, heterologous (bovine) as well as homologous (murine) AA fibrils were injected intraperitoneally to mice in various combinations. Re-stimulation was done at 120 or 300 days post first inoculation. To analyze the intensity of amyloid depositions in mice organs, immunohistochemical techniques and image J software were used. Assessment of cytokines level in sera was done using a Mouse Th1/Th2/Th17 Cytokine CBA Kit. Incidence and severity of AA amyloidosis were quite low in mice inoculated with heterologous bovine AA fibrils than homologous murine one. Homologous AA fibrils administration at first and second inoculation caused maximum amount of amyloid depositions and severe systemic form of amyloidosis. Increase in the level of pro-inflammatory cytokine IL-6 was observed after first inoculation, while second inoculation caused a further increase in the level of anti-inflammatory cytokine IL-10. AA amyloidosis can be induced by heterologous as well as homologous AA fibrils. Severity of AA amyloidosis induced with homologous AA fibrils is higher compared to heterologous AA fibrils.

  10. Physical analytical methods for uranium hexafluoride; Methodes physiques d'analyse de l'hexafluorure d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbussche, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1965-12-15

    Various physical methods of analysis currently used or still under investigation such as: sound analysis, vapor pressure measurements, fractional distillation, cryogenics, micro-sublimation, ultra-violet, visible and infra-red absorption spectrophotometry, nuclear magnetic resonance and mass spectrometry are reviewed. For each method, principle and applications are given, and results obtained concerning reproducibility, application limits and rapidity are discussed. (author) [French] On passe en revue les differentes methodes physiques d'analyse utilisees ou en cours d'etude actuellement: par mesure de la vitesse du son, de la pression de vapeur, par distillation fractionnee, cryometrie, microsublimation, spectrometrie d'absorption dans l'ultraviolet, le visible et l'infrarouge, par resonance magnetique nucleaire et par spectrometrie de masse. Pour chaque methode, on donne le principe et son application et on examine les resultats obtenus concernant la reproductibilite, le domaine d'application et la duree des mesures. (auteur)

  11. Vehicle effects on human stratum corneum absorption and skin penetration.

    Science.gov (United States)

    Zhang, Alissa; Jung, Eui-Chang; Zhu, Hanjiang; Zou, Ying; Hui, Xiaoying; Maibach, Howard

    2017-05-01

    This study evaluated the effects of three vehicles-ethanol (EtOH), isopropyl alcohol (IPA), and isopropyl myristate (IPM)-on stratum corneum (SC) absorption and diffusion of the [ 14 C]-model compounds benzoic acid and butenafine hydrochloride to better understand the transport pathways of chemicals passing through and resident in SC. Following application of topical formulations to human dermatomed skin for 30 min, penetration flux was observed for 24 h post dosing, using an in vitro flow-through skin diffusion system. Skin absorption and penetration was compared to the chemical-SC (intact, delipidized, or SC lipid film) binding levels. A significant vehicle effect was observed for chemical skin penetration and SC absorption. IPA resulted in the greatest levels of intact SC/SC lipid absorption, skin penetration, and total skin absorption/penetration of benzoic acid, followed by IPM and EtOH, respectively. For intact SC absorption and total skin absorption/penetration of butenafine, the vehicle that demonstrated the highest level of sorption/penetration was EtOH, followed by IPA and IPM, respectively. The percent doses of butenafine that were absorbed in SC lipid film and penetrated through skin in 24 h were greatest for IPA, followed by EtOH and IPM, respectively. The vehicle effect was consistent between intact SC absorption and total chemical skin absorption and penetration, as well as SC lipid absorption and chemical penetration through skin, suggesting intercellular transport as a main pathway of skin penetration for model chemicals. These results suggest the potential to predict vehicle effects on skin permeability with simple SC absorption assays. As decontamination was applied 30 min after chemical exposure, significant vehicle effects on chemical SC partitioning and percutaneous penetration also suggest that skin decontamination efficiency is vehicle dependent, and an effective decontamination method should act on chemical solutes in the lipid domain.

  12. Oyebola et al (23).cdr

    African Journals Online (AJOL)

    Timothy Ademakinwa

    3+ described elsewhere (Oyebola et al., 2010). Ho absorption peaks were obtained from transmission studies carried out with a Cary 5000. UV-VIS-NIR spectrophotometer and corresponding absorption coefficients deduced using the Beer-Lambert law. Spectral emission measurements were carried out using the schematic ...

  13. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique.

    Science.gov (United States)

    Levine, Keith E; Levine, Michael A; Weber, Frank X; Hu, Ye; Perlmutter, Jason; Grohse, Peter M

    2005-01-01

    The concentrations of mercury in forty, commercially available dietary supplements, were determined using a new, inexpensive analysis technique. The method involves thermal decomposition, amalgamation, and detection of mercury by atomic absorption spectrometry with an analysis time of approximately six minutes per sample. The primary cost savings from this approach is that labor-intensive sample digestion is not required prior to analysis, further automating the analytical procedure. As a result, manufacturers and regulatory agencies concerned with monitoring lot-to-lot product quality may find this approach an attractive alternative to the more classical acid-decomposition, cold vapor atomic absorption methodology. Dietary supplement samples analyzed included astragalus, calcium, chromium picolinate, echinacea, ephedra, fish oil, ginger, ginkgo biloba, ginseng, goldenseal, guggul, senna, St John's wort, and yohimbe products. Quality control samples analyzed with the dietary supplements indicated a high level of method accuracy and precision. Ten replicate preparations of a standard reference material (NIST 1573a, tomato leaves) were analyzed, and the average mercury recovery was 109% (2.0% RSD). The method quantitation limit was 0.3 ng, which corresponded to 1.5 ng/g sample. The highest found mercury concentration (123 ng/g) was measured in a concentrated salmon oil sample. When taken as directed by an adult, this product would result in an approximate mercury ingestion of 7 mug per week.

  14. Determination of gold and cobalt dopants in advanced materials based on tin oxide by slurry sampling high-resolution continuum source graphite furnace atomic absorption spectrometry

    Science.gov (United States)

    Filatova, Daria G.; Eskina, Vasilina V.; Baranovskaya, Vasilisa B.; Vladimirova, Svetlana A.; Gaskov, Alexander M.; Rumyantseva, Marina N.; Karpov, Yuri A.

    2018-02-01

    A novel approach is developed for the determination of Co and Au dopants in advanced materials based on tin oxide using high-resolution continuum source graphite furnace atomic absorption spectrometry (HR CS GFAAS) with direct slurry sampling. Sodium carboxylmethylcellulose (Na-CMC) is an effective stabilizer for diluted suspensions. Use Na-CMC allows to transfer the analytes into graphite furnace completely and reproducibly. The relative standard deviation obtained by HR CS GFAAS was not higher than 4%. Accuracy was proven by means inductively coupled plasma mass spectrometry (ICP-MS) in solutions after decomposition as a comparative technique. To determine Au and Co in the volume of SnO2, the acid decomposition conditions (HCl, HF) of the samples were suggested by means of an autoclave in a microwave oven.

  15. A.A., constructivism, and reflecting teams.

    Science.gov (United States)

    Nevels, B

    1997-12-01

    Numerous studies and clinical anecdotes reveal a relationship between attendance at A.A. meetings and/or degree of involvement in A.A. and maintenance of sobriety. Hypotheses as to how A.A. and/or the A.A. meeting is helpful to its members have ranged from a focus on factors common to all therapy groups, to aspects of A.A. "treatment" which are behavioral in nature. Presented here is another way of understanding A.A.'s effectiveness within the frame of more recent, constructivistic approaches to family therapy. In particular, the A.A. topic meeting is compared to the reflecting team concept of Tom Anderson.

  16. Determination of mercury by multisyringe flow injection system with cold-vapor atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Leal, L.O.; Elsholz, O.; Forteza, R.; Cerda, V.

    2006-01-01

    A new software-controlled time-based multisyringe flow injection system for mercury determination by cold-vapor atomic absorption spectrometry is proposed. Precise known volumes of sample, reducing agent (1.1% SnCl 2 in 3% HCl) and carrier (3% HCl) are dispensed into a gas-liquid separation cell with a multisyringe burette coupled with one three-way solenoid valve. An argon flow delivers the reduced mercury to the spectrometer. The optimization of the system was carried out testing reaction coils and gas-liquid separators of different design as well as changing parameters, such as sample and reagents volumes, reagent concentrations and carrier gas flow rate, among others. The analytical curves were obtained within the range 50-5000 ng L -1 . The detection limit (3σ b /S) achieved is 5 ng L -1 . The relative standard deviation (R.S.D.) was 1.4%, evaluated from 16 successive injections of 250 ng L -1 Hg standard solution. The injection and sample throughput per hour were 44 and 11, respectively. This technique was validated by means of solid and water reference materials with good agreement with the certified values and was successfully applied to fish samples

  17. Speciation of iron (II) and (III) by using solvent extraction and flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Yaman, Mehmet; Kaya, Gokce

    2005-01-01

    A method for speciation, preconcentration and separation of Fe 2+ and Fe 3+ in different matrices was developed using solvent extraction and flame atomic absorption spectrometry. PAN as complexing reagent for Fe 2+ and chloroform as organic solvent were used. The complex of Fe 2+ -PAN was extracted into chloroform phase in the pH range of 0.75-4.0 and Fe 3+ remains in water phase in the pH range 0.75-1.25. The optimum conditions for maximum recovery of Fe 2+ and minimum recovery of Fe 3+ were determined as pH = 1, the stirring time of 20 min, the PAN amount of 0.5 mg and chloroform volume of 8 mL. The developed method was applied to the determination of Fe 2+ and Fe 3+ in tea infusion, fruit juice, cola and pekmez. It is seen that there is high bioavailable iron (Fe 2+ ) in pekmez. The developed method is sensitive, simple and need the shorter time in comparison with other similar studies

  18. Detection of AA76, a Common Form of Amyloid A Protein, as a Way of Diagnosing AA Amyloidosis.

    Science.gov (United States)

    Sato, Junji; Okuda, Yasuaki; Kuroda, Takeshi; Yamada, Toshiyuki

    2016-01-01

    Reactive amyloid deposits consist of amyloid A (AA) proteins, the degradation products of serum amyloid A (SAA). Since the most common species of AA is the amino terminal portion produced by cleavage between residues 76 and 77 of SAA (AA76), the presence of AA76 in tissues could be a consequence of AA amyloid deposition. This study assessed the diagnostic significance of the detection of AA76 for AA amyloidosis using two different approaches. Biopsy specimens (n=130 from 54 subjects) from gastroduodenal mucosa or abdominal fat (n=9 from 9 subjects) of patients who had already been diagnosed with or were suspected of having AA amyloidosis were used. Fixed mucosal sections were subjected to immunohistochemistry using a newly developed antibody recognizing the carboxyl terminal end of AA76 (anti-AA76). The non-fixed materials from gastroduodenal mucosa or abdominal fat were subjected to immunoblotting for detection of the size of AA76. Among the gastroduodenal specimens (n=115) from already diagnosed patients, the positive rates of Congo red staining, immunohistochemistry using anti-AA76, and immunoblotting were 68.4%, 73.0%, and 92.2%, respectively. The anti-AA76 did not stain the supposed SAA in the blood or leakage, which was stained by anti-SAA antibody. AA76 was not detected either by immunohistochemistry or by immunoblot in the materials from patients in whom AA amyloidosis had been ruled out. In the abdominal fat, the immunoblot detected AA76 in 8 materials from 8 already diagnosed patients and did not in 1 patient whose gastroduodenal mucosa was negative. In conclusion, the detection of AA76 may alter the ability to diagnose AA amyloidosis. In immunohistochemistry for fixed specimens, the new anti-AA76 antibody can improve the specificity. Immunoblot for non-fixed materials, which can considerably improve the sensitivity, should be beneficial for small materials like abdominal fat. © 2016 by the Association of Clinical Scientists, Inc.

  19. X-ray spectrometry with synchrotron radiation; Roentgenspektrometrie mit Synchrotronstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Matthias [Physikalisch-Technische Bundesanstalt (PTB), Berlin (Germany). Arbeitsgruppe ' Roentgen- und IR-Spektrometrie' ; Gerlach, Martin; Holfelder, Ina; Hoenicke, Philipp; Lubeck, Janin; Nutsch, Andreas; Pollakowski, Beatrix; Streeck, Cornelia; Unterumsberger, Rainer; Weser, Jan; Beckhoff, Burkhard

    2014-12-15

    The X-ray spectrometry of the PTB at the BESSY II storage ring with radiation in the range from 78 eV to 10.5 keV is described. After a description of the instrumentation development reference-sample free X-ray fluorescence analysis, the determination of fundamental atomic parameters, X-ray fluorescence analysis under glance-angle incidence, highly-resolving absorption spectrometry, and emission spectrometry are considered. Finally liquid cells and in-situ measurement techniques are described. (HSI)

  20. Trace element analysis of blackish staining on the crowns of human archaeological teeth

    Energy Technology Data Exchange (ETDEWEB)

    Stermer, E.M. [Univ. of Oslo, Dept. of Oral Radiology, Oslo (Norway); Risnes, S. [Univ. of Oslo, Dept. of Oral Biology, Faculty of Dentistry, Oslo (Norway); Fischer, P.M. [Chalmers Univ. of Technology, Dept. of Physics, SIMS Lab., Goeteborg (Sweden)

    1996-10-01

    A blackish staining found on the crowns of teeth of 51 skulls from the excavation of the medieval St. Olav`s church in Trondheim was analyzed using secondary ion mass spectrometry (SIMS) and atomic absorption spectrometry (AAS). In four teeth, mass spectra and step scan concentration profiles of SIMS were performed and compared with the grey scale pattern in photographs of the analyzed paths. The manganese curve showed the highest degree of conformity with the grey scale pattern. The AAS analysis confirmed the increased content of manganese in blackish stained enamel. It was concluded that manganese, probably in the form of an oxide deposited from the soil, was the cause of the blackish staining. (au).

  1. Trace element analysis of blackish staining on the crowns of human archaeological teeth

    International Nuclear Information System (INIS)

    Stermer, E.M.; Risnes, S.; Fischer, P.M.

    1996-01-01

    A blackish staining found on the crowns of teeth of 51 skulls from the excavation of the medieval St. Olav's church in Trondheim was analyzed using secondary ion mass spectrometry (SIMS) and atomic absorption spectrometry (AAS). In four teeth, mass spectra and step scan concentration profiles of SIMS were performed and compared with the grey scale pattern in photographs of the analyzed paths. The manganese curve showed the highest degree of conformity with the grey scale pattern. The AAS analysis confirmed the increased content of manganese in blackish stained enamel. It was concluded that manganese, probably in the form of an oxide deposited from the soil, was the cause of the blackish staining. (au)

  2. X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of Literature on x-ray fluorescence spectrometry starts with a list of conference proceedings on the subject, organised by the Philips organisation at regular intervals in various European countries. It is followed by a list of bulletins. The bibliography is subdivided according to spectra, equipment, applications and absorption analysis

  3. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Jeremy T. [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States); Fitzgerald, Neil [Department of Chemistry, Biochemistry, and Physics, Marist College, 3399 North Road, Poughkeepsie, NY 12601 (United States)], E-mail: neil.fitzgerald@marist.edu

    2009-09-15

    Generation of mercury vapor by ultraviolet irradiation of mercury solutions in low molecular weight organic acid solutions prior to measurement by Atomic Absorption Spectrometry is a cheap, simple and green method for determination of trace concentrations of mercury. In this work mercury vapor generated by ultraviolet photolysis was trapped onto a palladium coated graphite furnace significantly improving the detection limit of the method. The system was optimized and a detection limit of 0.12 {mu}g L{sup - 1} (compared to 2.1 {mu}g L{sup - 1} for a previously reported system in the absence of trapping) with a precision of 11% for a 10 {mu}g L{sup - 1} mercury standard (RSD, N = 5)

  4. Mechanism of selenium hydride atomization, fate of free atoms and temperature distribution in an argon shielded, highly fuel-rich, hydrogen-oxygen diffusion micro-flame studied by atomic absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Lampugnani, L.; Matoušek, Tomáš

    2002-01-01

    Roč. 17, č. 3 (2002), s. 253-257 ISSN 0267-9477 R&D Projects: GA ČR GA203/01/0453; GA ČR GA203/98/0754 Institutional research plan: CEZ:AV0Z4031919 Keywords : hydride atomization * hydride generation * atomic absorption spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.250, year: 2002

  5. Selective reduction of arsenic species by hydride generation - atomic absorption spectrometry. Part 2 - sample storage and arsenic determination in natural waters

    Directory of Open Access Journals (Sweden)

    Quináia Sueli P.

