WorldWideScience

Sample records for absorption spectra

  1. Absorption Spectra of Astaxanthin Aggregates

    CERN Document Server

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  2. Creating semiconductor metafilms with designer absorption spectra

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  3. Stability properties of wines by absorption spectra

    Science.gov (United States)

    Larena, A.; Vega, J.

    1986-03-01

    The temporal evolution of absorption spectra (370-700 nm) of different spanish wines has been studied by us under the influence of air presence, and the light exposition. In particular, we have exposed the wines to a magenta light. Nevertheless, the color coordinates of wine show a little relative variation (0.1-1 %)

  4. Absorption spectra of AA-stacked graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F [Department of Physics, National Cheng Kung University, Taiwan (China); Shyu, F L, E-mail: fl.shyu@msa.hinet.ne, E-mail: mflin@mail.ncku.edu.t [Department of Physics, ROC Military Academy, 830 Kaohsiung, Taiwan (China)

    2010-08-15

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  5. Absorption Features in Soil Spectra Assessment.

    Science.gov (United States)

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  6. HI absorption spectra for Supernova Remnants in the VGPS survey

    CERN Document Server

    Leahy, Denis

    2016-01-01

    The set of supernova remnants (SNR) from Green's SNR catalog which are found in the VLA Galactic Plane Survey (VGPS) are the objects considered in this study. For these SNR, we extract and analyse HI absorption spectra in a uniform way and construct a catalogue of absorption spectra and distance determinations.

  7. Shell structure of pancakes and the absorption spectra of quasars

    International Nuclear Information System (INIS)

    The formation of the absorption lines of atomic hydrogen in the spectra of distant quasars is considered. A model is constructed of the formation of shells of a pancake formed in the adiabatic picture of the generation of the large-scale structure of the universe. It is shown that the absorption lines can form doublets and the equivalent widths of the corresponding lines are calculated. The physical conditions corresponding to the observed heavy-element absorption spectra are discussed

  8. Absorption Spectra of Magnesium Sulphite Hexahydrate Doped with Nickel

    Science.gov (United States)

    Petkova, Petya N.; Bunzarov, Zhelyu I.; Iliev, Ilia A.; Dimov, Todor N.

    2007-04-01

    In the work are presented absorption spectra of MgSO3.6H2O monocrystals doped with Ni. The spectra are measured in a wide spectral range (200 - 1200nm) at room temperature with polarized light. The impurity of Ni changes essentially the absorption of MgSO3.6H2O because it causes the appearance of additional spectral structures.

  9. Quasar absorption spectra and the structure of the universe

    International Nuclear Information System (INIS)

    Analysis of the spacing between absorption-line systems in quasar spectra and comparison against deep optical survey data for the separation between superclusters of galaxies indicates that the absorption originates in the superclusters. Supported by analogous data on the absorbing gas in the galactic and Magellanic Cloud halos, this inference sharpens theoretical conclusions as to the properties of superclusters. The problem of the unidentified quasar absorption lines is discussed

  10. Quasar absorption spectra and the structure of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.

    1984-03-01

    Analysis of the spacing between absorption-line systems in quasar spectra and comparison against deep optical survey data for the separation between superclusters of galaxies indicates that the absorption originates in the superclusters. Supported by analogous data on the absorbing gas in the galactic and Magellanic Cloud halos, this inference sharpens theoretical conclusions as to the properties of superclusters. The problem of the unidentified quasar absorption lines is discussed.

  11. Absorption spectra of quasars and the structure of the Universe

    International Nuclear Information System (INIS)

    The analysis of the distribution of the distances between the systems of absorption lines in the quasars' spectra and the comparison of this distribution with the distribution of the distances between superclusters in the deep optical surveys are carried out. It is shown that the systems of absorption lines are connected with superclusters of galaxies. The comparison of the absorbing gas parameters with the data for coronae of the Galaxy and of the Magellanic Clouds confirms this connection and permits to revise conclusions of the theory on the properties of superclusters. The problem of unidentified absorption lines in the quasars spectra is discussed

  12. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    Science.gov (United States)

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  13. Ultraviolet absorption spectra of mercuric halides.

    Science.gov (United States)

    Templet, P.; Mcdonald, J. R.; Mcglynn, S. P.; Kendrow, C. H.; Roebber, J. L.; Weiss, K.

    1972-01-01

    The gas phase transitions of the mercuric halides were observed in the UV region by operating at temperatures above 400 K and at vapor pressures on the order of 0.5 mm. Spectral features exhibited by the chloride, bromide, and iodide of mercury correlate energetically with bands previously designated as intermolecular charge transfer transitions. The solution spectra of mercuric iodide and deep color of the crystals (if not due to some solid state interactions) indicate that this molecule may also have longer wavelength transitions.

  14. CO2 Spectroscopy Evaluation Using Atmospheric Solar Absorption Spectra

    OpenAIRE

    Sen, Bhaswar; Brown, Linda R.; Miller, Charles E.; Toon, Geoffrey C.; Toth, Robert A.; Washenfelder, Rebecca A.; Wennberg, Paul O

    2006-01-01

    We evaluated the improvements in successive versions (1996 - 2004) of HITRAN (1) and other molecular line parameter data set (2) to correctly simulate infrared (IR) and near-infrared (NIR) CO 2 transmittance spectra. Understanding the global sources and sinks of CO 2 requires highly accurate measurements (ó 0.3%) and makes extreme de- mands on the spectroscopy. We evaluated the line parameter data sets by fitting solar absorption spectra measured by the JPL MkIV FTIR spectrometer (3) and the ...

  15. Multiple-scattering calculations of x-ray-absorption spectra

    International Nuclear Information System (INIS)

    A high-order multiple-scattering (MS) approach to the calculation of polarized x-ray-absorption spectra, which includes both x-ray-absorption fine structure and x-ray-absorption near-edge structure, is presented. Efficient calculations in arbitrary systems are carried out by using a curved-wave MS path formalism that ignores negligible paths, and has an energy-dependent self-energy and MS Debye-Waller factors. Embedded-atom background absorption calculations on an absolute energy scale are included. The theory is illustrated for metallic Cu, Cd, and Pt. For these cases the MS expansion is found to converge to within typical experimental accuracy, both to experiment and to full MS theories (e.g., band structure), by using only a few dozen important paths, which are primarily single-scattering, focusing, linear, and triangular

  16. Sub-millimetre wave absorption spectra of artificial RNA molecules

    CERN Document Server

    Globus, T; Woolard, D; Gelmont, B

    2003-01-01

    We demonstrate submillimetre-wave Fourier transform spectroscopy as a novel technique for biological molecule characterization. Transmission measurements are reported at frequencies 10-25 cm sup - sup 1 for single- and double-stranded RNA molecules of known base-pair sequences: homopolymers poly[A], poly[U], poly[C] and poly[G], and double-stranded homopolymers poly[A]-poly[U] and poly[C]-poly[G]. Multiple resonances are observed (i.e. in the microwave through terahertz frequency regime). We also present a computational method to predict the low-frequency absorption spectra of short artificial DNA and RNA. Theoretical conformational analysis of molecules was utilized to derive the low-frequency vibrational modes. Oscillator strengths were calculated for all the vibrational modes in order to evaluate their weight in the absorption spectrum of a molecule. Normal modes and absorption spectra of the double-stranded RNA chain poly[C]-poly[G] were calculated. The absorption spectra extracted from the experiment wer...

  17. Absorption spectra of C60 and C70 thin films

    Institute of Scientific and Technical Information of China (English)

    周维亚; 解思深; 钱生法; 周棠; 赵日安; 王刚; 钱露茜; 李文治

    1996-01-01

    The spectra of Cm and Cm thin films over a wide energy range (0.6 to 6.5eV) are measured by transmission spectroscopy and photothermal deflection spectroscopy (PDS), and the optical absorption coefficients are obtained. The optical transitions for the Cm and Cw thin films are analyzed according to the molecular orbital model. The weak absorption spectra of the fullerenes are similar to that of amorphous silicon. The optical energy gaps are given by Tauc’s plots as 1.75 and 1.65eV for C60 and C70 thin films, respectively. The disorders in the fullerene films, which resulted in band-tail state or defect state, are indicated by Urbach edge and sub-gap absorption. It is the disorder that brought the difficulty in determination of the energy gap for fullerenes. The effects of the deflection medium and substrate on the weak absorption spectra of fullerene films are also discussed.

  18. Absorption spectra of crystalline limestones experimentally deformed or tectonised

    Science.gov (United States)

    Cervelle, B.; ChayéD'Albissin, M.; Gouet, G.; Visocekas, R.

    1982-11-01

    Diffuse-reflectance spectra have been measured for a series of samples of Carrara marble experimentally deformed under different cylindrical stress ( P = 0, 100, 250, 500, 980 bars). The creation of point defects that results has been shown up classically by irradiation with β rays (40 krads), thus producing a typical blue coloration linked with the formation of colour centres. The diffuse-reflectance spectra, measured on powders with a microscope-spectrometer in the visible range (400-800 nm), allow the determination of the absorption spectra by means of the Kubelka-Munk function. These absorption spectra have been measured for each of the deformed samples, as well as for different fractions of a very deformed specimen subsequently heated at temperatures between 100 and 500° C for a fixed time. In the same way, tectonised crystalline limestones, of various origins, were studied without any other treatment than the irradiation with β rays. From this study the following preliminary conclusions have been drawn: (1) The absorption spectrum of an undeformed but merely irradiated specimen of crystalline limestone is practically monotonous, but in the deformed specimens a broad band of absorption appears, having a maximum at 620 nm with several shoulders, the chief of which is at 520 nm. (2) This absorption band shows the existence of colour centres, the density of which can be estimated relatively by means of the chromaticity coordinates x and y of the C.I.E. obtained from the diffuse-reflectance spectra (C.I.E. = Commission Internationale de l'Éclairage). (3) An overgrinding of calcite generates defects that have the same spectra as those produced during the experimental deformation. Consequently, in obtaining the powders of grain size 50-80 μm needed for the diffuse spectrometry, great care must be exercised. (4) For a given confining pressure, the defect density is proportional to the deformation rate. (5) One can calibrate the effect of the annealing of

  19. A Parallel Iterative Method for Computing Molecular Absorption Spectra

    OpenAIRE

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-01-01

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamical polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a a matrix-free GMRES method to determine the (interacting) density response. The resulting cod...

  20. Theoretical investigations of absorption and fluorescence spectra of protonated pyrene.

    Science.gov (United States)

    Chin, Chih-Hao; Lin, Sheng Hsien

    2016-05-25

    The equilibrium geometry and 75 vibrational normal-mode frequencies of the ground and first excited states of protonated pyrene isomers were calculated and characterized in the adiabatic representation by using the complete active space self-consistent field (CASSCF) method. Electronic absorption spectra of solid neon matrixes in the wavelength range 495-415 nm were determined by Maier et al. and they were analyzed using time-dependent density functional theory calculations (TDDFT). CASSCF calculations and absorption and emission spectra simulations by one-photon excitation equations were used to optimize the excited and ground state structures of protonated pyrene isomers. The absorption band was attributed to the S0 → S1 electronic transition in 1H-Py(+), and a band origin was used at 20580.96 cm(-1). The displaced harmonic oscillator approximation and Franck-Condon approximation were used to simulate the absorption spectrum of the (1) (1)A' ← X[combining tilde](1)A' transition of 1H-Py(+), and the main vibronic transitions were assigned for the first ππ* state. It shows that the vibronic structures were dominated by one of the eight active totally symmetric modes, with ν15 being the most crucial. This indicates that the electronic transition of the S1((1)A') state calculated in the adiabatic representation effectively includes a contribution from the adiabatic vibronic coupling through Franck-Condon factors perturbed by harmonic oscillators. The present method can adequately reproduce experimental absorption and fluorescence spectra of a gas phase. PMID:27181017

  1. Model galactic coronae: Ionization structure and absorption-line spectra

    International Nuclear Information System (INIS)

    We describe a general model for a gaseous galactic corona, and demonstrate that it is in harmony with a variety of observational and theoretical constraints. We then compute the ionization equilibria of H, He, C, N, O, Si, and S atoms in the corona and determine the strengths of resonance absorption lines arising therein. To this end, we obtain approximate cross sections for ionization of the heavy-element ions by photons of energy E/sub γ/< or =100 eV.We use our results first to discuss the expected absorption spectrum of our Galaxy's corona. Subsequently, we discuss in detail the relevance of our computed equilibria to the suggestion that galactic coronae produce some redshift systems in quasar absorption spectra. Because our model coronae are not isothermal, the ionization structure existing along various lines of sight through them is not in accord with the concept of ''reasonable ionization equilibrium'': a concept assumed to be valid in most analyses of quasar spectra. However, our calculations indicate that typically one well-established redshift system in each quasar absorption spectrum could arise in the corona of an intervening galaxy. This is the number expected from statistical arguments if quasar redshifts are fully cosmological in origin

  2. Transient absorption spectra of the laser-dressed hydrogen atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-10-01

    We present a theoretical study of transient absorption spectra of laser-dressed hydrogen atoms, based on numerical solutions of the time-dependent Schrödinger equation. The timing of absorption is controlled by the delay between an extreme ultra violet (XUV) pulse and an infrared (IR) laser field. The XUV pulse is isolated and several hundred attoseconds in duration, which acts as a pump to drive the ground-state electron to excited p states. The subsequent interaction with the IR field produces dressed states, which manifest as sidebands between the 1s-np absorption spectra separated by one IR-photon energy. We demonstrate that the population of dressed states is maximized when the timing of the XUV pulse coincides with the zero crossing of the IR field, and that their energies can be manipulated in a subcycle time scale by adding a chirp to the IR field. An alternative perspective to the problem is to think of the XUV pulse as a probe to detect the dynamical ac Stark shifts. Our results indicate that the accidental degeneracy of the hydrogen excited states is removed while they are dressed by the IR field, leading to large ac Stark shifts. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 levels using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional three-level model that neglects the dynamical ac Stark shifts.

  3. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  4. Effects of compositional variation on absorption spectra of lunar pyroxenes

    Science.gov (United States)

    Hazen, R. M.; Bell, P. M.; Mao, H. K.

    1978-01-01

    Polarized absorption spectra of lunar pyroxenes with a range of iron, calcium, magnesium, titanium and chromium contents were measured on polished, oriented single crystals; spectral data on pure synthetic FeSiO3 were also recorded. The bands at 1 and 2 microns were found to vary significantly in position with composition within the pyroxene quadrilateral; wavelengths increased with increasing calcium and iron. In the visible region, a weak band at 640 nm correlates in intensity with Cr2O3, but not with titanium as had been previously suggested. The 505-nm ferrous iron peak is a sharp doublet in most low-calcium pyroxenes but a singlet in augites. A peak at 475 nm and an intense absorption edge below 700 nm correlated with titanium content.

  5. Visible absorption spectra of radiation exposed SIRAD dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Butson, Martin J [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Cheung Tsang [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China); Yu, Peter K N [Department of Physics and Materials Science, City University of Hong Kong, Kowloon Tong, Hong Kong (China)

    2006-12-07

    SIRAD badge dosimeters are a new type of personal dosimeter designed to measure radiation exposure up to 200 R and give a visual qualitative measurement of exposure. This is performed using the active dosimeter window, which contains a radiochromic material amalgamated in the badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Measurements have been performed to analyse the absorption spectra of the active window, and results show that the window automatically turns a blue colour upon irradiation and produces two peaks in the absorption spectra located at 617 nm and 567 nm. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 at 50 R exposure and 0.31 at 200 R exposure when irradiated with a 6 MV x-ray energy beam. When compared to the calibration colour strips at 6 MV x-ray energy the film's OD response matches relatively well within 3.5%. An approximate 8% reduction in measured OD to exposure was seen for 250 kVp x-rays compared to 6 MV x-rays. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0 to 200 R. (note)

  6. Optical absorption spectra of the pulse irradiated oxide glasses, 2

    International Nuclear Information System (INIS)

    Nanosecond pulse radiolysis was applied to binary sodium borate glasses. The induced spectrum was a superposition of the component peaks arising from various defect centers. After the observed spectra were resolved into Gaussian components, their decay behavior was disussed. In the binary glasses the transient spectrum around 1.6 eV, which can not be observed in the X-ray-irradiated glasses, was found to decay slowly with time. Addition of small amounts of foreign ions (Ce, Eu and Ti ions) reduced the intensity of this absorption and accelerated the decay rate. The process may be understood by a competition between scavenging reaction by the foreign ion and a recombination of the initial geminate pairs produced on irradiation. (author)

  7. Study of UCI4 structure and absorption spectra

    International Nuclear Information System (INIS)

    The two halides ThCl4 and ThBr4, which are isomorphic at room temperature, have a comparable behaviour when the temperature is lowered. The resonance line of the halogen isotope is split into two lines at a temperature of 96 K for ThBr4 and 70 K for ThCl4. These data confirm the observation of a phase transition first detected by Raman Spectroscopy. Though UCl4 is isomorphic with ThCl4 and ThBr4 at room temperature, it behaves differently versus temperature. The experiments performed from 4,2K to room temperature showed there is only one site for the halogen. UCl4 does not present a phase transition. Once some informations have been gathered on the matrices, optical absorption spectra on ThCl4:U4+ and UCl4 monocristals have been recorded in the visible and infrared ranges at 4,2 K and at room temperature. These spectra have many vibronic lines. To give a first interpretation of the pure electronic lines of U4+-ThCl4 and UCl4 studies on U4+-ThBr4 have been used, in particular the zero phonon lines which correspond to a Dsub(2d) symmetry, have been selected in comparison with the work done on ThBr4:U4+. The energy levels in ThCl4:U4+ and UCl4 have been fitted to the electrostatic parameters F0, F2,F4, F6, the spin orbit parameter, the configuration interaction parameters α, β, γ and crystal field parameters B02, B04, B44, B06, B46

  8. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  9. Constraining the reionization history with QSO absorption spectra

    CERN Document Server

    Gallerani, S; Ferrara, A

    2005-01-01

    We use a semi-analytical approach to simulate absorption spectra of QSOs at high redshifts with the aim of constraining the cosmic reionization history. We consider two physically motivated and detailed reionization histories: (i) an Early Reionization Model (ERM) in which the intergalactic medium is reionized by PopIII stars at $z\\approx 14$, and (ii) a more standard Late Reionization Model (LRM) in which overlapping, induced by QSOs and normal galaxies, occurs at $z\\approx 6$. From the analysis of current Ly$\\alpha$ forest data at $z 6$, however, clear differences start to emerge which are best quantified by the dark gap and peak width distributions. We find that 35 (zero) per cent of the lines of sight within $5.750$ Angstrom in the rest frame of the QSO if reionization is not (is) complete at $z \\gtrsim 6$. Similarly, the ERM predicts peaks of width $\\sim 1$ Angstrom in 40 per cent of the lines of sight in the redshift range $6.0-6.6$; in the same range, LRM predicts no peaks of width $>0.8$ Angstrom. We ...

  10. Population Diagnostics of a Hot NaBr Plasma by Detailed Simulation of Absorption Spectra

    Institute of Scientific and Technical Information of China (English)

    JIN Feng-Tao; ZENG Jiao-Long; YUAN Jian-Min

    2006-01-01

    @@ The experimental absorption spectra of a hot NaBr plasma are theoretically studied by using a detailed level accounting model The sodium and bromine absorption spectra have been well reproduced respectively in the approach of local thermodynamic equilibrium, in which the populations between and within ions are obtained by solving the Saha-Boltzmann equation.

  11. Identification of Metal Absorption Lines on Quasar Spectra of SDSS DR9

    Indian Academy of Sciences (India)

    Cai-Juan Pan; Cheng-Yu Su; Mu-Sheng Li; Wei-Rong Huang

    2014-09-01

    Absorption lines are an important tool for probing the gas in the Universe. Our group aim to identify the metal absorption lines imprinted on the quasar spectra of the BOSS. In this work, we show the metal absorption lines identified in the spectrum of SDSS J160032.95+323638.7.

  12. Interpretation of NO2 absorption in twilight sky spectra

    Science.gov (United States)

    McMahon, B. B.

    1984-07-01

    A multiple scattering model has been developed to calculate nitrogen dioxide (NO2) absorption in the light from the zenith sky during twilight. Model studies show that this absorption is not very sensitive to the atmospheric temperature profile or to tropospheric NO2. The model was used to interpret some ground-based measurements of NO2 sky absorption. Values for the total stratospheric column amount vary from 2 to 12 x 10 to the 15th molec/sq cm, and the mean altitude of the stratospheric concentration profile is around 35 km. These observations are in broad agreement with those of other workers.

  13. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    Science.gov (United States)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  14. Near K-edge absorption spectra of III-V nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, K. [Fukui Univ. (Japan). Research Center for Development of Far-Infrared Region; Hirai, R.; Yamamoto, A. [Fukui Univ. (Japan). Dept. of Electrical and Electronics Engineering; Hirayama, H.; Aoyagi, Y. [Inst. of Physical and Chemical Research (RIKEN), Wako, Saitama (Japan); Yamaguchi, S.; Amano, H. [Dept. of Materials Science and Engineering, Meijo Univ., Nagoya (Japan); Akasaki, I. [High-Tec Research Center, Meijo Univ., Nagoya (Japan); Tanaka, S. [Research Inst. for Electronic Science, Hokkaido Univ., Sapporo (Japan)

    2001-11-08

    Nitrogen and aluminum near K-edge absorption measurements of wurtzite AlN, GaN and InN, and their ternary compounds (AlGaN, InGaN and InAlN) at various molar fractions have been performed using synchrotron radiation. Using the linear polarization of synchrotron radiation, absorption measurements with different incident light angles were also performed. The spectral distribution of the nitrogen K absorption spectra clearly depends on both the incident light angles and the molar fractions of the samples. That of the aluminum K absorption spectra also shows the clear angle dependence, but it does not show the drastic molar dependence. Spectral shape comparisons among the various molar fractions, different incident angles and between the two ion sites are discussed. The numerical component analysis of the K absorption spectra is also presented. (orig.)

  15. Data processing of absorption spectra from photoionized plasma experiments at Z

    Energy Technology Data Exchange (ETDEWEB)

    Hall, I. M.; Durmaz, T.; Mancini, R. C. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Bailey, J. E.; Rochau, G. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States)

    2010-10-15

    We discuss the processing of x-ray absorption spectra from photoionized plasma experiments at Z. The data was recorded with an imaging spectrometer equipped with two elliptically bent potassium acid phthalate (KAP) crystals. Both time-integrated and time-resolved data were recorded. In both cases, the goal is to obtain the transmission spectra for quantitative analysis of plasma conditions.

  16. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    2014-01-01

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  17. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several nonequi...

  18. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  19. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    Science.gov (United States)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  20. Ultraviolet-visible absorption spectra of solid hydrogen sulphide under high pressure

    CERN Document Server

    Kume, T; Sasaki, S; Shimizu, H

    2002-01-01

    Ultraviolet-visible absorption spectra of solid hydrogen sulphide (H sub 2 S) were measured at various pressures from 0.3 to 29 GPa. The absorption edge observed around 4.8 eV at 0.3 GPa indicated a red-shift with increasing pressure, and positioned below 3 eV at 29 GPa. On the basis of the spectra obtained, the energy gap was determined as a function of pressure. The transition to phase IV at 11 GPa was found to lead to a small jump in its pressure dependence and to yield an Urbach tail in the absorption edge.

  1. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas

    CERN Document Server

    Moroshkin, Peter; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-01-01

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  2. Fourier Transform and Photoacoustic Absorption Spectra of Ethylene within 6035–6210 cm-1: Comparative Measurements

    Directory of Open Access Journals (Sweden)

    Venedikt A. Kapitanov

    2010-01-01

    Full Text Available Measurements of ethylene absorption spectra with Fourier Transform (FT and Photoacoustic (PA spectrometers within 6035–6210 cm−1 are described. The methodology used for building the frequency scale for both spectrometers is presented. The methane absorption spectrum, included into the HITRAN database, was used in both cases to calibrate the frequency scale. Ethylene absorption spectra were obtained with the two recording methods; a coincidence of the measured line center positions was obtained with an accuracy of 0.0005 cm−1.

  3. Measurement of XUV-absorption spectra of ZnS radiatively heated foils

    CERN Document Server

    Kontogiannopoulmos, Nikolaos; Thais, Frédéric; Chenais-Popovics, Claude; Sauvan, Pascal; Schott, R; Fölsner, Wolfgang; Arnault, Philippe; Poirier, Michel; Blenski, Thomas

    2008-01-01

    Time-resolved absorption of zinc sulfide (ZnS) and aluminum in the XUV-range has been measured. Thin foils in conditions close to local thermodynamic equilibrium were heated by radiation from laser-irradiated gold spherical cavities. Analysis of the aluminum foil radiative hydrodynamic expansion, based on the detailed atomic calculations of its absorption spectra, showed that the cavity emitted flux that heated the absorption foils corresponds to a radiation temperature in the range 55 60 eV. Comparison of the ZnS absorption spectra with calculations based on a superconfiguration approach identified the presence of species Zn6+ - Zn8+ and S5+ - S6+. Based on the validation of the radiative source simulations, experimental spectra were then compared to calculations performed by post-processing the radiative hydrodynamic simulations of ZnS. Satisfying agreement is found when temperature gradients are accounted for.

  4. Determining neutrino absorption spectra at Ultra-High Energies

    OpenAIRE

    Scholten, Olaf; Van Vliet, Arjen

    2008-01-01

    A very efficient method to measure the flux of Ultra-high energy (UHE) neutrinos is through the detection of radio waves which are emitted by the particle shower in the lunar regolith. The highest acceptance is reached for radio waves in the frequency band of 100-200 MHz which can be measured with modern radio telescopes. In this work we investigate the sensitivity of this detection method to structures in the UHE neutrino spectrum caused by their absorption on the low-energy relic anti-neutr...

  5. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  6. The Infrared Spectra and Absorption Intensities of Amorphous Ices

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark

    2016-06-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and to the interstellar medium, with an emphasis on amorphous and crystalline ices below ~ 120 K. Our goal is to update and add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on three of the simplest and most abundant components of interstellar and solar-system ices: methane (CH4), carbon dioxide (CO2), and methanol (CH3OH). Infrared spectra from ∼ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 120 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  7. Electron-Vibration Structure of Absorption Spectra of Resazurine

    Directory of Open Access Journals (Sweden)

    T.N. Sakun

    2011-01-01

    Full Text Available In the work the experimental and theoretical investigation of the spectral characteristics of a resazurin molecule are carried out. Comparison of results of experimental and theoretical researches has allowed showing, that the spectrum of absorption in the visible region is formed by quantum transitions between electronic states of the molecule, and also by the electron-vibration interaction. In the work the method of reception of theoretical results with the control of molecule symmetry is offered. It has allowed to receive the completely coordinated theoretical and experimental results both by position and by size of the extinction factor and to find out the nature of all quantum transitions and oscillatory frequencies. It is shown, that strips of absorption in the visible region of the spectrum are formed at participation of the totally symmetrical vibrations of the molecule among which the greatest participation stand out vibrations with frequencies in the region of 478 cm – 1, 1467 cm – 1, and also by group of oscillatory frequencies in the region of 1800-2000 cm – 1 which were less than found theoretically for the basic state of the molecule because the degree of loosening of the bonds that responsible for specified vibrations, increases at excitation of the molecule.

  8. Measurement and feature analysis of absorption spectra of four algal species

    Science.gov (United States)

    Zhu, Jianhua; Zhou, Hongli; Han, Bing; Li, Tongji

    2016-04-01

    Two methods for particulate pigments (i.e., quantitative filter technique, QFT, and in vivo measurement, InVivo, respectively) and two methods for dissolved pigments (i.e., Acetone Extracts, AceEx, and high-performance liquid chromatography, HPLC, respectively) were used to obtain the optical absorption coefficient spectra for cultures of four typical algal species. Through normalization and analysis of the spectra, it is shown that (1) the four methods are able to measure optical absorption spectra of particulate and/or dissolved pigments; (2) that the optical absorption spectra of particulate and dissolved pigments were consistent in terms of the peak position in the blue wavelength, and the difference of the peak position in the near infrared wavelength was ~10 nm between each other; and (3) that the leveling effect of the absorption spectra of particulate pigments was significant. These four methods can all effectively measure the absorption coefficients of phytoplankton pigments, while each one has its unique advantages in different applications. Therefore, appropriate method should be carefully selected for various application due to their intrinsic difference.

  9. Excitonic and vibronic structure of absorption spectra of Me-PTCDI and PTCDA crystals

    International Nuclear Information System (INIS)

    The excitonic and vibronic spectra (exciton + one quantum of intramolecular vibration) of Me-PTCDI and PTCDA crystals are studied in the case of strong mixing of a Frenkel exciton (FE) and charge-transfer excitons (CTEs). The linear optical susceptibility is calculated in the framework of dynamical theory of vibronic spectra. The absorption spectra of both crystals have been modelled. The positions, maximal values and integral intensity of the absorption peaks which correspond to the bound exciton-phonon states and to unbound (many-particle) states have been calculated using FE and CTEs's parameters of Me-PTCDI and PTCDA crystals. The calculated spectra show: (i) the possible recovering of excitonic and vibronic regions; (ii) bigger integral intensity of many-particle states in the case of weak exciton-phonon coupling; (iii) the dominant role of the bound states in the case of intermediate and strong exciton-phonon coupling

  10. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    The optical absorption of small mass selected Agn-clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  11. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    Directory of Open Access Journals (Sweden)

    Ole Green

    2010-11-01

    Full Text Available A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA, was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  12. Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM

    CERN Document Server

    Tanga, M; Gatto, A; Greiner, J; Krause, M G H; Diehl, R; Savaglio, S; Walch, S

    2016-01-01

    Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z > 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 per cubic centimeters) collisionally ionised ISM could produce UV/opti...

  13. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    Science.gov (United States)

    Motevich, I. G.; Strekal, N. D.; Nowicky, J. W.; Maskevich, S. A.

    2010-07-01

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA).

  14. Absorption spectra and spectral-kinetic characteristics of the fluorescence of Sanguinarine in complexes with polyelectrolytes and DNA

    International Nuclear Information System (INIS)

    The absorption spectra and stationary and time resolved fluorescence spectra of the isoquinoline alkaloid sanguinarine are studied in aqueous media and during interactions with synthetic polyelectrolytes (polystyrene sulfonate and polyallylamine) and a natural polyelectrolyte (DNA). (authors)

  15. Absorption spectra of new synthesized electroluminescent materials of poly-N-vinylcarbazole derivatives

    NARCIS (Netherlands)

    Makowska-Janusik, M.; Sanetra, J.; Palmers, H.; Bogdal, D.; Gondek, E.; Kityk, I.V.

    2004-01-01

    Absorption spectra in the new synthesized poly-N-vinylcarbazole (PNVK) materials are investigated both theoretically as well as experimentally. The investigated materials were modified by substitution of the backside groups by electron acceptors Cl, Br, I and by donor methoxy in the position 3,6 of

  16. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides

    NARCIS (Netherlands)

    WEIJS, PJW; CZYZYK, MT; VANACKER, JF; SPEIER, W; GOEDKOOP, JB; VANLEUKEN, H; HENDRIX, HJM; DEGROOT, RA; VANDERLAAN, G; BUSCHOW, KHJ; WIECH, G; FUGGLE, JC

    1990-01-01

    We report systematic differences between the shape of the Si K x-ray-absorption spectra of transition-metal silicides and broadened partial densities of Si p states. We use a variety of calculations to show that the origin of these discrepancies is the core-hole potential appropriate to the final st

  17. Rich magneto-absorption spectra in AAB-stacked trilayer graphene

    CERN Document Server

    Do, Thi-Nga; Chang, Cheng-Pong; Lin, Chiun-Yan; Lin, Ming-Fa

    2015-01-01

    The generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich the magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit the single- or twin-peak structures which are determined by the quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anticrosings. AAB, AAA, ABA, and ABC stackings quite differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configur...

  18. On high-redshift quasar absorption spectra and the Riemannian geometry of the Universe

    CERN Document Server

    Palle, D

    2001-01-01

    We study the observed small deviations of high-redshift absorption spectra that are interpreted as a possible evidence for a variable fine structure constant. On the contrary, we claim that the effect could be completely attributed to the small amount of cosmic shear beyond the standard Friedmann expanding Universe.

  19. Quantum theory and experimental studies of absorption spectra and photoisomerization of azobenzene polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Ramanujam, P.S.; Johansen, P.M.;

    1998-01-01

    The microscopic properties of azobenzene chromophores are important for a correct description of optical storage systems based on photoinduced anisotropy in azobenzene polymers. A quantum model of these properties is presented and verified by comparison to experimental absorption spectra for tran...

  20. Calculation of Electronic Absorption Spectra with Account of Thermal Geometry Fluctuations

    Science.gov (United States)

    Guzha, Maris V.; Svitenkov, Andrew I.

    2016-08-01

    An influence of thermal fluctuations of molecule's geometry on calculated electronic-absorption Vis/Uv spectra is considered. Paper presents the quantum chemical modeling of the electronic-absorption spectra for the collection of graphene samples (44, 56, 60, 68 atoms). The calculations were performed by time dependent density functional theory (TDDFT) method in combination with molecular dynamics (MD) simulation at T=300 K. The noticeable changing of spectra relative to single point TDDFT calculation was discovered for two of four structures. We associate achieved results with perturbation of hydrogen and carbon atoms on the edges of the structures. We believe that suggested methodology will be useful in application engineering researches of novel molecules and molecular complexes.

  1. Possible spinel absorption bands in S-asteroid visible reflectance spectra

    Science.gov (United States)

    Hiroi, T.; Vilas, F.; Sunshine, J. M.

    1994-01-01

    Minor absorption bands in the 0.55 to 0.7 micron wavelength range of reflectance spectra of 10 S asteroids have been found and compared with those of spinel-group minerals using the modified Gaussian model. Most of these S asteroids are consistently shown to have two absorption bands around 0.6 and 0.67 micron. Of the spinel-group minerals examined in this study, the 0.6 and 0.67 micron bands are most consistent with those seen in chromite. Recently, the existence of spinels has also been detected from the absorption-band features around 1 and 2 micron of two S-asteroid reflectance spectra, and chromite has been found in a primitive achondrite as its major phase. These new findings suggest a possible common existence of spinel-group minerals in the solar system.

  2. THERMAL ABSORPTION AS THE CAUSE OF GIGAHERTZ-PEAKED SPECTRA IN PULSARS AND MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Wojciech; Rożko, Karolina; Kijak, Jarosław; Melikidze, George I., E-mail: boe@astro.ia.uz.zgora.pl [Institute of Astronomy, University of Zielona Gora, Szafrana 2, 65-516 Zielona Gora (Poland)

    2015-07-20

    We present a model that explains the observed deviation of the spectra of some pulsars and magnetars from the power-law spectra that are seen in the bulk of the pulsar population. Our model is based on the assumption that the observed variety of pulsar spectra can be naturally explained by the thermal free–free absorption that takes place in the surroundings of the pulsars. In this context, the variety of the pulsar spectra can be explained according to the shape, density, and temperature of the absorbing media and the optical path of the line of sight across it. We have put specific emphasis on the case of the radio magnetar SGR J1745–2900 (also known as the Sgr A* magnetar), modeling the rapid variations of the pulsar spectrum after the outburst of 2013 April as due to the free–free absorption of the radio emission in the electron material ejected during the magnetar outburst. The ejecta expands with time and consequently the absorption rate decreases and the shape of the spectrum changes in such a way that the peak frequency shifts toward the lower radio frequencies. In the hypothesis of an absorbing medium, we also discuss the similarity between the spectral behavior of the binary pulsar B1259–63 and the spectral peculiarities of isolated pulsars.

  3. Time variations of narrow absorption lines in high resolution quasar spectra

    CERN Document Server

    Boissé, P; Prochaska, J X; Péroux, C; York, D G

    2015-01-01

    Aims. We have searched for temporal variations of narrow absorption lines in high resolution quasar spectra. A sample of 5 distant sources have been assembled, for which 2 spectra - VLT/UVES or Keck/HIRES - taken several years apart are available. Methods. We first investigate under which conditions variations in absorption line profiles can be detected reliably from high resolution spectra, and discuss the implications of changes in terms of small-scale structure within the intervening gas or intrinsic origin. The targets selected allow us to investigate the time behavior of a broad variety of absorption line systems, sampling diverse environments: the vicinity of active nuclei, galaxy halos, molecular-rich galaxy disks associated with damped Lya systems, as well as neutral gas within our own Galaxy. Results. Absorption lines from MgII, FeII or proxy species with lines of lower opacity tracing the same kind of gas appear to be remarkably stable (1 sigma upper limits as low as 10 % for some components on scal...

  4. Intervening Mg II absorption systems from the SDSS DR12 quasar spectra

    CERN Document Server

    Raghunathan, Srinivasan; Campusano, Luis E; Söchting, Ilona K; Graham, Matthew J; Williger, Gerard M

    2016-01-01

    We present the catalogue of the Mg II absorption systems detected at a high significance level using an automated search algorithm in the spectra of quasars from the twelfth data release of the Sloan Digital Sky Survey. A total of 266,433 background quasars were searched for the presence of absorption systems in their spectra. The continuum modelling for the quasar spectra was performed using a mean filter. A pseudo-continuum derived using a median filter was used to trace the emission lines. The absorption system catalogue contains 39,694 Mg II systems detected at a 6.0, 3.0$\\sigma$ level respectively for the two lines of the doublet. The catalogue was constrained to an absorption line redshift of 0.35 $\\le$ z$_{2796}$ $\\le$ 2.3. The rest-frame equivalent width of the $\\lambda$2796 line ranges between 0.2 $\\le$ W$_r$ $\\le$ 6.2 \\AA. Using Gaussian-noise only simulations we estimate a false positive rate of 7.7 per cent in the catalogue. We measured the number density $\\partial N^{2796}/\\partial z$ of Mg II ab...

  5. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  6. Infrared absorption spectra of anhydrous lutetium orthophosphate activated by Nd3+, Eu3+ and Er3+

    International Nuclear Information System (INIS)

    The IR absorption spectra (40Q-1200 cm-1) of LuPO4, activated by Nd3+, Eu3+, Er3+, are obtained. The introduction of active ions of r.e.e. does not cause noticeable distortions of low resolved spectra. During precise investigation of spectra with a high resolution the redistribution of the line intensities, appearance of bends, change of the shape and non-monotonous shift of absorption line position, especially noticeable when Eu3+ and Er3+ are introduced, are observed. Such behaviour of the spectra is explained by the deformation of coordination polyhedron of r.e.e. cation and the change of the force constants when it is substituted for by r.e.e. ion with a higher number of 4f-electrons. A preferable sensitivity of antisymmetric valent vibration νsub(as) (F) of the anion PO43- to the change of the active ion concentration is pointed out. Non-monotonous character of concentrational behaviour of IR spectra is connected with the complexity of interaction in ternary systems

  7. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  8. Synthesis of rare earth sulfides and their UV-vis absorption spectra

    Institute of Scientific and Technical Information of China (English)

    YUAN Haibin; ZHANG Jianhui; YU Ruijin; SU Qiang

    2009-01-01

    Rare earth sulfides were systematically synthesized via the sulfurization of their commercial oxide powders using CS2 gas to shorten sulfurization time, and their UV-vis absorption spectra were investigated. The appropriate sulfurization conditions were studied. For the rare earth sulfides with the same crystal structure, the sulfurization temperature showed increasing tendency with the decrease of rare earth element atomic radii. The UV-vis absorption spectra of rare earth sulfides did not depend on the crystal structure of rare earth sulfides, but on the 4f electronic structure of rare earth element. The data showed that the optical band gaps of rare earth sulfides were irregular, and the values ranged from 1.65 to 3.75 eV.

  9. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    Science.gov (United States)

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets.

  10. Impact of different visible light spectra on oxygen absorption and surface discoloration of bologna sausage.

    Science.gov (United States)

    Böhner, Nadine; Rieblinger, Klaus

    2016-11-01

    The objective of this study was to evaluate the influence of several visible light spectra in various intensities on the oxygen absorption and surface color of sliced bologna. Sausage samples were stored in a gastight model packaging system and illuminated at 5°C with six single-colored LEDs covering the main part of the visible light spectrum. The initial oxygen level was set at 0.5% in order to simulate common residual oxygen amounts in conventional packaging. The oxygen absorption and the discoloration measured as changes in CIE a*-value were dependent from the applied light intensity. The color stability of bologna was differently affected by light of various wavelengths. The results show that the use of suitable LEDs with specific spectra for display illumination can help to reduce the light induced deterioration of cured sausages in retail markets. PMID:27343458

  11. Forest of absorption lines in quasar spectra and the structure of the Universe

    International Nuclear Information System (INIS)

    The problem of the ''forest'' at absorption lines in the spectra of quasars is discussed in the frame of the A-theory of formation and evolution of the structure of the Universe. It is assumed that the hidden mass is connected with neutrino like particles (possibly instable) with a rest mass of the order of 60-100 eV. An observational test for the hypothesis proposed is discussed

  12. Study on the interaction between diphenhydramine and erythrosin by absorption, fluorescence and resonance Rayleigh scattering spectra

    Institute of Scientific and Technical Information of China (English)

    TANG XiaoLing; LIU ZhongFang; LIU ShaoPu; HU XiaoLi

    2007-01-01

    In pH 4.5 Britton-Robinson (BR) buffer solution, erythrosin (ET) can react with diphenhydramine (DP) to form a 1:1 ion-association complex, which not only results in the change of the absorption spectra, but also results in the great enhancement of resonance Rayleigh scattering (RRS) and the quenching of fluorescence. Furthermore, a new RRS spectrum will appear, and the maximum RRS wavelength was located at about 580 nm.In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reaction and the properties of an analytical chemistry were investigated. A sensitive, simple and new method for the determination of DP by using erythrosin as a probe has been developed. The detection limits for DP were 0.0020 μg/mL for RRS method, 0.088 μg/mL for absorption method and 0.094 μg/mL for fluorophotometry. There was a linear relationship between the absorbance, RRS and fluorescence intensities and the drug concentration in the range of 0.0067-2.0, 0.29-6.4 and 0.31-3.2 μg/mL, respectively. The effects of the interaction of diphenhydramine and erythrosin on the absorption, fluorescence and resonance Rayleigh scattering spectra were discussed. In light polarization experiment, the polarization of RRS at maximum wavelength was measured to be P = 0.9779, and it revealed that the RRS spectrum of DP-ET complex consists mostly of resonance scattering and few resonance fluorescence. In this study, enthalpy of formation and mean polarizability were calculated by AM1 quantum chemistry method. In addition, the reaction mechanism and the reasons for the enhancement of scattering spectra and the energy transfer between absorption, fluorescence and RRS were discussed.

  13. High-resolution Absorption Spectra of Acetylene in 142.8-152.3 nm

    Institute of Scientific and Technical Information of China (English)

    Ya-hua Hu; Chen Zhen; Jing-hua Dai; Xiao-guo Zhou; Shi-lin Liu

    2008-01-01

    The absorption spectra of acetylene molecules was measured under jet-cooled conditions in the wavelength range of 142.8-152.3 nm, with a tunable and highly resolved vacuum ultraviolet (VUV) laser generated by two-photon resonant four wave difference frequency mixing processes. Due to the sufficient vibrational and rotational cooling effect of the molecular beam and the higher resolution VUV laser, the observed absorption spectra exhibit more distinct spectral features than the previous works measured at room temperature. The major three vibrational bands are assigned as a C-C symmetry stretching vibrational progress (v2=0-2) of the C~Ⅱu state of acetylene. The observed shoulder peak at 148.2 nm is assigned to the first overtone band of the trans-bending mode v4 of the C~Ⅱu state of acetylene. Additionally, the two components, 42 (μ1 Ⅱu) and 42(K1Ⅱu), are suggested to exhibit in the present absorption spectra, due to their Penner-Teller effect and transition selection rule. All band origins and bandwidths are obtained subsequently, and it is found that bandwidths are broadened and lifetimes decrease gradually with the excitation of vibration.

  14. UV Absorption and Luminescence Spectra of [2.2]Paracyclophane Phenyl Derivatives

    Science.gov (United States)

    Nurmukhametov, R. N.; Shapovalov, A. V.; Antonov, D. Yu.

    2016-03-01

    UV absorption, fluorescence emission and excitation, and fluorescence excitation synchronous scanning spectra at 298 K and fluorescence and phosphorescence spectra at 77 K were measured for solutions of 4-phenyl- ( I) and 4,12-( II), 4,15- ( III), and 4,16-diphenyl derivatives ( IV) of [2.2]paracyclophane. Analysis of absorption spectra shows that they are determined by two types of chromophores (biphenyl and paracyclophane). It was shown that their weak long wavelength band (310-340 nm) and fluorescence band are governed by the same electron transition from the ground to an excimer-like excited state, as in the case of the unsubstituted macrocycle. Phenyl substitution shows only a weak influence on the energy of this transition. Strong absorption bands of I- IV at 230-310 nm originate from electronic transitions of biphenyl groups in these molecules. The strong bands of isomeric II- IV (with two biphenyl chromophores) differ significantly. It was supposed that this phenomenon was caused by different resonance interaction between electron oscillators (transitions) of the two biphenyl chromophores leading to different splitting of their excited states.

  15. Near infrared cavity enhanced absorption spectra of atmospherically relevant ether-1, 4-Dioxane

    Science.gov (United States)

    Chandran, Satheesh; Varma, Ravi

    2016-01-01

    1, 4-Dioxane (DX) is a commonly found ether in industrially polluted atmosphere. The near infrared absorption spectra of this compound has been recorded in the region 5900-8230 cm- 1 with a resolution of 0.08 cm- 1 using a novel Fourier transform incoherent broadband cavity-enhanced absorption spectrometer (FT-IBBCEAS). All recorded spectra were found to contain regions that are only weakly perturbed. The possible combinations of fundamental modes and their overtone bands corresponding to selected regions in the measured spectra are tabulated. Two interesting spectral regions were identified as 5900-6400 cm- 1 and 8100-8230 cm- 1. No significant spectral interference due to presence of water vapor was observed suggesting the suitability of these spectral signatures for spectroscopic in situ detection of DX. The technique employed here is much more sensitive than standard Fourier transform spectrometer measurements on account of long effective path length achieved. Hence significant enhancement of weaker absorption lines above the noise level was observed as demonstrated by comparison with an available measurement from database.

  16. Infrared absorption spectra of transition metals-doped soda lime silica glasses

    International Nuclear Information System (INIS)

    Infrared (IR) absorption spectra of some prepared undoped and transition metals-doped soda-lime-silicate glasses have been studied in the region of 400-4000 cm-1. IR spectra were analyzed to determine and differentiate the various vibrational modes by applying a deconvolution method to the IR spectra. Although the first sight reveals close similarity between the different transition metal- (TM) doped samples; careful inspection indicates some minor differences depending on the type of TM ions. These observed data are correlated with similar energy of the 3d orbitals of TM atoms in the neutral state and when the atoms are ionized, the 3d orbitals becomes more stable than the 4 s orbitals.

  17. The high resolution vacuum ultraviolet absorption spectra of the group VI dihydrides and deuterides Rydberg series

    CERN Document Server

    Mayhew, C A

    1984-01-01

    The high resolution absorption spectra of the important group VI dihydrides and deuterides in the vacuum ultraviolet below, and up to, their first ionisation potentials are presented. These spectra were recorded using synchrotron radiation as the background light source in conjunction with a 3m normal incidence vacuum spectrograph, equipped with holographic gratings. Due to the nature of the originating orbital for the majority of optical transitions in the VUV well developed Rydberg series are observed. One particular series can be followed up to fairly high n, so that accurate values of the first ionisation potential are determined. The identifications of the Rydberg series are made from arguments relating to their oscillator strengths, quantum defects, symmetries and from comparisons with the spectra of the corresponding united atoms i.e. the inert gases. Examples of the symmetry assignments for Rydberg series from rotational band contour analyses of the lower Rydberg members for the H sub 2 S, H sub 2 Se ...

  18. Decoupling multimode vibrational relaxations in multi-component gas mixtures: Analysis of sound relaxational absorption spectra

    Institute of Scientific and Technical Information of China (English)

    Zhang Ke-Sheng; Wang Shu; Zhu Ming; Ding Yi; Hu Yi

    2013-01-01

    Decoupling the complicated vibrational-vibrational (V-V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures.In our previous work [Acta Phys.Sin.61 174301 (2012)],an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed.In this paper,we develop the model to decouple the V-V coupled energy to each vibrationaltranslational deexcitation path,and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures.We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes,and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak.The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures.The simulation validates the proposed decoupling model.

  19. Time-resolved Absorption Spectra of the Laser-dressed Hydrogen Atom

    Science.gov (United States)

    Murakami, Mitsuko; Chu, Shih-I.

    2013-05-01

    A theoretical study of the transient absorption spectra for the laser-dressed hydrogen atom based on the accurate numerical solution of the time-dependent Schrödinger equation is presented. The timing of absorption is controlled by the time delay between an isolated extreme ultraviolet (XUV) pulse and a dressing infrared (IR) field. We identify two different kinds of physical processes in the spectra. One is the formation of dressed states, signified by the appearance of sidebands between the XUV absorption lines separated by one IR-photon energy. We show that their population is maximized when the XUV pulse coincides with the zero-crossing of the IR field, and that their energy can be manipulated by using a chirped IR field. The other process is the dynamical AC Stark shift induced by the IR field and probed by the XUV pulse. Our calculations indicate that the accidental degeneracy of the hydrogen atom leads to the multiple splittings of each XUV absorption line whose separations change in response to a slowly-varying IR envelope. Furthermore, we observe the Autler-Townes doublets for the n=2 and 3 states using the 656 nm dressing field, but their separation does not agree with the prediction by the conventional 3-level model that neglects the dynamical AC Stark effects.

