WorldWideScience

Sample records for absorption spectra obtained

  1. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  2. Yb:Lu{sub 2}O{sub 3} hydrothermally-grown single-crystal and ceramic absorption spectra obtained between 298 and 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Cheryl A. [Snake Creek Lasers LLC, 26741 State Route 267, Friendsville, PA 18818 (United States); Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634-0973 (United States); Brown, David C., E-mail: dbrown@snakecreeklasers.com [Snake Creek Lasers LLC, 26741 State Route 267, Friendsville, PA 18818 (United States); Sanjeewa, Liurukara D.; McMillen, Colin D.; Kolis, Joseph W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies, Clemson University, Clemson, SC 29634-0973 (United States)

    2016-06-15

    The hydrothermal growth, doping, and low temperature spectral characterization of Yb doped Lu{sub 2}O{sub 3} was investigated. The absorption of the lutetia-based sesquioxide laser material Yb:Lu{sub 2}O{sub 3} at temperatures of 80, 150, 200, 250, and 298 K, in the wavelength range of 850–1100 nm are reported. Data for both single crystal and ceramic Yb:Lu{sub 2}O{sub 3} were obtained. The resulting absorption cross-section data will enable the further evaluation of Yb:Lu{sub 2}O{sub 3} as a very promising high power cryogenic laser material.

  3. Absorption Spectra of Gold Nanoparticle Suspensions

    Science.gov (United States)

    Anan'eva, M. V.; Nurmukhametov, D. R.; Zverev, A. S.; Nelyubina, N. V.; Zvekov, A. A.; Russakov, D. M.; Kalenskii, A. V.; Eremenko, A. N.

    2018-02-01

    Three gold nanoparticle suspensions are obtained, and mean radii in distributions - (6.1 ± 0.2), (11.9 ± 0.3), and (17.3 ± 0.7) nm - are determined by the transmission electron microscopy method. The optical absorption spectra of suspensions are obtained and studied. Calculation of spectral dependences of the absorption index of suspensions at values of the gold complex refractive index taken from the literature showed a significant deviation of experimental and calculated data in the region of 450-800 nm. Spectral dependences of the absorption of suspensions are simulated within the framework of the Mie-Drude theory taking into account the interband absorption in the form of an additional term in the imaginary part of the dielectric permittivity of the Gaussian type. It is shown that to quantify the spectral dependences in the region of the plasmon absorption band of nanoparticles, correction of the parameters of the interband absorption is necessary in addition to the increase of the relaxation parameter of the Drude theory. Spectral dependences of the dielectric permittivity of gold in nanodimensional state are refined from the solution of the inverse problem. The results of the present work are important for predicting the special features of operation of photonic devices and optical detonators based on gold nanoparticles.

  4. Electronic absorption spectra of antiviral aminophenol derivatives

    Science.gov (United States)

    Belkov, M. V.; Ksendzova, G. A.; Raichyonok, T. F.; Skornyakov, I. V.; Sorokin, V. L.; Tolstorozhev, G. B.; Shadyro, O. I.

    2011-03-01

    Electronic absorption spectra of aminophenol derivatives in solutions have been studied. A general property of the absorption spectra of these compounds, the dependence of the maximum of a long-wavelength absorption band on the solvent polarity, is revealed. As a rule, the absorption band maximum of compounds possessing pharmacological properties shows a greater shift to short wavelength with an increase in the medium polarity than that of inactive compounds. Absorption measurements of solutions of aminophenol derivatives can be used for a tentative estimation of their antiviral activity.

  5. Optical absorption spectra of Ag-11 isomers

    DEFF Research Database (Denmark)

    Martinez, Jose Ignacio; Fernandez, E. M.

    2009-01-01

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  6. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  7. Uncertainty analysis for absorption and first-derivative EPR spectra

    Science.gov (United States)

    Tseitlin, Mark; Eaton, Sandra S.; Eaton, Gareth R.

    2015-01-01

    Electron paramagnetic resonance (EPR) experimental techniques produce absorption or first-derivative spectra. Uncertainty analysis provides the basis for comparison of spectra obtained by different methods. In this study it was used to derive analytical equations to relate uncertainties for integrated intensity and line widths obtained from absorption or first-derivative spectra to the signal-to-noise ratio (SNR), with the assumption of white noise. Predicted uncertainties for integrated intensities and line widths are in good agreement with Monte Carlo calculations for Lorentzian and Gaussian lineshapes. Conservative low-pass filtering changes the noise spectrum, which can be modeled in the Monte Carlo simulations. When noise is close to white, the analytical equations provide useful estimates of uncertainties. For example, for a Lorentzian line with white noise, the uncertainty in the number of spins obtained from the first-derivative spectrum is 2.6 times greater than from the absorption spectrum at the same SNR. Uncertainties in line widths obtained from absorption and first-derivative spectra are similar. The impact of integration or differentiation on SNR and on uncertainties in fitting parameters was analyzed. Although integration of the first-derivative spectrum improves the apparent smoothness of the spectrum, it also changes the frequency distribution of the noise. If the lineshape of the signal is known, the integrated intensity can be determined more accurately by fitting the first-derivative spectrum than by first integrating and then fitting the absorption spectrum. Uncertainties in integrated intensities and line widths are less when the parameters are determined from the original data than from spectra that have been either integrated or differentiated. PMID:25774102