    2001-01-01

    Full Text Available Total arsenic, arsenite, arsinate and dimethylarsinic acid (DMA were selectively determined in natural waters by hydride generation - atomic absorption spectrometry, using sodium tetrahydroborate(III as reductant but in different reduction media. River water samples from the north region of Paraná State, Brazil, were analysed and showed arsenate as the principal arsenical form. Detection limits found for As(III (citrate buffer, As(III + DMA (acetic acid and As(III + As(V (hydrochloric acid were 0.6, 1.1 and 0.5 mg As L-1, respectively. Sample storage on the proper reaction media revealed to be a useful way to preserve the water sample.

  6. Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Henryk Matusiewicz; Magdalena Krawczyk

    2008-07-01

    The analytical performance of non-chromatographic coupled hydride generation, integrated atom trap (HG-IAT) atomizer flame absorption spectrometry (FAAS) systems were evaluated for the speciation analysis of antimony in environmental samples. Antimony, using formation of stibine (SbH{sub 3}) vapors were atomized in an air-acetylene flame-heated IAT. A new design of HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements was investigated. For the estimation of Sb(III) and Sb(V) concentrations in samples, the difference between the analytical sensitivities of the absorbance signals obtained for antimony hydride without and with previous treatment of samples with L-cysteine can be used. The concentration of Sb(V) was calculated by the difference between total Sb and Sb(III). A dramatic improvement in detection limit was achieved compared with that obtained using either of the atom trapping techniques, presented above, separately. This novel approach decreases the detection limit down to low pg mL{sup -1} levels. The concentration detection limit, defined as 3 times the blank standard deviation was 0.2 ng mL{sup -1}. For a 120 s in situ pre-concentration time , sensitivity enhancement compared to flame AAS, was 550 fold for Sb, using hydride generation-atom trapping technique. The accuracy of the method was verified by the use of certified reference materials (NIST SRM 2704 Buffalo River Sediment, SRM 2710 Montana Soil, SRM 1633a Coal Fly Ash, SRM 1575 Pine Needles, SRM 1643e Trace Elements in Water) and by aqueous standard calibration technique. The measured Sb content, in reference materials, were in satisfactory agreement with the certified values. The hyphenated technique was applied for antimony determinations in soil, sediment, coal fly ash, sewage and river water.

  7. Leaching of heavy metals from contaminated soils using inductively coupled plasma optical emission spectrometer (ICP-OES) and atomic absorption spectrometer (AAS)

    International Nuclear Information System (INIS)

    Hussain, Z.; Islam, M.

    2010-01-01

    The clean-up of soils contaminated with heavy metals is one of the most difficult tasks for environmental engineering. Heavy metals are highly persistent in soil and a number of techniques have been developed that aim to remove heavy metals from contaminated soil. A method has been adopted to evaluate dynamic leaching of metal contaminants from industrial soil samples obtained from textile industrial sites in Lahore, Pakistan. In the extraction procedures employed five different leaching liquors were used: 0.01 M CaCl/sub 2/, 1 M HNO/sub 3/, a 1:1 mixture of 0.1M HCl and 0.1M NaCl, 0.01 M EDTA and pH controlled 0.5 M acetic acid. The qualitative and quantitative analyses were carried out by Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). The results indicate that Cu, Zn, Cd, Ni, Pb, Fe and As were extracted in the soil samples in varying concentration when using the different leach liquors. The predominant metals which were leached were As 78.7 ng/ml in 0.01 M EDTA; Zn 1.81 mu g/ml and Fe 898.96 macro g/ml in HNO/sub 3/. (author)

  8. Development of continuous cooling precipitation diagrams for aluminium alloys AA7150 and AA7020

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: yong.zhang@outlook.com [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia); Milkereit, B. [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, 18051 Rostock (Germany); University of Rostock, Institute of Physics, Polymer Physics Group, 18051 Rostock (Germany); Kessler, O. [University of Rostock, Faculty of Mechanical Engineering and Marine Technology, Chair of Materials Science, 18051 Rostock (Germany); Schick, C. [University of Rostock, Institute of Physics, Polymer Physics Group, 18051 Rostock (Germany); Rometsch, P.A. [ARC Centre of Excellence for Design in Light Metals, Department of Materials Engineering, Monash University, Clayton, VIC 3800 (Australia)

    2014-01-25

    Highlights: • The DSC method was used for developing continuous cooling precipitation diagrams. • The quench-induced particles were observed by SEM for alloys AA7150 and AA7020. • There were more quench-induced particles in alloy AA7150. • Quench sensitivity of Al alloys can be evaluated by using the CCP diagrams. -- Abstract: Two commercial 7xxx series aluminium alloys with different solute contents and different quench-induced precipitation behaviour have been investigated by using a specialised differential scanning calorimetry (DSC) technique to record exothermal heat outputs during continuous cooling. Together with hardness testing and microstructural analysis, this DSC method was used to develop continuous cooling precipitation (CCP) diagrams for alloys AA7150 and AA7020. The results show that the total precipitation heat for each alloy decreases with increasing cooling rate. However, the excess specific heat at a given cooling rate in alloy AA7150 is much higher than that in alloy AA7020. It is evident that there are atleast three different quench-induced reactions in different temperature regimes for alloy AA7150 cooled at various linear cooling rates, but only equilibrium MgZn{sub 2} (η-phase) and Al{sub 2}CuMg (S-phase) particles were observed by scanning electron microscopy (SEM). There are at least two main precipitation peaks that can be found for alloy AA7020, which correspond to Mg{sub 2}Si and MgZn{sub 2} (η-phase). Furthermore, a method is developed to evaluate the quench sensitivity of an alloy based on a determination of the critical cooling rate. The maximum hardness values are reached at cooling rates that are faster than or similar to the critical cooling rate.

  9. [Determination of Al, Be, Cd, Co, Cr, Mn, Ni, Pb, Se and Tl in whole blood by atomic absorption spectrometry without preliminary sample digestion].

    Science.gov (United States)

    Ivanenko, N B; Ivanenko, A A; Solov'ev, N D; Navolotskiĭ, D V; Pavlova, O V; Ganeev, A A

    2014-01-01

    Methods of whole blood trace element determination by Graphite furnace atomic absorption spectrometry (in the variant of Zeeman's modulation polarization spectrometry) have been proposed. They do not require preliminary sample digestion. Furnace programs, modifiers and blood dilution factors were optimized. Seronorm™ human whole blood reference materials were used for validation. Dynamic ranges (for undiluted blood samples) were: Al 8 ¸ 210 мg/L; Be 0.3 ¸ 50 мg/L; Cd 0.2 ¸ 75 мg/L; Сo 5 ¸ 350 мg/L; Cr 10 ¸ 100 мg/L; Mn 6 ¸ 250 мg/L; Ni 10 ¸ 350 мg/L; Pb 3 ¸ 240 мg/L; Se 10 ¸ 500 мg/L; Tl 2 ¸ 600 мg/L. Precision (RSD) for the middle of dynamic range ranged from 5% for Mn to 11 for Se.

  10. The advantage of using the henry straight line in {gamma} spectrometry (1963); Interet de l'utilisation de la droite de henry en spectrometrie {gamma} (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Jockey, [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The Henry construction is a convenient way to interpret the total absorption peaks in gamma spectrometry by exploiting their statistical significance. It is so possible to determine graphically, and accurately, such values as: - position of the peak - resolution, etc. The main practical applications are considered. (author) [French] La construction de la droite de Henry fournit un moyen commode d'interpreter les pics d'absorption totale en spectrometrie gamma en exploitant leur signification statistique, il est ainsi possible de determiner graphiquement, avec precision, des notions telles que: - position du pic - resolution, etc. Les principales applications pratiques sont envisagees. (auteur)

  11. Matching the laser wavelength to the absorption properties of matrices increases the ion yield in UV-MALDI mass spectrometry.

    Science.gov (United States)

    Wiegelmann, Marcel; Soltwisch, Jens; Jaskolla, Thorsten W; Dreisewerd, Klaus

    2013-09-01

    A high analytical sensitivity in ultraviolet matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is only achieved if the laser wavelength corresponds to a high optical absorption of the matrix. Laser fluence and the physicochemical properties of the compounds, e.g., the proton affinity, also influence analytical sensitivity significantly. In combination, these parameters determine the amount of material ejected per laser pulse and the ion yield, i.e., the fraction of ionized biomolecules. Here, we recorded peptide ion signal intensities as a function of these parameters. Three cinnamic acid matrices were investigated: α-cyano-4-hydroxycinnamic acid, α-cyano-4-chlorocinnamic acid, and α-cyano-2,4-difluorocinnamic acid. In addition, 2,5-dihydroxybenzoic acid was used in comparison experiments. Ion signal intensities "per laser shot" and integrated ion signal intensities were acquired over 900 consecutive laser pulses applied on distinct positions on the dried-droplet sample preparations. With respect to laser wavelength, the two standard MALDI wavelengths of 337/355 nm were investigated. Also, 305 or 320 nm was selected to account for the blue-shifted absorption profiles of the halogenated derivatives. Maximal peptide ion intensities were obtained if the laser wavelength fell within the peak of the absorption profile of the compound and for fluences two to three times the corresponding ion detection threshold. The results indicate ways for improving the analytical sensitivity in MALDI-MS, and in particular for MALDI-MS imaging applications where a limited amount of material is available per irradiated pixel.

  12. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Aklamati, E K; Mulenga, M; Dueker, S R; Buchholz, B A; Peerson, J M; Kafwembe, E; Brown, K H; Haskell, M J

    2009-10-12

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

  13. Results of several years experiments on the absorption of radioactive strontium and caesium by cultivated plants (1962); Compte rendu d'experiences de plusieurs annees sur l'absorption du strontium et du cesium radioactifs par des plantes cultivees (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Michon, M. [Commissariat a l' Energie Atomique, Dept. de Protection Sanitaire, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires; Benard, M.; Flanzy, M. [Station Centrale de Technologie des Produits Vegetaux, 11 - Narbonne (France); Fioramonti, M.; Marty, M. [Station Agronomique de Toulouse, 31 (France); Barbier, M.; Le Blaye, M.; Brossard, M. [Societe Centrale d' Agronomie, 78 - Versailles (France)

    1962-07-01

    This report follows on to the report number CEA 1860 and uses results obtained in 1960 to give more precise details concerning the data presented in the preceding report. First results obtained on the vine are given. The Sr absorption coefficient has varied very little from one year to the next and that of caesium has slightly diminished. The values obtained suggest that the concentrations of {sup 90}Sr and {sup 137}Cs in irrigation water should not exceed 1/5 of the maximum permissible concentration in drinking water. (authors) [French] Ce rapport fait suite au rapport CEA 1860 et precise grace aux resultats acquis en 1960 les donnees exprimees dans le precedent rapport. Il y est fait mention des premiers resultats obtenus pour la vigne. Le coefficient d'absorption du Sr a peu varie d'une annee sur l'autre et celui du cesium legerement diminue. Les valeurs obtenues permettent de penser qu'il serait souhaitable que la concentration en {sup 90}Sr et en {sup 137}Cs dans l'eau d'irrigation ne depasse pas le 1/5 de la concentration maxima admissible pour l'eau de boisson. (auteurs)

  14. Determination of tin in biological reference materials by atomic absorption spectrophotometry and neutron activation analysis

    International Nuclear Information System (INIS)

    Chiba, M.; Iyengar, V.; Gills, T.

    1991-01-01

    Because of a lack of reliable analytical techniques for the determination of tin in biological materials, there have been no reference materials certified for this element. However, the authors' experience has shown that it is feasible to use both atomic absorption and nuclear activation techniques at least for selected matrices. Therefore, an investigation was undertaken to determine tin in several biological materials such as non-fat milk powder (NBS-SRM-1549), citrus leaves (NBS-SRM-1572), total diet (NIST-SRM-1548), mixed diet (NBS-RM-8431), and USDIET-I by atomic absorption spectrophotometry (AAS) and neutron activation analysis (NAA). AAS-ashed samples were extracted with MIBK and assayed using a Perkin Elmer model 5000 apparatus. NAA was carried out by irradiating the samples at the NIST reactor in the RT-4 facility and counting with the help of a Ge(Li) detector connected to a multichannel analyzer. The concentration of tin measured by both AAS and NAA agree well for USDIET-I, total diet, citrus leaves and non-fat milk powder (the concentration ranges for tin in these matrices were from 0.0025 to 3.8 micro g/g). However, in the case of mixed diet (RM-8431), the mean values found were 47 ± 5.6 (n = 19) by AAS and 55.5 ± 2.5 (n = 6) by INAA. Since RM-8431 is not certified it is difficult to draw conclusions. For apple and peach leaves, a distillation step was required. The results were apple leaves 0.085 ± 0.015 (n = 10) by AAS and < 0.2 (n = 3) by RNAA; for peach leaves 0.077 ± 0.02 (n = 9) by AAS and < 0.1 (n = 3) by RNAA. All concentrations are expressed in micro g/g dry weight

  15. Absorption spectra between 0.8 {mu} and 30 {mu} of mixtures of H{sub 2}O - D{sub 2}O in the liquid state; Le spectre d'absorption des melanges H{sub 2}O-D{sub 2}O a l'etat liquide entre 0,8 et 30 {mu}

    Energy Technology Data Exchange (ETDEWEB)

    Ceccaldi, M; Goldman, M; Roth, E [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    There has been very little work carried out recently on the absorption bands of H{sub 2}O, HDO and D{sub 2}O in the liquid state. We have established the spectra of these molecules in between 0.8 and 30 p. The table of absorption bands of the molecules HDO and D{sub 2}O for which all the bands corresponding to those for H{sub 2}O had not been established has been completed. We have sought a convenient method of representing the variations in optical density of certain HDO bands as a function of the concentration of heavy water in the mixtures studied. (author) [French] Il y a peu de travaux recents sur les bandes d'absorption de H{sub 2}O, HDO et D{sub 2}O a l'etat liquide. Nous avons releve les spectres de ces molecules entre 0,8 et 30 p. Le tableau des bandes d'absorption des molecules HDO et D{sub 2}O, pour lesquelles le releve de toutes les bandes correspondantes a celles de H{sub 2}O n'etait pas encore effectue, a ete complete. Nous avons cherche des modes de representation commodes des variations de densite optique de certaines bandes de HDO en fonction de la teneur en eau lourde des melanges etudies. (auteur)

  16. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Ekelund, J.

    1989-01-01

    A method for the determination of total selenium in nutritional supplements and selenised yeast is described. The samples were ashed in nitric acid. Hydrochloric acid was used to prevent precipitation of, in particular, iron salts. After appropriate dilutions, the selenium was determined by Zeeman......-effect background corrected graphite furnace atomic absorption spectrometry. A furnace ashing step at 1100 °C was necessary in order to obtain a total recovery of selenium when present in the organic form. Palladium nitrate-magnesium nitrate was used as a matrix modifier. Independent methods were used to determine...... the content of selenium in a selenised yeast check sample. Accuracy was assured using this sample and by recovery experiments. Between-day random error showed a coefficient of variation of 4.2%. Results from the analysis of eight different commercial supplements were in good agreement with declared contents....

  17. Determination of water quality of ground water in selected Payatas residential areas using ion-selective electrodes (ISE) and atomic absorption spectroscopy (AAS) (determination of NO3, Cl, Pb, Cd, Zn)

    International Nuclear Information System (INIS)

    Tahir, Samsudin A.; Roque, Willie P.; Arididon, Bonifacio D. Jr.; Gardon, Ruel W.