  20. Absorption Spectra of Ni and Co Nanoparticles using Density Functional Theory

    International Nuclear Information System (INIS)

    Metal nanoparticles (NPs) demonstrate excellent electronic properties due to quantum confinement effects and have tremendous applications in catalysts, optics, single-electron devices, bio-chemical sensors, etc. We propose quantum mechanics method for the calculation of absorption spectra of conduction electrons of some transition metal NPs using time-independent Schrodinger equation and approximate the solution by density functional theory. The total energy functional is obtained from the ground-state energy functional of Thomas-Fermi-Dirac- Weizsaecker atomic system. The absorption function was derived and replaced the density function in the final Euler-Lagrange equation. The total energy functional can then be computed numerically for isolated Ni and Co NPs having fcc lattice structure and different nano sizes. The results show a red-shift absorption peak increase with increasing diameter of nanosphere correspond to the number of atoms required to form nanoparticles of respective sizes. (author)

  1. Absorption features in the spectra of X-ray bursting neutron stars

    CERN Document Server

    Rauch, Thomas; Werner, Klaus

    2008-01-01

    The discovery of photospheric absorption lines in XMM-Newton spectra of the X-ray bursting neutron star in EXO0748-676 by Cottam and collaborators allows us to constrain the neutron star mass-radius ratio from the measured gravitational redshift. A radius of R=9-12km for a plausible mass range of M=1.4-1.8Msun was derived by these authors. It has been claimed that the absorption features stem from gravitationally redshifted (z=0.35) n=2-3 lines of H- and He-like iron. We investigate this identification and search for alternatives. We compute LTE and non-LTE neutron-star model atmospheres and detailed synthetic spectra for a wide range of effective temperatures (effective temperatures of 1 - 20MK) and different chemical compositions. We are unable to confirm the identification of the absorption features in the X-ray spectrum of EXO0748-676 as n=2-3 lines of H- and He-like iron (Fe XXVI and Fe XXV). These are subordinate lines that are predicted by our models to be too weak at any effective temperature. It is m...

  2. Measurability of kinetic temperature from metal absorption-line spectra formed in chaotic media

    CERN Document Server

    Levshakov, S A; Agafonova, I I; Levshakov, Sergei A.; Takahara, Fumio; Agafonova, Irina I.

    1999-01-01

    We present a new method for recovering the kinetic temperature of the intervening diffuse gas to an accuracy of 10%. The method is based on the comparison of unsaturated absorption-line profiles of two species with different atomic weights. The species are assumed to have the same temperature and bulk motion within the absorbing region. The computational technique involves the Fourier transform of the absorption profiles and the consequent Entropy-Regularized chi^2-Minimization [ERM] to estimate the model parameters. The procedure is tested using synthetic spectra of CII, SiII and FeII ions. The comparison with the standard Voigt fitting analysis is performed and it is shown that the Voigt deconvolution of the complex absorption-line profiles may result in estimated temperatures which are not physical. We also successfully analyze Keck telescope spectra of CII1334 and SiII1260 lines observed at the redshift z = 3.572 toward the quasar Q1937--1009 by Tytler {\\it et al.}.

  3. Pressure dependence of Hexanitrostilbene Raman/ electronic absorption spectra to validate DFT EOS

    Science.gov (United States)

    Farrow, Darcie; Alam, Kathleen; Martin, Laura; Fan, Hongyou; Kay, Jeffrey; Wixom, Ryan

    2015-06-01

    Due to its thermal stability and low vapor pressure, Hexanitrostilbene (HNS) is often used in high-temperature or vacuum applications as a detonator explosive or in mild detonating fuse. Toward improving the accuracy of the equation of state used in hydrodynamic simulations of the performance of HNS, we have measured the Raman and electronic absorption spectra of this material under static pressure in a diamond anvil cell. Density functional theory calculations were used to simulate the pressure dependence of the Raman/Electronic spectra along the Hugoniot and 300K isotherm for comparison and to aid in interpreting the data. We will discuss changes in the electronic structure of HNS under pressure, validation of a DFT predicted equation of state (EOS), and using this data as a basis for understanding future pulsed Raman measurements on dynamically compressed HNS samples.

  4. Absorption Spectra of a Three-Level Atom Embedded in a PBG Reservoir

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ke; ZHANG Han-Zhuang

    2007-01-01

    We introduce the 'decay rate' terms into the density matrix equations of an atom embedded in a photonic band gap (PSG)reservoir successfully.By utilizing the master equations,the probe absorption spectra and the refractivity properties of a three-level atom in the PBG reservoir are obtained.The interaction between the atom and the PBG reservoir as well as the effects of the quantum interference on the absorption of the atom has also been taken into account.It is interesting that two different types of the anomalous dispersion relations of refractivity are exhibited in one dispersion line.The methodology used here can be applied to theoretical investigation of quantum interference effects of other atomic models embedded in a PBG reservoir.

  5. Index of Refraction and Absorption Coefficient Spectra of Paratellurite in the Terahertz Region

    Science.gov (United States)

    Unferdorben, Márta; Buzády, Andrea; Hebling, János; Kiss, Krisztián; Hajdara, Ivett; Kovács, László; Péter, Ágnes; Pálfalvi, László

    2016-07-01

    Index of refraction and absorption coefficient spectra of pure paratellurite (α-TeO2) crystal as a potential material for terahertz (THz) applications were determined in the 0.25-2 THz frequency range at room temperature by THz time domain spectroscopy (THz-TDS). The investigation was performed with beam polarization both parallel (extraordinary polarization) and perpendicular (ordinary polarization) to the optical axis [001] of the crystal. Similarly to the visible spectral range, positive birefringence was observed in the THz range as well. It was shown that the values of the refractive index for extraordinary polarization are higher and show significantly larger dispersion than for the ordinary one. The absorption coefficient values are also larger for extraordinary polarization. The measured values were fitted by theoretical curves derived from the complex dielectric function containing independent terms of Lorentz oscillators due to phonon-polariton resonances. The results are compared with earlier publications, and the observed significant discrepancies are discussed.

  6. Efficient Calculation of Electronic Absorption Spectra by Means of Intensity-Selected TD-DFTB

    CERN Document Server

    Rüger, Robert; Lu, You; Frenzel, Johannes; Heine, Thomas; Visscher, Lucas

    2014-01-01

    During the last two decades density functional based linear response approaches have become the de facto standard for the calculation of optical properties of small and medium-sized molecules. At the heart of these methods is the solution of an eigenvalue equation in the space of single-orbital transitions, whose quickly increasing number makes such calculations costly if not infeasible for larger molecules. This is especially true for time-dependent density functional tight binding (TD-DFTB), where the evaluation of the matrix elements is sufficiently cheap so that relatively large systems can be studied. We propose to do an oscillator strength based truncation of the single-orbital transition space to reduce the computational effort of TD-DFTB based absorption spectra calculations. We show that even a sizeable truncation does not destroy the principal features of the absorption spectrum, while naturally avoiding the unnecessary calculation of excitations with small oscillator strengths. We argue that the re...

  7. Optical Absorption Spectra and Intraband Dynamics in Terahertz-Driven Semiconductor Superlattice

    Institute of Scientific and Technical Information of China (English)

    MI Xian-Wu

    2004-01-01

    @@ We have theoretically investigated the optical absorption spectrum and intraband dynamics by subjecting a superlattice to both a terahertz (THz)-frequency driving field and an optical pulse by using an excitonic basis.In the presence of a THz dc field, the satellite structures in the absorption spectra are presented. The satellite structure is a result from the THz nonlinear dynamics of Wannier-Stark ladder excitons. On the other hand, the coherent intraband polarization is investigated. We find that the excitonic Bloch oscillation is driven by the THz field and yields an intraband polarization that continues to oscillate at times much longer than the intraband dephasing time. The temporal evolution of the slowly varying components of the intraband polarization is dependent on the THz frequency.

  8. Effects of domain size on x-ray absorption spectra of boron nitride doped graphenes

    Science.gov (United States)

    Li, Xin; Hua, Weijie; Wang, Bo-Yao; Pong, Way-Faung; Glans, Per-Anders; Guo, Jinghua; Luo, Yi

    2016-08-01

    Doping is an efficient way to open the zero band gap of graphene. The control of the dopant domain size allows us to tailor the electronic structure and the properties of the graphene. We have studied the electronic structure of boron nitride doped graphenes with different domain sizes by simulating their near-edge X-ray absorption fine structure (NEXAFS) spectra at the N K-edge. Six different doping configurations (five quantum dot type and one phase-separated zigzag-edged type) were chosen, and N K-edge NEXAFS spectra were calculated with large truncated cluster models by using the density functional theory with hybrid functional and the equivalent core hole approximation. The opening of the band gap as a function of the domain size is revealed. We found that nitrogens in the dopant boundary contribute a weaker, red-shifted π* peak in the spectra as compared to those in the dopant domain center. The shift is related to the fact that these interfacial nitrogens dominate the lowest conduction band of the system. Upon increasing the domain size, the ratio of interfacial atom decreases, which leads to a blue shift of the π* peak in the total NEXAFS spectra. The spectral evolution agrees well with experiments measured at different BN-dopant concentrations and approaches to that of a pristine h-BN sheet.

  9. Appraisal of Surface Hopping as a Tool for Modeling Condensed Phase Linear Absorption Spectra.

    Science.gov (United States)

    Petit, Andrew S; Subotnik, Joseph E

    2015-09-01

    Whereas surface hopping is usually used to study populations and mean-field dynamics to study coherences, in two recent papers, we described a procedure for calculating dipole-dipole correlation functions (and therefore absorption spectra) directly from ensembles of surface hopping trajectories. We previously applied this method to a handful of one-dimensional model problems intended to mimic the gas phase. In this article, we now benchmark this new procedure on a set of multidimensional model problems intended to mimic the condensed phase and compare our results against other standard semiclassical methods. By comparison, we demonstrate that methods that include only dynamical information from one PES (the standard Kubo approaches) exhibit large discrepancies with the results of exact quantum dynamics. Furthermore, for model problems with nonadiabatic excited state dynamics but no quantized vibrational structure in the spectra, our surface hopping approach performs comparably to using Ehrenfest dynamics to calculate the electronic coherences. That being said, however, when quantized vibrational structures are present in the spectra but the electronic states are uncoupled, performing the dynamics on the mean PES still outperforms our present method. These benchmark results should influence future studies that use ensembles of independent semiclassical trajectories to model linear as well as multidimensional spectra in the condensed phase. PMID:26575927

  10. Atomic calculations and search for variation of the fine-structure constant in quasar absorption spectra

    Science.gov (United States)

    Dzuba, V. A.; Flambaum, V. V.

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  11. Atomic calculations and search for variation of the fine structure constant in quasar absorption spectra

    CERN Document Server

    Dzuba, V A

    2008-01-01

    A brief review of the search for variation of the fine structure constant in quasar absorption spectra is presented. Special consideration is given to the role of atomic calculations in the analysis of the observed data. A range of methods which allow to perform calculations for atoms or ions with different electron structure and which cover practically all periodic table of elements is discussed. Critical compilation of the results of the calculations as well as a review of the most recent results of the analysis are presented.

  12. Decay heat and anti-neutrino energy spectra in fission fragments from total absorption spectroscopy

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2015-10-01

    Decay studies of over forty 238U fission products have been studied using ORNL's Modular Total Absorption Spectrometer. The results are showing increased decay heat values, by 10% to 50%, and the energy spectra of anti-neutrinos shifted towards lower energies. The latter effect is resulting in a reduced number of anti-neutrinos interacting with matter, often by tens of percent per fission product. The results for several studied nuclei will be presented and their impact on decay heat pattern in power reactors and reactor anti-neutrino physics will be discussed.

  13. IR absorption and surface-enhanced Raman spectra of the isoquinoline alkaloid berberine

    Science.gov (United States)

    Strekal', N. D.; Motevich, I. G.; Nowicky, J. W.; Maskevich, S. A.

    2007-01-01

    We present the IR absorption and surface-enhanced Raman scattering (SERS) spectra of the isoquinoline alkaloid berberine adsorbed on a silver hydrosol and on the surface of a silver electrode for different potentials. Based on quantum chemical calculations, for the first time we have assigned the vibrations in the berberine molecule according to vibrational mode. The effect of the potential of the silver electrode on the geometry of sorption of the molecule on the surface is considered, assuming a short-range mechanism for enhancement of Raman scattering.

  14. Absorption and fluorescence spectra of gallium phosphide(GaP) nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YUE Long-yi; ZHANG Zhao-chun; CHEN Xu

    2006-01-01

    The optical absorption spectrum ranging from 200 to 800 nm and fluorescence spectra ranging from 300 to 650 nm of GaP nanoparticles at room temperature were reported. From the optical absorption spectrum it is inferred that the GaP nanoparticles exhibit a direct transition of about 410 nm (3.02 eV) and an indirect transition around 480 nm (2.58 eV). In addition, an absorption peak at about 308 nm (4.02 eV) corresponding to the direct transition at higher energy was observed. The absorption peak was attributed to the transition from the spin-orbit-split valence band to the lowest conduction band along the A direction. By observing the fluorescence of the GaP nanoparticles, it follows that multiple emission bands corresponding to the violet, blue, and yellow light are shown peaking at about 400.4-414.1 nm (3.097-2.994 eV), 450.1-466.8 nm (2.755-2.656 eV), and 582.4 nm (2.129 eV),respectively. The violet and blue light emissions are ascribed to the direct and indirect transitions from conduction band to valence band of the GaP nanoparticles. As to the weak yellow emission, it may be attributed to the radiative recombination from defect centers. The spin-orbit-splitting of the GaP nanoparticles is determined as about 100 meV.

  15. Modeling the absorption spectra of Er3+ and Yb3+ in a phosphate glass

    Science.gov (United States)

    Gruber, John B.; Sardar, Dhiraj K.; Zandi, Bahram; Hutchinson, J. Andrew; Trussell, C. Ward

    2003-10-01

    Absorption spectra of Er3+ and Yb3+ ions, codopants in a phosphate glass, are reported at 8 K and at wavelengths between 350 and 1600 nm. Detailed structure appearing in the spectra, associated with individual multiplet states, 2S+1LJ, of Er3+(4f11) and Yb3+(4f13) is interpreted using a ligand-field coordination sphere model to characterize the microscopic environment surrounding the rare earth ions in multiple sites. Inhomogeneous broadening of the spectra is likely due to different configurations of PO4 tetrahedra clustered about a caged rare earth ion in the amorphous host. Similarity between the Er3+ spectrum in the glass and in the spectrum of single-crystal LiErP4O12, where Er3+ occupies sites of C2 symmetry, suggests that an averaged site symmetry of C2 is a reasonable approximation for Er3+ and Yb3+ ions in the phosphate glass. Calculated splitting of multiplet states by the ligand-field cluster model are compared with energy levels derived from the observed absorption peaks and well-defined shoulders. Inhomogeneous broadening of the spectra limit the precision in establishing the energy of the multiplet splittings, but the analysis is useful for modeling studies of the Er:Yb:phosphate glass as an eye-safe laser (1.53 μm). The splitting of the Yb3+(4f13)2FJ states is determined using parameters obtained from the Er3+ set by means of the three-parameter theory. No adjustments were made to the Yb3+ parameters that predict multiplet splittings in reasonable agreement with experimental data.

  16. Determination of phosphorus using high-resolution diphosphorus molecular absorption spectra produced in the graphite furnace

    Science.gov (United States)

    Huang, Mao Dong; Becker-Ross, Helmut; Okruss, Michael; Geisler, Sebastian; Florek, Stefan

    2016-01-01

    Molecular absorption of diphosphorus was produced in a graphite furnace and evaluated in view of its suitability for phosphorus determination. Measurements were performed with two different high-resolution continuum source absorption spectrometers. The first system is a newly in-house developed simultaneous broad-range spectrograph, which was mainly used for recording overview absorption spectra of P2 between 193 nm and 245 nm. The region covers the main part of the C 1Σu+ ← X 1Σg+ electronic transition and shows a complex structure with many vibrational bands, each consisting of a multitude of sharp rotational lines. With the help of molecular data available for P2, an assignment of the vibrational bands was possible and the rotational structure could be compared with simulated spectra. The second system is a commercial sequential continuum source spectrometer, which was used for the basic analytical measurements. The P2 rotational line at 204.205 nm was selected and systematically evaluated with regard to phosphorus determination. The conditions for P2 generation were optimized and it was found that the combination of a ZrC modified graphite tube and borate as a chemical modifier were essential for a good production of P2. Serious interferences were found in the case of nitrate and sulfuric acid, although the nitrate interference can be eliminated by a higher pyrolysis temperature. The reliability of the method was proved by analysis of certified samples. Using standard tubes, a characteristic mass of 10 ng and a limit of detection of 7 ng were found. The values could further be improved by a factor of ten using a miniaturized tube with an internal diameter of 2 mm. Compared to the conventional method based on the phosphorus absorption line at 213.618 nm, the advantages of using P2 are the gentle temperature conditions and the potential of performing a simultaneous multi-line evaluation to further improve the limit of detection.

  17. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  18. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL;

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increas...

  19. A wavelet analysis for the X-ray absorption spectra of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Penfold, T. J. [Ecole polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne (Switzerland); SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland); Tavernelli, I.; Rothlisberger, U. [Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne (Switzerland); Milne, C. J.; Abela, R. [SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland); Reinhard, M.; Nahhas, A. El; Chergui, M. [Ecole polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland)

    2013-01-07

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  20. Removal of Mars atmospheric gas absorption from Phobos-2/ISM spectra

    Science.gov (United States)

    Castronuovo, M. M.; Ulivieri, C.

    Infrared imaging spectrometer (ISM) is an imaging spectrometer in the range of the near infrared that flew onboard of Soviet probe Phobos 2 in 1989. Its first objective was to obtain information about the mineralogic composition of the soil of Mars and its satellite Phobos, and about the spatial and temporal variability of the Martian atmosphere. In the spectral range of the instrument 0.76-3.16 microns, the radiation emerging from Mars' atmosphere is almost entirely due to the solar radiation reflected by the soil. Therefore, independent knowledge of the spectral transmittance of the atmosphere allows us to eliminate the atmospheric effect from the ISM data and so to obtain the spectral signature of the planet soil. In the present work the Martian atmospheric transmittance has been computed using FASCODE and the spectral lines atlas HITRAN of AFGL. The atmospheric profile has been defined on the basis of the work of Moroz et al. Then, the convolution of the computed transmittance with the response functions of ISM has been carried out to obtain the atmospheric absorption from the measurements it is necessary to renormalize the transmittance computed with FASCODE so that the depth of the absorption bands is the same as that of the bands measured by ISM. Finally, dividing the measured spectra by the computed ones we obtain the spectra signature of Martian soil from which it is possible to deduce the mineralogical composition of the observed zones.

  1. Absorption spectra of e-beam-excited Ne, Ar, and Kr, pure and in binary mixtures.

    Science.gov (United States)

    Levchenko, A O; Ustinovskii, N N; Zvorykin, V D

    2010-10-21

    A technique using the broadband emission of a laser plume as probe radiation is applied to record UV-visible (190-510 nm) absorption spectra of Ne, Ar, and Kr, pure and in binary mixtures under moderate e-beam excitation up to 1 MW/cm(3). In all the rare gases and mixtures, the absorption spectra show continuum related to Rg(2) (+) homonuclear ions [peaking at λ∼285, 295, and 320 nm in Ne, Ar, and Kr(Ar/Kr), respectively] and a number of atomic lines related mainly to Rg(∗)(ms) levels, where m is the lowest principal quantum number of the valence electron. In argon, a continuum related to Ar(2) (∗) (λ∼325 nm) is also recorded. There are also trains of narrow bands corresponding to Rg(2) (∗)(npπ (3)Π(g))←Rg(2) (∗)(msσ (3)Σ(u) (+)) transitions. All the spectral features mentioned above were reported in literature but have never been observed simultaneously. Although charge transfer to a homonuclear ion of the heavier additive is commonly believed to dominate in binary rare-gas mixtures, it is found in this study that in Ne/Kr mixture, the charge is finally transferred from the buffer gas Ne(2) (+) ion not to Kr(2) (+) but to heteronuclear NeKr(+) ion.

  2. A wavelet analysis for the X-ray absorption spectra of molecules

    International Nuclear Information System (INIS)

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO)3(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  3. Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal

    Science.gov (United States)

    Gerasimova, Yu. V.; Sofronova, S. N.; Gudim, I. A.; Oreshonkov, A. S.; Vtyurin, A. N.; Ivanenko, A. A.

    2016-01-01

    Infrared absorption spectra of a Nd0.5Ho0.5Fe3(BO3)4 crystal in the spectral range of 30-1700 cm-1 have been measured at temperatures from 6 to 300 K. The experimental spectra have been analyzed based on the semiempirical calculation of the lattice dynamics and the analysis of correlation diagrams of borate complexes. No changes associated with structural phase transitions have been detected in the temperature range of measurements; the effect of magnetic ordering on the infrared absorption spectra has not been observed.

  4. Constraints on Reionization and Source Properties from the Absorption Spectra of z>6.2 Quasars

    CERN Document Server

    Haiman, A M Z

    2006-01-01

    We make use of hydrodynamical simulations of the intergalactic medium (IGM) to create model quasar absorption spectra. We compare these model spectra with the observed Keck spectra of three z>6.2 quasars with full Gunn-Peterson troughs: SDSS J1148+5251 (z=6.42), SDSS J1030+0524 (z=6.28), and SDSS J1623+3112 (z=6.22). We fit the probability density distributions (PDFs) of the observed Ly alpha optical depths with those generated from the simulation, by exploring a range of values for the size of the quasar's surrounding HII region, R_S, the volume-weighted mean neutral hydrogen fraction in the ambient IGM, x_H, and the quasar's ionizing photon emissivity, N_Q. In order to avoid averaging over possibly large sightline-to-sightline fluctuations in IGM properties, we analyze each observed quasar independently. We find the following results for J1148+5251, J1030+0524, and J1623+3112: The best-fit sizes R_S are 40, 41, and 29 (comoving) Mpc, respectively. These constraints are tight, with only ~ 10% uncertainties, ...

  5. Narrow C IV absorption doublets on quasar spectra of the Baryon Oscillation Spectroscopic Survey

    CERN Document Server

    Zhi-fu, Chen; Luwenjia, Zhou; Yanmei, Chen

    2016-01-01

    In this paper, we extend our works of Papers I and II, which are assigned to systematically survey \\CIVab\\ narrow absorption lines (NALs) with \\zabs$\\ll$\\zem\\ on quasar spectra of the Baryon Oscillation Spectroscopic Survey (BOSS), to collect \\CIV\\ NALs with \\zabs$\\approx$\\zem\\ from blue to red wings of \\CIVwave\\ emission lines. Together with Papers I and II, we have collected a total number of 41,479 \\CIV\\ NALs with $1.4544\\le$\\zabs$\\le4.9224$ in surveyed spectral region redward of \\lya\\ until red wing of \\CIVwave\\ emission line. We find that the stronger \\CIV\\ NALs tend to be the more saturated absorptions, and associated systems (\\zabs$\\approx$\\zem) seem to have larger absorption strengths when compared to intervening ones (\\zabs$\\ll$\\zem). The redshift density evolution behavior of absorbers (the number of absorbers per redshift path) is similar to the history of the cosmic star formation. When compared to the quasar-frame velocity ($\\beta$) distribution of \\MgII\\ absorbers, the $\\beta$ distribution of \\C...

  6. Polarized absorption spectra of highly oriented two-dimensional aggregates of tetrachlorobenzimidazolocarbocyanine in thin films

    International Nuclear Information System (INIS)

    Reaching a control on the mesoscopic morphology and internal molecular arrangement of cyanine aggregates is an important step for realization of devices with tailor-made optical properties. Despite a wealth of research, understanding of the relationship between molecular organization, excitonic states and dynamics of aggregates is still preliminary. To this end, we have employed polarized absorption spectroscopy to investigate the relationship between internal molecular organization and excitonic states of J-aggregates in 1,1',3,3'tetraethyl-5,5',6,6'-tetrachlorobenzimidazolocarbocyanine (TTBC) thin films in poly-vinyl alcohol (PVA). Angular dependence of the UV-vis spectra has been measured at 11 different orientations between the electric field polarization and the macroscopic alignment axis. Aggregate spectral response consisted of an asymmetrically split Davydov pair of bands exhibiting opposite polarization: an H-band (505 nm, Lorentzian-like, polarized along the macroscopic film axis) and a J-band (594 nm, one-dimensional J-aggregate like band shape, polarized perpendicular to the macroscopic film axis). The polarized absorption observations were found to be consistent with a herringbone model for which the internal molecular arrangement, the excited state structure and dynamics have recently been detailed by us upon interpretation of isotropic absorption data in ionic aqueous solution

  7. Polarized absorption spectra of highly oriented two-dimensional aggregates of tetrachlorobenzimidazolocarbocyanine in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ozcelik, Serdar [Chemistry Department, Izmir Institute of Technology, Urla 35430, Izmir (Turkey)], E-mail: serdarozcelik@iyte.edu.tr; Guelen, Demet [Physics Department, Middle East Technical University (METU), 06531 Ankara (Turkey)

    2008-05-15

    Reaching a control on the mesoscopic morphology and internal molecular arrangement of cyanine aggregates is an important step for realization of devices with tailor-made optical properties. Despite a wealth of research, understanding of the relationship between molecular organization, excitonic states and dynamics of aggregates is still preliminary. To this end, we have employed polarized absorption spectroscopy to investigate the relationship between internal molecular organization and excitonic states of J-aggregates in 1,1',3,3'tetraethyl-5,5',6,6'-tetrachlorobenzimidazolocarbocyanine (TTBC) thin films in poly-vinyl alcohol (PVA). Angular dependence of the UV-vis spectra has been measured at 11 different orientations between the electric field polarization and the macroscopic alignment axis. Aggregate spectral response consisted of an asymmetrically split Davydov pair of bands exhibiting opposite polarization: an H-band (505 nm, Lorentzian-like, polarized along the macroscopic film axis) and a J-band (594 nm, one-dimensional J-aggregate like band shape, polarized perpendicular to the macroscopic film axis). The polarized absorption observations were found to be consistent with a herringbone model for which the internal molecular arrangement, the excited state structure and dynamics have recently been detailed by us upon interpretation of isotropic absorption data in ionic aqueous solution.

  8. Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

    CERN Document Server

    Murphy, M T; Flambaum, V V

    2003-01-01

    [Abridged] We previously presented evidence for a varying fine-structure constant, alpha, in two independent samples of Keck/HIRES QSO spectra. Here we present a detailed many-multiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2absorption clouds. Assuming that da/a=0 at z_abs=0, the da...

  9. Molecfit: A general tool for telluric absorption correction II. Quantitative evaluation on ESO-VLT X-Shooter spectra

    CERN Document Server

    Kausch, W; Kimeswenger, S; Barden, M; Szyszka, C; Jones, A M; Sana, H; Horst, H; Kerber, F

    2015-01-01

    Context: Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT...

  10. The nonlinear spectra of transneptunian objects: Evidence for organic absorption bands

    Science.gov (United States)

    Fraser, W.; Brown, M.; Emery, J.

    2014-07-01

    The reflectance spectra of small (D≲250 km) transneptunian objects (TNOs) are generally quite simple. Water-ice absorption is the only feature firmly detected on the majority of TNOs (Brown et al. 2012). Tentative detections of other materials have been presented (e.g., Barucci et al. 2011), but generally speaking, the spectra of small TNOs are nearly linear in the optical (0.5 Moroz et al. 1998). The specific shape of the feature depends on the molecular structure of the organic material, with longer hydrocarbons generally producing wider absorptions. The assertion that the optical spectra of small TNOs are influenced by this hydrocarbon feature is reasonable as the feature is the general result of irradiation of simple organic H-, C-, and N-bearing materials, not dissimilar to that expected to occur on young TNOs (Brunetto et al. 2006). The interpretation of this feature as an absorption due to organics is compatible with the conclusions of Fraser and Brown (2012) who found that the small dynamically excited Kuiper-belt objects exhibit two different compositional classes. They assert that the difference between the neutral and red classes are the result of mixing of a non-icy (likely silicate) material component with two different organic components, one for each class of object. Brown et al. (2011) argue that because there is no quantitative difference between the colors of Centaurs and more distant TNOs, the two separate organic components are not the result of recent surface evolution, but rather is caused by early, post-formation volatile loss from the TNOs. Irradiation then rapidly drove evolution along two separate chemical pathways between those objects that lost and those objects that retained their volatiles. If it is shown to be true that the source of TNO spectral shapes are due to hydrocarbons, then the shape of the feature, which spans the UV-NIR region, holds the potential to reflect the relative irradiation doses experienced in the early Solar

  11. Absorption, phosphorescence and Raman spectra of IrQ(ppy){sub 2} organometallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, Silviu, E-mail: silv@infim.ro [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, Iulia Corina [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Tsuboi, Taiju [Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2015-07-15

    The absorption and photoluminescence (PL) spectra, PL decays, Raman spectrum, cyclic voltammetry (CV) and nuclear magnetic resonance of heteroleptic Ir-compound IrQ(ppy){sub 2} compound with two phenylpyridine (ppy) ligands and one quinoline (Q) ligand have been investigated experimentally and theoretically. Two very weak absorption bands due to the transitions to the triplet states are found at about 560 and 595 nm in IrQ(ppy){sub 2} doped in CH{sub 2}Cl{sub 2} solution. IrQ(ppy){sub 2} exhibits a dual emission of red and green phosphorescence bands. The red emission intensity is much higher than the green one in IrQ(ppy){sub 2} powder, but much lower than the green one in lightly IrQ(ppy){sub 2}-doped CH{sub 2}Cl{sub 2} solution and PMMA film. The intensity ratio of the red emission to the green emission, however, is observed to increase with increasing the IrQ(ppy){sub 2} concentration in CH{sub 2}Cl{sub 2} solution and PMMA film. The enhancement of the red emission is suggested to be caused by the Forester energy transfer from Ir-ppy component to Ir–Q components between two neighboring IrQ(ppy){sub 2} molecules. The HOMO energy is estimated to be −4.865 eV from the CV measurement, which is close to the HOMO energy of −4.844 eV calculated using the time dependent density function theory (TD-DFT). The LUMO energy is estimated as −2.856 eV from the HOMO energy and the long-wavelength absorption edge found at 617 nm in the absorption spectrum. The absorption spectrum of IrQ(ppy){sub 2} is calculated by the TD-DFT. Discussion is given on a deviation of the calculated spectrum from the measured spectrum. - Graphical abstract: Display Omitted - Highlights: • IrQ(ppy){sub 2} has red and green emissions of different ratio between film and solution. • Intensity ratio of red to green emissions increases with IrQ(ppy){sub 2} concentration. • Enhancement of red emission is due to energy transfer in two neighboring IrQ(ppy){sub 2}. • Lowest-energy absorption

  12. TDDFT Study of the Electronic Structure, Absorption and Emission Spectra of the Light Emitters of the Amazing Firefly Bioluminescence and Solvation Effects on the Spectra

    Institute of Scientific and Technical Information of China (English)

    REN,Ai-Min; GUO,Jing-Fu; FENG,Ji-Kang; ZOU,Lu-Yi; LI,Zhong-Wei; GODDARD,John,David

    2008-01-01

    The ground and excited state properties of luciferin (LH2) and oxyluciferin (OxyLH2), the bioluminescent chemicals in the firefly, have been characterized using density functional theory (DFT) and time dependent DFT (TDDFT) methods. The effects of solvation on the electronic absorption and emission spectra of luciferin and oxyluciferin were predicted with a self-consistent isodensity polarized continuum model of the solvent using TDDFT.The S0→S1 vertical excitation energies in the gas phase and in water were obtained. Optimizations of the excited state geometries permitted the first predictions of the fluorescence spectra for these biologically important molecules. Shifts in both of the absorption and emission spectra on proceeding from the gas phase to aqueous solution were also predicted.

  13. Constraints on Reionization and Source Properties from the Absorption Spectra of z > 6.2 Quasars

    Science.gov (United States)

    Mesinger, Andrei; Haiman, Zoltán

    2007-05-01

    We make use of hydrodynamical simulations of the intergalactic medium (IGM) to create model quasar absorption spectra. We compare these model spectra with the observed Keck spectra of three z>6.2 quasars with full Gunn-Peterson troughs: SDSS J1148+5251 (z=6.42), SDSS J1030+0524 (z=6.28), and SDSS J1623+3112 (z=6.22). We fit the probability density distributions (PDFs) of the observed Lyα optical depths (τα) with those generated from the simulation by exploring a range of values for the size of the quasar's surrounding H II region, RS; the volume-weighted mean neutral hydrogen fraction in the ambient IGM, x¯HI; and the quasar's ionizing photon emissivity, N˙Q. In order to avoid averaging over possibly large sight line-to-sight line fluctuations in IGM properties, we analyze each observed quasar independently. We find the following results for J1148+5251, J1030+0524, and J1623+3112: the best-fit sizes RS are 40, 41, and 29 (comoving) Mpc, respectively. For the later two quasars, the value is significantly larger than the radius corresponding to the wavelength at which the quasar's flux vanishes. These constraints are tight, with only ~10% uncertainties, comparable to those caused by redshift determination errors. The best-fit values of N˙Q are 2.1, 1.3, and 0.9×1057 s-1, respectively, with a factor of ~2 uncertainty in each case. Finally, the best-fit values of x¯HI are 0.16, 1.0, and 1.0, respectively. The uncertainty in the case of J1148+5251 is large, and x¯HI is not well constrained. However, for both J1030+0524 and J1623+3112, we find a significant lower limit of x¯HI>~0.033. Our method is different from previous analyses of the GP absorption spectra of these quasars, and our results strengthen the evidence that the rapid end stage of reionization is occurring near z~6.

  14. kspectrum: an open-source code for high-resolution molecular absorption spectra production

    Science.gov (United States)

    Eymet, V.; Coustet, C.; Piaud, B.

    2016-01-01

    We present the kspectrum, scientific code that produces high-resolution synthetic absorption spectra from public molecular transition parameters databases. This code was originally required by the atmospheric and astrophysics communities, and its evolution is now driven by new scientific projects among the user community. Since it was designed without any optimization that would be specific to any particular application field, its use could also be extended to other domains. kspectrum produces spectral data that can subsequently be used either for high-resolution radiative transfer simulations, or for producing statistic spectral model parameters using additional tools. This is a open project that aims at providing an up-to-date tool that takes advantage of modern computational hardware and recent parallelization libraries. It is currently provided by Méso-Star (http://www.meso-star.com) under the CeCILL license, and benefits from regular updates and improvements.

  15. Electronic absorption spectra of linear and cyclic Cn+ n=7-9 in a neon matrix

    Science.gov (United States)

    Fulara, Jan; Shnitko, Ivan; Batalov, Anton; Maier, John P.

    2005-07-01

    The Cn+n=7-9 cations were produced by electron-impact ionization of perchloronaphthalene, mass selected, and their electronic absorption spectra in 6K neon matrices recorded. The linear and cyclic isomers of C7+ and C8+ are detected. Three systems of linear C7+ are observed with origin bands near 770, 332, and 309nm. The cyclic C7+ shows two transitions near 676 and 448nm. One system of linear C9+ is observed commencing at 371nm. Linear C8+ shows five dipole-allowed electronic transitions from the X˜Πg2 ground state, and the strongest ones have the origin bands at 890.8 and 308.1nm. Five electronic transitions of cyclic C8+ are also discernible.

  16. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents

    International Nuclear Information System (INIS)

    The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0–0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0–0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules. (atomic and molecular physics)

  17. Absorption Spectra of CuGaSe 2 and CuInSe 2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  18. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    International Nuclear Information System (INIS)

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H2O and O2 bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H2O and O2 bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H2O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  19. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    Science.gov (United States)

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  20. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Science.gov (United States)

    Ridder, T.; Warneke, T.; Notholt, J.

    2011-06-01

    The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm-1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  1. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Science.gov (United States)

    Porta, A.; Zakari-Issoufou, A.-A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Bui, V. M.; Cormon, S.; Estienne, M.; Agramunt, J.; Äystö, J.; Bowry, M.; Briz, J. A.; Caballero-Folch, R.; Cano-Ott, D.; Cucouanes, A.; Elomaa, V.-V.; Eronen, T.; Estévez, E.; Farrelly, G. F.; Garcia, A. R.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Karvonen, P.; Kolhinen, V. S.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez-Cerdán, A. B.; Podolyák, Zs.; Penttilä, H.; Regan, P. H.; Reponen, M.; Rissanen, J.; Rubio, B.; Shiba, T.; Sonzogni, A. A.; Weber, C.

    2016-03-01

    Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  2. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  3. Variability of Water and Oxygen Absorption Bands in the Disk-Integrated Spectra of the Earth

    CERN Document Server

    Fujii, Yuka; Suto, Yasushi

    2013-01-01

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of the Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of the Earth provided by the EPOXI mission, and find 5-20% fractional variation of the absorption depths of H2O and O2 bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor ...

  4. The influence of thermolysis time on the absorption spectra of polyvinyl chloride in acetophenone

    Science.gov (United States)

    Rasmagin, S. I.; Krasovskii, V. I.; Vlasov, D. V.; Apresyan, L. A.; Vlasova, T. V.; Kryshtoba, V. I.; Feofanov, I. N.; Kazaryan, M. A.

    2015-12-01

    The influence of thermolysis time on the absorption spectra of partially thermally dehydrochlorinated polyvinyl chloride in acetophenone solution is studied. Strong increase in the optical density Dλ of the dehydrochlorinated PVC samples is caused by the increasing amount N-C=C- and the length of chains of conjugated double bonds of carbon -C = C-. It is noted that the optical density Dλ first increases linearly with dehydrochlorination time and then reaches saturation. The estimation of amount of double conjugated carbon bonds in 1ml versus thermolysis time t is given, which varies between N-C=C- = 4.1017 - 7.4.1018 for t from 40 to 420 minutes. The effective capture cross section of a photon on conjugated double bonds of carbon for dehydrochlorinated PVC solution in acetophenone is estimated, which was about 10-17 cm2 . The analysis is done of the absorption curves «red» shift to longer wavelengths with growth of N-C=C- upon increase of thermolysis time. It is noted that the dependence of the optical density on the wavelength in this range is well described by a simple exponential function.

  5. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    Science.gov (United States)

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models. PMID:27529792

  6. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    Science.gov (United States)

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface. PMID:27183273

  7. First principle studies on the electronic structures and absorption spectra in KMgF{sub 3} crystal with fluorine vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Fang [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu Tingyu, E-mail: liutyyxj@163.co [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Zhang Qiren; Qiao Hailin; Zhou Xiuwen [College of Science, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2010-08-01

    The experiments indicate that the perfect KMgF{sub 3} crystal has no absorption in the visible range, however the electron irradiation induces a complex absorption spectrum. The absorption spectra can be decomposed by five Gaussian bands peaking at 2.5 eV (488 nm), 3.4 eV (359 nm), 4.2 eV (295 nm), 4.6 eV (270 nm) and 5.2 eV (239 nm), respectively. The purpose of this paper is to seek the origins of the absorption bands. The electronic structures and absorption spectra either for the perfect KMgF{sub 3} or for KMgF{sub 3}: V{sub F}{sup +} with electrical neutrality have been studied by using density functional theory code CASTEP with the lattice structure optimized. The calculation results predicate that KMgF{sub 3}: V{sub F}{sup +} also exhibits five absorption bands caused by the existence of the fluorine ion vacancy V{sub F}{sup +} and the five absorption bands well coincide with the experimental results. It is believable that the five absorption bands are related to V{sub F}{sup +} in KMgF{sub 3} crystal produced by the electron irradiation.

  8. First principle studies on the electronic structures and absorption spectra in KMgF 3 crystal with fluorine vacancy

    Science.gov (United States)

    Cheng, Fang; Liu, Tingyu; Zhang, Qiren; Qiao, Hailin; Zhou, Xiuwen

    2010-08-01

    The experiments indicate that the perfect KMgF 3 crystal has no absorption in the visible range, however the electron irradiation induces a complex absorption spectrum. The absorption spectra can be decomposed by five Gaussian bands peaking at 2.5 eV (488 nm), 3.4 eV (359 nm), 4.2 eV (295 nm), 4.6 eV (270 nm) and 5.2 eV (239 nm), respectively. The purpose of this paper is to seek the origins of the absorption bands. The electronic structures and absorption spectra either for the perfect KMgF 3 or for KMgF 3: VF+ with electrical neutrality have been studied by using density functional theory code CASTEP with the lattice structure optimized. The calculation results predicate that KMgF 3: VF+ also exhibits five absorption bands caused by the existence of the fluorine ion vacancy VF+ and the five absorption bands well coincide with the experimental results. It is believable that the five absorption bands are related to VF+ in KMgF 3 crystal produced by the electron irradiation.

  9. Absolute absorption spectra of batho- and photorhodopsins at room temperature. Picosecond laser photolysis of rhodopsin in polyacrylamide.

    OpenAIRE

    Kandori, H; Shichida, Y; Yoshizawa, T

    1989-01-01

    Picosecond laser photolysis of rhodopsin in 15% polyacrylamide gel was performed for estimating absolute absorption spectra of the primary intermediates of cattle rhodopsin (bathorhodopsin and photorhodopsin). Using a rhodopsin digitonin extract embedded in 15% polyacrylamide gel, a precise percentage of bleaching of rhodopsin after excitation of a picosecond laser pulse was measured. Using this value, the absolute absorption spectrum of bathorhodopsin was calculated from the spectral change ...

  10. Electromagnetically Induced Absorption and Transparency Spectra of Degenerate TwoLevel Systems with a Strong Coupling Field in Cs Vapour

    Institute of Scientific and Technical Information of China (English)

    赵延霆; 赵建明; 肖连团; 尹王保; 贾锁堂

    2004-01-01

    The electromagnetically induced absorption and electromagnetically induced transparency spectra of degenerate two-level systems with a strong coupling laser were observed. The frequency detuning and intensity effect of the coupling laser were demonstrated simultaneously. A dispersion-like spectrum can be obtained when the coupling laser is situated at blue-side detuning. The absorption inversion was realized when the coupling laser intensity is small. The coherent resonance has a linewidth much narrower than the natural linewidth of the optical transitions.

  11. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.;

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  12. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  13. Phonon effects on X-ray absorption and X-ray photoemission spectra

    International Nuclear Information System (INIS)

    Highlights: • Some important phonon effects observed in X-ray absorption and X-ray photoemission spectra are discussed on the basis of nonequilibrium Green's function theory. • For the pre-edge structures, the intensity associated with forbidden electric dipole transition is sensitive to temperature compared with allowed electric quadrupole transition. • We also discuss the FC and their interference, which have negligible contribution to pre-edge intensity and energy shift. • The quasi-particle energy is also influenced by the core displacement which can be responsible for the peak shift of the pre-edges. • We also discuss the photoelectron angular distribution caused by the thermal atomic vibration. - Abstract: Some important phonon effects observed in X-ray absorption and X-ray photoemission spectra are discussed on the basis of nonequilibrium Green's function theory. This theoretical framework allows us to incorporate phonon effects, such as Debye–Waller (DW) factors, Franck–Condon (FC) factors and electron–phonon interactions in a natural way. In the case of core level excitations, we can take into account the core–hole effects in lesser Green's function g< and photoelectron propagation in greater Green's function g>. For the core–hole propagation we derive some formulas to describe the thermally displaced core functions: we have p components even for deep core s orbital due to the thermal motion. We should notice that the thermal fluctuation is quite small but it is already in the order of the spread of the core functions. Applying Mermin's theorem, we can calculate the thermal average of the hole propagator g<: here an important ingredient is the Debye–Waller factor used in X-ray and neutron diffraction. For the pre-edge structures, the intensity associated with forbidden electric dipole transition is sensitive to the temperature compared with allowed electric quadrupole transition. We also discuss the FC and

  14. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    Science.gov (United States)

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  15. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  16. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.;

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR...

  17. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    OpenAIRE

    Kaya, Sarp; Sellberg, Jonas A.; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.; Nilsson, Anders

    2014-01-01

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in ...

  18. Structure of the absorption spectra of the quasars Q 0420-388 and Q 1101-264

    International Nuclear Information System (INIS)

    In the framework of shock-wave model of numerous Ly α absorption lines in spectra of remote quasars, which relate their origin to absorbing areas in the shells of metagalactic shock waves, the recently obtained quasars spectra Q 0420-388 and Q 1101-264 have been analyzed. It is shown that more than 50% of narrow Ly α absorption lines are in ''doublets''-pairs of close (adjacent in the spectrum, as a rule) lines with similar equivalent widths. The fact agrees well with the predictions of the shock-wave model. Line distribution over H I densities in the eyesight ray expected for the model is calculated and agrees with the distribution found by Atwood et al. by the sampling of Ly α unblended lines in the Q 0420-388 and Q 1101-264 spectra

  19. Identifying student and teacher difficulties in interpreting atomic spectra using a quantum model of emission and absorption of radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-06-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two questionnaires, one for teachers and the other for students. By analyzing the responses, we conclude that (i) teachers lack a quantum model for the emission and absorption of electromagnetic radiation capable of explaining the spectra, (ii) teachers and students share the same difficulties, and (iii) these difficulties concern the model of the atom, the model of radiation, and the model of the interaction between them.

  20. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  1. Bethe-Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3

    Science.gov (United States)

    Varley, Joel B.; Schleife, André

    2015-02-01

    Transparent conducting oxides keep attracting strong scientific interest not only due to their promising potential for ‘transparent electronics’ applications but also due to their intriguing optical absorption characteristics. Materials such as In2O3 and Ga2O3 have complicated unit cells and, consequently, are interesting systems for studying the physics of excitons and anisotropy of optical absorption. Since currently no experimental data is available, for instance, for their dielectric functions across a large photon-energy range, we employ modern first-principles computational approaches based on many-body perturbation theory to provide theoretical-spectroscopy results. Using the Bethe-Salpeter framework, we compute dielectric functions and we compare to spectra computed without excitonic effects. We find that the electron-hole interaction strongly modifies the spectra and we discuss the anisotropy of optical absorption that we find for Ga2O3 in relation to existing theoretical and experimental data.

  2. Electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic

    International Nuclear Information System (INIS)

    In the non-aqueous reprocessing process of spent nuclear fuels by the pyro-electrochemical method, a spent fuel is dissolved into molten LiCl-KCl and NaCl-CsCl eutectics and dissolved uranium and plutonium are collected as either metal or oxide. However, the binary alkali chloride mixture with the lowest melting point is the LiCl-RbCl eutectic. In this study, electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic at various temperatures between 673 and 973 K were measured by the UV/Vis/NIR spectrophotometry. We confirmed that these spectra were similar to those in molten LiCl-KCl and NaCl-CsCl eutectics. The sensitive absorption bands of U4+ in LiCl-RbCl eutectic were found at 22000, 16500, 14900, 8600, and 4950 cm-1. The large absorption bands of U4+ over 25000 cm-1 increased with increasing melt temperature, while absorption peaks at 15500-4000 cm-1 decreased. The large absorption bands of U3+ in LiCl-RbCl eutectic were observed over 14000 cm-1. The sensitive absorption bands of U3+ at Vis/NIR region were found at 13300, 11500-11200, 9800-9400, and 8250 cm-1, and these peaks decreased with increasing temperature.

  3. Electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic

    Science.gov (United States)

    Nagai, T.; Uehara, A.; Fujii, T.; Sato, N.; Yamana, H.

    2010-03-01

    In the non-aqueous reprocessing process of spent nuclear fuels by the pyro-electrochemical method, a spent fuel is dissolved into molten LiCl-KCl and NaCl-CsCl eutectics and dissolved uranium and plutonium are collected as either metal or oxide. However, the binary alkali chloride mixture with the lowest melting point is the LiCl-RbCl eutectic. In this study, electronic absorption spectra of U3+ and U4+ in molten LiCl-RbCl eutectic at various temperatures between 673 and 973 K were measured by the UV/Vis/NIR spectrophotometry. We confirmed that these spectra were similar to those in molten LiCl-KCl and NaCl-CsCl eutectics. The sensitive absorption bands of U4+ in LiCl-RbCl eutectic were found at 22000, 16500, 14900, 8600, and 4950 cm-1. The large absorption bands of U4+ over 25000 cm-1 increased with increasing melt temperature, while absorption peaks at 15500-4000 cm-1 decreased. The large absorption bands of U3+ in LiCl-RbCl eutectic were observed over 14000 cm-1. The sensitive absorption bands of U3+ at Vis/NIR region were found at 13300, 11500-11200, 9800-9400, and 8250 cm-1, and these peaks decreased with increasing temperature.