  8. Molecular geometry in the ultraviolet absorption spectra

    International Nuclear Information System (INIS)

    Albuquerque, S.F. de; Monteiro, L.S.; Adamis, L.M.B.; Baltar, M.C.P.; Silva, R.M. da

    1977-01-01

    The ultraviolet absorption spectra may be sensibly affected by steric effects. These effects can cause a lot of difficulties and unexpected changes in spectrum. The most general source of such difficulties is steric inhibition of resonance. In addition to this, ultraviolet epectra may be markedly changed by steric factors which change the positions of dipoles in the molecule with respect to each other and by the interaction of nonconjugated chromophores suitably located in space. We have studied in detail each of these effects presenting a lot of usual and importants examples in Organic Chemistry. Others relevants subjects were not considerated in this present work [pt

  9. Experimental methodology for obtaining sound absorption coefficients

    Directory of Open Access Journals (Sweden)

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  10. Electron spectra obtained by photon bombadment

    International Nuclear Information System (INIS)

    Tran Minh Duc

    1981-01-01

    The physical factors modifying the kinetic energy of electrons emitted from a surface by photon irradiation are discussed, mamely: photoemission excitation mechanism and Auger emission, effects of the neutral initial state, of chemical displacements, of ionized final state, of relaxation energy. Spectra structure, spin multiplets energy loss peaks are also explained [fr

  11. An Inverse Modeling Approach to Estimating Phytoplankton Pigment Concentrations from Phytoplankton Absorption Spectra

    Science.gov (United States)

    Moisan, John R.; Moisan, Tiffany A. H.; Linkswiler, Matthew A.

    2011-01-01

    Phytoplankton absorption spectra and High-Performance Liquid Chromatography (HPLC) pigment observations from the Eastern U.S. and global observations from NASA's SeaBASS archive are used in a linear inverse calculation to extract pigment-specific absorption spectra. Using these pigment-specific absorption spectra to reconstruct the phytoplankton absorption spectra results in high correlations at all visible wavelengths (r(sup 2) from 0.83 to 0.98), and linear regressions (slopes ranging from 0.8 to 1.1). Higher correlations (r(sup 2) from 0.75 to 1.00) are obtained in the visible portion of the spectra when the total phytoplankton absorption spectra are unpackaged by multiplying the entire spectra by a factor that sets the total absorption at 675 nm to that expected from absorption spectra reconstruction using measured pigment concentrations and laboratory-derived pigment-specific absorption spectra. The derived pigment-specific absorption spectra were further used with the total phytoplankton absorption spectra in a second linear inverse calculation to estimate the various phytoplankton HPLC pigments. A comparison between the estimated and measured pigment concentrations for the 18 pigment fields showed good correlations (r(sup 2) greater than 0.5) for 7 pigments and very good correlations (r(sup 2) greater than 0.7) for chlorophyll a and fucoxanthin. Higher correlations result when the analysis is carried out at more local geographic scales. The ability to estimate phytoplankton pigments using pigment-specific absorption spectra is critical for using hyperspectral inverse models to retrieve phytoplankton pigment concentrations and other Inherent Optical Properties (IOPs) from passive remote sensing observations.

  12. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  13. The Effect of Phonon Relaxation Process on Absorption Spectra ...

    African Journals Online (AJOL)

    In this work we study the effect of phonon relaxation process on the absorption spectra using the Green's function technique. The Green's function technique which is widely used in many particle problems is used to solve the Kubo formula which describes the optical absorption process. Finally the configurational diagram is ...

  14. Infrared absorption spectra of selenate compounds of indium (3)

    International Nuclear Information System (INIS)

    Kharitonov, Yu.Ya.; Kadoshnikova, N.V.; Tananaev, I.V.