    2003-01-01

    This study aims to determine the water-soluble ions using ion-selective electrodes (ISE) and trace metals using atomic absorption spectroscopy (AAS). Seven water samples were chosen from the thirteen sites, which were gathered from the selected Payatas residential areas in Quezon City. For the trace metals the lowest detection of AAS in lead was obtained in La Brea site and was found to be -0.5 ppm. Lead content has a value of -0.04 ppm and was found to be below the detection limit of 0.1 ppm. The remaining sites obtained high value of lead concentrations in AAS reading. The range of concentration for lead was from 0.5 ppm for La Brea site to 1.4 ppm for Velasco site. The cadmium as trace metal in groundwater samples from Payatas residential area was found to be below the lowest limit of detection ( 3 which is 15.6 ppm and it was obtained by the used of ion selective electrodes (ISE) Horiba model type. Second to it was the La Brea site, which is 10.04 ppm All the other samples do not exceeds to the maximum allowable concentration of nitrate (50.0 ppm), and it ranged from 4.10 ppm for open-well site to 15.6 ppm for Lopez site. In chloride determination, Lagro High School obtained a reading of 57.6 ppm using ISE and it was the highest concentration amount present in seven samples. Next to it was the Ungrin site (36.8 ppm), samples ranged from 6.7 ppm for La Brea site to 57.6 ppm for Lagro high school site. All the samples do not exceeds to the maximum allowable concentration for chloride, which is 250 ppm. (Authors)

  18. [Risk control of traditional Chinese medicines containing aristolochis acids (AAs) based on influencing factors of content of AAs].

    Science.gov (United States)

    Tian, Jing-Zhuo; Liang, Ai-Hua; Liu, Jing; Zhang, Bo-Li

    2017-12-01

    Aristolochic acids (AAs) widely exist in such plants as Aristolochia and Asarum. The renal toxicity of AAs as well as its carcinogenicity to urinary system have been widely known. In 2003 and 2004, China prohibited the use of Aristolochiae Radix, Aristolochiae Manshuriensis Caulis and Aristolochiae Fangchi Radix, and required administering other AAs-containing medicines in accordance with the regulations for prescription drugs. In this paper, we retrieved literatures on the content determination of AAs in recent 10 years in China. It suggested that the AAs content is lower in Asarum herb, especially in its roots and rhizomes, and most of which do not show detectable amount of AA-I. Some of traditional Chinese medicines show fairly small amount of detectable AA-I. The AAs content in Aristolochia herb (including Fructus Aristolochiae, kaempfer dutchmanspipe root) is relatively high; however, there are fewer literatures for studying the content determination of AAs in Chinese patent medicines. There were many factors affecting AAs content, including the parts used, origins, processing methods, extraction process. It suggested that we should pay attention to the toxicity of Chinese medicines containing AAs and use these decoction pieces and traditional Chinese medicines cautiously. In addition, basic studies for the origins, processing methods and extraction process of Chinese patent medicines containing AAs, as well as supervision and detection of AAs content in traditional Chinese medicinal materials, decoction pieces and Chinese patent medicines shall be strengthened for reducing medication risk and guaranteeing clinical medication safety. Copyright© by the Chinese Pharmaceutical Association.

  19. Determination of trace concentrations of chlorine in aqueous solutions by high-resolution continuum source graphite furnace molecular absorption spectrometry

    Science.gov (United States)

    Machyňák, Ľubomír; Čacho, František; Němeček, Martin; Beinrohr, Ernest

    2016-11-01

    Trace concentrations of total chlorine were determined by means of molecular absorption of indium mono-chloride (InCl) at 267.217 nm using high-resolution continuum source graphite furnace molecular absorption spectrometry. The effects of chemical modifiers and the amount of In on the sensitivity and accuracy were investigated. The optimum pyrolysis and vaporization temperatures were 600 °C and 1400 °C, respectively. The limit of detection and characteristic mass were found to be 0.10 ng and 0.21 ng, respectively. Potential non-spectral and spectral interferences were tested for various metals and non-metals at concentrations up to 50 mg L- 1 and for phosphoric, sulphuric and nitric acids. No spectral interferences were observed. Significant non-spectral interferences were observed with F, Br, and I at concentrations higher than 1 mg L- 1, 5 mg L- 1 and 25 mg L- 1, respectively, which is probably caused by formation of competitive indium halogen molecules. Higher concentrations of mineral acids depressed the signal owing to the formation of volatile HCl. The calibration curve was linear in the range between 0.3 and 10 ng with a correlation coefficient of R = 0.993. The elaborated method was used for the chlorine determination in various waters and a drug sample.

  20. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry.

    Science.gov (United States)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S; Korn, Maria G A; Bezerra, Marcos A

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L(-1) nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 microg L(-1), respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 microg L(-1). The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  1. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Tuzen, Mustafa; Soylak, Mustafa; Citak, Demirhan; Ferreira, Hadla S.; Korn, Maria G.A.; Bezerra, Marcos A.

    2009-01-01

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L -1 nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 μg L -1 , respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 μg L -1 . The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish

  2. Assessment of elemental pollution in soil of Islamabad city using instrumental neutron activation analysis and atomic absorption spectrometry techniques

    International Nuclear Information System (INIS)

    Daud, M.; Wasim, M.; Khalid, N.; Zaidi, J.H.; Iqbal, J.

    2009-01-01

    The soil samples of nine different sites in Islamabad were studied for their elemental composition. Instrumental neutron activation analysis and atomic absorption spectrometry were employed and 33 elements were determined. The acquired data were analyzed using descriptive statistics, principal component analysis, cluster analysis, pollution level index and enrichment factor. A perusal of results shows a distribution of elemental concentration in two major groups, one along the highway and the other in industrial area of Islamabad. The soil along the highway sites was found to be relatively less polluted than at the sites in the industrial area. The enrichment factor indicates the presence of As, Pb, Sb, Se and Sn at higher levels. The method validation was done by analyzing IAEA reference materials SL-1 (lake sediment) and S7 (soil). (orig.)

  3. Metal concentrations in scleractinean corals determined by instrumental neutron activation analysis and atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gomez Saunders, M.; Montero Cabrera, M.E.; Herrera Peraza, E.F.; Castellon Insua, L.; Gonzalez Labrada, K.; Lopez Reyes, M.C.

    1997-01-01

    Five species of scleractinean corals, extracted from the Northern Havana reef, were studied by INAA and AAS. Selected specimens were sectioned in 'foot', 'enter' and 'head' parts before pulverization procedure. INAA for different irradiation and decay time regimes in a reactor allowed the determination of: Na, Mg, Al, Cl, Sc, Cr, Co, Th, Lu, Eu, Ce, Hf, La and Sr. AAS was performed in a Pye Unicam Model 929 spectrometer. Cu, Mn, Ni, Zn, and Fe were detected. Ca concentration in all species was also established. Obtained Metal-Calcium ratios for Sr, Cu, Zn, Cr, Co, Fe, Mn, Ni and Sc are compared with reported values. (author)

  4. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: A multivariate study

    Science.gov (United States)

    Arain, Salma Aslam; Kazi, Tasneem G.; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-01

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu2+) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu2+ using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046 μg L-1 and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu2+ in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu2+ in serum samples of different viral hepatitis patients and healthy controls.

  5. Analysis of trace metals in sodium by flameless atomic absorption spectrophotometry

    International Nuclear Information System (INIS)

    Mahalingam, T.R.; Geetha, R.; Thiruvengadasamy, A.; Mathews, C.K.

    1981-01-01

    The estimation of trace metallic impurities in sodium is normally carried out by distilling off the sodium in vacuuum and analysing the residue by atomic absorption spectrophotometry (AAS). This paper describes the direct determination of the following impurities (viz.) Fe, Co, Ni, Cr, Mn, Ca, and Cu in sodium without going through the distillation step. Here sodium is simply dissolved and the solution is subjected to analysis by AAS using flameless atomisation in a graphite furnace. The method of standard additions is employed. Preliminary experiments were carried out to study the matrix effect of sodium on the atomic absorption of cobalt. It has been found that if pyrolysis is done at 1250 0 C for 20 seconds prior to atomisation, the bulk of the sodium nitrate matrix could be successfully removed. The use of the optimum pyrolysis temperatures for the various elements listed above and the matrix interference on the absorbances of these analytes are discussed in this paper. The precision and accuracy of our analytical procedure is also presented. (orig.)

  6. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  7. AA under construction

    CERN Multimedia

    CERN PhotoLab

    1979-01-01

    The AA at an early stage of construction, in the newly built AA-Hall. Cable-trays already outline the shape of the accumulator ring. To the right are huge cable-drums for the pulse-forming-network (PFN) of the injection kicker. Seeing this picture, can one imagine that only 8 months later beams were circulating in the completed accumulator ring ?

  8. Self-absorption corrections for well-type germanium detectors

    International Nuclear Information System (INIS)

    Appleby, P.G.; Richardson, N.; Nolan, P.J.

    1992-01-01

    Corrections for self-absorption are of vital importance to accurate determination by gamma spectrometry of radionuclides such as 210 Pb, 241 Am and 234 Th which emit low energy gamma radiation. A simple theoretical model for determining the necessary corrections for well-type germanium detectors is presented. In this model, self-absorption factors are expressed in terms of the mass attenuation coefficient of the sample and a parameter characterising the well geometry. Experimental measurements of self-absorption are used to evaluate the model and to determine a semi-empirical algorithm for improved estimates of the geometrical parameter. (orig.)

  9. Working towards accreditation by the International Standards Organization 15189 Standard: how to validate an in-house developed method an example of lead determination in whole blood by electrothermal atomic absorption spectrometry.

    Science.gov (United States)

    Garcia Hejl, Carine; Ramirez, Jose Manuel; Vest, Philippe; Chianea, Denis; Renard, Christophe

    2014-09-01

    Laboratories working towards accreditation by the International Standards Organization (ISO) 15189 standard are required to demonstrate the validity of their analytical methods. The different guidelines set by various accreditation organizations make it difficult to provide objective evidence that an in-house method is fit for the intended purpose. Besides, the required performance characteristics tests and acceptance criteria are not always detailed. The laboratory must choose the most suitable validation protocol and set the acceptance criteria. Therefore, we propose a validation protocol to evaluate the performance of an in-house method. As an example, we validated the process for the detection and quantification of lead in whole blood by electrothermal absorption spectrometry. The fundamental parameters tested were, selectivity, calibration model, precision, accuracy (and uncertainty of measurement), contamination, stability of the sample, reference interval, and analytical interference. We have developed a protocol that has been applied successfully to quantify lead in whole blood by electrothermal atomic absorption spectrometry (ETAAS). In particular, our method is selective, linear, accurate, and precise, making it suitable for use in routine diagnostics.

  10. Graphene oxide sheets immobilized polystyrene for column preconcentration and sensitive determination of lead by flame atomic absorption spectrometry.

    Science.gov (United States)

    Islam, Aminul; Ahmad, Hilal; Zaidi, Noushi; Kumar, Suneel

    2014-08-13

    A novel solid-phase extractant was synthesized by coupling graphene oxide (GO) on chloromethylated polystyrene through an ethylenediamine spacer unit to develop a column method for the preconcentration/separation of lead prior to its determination by flame atomic absorption spectrometry. It was characterized by Fourier transform infrared spectroscopy, far-infrared spectroscopy, thermogravimetric analysis/differential thermal analysis, scanning electron microscopy, energy-dispersive spectrometry, and transmission electron microscopy. The abundant oxygen-containing surface functional groups form a strong complex with lead, resulting in higher sorption capacity (227.92 mg g(-1)) than other nanosorbents used for sorption studies of the column method. Using the column procedure here is an alternative to the direct use of GO, which restricts irreversible aggregation of GO and its escape into the ecosystem, making it an environmentally sustainable method. The column method was optimized by varying experimental variables such as pH, flow rate for sorption/desorption, and elution condition and was observed to exhibit a high preconcentration factor (400) with a low preconcentration limit (2.5 ppb) and a high degree of tolerance for matrix ions. The accuracy of the proposed method was verified by determining the Pb content in the standard reference materials and by recovery experiments. The method showed good precision with a relative standard deviation <5%. The proposed method was successfully applied for the determination of lead in tap water, electroplating wastewater, river water, and food samples after preconcentration.

  11. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry.

    Science.gov (United States)

    Pires, Laís N; Brandão, Geovani C; Teixeira, Leonardo S G

    2017-06-15

    This paper presents a method for determining phospholipids in soybean lecithin samples by phosphorus determination using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) via molecular absorption of phosphorus monoxide. Samples were diluted in methyl isobutyl ketone. The best conditions were found to be 213.561nm with a pyrolysis temperature of 1300°C, a volatilization temperature of 2300°C and Mg as a chemical modifier. To increase the analytical sensitivity, measurement of the absorbance signal was obtained by summing molecular transition lines for PO surrounding 213nm: 213.561, 213.526, 213.617 and 213.637nm. The limit of detection was 2.35mgg -1 and the precision, evaluated as relative standard deviation (RSD), was 2.47% (n=10) for a sample containing 2.2% (w/v) phosphorus. The developed method was applied for the analysis of commercial samples of soybean lecithin. The determined concentrations of phospholipids in the samples varied between 38.1 and 45% (w/v). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Application of Internal Standard Method for Several 3d-Transition Metallic Elements in Flame Atomic Absorption Spectrometry Using a Multi-wavelength High-resolution Spectrometer.

    Science.gov (United States)

    Toya, Yusuke; Itagaki, Toshiko; Wagatsuma, Kazuaki

    2017-01-01

    We investigated a simultaneous internal standard method in flame atomic absorption spectrometry (FAAS), in order to better the analytical precision of 3d-transition metals contained in steel materials. For this purpose, a new spectrometer system for FAAS, comprising a bright xenon lamp as the primary radiation source and a high-resolution Echelle monochromator, was employed to measure several absorption lines at a wavelength width of ca. 0.3 nm at the same time, which enables the absorbances of an analytical line and also an internal standard line to be estimated. In considering several criteria for selecting an internal standard element and the absorption line, it could be suggested that platinum-group elements: ruthenium, rhodium, or palladium, were suitable for an internal standard element to determine the 3d-transition metal elements, such as titanium, iron, and nickel, by measuring an appropriate pair of these absorption lines simultaneously. Several variances of the absorption signal, such as a variation in aspirated amounts of sample solution and a short-period drift of the primary light source, would be corrected and thus reduced, when the absorbance ratio of the analytical line to the internal standard line was measured. In Ti-Pd, Ni-Rh, and Fe-Ru systems chosen as typical test samples, the repeatability of the signal respnses was investigated with/without the internal standard method, resulting in better precision when the internal standard method was applied in the FAAS with a nitrous oxide-acetylene flame rather than an air-acetylene flame.

  13. Arsenic levels in thermal waters; Indagine sui contenuti di arsenico in acque termali

    Energy Technology Data Exchange (ETDEWEB)

    Conti, Marcelo Enrique [Rome, Univ. La Sapienza (Italy). Ist. di Merceologia

    1997-10-01

    The present article reports the results of a study on the determination of As levels in thermal waters by Atomic Absorption Spectrometry. Samples of thermal waters have been collected from 4 thermal resorts located in the central Italy. AA Spectrometry assays have been carried out on 140 samples, collected seasonly for one year from 14 thermal springs. The results of the present study have revealed As levels lying below the detection limits of the AA technique for 12, 1% of the total number of assayed samples. The remaining 87,9% of samples gave a range of As concentration values comprised between 0,20 and 0,68 mg/l, that is in agreement with the range of average values reported for other italian thermal waters.