  4. Computational study of collision-induced dipole moments and absorption spectra of H

    Science.gov (United States)

    Zheng, Chunguang

    1997-08-01

    H2-H2 collision-induced absorption (CIA) spectra are computed for the first over-tone band at temperatures from 20 to 500 K, and for the rototranslational band at temperatures from 600 to 7,000 K. The theoretical results are based on simple model line shapes. The parameters of the model functions are obtained from the three lowest translational spectral moments, which are computed from the H2-H2 collision-induced dipole moments of Meyer et al. (1) using the sum formulae (2, 3). Ab initio computations of H2-H2 collision- induced dipole moments are performed using the Gaussian 92 program (4). The computations extend the previous work of Meyer et al. (1). Four internuclear distances of H2 molecule 1.111, 1.449, 1.787 and 2.150 a.u., and eleven intermolecular distances of H2-H2 from 2.5 to 9.0 a.u. are included in the computations. The radial transition matrix elements of the collision- induced dipole components are obtained for vibrational transitions /Delta v = (v1' - v1) + (v2' - v2) = 0, 1, 2, 3 and v1,/ v2 = 0, 1, 2. where v1 and v2 are the vibrational quantum numbers of the two interacting H2 molecules, and primes denote final states. The dependences of these matrix elements on the rotational quantum numbers of the two H2 molecules j1j1'j2j2' are obtained for j1j1'j2j2' up to 10. These matrix elements are suitable for high temperature H2-H2 CIA computations. The second overtone band H2-H2 CIA spectra are computed for the first time at temperatures from 20 to 500 K employing the newly developed H2-H2 collision-induced dipole moments. The computations are based on the three lowest translational spectral moments and simple model line shapes.

  5. Time resolved spectra in the infrared absorption and emission from shock heated hydrocarbons

    Science.gov (United States)

    Bauer, S. H.; Borchardt, D. B.

    1990-07-01

    We have extended the wavelength range of our previously constructed multichannel, fast recording spectrometer to the mid-infrared. With the initial configuration, using a silicon-diode (photovoltaic) array, we recorded light intensities simultaneously at 20 adjacent wavelengths, each with 20 μs time resolution. For studies in the infrared the silicon diodes are replaced by a 20 element PbSe (photoconducting) array of similar dimensions (1×4 mm/element), cooled by a three-stage thermoelectric device. These elements have useful sensitivities over 1.0-6.7 μm. Three interchangeable gratings in a 1/4 m monochromator cover the following spectral ranges: 1.0-2.5 μm (resolution 33.6 cm-1) 2.5-4.5 μm (16.8 cm-1) 4.0-6.5 μm (16.7 cm-1). Incorporated in the new housing there are individually controlled bias-power sources for each detector, two stages of analogue amplification and a 20-line parallel output to the previously constructed digitizer, and record/hold computer. The immediate application of this system is the study of emission and absorption spectra of shock heated hydrocarbons-C2H2, C4H4 and C6H6-which are possible precursors of species that generate infrared emissions in the interstellar medium. It has been recently proposed that these radiations are due to PAH that emit in the infrared upon relaxation from highly excited states. However, it is possible that such emissions could be due to shock-heated low molecular-weight hydrocarbons, which are known to be present in significant abundances, ejected into the interstellar medium during stellar outer atmospheric eruptions. The full Swan band system appeared in time-integrated emission spectra from shock heated C2H2 (1% in Ar; T5eq~=2500K) no soot was generated. At low resolution the profiles on the high frequency side of the black body maximum show no distinctive features. These could be fitted to Planck curves, with temperatures that declined with time from an initial high that was intermediate between T5 (no

  6. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    International Nuclear Information System (INIS)

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed

  7. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sellberg, Jonas A.; Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden); SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Kaya, Sarp [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Segtnan, Vegard H. [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Nofima AS, N-1430 Ås (Norway); Chen, Chen [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ogasawara, Hirohito; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Pettersson, Lars G. M. [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  8. On-the-Fly ab Initio Semiclassical Dynamics of Floppy Molecules: Absorption and Photoelectron Spectra of Ammonia.

    Science.gov (United States)

    Wehrle, Marius; Oberli, Solène; Vaníček, Jiří

    2015-06-01

    We investigate the performance of on-the-fly ab initio (OTF-AI) semiclassical dynamics combined with the thawed Gaussian approximation (TGA) for computing vibrationally resolved absorption and photoelectron spectra. Ammonia is used as a prototype of floppy molecules, whose potential energy surfaces display strong anharmonicity. We show that despite complications due to the presence of large amplitude motion, the main features of the spectra are captured by the OTF-AI-TGA, which—by definition—does not require any a priori knowledge of the potential energy surface. Moreover, the computed spectra are significantly better than those based on the popular global harmonic approximation. Finally, we probe the limit of the TGA to describe higher-resolution spectra, where long time dynamics is required. PMID:25928833

  9. Collison-induced rototranslational absorption spectra of H2-He pairs at temperatures from 40 to 3000 K

    Science.gov (United States)

    Borysow, Jacek; Frommhold, Lothar; Birnbaum, George

    1988-01-01

    The zeroth, first, and second spectral moments of the rototranslational collision-induced absorption (RT CIA) spectra of hydrogen-helium mixtures are calculated from the fundamental theory, for temperatures from 40 to 3000 K. With the help of simple analytical functions of three parameters and the information given, the RT CIA spectra of H2-He pairs can be generated on computers of small capacity, with rms deviations from exact quantum profiles of not more than a few percent. Such representations of the CIA spectra are of interest for work related to the atmospheres of the outer planets and cool stars. The theoretical spectra are in close agreement with existing laboratory measurements at various temperatures from about 77 to 3000 K.

  10. Solvent dependence of two-photon absorption spectra of the enhanced green fluorescent protein (eGFP) chromophore

    Science.gov (United States)

    Hosoi, Haruko; Tayama, Ryo; Takeuchi, Satoshi; Tahara, Tahei

    2015-06-01

    Two-photon absorption spectra of 4‧-hydroxybenzylidene-2,3-dimethylimidazolinone, a model chromophore of enhanced green fluorescent protein (eGFP), were measured in various solvents. The two-photon absorption band of its anionic form is markedly blue-shifted from the corresponding one-photon absorption band in all solvents. Moreover, the magnitude of the blue shift varies largely depending on the solvent, which does not accord with the assignment of the two-photon absorption band to the transitions to the vibrationally excited S1 state. Our finding is readily rationalized by considering overlapping contributions of the S1 ← S0 and S2 ← S0 transitions, suggesting the involvement of the S2 state also in two-photon fluorescence of eGFP.

  11. A High Galactic Latitude HI 21 cm-line Absorption Survey using the GMRT: I. Observations and Spectra

    Indian Academy of Sciences (India)

    Rekhesh Mohan; K. S. Dwarakanath; G. Srinivasan

    2004-09-01

    We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|| > 15°) Galactic latitudes. The Declination coverage of the present survey is ≳ -45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.

  12. Interpretation of unexpected behavior of infrared absorption spectra of ScF3 beyond the quasiharmonic approximation

    Science.gov (United States)

    Piskunov, Sergei; Žguns, Pjotrs A.; Bocharov, Dmitry; Kuzmin, Alexei; Purans, Juris; Kalinko, Aleksandr; Evarestov, Robert A.; Ali, Shehab E.; Rocca, Francesco

    2016-06-01

    Scandium fluoride (ScF3), having cubic ReO3-type structure, has attracted much scientific attention due to its rather strong negative thermal expansion (NTE) in the broad temperature range from 10 to 1100 K. Here we use the results of diffraction and extended x-ray absorption fine-structure (EXAFS) spectroscopy to interpret the influence of NTE on the temperature dependence of infrared absorption spectra of ScF3. Original infrared absorption and EXAFS experiments in a large temperature range are presented and interpreted using ab initio lattice dynamics simulations within and beyond quasiharmonic approximations. We demonstrate that ab initio electronic structure calculations, based on the linear combination of atomic orbitals method with hybrid functionals, are able to reproduce well the experimental values of lattice parameter a0, band gap Eg, and lattice dynamics in ScF3. However, the simulations performed within quasiharmonic approximation fail to reproduce the temperature dependence of two infrared active bands due to the F-Sc-F bending (at 220 cm-1) and Sc-F stretching (at 520 cm-1) modes present in the infrared absorption spectra. To overcome this problem, an approach beyond the quasiharmonic approximation is proposed: It accounts for the negative thermal expansion of the lattice and for fluorine atom displacements due to strong F vibrational motion perpendicular to the cubic axes and allows us to explain qualitatively the temperature behavior of infrared spectra of ScF3.

  13. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-07-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  14. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  15. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A.; Kesler, Benjamin A.; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A.; Lim, Sung Jun; Smith, Andrew M.; Dallesasse, John M.; Cunningham, Brian T.

    2016-01-01

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid’s absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics. PMID:27389070

  16. How Van der Waals Interactions Influence the Absorption Spectra of Pheophorbide a Complexes: A Mixed Quantum-Classical Study.

    Science.gov (United States)

    Megow, Jörg

    2015-10-01

    The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. PMID:26275373

  17. Effects of electronic correlation on x-ray absorption and dichroic spectra at L{sub 2,3} edge

    Energy Technology Data Exchange (ETDEWEB)

    Pardini, L; Bellini, V; Manghi, F, E-mail: franca.manghi@unimore.it [CNR-Institute of Nanosciences-S3, Via Campi 213/A, I-41125 Modena (Italy); Dipartimento di Fisica, Universita di Modena e Reggio Emilia, Via Campi 213/A, I-41125 Modena (Italy)

    2011-06-01

    We present a new theoretical approach to describe x-ray absorption and magnetic circular dichroism spectra in the presence of electron-electron correlation. Our approach provides an unified picture to include correlations in both charged and neutral excitations, namely in direct/inversion photoemission where electrons are removed/added, and photoabsorption where electrons are promoted from core levels to empty states. We apply this approach to the prototypical case of the L{sub 2,{sub 3}} edge of 3d transition metals and we show that the inclusion of many-body effects in the core level excitations is essential to reproduce, together with satellite structures in core level photoemission, the observed asymmetric lineshapes in x-ray absorption and dichroic spectra.

  18. First-Principles Calculation of Principal Hugoniot and K-Shell X-ray Absorption Spectra for Warm Dense KCl

    CERN Document Server

    Zhao, Shijun; Kang, Wei; Li, Zi; Zhang, Ping; He, Xian-Tu

    2015-01-01

    Principal Hugoniot and K-shell X-ray absorption spectra of warm dense KCl are calculated using the first-principles molecular dynamics method. Evolution of electronic structures as well as the influence of the approximate description of ionization on pressure (caused by the underestimation of the energy gap between conduction bands and valence bands) in the first-principles method are illustrated by the calculation. Pressure ionization and thermal smearing are shown as the major factors to prevent the deviation of pressure from global accumulation along the Hugoniot. In addition, cancellation between electronic kinetic pressure and virial pressure further reduces the deviation. The calculation of X-ray absorption spectra shows that the band gap of KCl persists after the pressure ionization of the $3p$ electrons of Cl and K taking place at lower energy, which provides a detailed understanding to the evolution of electronic structures of warm dense matter.

  19. Fine structures in the optical absorption spectra of photochemical silver in silver halides? A call for further research

    OpenAIRE

    Georgiev, Mladen

    2007-01-01

    A survey is presented of the work done so far to check earlier claims that a fine structure may be observed to occur under certain circumstances in the impurity spectral range of the optical absorption spectra of silver halides following photostimulation in the intrinsic range. This structure, associated with the photochemical formation of silver specks, has been questioned over the years. We now weigh carefully the experimental evidence on the silver halides against a background of similar d...

  20. THEORY OF X-RAY-ABSORPTION SPECTRA IN PRO2 AND SOME OTHER RARE-EARTH COMPOUNDS

    NARCIS (Netherlands)

    OGASAWARA, H; KOTANI, A; OKADA, K; THOLE, BT

    1991-01-01

    We analyze rare-earth 3d-core x-ray-absorption spectra (3d XAS) in PrO2, as well as in CeO2, using the impurity Anderson model. It is shown that the interplay between the atomic multiplet coupling and the solid-state hybridization between rare-earth 4f and oxygen 2p states is essential in determinin

  1. Study on the interaction between diphenhydramine and erythrosin by absorption,fluorescence and resonance Rayleigh scattering spectra

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In pH 4.5 Britton-Robinson(BR)buffer solution,erythrosin(ET)can react with diphenhydramine(DP)to form a 1:1 ion-association complex,which not only results in the change of the absorption spectra,but also results in the great enhancement of resonance Rayleigh scattering(RRS)and the quenching of fluorescence.Furthermore,a new RRS spectrum will appear,and the maximum RRS wavelength was located at about 580 nm.In this work,the spectral characteristics of the absorption,fluorescence and RRS,the optimum conditions of the reaction and the properties of an analytical chemistry were inves- tigated.A sensitive,simple and new method for the determination of DP by using erythrosin as a probe has been developed.The detection limits for DP were 0.0020μg/mL for RRS method,0.088μg/mL for absorption method and 0.094μg/mL for fluorophotometry.There was a linear relationship between the absorbance,RRS and fluorescence intensities and the drug concentration in the range of 0.0067-2.0, 0.29-6.4 and 0.31-3.2μg/mL,respectively.The effects of the interaction of diphenhydramine and erythrosin on the absorption,fluorescence and resonance Rayleigh scattering spectra were discussed. In light polarization experiment,the polarization of RRS at maximum wavelength was measured to be P =0.9779,and it revealed that the RRS spectrum of DP-ET complex consists mostly of resonance scat- tering and few resonance fluorescence.In this study,enthalpy of formation and mean polarizability were calculated by AM1 quantum chemistry method.In addition,the reaction mechanism and the rea- sons for the enhancement of scattering spectra and the energy transfer between absorption,fluores- cence and RRS were discussed.

  2. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  3. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    Science.gov (United States)

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  4. Time-dependent radiolytic yields at room temperature and temperature-dependent absorption spectra of the solvated electrons in polyols

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The molar extinction coefficients at the absorption maximum of the solvated electron spectrum have been evaluated to be 900, 970, and 1000 mol-1·m2 for 1,2-ethanediol (12ED), 1,2-propanediol (12PD), and 1,3-propanediol (13PD), respectively. These values are two-third or three-fourth of the value usually reported in the published report.Picosecond pulse radiolysis studies have aided in depicting the radiolytic yield of the solvated electron in these solvents as a function of time from picosecond to microsecond. The radiolytic yield in these viscous solvents is found to be strongly different from that of the water solution. The temperature dependent absorption spectra of the solvated electron in 12ED, 12PD, and 13PD have been also investigated. In all the three solvents, the optical spectra shift to the red with increasing temperature. While the shape of the spectra does not change in 13PD, a widening on the blue side of the absorption band is observed in 12ED and 12PD at elevated temperatures.

  5. pH-Induced changes in electronic absorption and fluorescence spectra of phenazine derivatives

    Science.gov (United States)

    Ryazanova, O. A.; Voloshin, I. M.; Makitruk, V. L.; Zozulya, V. N.; Karachevtsev, V. A.

    2007-04-01

    The visible electronic absorption and fluorescence spectra as well as fluorescence polarization degrees of imidazo-[4,5-d]-phenazine (F1), 2-methylimidazo-[4,5-d]-phenazine (F2), 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F3), 1,2,3-triazole-[4,5-d]-phenazine (F4) and their glycosides, imidazo-[4,5-d]-phenazine-N1-β- D-ribofuranoside (F1rib), 1,2,3-triazole-[4,5-d]-phenazine-N1-β- D-glucopyranoside (F4gl), were investigated in aqueous buffered solutions over the pH range of 0-12, where the spectral transformations were found to be reversible. The effects of protonation and deprotonation on spectral properties of these dyes were studied. We have determined the ranges of pH, where individual ionic species are predominant. In aqueous buffered solutions the fluorescence was found only for neutral species of F1, F1rib, F2, and F4gl dyes, whereas for the ionic forms of these dyes, as well as for F3 and F4 ones, the fluorescence has not been detected. The concentrational deprotonation p Ka values were evaluated from experimental data. It was shown that donor-acceptor properties of the substituent group in the second position of the pentagonal ring substantially affect the values of the deprotonation constants and the character of protonation for chromophore. The substitution of a hydrogen atom in the NH-group by the sugar residue blocks the formation of the anionic species, and results in enhancement of the dye emission intensity. The steep emission dependence for F1 and F1rib over pH range of 0-7 with intensities ratio of IpH 7/ IpH 1 = 60 allows us to propose them as possible indicator dyes in luminescence based pH sensors for investigation of processes accompanied by acidification, e.g. as gastric pH-sensors. A comparative analysis of the studied dyes has shown that F4gl is the most promising compound to be used as a fluorescent probe for investigation of molecular hybridization of nucleic acids.

  6. Ligand and Charge Dependence for Absorption Edge in XANES Spectra of TPP[Fe(Pc)L2]2 Systems

    Science.gov (United States)

    Takahashi, Kei; Watanabe, Akie; Niki, Kaori; Hanasaki, Noriaki; Kanda, Akinori; Fujikawa, Takashi

    We apply real space full multiple scattering theory to interpret the Fe K-edge XANES spectra of TPP[Fe(Pc)L2]2 (L = CN, Cl and Br) systems, which show the giant magnetoresistance (GMR) at the low temperatures. In the previous paper, we have reported the absorption edge shift of the XANES spectra, whose origin remains unclear, for TPP[Fe(Pc)L2]2 systems. In order to clarify the relation between the charge of the Fe atom, the local structure of the axial ligand and the XANES spectra, we improve the calculation of the XANES spectra by taking into account the wider region including the neighboring Fe(Pc)L2 and TPP molecules. Our multiple scattering analyses suggest that the spectral shape is strongly influenced by the distance between a central Fe and axial ligands L. The number of Fe 3d electrons obtained by density functional theory calculations show weak dependence on the axial ligands L. The EXAFS spectra, the polarization dependence and the temperature dependence of the XANES spectra are also discussed.

  7. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard

    2013-01-01

    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  8. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    CERN Document Server

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  9. High-Resolution Ultraviolet Spectra of the Dwarf Seyfert 1 Galaxy NGC 4395: Evidence for Intrinsic Absorption

    CERN Document Server

    Crenshaw, D M; Gabel, J R; Schmitt, H R; Filippenko, A V; Ho, L C; Shields, J C; Turner, T J

    2004-01-01

    We present ultraviolet spectra of the dwarf Seyfert 1 nucleus of NGC 4395, obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Hubble Space Telescope's Space Telescope Imaging Spectrograph at velocity resolutions of 7 to 15 km/sec. We confirm our earlier claim of C IV absorption in low-resolution UV spectra and detect a number of other absorption lines with lower ionization potentials. In addition to the Galactic lines, we identify two kinematic components of absorption that are likely to be intrinsic to NGC 4395. We consider possible origins of the absorption, including the interstellar medium (ISM) of NGC 4395, the narrow-line region (NLR), outflowing UV absorbers, and X-ray ``warm absorbers.'' Component 1, at a radial velocity of -770 km/sec with respect to the nucleus, is only identified in the C IV 1548.2 line. It most likely represents an outflowing UV absorber, similar to those seen in a majority of Seyfert 1 galaxies, although additional observations are needed to confirm the reali...

  10. Effects of annealing treatment and gamma irradiation on the absorption and fluorescence spectra of Cr:GSGG laser crystal

    Science.gov (United States)

    Sun, D. L.; Luo, J. Q.; Xiao, J. Z.; Zhang, Q. L.; Jiang, H. H.; Yin, S. T.; Wang, Y. F.; Ge, X. W.

    2008-09-01

    The influence of annealing treatments and gamma-ray irradiation on the absorption and fluorescence spectra of Cr:GSGG crystals grown by the Czochralski method has been investigated. Two absorption bands located near 686 nm and 1050 nm were weakened markedly after the crystal was re-annealed in H2 atmosphere, which is due to the Cr4+ ions being de-oxidized into Cr3+ ions. The other two weak additional absorption bands induced by gamma-ray irradiation appearing near 310 nm and 480 nm are ascribed to the Fe2+ ions and F-type color centers, respectively. In particular, the gamma-ray irradiation with a dose of 100 Mrad has an effect of improving slightly the luminescence properties of Cr:GSGG crystals. The improvement mechanism is analyzed and discussed.

  11. ABSORPTION-SPECTRA OF HUMAN FETAL AND ADULT OXYHEMOGLOBIN, DE-OXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; MEEUWSENVANDERROEST, WP

    1991-01-01

    We determined the millimolar absorptivities of the four clinically relevant derivatives of fetal and adult human hemoglobin in the visible and near-infrared spectral range (450-1000 nm). As expected, spectral absorption curves of similar shape were found, but the small differences between fetal and

  12. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-01

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms. PMID:27388151

  13. A Groundbased Imaging Study of Galaxies Causing DLA, subDLA, and LLS Absorption in Quasar Spectra

    CERN Document Server

    Rao, Sandhya M; Turnshek, David A; Monier, Eric M; Nestor, Daniel B; Quider, Anna M

    2011-01-01

    We present results from a search for galaxies that give rise to damped Lyman alpha (DLA), subDLA, and Lyman limit system (LLS) absorption at redshifts 0.1 ~= 0.3 A) whose HI column densities were determined by measuring the Ly-alpha line in HST UV spectra. Photometric redshifts, galaxy colors, and proximity to the quasar sightline, in decreasing order of importance, were used to identify galaxies responsible for the absorption. Our sample includes 80 absorption systems for which the absorbing galaxies have been identified, of which 54 are presented here for the first time. The main results of this study are: (i) the surface density of galaxies falls off exponentially with increasing impact parameter, b, from the quasar sightline relative to a constant background of galaxies, with an e-folding length of ~46 kpc. Galaxies with b >~ 100 kpc calculated at the absorption redshift are statistically consistent with being unrelated to the absorption system. (ii) log N(HI) is inversely correlated with b at the 3.0 sig...

  14. 40 CFR 796.1050 - Absorption in aqueous solution: Ultraviolet/visible spectra.

    Science.gov (United States)

    2010-07-01

    ... (optical density) A of the solution is then given by: EC15NO91.045 For a resolvable absorbance peak, the..., there will be only one spectrum. Spectra should include a readable wave-length scale. Each...

  15. A Nano-Biosensor for DNA Sequence Detection Using Absorption Spectra of SWNT-DNA Composite

    Directory of Open Access Journals (Sweden)

    J. Bansal

    2011-01-01

    Full Text Available A biosensor based on Single Walled Carbon Nanotube (SWNT-Poly (GTn ssDNA hybrid has been developed for medical diagnostics. The absorption spectrum of this assay is determined with the help of a Shimadzu UV-VIS-NIR spectrophotometer. Two distinct bands each containing three peaks corresponding to first and second van Hove singularities in the density of states of the nanotubes were observed in the absorption spectrum. When a single-stranded DNA (ssDNA having a sequence complementary to probic DNA is added to the ssDNA-SWNT conjugates, hybridization takes place, which causes the red shift of absorption spectrum of nanotubes. On the other hand, when the DNA is noncomplementary, no shift in the absorption spectrum occurs since hybridization between the DNA and probe does not take place. The red shifting of the spectrum is considered to be due to change in the dielectric environment around nanotubes.

  16. Sticking to (first) principles: quantum molecular dynamics and Bayesian probabilistic methods to simulate aquatic pollutant absorption spectra.

    Science.gov (United States)

    Trerayapiwat, Kasidet; Ricke, Nathan; Cohen, Peter; Poblete, Alex; Rudel, Holly; Eustis, Soren N

    2016-08-10

    This work explores the relationship between theoretically predicted excitation energies and experimental molar absorption spectra as they pertain to environmental aquatic photochemistry. An overview of pertinent Quantum Chemical descriptions of sunlight-driven electronic transitions in organic pollutants is presented. Second, a combined molecular dynamics (MD), time-dependent density functional theory (TD-DFT) analysis of the ultraviolet to visible (UV-Vis) absorption spectra of six model organic compounds is presented alongside accurate experimental data. The functional relationship between the experimentally observed molar absorption spectrum and the discrete quantum transitions is examined. A rigorous comparison of the accuracy of the theoretical transition energies (ΔES0→Sn) and oscillator strength (fS0→Sn) is afforded by the probabilistic convolution and deconvolution procedure described. This method of deconvolution of experimental spectra using a Gaussian Mixture Model combined with Bayesian Information Criteria (BIC) to determine the mean (μ) and standard deviation (σ) as well as the number of observed singlet to singlet transition energy state distributions. This procedure allows a direct comparison of the one-electron (quantum) transitions that are the result of quantum chemical calculations and the ensemble of non-adiabatic quantum states that produce the macroscopic effect of a molar absorption spectrum. Poor agreement between the vertical excitation energies produced from TD-DFT calculations with five different functionals (CAM-B3LYP, PBE0, M06-2X, BP86, and LC-BLYP) suggest a failure of the theory to capture the low energy, environmentally important, electronic transitions in our model organic pollutants. However, the method of explicit-solvation of the organic solute using the quantum Effective Fragment Potential (EFP) in a density functional molecular dynamics trajectory simulation shows promise as a robust model of the hydrated organic

  17. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Gronoff, G.; Mertens, C. J.; Norman, R. B. [NASA LaRC, Hampton, VA (United States); Maggiolo, R. [BIRA-IASB, Avenue Circulaire 3, 1180 Brussels (Belgium); Wedlund, C. Simon [Aalto University School of Electrical Engineering Department of Radio Science and Engineering, P.O. Box 13000, FI-00076 Aalto (Finland); Bell, J. [National Institute of Aerospace, Hampton, VA (United States); Bernard, D. [IPAG, Grenoble (France); Parkinson, C. J. [University of Michigan, MI (United States); Vidal-Madjar, A., E-mail: Guillaume.P.Gronoff@nasa.gov [Observatoire de Paris, Paris (France)

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  18. The X-ray spectra of optically selected Seyfert 2 galaxies. Are there any Sy2 galaxies with no absorption?

    CERN Document Server

    Pappa, A; Stewart, G C; Zezas, A L

    2001-01-01

    We present an X-ray spectral analysis of a sample of 8 bona-fide Seyfert 2 galaxies, selected on the basis of their high $[OIII]\\lambda5007$ flux, from the Ho et al. (1997) spectroscopic sample of nearby galaxies. We find that, in general, the X-ray spectra of our Seyfert 2 galaxies are complex, with some our objects having spectra different from the 'typical' spectrum of X-ray selected Seyfert 2 galaxies. Two (NGC3147 and NGC4698) show no evidence for intrinsic absorption. We suggest this is due to the fact that when the torus suppresses the intrinsic medium and hard energy flux, underlying emission from the host galaxy, originating in circumnuclear starbursts, and scattering from warm absorbers contributes in these energy bands more significantly. Our asca data alone cannot discriminate whether low absorption objects are Compton-thick AGN with a strong scattered component or lack an obscuring torus. The most striking example of our low absorption Seyfert 2 is NGC4698. Its spectrum could be explained by eith...

  19. Study on the interaction between fluoroquinolones and erythrosine by absorption, fluorescence and resonance Rayleigh scattering spectra and their application

    Science.gov (United States)

    Wang, Jian; Liu, Zhongfang; Liu, Jiangtao; Liu, Shaopu; Shen, Wei

    2008-03-01

    In pH 4.4-4.5 Britton-Robinson (BR) buffer solution, fluoroquinolone antibiotics (FLQs) including ciprofloxacin (CIP), norfloxacin (NOR), levofloxacin (LEV) and lomefloxacin (LOM) could react with erythrosine (Ery) to form 1:1 ion-association complexes, which not only resulted in the changes of the absorption spectra and the quenching of fluorescence, but also resulted in the great enhancement of resonance Rayleigh scattering (RRS). These offered some indications of the determination of fluoroquinolone antibiotics by spectrophotometric, fluorescence and resonance Rayleigh scattering methods. The detection limits for fluoroquinolone antibiotics were in the range of 0.097-0.265 μg/mL for absorption methods, 0.022-0.100 μg/mL for fluorophotometry and 0.014-0.027 μg/mL for RRS method, respectively. Among them, the RRS method had the highest sensitivity. In this work, the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions and the properties of the analytical chemistry were investigated. The methods have been successfully applied to determination of some fluoroquinolone antibiotics in human urine samples and tablets. Taking CIP-Ery system as an example, the charge distribution, the enthalpy of formation and the mean polarizability were calculated by density function theory (DFT) method. In addition, the reasons for the enhancement of scattering spectra were discussed.

  20. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANG De-Hua; LIN Sheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic field below ionization threshold. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  1. Absorption and Recurrence Spectra of Sodium Rydberg Atom in a Strong External Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    WANGDe-Hua; LINSheng-Lu

    2004-01-01

    Using core-scattered closed-orbit theory, we calculate the photoabsorption and the scaled recurrence spectra of sodium Rydberg atom in strong magnetic fied below ionization threshoM. The non-Coulombic nature of the ionic core have been modified by a model potential, which includes an attractive Coulomb potential and a short-ranged core potential. A family of core-scattered nonhydrogenic closed orbits have also been discovered. The Fourier transformed spectra of sodium atom have allowed direct comparison between peaks in such plot and the scaled action values of closed orbits. The new peaks in the recurrence spectra of sodium atom have been considered as effects caused by the core scattering of returning waves at the ionic core. The results are compared with those of hydrogen case, which show that the core-scattered effects play an important role in alkali-metal atoms.

  2. Absorption and Recurrence Spectra of Nonhydrogenic Rydberg Atom Near a Metal Surface

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jun; WANG De-Hua; XUE Chun-Hua; QI Yi-Hong; LOU Sen-Yue

    2008-01-01

    Multielectron atoms near a metal surface are essentially more complicated than hydrogen atom with regard to theoretical treatments. By using the semicalssical closed orbit theory generalized to the multielecton atoms, we study the dynamical properties of the Rydberg lithium atom near a metal surface. The photoabsorption spectra and recurrence spectra of this system have also been calculated. Considering the effect of the ionic core potential of the Rydberg lithium atom, the number of the closed orbits increases, which leads to more peaks in the recurrence spectra than the case of hydrogen atom near a metal surface. This result shows that the core-scattered effects play an important role in nonhydrogenic atoms. This study is a new application of the dosed-orbit theory and is of potential experimental interest.

  3. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.;

    2003-01-01

    . Ab initio (DFT at the B3LYP/6-31G* level of theory) and semi-empirical (SCC-DFTB) with and without dispersion correction were applied to simulate the VA spectra of [Leu] enkephalin. In these calculations structures taken from X-ray measurements for different conformers of the molecule were used...... as initial structures for SCC-DFTB geometry optimizations, while the optimized SCC-DFTB geometries were used as initial structures for the DFT geometry optimizations. The experimental VA spectrum and the VA spectra calculated for the low energy conformers at each level of theory are then compared...

  4. Communication: X-ray absorption spectra and core-ionization potentials within a core-valence separated coupled cluster framework

    Science.gov (United States)

    Coriani, Sonia; Koch, Henrik

    2015-11-01

    We present a simple scheme to compute X-ray absorption spectra (e.g., near-edge absorption fine structure) and core ionisation energies within coupled cluster linear response theory. The approach exploits the so-called core-valence separation to effectively reduce the excitation space to processes involving at least one core orbital, and it can be easily implemented within any pre-existing coupled cluster code for low energy states. We further develop a perturbation correction that incorporates the effect of the excluded part of the excitation space. The correction is shown to be highly accurate. Test results are presented for a set of molecular systems for which well converged results in full space could be generated at the coupled cluster singles and doubles level of theory only, but the scheme is straightforwardly generalizable to all members of the coupled cluster hierarchy of approximations, including CC3.

  5. Extragalactic background light absorption signal in the 0.26-10 TeV spectra of blazars

    CERN Document Server

    Vasilev, V

    1999-01-01

    Recent observations of the TeV gamma-ray spectra of the two closest active galactic nuclei (AGNs), Markarian 501 (Mrk 501) and Markarian 421 (Mrk 421), by the Whipple and HEGRA collaborations have stimulated efforts to estimate or limit the spectral energy density (SED) of extragalactic background light (EBL) which causes attenuation of TeV photons via pair-production when they travel cosmological distances. In spite of the lack of any distinct cutoff-like feature in the spectra of Mrk 501 and Mrk 421 (in the interval 0.26-10 TeV) which could clearly indicate the presence of such a photon absorption mechanism, we demonstrate that strong EBL attenuation signal (survival probability of 10 TeV photon (~10^{-2}) may still be present in the spectra of these AGNs. This attenuation could escape detection due to a special form of SED of EBL and unknown intrinsic spectra of these blazars. Here we show how the proposed and existing experiments, VERITAS, HESS, MAGIC, STACEE and CELESTE may be able to detect or severely ...

  6. Restricted active space calculations of L-edge X-ray absorption spectra: From molecular orbitals to multiplet states

    Energy Technology Data Exchange (ETDEWEB)

    Pinjari, Rahul V.; Delcey, Mickaël G.; Guo, Meiyuan; Lundberg, Marcus, E-mail: marcus.lundberg@kemi.uu.se [Department of Chemistry - Ångström Laboratory, Uppsala University, SE-751 20 Uppsala (Sweden); Odelius, Michael [Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d{sup 5}) model systems with well-known electronic structure, viz., atomic Fe{sup 3+}, high-spin [FeCl{sub 6}]{sup 3−} with ligand donor bonding, and low-spin [Fe(CN){sub 6}]{sup 3−} that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  7. Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms

    Institute of Scientific and Technical Information of China (English)

    Liang Qiang-Bing; Yang Bao-Dong; Yang Jian-Feng; Zhang Tian-Cai; Wang Jun-Min

    2010-01-01

    Autler-Townes splitting in absorption spectra of the excited states 6 2P3/2 - 82S1/2 of cold cesium atoms confined in a magneto-optical trap has been observed.Experimental data of the Autler-Townes splitting fit well to the dressedatom theory,by which the fact of the cold atoms dressed by cooling/trapping laser beams is revealed.The results of the theoretical fitting with experiment not only told us the effective Rabi frequency cold atoms experienced,but also could be used for measuring the probability amplitudes of the dressed states.

  8. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter;

    2012-01-01

    We report the theory and implementation of vibrational coupled cluster (VCC) damped response functions. From the imaginary part of the damped VCC response function the absorption as function of frequency can be obtained, requiring formally the solution of the now complex VCC response equations. The...... results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  9. Suzaku discovery of iron absorption lines in outburst spectra of the X-ray transient 4U 1630-472

    CERN Document Server

    Kubota, A; Cottam, J; Kotani, T; Done, C; Ueda, Y; Fabian, A C; Yasuda, T; Takahashi, H; Fukazawa, Y; Yamaoka, K; Makishima, K; Yamada, S; Kohmura, T; Angelini, L; Kubota, Aya; Dotani, Tadayasu; Cottam, Jean; Kotani, Taro; Done, Chris; Ueda, Yoshihiro; Fabian, Andrew C.; Yasuda, Tomonori; Takahashi, Hiromitsu; Fukazawa, Yasushi; Yamaoka, Kazutaka; Makishima, Kazuo; Yamada, Shinya; Kohmura, Takayoshi; Angelini, Lorella

    2006-01-01

    We present the results of six Suzaku observations of the recurrent black hole transient 4U1630-472 during its decline from outburst from February 8 to March 23 in 2006. All observations show the typical high/soft state spectral shape in the 2-50keV band, roughly described by an optically thick disk spectrum in the soft energy band plus a weak power-law tail that becomes dominant only above \\~20keV. The disk temperature decreases from 1.4keV to 1.2keV as the flux decreases by a factor 2, consistent with a constant radius as expected for disk-dominated spectra. All the observations reveal significant absorption lines from highly ionized (H-like and He-like) iron Ka at 7.0keV and 6.7keV. The brightest datasets also show significant but weaker absorption structures between 7.8keV and 8.2keV, which we identify as a blend of iron Kb and nickel Ka absorption lines. The energies of these absorption lines suggest a blue shift with an outflow velocity of ~1000km/s.. The H-like iron Ka equivalent width remains approxima...

  10. Toward the completion of measurement of absorption spectra of 20 amino acids and 5 bases of nuclear acids over wide energy range

    International Nuclear Information System (INIS)

    Absorption spectra of biomolecules over wide energy range are very important to study their radiation effects in terms of the optical approximation proposed by Platzman. Using synchrotron radiation we accumulated absorption spectra of amino acids and bases of nuclear acids. Now we will be able to complete the measurement for all 20 amino acids and all 5 bases of nuclear acids within one year. Here we report mainly about basic techniques to obtain precise data. (author)

  11. Experimental and theoretical studies of the VUV emission and absorption spectra of H2, HD and D2 molecules

    International Nuclear Information System (INIS)

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D2 and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D2 are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B1Σu1, B'1Σu1, C1Πu1 and D1Πu1, taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar1Σu+, D'1Πu1 and D''1Πu1. The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D2 molecules

  12. Resonance raman and absorption spectra of isomeric retinals in their lowest excited triplet states

    DEFF Research Database (Denmark)

    Wilbrandt, Robert Walter; Jensen, N.-H.; Houee-Levin, C.

    1985-01-01

    implications about the size of the energy barriers separating the various triplet species are discussed. The resonance Raman spectra obtained by using either anthracene (ET = 177.7 kJ mol-1) or naphthalene (ET = 254.8 kJ mol-1) as sensitizers were virtually identical for the corresponding triplet states from...

  13. Temperature effects in the absorption spectra and exciton luminescence in ammonium halides

    International Nuclear Information System (INIS)

    Warm-up behavior of the first maximum exciton absorption bands in ammonium halides is explored. Under phase transition occurs offset of bands, bound both with changing a parameter of lattice, and efficient mass of exciton. Warm-up dependency of quantum leaving a luminescence of self-trapped excitons in ammonium halides is measured. (author)

  14. The Linear Absorption and Pump-Probe Spectra of Cylindrical Molecular Aggregates

    NARCIS (Netherlands)

    Bednarz, Mariusz; Knoester, Jasper

    2001-01-01

    We study the optical response of Frenkel excitons in molecular J aggregates with a cylindrical geometry. Such aggregates have recently been prepared for a class of cyanine dyes and are akin to the rod- and ring-shaped light-harvesting systems found in certain bacteria. The linear absorption spectrum

  15. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between...

  16. The bispectrum of the Lyman-alpha forest at z~2-2.4 from a Large sample of UVES QSO Absorption Spectra (LUQAS)

    CERN Document Server

    Viel, M; Heavens, A; Hähnelt, M G; Kim, T S; Springel, V; Hernquist, L

    2004-01-01

    We present a determination of the bispectrum of the flux in the Lyman-alpha forest of QSO absorption spectra obtained from LUQAS which consists of spectra observed with the high resolution Echelle spectrograph UVES. Typical errors on the observed bispectrum as obtained from a jack-knife estimator are ~ 50%. For wavenumbers in the range 0.03 s/km 2.

  17. Determination of Optical Constants of Polystyrene Films from IR Reflection-Absorption Spectra

    Directory of Open Access Journals (Sweden)

    Simion Jitian

    2010-09-01

    Full Text Available Determination of The transmittance values measured in IR reflectionabsorption (RA spectra were used to determine the optical constants of dielectric films laid on solid substrates. In order to obtain the optical constants of polystyrene films laid on steel we used dispersion analysis. In this case, the optical constants are obtained from IR spectrum recorded at a single incidence angle. The use of dispersion analysis offers the advantage of processing a large volume of data.

  18. The SLUGGS survey: Globular cluster stellar population trends from weak absorption lines in stacked spectra

    CERN Document Server

    Usher, Christopher; Brodie, Jean P; Romanowsky, Aaron J; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A

    2014-01-01

    As part of the SLUGGS survey, we stack 1137 Keck DEIMOS spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal to noise ratios of $\\sim 90$ \\AA$^{-1}$. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the H$\\alpha$ and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet--colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour--metallicity relation between galaxies. Two possible explanations for the colour--metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stackin...

  19. Treatment of the emission and absorption spectra of a general formalism Λ-type three-level atom driven by a two-mode field with nonlinearities

    International Nuclear Information System (INIS)

    An analytical expression of the emission and absorption spectra, for a Λ-type three-level cavity-bound atom interacting with a two-mode cavity field, is given using the dressed states of the system. We take explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The characteristics of the emission and absorption spectra for binomial and squeezed coherent states of the modes are exhibited. The effects of the mean number of photons, detuning and the nonlinearity forms on the spectra are analysed

  20. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 micron spectra

    CERN Document Server

    Ryde, N; Farzone, M; Richter, M J; Josselin, E; Harper, G M; Eriksson, K; Greathouse, T K

    2014-01-01

    The structures of the outer atmospheres of red giants are very complex. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain e.g. spectro-interferometric observations. However, high-resolution spectra in the mid-IR do not easily fit into this picture. They rule out any large sphere of water vapour in LTE surrounding red giants. Our aim here is to investigate high-resolution, mid-infrared spectra for a range of red giants, from early-K to mid M. We have recorded 12 microns spectra of 10 well-studied bright red giants, with TEXES on the IRTF. We find that all giants in our study cooler than 4300 K, spanning a range of effective temperatures, show water absorption lines stronger than expected. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that undoubtedly are formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperat...

  1. Dependence of Raman and absorption spectra of stacked bilayer MoS2 on the stacking orientation.

    Science.gov (United States)

    Park, Seki; Kim, Hyun; Kim, Min Su; Han, Gang Hee; Kim, Jeongyong

    2016-09-19

    Stacked bilayer molybdenum disulfide (MoS2) exhibits interesting physical properties depending on the stacking orientation and interlayer coupling strength. Although optical properties, such as photoluminescence, Raman, and absorption properties, are largely dependent on the interlayer coupling of stacked bilayer MoS2, the origin of variations in these properties is not clearly understood. We performed comprehensive confocal Raman and absorption mapping measurements to determine the dependence of these spectra on the stacking orientation of bilayer MoS2. The results indicated that with 532-nm laser excitation, the Raman scattering intensity gradually increased upon increasing the stacking angle from 0° to 60°, whereas 458-nm laser excitation resulted in the opposite trend of decreasing Raman intensity with increasing stacking angle. This opposite behavior of the Raman intensity dependence was explained by the varying resonance condition between the Raman excitation wavelength and C exciton absorption energy of bilayer MoS2. Our work sheds light on the intriguing effect of the subtle interlayer interaction in stacked MoS2 bilayers on the resulting optical properties.

  2. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Indian Academy of Sciences (India)

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  3. The Infrared Spectra and Absorption Intensities of Amorphous Ices: Methane and Carbon Dioxide

    Science.gov (United States)

    Gerakines, Perry A.; Hudson, Reggie L.; Loeffler, Mark J.

    2015-11-01

    Our research group is carrying out new IR measurements of icy solids relevant to the outer solar system and the interstellar medium, with an emphasis on amorphous and crystalline ices below ~70 K. Our goal is to add to the relatively meager literature on this subject and to provide electronic versions of state-of-the-art data, since the abundances of such molecules cannot be deduced without accurate reference spectra and IR band strengths. In the past year, we have focused on two of the simplest and most abundant components of icy bodies in the solar system - methane (CH4) and carbon dioxide (CO2). Infrared spectra from ˜ 4500 to 500 cm-1 have been measured for each of these molecules in μm-thick films at temperatures from 10 to 70 K. All known amorphous and crystalline phases have been reproduced and, for some, presented for the first time. We also report measurements of the index of refraction at 670 nm and the mass densities for each ice phase. Comparisons are made to earlier work where possible. Electronic versions of our new results are available at http://science.gsfc.nasa.gov/691/cosmicice/ constants.html.

  4. Molecular phonons and their absorption/emission spectra from the far IR to microwaves

    CERN Document Server

    Papoular, Renaud

    2015-01-01

    Together with their fingerprint modes, molecules carry coherent vibrations of all their atoms (phonons). Phonon spectra extend from $\\sim$20 to more than $10^{4}\\,\\mu$m, depending on molecular size. These spectra are discrete but large assemblies of molecules of the same family, differing only by minor structural details, will produce continua. As such assemblies are expected to exist in regions where dust accumulates, they are bound to contribute to the observed continua underlying the Unidentified Infrared Bands and the 21-mum band of planetary nebulae as well as to the diffuse galactic emission surveyed by the Planck astronomical satellite and other means. The purpose of this work is to determine, for carbon-rich molecules, the intensity of such continua and their extent into the millimetric range, and to evaluate their detectability in this range. The rules governing the spectral distributions of phonons are derived and shown to differ from those which obtain in the solid state. Their application allow th...

  5. A Reverse Monte Carlo study of H+D Lyman alpha absorption from QSO spectra

    CERN Document Server

    Levshakov, S A; Takahara, F

    1997-01-01

    A new method based on a Reverse Monte Carlo [RMC] technique and aimed at the inverse problem in the analysis of interstellar (intergalactic) absorption lines is presented. The line formation process in chaotic media with a finite correlation length $(l > 0)$ of the stochastic velocity field (mesoturbulence) is considered. This generalizes the standard assumption of completely uncorrelated bulk motions $(l \\equiv 0)$ in the microturbulent approximation which is used for the data analysis up-to-now. It is shown that the RMC method allows to estimate from an observed spectrum the proper physical parameters of the absorbing gas and simultaneously an appropriate structure of the velocity field parallel to the line-of-sight. The application to the analysis of the H+D Ly$\\alpha$ profile is demonstrated using Burles & Tytler [B&T] data for QSO 1009+2956 where the DI Ly$\\alpha$ line is seen at $z_a = 2.504$. The results obtained favor a low D/H ratio in this absorption system, although our upper limit for the ...

  6. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    Science.gov (United States)

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  7. On shape of NMR absorption spectra and cross-relaxation in hetero nuclear spin system

    CERN Document Server

    Zobov, V E; Rodionova, O E

    2001-01-01

    The dynamic theory of the heteronuclear spin systems in solid bodies at high temperatures is developed. The system of the nonlinear integral equations is obtained for the time spin correlation functions in the approximation of the self-consistent fluctuating local field. The corrections, originating due to the fluctuating local fields correlations, existing in the real lattices, are accounted for thereby. The theory is applied to describing available experimental data for the LiF crystal (with two nuclei kinds). The free precession signals for the Li and F nuclei, as well as, the harmonic cross-relaxation spectra, the sup 6 Li isotope cross-polarization and the sup 8 Li isotope depolarization are calculated by the magnetic field orientations along the basic crystallographic axes. Good agreement between theory and experiment is achieved

  8. Monte Carlo inversion of hydrogen and metal lines from QSO absorption spectra

    CERN Document Server

    Levshakov, S A; Kegel, W H; Levshakov, Sergei A.; Agafonova, Irina I.; Kegel, Wilhelm H.

    2000-01-01

    A new method, based on the simulated annealing algorithm and aimed at theinverse problem in the analysis of intergalactic (interstellar) complex spectraof hydrogen and metal lines, is presented. We consider the process of lineformation in clumpy stochastic media accounting for fluctuating velocity anddensity fields (mesoturbulence). This approach generalizes our previous ReverseMonte Carlo and Entropy-Regularized Minimization methods which were applied tovelocity fluctuations only. The method allows one to estimate, from an observedsystem of spectral lines, both the physical parameters of the absorbing gas andappropriate structures of the velocity and density distributions along the lineof sight. The validity of the computational procedure is demonstrated using aseries of synthetic spectra that emulate the up-to-date best quality data. HI,CII, SiII, CIV, SiIV, and OVI lines, exhibiting complex profiles, were fittedsimultaneously. The adopted physical parameters have been recovered with asufficiently high accu...

  9. Electronic absorption spectra of protonated pyrene and coronene in neon matrixes.

    Science.gov (United States)

    Garkusha, Iryna; Fulara, Jan; Sarre, Peter J; Maier, John P

    2011-10-13

    Protonated pyrene and coronene have been isolated in 6 K neon matrixes. The cations were produced in the reaction of the parent aromatics with protonated ethanol in a hot-cathode discharge source, mass selected, and co-deposited with neon. Three electronic transitions of the most stable isomer of protonated pyrene and four of protonated coronene were recorded. The strongest, S(1) ← S(0) transitions, are in the visible region, with onset at 487.5 nm for protonated pyrene and 695.6 nm for protonated coronene. The corresponding neutrals were also observed. The absorptions were assigned on the basis of ab initio coupled-cluster and time-dependent density functional theory calculations. The astrophysical relevance of protonated polycyclic aromatic hydrocarbons is discussed.

  10. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Fisica, Instituto Venezolano de Investigaciones Cientificas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); Garcia, J.; Lohfink, A. [Department of Astronomy and Maryland Astronomy Center for Theory and Computation, University of Maryland, College Park, MD 20742 (United States); Kallman, T. R.; Witthoeft, M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bautista, M. A. [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States); Palmeri, P.; Quinet, P., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@astro.umd.edu, E-mail: alohfink@astro.umd.edu, E-mail: timothy.r.kallman@nasa.gov, E-mail: michael.c.witthoeft@nasa.gov, E-mail: manuel.bautista@wmich.edu, E-mail: palmeri@umons.ac.be, E-mail: quinet@umons.ac.be [Astrophysique et Spectroscopie, Universite de Mons-UMONS, B-7000 Mons (Belgium)

    2013-05-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N{sub H} = 1.38 {+-} 0.01 Multiplication-Sign 10{sup 21} cm{sup -2}; an ionization parameter of log {xi} = -2.70 {+-} 0.023; an oxygen abundance of A{sub O}= 0.689{sup +0.015}{sub -0.010}; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A{sub O}=0.952{sup +0.020}{sub -0.013}, a value close to solar that reinforces the new standard. We identify several atomic absorption lines-K{alpha}, K{beta}, and K{gamma} in O I and O II and K{alpha} in O III, O VI, and O VII-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  11. Fine structures in the optical absorption spectra of photochemical silver in silver halides? A call for further research

    CERN Document Server

    Georgiev, Mladen

    2007-01-01

    A survey is presented of the work done so far to check earlier claims that a fine structure may be observed to occur under certain circumstances in the impurity spectral range of the optical absorption spectra of silver halides following photostimulation in the intrinsic range. This structure, associated with the photochemical formation of silver specks, has been questioned over the years. We now weigh carefully the experimental evidence on the silver halides against a background of similar data on the alkali halides, where competing processes run slower. We come to the conclusion that present day advances in experimental techniques may be quite adequate for providing a solid experimental basis to solve the problem unambiguously.