    1979-01-01

    Obtained and discussed are infrared absorption spectra (400-4000 cm -1 ) of the following indium selenates: In 2 (SeO 4 ) 3 x5H 2 O, In 2 (SeO 4 ) 3 x9H 2 O, NaIn(SeO 4 ) 2 x6H 2 O, NaIn(SeO 4 ) 2 xH 2 O, MIn(SeO 4 ) 2 x4H 2 O (M=NH 4 , K, Rb), CsIn(SeO 4 ) 2 x2H 2 O, Na 3 In(SeO 4 ) 3 x7H 2 O, MIn(SeO 4 ) 2 (M=NH 4 , Na, K, Rb, Cs), M 2 InOH(SeO 4 ) 2 xyH 2 O (M=NH 4 , Na, K, Rb) and K 2 InOD(SeO 4 ) 2 xyD 2 O

  15. Electronic and oscillation absorption spectra of blood plamsa at surgical diseases of thyroid gland

    Science.gov (United States)

    Guminetskiy, S. G.; Motrich, A. V.; Poliansky, I. Y.; Hyrla, Ya. V.

    2012-01-01

    The results of investigating the absorption spectra of blood plasma in the visible and infrared parts of spectra obtained using the techniques of spherical photometer and spectrophotometric complex "Specord IR75" are presented. The possibility of using these spectra for diagnoses the cases of diffuse toxic goiter and nodular goiter and control of treatment process in postsurgical period in the cases of thyroid gland surgery is estimated.

  16. Infrared absorption spectra of nanosized silica with organic additives

    Directory of Open Access Journals (Sweden)

    Мaria О. Savchenko

    2014-12-01

    Full Text Available The prospects of using of silica nanoparticles modified with urea-formaldehyde polymers which is obtained by sulfuric acid sol-gel technology are shown. The aim is a detailed research on the infrared absorption spectra of nanodispersed silica modified with urea-formaldehyde polymers with identification of the absorption bands of the spectrum. The method of infrared spectroscopy is used to research spectral characteristics of nanosized silica, urea-formaldehyde polymer and nanodispersed silica modified with urea-formaldehyde polymers in different ratio. It is found that interaction of initial ingredients occurs at the stage of phase formation in solutions in colloidal silica products containing urea-formaldehyde polymers. Organic components are localized on the surface of the globules and in the interglobular space. This result of such interaction is the physical and structural transformation of globular surfaces of silica and new chemical compounds formation. This allows to give to final product a variety of properties required for practical use in many industries.

  17. Theoretical study on absorption and emission spectra of adenine analogues.

    Science.gov (United States)

    Liu, Hongxia; Song, Qixia; Yang, Yan; Li, Yan; Wang, Haijun

    2014-04-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we use theoretical calculations to investigate the structural and optical properties of four adenine analogues (termed as A1, A2, A3, and A4), and also consider the effects of aqueous solution and base pairing. The results show that the fluorescent adenine analogues can pair with thymine to form stable H-bonded WC base pairs. The excited geometries of both adenine analogues and WC base pairs are similar to the ground geometries. The absorption and emission maxima of adenine analogues are greatly red shifted compared with nature adenine, the oscillator strengths of A1 and A2 are stronger than A3 and A4 in both absorption and emission spectra. The calculated low-energy peaks in the absorption spectra are in good agreement with the experimental data. In general, the aqueous solution and base pairing can slightly red-shift both the absorption and emission maxima, and can increase the oscillator strengths of absorption spectra, but significantly decrease the oscillator strengths of A3 in emission spectra.

  18. Sub-millimetre wave absorption spectra of artificial RNA molecules

    CERN Document Server

    Globus, T; Woolard, D; Gelmont, B

    2003-01-01

    We demonstrate submillimetre-wave Fourier transform spectroscopy as a novel technique for biological molecule characterization. Transmission measurements are reported at frequencies 10-25 cm sup - sup 1 for single- and double-stranded RNA molecules of known base-pair sequences: homopolymers poly[A], poly[U], poly[C] and poly[G], and double-stranded homopolymers poly[A]-poly[U] and poly[C]-poly[G]. Multiple resonances are observed (i.e. in the microwave through terahertz frequency regime). We also present a computational method to predict the low-frequency absorption spectra of short artificial DNA and RNA. Theoretical conformational analysis of molecules was utilized to derive the low-frequency vibrational modes. Oscillator strengths were calculated for all the vibrational modes in order to evaluate their weight in the absorption spectrum of a molecule. Normal modes and absorption spectra of the double-stranded RNA chain poly[C]-poly[G] were calculated. The absorption spectra extracted from the experiment wer...

  19. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    Science.gov (United States)

    Park, J. H.; Carli, B.; Barbis, A.

    1989-01-01

    Emission features of HBr isotopes have been identified in high-resolution FIR emission spectra obtained with a balloon-borne Fourier-transform spectrometer in the spring of 1979 at 32 deg N latitude. When six single-scan spectra at a zenith angle of 93.2 deg were averaged, two features of HBr isotopes at 50.054 and 50.069/cm were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 x 10 to the -11th, which is assumed to be constant above 28 km, with an uncertainty of 35 percent. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus HBr could be the major stratospheric bromine species.