  14. Contribution to the study and to the development of continuous infrared absorption analyzers; Contribution a l'etude et a la mise au point des analyseurs en continu par absorption infrarouge

    Energy Technology Data Exchange (ETDEWEB)

    Coste, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-12-01

    The continuous infra-red absorption determination of corrosive gases implies the construction of an original single-beam spectrometer. The use of a vibration-rotation line means that the apparatus function has to undergo an alternating displacement: for one position this function is centered on the line, for other position it is placed close by, but away from any absorption. A non-linear relationship is derived between the concentration of the impurity under consideration, the optical density measured at the centre of the line and the total pressure of the gas mixture. The problem is then solved using an associated specific analog computer. The system is applicable to the determination of low concentrations. The principle proposed in then adapted to an analysis using a non-resolved vibration-rotation band. (authors) [French] Le dosage en continu par absorption infrarouge des gaz corrosifs, implique la construction d'un spectrometre original en simple faisceau. L'utilisation d'une raie de vibration - rotation, conduit a effectuer un deplacement alternatif de la fonction d'appareil: pour une position, celle-ci est centree sur la raie, pour l'autre position elle est placee a proximite mais en dehors de toute absorption. On etablit une relation non lineaire entre la concentration de l'impurete consideree, la densite optique mesuree au centre de la raie et la pression totale du melange gazeux. Le probleme est alors resolu par un calculateur analogique specifique associe. Le systeme s'applique au dosage des faibles concentrations. Le principe propose est ensuite adapte a l'analyse a partir d'une bande de vibration - rotation non resolue. (auteurs)

  15. Recent advances in nuclear techniques for environmental radioactivity monitoring

    International Nuclear Information System (INIS)

    Kumar, Ajay; Tripathi, R.M.

    2016-01-01

    The environmental radioactivity monitoring was first started in the late 1950s following the global fallout from testing of nuclear weapons in the atmosphere. Nuclear analytical techniques are generally classified into two categories: destructive and non-destructive. Destructive techniques are carried out through several analytical methods such as α-spectrometry, liquid Scintillation counting system, solid state nuclear track detector, spectrophotometry, fluorimetry, atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), inductively coupled plasma optical emission spectrometry (ICP-OES), chromatography techniques, electro-analytical techniques etc. However, nondestructive methods include gamma spectrometry, X-Ray fluorescence (XRF) spectrometry, neutron activation analysis (NAA) etc. The development of radiochemical methods and measurement techniques using alpha and gamma spectrometry have been described in brief

  16. Determination of Lead in Urine by Atomic Absorption Spectrophotometry1

    Science.gov (United States)

    Selander, Stig; Cramé, Kim

    1968-01-01

    A method for the determination of lead in urine by means of atomic absorption spectrophotometry (AAS) is described. A combination of wet ashing and extraction with ammonium pyrrolidine dithiocarbamate into isobutylmethylketone was used. The sensitivity was about 0·02 μg./ml. for 1% absorption, and the detection limit was about 0·02 μg./ml. with an instrumental setting convenient for routine analyses of urines. Using the scale expansion technique, the detection limit was below 0·01 μg./ml., but it was found easier to determine urinary lead concentrations below 0·05 μg./ml. by concentrating the lead in the organic solvent by increasing the volume of urine or decreasing that of the solvent. The method was applied to fresh urines, stored urines, and to urines, obtained during treatment with chelating agents, of patients with lead poisoning. Urines with added inorganic lead were not used. The results agreed well with those obtained with a colorimetric dithizone extraction method (r = 0·989). The AAS method is somewhat more simple and allows the determination of smaller lead concentrations. PMID:5647975

  17. Rapid determination of six carcinogenic primary aromatic amines in mainstream cigarette smoke by two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Bie, Zhenying; Lu, Wei; Zhu, You; Chen, Yusong; Ren, Hubo; Ji, Lishun

    2017-01-27

    A fully automated, rapid, and reliable method for simultaneous determination of six carcinogenic primary aromatic amines (AAs), including o-toluidine (o-TOL), 2, 6-dimethylaniline (2, 6-DMA), o-anisidine (o-ASD), 1-naphthylamine (1-ANP), 2-naphthylamine (2-ANP), and 4-aminobiphenyl (4-ABP), in mainstream cigarette smoke was established. The proposed method was based on two-dimensional online solid phase extraction combined with liquid chromatography tandem mass spectrometry (SPE/LC-MS/MS). The particulate phase of the mainstream cigarette smoke was collected on a Cambridge filter pad and pretreated via ultrasonic extraction with 2% formic acid (FA), while the gas phase was trapped by 2% FA without pretreatment for determination. The two-dimensional online SPE comprised of two cartridges with different absorption characteristics was applied for sample pretreatment. Analysis was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) under multiple reaction monitoring mode. Each sample required about 0.5h for solid phase extraction and analysis. The limit of detections (LODs) for six AAs ranged from 0.04 to 0.58ng/cig and recoveries were within 84.5%-122.9%. The relative standard deviations of intra- and inter-day tests for 3R4F reference cigarette were less than 6% and 7%, respectively, while no more than 7% and 8% separately for a type of Virginia cigarette. The proposed method enabled minimum sample pretreatment, full automation, and high throughput with high selectivity, sensitivity, and accuracy. As a part of the validation procedure, fifteen brands of cigarettes were tested by the designed method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Strontium mono-chloride — A new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Lopez, Alfredo H.D.; Gois, Jefferson S. de; Caramori, Giovanni F. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Borges, Daniel L.G.; Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2014-12-01

    A new method has been developed for the determination of chlorine in biological reference materials using high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) of the strontium mono-chloride (SrCl) molecule and direct solid sample analysis. The use of the SrCl molecule for high-temperature MAS was not described up to now in the literature. Preliminary time-dependent density functional theory calculations of the SrCl structure were carried out in order to obtain reasonable estimates of the absorption spectrum of the target molecule. The calculations, which were carried out at BHandHLyp/def2-QZVP level of theory, proved a very accurate and inexpensive way to get information about the spectrum of the SrCl molecule, which enabled us to perform the Cl determination with good sensitivity and specificity. The molecular absorption of the SrCl molecule has been measured using the wavelength at 635.862 nm, and zirconium and palladium have been evaluated as the chemical modifiers in order to increase the sensitivity of the gaseous SrCl molecule generated in the graphite furnace. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Accuracy and precision of the method have been evaluated using biological certified reference materials of both animal and plant origins, showing good agreement with the informed and certified values. Limit of detection and characteristic mass were 1.0 and 2.2 ng, respectively. The results found using HR-CS GF MAS were in agreement (95% confidence level) compared to those obtained by electrothermal vaporization-inductively coupled plasma mass spectrometry. - Highlights: • The spectrum of the SrCl molecule was calculated on a theoretical basis and found very close to the predicted wavelength. • It is the first time that the spectrum of the SrCl molecule is described and used analytically for the determination of Cl. • No spectral interferences were observed as the

  19. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  20. Determination of silver, bismuth, cadmium, copper, lead, and zinc in geologic materials by atomic absorption spectrometry with tricaprylylmethylammonium chloride

    Science.gov (United States)

    Viets, J.G.

    1978-01-01

    Interferences commonly encountered in the determination of silver, bismuth, cadmium, copper, lead, and zinc at crustal abundance levels are effectively eliminated using a rapid, sensitive, organic extraction technique. A potassium chlorate-hydrochloric acid digestion solubilizes the metals not tightly bound in the silicate lattice of rocks, soils, and stream sediments. The six metals are selectively extracted into a 10% Aliquat 336-MIBK organic phase in the presence of ascorbic acid and potassium iodide. Metals in the organic extract are determined by flame atomic absorption spectrometry to the 0.02-ppm level for silver, cadmium, copper, and zinc and to the 0.2-ppm level for bismuth and lead with a maximum relative standard deviation of 18.8% for known reference samples. An additional hydrofluoric acid digestion may be used to determine metals substituted in the silicate lattice.

  1. Laboratory Astrophysics Division of The AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  2. Laboratory Astrophysics Division of the AAS (LAD)

    Science.gov (United States)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  3. Glucose absorption in acute peritoneal dialysis.

    Science.gov (United States)

    Podel, J; Hodelin-Wetzel, R; Saha, D C; Burns, G

    2000-04-01

    During acute peritoneal dialysis (APD), it is known that glucose found in the dialysate solution contributes to the provision of significant calories. It has been well documented in continuous ambulatory peritoneal dialysis (CAPD) that glucose absorption occurs. In APD, however, it remains unclear how much glucose absorption actually does occur. Therefore, the purpose of this study was to determine whether it is appropriate to use the formula used to calculate glucose absorption in CAPD (Grodstein et al) among patients undergoing APD. Actual measurements of glucose absorption (Method I) were calculated in 9 patients undergoing APD treatment for >24 hours who were admitted to the intensive care unit. Glucose absorption using the Grodstein et al formula (Method II) was also determined and compared with the results of actual measurements. The data was then further analyzed based on the factors that influence glucose absorption, specifically dwell time and concentration. The mean total amount of glucose absorbed was 43% +/- 15%. However, when dwell time and concentration were further examined, significant differences were noted. Method I showed a cumulative increase over time. Method II showed that absorption was fixed. This suggests that with the variation in dwell time commonly seen in the acute care setting, the use of Method II may not be accurate. In each of the 2 methods, a significant difference in glucose absorption was noted when comparing the use of 1.5% and 4.25% dialysate concentrations. The established formula designed for CAPD should not be used for calculating glucose absorption in patients receiving APD because variation in dwell time and concentration should be taken into account. Because of the time constraints and staffing required to calculate each exchange individually, combined with the results of the study, we recommend the use of the percentage estimate of 40% to 50%.

  4. A preconcentration system for determination of copper and nickel in water and food samples employing flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tuzen, Mustafa [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Soylak, Mustafa [Department of Chemistry, Erciyes University, 38039 Kayseri (Turkey)], E-mail: soylak@erciyes.edu.tr; Citak, Demirhan [Department of Chemistry, Gaziosmanpasa University, 60250 Tokat (Turkey); Ferreira, Hadla S.; Korn, Maria G.A. [Universidade Federal da Bahia, Instituto de Quimica, 40170-290 Salvador (Brazil); Bezerra, Marcos A. [Universidade Estadual do Sudoeste da Bahia, 45200-190 Jequie (Brazil)

    2009-03-15

    A separation/preconcentration procedure using solid phase extraction has been proposed for the flame atomic absorption spectrometric determination of copper and nickel at trace level in food samples. The solid phase is Dowex Optipore SD-2 resin contained on a minicolumn, where analyte ions are sorbed as 5-methyl-4-(2-thiazolylazo) resorcinol chelates. After elution using 1 mol L{sup -1} nitric acid solution, the analytes are determinate employing flame atomic absorption spectrometry. The optimization step was performed using a full two-level factorial design and the variables studied were: pH, reagent concentration (RC) and amount of resin on the column (AR). Under the experimental conditions established in the optimization step, the procedure allows the determination of copper and nickel with limit of detection of 1.03 and 1.90 {mu}g L{sup -1}, respectively and precision of 7 and 8%, for concentrations of copper and nickel of 200 {mu}g L{sup -1}. The effect of matrix ions was also evaluated. The accuracy was confirmed by analyzing of the followings certified reference materials: NIST SRM 1515 Apple leaves and GBW 07603 Aquatic and Terrestrial Biological Products. The developed method was successfully applied for the determination of copper and nickel in real samples including human hair, chicken meat, black tea and canned fish.

  5. SELF-ABSORPTION CORRECTIONS BASED ON MONTE CARLO SIMULATIONS

    Directory of Open Access Journals (Sweden)

    Kamila Johnová

    2016-12-01

    Full Text Available The main aim of this article is to demonstrate how Monte Carlo simulations are implemented in our gamma spectrometry laboratory at the Department of Dosimetry and Application of Ionizing Radiation in order to calculate the self-absorption within the samples. A model of real HPGe detector created for MCNP simulations is presented in this paper. All of the possible parameters, which may influence the self-absorption, are at first discussed theoretically and lately described using the calculated results.

  6. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry.

    Science.gov (United States)

    Prinsen, Hubertus C M T; Schiebergen-Bronkhorst, B G M; Roeleveld, M W; Jans, J J M; de Sain-van der Velden, M G M; Visser, G; van Hasselt, P M; Verhoeven-Duif, N M

    2016-09-01

    Amino acidopathies are a class of inborn errors of metabolism (IEM) that can be diagnosed by analysis of amino acids (AA) in plasma. Current strategies for AA analysis include cation exchange HPLC with post-column ninhydrin derivatization, GC-MS, and LC-MS/MS-related methods. Major drawbacks of the current methods are time-consuming procedures, derivative problems, problems with retention, and MS-sensitivity. The use of hydrophilic interaction liquid chromatography (HILIC) columns is an ideal separation mode for hydrophilic compounds like AA. Here we report a HILIC-method for analysis of 36 underivatized AA in plasma to detect defects in AA metabolism that overcomes the major drawbacks of other methods. A rapid, sensitive, and specific method was developed for the analysis of AA in plasma without derivatization using HILIC coupled with tandem mass-spectrometry (Xevo TQ, Waters). Excellent separation of 36 AA (24 quantitative/12 qualitative) in plasma was achieved on an Acquity BEH Amide column (2.1×100 mm, 1.7 μm) in a single MS run of 18 min. Plasma of patients with a known IEM in AA metabolism was analyzed and all patients were correctly identified. The reported method analyzes 36 AA in plasma within 18 min and provides baseline separation of isomeric AA such as leucine and isoleucine. No separation was obtained for isoleucine and allo-isoleucine. The method is applicable to study defects in AA metabolism in plasma.

  7. Application of dual-cloud point extraction for the trace levels of copper in serum of different viral hepatitis patients by flame atomic absorption spectrometry: a multivariate study.

    Science.gov (United States)

    Arain, Salma Aslam; Kazi, Tasneem G; Afridi, Hassan Imran; Abbasi, Abdul Rasool; Panhwar, Abdul Haleem; Naeemullah; Shanker, Bhawani; Arain, Mohammad Balal

    2014-12-10

    An efficient, innovative preconcentration method, dual-cloud point extraction (d-CPE) has been developed for the extraction and preconcentration of copper (Cu(2+)) in serum samples of different viral hepatitis patients prior to couple with flame atomic absorption spectrometry (FAAS). The d-CPE procedure was based on forming complexes of elemental ions with complexing reagent 1-(2-pyridylazo)-2-naphthol (PAN), and subsequent entrapping the complexes in nonionic surfactant (Triton X-114). Then the surfactant rich phase containing the metal complexes was treated with aqueous nitric acid solution, and metal ions were back extracted into the aqueous phase, as second cloud point extraction stage, and finally determined by flame atomic absorption spectrometry using conventional nebulization. The multivariate strategy was applied to estimate the optimum values of experimental variables for the recovery of Cu(2+) using d-CPE. In optimum experimental conditions, the limit of detection and the enrichment factor were 0.046μgL(-1) and 78, respectively. The validity and accuracy of proposed method were checked by analysis of Cu(2+) in certified sample of serum (CRM) by d-CPE and conventional CPE procedure on same CRM. The proposed method was successfully applied to the determination of Cu(2+) in serum samples of different viral hepatitis patients and healthy controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. NCBI nr-aa BLAST: CBRC-DSIM-04-0001 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-04-0001 gb|AAS74960.1| 5-HT2 [Drosophila melanogaster] gb|AAS74962.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS74964.1| 5-HT2 [Drosophila melanogaster] gb|AAS74966.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS74970.1| 5-HT2 [Drosophila melanogaster] gb|AAS74972.1| 5-HT2 [Drosophila melanogaster]... gb|AAS74976.1| 5-HT2 [Drosophila melanogaster] gb|AAS74978.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS74979.1| 5-HT2 [Drosophila melanogaster] gb|AAS74980.1| 5-HT2 [Drosophila melanogaster

  9. NCBI nr-aa BLAST: CBRC-DSIM-04-0001 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-04-0001 gb|AAS74999.1| 5-HT2 [Drosophila melanogaster] gb|AAS75013.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS75024.1| 5-HT2 [Drosophila melanogaster] gb|AAS75026.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS75043.1| 5-HT2 [Drosophila melanogaster] gb|AAS75052.1| 5-HT2 [Drosophila melanogaster]... gb|AAS75056.1| 5-HT2 [Drosophila melanogaster] gb|AAS75073.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS75095.1| 5-HT2 [Drosophila melanogaster] AAS74999.1 1e-156 96% ...