  12. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra

    Science.gov (United States)

    Ponomarev, Yu. N.; Solodov, A. A.; Solodov, A. M.; Petrova, T. M.; Naumenko, O. V.

    2016-07-01

    A description of the spectroscopic complex at V.E. Zuev Institute of Atmospheric Optics, SB RAS, operating in a wide spectral range with high threshold sensitivity to the absorption coefficient is presented. Measurements of weak lines and nonselective spectra of CO2 and H2O were performed based on the built setup. As new application of this setup, positions and intensities of 152 weak lines of H2O were measured between 2400 and 2560 cm-1 with threshold sensitivity of 8.6×10-10 cm-1, and compared with available calculated and experimental data. Essential deviations between the new intensity measurements and calculated data accepted in HITRAN 2012 and GEISA 2015 forthcoming release are found.

  13. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    CERN Document Server

    Bainbridge, Matthew B

    2016-01-01

    A new and fully-automated method is presented for the analysis of high-resolution absorption spectra (GVPFIT). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. GVPFIT is also motivated by the importance of obtaining a large statistical sample of measurements of $\\Delta\\alpha/\\alpha$. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. Three numerical methods are unified into one artificial intelligence process: a genetic algorithm that emulates the Darwinian processes of reproduction, mutation and selection, non-linear least-squares with parameter constraints (VPFIT), and Bayesian model averaging. In contrast to previous methodologies, which relied on a particular solution as being the most likely model, GVPFIT plus Bayesian model averaging derives results from a large set of models, and helps overcome systema...

  14. Sensitivity of absorption spectra to surface segregation in InGaN/GaN quantum well structures

    International Nuclear Information System (INIS)

    We investigate the influence of the indium surface segregation on absorption spectra in InGaN/GaN quantum well structures having different indium amount. Results of the mathematical modeling show that such influence is more pronounced in quantum well structures with high indium amounts. The origin of this effect is related to the interplay between the indium surface segregation and internal electrostatic fields. Our theoretical analysis is performed using semiconductor Bloch equations within the Hartree-Fock approximation including into consideration excitonic effects. Results of the global sensitivity analysis evidence that the influence of the indium surface segregation is less than one order of magnitude in comparison with the impact of the quantum-well width and indium molar fraction. Also, the influence of the indium surface segregation is not the same for each interface of the quantum well

  15. Theoretical characterization of X-ray absorption, emission, and photoelectron spectra of nitrogen doped along graphene edges.

    Science.gov (United States)

    Wang, Xianlong; Hou, Zhufeng; Ikeda, Takashi; Oshima, Masaharu; Kakimoto, Masa-aki; Terakura, Kiyoyuki

    2013-01-24

    K-edge X-ray absorption (XAS), emission (XES), and photoelectron (XPS) spectra of nitrogen doped along graphene edges are systematically investigated by using first-principles methods. In this study we considered pyridinium-like, pyridine-like, cyanide-like, and amine-like nitrogens at armchair and zigzag edges and pyrrole-like nitrogen at armchair edge as well as graphite-like nitrogen at graphene interior site. Our results indicate that nitrogen configuration and its location (armchair or zigzag edge) in nitrogen-doped graphene can be identified via the spectral analysis. Furthermore, some controversial spectral features observed in experiment for N-doped graphene-like materials are unambiguously assigned. The present analysis gives an explanation to the reason why the peak assignment is usually made differently between XPS and XAS.

  16. Transmittance spectra of the CuGa3Se5 ternary compound near the fundamental absorption edge

    International Nuclear Information System (INIS)

    The CuGa3Se5 ternary compound films are produced by laser deposition at the substrate temperatures 480 and 580 K. The composition and structure of the films are studied. It is shown that, similarly to the corresponding crystals, the CuGa3Se5 films crystallize into the imperfect chalcopyrite structure. The transmittance spectra near the fundamental absorption edge are used to establish the energies and nature of optical transitions. The energies of crystal-field splitting (Δcr) and spin-orbit splitting (ΔSO of the valence band of the CuGa3Se5 ternary compound are calculated in the context of the Hopfield quasi-cubic model.

  17. Transmittance spectra of the CuGa{sub 3}Se{sub 5} ternary compound near the fundamental absorption edge

    Energy Technology Data Exchange (ETDEWEB)

    Bodnar, I. V., E-mail: chemzav@bsuir.by [Belarusian State University of Information and Radio Electronics (Belarus)

    2011-04-15

    The CuGa{sub 3}Se{sub 5} ternary compound films are produced by laser deposition at the substrate temperatures 480 and 580 K. The composition and structure of the films are studied. It is shown that, similarly to the corresponding crystals, the CuGa{sub 3}Se{sub 5} films crystallize into the imperfect chalcopyrite structure. The transmittance spectra near the fundamental absorption edge are used to establish the energies and nature of optical transitions. The energies of crystal-field splitting ({Delta}{sub cr}) and spin-orbit splitting ({Delta}{sub SO} of the valence band of the CuGa{sub 3}Se{sub 5} ternary compound are calculated in the context of the Hopfield quasi-cubic model.

  18. Superresolution and other mathematical techniques for quantitative analysis of infrared absorption and emission spectra of gases

    Science.gov (United States)

    Davies, Nicholas M.; Lettington, Alan H.; Hilton, Moira

    1997-05-01

    Fourier transform IR (FTIR) spectroscopy has become a powerful analytical tool for the detection and measurement of atmospheric pollutant gases. This work describes the application of concentration analysis techniques to data recorded with a versatile FTIR spectroscopy system, developed at the University of Reading PHysics Department. Spectra were recorded at three separate sites, each possessing a distinct source of atmospheric pollution gases. The two sites monitored in the active mode were a traffic congested town center at rush hour and a dairy farm cow shed. The site monitored passively contained three 5 m high methane burners. The analysis techniques have been designed to provide rapid and accurate analysis of the spectrometer data, without the need for high computing power, thus making analysis possible in the field using a laptop PC. In an attempt to enhance the resolution of the spectral data, and therefore resolve overlapping spectral lines, a super- resolution algorithm has been tested on part of the recorded data. The results of applying the algorithm has been tested on part of the recorded data. The results of applying the algorithm, predominantly an image processing technique, are shown and improvements to the algorithm are discussed. Results from the urban and agricultural sites show that CO, CH4, and NH3 can be measured to a ppm level with a maximum uncertainly of 8 percent.

  19. Where Is the Electronic Oscillator Strength? Mapping Oscillator Strength across Molecular Absorption Spectra.

    Science.gov (United States)

    Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N

    2016-03-24

    The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.

  20. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    CERN Document Server

    Gajek, Z; Antic-Fidancev, E

    1997-01-01

    Visible and infrared absorption measurements on the U sup 4 sup + ion in tetragonal zircon-type matrix beta-ThGeO sub 4 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm sup - sup 1. The free-ion parameters obtained for the model Hamiltonian, zeta 5f = 1809 cm sup - sup 1 , F sup 2 =43 065 cm sup - sup 1 , F sup 4 =38 977 cm sup - sup 1 and F sup 6 =24 391 cm sup - sup 1 , as well as the corresponding crystal-field parameters, B sub 0 sup 2 =-1790 cm sup - sup 1 , B sub 0 sup 4 =1200 cm sup - sup 1 , B sub 4 sup 4 =3260 cm sup - sup 1 , B sub 0 sup 6 =-3170 cm sup - sup 1 and B sub 4 sup 6 =990 cm sup - sup 1 , agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO sub 4. (author)

  1. Soft-excess in ULX spectra: disc emission or wind absorption?

    CERN Document Server

    Gonçalves, A C

    2006-01-01

    We assess the claim that Ultra-luminous X-ray sources (ULXs) host intermediate-mass black holes (BH) by comparing the cool disc-blackbody model with a range of other models, namelly a more complex physical model based on a power-law component slightly modified at various energies by smeared emission/absorption lines from highly-ionized gas. Our main conclusion is that the presence of a soft excess, or a soft deficit, depends entirely on the energy range to which we choose to fit the ``true'' power-law continuum; hence, we argue that those components should not be taken as evidence for accretion disc emission, nor used to infer BH masses. We speculate that bright ULXs could be in a spectral state similar to (or an extension of) the steep-power-law state of Galactic BH candidates, in which the disc is completely comptonized and not directly detectable, and the power-law emission may be modified by the surrounding, fast-moving, ionized gas.

  2. Indication of single-crystal PuO2 oxidation from O 1s x-ray absorption spectra

    Science.gov (United States)

    Modin, A.; Yun, Y.; Suzuki, M.-T.; Vegelius, J.; Werme, L.; Nordgren, J.; Oppeneer, P. M.; Butorin, S. M.

    2011-02-01

    The electronic structure of single-crystal PuO2 is studied using O 1s x-ray absorption (XA) and x-ray emission. Interpretation of the experimental data is supported by extensive first-principles calculations on the basis of the densityfunctionaltheory+U approach. The measured XA spectra show a significant difference in intensity for the first two peaks between different spots or areas on the single crystal. Our theoretical simulations show that the first peak, at ~531 eV, can be attributed to O 2p-Pu 5f hybridization, while the second peak, at ~533.4 eV, is due to hybridization of O 2p with Pu d states. The reasons for the observed differences in the O 1s XA spectra are explored by calculating a number of defect structures PuO2±x as well as by simulating the existence of Pu(V) sites. Our results indicate the presence of oxidation states higher than Pu(IV) in some areas of the single crystal. The findings also suggest that plutonium oxide with a Pu fraction in an oxidation state higher than Pu(IV) consists of inequivalent Pu sites with Pu(IV)O2 and Pu(V)O2 rather than representing a system where the Pu oxidation state is constantly fluctuating between Pu(IV) and Pu(V).

  3. Excited S 1 state dipole moments of nitrobenzene and p-nitroaniline from thermochromic effect on electronic absorption spectra

    Science.gov (United States)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-11-01

    The effect of temperature on the absorption spectra of nitrobenzene (NB) and p-nitroaniline (NA) in 1,2-dichloroethane was studied for temperature ranging from 295 K to 378 K and from 296 K to 408 K, respectively. With temperature increase the absorption bands of both compounds are blue shifted, which is caused by the decrease of permittivity ɛ and refractive index n. From the band shifts and by using the Bilot and Kawski theory [ L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621] the dipole moments in the excited singlet state μe = 6.59 D of NB and μe = 13.35 D of NA were determined. The influence of polarizability α, the Onsager cavity radius a and dipole moment in the ground state μg on the determined values of μe are discussed. A comparison of the obtained μe values with those of other authors is given. In the case of p-NA a strong intramolecular charge transfer (ICT) was confirmed.

  4. Physical properties of the interstellar medium using high-resolution Chandra spectra: O K-edge absorption

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, MS-6, 60 Garden Street, Cambridge, MA 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bautista, M. A.; Gorczyca, T. W., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@head.cfa.harvard.edu, E-mail: manuel.bautista@wmich.edu, E-mail: thomas.gorczyca@wmich.edu, E-mail: timothy.r.kallman@nasa.gov [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2014-08-01

    Chandra high-resolution spectra toward eight low-mass Galactic binaries have been analyzed with a photoionization model that is capable of determining the physical state of the interstellar medium. Particular attention is given to the accuracy of the atomic data. Hydrogen column densities are derived with a broadband fit that takes into account pileup effects, and in general are in good agreement with previous results. The dominant features in the oxygen-edge region are O I and O II Kα absorption lines whose simultaneous fits lead to average values of the ionization parameter of log ξ = –2.90 and oxygen abundance of A{sub O} = 0.70. The latter is given relative to the standard by Grevesse and Sauval, but rescaling with the revision by Asplund et al. would lead to an average abundance value fairly close to solar. The low average oxygen column density (N{sub O} = 9.2 × 10{sup 17} cm{sup –2}) suggests a correlation with the low ionization parameters, the latter also being in evidence in the column density ratios N(O II)/N(O I) and N(O III)/N(O I) that are estimated to be less than 0.1. We do not find conclusive evidence for absorption by any other compound but atomic oxygen in our oxygen-edge region analysis.

  5. Kramers-Kronig analysis of molecular evanescent-wave absorption spectra obtained by multimode step-index optical fibers.

    Science.gov (United States)

    Potyrailo, R A; Ruddy, V P; Hieftje, G M

    1996-07-20

    Spectral distortions that arise in evanescent-wave absorption spectra obtained with multimode step-index optical fibers are analyzed both theoretically and experimentally. Theoretical analysis is performed by the application of Kramers-Kronig relations to the real and the imaginary parts of the complex refractive index of an absorbing external medium. It is demonstrated that even when the extinction coefficient of the external medium is small, anomalous dispersion of that medium in the vicinity of an absorption band must be considered. Deviations from Beer's law, band distortions, and shifts in peak position are quantified theoretically as a function of the refractive index and the extinction coefficient of the external medium; the effect of bandwidth for both Lorentzian and Gaussian bands is also evaluated. Numerical simulations are performed for two types of sensing sections in commonly used plastic-clad silica optical fibers. These sensors include an unclad fiber in contact with a lower-index absorbing liquid and a fiber with the original cladding modified with an absorbing species. The numerical results compare favorably with those found experimentally with these types of sensing sections.

  6. Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy

    Science.gov (United States)

    Nozaki, Junji; Kobayashi, Yu; Miyata, Yasumitsu; Maniwa, Yutaka; Watanabe, Kenji; Taniguchi, Takashi; Yanagi, Kazuhiro

    2016-06-01

    Van der Waals (vdW) heterostructures, in which different two-dimensional layered materials are stacked, can exhibit unprecedented optical properties. Development of a technique to clarify local optical properties of vdW heterostructures is of great importance for the correct understanding of their backgrounds. Here, we examined local optical absorption spectra of h-BN–MoS2 vdW heterostructures by scanning near-field microscopy measurements with a spatial resolution of 100 nm. In an as-grown sample, there was almost no site dependence of their optical absorption spectra. However, in a degraded sample where defects and deformations were artificially induced, a significant site-dependence of optical absorption spectra was observed.

  7. Monomeric C-phycocyanin at room temperature and 77 K. Resolution of the absorption and fluorescence spectra of the individual chromophores and the energy-transfer rate constants

    Energy Technology Data Exchange (ETDEWEB)

    Debreczeny, M.P.; Sauer, K. (Lawrence Berkeley Lab., CA (United States) Univ. of California, Berkeley, CA (United States)); Zhou, J.; Bryant, D.A. (Pennsylvania State Univ., University Park, PA (United States))

    1993-09-23

    At both room temperature (RT) and 77 K, the absorption and fluorescence spectra of the three individual chromophore types ([alpha][sub 84], [beta][sub 84], and [beta][sub 155]) found in monomeric C-phycocyanin ([alpha][sup PC][beta][sup PC]), isolated from the cyanobacterium Synechococcus sp. PCC 7002, were resolved along with the rates of energy transfer between the chromophores. The cpcB/C155S mutant, whose PC is missing the [beta][sub 155] chromophore, was useful in effecting this resolution. At RT, the single broad peak in the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) was resolved into its three-component spectra by comparing the steady-state absorption spectra of the isolated wild-type [alpha] subunit of PC ([alpha][sup PC]) (containing only the [alpha][sub 84] chromophore) with those of the monomeric PCs isolated from the mutant strain ([alpha][sup PC][beta]*) and the wild-type strain ([alpha][sup PC][beta][sup PC]). At 77 K, the visible region of the absorption spectrum of ([alpha][sup PC][beta][sup PC]) splits into two peaks. This partial resolution at 77 K of the chromophore spectra of ([alpha][sup PC][beta][sup PC]) when compared with the 77 K absorption spectra of [alpha][sup PC], [beta][sup PC], and ([alpha][sup PC][beta]*) provided a confirmation of our RT assignments of the chromophore absorption spectra. 38 refs., 9 figs., 6 tabs.

  8. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    Science.gov (United States)

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-01

    A comprehensive study of ultrafast molecular relaxation processes of isomeric meso-(pyridyl) porphyrins (TpyPs) has been carried out by using femtosecond time-resolved emission and absorption spectroscopic techniques upon pumping at 400 nm, Soret band (B band or S2), in 4:1 dichloromethane (DCM) and tetrahydrofuran (THF) solvent mixture. By combined studies of fluorescence up-conversion, time-correlated single photon counting, and transient absorption spectroscopic techniques, a complete model with different microscopic rate constants associated with elementary processes involved in electronic manifolds has been reported. Besides, a distinct coherent nuclear wave packet motion in Qy state is observed at low-frequency mode, ca. 26 cm(-1) region. Fluorescence up-conversion studies constitute ultrafast time-resolved emission spectra (TRES) over the whole emission range (430-710 nm) starting from S2 state to Qx state via Qy state. Careful analysis of time profiles of up-converted signals at different emission wavelengths helps to reveal detail molecular dynamics. The observed lifetimes are as indicated: A very fast decay component with 80 ± 20 fs observed at ∼435 nm is assigned to the lifetime of S2 (B) state, whereas being a rise component in the region of between 550 and 710 nm emission wavelength pertaining to Qy and Qx states, it is attributed to very fast internal conversion (IC) occurring from B → Qy and B → Qx as well. Two distinct components of Qy emission decay with ∼200-300 fs and ∼1-1.5 ps time constants are due to intramolecular vibrational redistribution (IVR) induced by solute-solvent inelastic collisions and vibrational redistribution induced by solute-solvent elastic collision, respectively. The weighted average of these two decay components is assigned as the characteristic lifetime of Qy, and it ranges between 0.3 and 0.5 ps. An additional ∼20 ± 2 ps rise component is observed in Qx emission, and it is assigned to the formation time of

  9. Emission from Water Vapor and Absorption from Other Gases at 5-7.5 Microns in Spitzer-IRS Spectra of Protoplanetary Disks

    CERN Document Server

    Sargent, B A; Watson, Dan M; Calvet, N; Furlan, E; Kim, K -H; Green, J; Pontoppidan, K; Richter, I; Tayrien, C

    2014-01-01

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph (IRS) 5-7.5 micron spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 microns due to the nu_2 = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures > 500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other six of the thirteen stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 microns, which for some is consistent with gaseous formaldehyde (H2CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission....

  10. Comparison between X-ray photoelectron and X-ray absorption spectra of an environmental aerosol sample measured by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, J.; Yamamoto, T. [Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto (Japan); Tohno, S. [Department of Socio-Environmental Energy Science, Graduate School of Energy Science, Kyoto University, Uji, Kyoto (Japan); Kitajima, Y. [Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba (Japan)

    1999-01-04

    Sulfur X-ray photoelectron spectra (XPS) and X-ray absorption spectra (XAS) of an aerosol sample collected by an Andersen sampler were measured using a synchrotron beam line. While the XPS was more surface sensitive than XAS, the detection limit of XAS was better than that of XPS. It was concluded that the XAS was more suitable for the chemical state analysis of sulfur in aerosol samples than XPS. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  11. The vacuum thermal treatment effect on the optical absorption spectra of the TiO2 coated by Ni-B nano-clasters photocatalyst powders

    OpenAIRE

    Nadareishvili, M. M.; Kvavadze, K. A.; Mamniashvili, G. I.; Khoperia, T. N.; Zedgenidze, T. I.

    2009-01-01

    The thermal vacuum treatment effect on the optical absorption spectra of the TiO2 nanopowders, both pure and coated by the Ni-B clasters with the original electroless method was investigated. It was observed that the thermal treatment of pure TiO2 nanopowders does not change their optical absorption spectrum while after the coating of these powder particles by the Ni-B clasters the thermal treatment results in the increase of the optical light absorption in the visual region of spectrum. This...

  12. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  13. Harmonic Models in Cartesian and Internal Coordinates to Simulate the Absorption Spectra of Carotenoids at Finite Temperatures.

    Science.gov (United States)

    Cerezo, Javier; Zúñiga, José; Requena, Alberto; Ávila Ferrer, Francisco J; Santoro, Fabrizio

    2013-11-12

    When large structural displacements take place between the ground state (GS) and excited state (ES) minima of polyatomic molecules, the choice of a proper set of coordinates can be crucial for a reliable simulation of the vibrationally resolved absorption spectrum. In this work, we study two carotenoids that undergo structural displacements from GS to ES minima of different magnitude, from small displacements for violaxanthin to rather large ones for β-carotene isomers. Their finite-temperature (77 and 300 K) spectra are simulated at the harmonic level, including Duschinsky effect, by time-dependent (TD) and time-independent (TI) approaches, using (TD)DFT computed potential energy surfaces (PES). We adopted two approaches to construct the harmonic PES, the Adiabatic (AH) and Vertical Hessian (VH) models and, for AH, two reference coordinate frames: Cartesian and valence internal coordinates. Our results show that when large displacements take place, Cartesian coordinates dramatically fail to describe curvilinear displacements and to account for the Duschinsky matrix, preventing a realistic simulation of the spectra within the AH model, where the GS and ES PESs are quadratically expanded around their own equilibrium geometry. In contrast, internal coordinates largely amend such deficiencies and deliver reasonable spectral widths. As expected, both coordinate frames give similar results when small displacements occur. The good agreement between VH and experimental line shapes indicates that VH model, in which GS and ES normal modes are both evaluated at the GS equilibrium geometry, is a good alternative to deal with systems exhibiting large displacements. The use of this model can be, however, problematic when imaginary frequencies arise. The extent of the nonorthogonality of the Dushinsky matrix in internal coordinates and its correlation with the magnitude of the displacement of the GS and ES geometries is analyzed in detail.

  14. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Science.gov (United States)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-08-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5'-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5'-monophosphate, and adenosine 5'-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  15. Signs of the Biological Effect of ~2 μm Low-Intensity Laser Radiation in Raman and Absorption Spectra of Blood

    Science.gov (United States)

    Batay, L. E.; Khodasevich, I. A.; Khodasevich, M. A.; Gorbunova, N. B.; Manina, E. Yu.

    2016-09-01

    Local exposure of experimental animals to low-intensity emission from a thulium laser (λ = 1.96 μm) leads to changes in the Raman and IR absorption spectra of blood. This indicates development of systemic effects caused by direct excitation of water molecules by radiation with wavelength ~2 μm, in particular modifi cation of the hemoglobin molecule.

  16. Systematic trend of water vapour absorption in red giant atmospheres revealed by high resolution TEXES 12 μm spectra

    Science.gov (United States)

    Ryde, N.; Lambert, J.; Farzone, M.; Richter, M. J.; Josselin, E.; Harper, G. M.; Eriksson, K.; Greathouse, T. K.

    2015-01-01

    Context. The structures of the outer atmospheres of red giants are very complex. Recent interpretations of a range of different observations have led to contradictory views of these regions. It is clear, however, that classical model photospheres are inadequate to describe the nature of the outer atmospheres. The notion of large optically thick molecular spheres around the stars (MOLspheres) has been invoked in order to explain spectro-interferometric observations and low- and high-resolution spectra. On the other hand high-resolution spectra in the mid-IR do not easily fit into this picture because they rule out any large sphere of water vapour in LTE surrounding red giants. Aims: In order to approach a unified scenario for these outer regions of red giants, more empirical evidence from different diagnostics are needed. Our aim here is to investigate high-resolution, mid-IR spectra for a range of red giants, spanning spectral types from early K to mid M. We want to study how the pure rotational lines of water vapour change with effective temperature, and whether we can find common properties that can put new constraints on the modelling of these regions, so that we can gain new insights. Methods: We have recorded mid-IR spectra at 12.2 - 12.4 μm at high spectral resolution of ten well-studied bright red giants, with TEXES mounted on the IRTF on Mauna Kea. These stars span effective temperatures from 3450 K to 4850 K. Results: We find that all red giants in our study cooler than 4300 K, spanning a wide range of effective temperatures (down to 3450 K), show water absorption lines stronger than expected and none are detected in emission, in line with what has been previously observed for a few stars. The strengths of the lines vary smoothly with spectral type. We identify several spectral features in the wavelength region that are undoubtedly formed in the photosphere. From a study of water-line ratios of the stars, we find that the excitation temperatures, in the

  17. A comparison of fine structures in high-resolution x-ray-absorption spectra of various condensed organic molecules.

    Science.gov (United States)

    Schoell, A; Zou, Y; Huebner, D; Urquhart, S G; Schmidt, Th; Fink, R; Umbach, E

    2005-07-22

    We report on a high-resolution C-K and O-K near-edge x-ray-absorption fine-structure (NEXAFS) study of large aromatic molecules in condensed thin films, namely, anhydrides 1,4,5,8-naphthalene-tetracarboxylic acid dianhydride, 3,4,9,10-perylene-tetracarboxylic acid dianhydride, benzoperylene-(1,2)-dicarboxylic acid anhydride, and 1,8-naphthalene-dicarboxylic acid anhydride and the quinoic acenaphthenequinone. Due to the high-energy resolution of the third-generation synchrotron source BESSY II we observe large differences in the NEXAFS fine structures even for very similar molecules, resulting in a wealth of new information. The rich fine structure can unambiguously be assigned to the coupling of electronic transitions to vibronic excitations. Backed by ab initio calculations we present a detailed analysis of the spectra that allows the complete interpretation of the near-edge features. It also yields information on the vibronic properties in the electronically excited state as well as on the response of the electronic system upon core excitation. The strong differences in the electron-vibron coupling for different molecules are discussed. PMID:16095371

  18. Influence of Duschinsky and Herzberg-Teller effects on S0 → S1 vibrationally resolved absorption spectra of several porphyrin-like compounds

    Science.gov (United States)

    Yang, Pan; Qi, Dan; You, Guojian; Shen, Wei; Li, Ming; He, Rongxing

    2014-09-01

    The S0 → S1 (Q band) high-resolved absorption spectra of three porphyrin-like compounds, porphycene, magnesium porphyrin, and zinc tetraazaporphyrin, were simulated in the framework of the Franck-Condon approximation including the Duschinsky and Herzberg-Teller (HT) contributions. Substitution of meso-aza on porphyrin macrocycle framework could change severely the absorption energy, vibrational intensity, and spectral profile of Q band. Therefore, we focused attention on the spectral similarities and contrasts among the three compounds based on the density functional theory and its time-dependent extension calculations. The simulated spectra agreed well with the experimental ones and further confirmed that the HT and Duschinsky effects have significant influence on the weakly allowed or forbidden transition of sizable organic molecules. The pure HT and Duschinsky effects were explored separately to clarify their contributions on changing vibrational intensities of different modes. Moreover, we tentatively assigned most of the vibrational modes which appeared in the experimental spectra but corresponding assignments were not given. The present work provided a useful method to simulate and interpret the absorption spectra of porphyrin-like compounds.

  19. Influence of Duschinsky and Herzberg-Teller effects on S₀→ S₁ vibrationally resolved absorption spectra of several porphyrin-like compounds.

    Science.gov (United States)

    Yang, Pan; Qi, Dan; You, Guojian; Shen, Wei; Li, Ming; He, Rongxing

    2014-09-28

    The S0 → S1 (Q band) high-resolved absorption spectra of three porphyrin-like compounds, porphycene, magnesium porphyrin, and zinc tetraazaporphyrin, were simulated in the framework of the Franck-Condon approximation including the Duschinsky and Herzberg-Teller (HT) contributions. Substitution of meso-aza on porphyrin macrocycle framework could change severely the absorption energy, vibrational intensity, and spectral profile of Q band. Therefore, we focused attention on the spectral similarities and contrasts among the three compounds based on the density functional theory and its time-dependent extension calculations. The simulated spectra agreed well with the experimental ones and further confirmed that the HT and Duschinsky effects have significant influence on the weakly allowed or forbidden transition of sizable organic molecules. The pure HT and Duschinsky effects were explored separately to clarify their contributions on changing vibrational intensities of different modes. Moreover, we tentatively assigned most of the vibrational modes which appeared in the experimental spectra but corresponding assignments were not given. The present work provided a useful method to simulate and interpret the absorption spectra of porphyrin-like compounds. PMID:25273434

  20. Onset of the Electronic Absorption Spectra of Isolated and π-Stacked Oligomers of 5,6-Dihydroxyindole: An Ab Initio Study of the Building Blocks of Eumelanin.

    Science.gov (United States)

    Tuna, Deniz; Udvarhelyi, Anikó; Sobolewski, Andrzej L; Domcke, Wolfgang; Domratcheva, Tatiana

    2016-04-14

    Eumelanin is a naturally occurring skin pigment which is responsible for developing a suntan. The complex structure of eumelanin consists of π-stacked oligomers of various indole derivatives, such as the monomeric building block 5,6-dihydroxyindole (DHI). In this work, we present an ab initio wave-function study of the absorption behavior of DHI oligomers and of doubly and triply π-stacked species of these oligomers. We have simulated the onset of the electronic absorption spectra by employing the MP2 and the linear-response CC2 methods. Our results demonstrate the effect of an increasing degree of oligomerization of DHI and of an increasing degree of π-stacking of DHI oligomers on the onset of the absorption spectra and on the degree of red-shift toward the visible region of the spectrum. We find that π-stacking of DHI and its oligomers substantially red-shifts the onset of the absorption spectra. Our results also suggest that the optical properties of biological eumelanin cannot be simulated by considering the DHI building blocks alone, but instead the building blocks indole-semiquinone and indole-quinone have to be considered as well. This study contributes to advancing the understanding of the complex photophysics of the eumelanin biopolymer.

  1. Infrared Absorption Spectra of Jahn-Teller Systems: Application to the Transition-Metal Trifluorides MnF3 and NiF3.

    Science.gov (United States)

    Mondal, Padmabati; Domcke, Wolfgang

    2014-05-14

    The theory for the calculation of vibronic absorption spectra within a Jahn-Teller (JT) active electronic state from first principles has been developed. The infrared absorption spectra of the (5)E' ground state, the low-lying (5)E″ excited state of MnF3, and the (4)E' state of NiF3 have been computed and analyzed. Dipole moment derivatives have been determined by a linear-plus-quadratic expansion of nuclear dipole moment functions in the JT-active coordinates. Electronic transition dipole moments have been taken into account in the Condon approximation in the diabatic representation. The initial and final vibronic states have been expanded in a product of diabatic electronic states and vibrational basis functions. The effect of spin-orbit coupling on the vibronic infrared spectra of these molecules in their JT-active electronic states has been investigated, by employing the Breit-Pauli spin-orbit operator. The effect of temperature on the vibronic infrared spectra has also been explored. These results represent the first theoretical study of vibronic infrared spectra of JT-active states in transition metal compounds.

  2. Assignment of near-edge x-ray absorption fine structure spectra of metalloporphyrins by means of time-dependent density-functional calculations

    Science.gov (United States)

    Schmidt, Norman; Fink, Rainer; Hieringer, Wolfgang

    2010-08-01

    The C 1s and N 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of three prototype tetraphenyl porphyrin (TPP) molecules are discussed in the framework of a combined experimental and theoretical study. We employ time-dependent density-functional theory (TDDFT) to compute the NEXAFS spectra of the open- and closed-shell metalloporphyrins CoTPP and ZnTPP as well as the free-base 2HTPP in realistic nonplanar conformations. Using Becke's well-known half-and-half hybrid functional, the computed core excitation spectra are mostly in good agreement with the experimental data in the low-energy region below the appropriate ionization threshold. To make these calculations feasible, we apply a new, simple scheme based on TDDFT using a modified single-particle input spectrum. This scheme is very easy to implement in standard codes and allows one to compute core excitation spectra at a similar cost as ordinary UV/vis spectra even for larger molecules. We employ these calculations for a detailed assignment of the NEXAFS spectra including subtle shifts in certain peaks of the N 1s spectra, which depend on the central coordination of the TPP ligand. We furthermore assign the observed NEXAFS resonances to the individual molecular subunits of the investigated TPP molecules.

  3. Evaluation on radiation features of the KUR deuterium neutron irradiation equipment. Neutron energy spectra and neutron- and gamma-ray absorption dose rate

    International Nuclear Information System (INIS)

    The deuterium irradiation equipment at reactor for research in Kyoto University (KUR) was reformed at main aim of upgrading of neutron capture therapy (NCT) from November, 1995 to March, 1996. Neutron energy spectra at reference radiation position evaluated on a partial radiation mode by multiple activated foil method, was introduced. As a result of carrying out a simulation calculation using two dimensional transmission calculation supposing medical radiation using the obtained spectra, experimental results could be followed satisfactorily in total. And, comparison with differential absorption dose rate measured by using twin-type ionization box and semiconductor detector for medical probe was also carried out. (G.K.)

  4. Comment on "Limits on the Time Variation of the Electromagnetic Fine-Structure Constant in the Low Energy Limit from Absorption Lines in the Spectra of Distant Quasars"

    CERN Document Server

    Murphy, Michael T; Flambaum, Victor V

    2007-01-01

    In their Letter [Phys. Rev. Lett. 92, 121302 (2004)] (also [Astron. Astrophys. 417, 853 (2004)]), Srianand et al. analysed optical spectra of heavy-element species in 23 absorption systems along background quasar sight-lines, reporting limits on relative variations in the fine-structure constant: da/a=(-0.06+/-0.06) x 10^{-5}. Here we demonstrate basic flaws in their analysis, using the same data and absorption profile fits, which led to spurious values of da/a and significantly underestimated uncertainties. We conclude that these data and fits offer no stringent test of previous evidence for a varying alpha.

  5. UV-VIS absorption spectra of molten AgCl and AgBr and of their mixtures with group I and II halide salts

    Energy Technology Data Exchange (ETDEWEB)

    Greening, Giorgio G.W. [Technische Universitaet Darmstadt (Germany). Eduard-Zintl-Institut fuer Anorganische und Physikalische Chemie

    2015-07-01

    The UV-VIS absorption spectra of (Ag{sub 1-X}[Li-Cs, Ba]{sub X})Cl and of (Ag{sub 1-X}[Na, K, Cs]{sub X})Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  6. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    International Nuclear Information System (INIS)

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectral absorption on Charon is also reported.

  7. Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones

    Directory of Open Access Journals (Sweden)

    NATASA V. VALENTIC

    2001-08-01

    Full Text Available A number of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones from cyanoacetamide and the corresponding alkyl ethyl acetoacetates were synthesized according to modified literature procedures. The alkyl ethyl acetoacetates were obtained by the reaction of C-alkylation of ethyl acetoacetate. An investigation of the reaction conditions for the synthesis of 4-methyl-3-cyano-6-hydroxy-2-pyridone from cyanoacetamide and ethyl acetoacetate in eight different solvents was also performed. The ultraviolet absorption spectra of synthesized pyridones were measured in nine different solvents in the range 200–400 nm. The effects of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of linear solvation energy relationships using a general equation of the form n = n0 + sp* + aa + bb, where p* is a measure of the solvent polarity, a is the scale of the solvent hydrogen bond donor acidities and b is the scale of the solvent hydrogen bond acceptor basicities.

  8. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  9. Ultraviolet Absorption Spectra, AB Initio Calculations, and Carbonyl Wagging Potential Energy Functions of Cyclobutanone, Cyclopentanone, BICYCLO[3.1.0]HEXAN-3-ONE, and TETRAHYDROFURAN-3-ONE

    Science.gov (United States)

    Lee, Soono; Dakkouri, Marwan; Choo, Jaebum; Laane, Jaan

    2000-03-01

    The electronic absorption spectra of cyclobutanone, cyclopentanone, bicyclo[3.1.0]hexan-3-one, and tetrahydrofuran-3-one were recorded and analyzed in the 28,000 - 44,000 cm-1 region. Several dozen absorption bands were assigned for each molecule. These arise from combinations of the ring vibrations and the C=O wagging vibrations. Assigned bands were compared with previously recorded jet-cooled fluorescence excitation spectra. Additional C=O out-of-plane wagging bands were found for cyclopentanone and tetrahydrofuran-3-one, and the potential energy functions for this vibration in these molecules were recalculated. These potential energy functions have barriers to inversion reflecting the fact that the carbonyl group is bent out of the ring plane in the S1(n, π*) excited electronic state.

  10. Difference in effect of temperature on absorption and Raman spectra between all-trans-β-carotene and all-trans-retinol

    Institute of Scientific and Technical Information of China (English)

    Qu Guan-Nan; Li Zuo-Wei; Gao Shu-Qin; Li Shuo; Sun Cheng-Lin; Liu Tian-Yuan; Wu Yong-Ling; Sun Shang; Shan Xiao-Ning; Men Zhi-Wei; Chen Wei

    2012-01-01

    Temperature dependencies (81 ℃-18 ℃) of visible absorption and Raman spectra of all-trans-β-carotene and all-trans-retinol extremely diluted in dimethyl sulfoxide are investigated in order to clarify temperature effects on different polyenes.Their absorption spectra are identified to be redshifted with temperature decreasing.Moreover,all-trans-β-carotene is more sensitive to temperature due to the presence of a longer length of conjugated system.The characteristic energy responsible for the conformational changes in all-trans-β-carotene is smaller than that in all-trans-retinol.Both of the Raman scattering cross sections increase with temperature decreasing.The results are explained with electron-phonon coupling theory and coherent weakly damped electron-lattice vibrations model.

  11. Low temperature laser absorption spectra of methane in the near-infrared at 1.65 μm for lower state energy determination

    Institute of Scientific and Technical Information of China (English)

    Gao Wei; Chen Wei-Dong; Zhang Wei-Jun; Yuan Yi-Qian; Gao Xiao-Ming

    2012-01-01

    Direct absorption spectra of the 2v3 band of methane (CH4) from 6038 to 6050 cm-1 were studied at different low temperatures using a newly developed cryogenic cell in combination with a distributed feedback (DFB) diode laser.The cryogenic cell can operate at any stabilized temperature ranging from room temperature down to 100 K with temperature fluctuation less than ±l K within 1 hour.In the present work,the CH4 spectra in the range of 6038-6050 cm-1 were recorded at 296,266,248,223,198,and 176 K.The lower state energy E" and the rotational assignment of the angular momentum J were determined by a “2-low-temperature spectra method” using the spectra recorded at 198 and 176 K.The results were compared with the data from the GOSAT and the recently reported results from Campargue and co-workers using two spectra measured at room temperature and 81 K.We demonstrated that the use of a 2-low-temperature spectra method permits one to complete the E" and J values missed in the previous studies.

  12. Search for broad absorption lines in spectra of stars in the field of supernova remnant RX J0852.0-4622 (Vela Jr.)

    CERN Document Server

    Iyudin, A F; Chugai, N N; Greiner, J; Axelsson, M; Larsson, S; Ryabchikova, T A

    2010-01-01

    Supernova remnant (SNR) RX J0852.0-4622 is one of the youngest and is most likely the closest among known galactic supernova remnants (SNRs). It was detected in X-rays, the 44Ti gamma-line, and radio. We obtain and analyze medium-resolution spectra of 14 stars in the direction towards the SNR RX J0852.0-4622 in an attempt to detect broad absorption lines of unshocked ejecta against background stars. Spectral synthesis is performed for all the stars in the wavelength range of 3740-4020AA to extract the broad absorption lines of Ca II related to the SNR RX J0852.0-4622. We do not detect any broad absorption line and place a 3-sigma upper limit on the relative depths of <0.04 for the broad Ca II absorption produced by the SNR. We detect narrow low and high velocity absorption components of Ca II. High velocity |V(LSR)|=100-140 km/s components are attributed to radiative shocks in clouds engulfed by the old Vela SNR. The upper limit to the absorption line strength combined with the width and flux of the 44Ti g...

  13. Vibrational analysis of various irotopes of L-alanyl-L-alanine in aqueous solution: Vibrational Absorption (VA), Vibrational Circular Dichroism (VCD), Raman and Raman Optical Activity (ROA) Spectra

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.; Nieminen, R.M.; Knapp-Mohammady, M.;

    2003-01-01

    been reported. Subsequently, the vibrational absorption (VA) and vibrational circular dichroism (VCD) and the Raman and Raman Optical Activity (ROA) spectra have been reported. In this work an analysis of the aqueous solution VA, VCD, Raman, and ROA spectra for various isotopomers of LALA are reported....... DFT Becke3LYP/6-31G* theory has been used to determine the geometry, Hessian, atomic polar tensors (APT), and atomic axial tensors (AAT), and the electric dipole-electric dipole polarizability derivatives (EDEDPD), which are required for us to simulate the VA, VCD, and Raman spectra. The electric...... dipole-magnetic dipole polarizability derivatives (EDMDPD) and the electric dipole-electric cluadrapole polarizability derivatives (EDEQPD) have been calculated at the RHF/6-31G* level of theory, The VA, VCD, Raman, and ROA spectral simulations for the various isotoporners are compared...

  14. Infrared Measurements of Atmospheric Ethane (C2H6) From Aircraft and Ground-Based Solar Absorption Spectra in the 3000/ cm Region

    Science.gov (United States)

    Coffey, M. T.; Mankin, W. G.; Goldman, A.; Rinsland, C. P.; Harvey, G. A.; Devi, V. Malathy; Stokes, G. M.

    1985-01-01

    A number or prominent Q-branches or the upsilon(sub 7) band or C2H6 have been identified near 3000/ cm in aircraft and ground-based infrared solar absorption spectra. The aircraft spectra provide the column amount above 12 km at various altitudes. The column amount is strongly correlated with tropopause height and can be described by a constant mixing ratio of 0.46 ppbv in the upper troposphere and a mixing ratio scale height of 3.9 km above the tropopause. The, ground-based spectra yield a column of 9.0 x 10(exp 15) molecules/sq cm above 2.1 km; combining these results implies a tropospheric mixing ratio of approximately 0.63 ppbv.

  15. Study of the Effect of the Pulse Width of the Excitation Source on the Two-Photon Absorption and Two-Photon Circular Dichroism Spectra of Biaryl Derivatives.

    Science.gov (United States)

    Vesga, Yuly; Hernandez, Florencio E

    2016-09-01

    Herein we report on the expanded theoretical calculations and the experimental measurements of the two-photon absorption (TPA) and two-photon circular dichroism (TPCD) spectra of a series of optically active biaryl derivatives (R-BINOL, R-VANOL, and R-VAPOL) using femtosecond pulses. The comparative analysis of the experimental TPCD spectra obtained with our tunable amplified femtosecond system with those previously measured in our group on the same series of compounds in the picosecond regime reveals a decrease in the amplitude of the signal and an improvement in matching with the theory in the former. These results can be explained based on the negligible contribution of excited state absorption (ESA) using femtosecond pulses compared to the picosecond regime. We show how ESA affects both the strength of the signal and the shape of the TPA and TPCD spectra. TPA and TPCD spectra were obtained using the double L-scan technique over a broad spectral range (450-750 nm) using 90 fs pulses at 50 Hz repetition rate produced by an amplified femtosecond system. The theoretical calculations were performed using modern analytical response theory within the time-dependent density functional theory (TD-DFT) approach using CAM-B3LYP and 6-311++G(d,p) basis sets. PMID:27525702

  16. Influence of TiO2 Nanocrystals Fabricating Dye-Sensitized Solar Cell on the Absorption Spectra of N719 Sensitizer

    Directory of Open Access Journals (Sweden)

    Puhong Wen

    2012-01-01

    Full Text Available The absorption spectra of N719 sensitizer anchored on the films prepared by TiO2 nanocrystals with different morphology and size were investigated for improving the performance of dye-sensitized solar cell (DSC. We find that the morphology and size of TiO2 nanocrystals can affect the UV-vis and FT-IR spectra of the sensitizer anchored on their surfaces. In particular, the low-energy metal-to-ligand charge-transfer transitions (MLCT band in the visible absorption spectra of N719 is strongly affected, and locations of these MLCT bands revealed larger differences. The results indicate that there is a red shift of MLCT band in the spectra obtained by using TiO2 nanocrystals with long morphology and large size compared to that in solution. And it produced a larger red-shift on the MLCT band after TiO2 nanocrystals with small size mixed with some long nanocrystals. Accordingly, the utilization rate to visible light is increased. This is a reason why the DSC prepared by using such film as a photoelectrode has better performance than before mixing.

  17. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2011-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and M??ssbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, r??merite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3??5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750-4000cm-1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. M??ssbauer spectra of selected samples were obtained at room temperature and 80K for ferric minerals jarosite and rhomboclase and mixed ferric-ferrous minerals r??merite, voltaite, and copiapite. Values of Fe2+/[Fe2++Fe3+] determined by M??ssbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases. ?? 2011 Elsevier B.V.

  18. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  19. Atomic Transition Frequencies, Isotope Shifts, and Sensitivity to Variation of the Fine Structure Constant for Studies of Quasar Absorption Spectra

    Science.gov (United States)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; King, J. A.; Kozlov, M. G.; Murphy, M. T.; Webb, J. K.

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, α = {e}2/hslash c , could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that α varies spatially (61). That is, in one direction on the sky α seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger.

  20. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi [Department of Applied Physics, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588 (Japan); Fujii, Kentaro; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fukuda, Yoshihiro; Saitoh, Yuji [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, Sayo-gun, Hyougo 679-5148 (Japan)

    2014-08-07

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5{sup ′}-monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5{sup ′}-monophosphate, and adenosine 5{sup ′}-triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety.

  1. UV-visible and infrared absorption spectra of Bi2O3 in lithium phosphate glasses and effect of gamma irradiation

    International Nuclear Information System (INIS)

    Ultraviolet and visible absorption spectra of prepared undoped lithium phosphate glass and samples of the same nominal composition with additional Bi2O3 contents were measured before and after being subjected to gamma doses of 3 and 6 Mrad. The base undoped lithium phosphate glass exhibits strong charge transfer ultraviolet absorption bands, which are related to unavoidable presence of trace iron impurities within the raw materials for the preparation of this glass. Bi2O3-containing glasses show the extension of UV absorption beside the resolution of visible bands at 400, 450, and 700 nm with the increase of Bi2O3 content due the sharing of absorption of Bi3+ ions. Gamma irradiation of the base glass reveals extended induced bands; the UV bands are related to the conversion of some Fe2+ to Fe3+ through photochemical reactions during the irradiation process. The visible induced bands are related to the formation of positive hole centers from the host phosphate glass. Glasses containing Bi2O3 are observed to show some shielding behavior, which is attributed to the presence of heavy weight and large atomic number of Bi3+ ions. Infrared absorption spectral measurements of the base lithium phosphate glass show characteristic vibrational modes which are related to specific phosphate groups. The addition of Bi2O3 in measurable percent produces additional vibrational bands due to the introduction of Bi-O groups such as BiO3 and BiO6. (orig.)

  2. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun Dunlu [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)], E-mail: dlsun@aiofm.ac.cn; Luo Jianqiao; Zhang Qingli [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Xiao Jingzhong [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Xu Jiayue [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Haihe; Yin Shaotang [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China)

    2008-12-15

    Laser crystals Nd{sup 3+}:Gd{sub 3}Ga{sub 5}O{sub 12} (Nd:GGG) and Nd{sup 3+}:Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space.

  3. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    International Nuclear Information System (INIS)

    Laser crystals Nd3+:Gd3Ga5O12 (Nd:GGG) and Nd3+:Gd3Sc2Ga3O12 (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space

  4. Detected CFCs: UV Absorption Spectra, Atmospheric Lifetimes, Global Warming and Ozone Depletion Potentials for CFC-112, CFC-112a, CFC-113a and CFC-114a

    Science.gov (United States)

    Bernard, F.; Davis, M. E.; McGillen, M.; Fleming, E. L.; Burkholder, J. B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting substances (ODSs) and potent greenhouse gases. Measurements have observed CFC-112 (CFCl2CFCl2), CFC-112a (CF2ClCCl3), and CFC-113a (CCl3CF3) in the atmosphere (Laube et al., 2014). The current atmospheric abundances of CFC-112 and CFC-112a are ~0.4 and ~0.06 ppt, respectively, with decreasing abundance since 1995. In contrast, CFC-113a was found to show continuous growth over the past 50 years with a current atmospheric abundance of ~0.5 ppt. The major atmospheric removal process for these compounds is expected to be UV photolysis in the stratosphere. To date there is, however, no UV absorption spectra for these compounds available in the literature. To better determine the atmospheric lifetimes and environmental impact of these CFCs, laboratory measurements of the UV absorption spectra of CFC-112, CFC-112a, CFC-113a, and CFC-114a (Cl2FCF3) between 195 and 235 nm and over the temperature range 207 to 323 K were performed. Spectrum parametrizations were developed for use in atmospheric models. Atmospheric lifetimes and ozone depletion potentials (ODPs) were calculated using the Goddard Space Flight Center 2-D atmospheric chemistry model. Infrared absorption spectra of these compounds were also measured and used to calculate their global warming potentials. The results of the laboratory measurements and model calculations will be presented. J. C. Laube et al., Newly detected ozone-depleting substances in the atmosphere, Nature Geoscience, 7, 266-269, 2014

  5. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.;

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... with three different solvation approaches: the zwitterion surrounded by explicit water molecules only, the zwitterion embedded in a self-consistent reaction field (Onsager model) and the zwitterion plus the explicit water molecules embedded in a self-consistent reaction field. The structures were optimized...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  6. Retrieval of xCO2 from ground-based mid-infrared (NDACC solar absorption spectra and comparison to TCCON

    Directory of Open Access Journals (Sweden)

    M. Buschmann

    2015-10-01

    Full Text Available High resolution solar absorption spectra, taken within the Network for the Detection of Atmospheric Composition Change (NDACC in the mid-infrared spectral region are used to infer partial or total column abundances of many gases. In this paper we present the retrieval of a column averaged mole fraction of carbon dioxide from NDACC-IRWG spectra taken with a Fourier-Transform-Infra-Red (FTIR spectrometer at the site in Ny-Ålesund, Spitsbergen. The retrieved time series is compared to co-located standard TCCON measurements of total column CO2. Comparing the NDACC and TCCON retrievals we find that the sensitivity of the NDACC retrieval is lower in the troposphere (by a factor of two and higher in the stratosphere, compared to TCCON. Thus, the NDACC retrieval is less sensitive to tropospheric changes (e.g. the seasonal cycle in the column average.