  10. NCBI nr-aa BLAST: CBRC-DMEL-04-0001 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-04-0001 gb|AAS74999.1| 5-HT2 [Drosophila melanogaster] gb|AAS75013.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS75024.1| 5-HT2 [Drosophila melanogaster] gb|AAS75026.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS75043.1| 5-HT2 [Drosophila melanogaster] gb|AAS75052.1| 5-HT2 [Drosophila melanogaster]... gb|AAS75056.1| 5-HT2 [Drosophila melanogaster] gb|AAS75073.1| 5-HT2 [Drosophila mela...nogaster] gb|AAS75095.1| 5-HT2 [Drosophila melanogaster] AAS74999.1 1e-165 100% ...

  11. Data on heavy metals and selected anions in the Persian popular herbal distillates.

    Science.gov (United States)

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-09-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including [Formula: see text] , [Formula: see text], [Formula: see text] and [Formula: see text] in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain ("Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran" (Dobaradaran et al., 2013) [1]; "Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf" (Abadi et al., 2015) [2]) as well as some other environmental pollutions, "Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity" (Arfaeinia et al., 2016) [3]. The concentration levels of heavy metals and anions in herbal distillates samples were determined using flame atomic absorption spectrometry (FAAS, Varian AA240, Australia) and a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK) respectively.

  12. Discussion of parameters associated with the determination of arsenic by electrothermal atomic absorption spectrometry in slurried environmental samples.

    Science.gov (United States)

    Vassileva, E; Baeten, H; Hoenig, M

    2001-01-02

    A slurry sampling-fast program procedure has been developed for the determination of arsenic in plants, soils and sediments by electrothermal atomic absorption spectrometry. Efficiencies of various single and mixed modifiers for thermal stabilization of arsenic and for a better removal of the matrix during pyrolysis step were compared. The influence of the slurry concentration, amounts of modifier and parameters of the pyrolysis step on the As integrated absorbance signals have been studied and a comparison between fast and conventional furnace programs was also made. The ultrasonic agitation of the slurry followed by a fast electrothermal program using an Ir/Mg modifier provides the most consistent performance in terms of precision and accuracy. The reliability of the whole procedure has been compared with results obtained after application of a wet digestion method with an HF step and validated by analyzing eleven certified reference materials. Arsenic detection and quantitation limits expressed on dry sample matter were about 30 and 100 micrograms kg-1, respectively.

  13. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Mendil, Durali; Uluoezlue, Ozguer Dogan; Tuezen, Mustafa; Soylak, Mustafa

    2009-01-01

    The element contents (Fe, Mn, Zn, Cu, Pb, Co, Cd, Na, K, Ca and Mg) in edible oils (olive oil, hazelnut oil, sunflower oil, margarine, butter and corn oil) from Turkey were determined using atomic absorption spectrometry after microwave digestion. The concentrations of trace element in the samples were found to be 291.0-52.0, 1.64-0.04, 3.08-1.03, 0.71-0.05, 0.03-0.01, 1.30-0.50, 84.0-0.90, 50.1-1.30, 174.2-20.8 and 20.8-0.60 μg/g for iron, manganese, zinc, copper, lead, cobalt, sodium, potassium, calcium, and magnesium, respectively. Cadmium was found to be 4.57-0.09 μg/kg. The high heavy metal and minerals accumulation levels in the samples were found in olive oil for Cu, Pb, Co, margarine for Fe, K, corn oil for Zn, Mn, butter for Na, Mg, sunflower oil for Ca and hazelnut oil for Cd, respectively.

  14. Formulation de microparticules et de gelules a base de Sida acuta ...

    African Journals Online (AJOL)

    Formulation de microparticules et de gelules a base de Sida acuta (Malvaceae) par spray drying. A N'guessan, A.A. Koffi, L.I. Dally, K Issoufou, S Any-Grah-Aka, J.A. Lia, A Kouassi-Tuo, K.C. N'guessan-Gnaman ...

  15. Analysis of some herbal plants from India used in the control of diabetes mellitus by NAA and AAS techniques

    International Nuclear Information System (INIS)

    Rajurkar, N.S.; Pardeshi, B.M.

    1997-01-01

    Elemental analysis of some herbal plants used in the control of diabetes has been done by the techniques of Neutron Activation Analysis (NAA) and Atomic Absorption Spectroscopy (AAS). The elements Mn, Na, K, Cl, Al, Cu, Co, Pb, Ni, Cr, Cd, Fe, Ca, Zn and Hg are found to be present in different plants in various proportions. (Author)

  16. NCBI nr-aa BLAST: CBRC-DYAK-02-0049 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-02-0049 gb|AAS74383.1| 5-HT1B [Drosophila melanogaster] gb|AAS74385.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74397.1| 5-HT1B [Drosophila melanogaster] gb|AAS74398.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74401.1| 5-HT1B [Drosophila melanogaster] gb|AAS74414.1| 5-HT1B [Drosophila melanog...aster] gb|AAS74416.1| 5-HT1B [Drosophila melanogaster] gb|AAS74418.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74419.1| 5-HT1B [Drosophila melanogaster] gb|AAS74424.1| 5-HT1B [Drosophila mela

  17. NCBI nr-aa BLAST: CBRC-DMEL-02-0053 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-02-0053 gb|AAS74380.1| 5-HT1B [Drosophila melanogaster] gb|AAS74382.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74389.1| 5-HT1B [Drosophila melanogaster] gb|AAS74402.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74403.1| 5-HT1B [Drosophila melanogaster] gb|AAS74405.1| 5-HT1B [Drosophila melanog...aster] gb|AAS74406.1| 5-HT1B [Drosophila melanogaster] gb|AAS74411.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74412.1| 5-HT1B [Drosophila melanogaster] gb|AAS74413.1| 5-HT1B [Drosophila mela

  18. NCBI nr-aa BLAST: CBRC-DYAK-02-0049 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-02-0049 gb|AAS74384.1| 5-HT1B [Drosophila melanogaster] gb|AAS74386.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74388.1| 5-HT1B [Drosophila melanogaster] gb|AAS74390.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74392.1| 5-HT1B [Drosophila melanogaster] gb|AAS74394.1| 5-HT1B [Drosophila melanog...aster] gb|AAS74395.1| 5-HT1B [Drosophila melanogaster] gb|AAS74396.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74404.1| 5-HT1B [Drosophila melanogaster] gb|AAS74408.1| 5-HT1B [Drosophila mela

  19. NCBI nr-aa BLAST: CBRC-DMEL-02-0053 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-02-0053 gb|AAS74384.1| 5-HT1B [Drosophila melanogaster] gb|AAS74386.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74388.1| 5-HT1B [Drosophila melanogaster] gb|AAS74390.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74392.1| 5-HT1B [Drosophila melanogaster] gb|AAS74394.1| 5-HT1B [Drosophila melanog...aster] gb|AAS74395.1| 5-HT1B [Drosophila melanogaster] gb|AAS74396.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74404.1| 5-HT1B [Drosophila melanogaster] gb|AAS74408.1| 5-HT1B [Drosophila mela

  20. NCBI nr-aa BLAST: CBRC-DSIM-02-0056 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0056 gb|AAS74384.1| 5-HT1B [Drosophila melanogaster] gb|AAS74386.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74388.1| 5-HT1B [Drosophila melanogaster] gb|AAS74390.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74392.1| 5-HT1B [Drosophila melanogaster] gb|AAS74394.1| 5-HT1B [Drosophila melanog...aster] gb|AAS74395.1| 5-HT1B [Drosophila melanogaster] gb|AAS74396.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74404.1| 5-HT1B [Drosophila melanogaster] gb|AAS74408.1| 5-HT1B [Drosophila mela

  1. NCBI nr-aa BLAST: CBRC-DSIM-02-0057 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0057 gb|AAS74185.1| 5-HT1A [Drosophila melanogaster] gb|AAS74209.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74210.1| 5-HT1A [Drosophila melanogaster] gb|AAS74211.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74224.1| 5-HT1A [Drosophila melanogaster] gb|AAS74234.1| 5-HT1A [Drosophila melanog...aster] gb|AAS74254.1| 5-HT1A [Drosophila melanogaster] gb|AAS74258.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74262.1| 5-HT1A [Drosophila melanogaster] gb|AAS74278.1| 5-HT1A [Drosophila mela

  2. NCBI nr-aa BLAST: CBRC-DSIM-02-0056 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0056 gb|AAS74383.1| 5-HT1B [Drosophila melanogaster] gb|AAS74385.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74397.1| 5-HT1B [Drosophila melanogaster] gb|AAS74398.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74401.1| 5-HT1B [Drosophila melanogaster] gb|AAS74414.1| 5-HT1B [Drosophila melanog...aster] gb|AAS74416.1| 5-HT1B [Drosophila melanogaster] gb|AAS74418.1| 5-HT1B [Drosophila mela...nogaster] gb|AAS74419.1| 5-HT1B [Drosophila melanogaster] gb|AAS74424.1| 5-HT1B [Drosophila mela

  3. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  4. AA magnet measurement team

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    Quickly improvised measurement equipment for the AA (Antiproton Accumulator) was all the tight schedule permitted, but the high motivation of the team made up for the lack of convenience. From left to right: Roy Billinge (Joint AA Project Leader, the other one was Simon van der Meer); Bruno Autin, Brian Pincott, Colin Johnson.

  5. Quantitative Determination of Arsenic in Bottled Drinking Water Using Atomic Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Maria Guţu Claudia

    2013-10-01

    Full Text Available Background: Many studies have been performed in the past few years, to determine arsenic speciation in drinking water, food chain and environment, arsenic being a well-recognized carcinogenic and toxic agent mainly in its inorganic species. The instrumental techniques used for arsenic determination, such as hydride generation atomic absorption spectrometry (HGAAS, graphite furnace atomic absorption spectrometry (GFAAS and inductively coupled plasma mass spectrometry (ICP-MS, can provide a great sensitivity only on the total amount. Objective: The aim of this study was to develop a simple and rapid method and to analyze the concentration of total inorganic arsenic in bottled drinking water. Methods: Total arsenic was determined in samples from six different types of commercially available bottled drinking water using atomic absorption spectrometry with electrothermal or hydride generation vaporisation. All drinking water samples were acidified with 0.1M nitric acid to match the acidity of the standards. Results: The method was linear within the studied range (1-5 μg/L, R = 0.9943. The quantification limits for arsenic determination were 0.48 μg/L (HGAAS and 0.03 μg/L (GFAAS. The evaluated arsenic content in drinking water was within the accepted limits provided by law. Conclusions: A simple and sensitive method for the quantification of arsenic in drinking water using atomic absorbtion spectroscopy was described, which can be further used in toxicological studies. As an additional advantage, the system is very fast, efficient and environmental friendly

  6. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection.

    Science.gov (United States)

    Huber, Charles S; Vale, Maria Goreti R; Dessuy, Morgana B; Svoboda, Milan; Musil, Stanislav; Dědina, Jiři

    2017-12-01

    A slurry sampling procedure for arsenic speciation analysis in baby food by arsane generation, cryogenic trapping and detection with atomic absorption spectrometry is presented. Several procedures were tested for slurry preparation, including different reagents (HNO 3 , HCl and tetramethylammonium hydroxide - TMAH) and their concentrations, water bath heating and ultrasound-assisted agitation. The best results for inorganic arsenic (iAs) and dimethylarsinate (DMA) were reached when using 3molL -1 HCl under heating and ultrasound-assisted agitation. The developed method was applied for the analysis of five porridge powder and six baby meal samples. The trueness of the method was checked with a certified reference material (CRM) of total arsenic (tAs), iAs and DMA in rice (ERM-BC211). Arsenic recoveries (mass balance) for all samples and CRM were performed by the determination of the tAs by inductively coupled plasma mass spectrometry (ICP-MS) after microwave-assisted digestion and its comparison against the sum of the results from the speciation analysis. The relative limits of detection were 0.44, 0.24 and 0.16µgkg -1 for iAs, methylarsonate and DMA, respectively. The concentrations of the most toxic arsenic species (iAs) in the analyzed baby food samples ranged between 4.2 and 99µgkg -1 which were below the limits of 300, 200 and 100µgkg -1 set by the Brazilian, Chinese and European legislation, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Determination of Inorganic Arsenic in a Wide Range of Food Matrices using Hydride Generation - Atomic Absorption Spectrometry.

    Science.gov (United States)

    de la Calle, Maria B; Devesa, Vicenta; Fiamegos, Yiannis; Vélez, Dinoraz

    2017-09-01

    The European Food Safety Authority (EFSA) underlined in its Scientific Opinion on Arsenic in Food that in order to support a sound exposure assessment to inorganic arsenic through diet, information about distribution of arsenic species in various food types must be generated. A method, previously validated in a collaborative trial, has been applied to determine inorganic arsenic in a wide variety of food matrices, covering grains, mushrooms and food of marine origin (31 samples in total). The method is based on detection by flow injection-hydride generation-atomic absorption spectrometry of the iAs selectively extracted into chloroform after digestion of the proteins with concentrated HCl. The method is characterized by a limit of quantification of 10 µg/kg dry weight, which allowed quantification of inorganic arsenic in a large amount of food matrices. Information is provided about performance scores given to results obtained with this method and which were reported by different laboratories in several proficiency tests. The percentage of satisfactory results obtained with the discussed method is higher than that of the results obtained with other analytical approaches.

  8. NCBI nr-aa BLAST: CBRC-DSIM-02-0057 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0057 gb|AAS74195.1| 5-HT1A [Drosophila melanogaster] gb|AAS74276.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74292.1| 5-HT1A [Drosophila melanogaster] gb|AAS74298.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74303.1| 5-HT1A [Drosophila melanogaster] gb|AAS74304.1| 5-HT1A [Drosophila melanog...aster] gb|AAS74321.1| 5-HT1A [Drosophila melanogaster] gb|AAS74359.1| 5-HT1A [Drosophila melanogaster] AAS74195.1 1e-176 97% ...

  9. Determination of trace amounts of selenium in minerals and rocks by flame less atomic-absorption spectrometry; Determinacion de selinio en minerales y rocas por espectrometria de absorcion atomica

    Energy Technology Data Exchange (ETDEWEB)

    Alduan, F. A.; Capdevilla, C.

    1980-07-01

    The determination of trace amounts of selenium In silicate rocks and feldspar by solvent extraction and graphite furnace atomic-absorption spectrometry has been stu- died. Sodium diethyl-ditio carbamate and ammonium pyrrolidine dithiocarbamate have been tried as chelating agents. The best results are achieved when selenium is extracted Into carbon tetrachloride as the sodium diethyldithiocarbamate complex. The method allows to detect 0,75 ppm of selenium in the sample. Recoveries are about 100%. (Author) 7 refs.

  10. Investigation of Pb species in soils, celery and duckweed by synchrotron radiation X-ray absorption near-edge structure spectrometry

    Science.gov (United States)

    Luo, Liqiang; Shen, Yating; Liu, Jian; Zeng, Yuan

    2016-08-01

    The Pb species play a key role in its translocation in biogeochemical cycles. Soils, sediments and plants were collected from farmlands around Pb mines, and the Pb species in them was identified by X-ray absorption near-edge structure spectrometry. In soils, Pb5(PO4)3Cl and Pb3(PO4)2 were detected, and in sediments, Pb-fulvic acids (FAs) complex was identified. A Pb complex with FA fragments was also detected in celery samples. We found that (1) different Pb species were present in soils and sediments; (2) the Pb species in celery, which was grown in sediments, was different from the species present in duckweed, which grew in water; and (3) a Pb-FA-like compound was present in celery roots. The newly identified Pb species, the Pb-FA-like compound, may play a key role in Pb tolerance and translocation within plants.

  11. Arsine and selenium hydride trapping in a novel quartz device for atomic-absorption spectrometry

    Czech Academy of Sciences Publication Activity Database

    Kratzer, Jan; Dědina, Jiří

    2007-01-01

    Roč. 388, č. 4 (2007), s. 793-800 ISSN 1618-2642 R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : HG-AAS * quartz surface * hydride trapping Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.867, year: 2007

  12. Identification of MgII Absorption Line Systems from SDSS Quasar ...

    Indian Academy of Sciences (India)

    Motivation. The quasar absorption lines are crucial to our understanding of the Universe since the absorption lines provide a wealth of information on the gaseous Universe from high redshift to present day. The absorption lines can also allow us to probe the metallicity and ionization state of the gas (Wild et al. 2008).

  13. 40 CFR Appendix A to Subpart Aa of... - Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA

    Science.gov (United States)

    2010-07-01

    ... (40 CFR Part 63, Subpart A) to Subpart AA A Appendix A to Subpart AA of Part 63 Protection of... Hazardous Air Pollutants From Phosphoric Acid Manufacturing Plants Pt. 63, Subpt. AA, App. A Appendix A to Subpart AA of Part 63—Applicability of General Provisions (40 CFR Part 63, Subpart A) to Subpart AA 40 CFR...

  14. [Determination of soil exchangeable base cations by using atomic absorption spectrophotometer and extraction with ammonium acetate].

    Science.gov (United States)

    Zhang, Yu-ge; Xiao, Min; Dong, Yi-hua; Jiang, Yong

    2012-08-01

    A method to determine soil exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) by using atomic absorption spectrophotometer (AAS) and extraction with ammonium acetate was developed. Results showed that the accuracy of exchangeable base cation data with AAS method fits well with the national standard referential soil data. The relative errors for parallel samples of exchangeable Ca and Mg with 66 pair samples ranged from 0.02%-3.14% and 0.06%-4.06%, and averaged to be 1.22% and 1.25%, respectively. The relative errors for exchangeable K and Na with AAS and flame photometer (FP) ranged from 0.06%-8.39% and 0.06-1.54, and averaged to be 3.72% and 0.56%, respectively. A case study showed that the determination method for exchangeable base cations by using AAS was proven to be reliable and trustable, which could reflect the real situation of soil cation exchange properties in farmlands.

  15. The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples.

    Science.gov (United States)

    Niedzielski, P; Kozak, L; Wachelka, M; Jakubowski, K; Wybieralska, J

    2015-01-01

    The article presents the optimisation, validation and application of the microwave induced plasma optical emission spectrometry (MIP-OES) dedicated for a routine determination of Ag, Al, B, Ba, Bi, Ca, Cd, Cr, Cu, Fe, Ga, In, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, Tl, Zn, in the geological samples. The three procedures of sample preparation has been proposed: sample digestion with the use of hydrofluoric acid for determination of total concentration of elements, extraction by aqua regia for determination of the quasi-total element concentration and extraction by hydrochloric acid solution to determine contents of the elements in acid leachable fraction. The detection limits were on the level 0.001-0.121 mg L(-1) (from 0.010-0.10 to 1.2-12 mg kg(-1) depend on the samples preparation procedure); the precision: 0.20-1.37%; accuracy 85-115% (for recovery for certified standards materials analysis and parallel analysis by independent analytical techniques: X-ray fluorescence (XRF) and flame absorption spectrometry (FAAS)). The conformity of the results obtained by MIP-OES analytical procedures with the results obtained by XRF and FAAS analysis allows to propose the procedures for studies of elemental composition of the fraction of the geological samples. Additionally, the MIP-OES technique is much less expensive than ICP techniques and much less time-consuming than AAS techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Effect of supplementation of arachidonic acid (AA) or a combination of AA plus docosahexaenoic acid on breastmilk fatty acid composition

    NARCIS (Netherlands)

    Smit, EN; Koopmann, M; Boersma, ER; Muskiet, FAJ

    We investigated whether supplementation with arachidonic acid (20:4 omega 6; AA), ora combination of AA and docosahexaenoic acid (22:6 omega 3; DHA) would affect human milk polyunsaturated fatty acid (PUFA) composition. Ten women were daily supplemented with 300 mg AA, eight with 300 mg AA, 110 mg

  17. Activity of vegetative insecticidal proteins Vip3Aa58 and Vip3Aa59 of Bacillus thuringiensis against lepidopteran pests.

    Science.gov (United States)

    Baranek, Jakub; Kaznowski, Adam; Konecka, Edyta; Naimov, Samir

    2015-09-01

    Vegetative insecticidal proteins (Vips) secreted by some isolates of Bacillus thuringiensis show activity against insects and are regarded as insecticides against pests. A number of B. thuringiensis strains harbouring vip3A genes were isolated from different sources and identified by using a PCR based approach. The isolates with the highest insecticidal activity were indicated in screening tests, and their vip genes were cloned and sequenced. The analysis revealed two polymorphic Vip protein forms, which were classified as Vip3Aa58 and Vip3Aa59. After expression of the vip genes, the proteins were isolated and characterized. The activity of both toxins was estimated against economically important lepidopteran pests of woodlands (Dendrolimus pini), orchards (Cydia pomonella) and field crops (Spodoptera exigua). Vip3Aa58 and Vip3Aa59 were highly toxic and their potency surpassed those of many Cry proteins used in commercial bioinsecticides. Vip3Aa59 revealed similar larvicidal activity as Vip3Aa58 against S. exigua and C. pomonella. Despite 98% similarity of amino acid sequences of both proteins, Vip3Aa59 was significantly more active against D. pini. Additionally the effect of proteolytic activation of Vip58Aa and Vip3Aa59 on toxicity of D. pini and S. exigua was studied. Both Vip3Aa proteins did not show any activity against Tenebrio molitor (Coleoptera) larvae. The results suggest that the Vip3Aa58 and Vip3Aa59 toxins might be useful for controlling populations of insect pests of crops and forests. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Determination of lead associated with airborne particulate matter by flame atomic absorption and wave-length dispersive x-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Talebi, S.M.

    1997-01-01

    The lead content of airborne particulate matter was determined by flame atomic absorption spectrometry (FAAS) following digestion with a mixture of nitric acid and hydrogen peroxide and also by wave-length dispersive x-ray fluorescence (WDXRF). The extraction procedure was checked by analyzing a standard reference material of airborne particulate matter (NIST, SRM -1648). It was concluded that lead can quantitatively (98%) be extracted from airborne particulate matter by the leaching process. A five-stage sequential extraction was performed to assess the potential mobility of lead associated with airborne particulate matter. Comparison of the airborne particulate lead measured by WDXRF to that measured by FAAS showed good agreement. The WDXRF method requires no time-consuming sample preparation or use of environmentally unfriendly solvents. The technique is suggested for direct determination of lead in airborne particulate matter in air pollution studies. (author)

  19. Bombyx mori ABC transporter C2 structures responsible for the receptor function of Bacillus thuringiensis Cry1Aa toxin.

    Science.gov (United States)

    Tanaka, Shiho; Endo, Haruka; Adegawa, Satomi; Iizuka, Ami; Imamura, Kazuhiro; Kikuta, Shingo; Sato, Ryoichi

    2017-12-01

    Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770 DYWL 773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770 DYWL 773 of ECL 4 in the ABCC2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Burnup determination of power reactor fuel elements by gamma spectrometry; Determination par spectrometrie {gamma} du taux d'irradiation des elements combustibles des reacteurs de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Robin, M; Jastrzeb, M; Boisliveau, S; Boyer, R; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report describes a method for determining by {gamma} spectrometry the burn up and the specific power of fuel elements irradiated in power reactors. The energy spectrum of {gamma} rays emitted by fission products is measured by means of a simple equipment using a sodium iodide detector and a multichannel analyzer. In order to extract from the spectrum a quantity proportional to the burn up, it is necessary to: - isolate an activity specific of one emitter,- give the same importance to fissions in uranium and plutonium - take into account the radioactive decay during and after irradiation. One hundred fuel elements were studied and burn up values obtained by {gamma} spectrometry are compared to results given by chemical analyses. Preliminary measurements show that the accuracy of the results is greatly increased by the use of a germanium detector, due to its good resolution. (authors) [French] Ce rapport expose une methode de determination par spectrometrie {gamma} du taux d'irradiation et de la puissance specifique des elements combustibles irradies dans les reacteurs de puissance. Une installation simple utilisant un detecteur d'iodure de sodium et un selecteur multicanaux mesure le spectre en energie du rayonnement {gamma} emis par les produits de fission. Afin d'extraire du spectre une quantite proportionnelle au taux de combustion, il faut: - isoler une activite specifique a un emetteur, - donner la meme importance aux fissions survenues dans l'uranium et le plutonium, - prendre en compte la decroissance radioactive pendant et apres l'irradiation. Les mesures ont porte sur une centaine d'elements combustibles et les taux de combustion obtenus par spectrometrie {gamma} sont compares aux resultats des analyses chimiques. Des mesures preliminaires montrent que l'utilisation d'un detecteur de germanium augmente considerablement la precision des resultats, en raison de son excellente resolution. (auteurs)

  1. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  2. Radio-frequency glow discharge spectrometry: A critical review

    International Nuclear Information System (INIS)

    Winchester, Michael R.; Payling, Richard

    2004-01-01

    This paper presents a critical review of analytical radio frequency glow discharge spectrometry (rf-GDS). The historical foundations of rf-GDS are described, and current knowledge of the fundamental physics of analytical rf glow discharges is discussed. Additionally, instrumentation, methodologies, and applications of rf glow discharge optical emission spectrometry (rf-GDOES) and mass spectrometry (rf-GDMS) are reviewed. Although other rf-GDS techniques have appeared [e.g. rf glow discharge atomic absorption spectrophotometry (rf-GDAAS)], the emphasis is placed upon rf-GDOES and rf-GDMS, because they have received by far the most interest from analytical chemical metrologists. This review also provides explanations of some developments that are needed for further progress in the field of analytical rf-GDS

  3. caracteristiques hydrochimiques et microbiologiques des eaux

    African Journals Online (AJOL)

    AISA

    composés azotés minéraux (NO2. -, NO3. -, NH4. +) ont été dosés à l'aide d'un autoanalyseur. Technicon AA2 selon les modalités préconisées par (Strickland et Parsons (1972)). ANALYSES BACTERIOLOGIQUES. Le dénombrement des coliformes a été effectué après une incubation à 44° C durant 24 h sur milieu gélosé ...

  4. Determination of trace amounts of impurities in molybdenum by spark source and glow discharge mass spectrometry

    International Nuclear Information System (INIS)

    Saito, Morimasa

    1994-01-01

    For the determination of trace and ultra-trace amounts of impurities in high-purity molybdenum, spark source mass spectrometry and glow discharge mass spectrometry were studied. In spark source mass spectrometry using the metal probe method, the liquid-helium cryogenic pump was used in order to protect the surface of the samples from oxidation. The theoretical relative sensitivity factors (Mo=1) calculated from physical properties were used. The analytical results obtained for molybdenum tablet and high-purity molybdenum were in good agreement with those obtained by other methods (atomic absorption spectrometry and others). In glow discharge mass spectrometry, the relative sensitivity factors were calculated by using the results obtained by spark source mass spectrometry and atomic absorption spectrometry, and this method was applied to the determination of ultra-trace amounts of impurities in ultra high-purity molybdenum and gave the satisfactory results. The detection limits (2σ, n=10) in the integration time of 600 s for U and Th were 0.6 ppb and 0.3 ppb, and the values for Al, Si, Cr, Mn and Cu were in the range of 10 ppb to 0.5 ppb. (author)

  5. Human Vitamin B12 Absorption and Metabolism are Measured by Accelerator Mass Spectrometry Using Specifically Labeled 14C-Cobalamin

    International Nuclear Information System (INIS)

    Carkeet, C; Dueker, S R; Lango, J; Buchholz, B A; Miller, J W; Green, R; Hammock, B D; Roth, J R; Anderson, P J

    2006-01-01

    There is need for an improved test of human ability to assimilate dietary vitamin B 12 . Assaying and understanding absorption and uptake of B 12 is important because defects can lead to hematological and neurological complications. Accelerator mass spectrometry (AMS) is uniquely suited for assessing absorption and kinetics of 14 C-labeled substances after oral ingestion because it is more sensitive than decay counting and can measure levels of carbon-14 ( 14 C) in microliter volumes of biological samples, with negligible exposure of subjects to radioactivity. The test we describe employs amounts of B 12 in the range of normal dietary intake. The B 12 used was quantitatively labeled with 14 C at one particular atom of the DMB moiety by exploiting idiosyncrasies of Salmonellametabolism. In order to grow aerobically on ethanolamine, S. entericamust be provided with either pre-formed B 12 or two of its precursors: cobinamide and dimethylbenzimidazole (DMB). When provided with 14 C-DMB specifically labeled in the C2 position, cells produced 14 C-B 12 of high specific activity (2.1 GBq/mmol, 58 mCi/mmol) and no detectable dilution of label from endogenous DMB synthesis. In a human kinetic study, a physiological dose (1.5 mg, 2.2 KBq/59 nCi) of purified 14 C-B 12 was administered and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin. This method opens new avenues for study of B 12 assimilation

  6. Metrological characterization of the numerical system Adonis for gamma spectrometry; Caracterisation metrologique du systeme de spectrometrie gamma numerique Adonis

    Energy Technology Data Exchange (ETDEWEB)

    Plagnard, J.; Morel, J.; Tran Tuan, A

    2005-07-01

    In gamma spectrometry, new acquisition systems based on digital processing of the signals are now available on the market. In order to determine their performances at high count rates, The CEA-LNHB (Commissariat a l'Energie Atomique - Laboratoire National Henri Becquerel) has tested several of these equipments.. These tests have clearly shown that the performances announced by the manufacturers were generally not met. At this point, it was interesting to include in these tests, the system ADONIS (Atelier de Developpement Numerique pour l'Instrumentation en Spectrometrie), which is the new gamma spectrometry system, developed by the CEA-SIAR (Service d'Instrumentation et d'Application des Rayonnements). (authors)

  7. Development and Validation of a Sensitive Method for Trace Nickel Determination by Slotted Quartz Tube Flame Atomic Absorption Spectrometry After Dispersive Liquid-Liquid Microextraction.

    Science.gov (United States)

    Yolcu, Şükran Melda; Fırat, Merve; Chormey, Dotse Selali; Büyükpınar, Çağdaş; Turak, Fatma; Bakırdere, Sezgin

    2018-05-01

    In this study, dispersive liquid-liquid microextraction was systematically optimized for the preconcentration of nickel after forming a complex with diphenylcarbazone. The measurement output of the flame atomic absorption spectrometer was further enhanced by fitting a custom-cut slotted quartz tube to the flame burner head. The extraction method increased the amount of nickel reaching the flame and the slotted quartz tube increased the residence time of nickel atoms in the flame to record higher absorbance. Two methods combined to give about 90 fold enhancement in sensitivity over the conventional flame atomic absorption spectrometry. The optimized method was applicable over a wide linear concentration range, and it gave a detection limit of 2.1 µg L -1 . Low relative standard deviations at the lowest concentration in the linear calibration plot indicated high precision for both extraction process and instrumental measurements. A coal fly ash standard reference material (SRM 1633c) was used to determine the accuracy of the method, and experimented results were compatible with the certified value. Spiked recovery tests were also used to validate the applicability of the method.

  8. Phytosterol glycosides reduce cholesterol absorption in humans

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  9. NCBI nr-aa BLAST: CBRC-DMEL-02-0054 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DMEL-02-0054 gb|AAS74186.1| 5-HT1A [Drosophila melanogaster] gb|AAS74187.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74231.1| 5-HT1A [Drosophila melanogaster] gb|AAS74233.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74373.1| 5-HT1A [Drosophila melanogaster] AAS74186.1 0.0 100% ...

  10. NCBI nr-aa BLAST: CBRC-DYAK-02-0048 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DYAK-02-0048 gb|AAS74186.1| 5-HT1A [Drosophila melanogaster] gb|AAS74187.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74231.1| 5-HT1A [Drosophila melanogaster] gb|AAS74233.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74373.1| 5-HT1A [Drosophila melanogaster] AAS74186.1 1e-163 91% ...