  7. Excited state dipole moments of chloroanilines and chlorophenols from solvatochromic shifts in electronic absorption spectra: Support for the concept of excited state group moments

    Science.gov (United States)

    Prabhumirashi, L. S.; Satpute, R. S.

    The dipole moments of isomeric o-, m- and p-chloroanilines and chlorophenols in electronically excited L a and L b states are estimated from solvent induced polarization shifts in electronic absorption spectra. It is observed that μ e( L a) > μ e( L b) > μ g, which is consistent with the general theory of polarization red shift. The μ es are found to be approximately co-linear with the corresponding μ gs. The concept of group moments is extended to aromatic molecules in excited states. This approach is found to be useful in understanding correlations among the excited states of mono- and disubstituted benzenes.

  8. Thermal bleaching of optical absorption and photoluminescence spectra of γ-irradiated CaF_2:Dy:Pb:Na single crystals

    Institute of Scientific and Technical Information of China (English)

    S.M.; Moses; Kennedy

    2010-01-01

    The variation of the optical absorption (OA) and photoluminescence (PL) spectra with temperature was studied on γ-irradiated CaF2:Dy:Pb:Na single crystals. The OA spectrum showed bands around 2.05, 3.20, 3.82 and 6.20 eV which could be attributed to different sodium associated (SA) colour centres (CCs) such as MNa and RA+ . Heating the crystal indicated the annihilation and formation of different SACCs. The excitation spectrum for the characteristic Dy3+ emission at 2.14 eV immediately after irradiation was...

  9. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    International Nuclear Information System (INIS)

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI−)), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI− although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm−1 agrees well with the experimental measurement

  10. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    Science.gov (United States)

    Ma, HuiLi; Zhao, Yi; Liang, WanZhen

    2014-03-01

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI-)), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI- although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm-1 agrees well with the experimental measurement.

  11. Assessment of mode-mixing and Herzberg-Teller effects on two-photon absorption and resonance hyper-Raman spectra from a time-dependent approach

    Energy Technology Data Exchange (ETDEWEB)

    Ma, HuiLi [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Institute of Fujian Provincial Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Department of Chemical Physics, University of Science and Technology of China, Hefei 230026 (China); Zhao, Yi; Liang, WanZhen, E-mail: liangwz@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Institute of Fujian Provincial Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2014-03-07

    A time-dependent approach is presented to simulate the two-photon absorption (TPA) and resonance hyper-Raman scattering (RHRS) spectra including Duschinsky rotation (mode-mixing) and Herzberg-Teller (HT) vibronic coupling effects. The computational obstacles for the excited-state geometries, vibrational frequencies, and nuclear derivatives of transition dipole moments, which enter the expressions of TPA and RHRS cross sections, are further overcome by the recently developed analytical excited-state energy derivative approaches in the framework of time-dependent density functional theory. The excited-state potential curvatures are evaluated at different levels of approximation to inspect the effects of frequency differences, mode-mixing and HT on TPA and RHRS spectra. Two types of molecules, one with high symmetry (formaldehyde, p-difluorobenzene, and benzotrifluoride) and the other with non-centrosymmetry (cis-hydroxybenzylidene-2,3-dimethylimidazolinone in the deprotonated anion state (HDBI{sup −})), are used as test systems. The calculated results reveal that it is crucial to adopt the exact excited-state potential curvatures in the calculations of TPA and RHRS spectra even for the high-symmetric molecules, and that the vertical gradient approximation leads to a large deviation. Furthermore, it is found that the HT contribution is evident in the TPA and RHRS spectra of HDBI{sup −} although its one- and two-photon transitions are strongly allowed, and its effect results in an obvious blueshift of the TPA maximum with respect to the one-photon absorption maximum. With the HT and solvent effects getting involved, the simulated blueshift of 1291 cm{sup −1} agrees well with the experimental measurement.

  12. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  13. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes: I. C60, C59N+ and C48N12

    Energy Technology Data Exchange (ETDEWEB)

    Xie, R; Bryant, G W; Sun, G; C.Nicklaus, M; Heringer, D; Frauenheim, T; Manaa, M R; Smith, Jr., V H; Araki, Y; Ito, O

    2003-10-02

    Low-energy excitations and optical absorption spectrum of C{sub 60} are computed by using time-dependent (TD) Hartree-Fock (HF), TD-density functional theory (TD-DFT), TD-DFT-based tight-binding (TD-DFT-TB) and a semiempirical ZINDO method. A detailed comparison of experiment and theory for the excitation energies, optical gap and absorption spectrum of C{sub 60} is presented. It is found that electron correlations and collective effects of exciton pairs play important roles in assigning accurately the spectral features of C{sub 60} and the TD-DFT method with non-hybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C{sub 60} justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C{sub 59}N{sup +} exhibits distinguishing spectral features different from C{sub 60}: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C{sub 59}N{sup +} characterize and explain well our measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C{sub 59}N][Ag(CB{sub 11}H{sub 6}Cl{sub 6}){sub 2}]. For the most stable isomer of C{sub 48}N{sub 12}, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C{sub 60}, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314 and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C{sub 48}N{sub 12} isomers is helpful in distinguishing the isomer structures required for applications in molecular electronics. For C{sub 59}N{sup +} and C{sub 48}N

  14. Structure-Related Optical Fingerprints in the Absorption Spectra of Colloidal Quantum Dots: Random Alloy vs. Core/Shell Systems

    CERN Document Server

    Mourad, Daniel

    2016-01-01

    We argue that the experimentally easily accessible optical absorption spectrum can often be used to distinguish between a random alloy phase and a stoichiometrically equivalent core/shell realization of ensembles of monodisperse colloidal semiconductor quantum dots without the need for more advanced structural characterization tools. Our proof-of-concept is performed by conceptually straightforward exact-disorder tight-binding calculations. The underlying stochastical tight-binding scheme only parametrizes bulk band structure properties and does not employ additional free parameters to calculate the optical absorption spectrum, which is an easily accessible experimental property. The method is applied to selected realizations of type-I Cd(Se,S) and type-II (Zn,Cd)(Se,S) alloyed quantum dots with an underlying zincblende crystal structure and the corresponding core/shell counterparts.

  15. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    Science.gov (United States)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  16. Strongly Variable z=1.48 MgII and FeII Absorption in the Spectra of z=4.05 GRB 060206

    CERN Document Server

    Hao, H; Dobrzycki, A; Matheson, T; Bentz, M C; Kuraszkiewicz, J; Garnavich, P M; Howk, J C; Calkins, M L; Worthey, G; Modjaz, M; Serven, J

    2006-01-01

    We report on the discovery of strongly variable MgII and FeII absorption lines seen at z=1.48 in the spectra of the z=4.05 GRB 060206 obtained between 4.13 to 7.63 hours after the burst. In particular, the FeII line equivalent width (EW) decayed rapidly from 1.72+-0.25 AA to 0.28+-0.21 AA, only to increase to 0.96+-0.21 AA in a later date spectrum. The MgII doublet shows even more complicated evolution: the weaker line of the doublet drops from 2.05+-0.25 AA to 0.92+-0.32 AA, but then more than doubles to 2.47+-0.41 AA in later data. The ratio of the EWs for the MgII doublet is also variable, being closer to 1:1 (saturated regime) when the lines are stronger and becoming closer to 2:1 (unsaturated regime) when the lines are weaker, consistent with expectations based on atomic physics. We have investigated and rejected the possibility of any instrumental or atmospheric effects causing the observed strong variations. The possibility of variable intervening absorption in GRB spectra was recently predicted by Fra...

  17. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    CERN Document Server

    Suendo, Veinardi

    2011-01-01

    Chlorophyll a is one the most abundant pigment on Earth, which is responsible for trapping the light energy to perform the photosynthesis process in green plants. This molecule is a metal-complex compound that consists of a porphyrins ring with high symmetry that acts as ligands with magnesium as the central ion. Chlorophyll a has been studied for many years from different point of views for both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS), time-dependent density functional theory (TDDFT) and some semi-empirical methods (CNDO/s and ZINDO) calculations were carried out and compared to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on a single molecule calculation were succeeded to reconstruct the absorption spectra but required to be scaling and broaden to match the experimental one. Different computational methods (ab initio and semi-empirical) exhibits the differences i...

  18. Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: two-photon absorption spectra.

    Science.gov (United States)

    Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A

    2012-02-14

    An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.

  19. Absorption-line ''forest'' in quasar spectra, and the structure of the universe

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.; Muket, J.P.

    1985-05-01

    The ''forest'' of absorption lines observed in the spectrum of distant quasars is interpreted in light of the adiabatic (pancake) theory for the origin and evolution of structure in the universe. The hidden mass might reside in neutrino-like particles (perhaps unstable) having a rest mass of about 60--100 eV. Opportunities for testing the hypothesis observationally are discussed.

  20. N_2O weak lines observed between 3900 and 4050 cm^-1 from long path absorption spectra

    CERN Document Server

    Herbin, H; Guelachvili, G; Sorokin, E; Sorokina, I T; Herbin, Herv\\'{e}; Picqu\\'{e}, Nathalie; Guelachvili, Guy; Sorokin, Evgeni; Sorokina, Irina T.

    2006-01-01

    Previously unobserved nitrous oxide transitions around 2.5 $\\mu$m are measured by intracavity laser absorption spectroscopy (ICLAS) analyzed by time-resolved Fourier transform (TRFT) spectrometer. With an accuracy of the order of 10^-3 cm^-1, measured positions of 1637 assigned weak transitions are provided. They belong to 42 vibrational transitions, among which 33 are observed for the first time. These data are believed to be useful in particular to monitoring atmosphere purposes.

  1. Atomic transition frequencies, isotope shifts, and sensitivity to variation of the fine structure constant for studies of quasar absorption spectra

    CERN Document Server

    Berengut, J C; Flambaum, V V; King, J A; Kozlov, M G; Murphy, M T; Webb, J K

    2010-01-01

    Theories unifying gravity with other interactions suggest spatial and temporal variation of fundamental "constants" in the Universe. A change in the fine structure constant, alpha, could be detected via shifts in the frequencies of atomic transitions in quasar absorption systems. Recent studies using 140 absorption systems from the Keck telescope and 153 from the Very Large Telescope, suggest that alpha varies spatially. That is, in one direction on the sky alpha seems to have been smaller at the time of absorption, while in the opposite direction it seems to have been larger. To continue this study we need accurate laboratory measurements of atomic transition frequencies. The aim of this paper is to provide a compilation of transitions of importance to the search for alpha variation. They are E1 transitions to the ground state in several different atoms and ions, with wavelengths ranging from around 900 - 6000 A, and require an accuracy of better than 10^{-4} A. We discuss isotope shift measurements that are...

  2. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    Science.gov (United States)

    Li, Zi; Zhang, Shen; Wang, Cong; Kang, Wei; Zhang, Ping

    2016-05-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  3. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    Science.gov (United States)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  4. Far ultraviolet absorption spectra of N{sub 3} and N{sub 2}{sup +} generated by electrons impacting gaseous N{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yu-Jong; Chuang, Shiang-Jiun; Huang, Tzu-Ping [National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China); Chen, Hui-Fen, E-mail: yjwu@nsrrc.org.tw [Department of Medical and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-12-10

    Electron bombardment of gaseous N{sub 2} produces N{sub 2} {sup +} and N{sub 3}, which are subsequently trapped in the N{sub 2} matrix at 10 K. Both the infrared and ultraviolet absorption spectra of the matrix sample at various stages of electron irradiation were recorded. Apart from a progression observed below 192 nm, with intervals ∼900 cm{sup –1}, corresponding to the transition of D {sup 2} Π {sub g} ← X {sup 2} Σ {sub g} {sup +} of N{sub 2} {sup +}, three new progressions were recorded in the range 225-192 nm, with intervals ∼1000 cm{sup –1}, that correlated well with variations in intensities of the electronic absorption band of N{sub 3} at 272.7 nm; an absorption coefficient of 3.76 × 10{sup –17} cm molecule{sup –1} for the transition A {sup 2}Σ{sub u} {sup +}← X {sup 2}Π{sub g} of N{sub 3} was estimated for the first time. These newly observed progressions were characterized and the vertical excitation energy and oscillator strength were calculated using time-dependent, density-functional theory. This was based on assigning the three progressions to electronic transitions of N{sub 3} from the ground state to 2 {sup 2}Π{sub u}, 1 {sup 2}Σ{sub g} {sup +}, and 1 {sup 2}Σ{sub g} {sup –}, respectively.

  5. Measuring fast electron spectra and laser absorption in relativistic laser-solid interactions using differential bremsstrahlung photon detectors

    CERN Document Server

    Scott, R H H; Perez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H -P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A

    2013-01-01

    A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.

  6. Thermal diffusivity of Zn1-xBexSe crystals and it's correlation with electrical conductivity and optical absorption spectra

    Science.gov (United States)

    Bodzenta, J.; Firszt, F.; Kaźmierczak-Bałata, A.; Pyka, M.; Szperlich, P.; Szydłowski, M.; Zakrzewski, J.

    2008-01-01

    This article presents results obtained for mixed crystal of Zn{1-x}Be{x}Se. Samples with different Be contents were examined to determine their thermal, optical and electrical properties. The influence of composition of investigated mixed crystals on the value of thermal diffusivity, electrical resistivity and energy gap was checked. An interesting problem is a correlation between thermal properties and other physical parameters. In this work possible correlations between the thermal diffusivity and either the optical band gap determined from photothermal spectra or electrical conductivity are studied. The current investigation is a part of research projects: BK-269/RMF-1/2006 and 1 P03B 092 27.

  7. Weak-probe absorption and dispersion spectra in a two-level system driven by a strong trichromatic field

    OpenAIRE

    A. V. Alekseev; Davydov, A. V.; Sushilov, N.V.; Zinin, Yu. A.

    1990-01-01

    With the help of a probe-field method the time-behaviour of a two-level system subjected to a strong trichromatic near-resonant field is studied. The suitable Bloch equations are solved by a matrix exponent method which allows us to do without the continued fractions. It is shown that, when the Rabi frequency is sufficiently large, the profile of the weak-probe field absorption resembles a dispersion profile. The existence of a new type of parametric resonances not connected with the Rabi res...

  8. The optical spectra of matrix-isolated palladium-nitrogen complexes: An investigation by absorption, emission, and photoelectron spectroscopy

    Science.gov (United States)

    Schrittenlacher, W.; Schroeder, W.; Rotermund, H. H.; Wiggenhauser, H.; Grinter, R.; Kolb, D. M.

    1986-08-01

    The optical spectra of palladium in neon and argon matrices containing up to 100% dinitrogen have been studied. Beside the known bands of isolated Pd atoms new strong bands assigned to weakly bonded Pd(N2)m (m=1, 2) complexes appear. The bands are attributed to three different types of transition. The dominant lines are essentially due to transitions localized at the Pd atom but strongly perturbed by a ``crystal field'' due to the weakly bonded N2 molecules. Secondly, a vibrational progression at lower energies is assigned to a Pd to N2 charge transfer transition and thirdly, at high energies, a vibrational progression assigned to a locally excited state of an N2 molecule perturbed by weak bonding to Pd is observed. No evidence has been found for the presence of Pd(N2)3. Photoelectron spectra of the Pd(N2)m complexes in neon have been observed. The Pd 4d photoemission peak is shifted with respect to the Pd atom in Ne by ˜1.1 eV to higher binding energies.

  9. Modelling the Emission And/or Absorption Features in the High Resolution Spectra of the Southern Binary System: HH Car

    Science.gov (United States)

    Koseoglu, Dogan; Bakış, Hicran

    2016-07-01

    High-resolution spectra (R=48000) of the southern close binary system, HH Car, has been analyzed with modern analysis techniques. Precise absolute parameters were derived from the simultaneous solution of the radial velocity, produced in this study and the light curves, published. According to the results of these analyses, the primary component is an O9 type main sequence star while the secondary component is a giant/subgiant star with a spectral type of B0. Hα emissions can be seen explicitly in the spectra of HH Car. These features were modelled using the absolute parameters of the components. Since components of HH Car are massive early-type stars, mass loss through stellar winds can be expected. This study revealed that the components of HH Car have stellar winds and the secondary component loses mass to the primary. Stellar winds and the gas stream between the components were modelled as a hot shell around the system. It is determined that the interaction between the winds and the gas stream leads to formation of a high temperature impact region.

  10. HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications

    Science.gov (United States)

    McGillen, Max R.; Bernard, François; Fleming, Eric L.; Burkholder, James B.

    2015-07-01

    HCFC-133a (CF3CH2Cl), an ozone-depleting substance, is primarily removed from the atmosphere by gas-phase reaction with OH radicals and by UV photolysis. The rate coefficient, k, for the OH + HCFC-133a reaction was measured between 233 and 379 K and is given by k(T) = (9.32 ± 0.8) × 10-13 exp(-(1296 ± 28)/T), where k(296 K) was measured to be (1.10 ± 0.02) × 10-14 (cm3 molecule-1 s-1) (2σ precision uncertainty). The HCFC-133a UV absorption spectrum was measured between 184.95 and 240 nm at 213-323 K, and a spectrum parameterization is presented. The HCFC-133a atmospheric loss processes, lifetime, ozone depletion potential, and uncertainties were evaluated using a 2-D atmospheric model. The global annually averaged steady state lifetime and ozone depletion potential (ODP) were determined to be 4.45 (4.04-4.90) years and 0.017 (±0.001), respectively, where the ranges are based solely on the 2σ uncertainty in the kinetic and photochemical parameters. The infrared absorption spectrum of HCFC-133a was measured, and its global warming potential was determined to be 380 on the 100 year time horizon.

  11. Combined experimental and computational investigation of the absorption spectra of E- and Z-cinnamic acids in solution: The peculiarity of Z-cinnamics.

    Science.gov (United States)

    Salum, María L; Arroyo Mañez, Pau; Luque, F Javier; Erra-Balsells, Rosa

    2015-07-01

    Cinnamic acids are present in all kinds of plant tissues and hence in herbs and derived medicines, cosmetics and foods. The interest in their role in plants and their therapeutic applications has grown exponentially. Because of their molecular structure they can exist in E- and Z-forms, which are both found in plants. However, since only the E-forms are commercially available, very few in vitro and in vivo studies of the Z-form have been reported. In this work the physico-chemical properties of Z-cinnamic acids in solution have been examined by means of UV-absorption spectroscopy and high-level quantum mechanical computations. For each isomer similar absorption spectra were obtained in methanol and acetonitrile. However, distinct trends were found for Z- and E forms of cinnamic acids in water, where a higher hypsochromic shift of the Z-isomer relative to the E-form was observed. In general the wavelength of maximal absorption of the Z-form is dramatically blue shifted (-30 to -40 nm) to λ<280 nm, while a slightly blue shift of the absorption maxima for the corresponding E-form (+3 to -4 nm) was observed. This difference is associated with the non-planar, largely distorted, Z-structure and to the almost complete flat structure of the E-form. The results provide a basis for the study of functional and biotechnological roles of cinnamic acids and for the analysis of samples containing mixture of both geometric isomers. PMID:25911983

  12. Theoretical study of finite temperature spectroscopy in van der Waals clusters. II Time-dependent absorption spectra

    CERN Document Server

    Calvo, F; Wales, D J

    2002-01-01

    Using approximate partition functions and a master equation approach, we investigate the statistical relaxation toward equilibrium in selected CaAr$_n$ clusters. The Gaussian theory of absorption (previous article) is employed to calculate the average photoabsorption intensity associated with the 4s^2-> 4s^14p^1 transition of calcium as a function of time during relaxation. In CaAr_6 and CaAr_10 simple relaxation is observed with a single time scale. CaAr_13 exhibits much slower dynamics and the relaxation occurs over two distinct time scales. CaAr_37 shows much slower relaxation with multiple transients, reminiscent of glassy behavior due to competition between different low-energy structures. We interpret these results in terms of the underlying potential energy surfaces for these clusters.

  13. Absorption and fluorescence spectra of C60 fullerene concentrated solutions in hexane and polystyrene at 77-300 K

    International Nuclear Information System (INIS)

    The locations of the 000-bands for S1 #60 solutions in hexane. It is shown that the profile of the S1 #00-band in the forbidden 11T1g #1Ag transition is explained by symmetry reduction in the C60+environment system due to the interaction of electrons with local phonons. The temperature coefficients of the red shift for the 256,3- and 328,3-nm bands of allowed 1T1u #1Ag transitions for C60 in hexane are equal to -1.45 and -0.46 cm-1@K-1, respectively. The peak and half-width values of the 337,2-nm band for C60 in polystyrene remain unchanged on cooling to 77 K. Absorption in the 700-800-nm region for concentrated hexane solutions of fullerene at 292 K results from the production of (C60)n-clusters. (authors)

  14. Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars

    International Nuclear Information System (INIS)

    We present the results of a detailed many-multiplet analysis performed on a new sample of Mg ii systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in α derived from our analysis over the redshift range 0.4≤z≤2.3 is Δα/α=(-0.06±0.06)x10-5. The median redshift of our sample (z≅1.55) corresponds to a look-back time of 9.7 Gyr in the most favored cosmological model today. This gives a 3σ limit, -2.5x10-16≤(Δα/αΔt)≤+1.2x10-16 yr-1, for the time variation of α, that forms the strongest constraint obtained based on high redshift quasar absorption line systems

  15. Assignment of Pre-Edge Features in the Ru K-Edge X-Ray Absorption Spectra of Organometallic Ruthenium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-05-18

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray absorption spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d {l_arrow} 1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates.

  16. Time dependent density functional study of the absorption spectra of 1,3-benzoxazole and three substituted benzoxazole in gas phase and liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquilla, Rafael J; Neira, Oscar L, E-mail: rjcarrasquilla@yahoo.com [Grupo de Espectroscopia Optica y Laser, Universidad Popular del Cesar, Valledupar (Colombia)

    2011-01-01

    Time dependent density functional (TD-DFT) calculations were performed on 1,3-benzoxazole and substituted benzoxazoles using the B3LYP functional and the 6-31+G(d) basis sets. The geometry of the S{sub 0} and S{sub 1} singlet ground and excited states were optimized in gas phase, toluene and methanol using B3LYP/6-31+G(d) y CIS/6-31+G(d) methods, respectively, and the vertical {pi} {yields} {pi}{sup *} absorption largest wavelength transitions were determined. Several global molecular descriptors were considered such as the hardness, chemical potential, electronegativity and the dipole moment for each molecule and was determined the influence that has, about the values of these descriptors, the alteration of the main molecular chain of an initial structure (1,3 not substituted Benzoxazole). Generally, the predicted spectra are in agreement with the experimental data.

  17. Ab-initio multiplet calculations of Fe-L2,3 X-ray absorption spectra in LiFePO4 and FePO4

    International Nuclear Information System (INIS)

    Soft X-ray absorption near-edge structures (XANES) at the L2,3-edges of transition metal has been widely used for investigating the chemical reactions during charge-discharge cycles in the cathode materials of lithium ion batteries. In order to extract the information about the electronic structures from the experimental results, however, a theoretical tool that can deal with the strong electronic correlations between 2p and 3d electrons is necessary. In this study, the ab-initio multiplet method based on the relativistic configuration interaction (CI) method has been applied to the calculations of Fe-L2,3 XANES of LiFePO4 and FePO4. Experimental XANES spectra were quantitatively reproduced by this method. The effects of local symmetries around Fe ions to the spectral shapes were also discussed. (author)

  18. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M.; Howie Marion, G. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Kasen, Daniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Wang, Xiaofeng [Department of Physics, Tsinghua University, Beijing 100084 (China); Valenti, Stefano; Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Ciabattari, Fabrizio [Monte Agliale Observatory, Borgo a Mozzano, Lucca, I-55023 Italy (Italy); Cenko, S. Bradley [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Balam, Dave [Dominion Astrophysical Observatory, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hsiao, Eric [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Sand, David, E-mail: zwk@astro.berkeley.edu [Physics Department, Texas Tech University, Lubbock, TX 79409 (United States); and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  19. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    International Nuclear Information System (INIS)

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R 0 ≲ 0.25 R ☉, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of MB = –18.72 ± 0.03 mag ∼17.7 days after first light

  20. Dense Sampling and Large Volume: The Structure of the Intergalactic Medium from 50,000 SDSS3 BOSS Quasar Absorption Spectra

    Science.gov (United States)

    Croft, Rupert A.; Arnau, E.; Aubourg, E.; Bailey, S.; Bechtold, J.; Bhardwaj, V.; Bolton, A.; Borde, A.; Brinkmann, J.; Busca, N.; Carithers, W.; Cen, R.; Charlassier, R.; Cortes, M.; Dall'Aglio, A.; Cristiani, S.; Dawson, K.; Delubac, T.; Font-Ribera, A.; Hamilton, J.; Ho, S.; Lee, K.; LeGoff, J.; Kirkby, D.; Lundgren, B.; Menard, B.; Miralda-Escude, J.; Palanque-Delabrouille, N.; Myers, A.; Paris, I.; Peirani, S.; Petitjean, P.; Pieri, M.; Rich, J.; Rollinde, E.; Ross, N.; Schlegel, D.; Skibba, R.; Slosar, A.; Suzuki, N.; Trac, H.; Vikas, S.; Viel, M.; Wake, D.; Weinberg, D.; White, M.; Yeche, C.

    2012-01-01

    The BOSS quasar spectra analyzed so far contain over a quarter billion pixels of information on the intervening intergalactic medium. The statistical power of BOSS has previously enabled 10% of the eventual full dataset to yield the first measurements of three dimensional large-scale structure in the Lya forest (Slosar et al 2011). Here we present results from a sample several times larger, covering several topics in cosmology and intergalactic medium science which are qualitatively transformed by the dense sampling (20 quasars per square degree) and enormous sky area. These include new constraints on cosmology and the neutrino mass from a Lya forest power spectrum measurement using 20 times more spectra than the largest previously published analysis (from SDSS), a new catalog of metal absorbers and a stacking analysis which has uncovered many metal species never before seen in the intergalactic medium. Cross-correlations of quasars, galaxies, metal lines and Lyman series absorption provide us with a wide variety of probes, including of cosmology, quasar host masses, lifetimes, and absorber galaxy masses. We show several of these results. We also show through correlation function analysis that the prime task, of making a BAO detection from Lya forest clustering, (the first BAO constraint between z=1 and the CMB) is well on the way to completion.

  1. Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars

    CERN Document Server

    Srianand, R; Petitjean, P; Aracil, B; Srianand, Raghunathan; Chand, Hum; Petitjean, Patrick; Aracil, Bastien

    2004-01-01

    Most of the successful physical theories rely on the constancy of few fundamental quantities (such as the speed of light, $c$, the fine-structure constant, \\alpha, the proton to electron mass ratio, \\mu, etc), and constraining the possible time variations of these fundamental quantities is an important step toward a complete physical theory. Time variation of \\alpha can be accurately probed using absorption lines seen in the spectra of distant quasars. Here, we present the results of a detailed many-multiplet analysis performed on a new sample of Mg II systems observed in high quality quasar spectra obtained using the Very Large Telescope. The weighted mean value of the variation in \\alpha derived from our analysis over the redshift range 0.4

  2. Resonance Raman and electronic absorption spectra of O3- ions in γ-irradiated KC1O3 and NaC1O3

    International Nuclear Information System (INIS)

    Resonance Raman and electronic absorption spectra have been measured for the ozonide ion, O-3, produced in single crystals of KClO3 and NaClO3 by irradiation with γ rays. The O-3 ions are oriented in four to six symmetrically nonequivalent positions in KClO3 and appear to be oriented in two nonequivalent positions in NaClO3. Differences between the nonequivalent orientations affect both the ground and excited electronic states of O-3 as well as its ground vibrational states. The progressions of ν1 observed in the electronic spectra show that the vibrational spacing of ν1 in the excited electronic state is about 857 cm/sup -1/ as compared with the ground state spacing of about 1020 cm/sup -1/. Measurements of relative Raman intensities obtained with different exciting lines indicate that excitation near the center of a vibronic transition (0--n') produces extra enhancement of the intensity of the nν1 vibrational transition

  3. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S{sub 1}(π,π{sup *}) electronic state

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hee Won; Ocola, Esther J.; Laane, Jaan, E-mail: laane@mail.chem.tamu.edu [Department of Chemistry, Texas A and M University, College Station, Texas 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, Maryland 20894 (United States)

    2014-01-21

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S{sub 1}(π,π{sup *}) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S{sub 0} and S{sub 1}(π,π{sup *}) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S{sub 0} and S{sub 1}(π,π{sup *}) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S{sub 1}(π,π{sup *}) excited state.

  4. Errarum: Detection of Absorption-Line Features in the X-Ray Spectra of the Galactic Superluminal Source GRO J1655-40

    Science.gov (United States)

    Ueda, Y.; Inoue, H.; Tanaka, Y.; Ebisawa, K.; Nagase, F.; Kotani, T.; Gehrels, N.

    1998-06-01

    In the paper ``Detection of Absorption-Line Features in the X-Ray Spectra of the Galactic Superluminal Source GRO J1655-40'' by Y. Ueda, H. Inoue, Y. Tanaka, K. Ebisawa, F. Nagase, T. Kotani, and N. Gehrels (ApJ, 492, 782 [1998]), there is an error in the curve of growth for the Kα absorption line (Fig. 4). The revised version of Figure 4 given here replaces Figure 4 in the paper. Several numbers derived from the figure should be corrected accordingly, but the conclusion of the paper is not affected. In the third paragraph of the discussion section (page 786), the iron column density of the plasma should be 1019-1020 cm-2, which corresponds to a hydrogen column density of 3 × 1023-3 × 1024 cm-2. The final limit on the hydrogen column density of the line-absorbing plasma should be changed to 3 × 1023 cm-2 < NH < 1024 cm-2.

  5. The End of Helium Reionization at z ~= 2.7 Inferred from Cosmic Variance in HST/COS He II Lyα Absorption Spectra

    Science.gov (United States)

    Worseck, Gábor; Prochaska, J. Xavier; McQuinn, Matthew; Dall'Aglio, Aldo; Fechner, Cora; Hennawi, Joseph F.; Reimers, Dieter; Richter, Philipp; Wisotzki, Lutz

    2011-06-01

    We report on the detection of strongly varying intergalactic He II absorption in HST/COS spectra of two z em ~= 3 quasars. From our homogeneous analysis of the He II absorption in these and three archival sightlines, we find a marked increase in the mean He II effective optical depth from ≃ 1 at z ~= 2.3 to ≳ 5 at z ~= 3.2, but with a large scatter of 2≲ τ_{eff,He II} ≲ 5 at 2.7 ~ 2.7, probably indicating He II reionization was incomplete at z reion >~ 2.7. Likewise, recent three-dimensional numerical simulations of He II reionization qualitatively agree with the observed trend only if He II reionization completes at z reion ~= 2.7 or even below, as suggested by a large τ_{eff,He II}≳ 3 in two of our five sightlines at z sample size at 2.7 Research in Astronomy, Inc., under NASA contract NAS5-26555 (programs 7575, 9350, 11528, 11742). Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA; it was made possible by the generous financial support of the W.M. Keck Foundation. Based on observations collected at the European Organization for Astronomical Research in the Southern Hemisphere, Chile (programs 166.A.-0106, 071.A-0066, 083.A-0421).

  6. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  7. Study on the absorption and fluorescence and resonance Rayleigh scattering spectra of Cu (Ⅱ)-fluoroquinolone chelates with erythrosine and their applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In pH 4.2-5.0 Britton-Robinson buffer solution medium, fluoroquinolone antibiotics (FLQs), such as ciprofloxacin (CIP), norfloxacin (NOR), ofloxacin (OF), levofloxacin (LEV), lomefloxacin (LOM), and sparfloxacin (SPA), react with Cu (Ⅱ) to form chelate cations, which further bind with erythrosine to form the ion association complexes. They can result in the changes of the absorption spectra. Simultaneously, erythrosine fades obviously and the maximum fading wavelength is located at 526 nm. The fading reactions have high sensitivities. Thus, new spectrophotometries of determination for these drugs are developed. The ion-association reactions result in the quenching of fluorescence, which also have high sensitivities. The detection limits for six antibiotics are in the range of 7.1-12.2 μg·L-1. Furthermore, the reactions can result in the enhancement of resonance Rayleigh scattering (RRS). The maximum scattering peaks of six ion-association complexes are located at 566 nm, and there are two small RRS peaks at 333 nm and 287 nm. The detection limits for fluoroquinolone antibiotics are in the range of 1.70-3.10 μg·L-1 for RRS method. Among the above three methods, the RRS method has the highest sensitivity. In this work, we investigated the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions, and the properties of the analytical chemistry. In addition, the mechanism of reactions were discussed by density function theory (DFT) and AM1 methods.

  8. Lowest excited states and optical absorption spectra of donor-acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals.

    Science.gov (United States)

    Pandey, Laxman; Doiron, Curtis; Sears, John S; Brédas, Jean-Luc

    2012-11-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated.

  9. Absorption,fluorescence and resonance Rayleigh scattering spectra of hydrophobic hydrogen bonding of eosin Y/Triton X-100 nanoparticles and their analytical applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In a weak acidic medium(pH 2.4-2.8),eosin Y molecules(H2L) could replace water molecules to associate with Triton X-100 to form hydrophobic hydrogen bonding complexes.These complexes could further aggregate to form nanoparticles through the squeezing action of the water phase and Van Der Waals force,resulting in changes in the absorption spectrum and fluorescence quenching of EY as well as the significant enhancement of resonance Rayleigh scattering.This enables the sensitive determination of Triton X-100 using the fading spectrophotometry,fluorescence quenching method and RRS method.Among them,the RRS method shows the highest sensitivity with a detection limit of 20.6 ng mL-1 for Triton X-100.The optimum experimental conditions and factors that affect the absorption,fluorescence and RRS spectra were tested.The effects of coexisting substances were investigated and the results showed good selectivity.Based on these results,new spectrophotometric methods,fluorescence quenching method and RRS method for the determination of Triton X-100,were established.The hydrogen bonding association of eosin Y with Triton X-100 and the formation of nanoparticles as well as their effects on related spectral characteristics were discussed utilizing infrared,transmission electron microscope technique and quantum chemical method.

  10. Infrared, Raman, and ultraviolet absorption spectra and theoretical calculations and structure of 2,3,5,6-tetrafluoropyridine in its ground and excited electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Sheu, Hong-Li; Boopalachandran, Praveenkumar [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States); Kim, Sunghwan [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Department of Health and Human Services, 8600 Rockville Pike, Bethesda, MD 20894 (United States); Laane, Jaan, E-mail: laane@chem.tamu.edu [Department of Chemistry, Texas A& M University, College Station, TX 77843-3255 (United States)

    2015-07-29

    Highlights: • The structures of 2,3,5,6-tetrafluoropyridine for its S{sub 0} and S{sub 1}(π, π{sup ∗}) states have been calculated. • TFPy is rigidly planar in its ground electronic state, but is quasi-planar and floppy in S{sub 1}. • The barrier to planarity is 30 cm{sup −1} in the excited state. • The observed vibrational frequencies for both states agree well with the computations. • A ring-bending potential energy function for the S{sub 1}(π, π{sup ∗}) state was proposed. - Abstract: Infrared and Raman spectra of 2,3,5,6-tetrafluoropyridine (TFPy) were recorded and vibrational frequencies were assigned for its S{sub 0} electronic ground states. Ab initio and density functional theory (DFT) calculations were used to complement the experimental work. The lowest electronic excited state of this molecule was investigated with ultraviolet absorption spectroscopy and theoretical CASSCF calculations. The band origin was found to be at 35,704.6 cm{sup −1} in the ultraviolet absorption spectrum. A slightly puckered structure with a barrier to planarity of 30 cm{sup −1} was predicted by CASSCF calculations for the S{sub 1}(π, π{sup ∗}) state. Lower frequencies for the out-of-plane ring bending vibrations for the electronic excited state result from the weaker π bonding within the pyridine ring.

  11. Polarized X-ray absorption spectra and electronic structure of molybdenite (2H-MoS2)

    Science.gov (United States)

    Li, Dien; Bancroft, G. M.; Kasrai, M.; Fleet, M. E.; Feng, X. H.; Tan, K. H.

    1995-03-01

    Polarized S K- and L-edge, Mo L3- and L2-edge x-ray absorption near-edge structure (XANES) of natural molybdenite (2H-MoS2) have been measured with synchrotron radiation. These results are qualitatively interpreted using the energy band model of molybdenite and provide important information on the unoccupied states of molybdenite. The valence band (VB) maximum of molybdenite is characterized by fully occupied Mo 4dz 2, and the conduction band (CB) minimum of molybdenite is characterized by unoccupied Mo 4d states. The unoccupied Mo 4d band is split into two sub-bands, designated as t{2g/-}/t{2g/+}and e{g/-}/e{g/+}sets. Although the relative energy of these two sets are difficult to be evaluated, probably the former has the lower energy than the latter, both two sets have the combination wave functions of the other unoccupied Mo 4d components, rather than the simple 4dx 2 — y2 and 4dxy states. The unoccupied Mo 4d sub-bands contain significant DOS of both S 3 p- and 3 s-like states, indicating strong hybridization with S 3s and 3 p states. In the lower energy sub-band, the DOS of the S pz- and px,y-like states are very similar. However, in the higher energy sub-band, the DOS of the S 3 px,y-like state is lower than that of the S 3pz state. Polarized S K-edge XANES also reveal the features of antibonding S pz- and px,y-like states in molybdenite. The feature assigned to the S 3 pz-like states is stronger and sharper, and shifts to lower energy by about 2 eV relative to that for the S 3 px,y-like states.

  12. First-Principles Studies on Electronic Structures and Absorption Spectra of PbWO4 Crystals with Defect [VP2-Pb-V2+O-VP2-Pb]2-

    Institute of Scientific and Technical Information of China (English)

    LIU Ting-Yu; ZHANG Qi-Ren; ZHUANG Song-Lin

    2007-01-01

    @@ Electronic structures and absorption spectra for perfect PbWO4 (PWO) crystals and the crystal containing aggregated defect [VP2-Pb-V2+O -VP2-Pb]2- have been calculated using density functional theory code CASTEP with the lattice structure optimized. The calculated absorption spectra of the PWO crystal containing the aggregated defect [VP2-Pb-V2+O -VP2-Pb]2- exhibit two absorption bands peaking at 1.90eV (650nm) and 3.02eV (410 nm). It is predicted that the 420 and 680 nm absorption bands are related to the existence of the aggregated defect [VP2-Pb-V2+O -VP2-Pb]2- in the PWO crystal.

  13. A ground-based imaging study of galaxies causing damped Lyman α (DLA), sub-DLA and Lyman limit system absorption in quasar spectra

    Science.gov (United States)

    Rao, Sandhya M.; Belfort-Mihalyi, Michèle; Turnshek, David A.; Monier, Eric M.; Nestor, Daniel B.; Quider, Anna

    2011-09-01

    We present results from a search for galaxies that give rise to damped Lyman α (DLA), sub-DLA and Lyman limit system (LLS) absorption at redshifts 0.1 ≲z≲ 1 in the spectra of background quasars. The sample was formed from a larger sample of strong Mg II absorbers (Wλ27960≥ 0.3 Å) whose H I column densities were determined by measuring the Lyα line in Hubble Space Telescope ultraviolet spectra. Photometric redshifts, galaxy colours and proximity to the quasar sightline, in decreasing order of importance, were used to identify galaxies responsible for the absorption. Our sample includes 80 absorption systems for which the absorbing galaxies have been identified, of which 54 are presented here for the first time. In some cases a reasonable identification for the absorbing galaxy could not be made. The main results of this study are (i) the surface density of galaxies falls off exponentially with increasing impact parameter, b, from the quasar sightline relative to a constant background of galaxies, with an e-folding length of ≈46 kpc. Galaxies with b≳ 100 kpc calculated at the absorption redshift are statistically consistent with being unrelated to the absorption system, and are either background or foreground galaxies. (ii) ? is inversely correlated with b at the 3.0σ level of significance. DLA galaxies are found systematically closer to the quasar sightline, by a factor of 2, than are galaxies which give rise to sub-DLAs or LLSs. The median impact parameter is 17.4 kpc for the DLA galaxy sample, 33.3 kpc for the sub-DLA sample and 36.4 kpc for the LLS sample. We also find that the decline in ? with b can be roughly described by an exponential with an e-folding length of 12 kpc that occurs at ?. (iii) Absorber galaxy luminosity relative to L*, L/L*, is not significantly correlated with Wλ27960, ? or b. (iv) DLA, sub-DLA and LLS galaxies comprise a mix of spectral types, but are inferred to be predominantly late-type galaxies based on their spectral

  14. Study on the absorption and fluorescence and resonance Rayleigh scattering spectra of Cu (II)-fluoroquinolone chelates with erythrosine and their applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In pH 4.2-5.0 Britton-Robinson buffer solution medium, fluoroquinolone antibiotics (FLQs), such as ciprofloxacin (CIP), norfloxacin (NOR), ofloxacin (OF), levofloxacin (LEV), lomefloxacin (LOM), and sparfloxacin (SPA), react with Cu (II) to form chelate cations, which further bind with erythrosine to form the ion association complexes. They can result in the changes of the absorption spectra. Simultane- ously, erythrosine fades obviously and the maximum fading wavelength is located at 526 nm. The fad- ing reactions have high sensitivities. Thus, new spectrophotometries of determination for these drugs are developed. The ion-association reactions result in the quenching of fluorescence, which also have high sensitivities. The detection limits for six antibiotics are in the range of 7.1-12.2 μg·L?1. Furthermore, the reactions can result in the enhancement of resonance Rayleigh scattering (RRS). The maximum scattering peaks of six ion-association complexes are located at 566 nm, and there are two small RRS peaks at 333 nm and 287 nm. The detection limits for fluoroquinolone antibiotics are in the range of 1.70 -3.10 μg·L?1 for RRS method. Among the above three methods, the RRS method has the highest sen- sitivity. In this work, we investigated the spectral characteristics of the absorption, fluorescence and RRS, the optimum conditions of the reactions, and the properties of the analytical chemistry. In addi- tion, the mechanism of reactions were discussed by density function theory (DFT) and AM1 methods.

  15. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    Science.gov (United States)

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  16. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    Science.gov (United States)

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition

  17. Electromeric effect of substitution at 6th position in 2-(Furan-2-yl)-3-hydroxy-4 H-chromen-4-one (FHC) on the absorption and emission spectra

    Indian Academy of Sciences (India)

    Manisha Bansal; Ranbir Kaur

    2015-03-01

    Five 3-Hydroxychromones (3HCs), namely, 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one (FHC) and its four derivatives by substitution of -CH3, -OH, -NO2 and -Cl at 6th position were synthesized from their corresponding 2’-hydroxyacetophenone and furan-2-carboxaldehyde. Various spectral transitions of all these 3-hydroxychromones (3-HCs) have been assigned by interpreting their absorption spectra in cyclohexane, acetonitrile and methanol. It has been shown that the electromeric effects of substitution at 2nd and 6th positions on the 2–3 double bond in `C’ ring are similar but the effect on the double bond of 4-carbonyl group is opposite. It has been found that the substitution at 2nd position changes mainly the electron density directly at the 4-carbonyl group and substitution at 6th position changes the electron density of the `C’ ring, changing the overall dipole moment of the molecule, which in turn changes the electron density at the 4-carbonyl group. Emission spectral studies showed that the increase and decrease in dipole moment by substitution at 6th position with electron withdrawing group like NO2 and electron donating group like -CH3 and -OH, stabilizes and destabilizes the N* state in the polar solvents respectively

  18. Temperature dependent ozone absorption cross section spectra measured with the GOME-2 FM3 spectrometer and first application in satellite retrievals

    Directory of Open Access Journals (Sweden)

    W. Chehade

    2012-10-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME-2 Flight Model (FM absorption cross section spectra of ozone were measured under representative atmospheric conditions in the laboratory setup at temperatures between 203 K and 293 K in the wavelength range of 230–790 nm at a medium spectral resolution of 0.24 to 0.54 nm. Since the exact ozone amounts were unknown in the gas flow system used, the measured ozone cross sections were required to be scaled to absolute cross section units using published literature data. The Hartley, Huggins and Chappuis bands were recorded simultaneously and their temperature dependence is in good agreement with previous studies (strong temperature effect in the Huggins band and weak in the Hartley and Chappuis bands. The overall agreement of the GOME-2 FM cross sections with the literature data is well within 3%. The total ozone column retrieved from the GOME-2/MetOp-A satellite using the new cross section data is within 1% compared to the ozone amounts retrieved routinely from GOME-2.

  19. Structures of Plutonium(IV) and Uranium(VI) with N,N-Dialkyl Amides from Crystallography, X-ray Absorption Spectra, and Theoretical Calculations.

    Science.gov (United States)

    Acher, Eléonor; Hacene Cherkaski, Yanis; Dumas, Thomas; Tamain, Christelle; Guillaumont, Dominique; Boubals, Nathalie; Javierre, Guilhem; Hennig, Christoph; Solari, Pier Lorenzo; Charbonnel, Marie-Christine

    2016-06-01

    The structures of plutonium(IV) and uranium(VI) ions with a series of N,N-dialkyl amides ligands with linear and branched alkyl chains were elucidated from single-crystal X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and theoretical calculations. In the field of nuclear fuel reprocessing, N,N-dialkyl amides are alternative organic ligands to achieve the separation of uranium(VI) and plutonium(IV) from highly concentrated nitric acid solution. EXAFS analysis combined with XRD shows that the coordination structure of U(VI) is identical in the solution and in the solid state and is independent of the alkyl chain: two amide ligands and four bidentate nitrate ions coordinate the uranyl ion. With linear alkyl chain amides, Pu(IV) also adopt identical structures in the solid state and in solution with two amides and four bidentate nitrate ions. With branched alkyl chain amides, the coordination structure of Pu(IV) was more difficult to establish unambiguously from EXAFS. Density functional theory (DFT) calculations were consequently performed on a series of structures with different coordination modes. Structural parameters and Debye-Waller factors derived from the DFT calculations were used to compute EXAFS spectra without using fitting parameters. By using this methodology, it was possible to show that the branched alkyl chain amides form partly outer-sphere complexes with protonated ligands hydrogen bonded to nitrate ions. PMID:27171842

  20. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a

    Directory of Open Access Journals (Sweden)

    Maryam Etminan

    2014-07-01

    Full Text Available CFC-113a (CF3CCl3, CFC-112 (CFCl2CFCl2 and HCFC-133a (CF3CH2Cl are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP. The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012 concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100, are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a.

  1. Strain and temperature dependent absorption spectra studies for identifying the phase structure and band gap of EuTiO3 perovskite films.

    Science.gov (United States)

    Jiang, Kai; Zhao, Run; Zhang, Peng; Deng, Qinglin; Zhang, Jinzhong; Li, Wenwu; Hu, Zhigao; Yang, Hao; Chu, Junhao

    2015-12-21

    Post-annealing has been approved to effectively relax the out-of-plane strain in thin films. Epitaxial EuTiO3 (ETO) thin films, with and without strain, have been fabricated on (001) LaAlO3 substrates by pulsed laser deposition. The absorption and electronic transitions of the ETO thin films are investigated by means of temperature dependent transmittance spectra. The antiferrodistortive phase transition can be found at about 260-280 K. The first-principles calculations indicate there are two interband electronic transitions in ETO films. Remarkably, the direct optical band gap and higher interband transition for ETO films show variation in trends with different strains and temperatures. The strain leads to a band gap shrinkage of about 240 meV while the higher interband transition an expansion of about 140 meV. The hardening of the interband transition energies in ETO films with increasing temperature can be attributed to the Fröhlich electron-phonon interaction. The behavior can be linked to the strain and low temperature modified valence electronic structure, which is associated with rotations of the TiO6 octahedra.

  2. Technical Note: Recipe for monitoring of total ozone with a precision of around 1 DU applying mid-infrared solar absorption spectra

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2008-01-01

    Full Text Available Mid-infrared solar absorption spectra recorded by a state-of-the-art ground-based FTIR system have the potential to provide precise total O3 amounts. The currently best-performing retrieval approaches use a combination of small and broad spectral O3 windows between 780 and 1015 cm−1. We show that for these approaches the uncertainties of the temperature profile are by far the major error sources. We demonstrate that a joint optimal estimation of temperature and O3 profiles widely eliminates this error. The improvements are documented by an extensive theoretical error estimation. Our results suggest that mid-infrared FTIR measurements can provide total O3 amounts with a precision of around 1 DU, placing this method among the most precise ground-based O3 monitoring techniques. We recapitulate the requirements on the instrumental hardware and on the retrieval that are needed to achieve this high precision.