  11. NCBI nr-aa BLAST: CBRC-DSIM-02-0057 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0057 gb|AAS74196.1| 5-HT1A [Drosophila melanogaster] gb|AAS74220.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74309.1| 5-HT1A [Drosophila melanogaster] gb|AAS74310.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74335.1| 5-HT1A [Drosophila melanogaster] AAS74196.1 1e-176 97% ...

  12. NCBI nr-aa BLAST: CBRC-DSIM-02-0057 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DSIM-02-0057 gb|AAS74184.1| 5-HT1A [Drosophila melanogaster] gb|AAS74194.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74236.1| 5-HT1A [Drosophila melanogaster] gb|AAS74326.1| 5-HT1A [Drosophila mela...nogaster] gb|AAS74372.1| 5-HT1A [Drosophila melanogaster] AAS74184.1 1e-177 97% ...

  13. Application of a new procedure for liquid chromatography/mass spectrometry profiling of plasma amino acid-related metabolites and untargeted shotgun proteomics to identify mechanisms and biomarkers of calcific aortic stenosis.

    Science.gov (United States)

    Olkowicz, Mariola; Debski, Janusz; Jablonska, Patrycja; Dadlez, Michal; Smolenski, Ryszard T

    2017-09-29

    Calcific aortic valve stenosis (CAS) increasingly affects our ageing population, but the mechanisms of the disease and its biomarkers are not well established. Recently, plasma amino acid-related metabolite (AA) profiling has attracted attention in studies on pathology and development of biomarkers of cardiovascular diseases, but has not been studied in CAS. To evaluate the potential relationship between CAS and AA metabolome, a new ion-pairing reversed-phase liquid chromatography-tandem mass spectrometry (IP-RPLC-MS/MS) method has been developed and validated for simultaneous determination of 43 AAs in plasma of stenotic patients and age-matched control subjects. Furthermore, untargeted mass spectrometry-based proteomic analysis and confirmatory ELISA assays were performed. The method developed offered high accuracy (intra-assay imprecision averaged 4.4% for all compounds) and sensitivity (LOQ within 0.01-0.5μM). We found that 22 AAs and three AA ratios significantly changed in the CAS group as compared to control. The most pronounced differences were observed in urea cycle-related AAs and branched-chain AA (BCAA)-related AAs. The contents of asymmetric dimethylarginine (ADMA) and its monomethylated derivative (NMMA) were increased by 30-64% with CAS. The arginine/ADMA and Fischer's ratios as well as arginine, homoarginine, ADMA, symmetric dimethylarginine, hydroxyproline, betaine and 3-methylhistidine correlated with cardiac function-related parameters and concomitant systemic factors in the CAS patients. The results of proteomic analysis were consistent with involvement of inflammation, lipid abnormalities, hemostasis and extracellular matrix remodeling in CAS. In conclusion, changes in plasma AA profile and protein pattern that we identified in CAS provide information relevant to pathomechanisms and may deliver new biomarkers of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Radical and Ethnic Differences in Breast Cancer Risk Factors

    Science.gov (United States)

    2001-07-01

    consumed by San Francisco Bay Area women were analyzed by Dr. Stephen Barnes at the University of Alabama at Birmingham using HPLC -mass spectrometry...Exp Biol Med 1995;208:3-5. 25. Seow A, Shi CY, Franke AA, et al. Isoflavonoid levels in spot 9. Miksicek RJ. Estrogenic flavonoids : structural

  15. Simultaneous preconcentration of cadmium and lead in water samples with silica gel and determination by flame atomic absorption spectrometry.

    Science.gov (United States)

    Xu, Hongbo; Wu, Yun; Wang, Jian; Shang, Xuewei; Jiang, Xiaojun

    2013-12-01

    A new method that utilizes pretreated silica gel as an adsorbent has been developed for simultaneous preconcentration of trace Cd(II) and Pb(II) prior to the measurement by flame atomic absorption spectrometry. The effects of pH, the shaking time, the elution condition and the coexisting ions on the separation/preconcentration conditions of analytes were investigated. Under optimized conditions, the static adsorption capacity of Cd(II) and Pb(II) were 45.5 and 27.1mg/g, the relative standard deviations were 3.2% and 1.7% (for n = 11), and the limits of detection obtained were 4.25 and 0.60 ng/mL, respectively. The method was validated by analyzing the certified reference materials GBW 07304a (stream sediment) and successfully applied to the analysis of various treated wastewater samples with satisfactory results. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. The multi-sphere technique. 1 - general characteristics and applications; La technique multisphere. 1 - caracteristiques generales et applications

    Energy Technology Data Exchange (ETDEWEB)

    Zaborcwski, H [Commissariat a l' Energie Atomique, Cadarache (France). Centre d' Etudes Nucleaires

    1965-07-01

    A study is made of the general characteristics and the applications of the multisphere technique for flux measurements, dosimetry and the spectrometry of neutron sources ranging from thermal, up to 7 MeV neutrons. We give the equations relating to three fluxmeters (proportional long counters) for the measurements of the flux. Other equations have been derived : 1 - for multi-collision rad and rem dosimetry and first collision rad dosimetry; 2 - for the spectrometry and dosimetry of neutrons in five energy bands using a method similar to that used by threshold detectors. (author) [French] Nous etudions les caracteristiques generales et les applications de la technique multisphere pour les mesures de flux, la dosimetrie et la spectrometrie des sources de neutrons depuis les thermiques jusqu'a 7 MeV. Nous donnons les equations relatives a trois fluxmetres (longs compteurs equivalents) pour les mesures en flux. D'autres equations ont ete derivees: 1 - pour la dosimetrie en rad et en rem de multicollision et en rad de premiere collision; 2 - pour la spectrometrie et la dosimetrie des neutrons en cinq bandes energetiques suivant une methode voisine de celle utilisee par detecteurs a seuil. (auteur)

  17. Synthesis and purification of some alkyl phenanthrenes and presentation of their infrared, ultraviolet, nuclear magnetic resonance and mass spectra; Synthese et purification de quelques alcoylphenanthrenes et presentation ds leurs spectres d'absorption infrarouge, ultraviolette, de resonance magnetique nucleaire et de masse

    Energy Technology Data Exchange (ETDEWEB)

    Persaud, K. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1965-01-01

    We have carried out the synthesis of: - phenanthrene - its five monomethyl derivatives - three dimethyl derivatives - two trimethyl derivatives. We have then purified these products as well as a certain number of others obtained from various sources. We have been able to obtain in the majority of cases, a purity of 99.5 per cent or over, these figures being obtained by low voltage mass spectrometry. Finally we have recorded the infrared, ultraviolet, nuclear magnetic resonance and mass spectra of these products for which an atlas has been drawn up. (author) [French] Nous avons realise la synthese: - du phenanthrene - de ses cinq derives monomethyles - de trois de ses derives dimethyles - de deux de ses derives trimethyles. Nous avons ensuite purifie ces produits ainsi qu'un certain nombre d'autres que nous avons obtenus de sources differentes. Nous avons pu atteindre, dans la plupart des cas, une purete egale ou superieure a 99,5 pour cent, chiffres determines par la spectrometrie de masse a basse tension. Enfin, nous avons enregistre les spectres infrarouges, ultraviolets, de resonance magnetique nucleaire et de masse de ces produits dont nous avons fait un atlas. (auteur)

  18. Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis

    International Nuclear Information System (INIS)

    Na, Kyung-Hwan; Pyun, Su-Il

    2008-01-01

    The susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys was investigated in aqueous neutral chloride solution for the purpose of comparison using electrochemical noise measurement. The experimentally measured electrochemical noises were analysed based upon the combined stochastic theory and shot-noise theory using the Weibull distribution function. From the occurrence of two linear regions on one Weibull probability plot, it was suggested that there existed two stochastic processes of uniform corrosion and pitting corrosion; pitting corrosion was distinguished from uniform corrosion in terms of the frequency of events in the stochastic analysis. Accordingly, the present analysis method allowed us to investigate pitting corrosion independently. The susceptibility to pitting corrosion was appropriately evaluated by determining pit embryo formation rate in the stochastic analysis. The susceptibility was decreased in the following order: AA2024-T4 (the naturally aged condition), AA7475-T761 (the overaged condition) and AA7075-T651 (the near-peak-aged condition)

  19. CaI and SrI molecules for iodine determination by high-resolution continuum source graphite furnace molecular absorption spectrometry: Greener molecules for practical application.

    Science.gov (United States)

    Zanatta, Melina Borges Teixeira; Nakadi, Flávio Venâncio; da Veiga, Márcia Andreia Mesquita Silva

    2018-03-01

    A new method to determine iodine in drug samples by high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) has been developed. The method measures the molecular absorption of a diatomic molecule, CaI or SrI (less toxic molecule-forming reagents), at 638.904 or 677.692nm, respectively, and uses a mixture containing 5μg of Pd and 0.5μg of Mg as chemical modifier. The method employs pyrolysis temperatures of 1000 and 800°C and vaporization temperatures of 2300 and 2400°C for CaI and SrI, respectively. The optimized amounts of Ca and Sr as molecule-forming reagents are 100 and 150µg, respectively. On the basis of interference studies, even small chlorine concentrations reduce CaI and SrI absorbance significantly. The developed method was used to analyze different commercial drug samples, namely thyroid hormone pills with three different iodine amounts (15.88, 31.77, and 47.66µg) and one liquid drug with 1% m v -1 active iodine in their compositions. The results agreed with the values informed by the manufacturers (95% confidence level) regardless of whether CaI or SrI was determined. Therefore, the developed method is useful for iodine determination on the basis of CaI or SrI molecular absorption. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  1. Microstructural features of friction stir welded dissimilar Aluminium alloys AA2219-AA7475

    Science.gov (United States)

    Zaman Khan, Noor; Ubaid, Mohammed; Siddiquee, Arshad Noor; Khan, Zahid A.; Al-Ahmari, Abdulrahman; Chen, Xizhang; Haider Abidi, Mustufa

    2018-05-01

    High strength, good corrosion resistance, light weight make aluminium alloys a material of choice in many industrial sectors like aerospace, marine etc. Problems associated with welding of these alloys by fusion welding processes restricted their use in various industries. Friction stir welding (FSW), a clean solid-state joining process, easily overcomes various difficulties encountered during conventional fusion welding processes. In the present work, the effect of rotational speed (710 rpm, 900 rpm and 1120 rpm) on micro-hardness distribution and microstructure of FSWed dissimilar aluminium alloy joints were analyzed. Plates of AA7475-T761 and AA2219-O having thickness of 2.5 mm were welded by fixing AA7475 on retreating side (RS) and AA2219 on advancing side (AS). Welded joints were characterized by Vickers micro-hardness testing, scanning electron microscopy (SEM) and optical microscopy (OM). Results revealed that rotational speed significantly affects the micro-hardness due to increase in grain size, coarsening and dissolution of strengthening precipitates and re-precipitation. Higher micro-hardness values were observed in stir zone due to grain refinement and re-precipitation. Minimum micro-hardness value was observed at the TMAZ/HAZ of advancing side due to thermal softening.

  2. AA Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The geomagnetic aa index provides a long climatology of global geomagnetic activity using 2 antipodal observatories at Greenwich and Melbourne- IAGA Bulletin 37,...

  3. Experimental investigation of hardness of FSW and TIG joints of Aluminium alloys of AA7075 and AA6061

    Directory of Open Access Journals (Sweden)

    Chetan Patil

    2016-07-01

    Full Text Available This paper reports hardness testing conducted on welded butt joints by FSW and TIG welding process on similar and dissimilar aluminium alloys. FSW joints were produced for similar alloys of AA7075T651 and dissimilar alloys of AA7075T651- AA6061T6. The Friction stir welds of AA7075 & AA6061 aluminium alloy were produced at different tool rotational speeds of 650,700, 800, 900, 1000 and transverse speed of 30, 35, 40 mm/min. TIG welding was conducted along the rolling direction of similar and dissimilar aluminium plates. The Brinell hardness testing techniques were employed to conduct the tests; these tests were conducted on the welds to ascertain the joint integrity before characterization to have an idea of the quality of the welds

  4. Bovine liver sample preparation and micro-homogeneity study for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Nomura, Cassiana S.; Silva, Cintia S.; Nogueira, Ana R.A.; Oliveira, Pedro V.

    2005-01-01

    This work describes a systematic study for the bovine liver sample preparation for Cu and Zn determination by solid sampling electrothermal atomic absorption spectrometry. The main parameters investigated were sample drying, grinding process, particle size, sample size, microsample homogeneity, and their relationship with the precision and accuracy of the method. A bovine liver sample was prepared using different drying procedures: (1) freeze drying, and (2) drying in a household microwave oven followed by drying in a stove at 60 deg. C until constant mass. Ball and cryogenic mills were used for grinding. Less sensitive wavelengths for Cu (216.5 nm) and Zn (307.6 nm), and Zeeman-based three-field background correction for Cu were used to diminish the sensitivities. The pyrolysis and atomization temperatures adopted were 1000 deg. C and 2300 deg. C for Cu, and 700 deg. C and 1700 deg. C for Zn, respectively. For both elements, it was possible to calibrate the spectrometer with aqueous solutions. The use of 250 μg of W + 200 μg of Rh as permanent chemical modifier was imperative for Zn. Under these conditions, the characteristic mass and detection limit were 1.4 ng and 1.6 ng for Cu, and 2.8 ng and 1.3 ng for Zn, respectively. The results showed good agreement (95% confidence level) for homogeneity of the entire material (> 200 mg) when the sample was dried in microwave/stove and ground in a cryogenic mill. The microsample homogeneity study showed that Zn is more dependent on the sample pretreatment than Cu. The bovine liver sample prepared in microwave/stove and ground in a cryogenic mill presented results with the lowest relative standard deviation for Cu than Zn. Good accuracy and precision were observed for bovine liver masses higher than 40 μg for Cu and 30 μg for Zn. The concentrations of Cu and Zn in the prepared bovine liver sample were 223 mg kg - 1 and 128 mg kg - 1 , respectively. The relative standard deviations were lower than 6% (n = 5). The

  5. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    Science.gov (United States)

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  6. Partially melted zone cracking in AA6061 welds

    International Nuclear Information System (INIS)

    Prasad Rao, K.; Ramanaiah, N.; Viswanathan, N.

    2008-01-01

    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043

  7. Partially melted zone cracking in AA6061 welds

    Energy Technology Data Exchange (ETDEWEB)

    Prasad Rao, K. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai (India)], E-mail: kpr@iitm.ac.in; Ramanaiah, N. [Sri Kalahasteeswara Institute of Technology, Srikalahasti (India); Viswanathan, N. [Defence Research and Development Laboratory, Hyderabad (India)

    2008-07-01

    Partially melted zone (PMZ) cracking susceptibility in AA6061 alloy was studied. Role of prior thermal history, gas tungsten arc welding techniques such as continuous current (CC) and pulsed current (PC) and use of different fillers (AA4043 and AA5356) were studied. Role of different grain refiners such as scandium, zirconium and Tibor in the above fillers was studied. Varestraint test was used to study the PMZ cracking susceptibility. Metallurgical analysis was done to corroborate the results. PMZ cracking was severe in T6 temper than in T4 irrespective of filler material. PMZ cracking susceptibility was more with AA5356 than in AA4043. It was less with pulsed current GTAW. PMZ cracking susceptibility was reduced with addition of grain refiners. Out of all, lowest PMZ cracking susceptibility was observed with 0.5%Sc addition to fusion zone through AA4043 filler and PC technique. The concentrations of magnesium and silicon were reduced at the PMZ grain boundaries with grain refiner additions to fusion zone through AA5356 or AA4043.

  8. Solid phase extraction method for the determination of lead, nickel, copper and manganese by flame atomic absorption spectrometry using sodium bispiperdine-1,1'-carbotetrathioate (Na-BPCTT) in water samples

    International Nuclear Information System (INIS)

    Rekha, D.; Suvardhan, K.; Kumar, J. Dilip; Subramanyam, P.; Prasad, P. Reddy; Lingappa, Y.; Chiranjeevi, P.

    2007-01-01

    A novel column solid phase extraction procedure was developed for the determination of lead, nickel, copper and manganese in various water samples by flame atomic absorption spectrometry (FAAS) after preconcentration on sodium bispiperdine-1,1'-carbotetrathioate (Na-BPCTT) supported by Amberlite XAD-7. The sorbed element was subsequently eluted with 1 M nitric acid and the acid eluates are analysed by Flame atomic absorption spectrometry (FAAS). Various parameters such as pH, amount of adsorbent, eluent type and volume, flow-rate of the sample solution, volume of the sample solution and matrix interference effect on the retention of the metal ions have been studied. The optimum pH for the sorption of above mentioned metal ions was about 6.0 ± 0.2. The loading capacity of adsorbent for Pb, Cu, Ni and Mn were found to 28, 26, 22 and 20 x 10 -6 g/mL, respectively. The recoveries of lead, copper, nickel and manganese under optimum conditions were found to be 96.7-99.2 at the 95% confident level. The limit of detection was 3.0, 3.2, 2.8 and 3.6 x 10 -6 g/mL for lead, copper, nickel and manganese, respectively by applying a preconcentration factor 50. The proposed enrichment method was applied for metal ions in various water samples. The results were obtained are good agreement with reported method

  9. Solvent microextraction-flame atomic absorption spectrometry (SME-FAAS) for determination of ultratrace amounts of cadmium in meat and fish samples.

    Science.gov (United States)

    Goudarzi, Nasser

    2009-02-11

    A simple, low cost and highly sensitive method based on solvent microextraction (SME) for separation/preconcentration and flame atomic absorption spectrometry (FAAS) was proposed for the determination of ultratrace amounts of cadmium in meat and fish samples. The analytical procedure involved the formation of a hydrophobic complex by mixing the analyte solution with an ammonium pyrrolidinedithiocarbamate (APDC) solution. In suitable conditions, the complex of cadmium-APDC entered the micro organic phase, and thus, separation of the analyte from the matrix was achieved. Under optimal chemical and instrumental conditions, a detection limit (3 sigma) of 0.8 ng L(-1) and an enrichment factor of 93 were achieved. The relative standard deviation for the method was found to be 2.2% for Cd. The interference effects of some anions and cations were also investigated. The developed method has been applied to the determination of trace Cd in meat and fish samples.

  10. Determination of caesium in river and sea waters by electrothermal atomic-absorption spectrometry. Interference of cobalt and iron

    International Nuclear Information System (INIS)

    Frigieri, P.; Trucco, R.; Ciaccolini, I.; Pampurini, G.

    1980-01-01

    For the enrichment or the simple recovery of caesium from river and sea waters, selective inorganic exchangers were considered. Ammonium hexacyanocobalt ferrate (NCFC) was chosen because it can be used in strongly acidic solutions (with the exception of concentrated sulphuric acid). Caesium is fully retained by the NCFC chromatographic column and can then be recovered by dissolution in hot sulphuric acid. The solution is then diluted and analysed, either directly or following caesium separation, by atomic-absorption spectrometry. To check the reliability of the analytical procedure, a series of experiments were carried out in which the possible interfering species were added to the aqueous caesium solution prior to analysis. The well known ionic interference in flame atomisation processes caused by magnesium, calcium, strontium and metals was investigated by electrothermal atomisation measurements. The experimental data showed that this effect does not occur even when these elements are present in concentrations of the order of thousands of parts per million. However, strong interferences from iron and cobalt were observed. (author)

  11. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Sun Mei; Wu Qianghua

    2010-01-01

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL -1 . The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  12. Determination of ultra-trace aluminum in human albumin by cloud point extraction and graphite furnace atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Sun Mei, E-mail: sunmei@ustc.edu.cn [Hefei National Laboratory for Physical Sciences on Microscale, University of Science and Technology of China, No. 96, Jinzhai Road, Hefei 230026 (China); Wu Qianghua [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026 (China)

    2010-04-15

    A cloud point extraction (CPE) method for the preconcentration of ultra-trace aluminum in human albumin prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS) had been developed in this paper. The CPE method was based on the complex of Al(III) with 1-(2-pyridylazo)-2-naphthol (PAN) and Triton X-114 was used as non-ionic surfactant. The main factors affecting cloud point extraction efficiency, such as pH of solution, concentration and kind of complexing agent, concentration of non-ionic surfactant, equilibration temperature and time, were investigated in detail. An enrichment factor of 34.8 was obtained for the preconcentration of Al(III) with 10 mL solution. Under the optimal conditions, the detection limit of Al(III) was 0.06 ng mL{sup -1}. The relative standard deviation (n = 7) of sample was 3.6%, values of recovery of aluminum were changed from 92.3% to 94.7% for three samples. This method is simple, accurate, sensitive and can be applied to the determination of ultra-trace aluminum in human albumin.

  13. AAS determination of total mercury content in environmental samples

    International Nuclear Information System (INIS)

    Moskalova, M.; Zemberyova, M.

    1997-01-01

    Two methods for determination of total mercury content in environmental samples soils, and sediments, were compared. Dissolution procedure of soils, sediments, and biological material under elevated pressure followed by determination of mercury by cold vapour atomic absorption spectrometry using a MHS-1 system and direct total mercury determination without any chemical pretreatment from soil samples using a Trace Mercury Analyzer TMA-254 were compared. TMA-254 was also applied for the determination of mercury in various further standard reference materials. Good agreement with certified values of environmental reference materials was obtained. (authors)

  14. Determination of mercury in gasoline by cold vapor atomic absorption spectrometry with direct reduction in microemulsion media

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Geisamanda Pedrini [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil); Calixto de Campos, Reinaldo [Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rua Marques de S. Vicente, 225, Gavea, 22453-900, Rio de Janeiro, RJ (Brazil)]. E-mail: rccampos@rdc.puc-rio.br; Luna, Aderval Severino [Department of Analytical Chemistry, Rio de Janeiro State University, Rua S. Francisco Xavier, s/n, Maracana, 20550-900, Rio de Janeiro, RJ (Brazil)

    2005-06-30

    The determination of Hg in gasoline by cold vapor atomic absorption spectrometry, after direct aqueous NaBH{sub 4} reduction in a three-component (microemulsion) medium, was investigated. Microemulsions were prepared by mixing gasoline with propan-1-ol and 50% v / v HNO{sub 3} at a 20 : 15 : 1 volume ratio. A long-term homogeneous system was immediately formed this way. After reduction, the Hg vapor generated in a reaction flask was transported to an intermediate K{sub 2}Cr{sub 2}O{sub 7}/H{sub 2}SO{sub 4} trap solution in order to avoid poisoning of the Au-Pt trap by the gasoline vapors. A second reduction step was then conducted and the generated Hg vapor transported to the Au-Pt trap, followed by thermal release of Hg{sup 0} and atomic absorption measurement. Purified N{sub 2} was used as purge and transport gas. After multivariate optimization by central composite design calibration graphs showed coefficients of correlation of 0.9999 and a characteristic mass of 2 ng was obtained. Typical coefficients of variation of 5% and 6% were found for ten consecutive measurements at concentration levels of 1 and 8 {mu}g L{sup -1} of Hg{sup 2+}, respectively. The limit of detection was 0.10 {mu}g L{sup -1} (0.14 {mu}g kg{sup -1}) in the original sample. A total measurement cycle took 11 min, permitting duplicate analysis of 3 samples per hour. The results obtained with the proposed procedure in the analysis of commercial gasoline samples were in agreement with those obtained by a comparative procedure. Gasoline samples of the Rio de Janeiro city have shown Hg concentrations below 0.27 {mu}g L{sup -1}.

  15. A contribution of black and brown carbon to the aerosol light absorption

    Science.gov (United States)

    Kim, Sang-Woo; Cho, Chaeyoon; Jo, Duseong; Park, Rokjin

    2017-04-01

    Black carbon (BC) is functionally defined as the absorbing component of atmospheric total carbonaceous aerosols and is typically dominated by soot-like elemental carbon (EC). Organic carbon (OC) has also been shown to absorb strongly at visible to UV wavelengths and the absorbing organics are referred to as brown carbon (BrC; Alexander et al., 2008). These two aerosols contribute to solar radiative forcing through absorption of solar radiation and heating of the absorbing aerosol layer, but most optical instruments that quantify light absorption are unable to distinguish one type of absorbing aerosol from another (Moosmüller et al. 2009). In this study, we separate total aerosol absorption from these two different light absorbers from co-located simultaneous in-situ measurements, such as Continuous Soot Monitoring System (COSMOS), Continuous Light Absorption Photometer (CLAP) and Sunset EC/OC analyzer, at Gosan climate observatory, Korea. We determine the mass absorption cross-section (MAC) of BC, and then estimate the contribution of BC and BrC on aerosol light absorption, together with a global 3-D chemical transport model (GEOS-Chem) simulation. At 565 nm wavelength, BC MAC is found to be about 5.4±2.8 m2 g-1 from COSMOS and Sunset EC/OC analyzer measurements during January-May 2012. This value is similar to those from Alexander et al. (2008; 4.3 ˜ 4.8 m2 g-1 at 550 nm) and Chung et al. (2012; 5.1 m2 g-1 at 520 nm), but slightly lower than Bond and Bergstrom (2006; 7.5±1.2 m2 g-1 at 550 nm). The COMOS BC mass concentration calculated with 5.4 m2 g-1 of BC MAC shows a good agreement with thermal EC concentration, with a good slope (1.1). Aerosol absorption coefficient and BC mass concentration from COSMOS, meanwhile, are approximately 25 ˜ 30 % lower than those of CLAP. This difference can be attributable to the contribution of volatile light-absorbing aerosols (i.e., BrC). The absorption coefficient of BrC, which is determined by the difference of

  16. Evaluation of ultrasound-assisted in situ sorbent formation solid-phase extraction method for determination of arsenic in water, food and biological samples.

    Science.gov (United States)

    Ezoddin, Maryam; Majidi, Behrooz; Abdi, Khosrou

    2015-01-01

    A simple and rapid ultrasound-assisted in situ sorbent formation solid-phase extraction (UAISFSPE) coupled with electrothermal atomic absorption spectrometry detection (ET-AAS) was developed for preconcentration and determination of arsenic (As) in various samples. A small amount of cationic surfactant is dissolved in the aqueous sample containing As ions, which were complexed by ammonium pyrrolidinedithiocarbamate After shaking, a little volume of hexafluorophosphate (NaPF6) as an ion-pairing agent was added into the solution by a microsyringe. Due to the interaction between surfactant and ion-pairing agent, solid particles are formed. The alkyl groups of the surfactant in the solid particles strongly interact with the hydrophobic groups of analytes and become bound. Sonication aids the dispersion of the sorbent into the sample solution and mass transfer of the analyte into the sorbent, thus reducing the extraction time. The solid particles are centrifuged, and the sedimented particles can be dissolved in an appropriate solvent to recover the absorbed analyte. After separation, total arsenic (As(III) and As(V)) was determined by ET-AAS. Several experimental parameters were investigated and optimized. A detection limit of 7 ng L(-1) with preconcentration factor of 100 and relative standard deviation for 10 replicate determinations of 0.1 µg L(-1) As(III) were 4.5% achieved. Consequently, the method was applied to the determination of arsenic in certified reference materials, water, food and biological samples with satisfactory results.

  17. Modified mesoporous silica materials for on-line separation and preconcentration of hexavalent chromium using a microcolumn coupled with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Fang Dongmei; Li Qing [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); East China University of Science and Technology, Shanghai 200237 (China); Zhang Lingxia; Qian Rong; Zhu Yan; Qu Haiyun [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Du Yiping [East China University of Science and Technology, Shanghai 200237 (China)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer A modified SBA-15 mesoporous silica material (NH{sub 2}-SBA-15) was synthesized as sorbent. Black-Right-Pointing-Pointer The material was used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Black-Right-Pointing-Pointer The NH{sub 2}-SBA-15 enables retain Cr (VI) with an enrichment factor of 44. Black-Right-Pointing-Pointer The micro-column of NH{sub 2}-SBA-15 underwent more than 100 adsorption/desorption cycles. - Abstract: A modified SBA-15 mesoporous silica material NH{sub 2}-SBA-15 was synthesized successfully by grafting {gamma}-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L{sup -1} NH{sub 3}{center_dot}H{sub 2}O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min{sup -1} sample loading (300 s) and an elution flow rate of 2.0 mL min{sup -1} (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 {mu}g L{sup -1} level with a detection limit of 0.2 {mu}g L{sup -1} (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).

  18. Preconcentration of lead using solidification of floating organic drop and its determination by electrothermal atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    Mahmoud Chamsaz

    2013-07-01

    Full Text Available A simple microextraction method based on solidification of a floating organic drop (SFOD was developed for preconcentration of lead prior to its determination by electrothermal atomic absorption spectrometry (ETAAS. Ammonium pyrolidinedithiocarbamate (APDC was used as complexing agent, and the formed complex was extracted into a 20 μL of 1-undecanol. The extracted complex was diluted with ethanol and injected into a graphite furnace. An orthogonal array design (OAD with OA16 (45 matrix was employed to study the effects of different parameters such as pH, APDC concentration, stirring rate, sample solution temperature and the exposure time on the extraction efficiency. Under the optimized experimental conditions the limit of detection (based on 3 s and the enhancement factor were 0.058 μg L−1 and 113, respectively. The relative standard deviation (RSD for 8 replicate determinations of 1 μg L−1 of Pb was 8.8%. The developed method was validated by the analysis of certified reference materials and was successfully applied to the determination of lead in water and infant formula base powder samples.

  19. [Determination of metals in waste bag filter of steel works by microwave digestion-flame atomic absorption spectrometry].

    Science.gov (United States)

    Ning, Xun-An; Zhou, Yun; Liu, Jing-Yong; Wang, Jiang-Hui; Li, Lei; Ma, Xiao-Guo

    2011-09-01

    A method of microwave digestion technique-flame atomic absorption spectrometry was proposed to determine the total contents of Cu, Zn, Pb, Cd, Cr and Ni in five different kinds of waste bag filters from a steel plant. The digestion effects of the six acid systems on the heavy metals digestion were studied for the first time. The relative standard deviation (RSD) of the method was between 1.02% and 9.35%, and the recovery rates obtained by standard addition method ranged from 87.7% to 105.6%. The results indicated that the proposed method exhibited the advantages of simplicity, speediness, accuracy and repeatability, and it was suitable for determining the metal elements of the waste bag filter. The results also showed that different digestion systems should be used according to different waste bag filters. The waste bag filter samples from different production processes had different metal elements content. The Pb and Zn were the highest in the waste bag filters, while the Cu, Ni, Cd and Cr were relatively lower. These determination results provided the scientific data for further treatment and disposal of the waste bag filter.

  20. Determination of cadmium in real water samples by flame atomic absorption spectrometry after cloud point extraction

    International Nuclear Information System (INIS)

    Naeemullah, A.; Kazi, T.G.

    2011-01-01

    Water pollution is a global threat and it is the leading world wide cause of death and diseases. The awareness of the potential danger posed by heavy metals to the ecosystems and in particular to human health has grown tremendously in the past decades. Separation and preconcentration procedures are considered of great importance in analytical and environmental chemistry. Cloud point is one of the most reliable and sophisticated separation methods for determination of traces quantities of heavy metals. Cloud point methodology was successfully employed for preconcentration of trace quantities of cadmium prior to their determination by flame atomic absorption spectrometry (FAAS). The metals react with 8-hydroxquinoline in a surfactant Triton X-114 medium. The following parameters such as pH, concentration of the reagent and Triton X-114, equilibrating temperature and centrifuging time were evaluated and optimized to enhance the sensitivity and extraction efficiency of the proposed method. Dilution of the surfactant-rich phase with acidified ethanol was performed after phase separation and the cadmium content was measured by FAAS. The validation of the procedure was carried out by spiking addition methods. The method was applied for determination of Cd in water samples of different ecosystems (lake and river). (author)