  3. Intercomparison of NO2 Slant Column Densities and Vertical Profiles Inferred from Balloon-borne Measurements of Solar Absorption Spectra in the IR and UV/vis

    Science.gov (United States)

    Butz, A.; Boesch, H.; Camy-Peyret, C.; Dorf, M.; Dufour, G.; Payan, S.; Weidner, F.; Pfeilsticker, K.

    2003-04-01

    During a series of LPMA/DOAS (Laboratoire de Physique Moléculaire et Applications/Differential Optical Absorption Spectroscopy) stratospheric balloon flights direct solar spectra in the UV/vis and near IR were simultaneously measured by the onboard installed Fourier Transform (LPMA) and two channel grating spectrometer (DOAS). The measurements were conducted in spring and summer at high and midlatitudes during ascent of the balloon into the stratosphere (30 - 40 km) and solar occultation at balloon float altitude. Here we present a direct intercomparison of the NO_2 slant column densities (SCDs) and vertical profiles retrieved from UV/vis-DOAS and IR-LPMA measurements for a wide range of geophysical conditions (ambient pressure and temperature and solar illumination). The comparison study thus allows us to verify the applied retrieval procedures, i.e., the underlying spectroscopic dataset as well as the inversion algorithms. First intercomparison studies showed a sizeable discrepancy between NO_2 inferred by LPMA in the IR and DOAS in the visible spectral range indicating deficiencies in the spectral retrieval techniques. After introducing a temperature correction scheme for the DOAS retrieval and a new LPMA MULTIFIT procedure which minimizes the correlations of the fitting parameters by performing the inversion simultaneously in several micro-windows, a reasonably good agreement between NO_2 inferred from both instruments is found.

  4. Recipe for continuous monitoring of total ozone with a precision of around 1 DU applying mid-infrared solar absorption spectra

    Directory of Open Access Journals (Sweden)

    M. Schneider

    2007-06-01

    Full Text Available Mid-infrared solar absorption spectra recorded by a state-of-the-art ground-based FTIR system have the potential to provide precise total O3 amounts. The currently best-performing retrieval approaches use a combination of small and broad spectral O3 windows between 780 and 1015 cm−1. We show that for these approaches uncertainties in the temperature profile are by far the major error sources. We demonstrate that a joint optimal estimation of temperature and O3 profiles widely eliminates this error. The improvements are documented by an extensive theoretical error estimation. Our results suggest that mid-infrared FTIR measurements can provide total O3 amounts with a precision of around 1 DU, placing this method among the most precise ground-based O3 monitoring techniques. We recapitulate the requirements on instrumental hardware and retrieval necessary to achieve this high precision.

  5. Radical Cations of the Monomer and van der Waals Dimer of a Methionine Residue as Prototypes of (2 Center-3 Electron) SN and SS Bonds. Molecular Simulations of Their Absorption Spectra in Water.

    Science.gov (United States)

    Archirel, Pierre; Bergès, Jacqueline; Houée-Lévin, Chantal

    2016-09-22

    Oxidation of peptides or proteins by the OH(•) radicals produced by pulse radiolysis yields species identified by their absorption spectra in the UV-visible domain. However, the case of methionine (Met) in peptides is complex because its oxidation can lead to various free radicals with 2 center-3 electron (2c-3e) bonds. We have performed Monte Carlo/density functional theory molecular simulations of the radical cation of the methylated methionine aminoacid, Met(•+), taken as a model of the methonine residue of peptides, and of the radical cation of its van der Waals dimer, Met2(•+). The cation of the methionine residue displays a 2c-3e SN bond. The cation of dimer Met2(•+) displays three quasidegenerate conformers, one stabilized by a 2c-3e SS bond and the other two stabilized by ion-molecule interactions and made up of a neutral and a cationic unit. These conformers are characterized by their charge and spin density localization and their UV-visible absorption spectra. These spectra enable a discussion of the absorption spectra of the literature; in particular, we emphasize the role of dimers before and after the oxidation process. PMID:27564585

  6. 六硼化钙纳米粉末的吸收光谱研究%Absorption spectra of calcium hexaboride nanopowders

    Institute of Scientific and Technical Information of China (English)

    梁丽梅; 张琳; 闵光辉

    2009-01-01

    Calcium hexaboride (CAB6) nanopowder was prepared by low temperature chemical reaction of CaCl2 and NaBH4. Xray powder diffraction pattern indicated the formation of CaB6 crystal, the field emission scanning dectron microscope (FESEM) image showed that CaB6 nanopowder was agglomerated with cubic crystals with grain size of ~ 80 nm. HRTEM photographs indicated that the nanoparticles were single-crystal corresponding to the FESEM and XRD results, and the CaB6 crystal consisted well crystallized CaB6 core and thin amorphous shell (4 ~ 5 nm). Fourier transform Infrared (FTIR) and Ultraviolet-Visible-Ncer Infrared (UV-VIS-NIS) spectra were investigated to characterize optical properties of CaB6 nanopowder, compared with micrometer CaB6 powders. Compared with the weak absorption bands of micron-powder, obvious Einstein shift and band broadening occurred in nanopowder spectrum, which was thought to be related to lattice expansion and nanometer effect. UV-VIS-NIS spectrum showed that CaB6 nanopowder could absorb ultraviolet rays and the absorption peaks exist blue shift of spectrum, compared with micron powder. In conclusion, CaB6 nanopowder showed absorbency within all the detected regions in FTIR and UV-VIS-NIS spectra, especially to the infrared.%采用CaCl2 and NaBH4为原料低温合成CaB6纳米粉末.X射线衍射结果表明生成了CaB6晶体.场发射扫描电镜(FESEM)观测到粉末由接近立方体的平均粒径为80nm的小晶粒组成,有轻微团聚现象.高分辨透射电镜(FIR-TEM)表明纳米颗粒为单晶,这一发现与XRD和FESEM的结果相对应,且观察到晶体是以结晶良好的CaB6为芯,外面包覆着厚约4~5 nm的非晶层.CaB6纳米粉末的光学性能是通过傅立叶红外光谱和紫外-可见-近红外光谱来表征的,同时做CaB6微米粉末的光谱用以比较.与微米粉末仅有微弱的吸收带相比,纳米粉末的光谱出现明显的宽化和红移现象,这与晶格膨胀和纳米效应有关.紫外-可

  7. Effects of ionic liquid [bmim][PF6] on absorption spectra and reaction kinetics of the duroquinone triplet state in acetonitrile.

    Science.gov (United States)

    Zhu, Guanglai; Wu, Guozhong; Sha, Maolin; Long, Dewu; Yao, Side

    2008-04-10

    The transient absorption spectra and photoinduced electron-transfer process of duroquinone (DQ) in mixed binary solutions of ionic liquid (IL) [bmim][PF6] and acetonitrile (MeCN) have been investigated by laser photolysis at an excitation wavelength of 355 nm. A spectral blue shift of 3DQ* was observed in the IL/MeCN mixtures compared to MeCN. At lower VIL(volume fraction of IL), the interaction between DQ and the solvent is dominant, and the decay rate constant (kobs) of 3DQ* increases steadily with the increasing of VIL; to the contrary, at higher VIL, the network structures due to the hydrogen bond and viscosity are dominant, and the decay rate constant decreases obviously with increasing VIL. A critical point (turnover) was observed at VIL = approximately 0.30. The dependence of the observed growth rate (kgr) of the photoinduced electron-transfer (PET) products on VIL is complex and shows a special change; kgr first decreases with increasing VIL, then increases, and finally decreases slowly with further increasing of VIL. It is speculated that the PET process in the mixture can be affected by factors including the local structure and the reorganization energy of the solvent and salt and cage effects. The change of local structure of [bmim][PF6]/MeCN is supported by following the steady-state fluorescence behavior of the mixture, in combination with the molecular dynamics simulation of the thermodynamic property. The results revealed that the degree of self-aggregation of monomeric cations (bmim+) to associated forms increases with increasing VIL. This is in good agreement with the laser photolysis results for the same solutions. PMID:18331005

  8. A Soret marker band for four-coordinate ferric heme proteins from absorption spectra of isolated Fe(III)-Heme+ and Fe(III)-Heme+(His) ions in vacuo.

    Science.gov (United States)

    Lykkegaard, Morten Køcks; Ehlerding, Anneli; Hvelplund, Preben; Kadhane, Umesh; Kirketerp, Maj-Britt Suhr; Nielsen, Steen Brøndsted; Panja, Subhasis; Wyer, Jean Ann; Zettergren, Henning

    2008-09-10

    In this work, we report the absorption spectra in the Soret band region of isolated Fe(III)-heme+ and Fe(III)-heme+(His) ions in vacuo from action spectroscopy. Fe(III)-heme+ refers to iron(III) coordinated by the dianion of protoporphyrin IX. We find that the absorption of the five-coordinate complex is similar to that of pentacoordinate metmyoglobin variants with hydrophobic binding pockets except for an overall blueshift of about 16 nm. In the case of four-coordinate iron(III), the Soret band is similar to that of five-coordinate iron(III) but much narrower. These spectra serve as a benchmark for theoretical modeling and also serve to identify the coordination state of ferric heme proteins. To our knowledge this is the first unequivocal spectroscopic characterization of isolated 4c ferric heme in the gas phase. PMID:18700762

  9. Quenching of singlet oxygen by natural and synthetic antioxidants and assessment of electronic UV/Visible absorption spectra for alleviating or enhancing the efficacy of photodynamic therapy

    Directory of Open Access Journals (Sweden)

    Kaneez Fatima

    2016-02-01

    Full Text Available Photodynamic therapy (PDT is one of the methods involved in cancer therapy exploiting singlet oxygen as a weapon to kill cancer cells. Singlet oxygen, a bizarre reactive oxygen species as it is not related to electron transfer to O2 but it is one of the most active intermediate involved in biochemical reactions as it directly reacts with all the major macromolecules like DNA, protein, lipids etc, various photosensitized oxidations and in the photodegradation of dyes and polymers. Recent studies about the usage of antioxidant along with the photo-sensitizer involved in photodynamic therapy have shown concentration- dependent dual behavior like usually it retards the efficacy of PDT but at a higher dose mostly, it actually enhances the damaging effect of PDT. The natural and synthetic antioxidants are being used in our day to day life in order to increase the shelf life of various food ingredients and processed foods. In this paper, we have compared natural and synthetic antioxidants along with the known singlet oxygen quencher (DABCO in order to understand the quenching potential of singlet oxygen (1O2 which is lowest electronically excited state of molecular oxygen. The singlet oxygen can be artificially generated through various methods such as sunlight, phosphate, ozonides, NaOCl and H2O2 etc. We have studied the mechanisms of the few antioxidant effects on the bleaching of RNO linked with the energy decay of 1O2 produced by the Mallet reaction (H2O2+HOCl and #8200; and #8594; and #8200;HCl+H2O+1O2. beta-Carotene, and #945;-Tocopherol, Ascorbic acid and Quercetin exhibited best dose-dependent singlet quenching ranging from 92.3 to 56.5 % at 100 and #956;M among others. Overall singlet oxygen is a major concern of light-related properties so we have analyzed the theoretical aspect of electronic UV/visible absorption spectra of the antioxidants studied through ZINDO CI semi-empirical Hamiltonian method. We have compared only the first singlet

  10. Direct deconvolution of two-state pump-probe x-ray absorption spectra and the structural changes in a 100 ps transient of Ni(II)-tetramesitylporphyrin.

    Energy Technology Data Exchange (ETDEWEB)

    Della-Longa, S.; Chen, L. X.; Frank, P.; Hayakawa, K.; Hatada, K.; Benfatto, M.; Chemical Sciences and Engineering Division; Univ. dell' Aquila; Lab. Nazionali di Frascati; Northwestern Univ.; Stanford Univ.; Museo storico della Fisica e Centro Studi e Ricerche

    2009-05-04

    Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 {+-} 0.02) {angstrom} and d(Ni-C) = (2.94 {+-} 0.03) {angstrom}, in agreement with a previous EXAFS result. The time-resolved XANES difference spectrum was obtained from the spectra of Ni(II)TMP in its photoexcited T{sub 1} state and its ground state, S{sub 0}. The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T{sub 1} state. If the T{sub 1} fraction is kept fixed at the value (0.37 {+-} 0.10) determined by optical transient spectroscopy, a 0.07 {angstrom} elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T{sub 1} fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T{sub 1} fraction is (0.60 {+-} 0.15) with d(Ni-N) = (1.98 {+-} 0.03) {angstrom} (0.05 {angstrom} elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T{sub 1} fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T{sub 1} and S{sub 0} states. The T{sub 1} excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground

  11. A search for HI absorption in the radio spectra of the quasi-stellar objects 4C 05.34 and PKS 0237-23

    International Nuclear Information System (INIS)

    In an attempt to learn more about the nature of the intergalactic medium, a search was undertaken for an absorption line at a frequency corresponding to the HI 21 cm line at the red shift of an optical absorption line system. Detection of a red shift 21 cm absorption would verify that the optical absorption line system was not a chance identification, and would help to establish the intergalactic origin of the absorbing clouds. The objects chosen for investigation were 4C 05.34 and PKS 0237-23. (R.L.)

  12. Theoretical study of photophysical properties of 1,4-dihydropyrrolo[3,2-b]pyrrole-cored branched molecules with thienylenevinylene arms toward broad absorption spectra for solar cells.

    Science.gov (United States)

    Tang, Shanshan; Tang, Binbin; Liang, Dadong; Chen, Guang; Jin, Ruifa

    2013-09-01

    A series of oligo(thienylenevinylene) derivatives with 1,4-dihydropyrrolo[3,2-b]pyrrole as core has been investigated at the PBE0/6-31G(d) and the TD-PBE0/6-31+G(d,p) levels to design materials with high performances such as broad absorption spectra and higher balance transfer property. The results show that position and amount of arm affect the electronic density contours of frontier molecular orbitals significantly. The molecule with four arms owns the narrowest energy gap and the largest maximum absorption wavelength, and the molecule with two arms in positions a and c has the broadest absorption region among the designed molecules. Calculated reorganization energies of the designed molecules indicate that the molecules with two arms can be good potential ambipolar transport materials under proper operating conditions.

  13. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  14. A theoretical and experimental study of the near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectra (XPS) of nucleobases: Thymine and adenine

    Energy Technology Data Exchange (ETDEWEB)

    Plekan, O. [Sincrotrone Trieste, Area Science Park, I-34012 Basovizza, Trieste (Italy); Feyer, V. [CNR-IMIP, Montelibretti, Rome I-00016 (Italy); Richter, R. [Sincrotrone Trieste, Area Science Park, I-34012 Basovizza, Trieste (Italy); Coreno, M. [CNR-IMIP, Montelibretti, Rome I-00016 (Italy); De Simone, M. [Laboratorio Nazionale TASC, INFM-CNR, 34012 Trieste (Italy); Prince, K.C. [Sincrotrone Trieste, Area Science Park, I-34012 Basovizza, Trieste (Italy); Laboratorio Nazionale TASC, INFM-CNR, 34012 Trieste (Italy); Trofimov, A.B. [Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk (Russian Federation); Gromov, E.V. [Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk (Russian Federation); Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Zaytseva, I.L. [Laboratory of Quantum Chemistry, Irkutsk State University, Karl Marx str. 1, 664003 Irkutsk (Russian Federation); Schirmer, J. [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)], E-mail: Jochen.Schirmer@pci.uni-heidelberg.de

    2008-05-23

    The core level electron excitation and ionization spectra of thymine and adenine have been investigated by photoabsorption and photoemission spectroscopy, and the results interpreted by means of ab initio calculations using the second-order algebraic-diagrammatic construction (ADC(2)) method for the polarization propagator and the fourth-order ADC method (ADC(4)) for the one-particle Green's function. The photoabsorption spectra are dominated by transitions from core levels to unoccupied {pi} states, but also show clear structures due to Rydberg transitions. The calculated spectra are in good agreement with the experimental results, and many of the observed structures are assigned.

  15. Theoretical interpretation for 2p − nd absorption spectra of iron, nickel, and copper in X-ray range measured at the LULI2000 facility

    Directory of Open Access Journals (Sweden)

    Poirier M.

    2013-11-01

    Full Text Available The 2p − nd absorption structures in medium Z elements present a valuable benchmark for atomic models since they exhibit a complex dependence on temperature and density. For these transitions lying in the X-ray range, one observes a competition between the spin-orbit splitting and the broadening associated to the excitation of complex structures. Detailed opacity codes based on the HULLAC or FAC suites agree with the statistical code SCO; but in iron computations predict higher peak absorption than measured. An addition procedure on opacities calculated with detailed codes is proposed and successfully tested.

  16. First-principles calculations of X-ray absorption spectra at the K-edge of 3d transition metals: an electronic structure analysis of the pre-edge

    OpenAIRE

    Cabaret, Delphine; Bordage, Amélie; Juhin, Amélie; Arfaoui, M.; Gaudry, Emilie

    2010-01-01

    We first present an extended introduction of the various methods used to extract electronic and structural information from the K pre-edge X-ray absorption spectra of 3d transition metal ions. The K pre-edge structure is then modelled for a selection of 3d transition metal compounds and analyzed using first-principles calculations based on the density functional theory (DFT) in the local density approximation (LDA). The selected compounds under study are presented in an ascending order of ele...

  17. Ab-initio CI calculations for 3d transition metal L2,3 X-ray absorption spectra of TiCl4 and VOCl3

    NARCIS (Netherlands)

    Ikeno, H.; de Groot, F.M.F.; Tanaka, I.

    2009-01-01

    X-ray-absorption near-edge structures (XANES) at the transition metal (TM) L2,3-edge of TiCl4 and VOCl3 are calculated by the all-electron configuration interaction (CI) method using fully-relativistic molecular spinors with density functional theory (DFT). The electronic excitation from molecular s

  18. LDA+DMFT calculations of X-ray absorption and x-ray circular dichroism spectra: Role of valence-band correlations

    Energy Technology Data Exchange (ETDEWEB)

    Sipr, Ondrej; Simunek, Antonin [Institute of Physics AS CR, Cukrovarnicka 10, Prague (Czech Republic); Minar, Jan; Ebert, Hubert [Universitaet Muenchen (Germany)

    2010-07-01

    L{sub 2,3}-edge XAS and XMCD spectra of 3d elements are calculated via a self-consistent LDA+DMFT method (including thus valence-band correlations). It is found that the asymmetry of the calculated XAS white lines increases upon inclusion of the correlations for Fe and Co but not for Ni. The change in the height of the L{sub 3} and L{sub 2} peaks in the XMCD spectra is in a good agreement with the change of the orbital magnetic moment caused by adding the valence-band correlations. As a whole, adding valence-band correlations improves the agreement between the theory and experiment but visible differences still remain. Therefore, a core hole is additionally accounted for via the final state approximation and the impact of such a procedure is assessed.

  19. Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments

    CERN Document Server

    Flambaum, V V; Thomas, A W; Young, R D

    2004-01-01

    We perform calculations of the dependence of nuclear magnetic moments on quark masses and obtain limits on the variation of $(m_q/\\Lambda_{QCD})$ from recent measurements of hydrogen hyperfine (21 cm) and molecular rotational transitions in quasar absorption systems, atomic clock experiments with hyperfine transitions in H, Rb, Cs, Yb$^+$, Hg$^+$ and optical transition in Hg$^+$. Experiments with Cd$^+$, deuterium/hydrogen, molecular SF$_6$ and Zeeman transitions in $^3$He/Xe are also discussed.

  20. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    Science.gov (United States)

    Kotani, Akio; Matsuda, Yasuhiro H.; Nojiri, Hiroyuki

    2009-11-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi2(Si0.18Ge0.82)2 and YbInCu4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  1. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials

    Science.gov (United States)

    Verma, Prakash; Bartlett, Rodney J.

    2016-07-01

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  2. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    OpenAIRE

    Farah, Khaled; Hosni, Faouzi; Mejri, Arbi; Boizot, Bruno; Hafedh, Ben; Hamzaoui, Ahmed Hichem

    2014-01-01

    International audience Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO 3 and NaNO 3 with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the s...

  3. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115)

    Science.gov (United States)

    Totterdill, Anna; Kovács, Tamás; Feng, Wuhu; Dhomse, Sandip; Smith, Christopher J.; Gómez-Martín, Juan Carlos; Chipperfield, Martyn P.; Forster, Piers M.; Plane, John M. C.

    2016-09-01

    Fluorinated compounds such as NF3 and C2F5Cl (CFC-115) are characterised by very large global warming potentials (GWPs), which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry-climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21) years and (492 ± 22) years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  4. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and K[Formula: see text] emission spectra.

    Science.gov (United States)

    Rees, Julian A; Wandzilak, Aleksandra; Maganas, Dimitrios; Wurster, Nicole I C; Hugenbruch, Stefan; Kowalska, Joanna K; Pollock, Christopher J; Lima, Frederico A; Finkelstein, Kenneth D; DeBeer, Serena

    2016-09-01

    A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry. PMID:27251139

  5. Theoretical modeling of UV-Vis absorption and emission spectra in liquid state systems including vibrational and conformational effects: explicit treatment of the vibronic transitions.

    Science.gov (United States)

    D'Abramo, Marco; Aschi, Massimiliano; Amadei, Andrea

    2014-04-28

    Here, we extend a recently introduced theoretical-computational procedure [M. D'Alessandro, M. Aschi, C. Mazzuca, A. Palleschi, and A. Amadei, J. Chem. Phys. 139, 114102 (2013)] to include quantum vibrational transitions in modelling electronic spectra of atomic molecular systems in condensed phase. The method is based on the combination of Molecular Dynamics simulations and quantum chemical calculations within the Perturbed Matrix Method approach. The main aim of the presented approach is to reproduce as much as possible the spectral line shape which results from a subtle combination of environmental and intrinsic (chromophore) mechanical-dynamical features. As a case study, we were able to model the low energy UV-vis transitions of pyrene in liquid acetonitrile in good agreement with the experimental data. PMID:24784250

  6. Crystal field analysis of the absorption spectra and electron phonon interaction in Ca3Sc2Ge3O12:Ni2+

    Science.gov (United States)

    Brik, M. G.

    2006-04-01

    Exchange charge model of crystal field [B.Z. Malkin, in: A.A. Kaplyanskii, B.M. Macfarlane (Eds.), Spectroscopy of Solids Containing Rare-earth Ions, North-Holland, Amsterdam, 1987, pp. 33 50.] was used to analyze the energy level schemes of Ni2+ ion at both possible positions (octahedral and tetrahedral) in Ca3Sc2Ge3O12. The crystal field parameters were calculated from the crystal structure data; the crystal field Hamiltonian was diagonalised in the complete basis consisting of 25 wave functions of all LS terms of the Ni2+ ion. Results of calculations are in a good agreement with experimental data. From the experimental spectra available in the literature, the Huang Rhys parameter S=3.5 and effective phonon energy ℏω=200cm were evaluated for the octahedral Ni2+ ion.

  7. X-ray absorption spectra of nucleotides (AMP, GMP, and CMP) in liquid water solutions near the nitrogen K-edge

    Science.gov (United States)

    Ukai, Masatoshi; Yokoya, Akinari; Fujii, Kentaro; Saitoh, Yuji

    2010-07-01

    The X-ray absorption of nucleotides (adenosine-5'-monophosphate, guanosine 5'-monophosphate, and cytidine 5'-monophosphate) are measured in both water solutions and thin solid films at X-ray energies near the nitrogen K-edge in the 'water-window' region. Each spectrum corresponds to the selective excitation of a nucleobase site in a nucleotide, and thus has features similar to the spectrum of the corresponding nucleobase. An additional new peak in the energy region of the nitrogen 1s → π* resonance is observed for each nucleotide. No significant difference between the water solutions and thin solid films is found, which might be attributable to the hydrophobic properties of a nucleobase in a nucleotide.

  8. Experimental and theoretical studies of the VUV emission and absorption spectra of H{sub 2}, HD and D{sub 2} molecules; Etude experimentale et theorique des spectres d'emission et d'absorption VUV des molecules H{sub 2}, D{sub 2} et HD

    Energy Technology Data Exchange (ETDEWEB)

    Roudjane, M

    2007-12-15

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D{sub 2} and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D{sub 2} are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B{sup 1}{sigma}{sub u}{sup 1}, B'{sup 1}{sigma}{sub u}{sup 1}, C{sup 1}{pi}{sub u}{sup 1} and D{sup 1}{pi}{sub u}{sup 1}, taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar{sup 1}{sigma}{sub u}{sup +}, D'{sup 1}{pi}{sub u}{sup 1} and D''{sup 1}{pi}{sub u}{sup 1}. The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D{sub 2} molecules.

  9. Effect of gamma rays absorbed doses and heat treatment on the optical absorption spectra of silver ion-exchanged silicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Farah, Khaled, E-mail: kafarah@gmail.com [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); ISTLS, University of Sousse (Tunisia); Hosni, Faouzi [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Academie Militaire de Fondouk Jedid, 8012 Nabeul (Tunisia); Mejri, Arbi [Unité de recherche: Maîtrise et développement des techniques nucléaires à caractère pacifique, Centre National des Sciences et Technologie Nucléaires, 2020 Sidi-Thabet (Tunisia); Boizot, Bruno [Laboratoire des Solides Irradiés, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Hamzaoui, Ahmed Hichem [Centre National de Recherche en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Ben Ouada, Hafedh [Laboratoire des Interfaces et Matériaux Avancés, Faculté des Sciences, University of Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia)

    2014-03-15

    Samples of a commercial silicate glass have been subjected to ion exchange at 320 °C in a molten mixture of AgNO{sub 3} and NaNO{sub 3} with molar ratio of 1:99 and 5:95 for 60 min. The ion exchange process was followed by gamma irradiation in the dose range of 1–250 kGy and heating at the temperature of 550 °C for different time periods ranging from 10 to 582 min. The spectral absorption in UV–Vis range of the Ag–Na ion exchanged glass was measured and used to determine the states of silver prevailing in the glass during the ion exchange, the gamma irradiation and the heat treatment. The gamma irradiation induced holes and electrons in the glass structure leading to the creation of a brown colour, and silver ions trapped electrons to form silver atoms. We observed the first stage of aggregation after irradiation, as well as after heating. The silver atoms diffused and then aggregated to form nanoclusters after heating at 550 °C. A characteristic band at about 430 nm was induced. The surface Plasmon absorption of silver nanoclusters in the glass indicated that the nanoclusters radius grew between 0.9 and 1.43 nm with increasing of annealing time from 10 to 242 min and then saturated. We also found that the size of aggregates depends on the value of gamma radiation absorbed dose. Contrary to what was expected, we found that 20 kGy is the optimal absorbed dose corresponding to the larger size of the aggregates which decreases for absorbed doses above 20 kGy.

  10. High-accuracy measurements of OH(•) reaction rate constants and IR and UV absorption spectra: ethanol and partially fluorinated ethyl alcohols.

    Science.gov (United States)

    Orkin, Vladimir L; Khamaganov, Victor G; Martynova, Larissa E; Kurylo, Michael J

    2011-08-11

    Rate constants for the gas phase reactions of OH(•) radicals with ethanol and three fluorinated ethyl alcohols, CH(3)CH(2)OH (k(0)), CH(2)FCH(2)OH (k(1)), CHF(2)CH(2)OH (k(2)), and CF(3)CH(2)OH (k(3)) were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit noticeable curvature for all four reactions. The temperature dependences of the rate constants can be represented by the following expressions over the indicated temperature intervals: k(0)(220-370 K) = 5.98 × 10(-13)(T/298)(1.99) exp(+515/T) cm(3) molecule(-1) s(-1), k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1) [for atmospheric modeling purposes, k(0)(T) is essentially temperature-independent below room temperature, k(0)(220-298 K) = (3.35 ± 0.06) × 10(-12) cm(3) molecule(-1) s(-1)], k(1)(230-370 K) = 3.47 × 10(-14)(T/298)(4.49) exp(+977/T) cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 3.87 × 10(-14)(T/298)(4.25) exp(+578/T) cm(3) molecule(-1) s(-1), and k(3)(220-370 K) = 2.48 × 10(-14)(T/298)(4.03) exp(+418/T) cm(3) molecule(-1) s(-1). The atmospheric lifetimes due to reactions with tropospheric OH(•) were estimated to be 4, 16, 62, and 171 days, respectively, under the assumption of a well-mixed atmosphere. UV absorption cross sections of all four ethanols were measured between 160 and 215 nm. The IR absorption cross sections of the three fluorinated ethanols were measured between 400 and 1900 cm(-1), and their global warming potentials were estimated.

  11. Power and polarization dependences of ultra-narrow electromagnetically induced absorption (EIA) spectra of 85 Rb atoms in degenerate two-level system

    Science.gov (United States)

    Qureshi, Muhammad Mohsin; Rehman, Hafeez Ur; Noh, Heung-Ryoul; Kim, Jin-Tae

    2016-05-01

    We have investigated ultra-narrow EIA spectral features with respect to variations of polarizations and powers of pump laser beam in a degenerate two-level system of the transition of 85 Rb D2 transition line. Polarizations of the probe laser beam in two separate experiments were fixed at right circular and horizontal linear polarizations, respectively while the polarizations of the pump lasers were varied from initial polarizations same as the probe laser beams to orthogonal to probe polarizations. One homemade laser combined with AOMs was used to the pump and probe laser beams instead of two different lasers to overcome broad linewidths of the homemade lasers. Theoretically, probe absorption coefficients have been calculated from optical Bloch equations of the degenerate two level system prepared by a pump laser beam. In the case of the circular polarization, EIA signal was obtained as expected theoretically although both pump and probe beams have same polarization. The EIA signal become smaller as power increases and polarizations of the pump and probe beams were same. When the polarization of the pump beam was linear polarization, maximum EIA signal was obtained theoretically and experimentally. Experimental EIA spectral shapes with respect to variations of the pump beam polarization shows similar trends as the theoretical results.

  12. First theoretical global line lists of ethylene (12C2H4) spectra for the temperature range 50-700 K in the far-infrared for quantification of absorption and emission in planetary atmospheres

    Science.gov (United States)

    Rey, M.; Delahaye, T.; Nikitin, A. V.; Tyuterev, Vl. G.

    2016-10-01

    We present the construction of complete and comprehensive ethylene line lists for the temperatures 50-700 K based on accurate ab initio potential and dipole moment surfaces and extensive first-principle calculations. Three lists spanning the [0-6400] cm-1 infrared region were built at T = 80, 160, and 296 K, and two lists in the range [0-5200] cm-1 were built at 500 and 700 K. For each of these five temperatures, we considered possible convergence problems to ensure reliable opacity calculations. Our final list at 700 K was computed up to J = 71 and contains almost 60 million lines for intensities I > 5 × 10-27 cm/molecule. Comparisons with experimental spectra carried out in this study showed that for the most active infrared bands, the accuracy of band centers in our theoretical lists is better on average than 0.3 cm-1, and the integrated absorbance errors in the intervals relevant for spectral analyses are about 1-3%. These lists can be applied to simulations of absorption and emission spectra, radiative and non-LTE processes, and opacity calculations for planetary and astrophysical applications. The lists are freely accessible through the TheoReTS information system at http://theorets.univ-reims.fr and http://theorets.tsu.ru

  13. Study of the CH2I + O2 Reaction with a Step-Scan Fourier-Transform Infrared Absorption Spectrometer: Spectra of the Criegee Intermediate CH2OO and DIOXIRANE(?)

    Science.gov (United States)

    Huang, Yu-Hsuan; Lee, Yuan-Pern

    2014-06-01

    The Criegee intermediates are carbonyl oxides that play key roles in ozonolysis of unsaturated organic compounds. This mechanism was first proposed by Criegee in 1949, but the first direct observation of the simplest Criegee intermediate CH2OO in the gaseous phase has been reported only recently using photoionization mass spectrometry. Our group has reported the low-resolution IR spectra of CH2OO, produced from the reaction of CH2I + O2, with a second-generation step-scan Fourier-transfom IR absorption spectrometer. The spectral assignments were based on comparison of observed vibrational wavenumbers and rotational contours with theoretical predictions. Here, we report the IR absorption spectra of CH2OO at a resolution of 0.32 wn, showing partially rotationally-resolved structures. The origins of the νb{3}, νb{4}, νb{6}, and νb{8} vibrational modes of CH2OO are determined to be 1434.1, 1285.7, 909.2, and 847.3 wn, respectively. With the analysis of the vibration-rotational spectra, we provide a definitive assignment of these bands to CH2OO. The observed vibrational wavenumbers indicate a zwitterionic contribution to this singlet biradical showing a strengthened C-O bond and a weakened O-O bond. This zwitterionic character results to an extremely rapid self reaction via a cyclic dimer to form 2H2CO + O2 (1Δg). Another group of weak transient IR bands centered at 1231.5, 1213.3, and 899.8 wn are also observed. These bands might be contributed from dioxirane, which was postulated to be another important intermediate that might be isomerized from the Criegee intermediate in the reaction of O3 with 1-alkenes. O. Welz, J. D. Savee, D. L. Osborn, S. S.Vasu, C. J. Percival, D. E. Shallcross, and C. A. Taatjes, Science 335, 204 (2012). Y.-T. Su, Y.-H. Huang, H. A.Witek, and Y.-P. Lee, Science 340, 174 (2013).

  14. Determination of individual proton affinities of ofloxacin from its UV-Vis absorption, fluorescence and charge-transfer spectra: effect of inclusion in beta-cyclodextrin on the proton affinities.

    Science.gov (United States)

    Ghosh, Bankim Chandra; Deb, Nipamanjari; Mukherjee, Asok K

    2010-08-01

    Individual proton affinities of the four dissociable functional groups of (+/-)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7H-pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic acid (commonly called "ofloxacin" and to be denoted henceforth as OflH), have been determined from the pH-dependent variation of the UV-vis absorption and fluorescence spectra of the compound itself and of its charge transfer complexes (CT) with p-bromanil and p-chloranil (in aqueous medium containing 0.1% ethanol, v/v). To utilize the CT spectra for determination of the proton affinity of the anilinic N, the CT absorption band of the ofloxacin-p-bromanil complex has been studied by changing the pH of the medium. Further, the effect of inclusion on the proton affinities of the four dissociable groups of OflH has been studied in presence of beta-cyclodextrin (beta-CD). Two pK(a) values corresponding to anilinic and tertiary N atoms change, whereas those corresponding to phenolic -OH and aromatic -COOH groups remain unchanged by the addition of beta-CD, a fact that indicates partial inclusion of the ofloxacin molecule in beta-CD. Formation constant and related thermodynamic parameters for the OflH(2)(+).beta-CD inclusion complex in aqueous solution have been determined from absorption intensities. A general relation between pK(a) values of guests having proton-releasing functional groups and formation constants of the inclusion complexes of the protonated and deprotonated forms with a host molecule has been utilized for determination of the formation constant of the OflH(3)(+2).beta-CD complex from the pK(a) values of OflH(3)(+2) in the presence and absence of beta-CD, along with the formation constant of the OflH(2)(+).beta-CD complex. Results of the present study reveal that the N-methylpiperazinyl moiety of ofloxacin is included in beta-CD, and the remaining part of the guest molecule remains outside. Also, in molecular interaction with quinone-type electron acceptors

  15. Action spectra of zebrafish cone photoreceptors.

    Directory of Open Access Journals (Sweden)

    Duco Endeman

    Full Text Available Zebrafish is becoming an increasingly popular model in the field of visual neuroscience. Although the absorption spectra of its cone photopigments have been described, the cone action spectra were still unknown. In this study we report the action spectra of the four types of zebrafish cone photoreceptors, determined by measuring voltage responses upon light stimulation using whole cell patch clamp recordings. A generic template of photopigment absorption spectra was fit to the resulting action spectra in order to establish the maximum absorption wavelength, the A2-based photopigment contribution and the size of the β-wave of each cone-type. Although in general there is close correspondence between zebrafish cone action- and absorbance spectra, our data suggest that in the case of MWS- and LWS-cones there is appreciable contribution of A2-based photopigments and that the β-wave for these cones is smaller than expected based on the absorption spectra.

  16. 1H NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric β-carotene, canthaxanthin, β-apo-8'-carotenal and spheroidene

    Science.gov (United States)

    Fujii, Ritsuko; Chen, Chun-Hai; Mizoguchi, Tadashi; Koyama, Yasushi

    1998-05-01

    Eleven cis- trans isomers of okenone were isolated by means of HPLC using a silica-gel column from an isomeric mixture which was obtained by iodine-sensitized photo-isomerization of the all- trans isomer. The configurations of eight isomers among them were determined by NMR spectroscopy using the isomerization shifts of the olefinic 1Hs and the 1H- 1H NOE correlations to be all- trans, 7- cis, 7- cis,8-s- cis, 9- cis, 9'- cis, 13- cis, 13'- cis and 9,9'-di- cis, and their electronic-absorption and resonance-Raman spectra were recorded. Based on the results: (1) the chemical shifts of the olefinic 1Hs in NMR; (2) the wavelength of the A g-→B u+ transition; and (3) the relative intensity of the A g-→A g+ versus the A g-→B u+ transition in electronic absorption; (4) the CC stretching frequency; and (5) the relative intensity of the C10-C11 (C10'-C11') versus the C14-C15 (C14'-C15') stretching vibration in resonance Raman were compared among the all- trans, 7- cis, 9- cis (9'- cis) and 13- cis (13'- cis) isomers of β-carotene, canthaxanthin, β-apo-8'-carotenal, neurosporene, spheroidene and okenone. Relevance of the systematic changes in the above five different parameters originally found in β-carotene was examined in the rest of the carotenoids, and the effects of the peripheral groups on them were explained in terms of the length and asymmetry of the conjugated system consisting of the CC and CO bonds.

  17. 太阳光谱对高分辨吸收光谱反演大气CO2浓度影响的研究%Study on the Effect of Solar Spectra on the Retrieval of Atmospheric CO2 Concentration Using High Resolution Absorption Spectra

    Institute of Scientific and Technical Information of China (English)

    胡振华; 黄腾; 王颖萍; 丁蕾; 郑海洋; 方黎

    2011-01-01

    以太阳光为辐射源的近红外波段高分辨率吸收光谱广泛应用于大气参数遥测.以CO2浓度反演为例,研究了太阳光谱分辨率的影响.利用美国AER公司编制的太阳光谱计算程序得到大气上界的理论计算太阳光谱作为辐射源,结合自行编制的高分辨率大气透过率模拟软件HRATS对大气中CO2平均浓度进行模拟反演.数值模拟计算结果表明,太阳光谱的准确度对浓度反演非常重要,特别是在超分辨光谱反演中异常重要,虽然反演浓度的偏差与观测分辨率没有明显的线性变化规律,但有趋势:观测分辨率的降低对太阳光谱分辨率的要求也降低,为了精确反演大气中CO2浓度,因此需要充分利用大气层顶的高分辨太阳辐射光谱数据.%Taking solar source as radiation in the near-infrared high-resolution absorption spectrum is widely used in remote sensing of atmospheric parameters. The present paper will take retrieval of the concentration of CO2 for example, and study the effect of solar spectra resolution. Retrieving concentrations of CO2 by using high resolution absorption spectra, a method which uses the program provided by AER to calculate the solar spectra at the top of atmosphere as radiation and combine with the HRATS (high resolution atmospheric transmission simulation) to simulate retrieving concentration of CO2. Numerical simulation shows that the accuracy of solar spectrum is important to retrieval, especially in the hyper-resolution spectral retrieavl, and the error of retrieval concentration has poor linear relation with the resolution of observation, but there is a tendency that the decrease in the resolution requires low resolution of solar spectrum. In order to retrieve the concentration of CO2 of atmosphere, the authors' should take full advantage of high-resolution solar spectrum at the top of atmosphere

  18. 一种基于香豆素的迈克尔加成型硫醇比色探针%Synthesis and Absorption Spectra of a New Cumarin,derivative as a Colorimetric Probe for Thiols

    Institute of Scientific and Technical Information of China (English)

    周先树; 苗利强; 刘滇生

    2012-01-01

    A colorimetric probe for thiols was developed by using an cumarin derivative based on the Michael addition of thiol to α,β-unsaturated double bond. The Michael addition of a thiol group to Michael acceptor of 1 blocked the intramolecular charge transfer (ICT) from the electron-rich diethylaminocoumarin group to the electron-poor Michael acceptor,leading to a blue shift in the absorption spectra with an evident color change from blueviolet to colorless. The probe exhibited higher selectivity toward thiols (Cys, Hey and GSH) than other amino acids.%基于硫醇对α,β-不饱和双键的亲核加成,设计合成了一种香豆素-3-氧代-2,3-二氢苯并[b]噻吩加合物的比色硫醇探针.硫醇与探针发生迈克尔加成,打断了分子内的共轭体系,阻止了香豆素向缺电子的3-氧代-2,3-二氢苯并[b]噻吩基团的分子内电荷转移,引起了吸收光谱上的蓝移和溶液颜色的变化.

  19. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater.Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2005-06-01

    Full Text Available Data on organic substances in the sea are applied to distinguish hypothetical chemical classes and physical types of suspended particulate organic matter (POM in seawater. Spectra of the light absorption coefficients of particulate matter apm(λ and the imaginary refractive index n'p(λ, are assessed for some of these classes and types of POM in seawater, that is, for live phytoplankton cells and phytoplankton-like particles. The spectral characteristics of these coefficients are established and the probable ranges of variability of their absolute magnitudes defined on the basis of the mass-specific coefficients of light absorption by the various organic substances forming the particles. Also presented are mathematical relationships linking the coefficients apm(λ and n'p(λ for the various chemical classes of POM with their physical parameters, such as the relative contents of organic matter, water, air or some other gas. This article is part of a bio-optical study undertaken by the authors, the objective of which is to implement remote sensing techniques in the investigation of Baltic ecosystems (Woźniak et al. 2004.

  20. Espectro de gotas e idade de trifólios na taxa de absorção e efeito residual de fungicidas em soja Drops spectra and leaflets age on the fungicides absorption rate and residual effect in soybean

    Directory of Open Access Journals (Sweden)

    Giuvan Lenz

    2011-10-01

    Full Text Available O objetivo do presente trabalho foi avaliar o efeito de espectros de gotas (grossas, médias e finas na velocidade de absorção de fungicidas, para trifólios de diferentes idades através de medida indireta expressa pelo residual de controle de ferrugem asiática da soja (Phakopsora pachyrhizi. O delineamento experimental utilizado foi inteiramente casualizado, com quatro repetições, em arranjo fatorial (3x3x5x4, cujos fatores foram compostos por: três categorias de gotas (grossas, médias e finas; três diferentes posições de avaliação na planta (1°, 3° e 5° trifólios; quatro períodos de tempo entre a aplicação de fungicidas e aplicação de chuva simulada (0, 30, 60 e 120min, mais uma testemunha sem chuva; testemunha sem aplicação, mais os fungicidas azoxistrobina + ciproconazol (60+24g i.a. ha-1 + óleo mineral 0,6L ha-1, azoxistrobina (50g i.a. ha-1 + óleo mineral 0,6L ha-1 e ciproconazol (30g i.a. ha-1. Avaliou-se a densidade de gotas por centímetro quadrado, diâmetro mediano volumétrico, diâmetro mediano numérico e amplitude relativa, além do número de dias para o aparecimento da primeira pústula. Verificou-se que gotas de menor DMV proporcionam maior velocidade de absorção de fungicidas. Trifólios mais novos absorvem os fungicidas mais rapidamente. A utilização de azoxistrobina + ciproconazol + óleo mineral proporcionou o maior número de dias até o aparecimento da primeira pústula.This research aimed to evaluate the effect of large, medium and fine droplets spectra and its interaction with the fungicide absorption rate and leaflets age through indirect measurement expressed by the residual control of Asian soybean rust (Phakopsora pachyrhizi. The experimental design was completely randomized with four replications in a factorial scheme (3x3x5x4, which factors were composed of: three drops spectra (large, medium and fine; three different positions in the plant evaluated (1st, 3rd and 5th leaflets, four

  1. Action spectra again?

    Science.gov (United States)

    Coohill, T P

    1991-11-01

    Action spectroscopy has a long history and is of central importance to photobiological studies. Action spectra were among the first assays to point to chlorophyll as the molecule most responsible for plant growth and to DNA as the genetic material. It is useful to construct action spectra early in the investigation of new areas of photobiological research in an attempt to determine the wavelength limits of the radiation region causing the studied response. But due to the severe absorption of ultraviolet (UV) radiation by biological samples, UV action spectra were first limited to small cells (bacteria and fungi). Advances in techniques (e.g. single cell culture) and analysis allowed accurate action spectra to be reported even for mammalian cells. But precise analytical action spectra are often difficult to obtain when large, pigmented, or groups of cells are investigated. Here some action spectra are limited in interpretation and merely supply a wavelength vs effect curve. When polychromatic sources are employed, the interpretation of action spectra is even more complex and formidable. But such polychromatic action spectra can be more directly related to ambient responses. Since precise action spectra usually require the completion of a relatively large number of careful experiments using somewhat sophisticated equipment over a range of at least six wavelengths, they are often not pursued. But they remain central to the elucidation of the effect being studied. The worldwide community has agreed that stratospheric ozone is depleting, with the possibility of a consequent rise in the amount of UV-B (290-320 nm) reaching the earth's surface. It is therefore essential that new action spectra be completed for UV-B effects on a large variety of responses of human, animal, and aquatic plant systems. Combining these action spectra with the known amounts of UV-B reaching the biosphere can give rise to solar UV effectiveness spectra that, in turn, can give rise to estimates

  2. Study on Chemical Compositions and Infrared Absorption Spectra of Natural and Synthetic Emeralds%天然祖母绿与合成祖母绿的成分及红外吸收光谱研究

    Institute of Scientific and Technical Information of China (English)

    申柯娅

    2011-01-01

    祖母绿是一种高档名贵的宝石,其矿物学名称为绿柱石,化学成分为铍铝硅酸盐.鉴别天然祖母绿和人工合成祖母绿,已成为祖母绿宝石鉴定中的一个重要课题.文章采用常规宝石学研究方法、激光剥蚀-电感耦合等离子体质谱法和红外光谱技术对天然祖母绿(包括哥伦比亚祖母绿和巴西祖母绿)、合成祖母绿(包括助熔剂法合成祖母绿和水热法合成祖母绿)样品进行了系统的分析和研究.结果表明,天然祖母绿与合成祖母绿的主要致色微量元素Cr的含量越高,祖母绿的绿色越浓艳;天然祖母绿与合成祖母绿的红外吸收光谱特征具有明显的差异;根据祖母绿中是否含水、水的赋存状态以及氯的吸收峰,可作为准确鉴别天然祖母绿和合成祖母绿的重要依据.等离子体质谱法化学成分分析不能确定祖母绿是天然形成还是人工合成,需在常规宝石学检测的基础上,综合研究祖母绿的红外吸收光谱特征及内含物特征,才能准确地鉴别天然祖母绿、水热法合成祖母绿和助熔剂法合成祖母绿.%As a top-grade and rare gemstone, emerald is a variety of the mineral beryl with the chemical composition Be3 Al2 (SiO3) 6. It is a significant research project to identify natural emerald as opposed to synthetic emerald. The routine gemological methods, laser ablation-inductively coupled plasma mass spectrometry ( LA-ICP-MS) and Fourier Transform Infrared Spectroscopy (FTIR) absorption techniques were used to study natural emeralds from Colombia and Brazil and synthetic emeralds made by flux-grown and hydrothermal synthetic methods. The green color of emerald was closely related to the concentration of the trace element Cr( Ⅲ). The infrared absorption spectra characteristics indicated obvious differences between natural and synthetic emeralds. This technique can provide important information for identifying natural and synthetic emeralds, combined

  3. 样品的激光诱导击穿光谱及谱线的自吸收现象%Laser Induced Breakdown Spectra of Coal Sample and Self-Absorption of the Spectral Line

    Institute of Scientific and Technical Information of China (English)

    张贵银; 季慧; 靳一东

    2014-01-01

    以脉冲Nd∶AG激光器的二倍频输出为激发源,获得了一种家庭用煤的激光诱导击穿光谱(laser induced breakdown spectrum ,LIBS)。通过对谱线的归属,发现该煤种除包含文献报道的C ,Si ,Mg ,Fe , Al ,Ca ,Ti ,Na ,K元素外,还包含Cd ,Co ,Hf ,Ir ,Li ,Mn ,Ni ,Rb ,Sr ,V ,W ,Zn ,Zr等微量元素,谱图中没有出现对应H和O元素的谱线,把该现象归因于H和O原子的跃迁概率较小,而灵敏谱线对应跃迁的上能级能量较大。同时发现随激光脉冲能量的增加,等离子体发射谱线的强度增大,增加到一定程度,K原子766.493和769.921 nm谱线会出现自吸收现象,自吸收的程度随激光能量的增加而增强,出现明显的双峰结构,把自吸收现象归因于原子大的跃迁概率及激光强度增加引起等离子体中粒子数密度的增大。%The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd・YAG laser as radiation source .With the assignment of the spectral lines ,it was found that besides the elements C ,Si ,Mg ,Fe ,Al ,Ca , Ti ,Na and K ,which are reported to be contained in coal ,the presented sample also contains trace elements ,such as Cd ,Co , Hf ,Ir ,Li ,Mn ,Ni ,Rb ,Sr ,V ,W ,Zn ,Zr etc ,but the spectral lines corresponding to O and H elements did not appear in the spectra .This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher .The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent .Increasing laser energy fur-ther will make self-absorption more obvious .The presence of self-absorption can be attributed to two factors .One is the higher transition rate of K atoms ,and the other is that the increase

  4. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a)

    Science.gov (United States)

    Davis, Maxine E.; Bernard, François; McGillen, Max R.; Fleming, Eric L.; Burkholder, James B.

    2016-07-01

    The potential impact of CCl2FCF3 (CFC-114a) and the recently observed CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), and CCl3CF3 (CFC-113a) chlorofluorocarbons (CFCs) on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207-323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs), and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years) of 63.6 (61.9-64.7), 51.5 (50.0-52.6), 55.4 (54.3-56.3), and 105.3 (102.9-107.4) for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D) rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs) with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs) were estimated to be 4260 (CFC-112), 3330 (CFC-112a), 3650 (CFC-113a), and 6510 (CFC-114a) for the 100-year time horizon.

  5. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  6. Molecular absorption in transition region spectral lines

    CERN Document Server

    Schmit, Donald; Ayres, Thomas; Peter, Hardi; Curdt, Werner; Jaeggli, Sarah

    2014-01-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales...

  7. AVIRIS spectra of California wetlands

    Science.gov (United States)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  8. Pion absorption processes

    International Nuclear Information System (INIS)

    Proton and deuteron production from low-energy pion absorption in light nuclei leading to discrete and continuum states were measured. The LEP beam line at LAMPF was used with a stack of 8 intrinsic germanium crystals. The proton energy spectra are in general characterized by a broad bump at an energy approximately corresponding to π+d → pp reaction kinematics, suggestive of pion absorption on 2 nucleons. The energy-integrated cross-section for production of deuterons has an angular distribution similar to that for production of protons. The dependence of the total pion absorption cross-section on A is explained using a semi-classical model for pion transport in nuclei. The (π+,p) as well as (π+,d) reactions generally favor transitions involving larger angular momentum transfer to the residual nucleus when states of similar nuclear structure are considered. The low-energy excitation spectra from the (π+,p) reaction are similar to the spectra from (p,d) reaction on 12C and 13C. However, a calculation of the (π+,p) cross-section using the measured (p,d) reaction with the formulation of Wilkin to relate the two reactions is in moderate disagreement with the measured (π+,p) cross-sections. The excitation spectra from the (π+,p) reaction indicte the importance of two-step processes for the reaction. The (π+,d) reaction leading to the ground state of -- residual nucleus has been seen for 7Li, 12C, and 13C targets. The measured cross section for the 12C(π+,d)10C reaction to the 2+ state is much higher than that for the ground state. For the case of 18O, no counts were seen for excitation energy of +,d) reaction

  9. Evaluation of Transient Absorption Spectra of N, N, N′, N′- Tetra - ( p -methylphenyl ) - 4, 4′- diamino - 1, 1′- diphenyl Ether ( TPDAE ) for Electron Transfer from TPDAE to Fullerenes ( C60 / C70 ) by Laser Flash Photolysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Photoinduced electron transfer processes between fullerenes (C60 / C70) and N, N, N′, N′- tetra - ( p-methylphenyl ) - 4, 4′- diamino - 1, 1′- diphenyl ether ( TPDAE ) have been studied by nanosecond laser flash photolysis. Quantum yields and rate constants of electron transfer from TPDAE to excited triplet state of fullerenes (C60 / C70 ) in benzonitrile have been evaluated by observing the transient absorption bands in the near-IR region where the excited triplet state, radical anion of fullerenes ( C60 / C70 ) and radical cations of TPDAE appear.

  10. Assessing the Atmospheric Impact of CF3CClH2 (HCFC-133a): Laboratory Measurements of OH Kinetics and UV and Infrared Absorption Spectra Combined with Model Calculations

    Science.gov (United States)

    McGillen, M.; Bernard, F.; Fleming, E. L.; Jackman, C. H.; Burkholder, J. B.

    2014-12-01

    CF3CClH2 (HCFC-133a) was recently detected in the atmosphere and its atmospheric mixing ratio has quadrupled over the last 10 years. As expected for this class of compound, HCFC-133a is both an ozone-depleting substance and a greenhouse gas. Precise knowledge of its atmospheric degradation and radiative efficiency is critical to understanding its effect upon the atmosphere. The predominant atmospheric loss process for HCFC-133a is via reaction with the OH radical, where the rate coefficient for this reaction is poorly constrained, especially below room temperature. UV photolysis is a minor loss process, although large discrepancies exist among the reported spectrum measurements. The infrared spectrum of HCFC-133a is presently not available in the literature. The primary focus of this work was to reduce the uncertainties in the atmospheric loss processes of HCFC-133a and its radiative efficiency. Rate coefficient measurements for the OH + HCFC-133a reaction over the temperature range 233-397 K will be reported. In addition, UV absorption spectrum measurements over the wavelength (184.95-240 nm) and temperature (213-323 K) ranges and infrared absorption measurements from 500-4000 cm-1 will be reported. These results are used in 2-D atmospheric model calculations to quantify the atmospheric loss processes, atmospheric lifetime, ozone depletion potential, radiative efficiency, and global warming potential of HCFC-133a. These important metrics will enable informed policy decisions regarding HCFC-133a.

  11. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    Science.gov (United States)

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  12. First-Principle Study on the Band Gap and Optical Absorption Spectra of Be Doping ZnO%Be 掺杂浓度对 ZnO 带隙和吸收光谱的影响

    Institute of Scientific and Technical Information of China (English)

    姬延明; 赵凤岐; 李志强; 白金花; 月英

    2015-01-01

    In this paper,using the first-principles plane-wave ultrasoft pseudopotential method which was based on the density functional (DFT),we set up models of Be-doped ZnO which were doped with pure and four different concentration of Be,then calculate the models of geomertry optimization,band structures (BS),total density of states (TDOS)and absorption spectrum respectively.Results showed that with increasing of Be atomic concentration and decreasing of formation energy,informed that stability of doped system was enhanced.At the same time,with doping of different Be atomic concentration,calcula-tions indicate that the band gap is broadened,which equal to experimental results.because of different doped and broadened band gap,the absorption spectral occur blue-shift.By calculation and analysis of spec-tra,found that this conclusion was consistent with calculation result.%采用基于密度泛函理论框架下的第一性原理平面波超软赝势方法,建立了纯净的和4种不同浓度Be 掺杂下的 ZnO 超晶胞模型,分别对模型的能带结构分布、态密度分布和吸收光谱进行了计算。结果表明:随着Be 原子浓度的增加,掺杂体系 Bex Zn1-x O 的形成能下降,体系的稳定性增强,同时掺杂体系的带隙变宽,使吸收光谱发生蓝移;计算结果与文献中的实验结果相符。

  13. Determination of the dynamical structure of galaxies using optical spectra

    OpenAIRE

    De Rijcke, S.; Dejonghe, H.

    1998-01-01

    Galaxy spectra are a rich source of kinematical information since the shapes of the absorption lines reflect the movement of stars along the line-of-sight. We present a technique to directly build a dynamical model for a galaxy by fitting model spectra, calculated from a dynamical model, to the observed galaxy spectra. Using synthetic spectra from a known galaxy model we demonstrate that this technique indeed recovers the essential dynamical characteristics of the galaxy model. Moreover, the ...

  14. Rotational structure in molecular infrared spectra

    CERN Document Server

    di Lauro, Carlo

    2013-01-01

    Recent advances in infrared molecular spectroscopy have resulted in sophisticated theoretical and laboratory methods that are difficult to grasp without a solid understanding of the basic principles and underlying theory of vibration-rotation absorption spectroscopy. Rotational Structure in Molecular Infrared Spectra fills the gap between these recent, complex topics and the most elementary methods in the field of rotational structure in the infrared spectra of gaseous molecules. There is an increasing need for people with the skills and knowledge to interpret vibration-rotation spectra in ma

  15. QSO Absorption Lines from QSOs

    CERN Document Server

    Bowen, D V; Ménard, B; Chelouche, D; Inada, N; Oguri, M; Richards, G T; Strauss, M A; Vanden Berk, Daniel E; York, D G; Bowen, David V.; Hennawi, Joseph F.; Menard, Brice; Chelouche, Doron; Inada, Naohisa; Oguri, Masamune; Richards, Gordon T.; Strauss, Michael A.; Berk, Daniel E. Vanden; York, Donald G.

    2006-01-01

    We present the results of a search for metal absorption lines in the spectra of background QSOs whose sightlines pass close to foreground QSOs. We detect MgII(2796,2803) absorption in Sloan Digital Sky Survey (SDSS) spectra of four z>1.5 QSOs whose lines of sight pass within 26-98 kpc of lower redshift (z~0.5-1.5) QSOs. The 100% [4/4 pairs] detection of MgII in the background QSOs is clearly at odds with the incidence of associated (z_abs ~ z_em) systems -- absorbers which exist towards only a few percent of QSOs. Although the quality of our foreground QSO spectra is not as high as the SDSS data, absorption seen towards one of the background QSOs clearly does not show up at the same strength in the spectrum of the corresponding foreground QSO. This implies that the absorbing gas is distributed inhomogeneously around the QSO, presumably as a direct consequence of the anisotropic emission from the central AGN. We discuss possible origins for the MgII lines, including: absorption by gas from the foreground QSO h...

  16. Estimation of the CO2 Concentration From the Measurements of Solar Absorption Spectra at an Altitude of 800 Meters by Using the FTS (GOSAT-BBM) in SWIR Region

    Science.gov (United States)

    Yoshida, Y.; Oguma, H.; Morino, I.; Suto, H.; Yokota, T.; Inoue, G.; Kuze, A.

    2006-12-01

    The Greenhouse gases Observing SATellite (GOSAT) is scheduled to be launched in 2008 to observe tropospheric CO2 and CH4 from space. We developed a retrieval algorithm, which simultaneously estimates the CO2 column concentration and the surface albedo from a spectrum of surface scattered solar radiation at 1.6 μm region measured by Fourier Transform Spectrometer (FTS) with some assumptions on the aerosol parameters. To validate and to improve the retrieval algorithm, a field experiment was conducted from 10:30 to 14:30 JST of November 17, 2005 using a bread board model (BBM) of the FTS. The surface scattered and the direct transmitted solar spectra were measured by BBM, which was installed at the terminal station of the ropeway near the summit of Mt. Tsukuba (an altitude of about 800 m). In-situ CO2 concentration was measured continuously at the surface target point and near the BBM. There seemed to exist visible aerosols within the atmospheric boundary layer; however, no measurements of aerosol parameters were made. We have tried to retrieve the CO2 concentrations with the assumptions of no aerosol and the boundary layer aerosol, respectively. Although the absolute values of the retrieved CO2 concentrations are different between these two analyses, the relative patterns of temporal variation of the retrieved column concentrations are similar. Also, there existed the lag correlation between the retrieved CO2 column concentration and the in-situ observed CO2 concentration at the surface target point. This suggests that our algorithm can at least detect the variation of the CO2 concentration. To retrieve more accurate absolute concentration of CO2, effects of aerosol should be considered properly.

  17. Aerosol Effects on the Estimation of the Carbon Dioxide Concentration From the Measurements of Solar Absorption Spectra at an Altitude of 800 Meters by Using the FTS (GOSAT-BBM) in SWIR Region

    Science.gov (United States)

    Yoshida, Y.; Tanaka, T.; Saito, R.; Oguma, H.; Morino, I.; Aoki, K.; Machida, T.; Yokota, T.

    2007-12-01

    The Greenhouse gases Observing SATellite (GOSAT) is scheduled to be launched in 2008 to observe tropospheric CO2 and CH4 from space. We developed a retrieval algorithm, which simultaneously estimates the CO2 column concentration and the surface albedo from a spectrum of surface scattered solar radiation at 1.6 μm region measured by Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) aboard GOSAT. To validate and improve the retrieval algorithm, a field experiment was conducted from 1st to 18th December, 2006 using a bread board model (BBM) of the FTS. The surface scattered solar spectra were measured by BBM, which was installed at the terminal station of the cable car near the summit of Mt. Tsukuba (at an altitude of about 800 m). In-situ CO2 censors (NDIR) and skyradiometers were set up at the surface target point and near the BBM for the continuous measurements. Also, CO2 profile was observed in-situ by Cessna aircraft near the surface up to altitude of 3km. Data obtained with no cloud condition were analyzed. The CO2 column concentrations (CCO2) were retrieved with the assumption of with and without the boundary layer aerosol. Optical properties of aerosol were estimated from the skyradiometer measurements. The difference between the CCO2 with and without aerosol had good correlation with the aerosol optical thickness at 1.6 μm, and -0.1 to 0.6 % change in the CCO2 occurred due to aerosol. Most of the CCO2 agreed with in-situ observation within 1.0 % but the maximum difference reached up to 3.0 %.

  18. Photochemical properties of trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3): OH reaction rate constant, UV and IR absorption spectra, global warming potential, and ozone depletion potential.

    Science.gov (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J

    2014-07-17

    Measurements of the rate constant for the gas-phase reactions of OH radicals with trans-1-chloro-3,3,3-trifluoropropene (trans-CHCl═CHCF3) were performed using a flash photolysis resonance-fluorescence technique over the temperature range 220-370 K. The reaction rate constant exhibits a noticeable curvature of the temperature dependence in the Arrhenius plot, which can be represented by the following expression: kt-CFP (220-370 K) = 1.025 × 10(-13) × (T/298)(2.29) exp(+384/T) cm(3 )molecule(-1) s(-1). The room-temperature rate constant was determined to be kt-CFP (298 K) = (3.29 ± 0.10) × 10(-13) cm(3) molecule(-1) s(-1), where the uncertainty includes both two standard errors (statistical) and the estimated systematic error. For atmospheric modeling purposes, the rate constant below room temperature can be represented by the following expression: kt-CFP (220-298 K) = (7.20 ± 0.46) × 10(-13) exp[-(237 ± 16)/T] cm(3) molecule(-1) s(-1). There was no difference observed between the rate constants determined at 4 kPa (30 Torr) and 40 kPa (300 Torr) at both 298 and 370 K. The UV and IR absorption cross sections of this compound were measured at room temperature. The atmospheric lifetime, global warming potential, and ozone depletion potential of trans-CHCl═CHCF3 were estimated. PMID:24955760

  19. Gamma-ray burst spectra

    Science.gov (United States)

    Teegarden, B. J.

    1982-01-01

    A review of recent results in gamma-ray burst spectroscopy is given. Particular attention is paid to the recent discovery of emission and absorption features in the burst spectra. These lines represent the strongest evidence to date that gamma-ray bursts originate on or near neutron stars. Line parameters give information on the temperature, magnetic field and possibly the gravitational potential of the neutron star. The behavior of the continuum spectrum is also discussed. A remarkably good fit to nearly all bursts is obtained with a thermal-bremsstrahlung-like continuum. Significant evolution is observed of both the continuum and line features within most events.

  20. Vibrational Spectra of a Mechanosensitive Channel

    NARCIS (Netherlands)

    Liang, Chungwen; Louhivuori, Martti; Marrink, Siewert J.; Jansen, Thomas L.C.; Knoester, Jasper

    2013-01-01

    We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the

  1. Atmospheric CO2 retrieved from ground-based solar spectra

    Science.gov (United States)

    Yang, Z.; Toon, G. C.; Margolis, J. S.; Wennberg, P. O.

    2002-01-01

    The column-averaged volume mixing ration of CO2 over Kitt Peak, Arizona, has been retrieved from high-resolution solar absorption spectra obtained with the fourier transform spectrometer on the McMath telescope.

  2. Online Spectral Fit Tool for Analyzing Reflectance Spectra

    Science.gov (United States)

    Penttilä, A.; Kohout, T.

    2015-11-01

    The Online Spectral Fit Tool is developed for analyzing Vis-NIR spectral behavior of asteroids and meteorites. Implementation is done using JavaScript/HTML. Fitted spectra consist of spline continuum and gamma distributions for absorption bands.

  3. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  4. Crystal-field analysis for RE 3+ ions in laser materials: II. Absorption spectra and energy levels calculations for Nd 3+ ions doped into SrLaGa 3O 7 and BaLaGa 3O 7 crystals and Tm 3+ ions in SrGdGa 3O 7

    Science.gov (United States)

    Karbowiak, M.; Gnutek, P.; Rudowicz, C.; Ryba-Romanowski, W.

    2011-08-01

    Low temperature polarized absorption spectra are analyzed to achieve assignments of energy levels for Nd 3+ and Tm 3+ ions at monoclinic C s site symmetry in ABC 3O 7 crystals. Based on the concept of average optical center, the experimental energy levels for single crystals of SrLaGa 3O 7:Nd 3+ (SLG:Nd), BaLaGa 3O 7:Nd 3+ (BLG:Nd), and SrGdGa 3O 7:Tm 3+ (SGG:Tm) were analyzed in terms of the free-ion parameters and the crystal field (CF) ones, B kq. Assignments of the energy levels resolved in the spectra were done in stages applying the ascent/descent in symmetry method in CF analysis. The actual monoclinic C s site symmetry at the metal centers in ABC 3O 7 crystals and the approximated orthorhombic C 2v and tetragonal C 4v symmetry were considered. The starting values of B kq's for SLG:Nd and BLG:Nd crystals were obtained from superposition model (SPM) analysis. The final fitted crystal field parameters show high compatibility with the existing data for structurally similar ion-host systems. The obtained values of the intrinsic parameters provide basis for SPM analysis of CF parameters for rare earth ions in other similar systems, especially those exhibiting low-symmetry sites. The SPM parameters derived for SLG:Nd are used for simulation and assignment of the energy levels involved in the potential laser transitions at about 1800 nm due to Tm 3+ ions in SGG crystals. The evaluated emission cross-section is about two times lower than that obtained previously.

  5. Theoretical prediction of vibrational spectra

    Science.gov (United States)

    Niu, Zefu; Dunn, Kevin M.; Boggs, James E.

    The complete harmonic force field and the diagonal and first off-diagonal cubic constants of aniline have been calculated ab initio using a 4-21 basis set augmented by addition of d functions to the nitrogen atom. The force constants were then scaled using scale factors optimized previously to give the best fit to the similarly computed vibrational spectra of benzene and its deuterated isotopomers. The vibrational spectra of aniline, aniline-NHD, and aniline-ND2 were then calculated from this scaled quantum mechanical (SQM) force field and compared with experimentally observed spectra. Several corrections were made to previously proposed empirical spectral assignments. Because of computational difficulties, no definitive statement can be made about the torsion or inversion modes of the amino group. Aside from these and the C-H stretching frequencies for which the detailed assignment is still quite uncertain, the average deviation between the observed frequencies and those obtained entirely from the scaled computed force field is 9·1 cm-1. Dipole moment derivatives and infrared absorption intensities were also calculated, but these are of lower accuracy.

  6. Vibrationally high-resolved electronic spectra of MCl2 (M=C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2(.).

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M=C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group. PMID:27280730

  7. Vibrationally high-resolved electronic spectra of MCl2 (M = C, Si, Ge, Sn, Pb) and photoelectron spectra of MCl2-

    Science.gov (United States)

    Ran, Yibin; Pang, Min; Shen, Wei; Li, Ming; He, Rongxing

    2016-10-01

    We systematically studied the vibrational-resolved electronic spectra of group IV dichlorides using the Franck-Condon approximation combined with the Duschinsky and Herzberg-Teller effects in harmonic and anharmonic frameworks (only the simulation of absorption spectra includes the anharmonicity). Calculated results showed that the band shapes of simulated spectra are in accordance with those of the corresponding experimental or theoretical ones. We found that the symmetric bend mode in progression of absorption is the most active one, whereas the main contributor in photoelectron spectra is the symmetric stretching mode. Moreover, the Duschinsky and anharmonic effects exert weak influence on the absorption spectra, except for PbCl2 molecule. The theoretical insights presented in this work are significant in understanding the photophysical properties of MCl2 (M = C, Si, Ge, Sn, Pb) and studying the Herzberg-Teller and the anharmonic effects on the absorption spectra of new dichlorides of this main group.

  8. Comparative Analysis of Arsenic Speciation in Sediments of the Diaojiang River Using X-Ray Absorption Near Edge Structure Spectra and Sequential Chemical Extraction%刁江底泥砷形态的化学分级法与XANES方法比较

    Institute of Scientific and Technical Information of China (English)

    蹇丽; 黄泽春; 刘永轩; 杨子良; 胡天斗

    2012-01-01

    采用XANES(X射线近边分析)方法和化学分级法,研究了刁江污染源区尾砂及刁江底泥的砷形态组成特征.XANES方法结果表明,尾砂中砷的形态主要以毒砂(FeAsS)存在,其相对百分含量为63%~99%;而刁江底泥中的砷形态主要是毒砂、砷酸盐和亚砷酸盐,其中毒砂的比例较高,表现出典型的尾砂污染特征.化学分级法结果表明,尾砂中砷形态主要是残渣态砷(Res-As),而底泥中的砷主要以铁合态、钙合态及残渣态形式存在.刁江底泥中毒砂相对百分含量和残渣态砷随着与污染源区距离的增大而减小,砷酸盐和亚砷酸盐则呈相反的趋势.化学分级法和XANES方法所反映的刁江底泥和污染源的砷形态组成和变化趋势总体上较为一致,但这2种方法所获得的定量数据存在一定的差异.%Sequential chemical extraction method and X-Ray absorption near edge structure (XANES) spectra were used to investigate arsenic speciation in sediments of the Diaojiang River and tailings from a pollution source area. XANES spectra showed that arsenic was mainly present as arsenopyrite (FeAsS) in the tailings, with range from 63% to 99%. Arsenic fractions in the sediments were mainly present as arsenite, arsenate and arsenopyrite. A high proportion of FeAsS in the sediments showed the typical character of a mining tailing contaminated river. The relative percentage contents of FeAsS and Res-As in the sediments gradually decreased with the increase of distance to the pollution sources, while arsenite and arsenate showed the opposite pattern. The results from sequential chemical extraction method and XANES spectra showed that the composition and trend of arsenic speciation in pollution sources and sediments of the Diaojiang River were generally in good agreement, although the quantitative data from the two methods showed some differences.

  9. Far-IR and THz Absorption Spectra Studies of Metronidazole, Tinidazole and Ornidazole%甲硝唑、替硝唑和奥硝唑药品的远红外与太赫兹吸收光谱研究

    Institute of Scientific and Technical Information of China (English)

    张振伟; 左剑; 张存林

    2012-01-01

    Metronidazole, tinidazole and ornidazole are 5-nitro-imidazole medicines used particularly for anaerobic bacteria and protozoa infections. The present paper reports that terahertz time-domain spectroscopy (THz-TDS) and Fourier transform infra-red spectroscopy (Far-FTIR) were used to measure the fingerprint spectra of metronidazole, tinidazole and ornidazole in the frequency range of 0. 9-19. 5 THz under the room temperature. In addition, THz-TDS was also used to measure the absorption spectra of pure tinidazole and tinidazole tablets from different manufactures between 0. 2 and 2. 2 THz. In parallel with the experimental study, the cross correlation analysis was applied to compare the array of correlation coefficients between pure tinidazole and different tinidazole tablets. Results show that the method is rapid, simple and accurate to identify their effective chemical compositions and stability when the FTIR and THz spectra data combine with the array of correlation coefficient. Our research provides a visual approach to the standardization and modernization of the quality control in the production and sale of such drugs.%甲硝唑、替硝唑和奥硝唑为5'-硝基咪唑类化合物,常用于抗厌氧菌和抗滴虫治疗.运用太赫兹时域光谱技术(THz-TDS)和傅里叶变换红外光谱(FTIR)技术在室温环境中测量了三种药品在0.9~19.5THz波段的光谱特性,得到其指纹谱.另外,通过探测替硝唑参照品和不同厂家、不同批次替硝唑药片在太赫兹波段的光谱信息,结合相关系数法、阵列相关系数法等信息处理技术对光谱信号进行数据挖掘;最终建立了一种能够快速、有效、系统地鉴定替硝唑片活性成分和稳定性的分析方法.研究结果为此类药品生产和销售质量的规范化和现代化提供了可视化途径.

  10. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  11. The HI absorption 'Zoo'

    CERN Document Server

    Gereb, K; Morganti, R; Oosterloo, T A

    2014-01-01

    We present an analysis of the HI absorption in a sample of 101 flux-selected radio AGN (S_1.4 GHz > 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). HI absorption is detected in 32 galaxies, showing a broad variety of widths, shapes and kinematical properties. We characterize the HI spectra of the individual detections using the busy function (Westmeier et al. 2014). With the goal of identifying different morphological structures of HI, we study the kinematical and radio source properties of the detections as function of their width. Narrow lines (FWHM = 500 km/s). These detections are good candidates for being HI outflows. The detection rate of HI outflows is 5 percent in the total radio AGN sample. This fraction represents a lower limit, however it could suggests that, if outflows are a characteristic phenomenon of all radio sources, they would have a short depletion timescale compared to the lifetime of the AGN. Blueshifted and broad/asymmetric lines are more often present among young...

  12. Optical absorption spectra of tourmaline crystals from Altay,China

    Institute of Scientific and Technical Information of China (English)

    Xueliang Liu; Xiqi Feng; Manliang Fan; Shouguo Guo

    2011-01-01

    @@ Tourmaline is an important functional and gem material.The current study examines pink,green,and brownish-green tourmalines from Altay deposit.Based on X-ray fluorescence(XRF) quantitative analyses and ultraviolet-visible-near-infrared(UV-VIS-NIR) spectral analyses in combination with annealing experiments,the color center of tourmaline is found to be related to the d一d transitions of ions or the d-d transitions of exchange coupled ions.Annealing treatment affects the color improvement of tourmaline crystals.%Tourmaline is an important functional and gem material. The current study examines pink, green, and brownish-green tourmalines from Altay deposit. Based on X-ray fluorescence (XRF) quantitative analyses and ultrariolet-visible-near-infrared (UV-VIS-NIR.) spectral analyses in combination with annealing experiments, the color center of tourmaline is found to be related to the d - d transitions of ions or the d - d transitions of exchange coupled ions. Annealing treatment affects the color improvement of tourmaline crystals.

  13. Particle-in-a-Box Model of Exciton Absorption and Electroabsorption in Conjugated Polymers

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm

    2001-01-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces...... a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed....

  14. Phobos surface spectra mineralogical modeling

    Science.gov (United States)

    Pajola, M.; Lazzarin, M.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.; Pendleton, Y.; Bertini, I.; Magrin, S.; Carli, C.; La Forgia, F.; Barbieri, C.

    2014-04-01

    A mineralogical model composed of a mixture of Tagish Lake meteorite (TL) and Pyroxene Glass (PM80) was presented in [1] to explain the surface reflectance of Phobos from 0.25 to 4.0 μm. The positive results we obtained, when comparing the OSIRIS data [2] extended in wavelength to include the [3,4] spectra, forced us to perform a wider comparison between our TL-PM80 model and the CRISM and OMEGA Phobos spectra presented in [5]. Such spectra cover three different regions of interest (ROIs) situated in the Phobos sub-Mars hemisphere: the interior of the Stickney crater, its eastern rim, and its proximity terrain southeast of the Reldresal crater. We decided to vary the percentage mixture of the components of our model (80% TL, 20% PM80), between pure TL and pure PM80, by means of the radiative transfer code based on the [6] formulation of the slab approximation. Once this spectral range was derived, see Fig. 1, we attempted to compare it with the [5] spectra between 0.4 and 2.6 μm, i.e. below the thermal emitted radiation, to see if any spectral match was possible. We observed that CRISM scaled spectra above 1.10 μm fall within pure Tagish Lake composition and the [1] model. The CRISM data below 1.10 μm present more discrepancies with our models, in particular for the Stickney's rim spectrum. Nevertheless the TL and PM80 components seem to be good mineralogical candidates on Phobos. We performed the same analysis with the OMEGA data and, again, we found out that the Stickney's rim spectrum lies out of our model range, while the two remaining spectra still lie between pure TL and 80% TL - 20% PM80, but indicating that a different, more complicated mixture is expected in order to explain properly both the spectral trend and the possible absorption bands located above 2.0 μm. Within this analysis, we point out that a big fraction of TL material (modeled pure or present with a minimum percentage of 80% mixed together with 20% PM80) seems to explain Phobos spectral

  15. Experimental Investigation on Terahertz Spectra of Amphetamine Type Stimulants

    Institute of Scientific and Technical Information of China (English)

    SUN Jin-Hai; SHEN Jing-Ling; LIANG Lai-Shun; XU Xiao-Yu; LIU Hai-Bo; ZHANG Cun-Lin

    2005-01-01

    @@ The spectral absorption features of three amphetamine-type stimulants (ATS) belonging to illicit drugs have been studied with terahertz (THz) time-domain spectroscopy (THz-TDS) and the characteristic absorption spectra (fingerprint spectra) are obtained in the range from 0.2 to 2.5 THz. Fingerprint spectra of illicit drugs in terahertz band are bases to detect and to inspect nondestructively illicit drugs with terahertz technique. With fingerprint spectra of illicit drugs and strong penetrability for cloths, paper bags and leathered or plastic luggage terahertz technique would be better than other techniques in illicit drugs detection and inspection. Thus, this work would contribute to the building of corresponding fingerprint spectra database of illicit drugs and provide experimental bases for using of terahertz detection apparatus in drugs nondestructive detection and inspection in the future.

  16. Experimental Investigation on Terahertz Spectra of Amphetamine Type Stimulants

    Science.gov (United States)

    Sun, Jin-Hai; Shen, Jing-Ling; Liang, Lai-Shun; Xu, Xiao-Yu; Liu, Hai-Bo; Zhang, Cun-Lin

    2005-12-01

    The spectral absorption features of three amphetamine-type stimulants (ATS) belonging to illicit drugs have been studied with terahertz (THz) time-domain spectroscopy (THz-TDS) and the characteristic absorption spectra (fingerprint spectra) are obtained in the range from 0.2 to 2.5 THz. Fingerprint spectra of illicit drugs in terahertz band are bases to detect and to inspect nondestructively illicit drugs with terahertz technique. With fingerprint spectra of illicit drugs and strong penetrability for cloths, paper bags and leathered or plastic luggage terahertz technique would be better than other techniques in illicit drugs detection and inspection. Thus, this work would contribute to the building of corresponding fingerprint spectra database of illicit drugs and provide experimental bases for using of terahertz detection apparatus in drugs nondestructive detection and inspection in the future.

  17. The influence of laser pulse on the photoabsorption spectra of Li atom in strong external field

    Institute of Scientific and Technical Information of China (English)

    WANG; Dehua; LIN; Shenglu

    2006-01-01

    Using the time-dependent perturbation theory and the calculation formula of the single- and double-pulse absorption spectra of the atom in strong external fields, we calculate the single- and double-pulse absorption spectra of Li atom in strong magnetic field for different pulse widths. The results show that a pulse of some width can reduce the contribution of the short period closed orbits and eliminate the contribution of the long period orbits. Compared with the single-pulse absorption spectra, we found that for some phase differences, the double-pulse laser absorption spectra are strengthened; while for others, they are reduced. Therefore, we can use the pulse laser to control the oscillation of the absorption spectra and obtain the optimization object.

  18. Control of photodetachment spectra through laser dressing

    Science.gov (United States)

    Morrison, Nathan; Greene, Chris

    2013-05-01

    Photodetachment and photoionization spectra often display rich resonance structures. The properties of these spectra can be modified through dressing with intense laser fields, providing control over photon absorption and the emitted electron. We present a Floquet R-matrix method for calculating photodetachment cross sections in the presence of a dressing laser. The full wave functions in the Floquet formalism for bound and escaping electrons are found by solving the Schrödinger equation near the atomic core and applying analytic boundary conditions outside of the interaction region. These calculations are used to investigate the modification of existing resonances, such as modifying the shape, or q parameter, of Feshbach resonances. We also investigate the creation of new resonances in cases where high-lying bound states become autoionizing through the absorption of dressing laser photons. This work was supported by the DOE.

  19. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    R Venkatasubramanian

    2001-06-01

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.

  20. Atomic spectra in a helium bubble

    OpenAIRE

    Nakatsukasa, Takashi; Yabana, Kazuhiro; Bertsch, George F.

    2002-01-01

    Density functional theory (DFT) is applied to atomic spectra under perturbations of superfluid liquid helium. The atomic DFT of helium is used to obtain the distribution of helium atoms around the impurity atom, and the electronic DFT is applied to the excitations of the atom, averaging over the ensemble of helium configurations. The shift and broadening of the D1 and D2 absorption lines are quite well reproduced by theory, suggesting that the DFT may be useful for describing spectral perturb...

  1. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper;

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...

  2. 高压下ZnO的结构、弹性性质和吸收光谱的第一性原理研究%First-Principle Study on the Structural ,Elastic Properties and Absorption Spectra on ZnO under High Pressure

    Institute of Scientific and Technical Information of China (English)

    王清波; 郑广; 何开华; 陈琦丽; 喻力; 龙光芝; 曾中良

    2011-01-01

    运用基于密度泛函理论(DFT)的平面波赝势方法(PWP),结合局域密度近似(LDA)以及广义梯度近似(GGA),系统地研究了ZnO的纤锌矿结构(B4结构),NaCl结构(B1结构)和CsCl结构(B2结构)在不同压强下的几何结构、弹性性质和吸收光谱.详细研究了ZnO发生的两次相变(B4→B1及B1→B2相变),得到了不同近似下的相变压强,以及两次相变过程中其弹性常数随压强的变化,并分析了这种变化与相变的关系.发现在高压作用下,ZnO的吸收光谱发生蓝移.通过计算结果和实验结果的比较可以看出,LDA近似下的计算结果更加符合实验结果.%The structural, elastic properties and absorption spectra of ZnO in wurtzite (B4), NaCl (B1) and CsCl(B2) structures are studied by plane wave pseudo-potential (PWP) method. The method is based on the density functional theory (DFT) within the local-density approximation (LDA) and generalized gradient approximation (GGA) approaches. The calculation gives out the respective structural phase transition pressures for two transitions (B4→B1, B1→B2). We investigate the behavior of the elastic constants C as function of pressure and show the relation between the behavior and the phase transition. The blue shifts of absorption spectrum of ZnO under high pressure are found. Comparing the results between experiment and computation,we can find that the calculation by LDA is in better agreement with the experiment.

  3. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  4. Local structures and electronic band states of {alpha}-Fe{sub 2}O{sub 3} polycrystalline particles in the glazes of the HIZEN celadons produced in the Edo period of Japan, by means of X-ray absorption spectra (II)

    Energy Technology Data Exchange (ETDEWEB)

    Hidaka, M.; Kumara, L.S.R. [Department of Physics, Graduate School of Science, Kyushu University, Fukuoka (Japan)], e-mail: hidaka@phys.kyushu-u.ac.jp; Ohashi, K. [The Kyushu Ceramic Museum, Arita, Saga (Japan); Wijesundera, R.P. [Department of Physics, University of Kelaniya, Kelaniya (Sri Lanka); Sugihara, S. [Radioisotope Center, Kyushu University, Fukuoka (Japan); Momoshima, N.; Kubuki, S. [Department of Chemical and Biological Engineering, Ube National College of Technology, Yamaguchi (Japan); Sung, N.E. [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2011-04-15

    HIZEN celadon glazes produced in 1630's to 1790's (Edo period, Japan) have been investigated by means of X-ray absorption spectra (XAS) near a Fe-K edge by using synchrotron radiation and a Moessbauer spectrum. The XAS suggest that the local structure around Fe{sub 2}O{sub 3} fine powders is slightly different between the Izumiyama ceramics of mainly the Quartz-SiO{sub 2} and Ohkawachi ceramics of mainly the feldspar of (K,Na)Si{sub 3}O{sub 8} (Sanidine), and that the glazes of the HIZEN celadons include the Fe{sub 2}O{sub 3} fine powders in the glassy state, though the X-ray diffraction patterns of the glassy celadon glazes do not show any peaks of the Fe{sub 2}O{sub 3} structure. The Moessbauer spectrum suggests that the celadon glaze of Seiji (m) includes only Fe{sup 3+} ions, but not Fe{sup 2+} ions. This indicates the existence of Fe{sub 2}O{sub 3} in the celadon glaze. It is interpreted that the colored brightness of the HIZEN celadons is induced by the structural properties of the used raw celadon ceramics and the other transition-metal ions of Cr, Cu, Zn in the celadon glazes, but not by the chemical reaction from Fe{sub 2}O{sub 3} to Fe O under the deoxidising thermal treatment at higher temperature in a kiln. (author)

  5. The HI absorption "Zoo"

    Science.gov (United States)

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1) detections, which are associated with gas-rich mergers, we find three new cases of profiles with blueshifted broad wings (with FW20 ≳ 500 km s-1) in high radio power AGN. These detections are good candidates for being HI outflows. Together with the known cases of outflows already included in the sample (3C 293 and

  6. Quantifying self-absorption losses in luminescent solar concentrators

    NARCIS (Netherlands)

    Ten Kate, O.M.; Hooning, K.M.; Van der Kolk, E.

    2014-01-01

    Analytical equations quantifying self-absorption losses in circular luminescent solar concentrators (LSCs) are presented that can easily be solved numerically by commercial math software packages. With the quantum efficiency, the absorption and emission spectra of a luminescent material, the LSC dim

  7. Absorption Complex between Porphyrin and Phenothiazine in Reverse Micelles

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interaction between amphiphilic porphyrin and phenothiazine in AOT/isooctane/ water reverse micelle was investigated by UV-Vis spectra. A new absorption complex between the two species is formed in such circumstances, which is ascribed to the enrichment of the components by the reverse micelle. The fluorescence quenching of CHTTP by PTH becomes more efficient after the formation of the absorption complex.

  8. Optical absorption of charged excitons in semiconducting carbon nanotubes

    DEFF Research Database (Denmark)

    Rønnow, Troels Frimodt; Pedersen, Thomas Garm; Cornean, Horia

    2012-01-01

    In this article we examine the absorption coefficient of charged excitons in carbon nanotubes. We investigate the temperature and damping dependence of the absorption spectra. We show that the trion peak in the spectrum is asymmetric for temperatures greater than approximately 1 K whereas...

  9. Statistical method for predicting protein absorption peaks in terahertz region

    International Nuclear Information System (INIS)

    Terahertz vibrational spectroscopy has recently been demonstrated as a novel noninvasive technique for the characterization of biological molecules. But the interpretation of the experimentally measured terahertz absorption bands requires robust computational method. In this paper, we present a statistical method for predicting the absorption peak positions of a macromolecule in the terahertz region. The essence of this method is to calculate the absorption spectra of a biological molecule based on multiple short scale molecular dynamics trajectories instead of using a long time scale trajectory. The method was employed to calculate the absorption peak positions of the protein, thioredoxin from Escherichia coli (E.coli), in the range of 10-25 cm-1 to verify the reliability of this statistical method. The predicted absorption peak positions of thioredoxin show good correlation with measured results demonstrating that the proposed method is effective in terahertz absorption spectra modeling. Such approach can be applied to predict characteristic spectral features of biomolecules in the terahertz region. (authors)

  10. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  11. Spectra of stable sonoluminescence

    OpenAIRE

    Lewia, Stephen D.

    1992-01-01

    Approved for public release; distribution is unlimited The continuous emission of picosecond pulses of light has been observed to originate from a bubble trapped at the pressure antinode of a resonant sound field in water and in water/glycerin mixtures. The spectra of this light in several solutions has been measured with a scanning monochrometer/photomultiplier detector system. The spectra are broadband and show strong emission in the UV region. A comparison of this measurement to two ...

  12. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    Science.gov (United States)

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  13. Dispersion effects on infrared spectra in attenuated total reflection

    Science.gov (United States)

    Belali, Rabah; Vigoureux, Jean-Marie; Morvan, Joseph

    1995-12-01

    A potential problem with the attenuated total reflection that is used to measure infrared spectra is described. The problem is the possibility that the anomalous dispersion associated with an infrared absorption band may cause the experimental configuration to move from the attenuated total reflection regime to the specular reflection regime, with consequent distortion of the apparent absorption bands and consequent error in the interpretation of the bands if the problem is not recognized. Key infrared spectra, attenuated total reflection, specular reflection, polyethylene terephtalate. Copyright (c) 1995 Optical Society of America

  14. Microscopic Theory and Simulation of Quantum-Well Intersubband Absorption

    Science.gov (United States)

    Li, Jianzhong; Ning, C. Z.

    2004-01-01

    We study the linear intersubband absorption spectra of a 15 nm InAs quantum well using the intersubband semiconductor Bloch equations with a three-subband model and a constant dephasing rate. We demonstrate the evolution of intersubband absorption spectral line shape as a function of temperature and electron density. Through a detailed examination of various contributions, such as the phase space filling effects, the Coulomb many-body effects and the non-parabolicity effect, we illuminate the underlying physics that shapes the spectra. Keywords: Intersubband transition, linear absorption, semiconductor heterostructure, InAs quantum well

  15. Analysis of interference in attosecond transient absorption in adiabatic condition

    CERN Document Server

    Dong, Wenpu; Wang, Xiaowei; Zhao, Zengxiu

    2015-01-01

    We simulate the transient absorption of attosecond pulses of infrared laser-dressed atoms by considering a three-level system with the adiabatic approximation. We study the delay-dependent interference features in the transient absorption spectra of helium atoms from the perspective of the coherent interaction processes between the attosecond pulse and the quasi-harmonics, and find that many features of the interference fringes in the absorption spectra of the attosecond pulse can be attributed to the coherence phase difference. And the modulation signals of laser-induced sidebands of the dark state is found related to the dark state with population modulated by the dressing field.

  16. The Vibrational Spectra of Bactericide molecules: Terahertz Spectroscopy and Density Functional Theory Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xiaowei; Wang Qiang, E-mail: qiangwang@cjlu.edu.cn [Department of Quality and Safety Engineering, China Jiliang University, Hangzhou, 310018 (China)

    2011-02-01

    In the room temperature and nitrogen conditions, we presented well-resolved absorption spectra and indexes of refraction of bactericide molecules in the far infrared radiation (FIR) spectral region recorded by terahertz time-domain spectroscopy (THz-TDS). As illustrative examples we discussed the absorption spectra of captan and folpet in THz region. The absorption coefficient and index of refraction of them were obtained. Meanwhile, density functional theory (DFT) with software package Gaussian 03 using B3LYP theory was employed for optimization and vibration analysis. With the help of Gaussian View 3.09, the distinct absorption peaks of those molecules were assigned with reliable accuracy. They were caused by intermolecular hydrogen-bonding, molecular torsion or vibration modes, absorption of water molecules, etc. As the absorption spectra are highly sensitive to the overall structure and configuration of the molecules, the THz-TDS procedure can provide a direct fingerprint of the molecular structure or conformational state of a compound.

  17. Study of optical absorption, visible emission and NIR–vis luminescence spectra of Tm{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+} and Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} doped tellurite glasses

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, M., E-mail: seshumeruva@gmail.com [Institute of Physics, University of Campinas, UNICAMP, P.O. Box 6165, Campinas 13083-970 (Brazil); Barbosa, L.C.; Cordeiro, C.M.B.; Radha, M. [Institute of Physics, University of Campinas, UNICAMP, P.O. Box 6165, Campinas 13083-970 (Brazil); Sigoli, F.A. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, Campinas 13083-970 (Brazil); Ratnakaram, Y.C. [Department of Physics, Sri Venkateswara University, SVU, Tirupat 517502 (India)

    2015-10-15

    Tm{sup 3+}/Yb{sup 3+}, Ho{sup 3+}/Yb{sup 3+} co-doped and Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} triply doped TeO{sub 2}–Bi{sub 2}O{sub 3}–ZnO–Li{sub 2}O–Nb{sub 2}O{sub 5} (TBZLN) tellurite glasses were prepared by melt quenching method. Judd–Ofelt intensity parameters (Ω{sub λ}, λ=2, 4 and 6), radiative transition probabilities, branching ratios and radiative lifetimes of Tm{sup 3+}, Ho{sup 3+} ions in co-doped TBZLN glasses were calculated from the optical absorption spectra. Excitation, visible luminescence and decay lifetimes in visible region were also investigated. The stimulated emission and gain cross-sections for the Tm{sup 3+}:{sup 3}F{sub 4}→{sup 3}H{sub 6} (1700 nm) and Ho{sup 3+}:{sup 5}I{sub 7}→{sup 5}I{sub 8} (1956 nm) transitions in co-doped TBZLN glasses have been analyzed and compared with those of other reported glasses. Up-conversion luminescence was observed in TBZLN glasses under 980 nm laser excitation and energy transfer mechanisms have been discussed. Finally, CIE color co-ordinates were calculated and it is observed that the color co-ordinates fall in blue and green regions for Tm{sup 3+}/Yb{sup 3+} and Ho{sup 3+}/Yb{sup 3+} co-doped TBZLN glasses, respectively. A subsequent shift in color co-ordinates from green to greenish-yellow region has been observed with an increase in the concentration (0.1, 0.5 and 1.0 mol%) of Tm{sup 3+} ions in Tm{sup 3+}/Ho{sup 3+}/Yb{sup 3+} triply doped TBZLN glasses. - Highlights: • High degree of covalecy of RE–O bond in co-doped TBZLN glasses was observed. • Tm{sup 3+}:{sup 1}D{sub 2}→{sup 3}F{sub 4} and Ho{sup 3+}:{sup 5}F{sub 4}({sup 5}S{sub 2})→{sup 5}I{sub 8} transitions show high emission cross-section. • Visible and strong 793 nm emission was observed when pumped by 980 nm diode laser. • Triply doped glasses exhibits tunable emission intensity by increasing Tm{sup 3+} ions.

  18. Spectra and strains

    CERN Document Server

    Golyshev, V

    2008-01-01

    This is a blend of two informal reports on the activities of the seminar on Galois representations and mirror symmetry given at the Conference on classification problems and mirror duality at the Steklov Institute, in March 2006, and at the Seminar on Algebra, Geometry and Physics at MPI, in November 2007. We assess where we are on the issue of the spectra of Fano varieties, and state problems. We introduce higher dimensional irreducible analogues of dessins, the low ramified sheaves, and hypothesize that Fano spectra relate to their geometric conductors. We give a recipe to a physicist.

  19. Computer Processing Of Tunable-Diode-Laser Spectra

    Science.gov (United States)

    May, Randy D.

    1991-01-01

    Tunable-diode-laser spectrometer measuring transmission spectrum of gas operates under control of computer, which also processes measurement data. Measurements in three channels processed into spectra. Computer controls current supplied to tunable diode laser, stepping it through small increments of wavelength while processing spectral measurements at each step. Program includes library of routines for general manipulation and plotting of spectra, least-squares fitting of direct-transmission and harmonic-absorption spectra, and deconvolution for determination of laser linewidth and for removal of instrumental broadening of spectral lines.

  20. Correcting attenuated total reflection-fourier transform infrared spectra for water vapor and carbon dioxide

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Kohler, Achim; Adt, Isabelle;

    2006-01-01

    Fourier transform infrared (FT-IR) spectroscopy is a valuable technique for characterization of biological samples, providing a detailed fingerprint of the major chemical constituents. However, water vapor and CO(2) in the beam path often cause interferences in the spectra, which can hamper...... an absorption band from either water vapor or CO(2). From two calibration data sets, gas model spectra were estimated in each of the four spectral regions, and these model spectra were applied for correction of gas absorptions in two independent test sets (spectra of aqueous solutions and a yeast biofilm (C...

  1. Calculation of Vibrational Energy-Spectra of α-Helical Protein Molecules and Its Properties

    Institute of Scientific and Technical Information of China (English)

    PANG XiaoFeng; CHEN XiangRong

    2002-01-01

    The quantum vibrational energy-spectra of amide-Is in alpha-protein molecules are calculated by using the discretely nonlinear Schrodinger equation and physical parameters appropriate to the systems on the basis of theory of bio-energy transport. The numerical results for the energy-spectra are basically consistent with the experimental values obtained by the infrared absorption and Raman scattering and emission-spectra of infrared lights of person's hand-fingers. Utilizing the energy-spectra we explain the laser-Raman spectrum from metabolically active E. Coli. and give some features of the infrared absorption of the protein molecules.

  2. Molecular hydrogen absorption systems in SDSS

    CERN Document Server

    Balashev, S A; Ivanchik, A V; Varshalovich, D A; Petitjean, P; Noterdaeme, P

    2014-01-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS) II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Ly$\\alpha$ forest can effectively mimic H$_2$ absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte-Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H$_2$ absorption systems can be confidently identified. We find that H$_2$ absorption systems with column densities $\\log {\\rm N_{H_2}} > 19$ can be detected in only less than 3% of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H$_2$ absorption systems ($\\log {\\rm N_{H_2}} > 19$) in Damped Ly-$\\alpha$ (DLA) systems to be about 7%. We provide a sample of ...

  3. Atomic Spectra Database (ASD)

    Science.gov (United States)

    SRD 78 NIST Atomic Spectra Database (ASD) (Web, free access)   This database provides access and search capability for NIST critically evaluated data on atomic energy levels, wavelengths, and transition probabilities that are reasonably up-to-date. The NIST Atomic Spectroscopy Data Center has carried out these critical compilations.

  4. D-xylose absorption

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  5. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Y J Shiu; J M Zhang; M Hayashi; V Gulbinas; C M Yang; S H Lin

    2002-12-01

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited states of the unexcited subunit of allophycocyanin monomer decreases via an interaction with another excited subunit. For allophycocyanin trimer, we find that the fast dynamics results from the fast internal conversion and the first excited state is the only one electronic state which can trap the final population.

  6. X-ray Emission and Absorption Studies of Silicides in Relation to their Electronic Structure

    NARCIS (Netherlands)

    Weijs, P.J.W.; Wiech, G.; Zahorowski, W.; Speier, W.; Goedkoop, J.B.; Czyzyk, Marek; Acker, J.F. van; Leuken, E. van; Groot, R.A. de; Laan, G. van der; Sarma, D.D.; Kumar, L.; Buschow, K.H.J.; Fuggle, J.C.

    1990-01-01

    The valence bands and conduction bands of about 30 transition metal silicides (of which we concentrate on 4 here) have been investigated by measurements of Si X-ray emission bandsspectra, X-ray absorption spectra near the Si K (1s) edge, photoemission spectra, and Bremsstrahlung Isochromat spectra.

  7. Infrared Spectra of High Pressure Carbon Monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Evans, W J; Lipp, M J; Lorenzana, H E

    2001-09-21

    We report infrared (IR) spectroscopic measurements of carbon monoxide (CO) at high pressures. Although CO is one of the simplest heteronuclear diatomic molecules, it displays surprisingly complex behavior at high pressures and has been the subject of several studies [1-5]. IR spectroscopic studies of high pressures phases of CO provide data complementing results from previous studies and elucidating the nature of these phases. Though a well-known and widely utilized diagnostic of molecular systems, IR spectroscopy presents several experimental challenges to high pressure diamond anvil cell research. We present measurements of the IR absorption bands of CO at high pressures and experimentally illustrate the crucial importance of accurate normalization of IR spectra specially within regions of strong absorptions in diamond.

  8. OPTICAL SPECTRA OF LOW-DIMENSIONAL SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    Fu Y Chiragwandi Z; G(o..)thberg P; Willander M

    2003-01-01

    We have studied the optical spectra of low-dimensional semiconductor systems by calculating all possible optical transitions between electronic states. Optical absorption and emission have been obtained under different carrier population conditions and in different photon wavelengths. The line-shapes of the peaks in the optical spectrum are determined by the density of electronic states of the system, and the symmetries and intensities of these peaks can be improved by reducing the dimensionality of the system. Optical gain requires in general a population inversion, whereas for a quantum-dot system, there exists a threshold value of the population inversion.

  9. Far-infrared spectra of lanthanide complexes with 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Vibrational spectra of lanthanide oxines have been measured in the far-infrared region. In addition, the similar yttrium complex was investigated for further experimental evidence for the proposed band assignments. The most important metal-oxygen and metal-nitrogen bond vibrations have been attributed to absorptions between 390-350cm-1 and 210-170cm-1, respectively. (Author)

  10. Online spectral fit tool (OSFT) for analyzing reflectance spectra

    Science.gov (United States)

    Penttilä, A.; Kohout, T.; Muinonen, K.

    2015-10-01

    We present an algorithm and its implementation for fitting continuum and absorption bands to UV/VIS/NIR reflectance spectra. The implementation is done completely in JavaScript and HTML, and will run in any modern web browser without requiring external libraries to be installed.

  11. Simulation of two-dimensional infrared spectra by numerical integration of the schrodinger equation

    NARCIS (Netherlands)

    Jansen, Thornas la Cour; Knoester, Jasper; Simos, T; Maroulis, G

    2006-01-01

    A method is presented for simulating infrared absorption and two-dimensional infrared spectra including dynamical effects as motional narrowing, population transfer and reorientation. Interactions between the considered vibrations and the surrounding bath give rise to these effects. These interactio

  12. Calcium absorption and achlorhydria

    International Nuclear Information System (INIS)

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  13. Evidence for Partial Melting in Reflectance Spectra of 433 Eros

    Science.gov (United States)

    McFadden, L. A.; Goldman, Noah; Gaffey, M. J.; Izenberg, N. R.

    2005-01-01

    The NEAR Shoemaker spacecraft returned near-IR spectra of asteroid 433 Eros at spatial resolutions ranging from 2.5 to 100's km during its year-long orbital mission in 2000. Assuming modified Gaussian absorption bands represent the reflectance spectrum between 0.8-2.5 m we fit the average of all geometrically corrected spectra acquired by the near-IR spectrometer (NIS) with seven absorption bands. Interpretation of the absorption bands in terms of olivine and pyroxene minerals indicates that the surface of Eros contains olivine and two pyroxenes with compositions that are indicative of a partially melted assemblage. This partial melting must have occurred when the asteroid was part of a larger minor planet, prior to break up into its current elongated and irregular shape.

  14. Light absorption by organic carbon from wood combustion

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2010-02-01

    Full Text Available Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While black carbon (BC is highly absorbing, some organic carbon (OC also has significant absorption, especially at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to positive direct aerosol radiative forcing. Quantification of that absorption is necessary so that radiative-transfer models can evaluate the net radiative effect of OC.

    In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble OC contributes to light absorption at both ultraviolet and visible wavelengths. However, a larger portion of the absorption comes from OC that is extractable only by methanol. Absorption spectra of water-soluble OC are similar to literature reports. We compare spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating OC with higher absorption; changing wood temperature from a devolatilizing state of 210 °C to a near-flaming state of 360 °C causes about a factor of four increase in mass-normalized absorption at visible wavelengths. A clear-sky radiative transfer model suggests that, despite the absorption, both high-temperature and low-temperature OC result in negative top-of-atmosphere radiative forcing over a surface with an albedo of 0.19 and positive radiative forcing over bright surfaces. Unless absorption by real ambient aerosol is higher than that measured here, it probably affects global average clear-sky forcing very little, but could be important in energy balances over bright

  15. Double-Resonance Facilitated Decomposion of Emission Spectra

    Science.gov (United States)

    Kato, Ryota; Ishikawa, Haruki

    2016-06-01

    Emission spectra provide us with rich information about the excited-state processes such as proton-transfer, charge-transfer and so on. In the cases that more than one excited states are involved, emission spectra from different excited states sometimes overlap and a decomposition of the overlapped spectra is desired. One of the methods to perform a decomposition is a time-resolved fluorescence technique. It uses a difference in time evolutions of components involved. However, in the gas-phase, a concentration of the sample is frequently too small to carry out this method. On the other hand, double-resonance technique is a very powerful tool to discriminate or identify a common species in the spectra in the gas-phase. Thus, in the present study, we applied the double-resonance technique to resolve the overlapped emission spectra. When transient IR absorption spectra of the excited state are available, we can label the population of the certain species by the IR excitation with a proper selection of the IR wavenumbers. Thus, we can obtain the emission spectra of labeled species by subtracting the emission spectra with IR labeling from that without IR. In the present study, we chose the charge-transfer emission spectra of cyanophenyldisilane (CPDS) as a test system. One of us reported that two charge-transfer (CT) states are involved in the intramolecular charge-transfer (ICT) process of CPDS-water cluster and recorded the transient IR spectra. As expected, we have succeeded in resolving the CT emission spectra of CPDS-water cluster by the double resonance facilitated decomposion technique. In the present paper, we will report the details of the experimental scheme and the results of the decomposition of the emission spectra. H. Ishikawa, et al., Chem. Phys. Phys. Chem., 9, 117 (2007).

  16. Light absorption by organic carbon from wood combustion

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2009-09-01

    Full Text Available Carbonaceous aerosols affect the radiative balance of the Earth by absorbing and scattering light. While BC is highly absorbing, some organic compounds also have significant absorption, which is greater at near-ultraviolet and blue wavelengths. To the extent that OC absorbs visible light, it may be a non-negligible contributor to direct aerosol radiative forcing.

    In this work, we examine absorption by primary OC emitted from solid fuel pyrolysis. We provide absorption spectra of this material, which can be related to the imaginary refractive index. This material has polar character but is not fully water-soluble: more than 92% was extractable by methanol or acetone, compared with 73% for water and 52% for hexane. Water-soluble organic carbon contributed to light absorption at both ultraviolet and visible wavelengths. However, a larger portion came from organic carbon that is extractable only by methanol. The spectra of water-soluble organic carbon are similar to others in the literature. We compared spectra for material generated with different wood type, wood size and pyrolysis temperature. Higher wood temperature is the main factor creating organic aerosol with higher absorption, causing about a factor of four increase in mass-normalized absorption at visible wavelengths. A simple model suggests that, despite the absorption, both high-temperature and low-temperature carbon have negative climate forcing over a surface with average albedo.

  17. Spectral Absorption Properties of Atmospheric Aerosols

    Science.gov (United States)

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  18. Variability of calcium absorption

    International Nuclear Information System (INIS)

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  19. Absorption and fluorescence spectroscopy on a smartphone

    Science.gov (United States)

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  20. Deconvolution of Positrons' Lifetime spectra

    International Nuclear Information System (INIS)

    In this paper, we explain the iterative method previously develop for the deconvolution of Doppler broadening spectra using the mathematical optimization theory. Also, we start the adaptation and application of this method to the deconvolution of positrons' lifetime annihilation spectra

  1. Thermally detected optical absorption in sophisticated nitride structures

    Energy Technology Data Exchange (ETDEWEB)

    Vasson, A.; Leymarie, J. [LASMEA-UMR 6602 CNRS-UBP, 63177 Aubiere Cedex (France); Shubina, T.V. [Ioffe Physico-Technical Institute, RAS, St. Petersburg 194021 (Russian Federation)

    2005-02-01

    The thermally detected optical absorption (TDOA) is applied to elucidate peculiarities of absorption in nitride structures of unusual morphology like GaN nanocolumns or InN layers with various imperfections. A study of GaN structures permits us to establish position of an absorption edge in TDOA spectra. We demonstrate that the absorption edge is different in GaN regions of opposite polarities. In InN with metallic In inclusions, this technique enable separation of InN interband absorption and extinction related to the Mie resonances, if the latter are below the principal absorption edge. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Fluorescence action spectra of algae and bean leaves at room and at liquid nitrogen temperatures

    NARCIS (Netherlands)

    Goedheer, J.C.

    1965-01-01

    Fluorescence action spectra were determined, both at room temperature and at liquid nitrogen temperature, with various blue-green, red and green algae, and greening bean leaves. The action spectra of algae were established with samples of low light absorption as well as dense samples. Fluorescence

  3. Multi-excitonic effects on optical spectra of semiconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kouta; Asano, Kenichi; Ogawa, Tetsuo, E-mail: watanabe@acty.phys.sci.osaka-u.ac.j [Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2009-02-01

    We calculated the wavefunction and the binding energy of the biexciton in semiconducting carbon nanotubes and studied the spectral weights of the photoluminescence spectra and the biexciton contribution to the two-photon absorption spectra. The wavefunction and the binding energy are calculated by means of the the Lanczos method.

  4. Meteors and meteorites spectra

    Science.gov (United States)

    Koukal, J.; Srba, J.; Gorková, S.; Lenža, L.; Ferus, M.; Civiš, S.; Knížek, A.; Kubelík, P.; Kaiserová, T.; Váňa, P.

    2016-01-01

    The main goal of our meteor spectroscopy project is to better understand the physical and chemical properties of meteoroids. Astrometric and spectral observations of real meteors are obtained via spectroscopic CCD video systems. Processed meteor data are inserted to the EDMOND database (European viDeo MeteOr Network Database) together with spectral information. The fully analyzed atmospheric trajectory, orbit and also spectra of a Leonid meteor/meteoroid captured in November 2015 are presented as an example. At the same time, our target is the systematization of spectroscopic emission lines for the comparative analysis of meteor spectra. Meteoroid plasma was simulated in a laboratory by laser ablation of meteorites samples using an (ArF) excimer laser and the LIDB (Laser Induced Dielectric Breakdown) in a low pressure atmosphere and various gases. The induced plasma emissions were simultaneously observed with the Echelle Spectrograph and the same CCD video spectral camera as used for real meteor registration. Measurements and analysis results for few selected meteorite samples are presented and discussed.

  5. H-modulated microwave absorption and superconducting transition in YBCO and BSCCO powders in fields up to 10 KOe

    International Nuclear Information System (INIS)

    In this paper H-modulated non-resonant microwave absorption spectra (X-band) are given for YBCO and BSCCO powders, recorded in decreasing temperature down to 68 K at various constant fields in the range 20 Oe - KOe. The effect of the applied magnetic field on the spectra is discussed in the hypothesis of proportionality between the microwave absorption and the resistivity

  6. Infrared Transmission Spectra for Extrasolar Giant Planets

    CERN Document Server

    Tinetti, G; Vidal-Madjar, A; Ehrenreich, D; Etangs, A L; Yung, Y

    2006-01-01

    Among the hot Jupiters that transit their parent stars known to date, the two best candidates to be observed with transmission spectroscopy in the mid-infrared (MIR) are HD189733b and HD209458b, due to their combined characteristics of planetary density, orbital parameters and parent star distance and brightness. Here we simulate transmission spectra of these two planets during their primary eclipse in the MIR, and we present sensitivity studies of the spectra to the changes of atmospheric thermal properties, molecular abundances and C/O ratios. Our model predicts that the dominant species absorbing in the MIR on hot Jupiters are water vapor and carbon monoxide, and their relative abundances are determined by the C/O ratio. Since the temperature profile plays a secondary role in the transmission spectra of hot Jupiters compared to molecular abundances, future primary eclipse observations in the MIR of those objects might give an insight on EGP atmospheric chemistry. We find here that the absorption features c...

  7. Variability in Optical Spectra of epsilon Orionis

    CERN Document Server

    Thompson, Gregory B

    2013-01-01

    We present the results of a time-series analysis of 130 echelle spectra of epsilon Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Halpha (net) and He I 5876 were measured and radial velocities were obtained from the central absorption of He I 5876. Temporal variance spectra (TVS) revealed significant wind variability in both Halpha and He I 5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with time scales of 2-7 d. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Halpha and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the o...

  8. Vibrational spectra of berberine and their interpretation by means of DFT quantum-mechanical calculations

    CERN Document Server

    Bashmakova, N; Zhurakivsky, R; Hovorun, D; Yashchuk, V

    2011-01-01

    Experimental vibrational spectra (Raman and infrared absorption) of berberine are obtained at room temperature. The vibrational spectra of berberine are calculated by the DFT method at the B3LYP/6-311++G(d,p) level. Based on the correlation between experimental and calculated data, the vibrational spectrum is interpreted in the frequency range of 800-1700 cm-1 in detail. The experimental and calculated spectra of intramolecular vibrations are found to correlate closely

  9. Infrared spectra of olivine polymorphs - Alpha, beta phase and spinel

    Science.gov (United States)

    Jeanloz, R.

    1980-01-01

    The infrared absorption spectra of several olivines (alpha phase) and their corresponding beta phase (modified spinel) and spinel (gamma) high-pressure polymorphs are determined. Spectra were measured for ground and pressed samples of alpha and gamma A2SiO4, where A = Fe, Ni, Co; alpha and gamma Mg2GeO4; alpha Mg2SiO4; and beta Co2SiO4. The spectra are interpreted in terms of internal, tetrahedral and octagonal, and lattice vibration modes, and the spinel results are used to predict the spectrum of gamma Mg2SiO4. Analysis of spectra obtained from samples of gamma Mg2GeO4 heated to 730 and 1000 C provides evidence that partial inversion could occur in silicate spinels at elevated temperatures and pressures.

  10. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Science.gov (United States)

    Tyagi, A.; Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.; Mack, M.; Ghisla, S.

    2009-10-01

    The flavin dye 8-amino-8-demethyl- D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  11. Absorption and emission spectroscopic characterisation of 8-amino-riboflavin

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, A.; Zirak, P. [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Penzkofer, A., E-mail: alfons.penzkofer@physik.uni-regensburg.de [Institut II - Experimentelle und Angewandte Physik, Universitaet Regensburg, Universitaetsstrasse 31, D-93053 Regensburg (Germany); Mathes, T.; Hegemann, P. [Institut fuer Biologie/Experimentelle Biophysik, Humboldt Universitaet zu Berlin, Invalidenstrasse 42, D-10115 Berlin (Germany); Mack, M. [Institut fuer Technische Mikrobiologie, Hochschule Mannheim, Paul-Wittsack-Str. 10, D-68163 Mannheim (Germany); Ghisla, S. [Universitaet Konstanz, Fakultaet fuer Biologie, P.O. Box 5560-M644, D-78457 Konstanz (Germany)

    2009-10-16

    The flavin dye 8-amino-8-demethyl-D-riboflavin (AF) in the solvents water, DMSO, methanol, and chloroform/DMSO was studied by absorption and fluorescence spectroscopy. The first absorption band is red-shifted compared to riboflavin, and blue-shifted compared to roseoflavin (8-dimethylamino-8-demethyl-D-riboflavin). The fluorescence quantum yield of AF in the studied solvents varies between 20% and 50%. The fluorescence lifetimes were found to be in the 2-5 ns range. AF is well soluble in DMSO, weakly soluble in water and methanol, and practically insoluble in chloroform. The limited solubility causes AF aggregation, which was seen in differences between measured absorption spectra and fluorescence excitation spectra. Light scattering in the dye absorption region is discussed and approximate absorption cross-section spectra are determined from the combined measurement of transmission and fluorescence excitation spectra. The photo-stability of AF was studied by prolonged light exposure. The photo-degradation routes of AF are discussed.

  12. Multiple scattering approach to X-ray absorption spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In this paper we present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. We also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach.

  13. Broad Absorption Line Quasar catalogues with Supervised Neural Networks

    International Nuclear Information System (INIS)

    We have applied a Learning Vector Quantization (LVQ) algorithm to SDSS DR5 quasar spectra in order to create a large catalogue of broad absorption line quasars (BALQSOs). We first discuss the problems with BALQSO catalogues constructed using the conventional balnicity and/or absorption indices (BI and AI), and then describe the supervised LVQ network we have trained to recognise BALQSOs. The resulting BALQSO catalogue should be substantially more robust and complete than BI-or AI-based ones.

  14. Transient Intersubband Optical Absorption in Double Quantum Well Structure

    Institute of Scientific and Technical Information of China (English)

    WU Bin-He

    2005-01-01

    The microscopic equations of motion including many-body effects are derived to study the intersubband polarization in the double quantum well structure induced by an ultrafast pumping infrared light. Based on the selfconsistent field theory, the transient probe absorption coefficient is calculated. These calculations are beyond the previous steady-state assumption. Transient probe absorption spectra are calculated under different pumping intensity and various pump probe delay.

  15. Energy spectra and optical transitions in germanene quantum dots

    International Nuclear Information System (INIS)

    The band gap of buckled graphene-like materials, such as silicene and germanene, depends on external perpendicular electric field. Then a specially design profile of electric field can produce trapping potential for electrons. We study theoretically the energy spectrum and optical transitions for such designed quantum dots (QDs) in graphene-like materials. The energy spectra depend on the size of the QD and applied electric field in the region of the QD. The number of the states in the QD increases with increasing the size of the dot and the energies of the states have almost linear dependence on the applied electric field with the slope which increases with increasing the dot size. The optical properties of the QDs are characterized by two types of absorption spectra: interband (optical transitions between the states of the valence and conduction bands) and intraband (transitions between the states of conduction/valence band). The interband absorption spectra have triple-peak structure with peak separation around 10 meV, while intraband absorption spectra, which depend on the number of electrons in the dot, have double-peak structure. (paper)

  16. Energy spectra and optical transitions in germanene quantum dots.

    Science.gov (United States)

    Herath, Thakshila M; Apalkov, Vadym

    2016-04-27

    The band gap of buckled graphene-like materials, such as silicene and germanene, depends on external perpendicular electric field. Then a specially design profile of electric field can produce trapping potential for electrons. We study theoretically the energy spectrum and optical transitions for such designed quantum dots (QDs) in graphene-like materials. The energy spectra depend on the size of the QD and applied electric field in the region of the QD. The number of the states in the QD increases with increasing the size of the dot and the energies of the states have almost linear dependence on the applied electric field with the slope which increases with increasing the dot size. The optical properties of the QDs are characterized by two types of absorption spectra: interband (optical transitions between the states of the valence and conduction bands) and intraband (transitions between the states of conduction/valence band). The interband absorption spectra have triple-peak structure with peak separation around 10 meV, while intraband absorption spectra, which depend on the number of electrons in the dot, have double-peak structure. PMID:27008912

  17. Nutrition and magnesium absorption.

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium abs

  18. Methane Absorption Coefficients in the 750-940 nm region derived from Intracavity Laser Absorption Spectral Measurements

    Science.gov (United States)

    O'Brien, J. J.

    2002-09-01

    The absorption spectrum of methane has been recorded in the visible to near-IR region using the intracavity laser spectroscopy technique. Spectra are recorded at high spectral resolution for narrow overlapping intervals in the region for room and 77 K temperature methane samples. After spectra are deconvolved for the instrument function, absorption coefficients are derived. These will be presented (750-940 nm for room temperature methane; 850-920 nm for 77 K methane) and compared with results reported by other workers. Future work in this area also will be indicated. Support from NASA's Planetary Atmospheres Program (NAG5-6091 and a Major Equipment Grant) is gratefully acknowledged.

  19. Sequencing BPS Spectra

    CERN Document Server

    Gukov, Sergei; Saberi, Ingmar; Stosic, Marko; Sulkowski, Piotr

    2015-01-01

    This paper provides both a detailed study of color-dependence of link homologies, as realized in physics as certain spaces of BPS states, and a broad study of the behavior of BPS states in general. We consider how the spectrum of BPS states varies as continuous parameters of a theory are perturbed. This question can be posed in a wide variety of physical contexts, and we answer it by proposing that the relationship between unperturbed and perturbed BPS spectra is described by a spectral sequence. These general considerations unify previous applications of spectral sequence techniques to physics, and explain from a physical standpoint the appearance of many spectral sequences relating various link homology theories to one another. We also study structural properties of colored HOMFLY homology for links and evaluate Poincar\\'e polynomials in numerous examples. Among these structural properties is a novel "sliding" property, which can be explained by using (refined) modular $S$-matrix. This leads to the identifi...

  20. Microstructure and optical absorption of Au-MgF2 nanoparticle cermet films

    Institute of Scientific and Technical Information of China (English)

    Sun Zhao-Qi; Cai Qi; Song Xue-Ping

    2006-01-01

    The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied.The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm.Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm.With increasing Au content,absorption peak intensity increases,profile narrows and location redshifts.Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.

  1. Absorption spectrum of Gafchromic EBT2 film with angular rotation

    CERN Document Server

    Park, Soah; Hwang, Taejin; Yoon, Jai-Woong; Han, Taejin; Kim, Haeyoung; Lee, Me-Yeon; Kim, KyoungJu; Bae, Hoonsik; Kang, Sei-Kwon

    2015-01-01

    It is important to study absorption spectrum in film dosimetry because the spectral absorbance of the film relates to the film's total absorption dose. We investigated the absorption spectra of Gafchromic EBT2 film with various rotational angles in a visible wavelength band. The film was irradiated with 6 MV photon beams and a total dose of 300 cGy. Absorption spectra were taken under different rotational angles after 24 h after irradiation and we fitted the spectra using Lorentzian functions. There were two dominant absorption peaks at approximately 586 nm (green) and 634 nm (red). The measured spectrum was decomposed 542 nm, 558 nm, 578 nm, 586 nm, 626 nm, 634 nm, and 641 nm. The maximum total area of the red band absorption spectrum was at 45{\\deg}(225{\\deg}) and the minimum at 90{\\deg}(270{\\deg}). As the angle of rotation changed, the intensity and integrated area of the blue and green peaks also changed with 180{\\deg} period, with minima at 90{\\deg} and 270{\\deg}, and maxima at 0{\\deg} and 180{\\deg}, alt...

  2. Optical and UV Spectra of the Remnant of SN 1885 (S And) in M31

    CERN Document Server

    Fesen, Robert A; Hoeflich, Peter A; Hamilton, Andrew J

    2016-01-01

    We present optical and ultraviolet spectra of SN 1885 (S And), visible in absorption against the bulge of the Andromeda galaxy (M31), using the Hubble Space Telescope's STIS spectrograph to probe the three dimensional arrangement of the supernova debris. Spectra covering 2900-5700 A taken using six 0.2"slit positions in two orientations show broad Ca II absorption with blue and red radial velocities out to at least 11,500 km/s, consistent with HST Ca II images of S And. Enhanced Ca II absorption is seen between 2000-5000 km/s suggestive of a Ca II-rich shell. The spectra also show strong, asymmetric Ca I 4227 A absorption extending out to +12,400 km/s, along with weak Fe I 3720 A absorption in a shell with velocities between 2000 and 9000 km/s. Ultraviolet spectra obtained revealed weak broad absorption shortward of 3000 A consistent with model predictions. The STIS spectra, together with previous HST images, show a layered structure with a well defined Ca-rich outer edge indicative of a delayed detonation ph...

  3. Searching for Naphthalene Cation Absorption in the Interstellar Medium

    Science.gov (United States)

    Searles, Justin M.; Destree, Joshua D.; Snow, Theodore P.; Salama, Farid; York, Donald G.; Dahlstrom, Julie

    2011-05-01

    Interstellar naphthalene cations (C10H+ 8) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C10H+ 8 is not a DIB carrier in typical reddened sight lines.

  4. SEARCHING FOR NAPHTHALENE CATION ABSORPTION IN THE INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Interstellar naphthalene cations (C10H+8) have been proposed by a study to be the carriers of a small number of diffuse interstellar bands (DIBs). Using an archive of high signal-to-noise spectra obtained at the Apache Point Observatory, we used two methods to test the hypothesis. Both methods failed to detect significant absorption at lab wavelengths of interstellar spectra with laboratory spectra. We thereby conclude that C10H+8 is not a DIB carrier in typical reddened sight lines.

  5. Far-Infrared Absorption of PbSe Nanorods

    KAUST Repository

    Hyun, Byung-Ryool

    2011-07-13

    Measurements of the far-infrared absorption spectra of PbSe nanocrystals and nanorods are presented. As the aspect ratio of the nanorods increases, the Fröhlich sphere resonance splits into two peaks. We analyze this splitting with a classical electrostatic model, which is based on the dielectric function of bulk PbSe but without any free-carrier contribution. Good agreement between the measured and calculated spectra indicates that resonances in the local field factors underlie the measured spectra. © 2011 American Chemical Society.

  6. Stratospheric measurements of continuous absorption near 2400 cm^-1

    OpenAIRE

    Rinsland, Curtis P.; Smith, Mary Ann H.; Russell, James M.; Park, Jae H.; Farmer, Crofton B.

    1981-01-01

    Solar occultation spectra obtained with a balloon-borne interferometer have been used to study continuous absorption by N2 and CO2 near 2400 cm^-1 in the lower stratosphere. Synthetic continuum transmittances, calculated from published coefficients for far-wing absorption by CO2 lines and for pressure-induced absorption by the fundamental band of N2, are in fair agreement with the observed stratospheric values. The continuum close to the ν3 R-branch band head of CO2 is sensitive to the CO2 fa...

  7. Effect of Atmospheric Interfering Absorption on Measurement of BTX by DOAS

    Institute of Scientific and Technical Information of China (English)

    Fu-min Peng; Pin-hua Xie; Hai-yang Li; Ying-hua Zhang; Jun-de Wang; Wen-qing Liu

    2008-01-01

    It was reported on the elimination of interfering absorption of BTX. the absorption of O2 includes different absorption bands, which change differently when the partial pressure of oxygen is varied. These cause the nonlinear absorption of O2 and the observed band shape to vary with the column density of O2. The absorption ratios of molecular absorption in each of the Herzberg bands and dimer absorptions, as well as the contribution to the correction error of molecular absorption, are studied based on the characteristic of these absorption bands. The optimized way to eliminate the interfering absorption is obtained in the end and the effectiveness of using interpolation proposed by Volkamer et al. to remove 02 absorption is proved again. As to O3 and SO2, the effect of the thermal effect of characteristic spectra on the elimination error of their absorption is studied. Solutions to these problems are discussed and demonstrated together with methods to optimize the interpolation of spectra. As a sample application, differential optical absorption spectroscopy (DOAS) measurements of BTX are carried out. Results show a low detection limit and the good correlation with point instruments are achieved. All these prove the feasibility of using spectral interpolation to improve the accuracy of DOAS measurements of aromatic hydrocarbons for practical purposes.

  8. STIS Spectra of the Remnant of SN 1885 in M31

    Science.gov (United States)

    Weil, Kathryn; Fesen, Robert A.; Hoeflich, Peter; Hamilton, Andrew James S.

    2016-01-01

    We present Hubble Space Telescope (HST) ultraviolet and optical spectra of the remnant of Supernova 1885 (S And) taken with the Space Telescope Imaging Spectrograph (STIS). S And is a probable Type Ia supernova that is seen in absorption against the bulge of the Andromeda galaxy, M31. The STIS optical spectra, covering 2900-5700 Å, were taken using six 0.2‧‧ wide slit positions through the remnant in two orientations providing insight to the three dimensional structure of S And. The spectra show broad Ca II H & K absorption extending out to at least 11,500 km/s consistent with previous HST images of S And in Ca II. There is noticeable enhancement of Ca II absorption between expansion velocities of 2,000 and 5,000 km/s suggestive of a Ca II-rich shell. The spectra also show strong asymmetric Ca I 4227 Å absorption extending out to 12,400 km/s along with weak Fe I 3720 Å absorption confined to a shell between 2,000 and 9,000 km/s on both the near and far sides of the remnant. These STIS spectra exhibit features similar to the spectrum taken with the Faint Object Spectrograph (FOS) on HST in 1996, with the notable differences in the width of Fe I 3720 Å absorption as well as weaker and more asymmetric Ca I 4227 Å absorption. STIS NUV-MAMA observations, covering 1570-3180 Å, taken in one orientation. show broad absorption shortward of 3000 Å consistent with model predicted spectra. These spectral observations, together with previous images, indicate a less than 10% departure from spherical symmetry in Ca-rich ejecta.

  9. Empirical line lists and absorption cross sections for methane at high temperature

    CERN Document Server

    Hargreaves, Robert J; Bailey, Jeremy; Dulick, Michael

    2015-01-01

    Hot methane is found in many "cool" sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.

  10. Non-Gaussian Spectra

    CERN Document Server

    Ferreira, P G; Ferreira, Pedro G.; Magueijo, Joao

    1997-01-01

    Gaussian cosmic microwave background skies are fully specified by the power spectrum. The conventional method of characterizing non-Gaussian skies is to evaluate higher order moments, the n-point functions and their Fourier transforms. We argue that this method is inefficient, due to the redundancy of information existing in the complete set of moments. In this paper we propose a set of new statistics or non-Gaussian spectra to be extracted out of the angular distribution of the Fourier transform of the temperature anisotropies in the small field limit. These statistics complement the power spectrum and act as localization, shape, and connectedness statistics. They quantify generic non-Gaussian structure, and may be used in more general image processing tasks. We concentrate on a subset of these statistics and argue that while they carry no information in Gaussian theories they may be the best arena for making predictions in some non-Gaussian theories. As examples of applications we consider superposed Gaussi...

  11. Infrared absorption of human breast tissues in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chenglin [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Physics Department of Yancheng Teachers' College, Yancheng 224002 (China); Zhang Yuan [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Yan Xiaohui [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China); Zhang Xinyi [Department of Physics, Surface Physics Laboratory (National Key laboratory), Synchrotron Radiation Research Center, Fudan University, Shanghai 200433 (China) and Shanghai Research Center of Acupuncture and Meridian, Pudong, Shanghai 201203 (China)]. E-mail: xy-zhang@fudan.edu.cn; Li Chengxiang [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 (China); Yang Wentao [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China); Shi Daren [Cancer Hospital, Medical Center, Fudan University, Shanghai 200032 (China)

    2006-07-15

    The spectral characteristics of human breast tissues in normal status and during different cancerous stages have been investigated by synchrotron radiation based Fourier transform infrared (SR-FTIR) absorption spectroscopy. Thanks to the excellent synchrotron radiation infrared (IR) source, higher resolving power is achieved in SR-FTIR absorption spectra than in conventional IR absorption measurements. Obvious variations in IR absorption spectrum of breast tissues were found as they change from healthy to diseased, or say in progression to cancer. On the other hand, some specific absorption peaks were found in breast cancer tissues by SR-FTIR spectroscopic methods. These spectral characteristics of breast tissue may help us in early diagnosis of breast cancer.

  12. On the carriers of the 3.4-micrometer absorption and emission bands, and their evolution

    CERN Document Server

    Papoular, Renaud

    2014-01-01

    Based on the results of chemical analysis and simulation of kerogens and immature coals, a large number of chemical structures carrying the 3.4-mum feature were studied by means of computer simulation codes. Further selection criteria were the integrated strength of the absorption lines in the aliphatic stretchings wavelength band, weak IR activity in the aromatic stretching band and absence of notable activity outside the astronomical UIBs (Unidentified Infrared Bands). Most of the structures that were retained can be classed as branched, short and oxygen-bridged CH_{2} chains, and naphtenic chains. Combinations of their absorption spectra deliver spectra comparable to those observed in the sky. Absorption spectra were derived from Normal Mode Analysis. Emission spectra of the same structures were computed by monitoring their overall dipole moment as they vibrate freely in vacuum after excitation. These spectra were then combined in suitable proportions, together with those of aromatic structures, so as to s...

  13. Titan solar occultation observations reveal transit spectra of a hazy world

    CERN Document Server

    Robinson, Tyler D; Marley, Mark S; Fortney, Jonathan J

    2014-01-01

    High altitude clouds and hazes are integral to understanding exoplanet observations, and are proposed to explain observed featureless transit spectra. However, it is difficult to make inferences from these data because of the need to disentangle effects of gas absorption from haze extinction. Here, we turn to the quintessential hazy world -- Titan -- to clarify how high altitude hazes influence transit spectra. We use solar occultation observations of Titan's atmosphere from the Visual and Infrared Mapping Spectrometer (VIMS) aboard NASA's Cassini spacecraft to generate transit spectra. Data span 0.88-5 microns at a resolution of 12-18 nm, with uncertainties typically smaller than 1%. Our approach exploits symmetry between occultations and transits, producing transit radius spectra that inherently include the effects of haze multiple scattering, refraction, and gas absorption. We use a simple model of haze extinction to explore how Titan's haze affects its transit spectrum. Our spectra show strong methane abs...

  14. Revisiting Absorptive Capacity

    DEFF Research Database (Denmark)

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...

  15. Electronic Properties of Random Polymers Modelling Optical Spectra of Melanins

    CERN Document Server

    Bochenek, K; Bochenek, Kinga; Gudowska-Nowak, Ewa

    2003-01-01

    Melanins are a group of complex pigments of biological origin, widely spread in all species from fungi to man. Among diverse types of melanins, the human melanins, eumelanins,are brown or black nitrogen-containing pigments, mostly known for their photoprotective properties in human skin. We have undertaken theoretical studies aimed to understand absorption spectra of eumelanins and their chemical precursors. The structure of the biopigment is poorly defined, although it is believed to be composed of cross-linked heteropolymers based on indolequinones. As a basic model of the eumelanin structure, we have chosen pentamers containing hydroquinones (HQ) and/or 5,6-indolequinones (IQ) and/or semiquinones (SQ) often listed as structural melanin monomers. The eumelanin oligomers have been constructed as random compositions of basic monomers and opitimized for the energy of bonding. Absorption spectra of model assemblies have been calculated within the semiempirical intermediate neglect of differential overlap (INDO)...

  16. UV-vis Absorption and PL Properties of Self-Assembled Silicon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng-Hua; LIU Han-Mao; XIONG Yuan-Qin; XU Wei-Jian; TANG Yuan-Hong

    2007-01-01

    Silicon nanotubes (SiNTs) are novel one-dimensional nanomaterials, which have potential applications in nanophotoelectric devices, sensors and field-emission devices. The self-assembled silicon nanotubes have clear structures without metal catalysts. The structures are confirmed by TEM and HRTEM, and the UV-vis absorption spectra with an absorption peak near 685nm and PL spectra with widened strong emission near 436 nm are measured by UV-vis spectrometer and spectrofluorophotometer.

  17. An X-ray absorption spectroelectrochemical cell for radioactive solutions

    International Nuclear Information System (INIS)

    A spectroelectrochemical cell was designed and constructed for measurement of X-ray absorption spectra under electrochemical control of the redox potential of actinide-containing solutions. A first inactive test demonstrated the feasibility of an Ag anode as a non-gassing auxiliary electrode in chloride solutions. (orig.)

  18. Absorption by Isolated Ferric Heme Nitrosyl Cations In Vacuo

    DEFF Research Database (Denmark)

    Wyer, Jean; Nielsen, Steen Brøndsted

    2012-01-01

    Keywords:biophysics;gas-phase spectroscopy;heme proteins;mass spectrometry;nitric oxide Almost innocent: In photobiophysical studies of ferric heme nitrosyl complexes, the absorption spectra of six-coordinate complexes with NO and Met or Cys are similar to that of the five-coordinate complex ion Fe...

  19. Emission and absorption cross section of thulium doped silica fibers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe; Povlsen, Jørn Hedegaard

    2006-01-01

    A thorough investigation of the emission and absorption spectra of the (F-3(4),H-3(6)) band in thulium doped silica fibers has been performed. All the basic parameters of thulium in silica have been extracted with the purpose of further analysis in laser and amplifier simulations. The experimental...

  20. Optical Spectra of Hemoglobin Taken from Alcohol Dependent Humans

    OpenAIRE

    Dudok K.; Dudok T.; Vlokh I.; Vlokh R.

    2005-01-01

    Optical spectra of CNMetHb and CNMetHb-Coomassi G-250, taken from the blood of humans with alcohol dependence, are studied in the spectral range of 450–750nm. The shifts in the spectral absorption maxima of CNMetHb-Coomassi G-250 complexes are observed for the diseased persons with alcohol dependence. The obtained results show that the hemoglobin structure of alcohol dependent humans is changed.

  1. Seven-effect absorption refrigeration

    Science.gov (United States)

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  2. The Taser Induced Fluorescence Spectra And Decay Lifetime Of NI2+ Doped Chrysoberyl

    Science.gov (United States)

    Hanting, Ji; Genwang, Wen; Jun, Oian; Zhende, Chen; Wenbin, Gao; Songhao, Lui

    1985-12-01

    This paper reports the experimental results on the fluorescence spectra and decay lifetime of 3T2---3A2 vibronic transition of NI2+ : BeAl204 with LIFM. The center wavelength of fluorescence spectra is 1.33u , the bandwidth (FWHM) is 0.14u (1.26 - 1.40u), and the center red-shift of fluorescence spectra in relative to absorption spectra is 0.225u at room temperature (300k). The radiation lifetime is 3T2 band is 198 us.

  3. Non-Voigt Lyalpha Absorption Line Profiles.

    Science.gov (United States)

    Outram; Carswell; Theuns

    2000-02-01

    Recent numerical simulations have lead to a paradigm shift in our understanding of the intergalactic medium and the loss of a physical justification for Voigt profile fitting of the Lyalpha forest. Many individual lines seen in simulated spectra have significant departures from the Voigt profile, yet could be well fitted by a blend of two or more such lines. We discuss the expected effect on the line profiles due to ongoing gravitational structure formation and Hubble expansion. We develop a method to detect departures from Voigt profiles of the absorption lines in a statistical way and apply this method to simulated Lyalpha forest spectra, confirming that the profiles seen do statistically differ from Voigt profiles. PMID:10622758

  4. Modelling absorption and photoluminescence of TPD

    Energy Technology Data Exchange (ETDEWEB)

    Vragovic, Igor [Dpto. de Fisica Aplicada and Inst. Universitario de Materiales de Alicante, Universidad de Alicante, E-03080 Alicante (Spain)], E-mail: igor.vragovic@ua.es; Calzado, Eva M.; Diaz Garcia, Maria A.; Himcinschi, C. [Max-Planck-Institut fuer Mikrostrukturphysik, D-06120 Halle (Germany); Gisslen, L.; Scholz, R. [Walter Schottky Institut, Technische Universitaet Muenchen, D-85748 Garching (Germany)

    2008-05-15

    We analyse the optical spectra of N,N{sup '}-diphenyl-N,N{sup '}-bis(3-methyl-phenyl)-(1,1{sup '}-biphenyl)-4,4{sup '}-diamine (TPD) doped polystyrene films. The aim of the present paper is to give a microscopic interpretation of the significant Stokes shift between absorption and photoluminescence, which makes this material suitable for stimulated emission. The optimized geometric structures and energies of a neutral TPD monomer in ground and excited states are obtained by ab initio calculations using Hartree-Fock and density functional theory. The results indicate that the second distinct peak observed in absorption may arise either from a group of higher electronic transitions of the monomer or from the lowest optical transitions of a TPD dimer.

  5. Thermo-dynamical contours of electronic-vibrational spectra simulated using the statistical quantum-mechanical methods

    DEFF Research Database (Denmark)

    Pomogaev, Vladimir; Pomogaeva, Anna; Avramov, Pavel;

    2011-01-01

    Three polycyclic organic molecules in various solvents focused on thermo-dynamical aspects were theoretically investigated using the recently developed statistical quantum mechanical/classical molecular dynamics method for simulating electronic-vibrational spectra. The absorption bands of estradi...

  6. Absorption spectroscopy of laser excited europium vapour

    International Nuclear Information System (INIS)

    Absorption spectra of europium vapour irradiated by intense, monochromatic resonance radiation at the wavelengths of the three principal resonance lines, 4f76s2, 8S(J=7/2)→4f76s6p, y 8P(J=5/2, 7/2 and 9/2) at 466.2, 462.7 and 459.4 nm respectively, have been photographed at high resolution. Pulsed resonance radiation was obtained from a tunable, narrow-band dye laser pumped by a nitrogen laser: a broad-band dye laser pumped by the same nitrogen laser provided background radiation. Our spectra covered the ranges 380-400 nm, and 410-450 nm, each one showing transitions from a single resonance level to upper levels in the region of either the 4f76s, 7S or the 4f76s, 9S ionization limit of EuII. In the shorter wavelength range the spectra consisted of weak autoionized series converging towards the 7S limit. In the longer wavelength range the three spectra were surprisingly dissimilar. The majority of the upper levels could be arranged into five highly-perturbed series, one corresponding to each of the J values 3/2, 5/2, 7/2, 9/2 and 11/2. These series arose from excitation of the 6p electron to high lying d-orbitals. The absorption transitions to the series members are only prominent in regions where the series are strongly perturbed, indicating that most of the line strength is derived from the perturbing levels. Possible origins for the perturbing levels are discussed. Little evidence was found for a series arising from excitation of the 6p electron to high lying s-orbitals. (author)

  7. Influence of Composition of Sm2O3-Containing Rare Earth Glass on Its Absorption Spectrum

    Institute of Scientific and Technical Information of China (English)

    Zhang Qitu; Wang Tingwei; Meng Xianfeng; Shan Xiaobing; Xu Zhongzi

    2005-01-01

    Borosilicate glass with high rare earth content was fabricated by traditional method. The influence of glass compositions and rare earth content on absorption spectra was examined and discussed. With increasing Sm2O3 content, the intensity of characteristic absorption peak is increased and the absorption peak is broadened. With increasing of the ratios of SiO2/B2O3 and Al2O3/SiO2, the broadening degree of absorption peak is increased. The experimental results provide basis for making special optical glasses which have the characteristics of high absorption for special wavelength laser and high transparence for visible light.

  8. KOALA: a program for the processing and decomposition of transient spectra.

    Science.gov (United States)

    Grubb, Michael P; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2014-06-01

    Extracting meaningful kinetic traces from time-resolved absorption spectra is a non-trivial task, particularly for solution phase spectra where solvent interactions can substantially broaden and shift the transition frequencies. Typically, each spectrum is composed of signal from a number of molecular species (e.g., excited states, intermediate complexes, product species) with overlapping spectral features. Additionally, the profiles of these spectral features may evolve in time (i.e., signal nonlinearity), further complicating the decomposition process. Here, we present a new program for decomposing mixed transient spectra into their individual component spectra and extracting the corresponding kinetic traces: KOALA (Kinetics Observed After Light Absorption). The software combines spectral target analysis with brute-force linear least squares fitting, which is computationally efficient because of the small nonlinear parameter space of most spectral features. Within, we demonstrate the application of KOALA to two sets of experimental transient absorption spectra with multiple mixed spectral components. Although designed for decomposing solution-phase transient absorption data, KOALA may in principle be applied to any time-evolving spectra with multiple components.

  9. KOALA: A program for the processing and decomposition of transient spectra

    Science.gov (United States)

    Grubb, Michael P.; Orr-Ewing, Andrew J.; Ashfold, Michael N. R.

    2014-06-01

    Extracting meaningful kinetic traces from time-resolved absorption spectra is a non-trivial task, particularly for solution phase spectra where solvent interactions can substantially broaden and shift the transition frequencies. Typically, each spectrum is composed of signal from a number of molecular species (e.g., excited states, intermediate complexes, product species) with overlapping spectral features. Additionally, the profiles of these spectral features may evolve in time (i.e., signal nonlinearity), further complicating the decomposition process. Here, we present a new program for decomposing mixed transient spectra into their individual component spectra and extracting the corresponding kinetic traces: KOALA (Kinetics Observed After Light Absorption). The software combines spectral target analysis with brute-force linear least squares fitting, which is computationally efficient because of the small nonlinear parameter space of most spectral features. Within, we demonstrate the application of KOALA to two sets of experimental transient absorption spectra with multiple mixed spectral components. Although designed for decomposing solution-phase transient absorption data, KOALA may in principle be applied to any time-evolving spectra with multiple components.

  10. Energetics, structures, vibrational frequencies, vibrational absorption, vibrational circular dichroism and Raman intensities of Leu-enkephalin

    DEFF Research Database (Denmark)

    Jalkanen, Karl J.

    2003-01-01

    , similar to the characteristic features in electronic circular dichroism spectra with respect to those in the UV-vis electronic absorption spectra. Finally, we have also attempted to stabilize the zwitterionic species by treating the aqueous environment by using a continuum solvent approach, the Onsager...

  11. Central cooling: absorptive chillers

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  12. Measuring changes in the fundamental constants with redshifted radio absorption lines

    NARCIS (Netherlands)

    Curran, SJ; Kanekar, N; Darling, JK

    2004-01-01

    Strong evidence has recently emerged for a variation in the fine structure constant, alpha equivalent to e(2)/hc, over the history of the Universe. This was concluded from a detailed study of the relative positions of redshifted optical quasar absorption spectra. However, radio absorption lines at h

  13. Percutaneous absorption from soil.

    Science.gov (United States)

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  14. Solvent effect on two-photon absorption and fluorescence of rhodamine dyes

    OpenAIRE

    Nag, Amit; Goswami, Debabrata

    2009-01-01

    For a series of rhodamine dyes, two-photon absorption (TPA) and two-photon fluorescence (TPF) have been performed in different solvents. Solvent-dependent TPA spectra of these dyes were measured with open aperture z-scan method and compared to their respective single-photon spectra at equivalent energies. In the TPA spectra, relative peak intensities and positions are highly solvent dependent, which could be a result of vibronic couplings that depend on solvent environment. Measured TPA cross...

  15. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L; Broer, R; Broer-Braam, H.B.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the obse

  16. Pileup correction of microdosimetric spectra

    CERN Document Server

    Langen, K M; Lennox, A J; Kroc, T K; De Luca, P M

    2002-01-01

    Microdosimetric spectra were measured at the Fermilab neutron therapy facility using low pressure proportional counters operated in pulse mode. The neutron beam has a very low duty cycle (<0.1%) and consequently a high instantaneous dose rate which causes distortions of the microdosimetric spectra due to pulse pileup. The determination of undistorted spectra at this facility necessitated (i) the modified operation of the proton accelerator to reduce the instantaneous dose rate and (ii) the establishment of a computational procedure to correct the measured spectra for remaining pileup distortions. In support of the latter effort, two different pileup simulation algorithms using analytical and Monte-Carlo-based approaches were developed. While the analytical algorithm allows a detailed analysis of pileup processes it only treats two-pulse and three-pulse pileup and its validity is hence restricted. A Monte-Carlo-based pileup algorithm was developed that inherently treats all degrees of pileup. This algorithm...

  17. Limits on heavy element abundances in QSO Ly α absorption systems

    International Nuclear Information System (INIS)

    Intermediate-resolution spectra of the QSOs MCS402, Q0347 -383, Q0420 - 388, and Q2204 - 408 have been combined to yield average spectra of Lyα absorption systems with improved signal-to-noise ratios. Searches for absorption lines of a number of heavy elements were carried out with no positive detections. Limits on the heavy element ions' column densities have been determined which are in broad agreement with previous studies. The further usefulness of intermediate-resolution spectra for setting heavy element abundance limits in Lyα systems is considered. (author)

  18. Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap

    Institute of Scientific and Technical Information of China (English)

    Yan Shu-Bin; Liu Tao; Geng Tao; Zhang Tian-Cai; Peng Kun-Chi; Wang Jun-Min

    2004-01-01

    Absorption spectra of cold caesium atoms confined in a magneto-optical trap are measured around D2 line at 852nm with a weak probe beam. Absorption reduction dip due to electromagnetically induced transparency (EIT)effect induced by the cooling/trapping field in a V-type three-level system and a gain peak near the cycling transition are clearly observed. Several mechanisms mixed with EIT effect in a normal V-type three-level system are briefly discussed. A simple theoretical analysis based on a dressed-state model is presented for interpretation of the absorption spectra.

  19. Chemical Absorption Materials

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  20. Absorption driven focus shift

    Science.gov (United States)

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.