  20. Infrared absorption spectra of various doping states in cuprate superconductors

    International Nuclear Information System (INIS)

    Yonemitsu, K.; Bishop, A.R.; Lorenzana, J.

    1992-01-01

    Doping states in a two-dimensional three-band extended Peierls-Hubbard model was investigated within inhomogeneous Hartree-Fock and random phase approximation. They are very sensitive to small changes of interaction parameters and their distinct vibrational and optical absorption spectra can be used to identify different doping states. For electronic parameters relevant to cuprate superconductors, as intersite electron-phonon interaction strength increases, the doping state changes from a Zhang-Rice state to a covalent molecular singlet state accompanied by local quenching of the Cu magnetic moment and large local lattice distortion in an otherwise undistorted antiferromagnetic background. In a region where both intersite electron-phonon interaction and on-site electron-electron repulsion are large, we obtain new stable global phases including a bond-order-wave state and a mixed state of spin-Peierls bonds and antiferromagnetic Cu spins, as well as many metastable states. Doping in the bond-order-wave region induces separation of spin and charge. 9 refs

  1. Gigahertz-peaked Spectra Pulsars and Thermal Absorption Model

    Energy Technology Data Exchange (ETDEWEB)

    Kijak, J.; Basu, R.; Lewandowski, W.; Rożko, K. [Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Z. Szafrana 2, PL-65-516 Zielona Góra (Poland); Dembska, M., E-mail: jkijak@astro.ia.uz.zgora.pl [DLR Institute of Space Systems, Robert-Hooke-Str. 7 D-28359 Bremen (Germany)

    2017-05-10

    We present the results of our radio interferometric observations of pulsars at 325 and 610 MHz using the Giant Metrewave Radio Telescope. We used the imaging method to estimate the flux densities of several pulsars at these radio frequencies. The analysis of the shapes of the pulsar spectra allowed us to identify five new gigahertz-peaked spectra (GPS) pulsars. Using the hypothesis that the spectral turnovers are caused by thermal free–free absorption in the interstellar medium, we modeled the spectra of all known objects of this kind. Using the model, we were able to put some observational constraints on the physical parameters of the absorbing matter, which allows us to distinguish between the possible sources of absorption. We also discuss the possible effects of the existence of GPS pulsars on future search surveys, showing that the optimal frequency range for finding such objects would be from a few GHz (for regular GPS sources) to possibly 10 GHz for pulsars and radio magnetars exhibiting very strong absorption.

  2. Photothermal Determination of Absorption and Scattering Spectra of Silver Nanoparticles.

    Science.gov (United States)

    Marcano Olaizola, Aristides

    2018-02-01

    This work reports on photothermal lens spectra of silver nanoparticles of different dimensions in the spectral region of 370-730 nm performed using an arc-lamp-based photothermal spectrophotometer. We show that the photothermal and extinction cross-section spectra of the samples are similar for nanoparticles of reduced dimensions where scattering effects are small. The results differ substantially for nanoparticles of a diameter larger than 30 nm for which scattering becomes relevant. We demonstrate that the photothermal spectrum corresponds to the absorption component of the particle's extinction. Photothermal spectra show a clear picture of the plasmonic peaks of the nanoparticle even in the presence of high scattering. By subtracting the photothermal component from the total extinction, we extract the scattering cross-section spectra of the nanoparticles. The technique allows determination of the absorption and scattering components of the extinction providing a better understanding of the particle's optical properties. The results agree well with the Mie approximation, which is valid for a single spherical nanoparticle. We discuss and demonstrate the application of the method to characterize particles of arbitrary shape and dimensions.

  3. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    International Nuclear Information System (INIS)

    Fedrigo, S.; Harbich, W.; Buttet, J.

    1993-01-01

    The optical absorption of small mass selected Ag n -clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  4. Electronic absorption spectra and geometry of organic molecules an application of molecular orbital theory

    CERN Document Server

    Suzuki, Hiroshi

    1967-01-01

    Electronic Absorption Spectra and Geometry of Organic Molecules: An Application of Molecular Orbital Theory focuses on electronic absorption spectra of organic compounds and molecules. The book begins with the discussions on molecular spectra, electronic absorption spectra of organic compounds, and practical measures of absorption intensity. The text also focuses on molecular orbital theory and group theory. Molecular state functions; fundamental postulates of quantum theory; representation of symmetry groups; and symmetry operations and symmetry groups are described. The book also dis

  5. A method for obtaining performance correlations of absorption machines

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Pedro Juan [E.T.S. Ingenieros Industriales, Universidad Politecnica de Cartagena, Campus Muralla del Mar, 30202, Cartagena (Spain); Pinazo, Jose Manuel [E.T.S. Ingenieros Industriales, Universidad Politecnica de Valencia, Cmno. de Vera s/n, 46022, Valencia (Spain)

    2003-04-01

    Several authors have developed models to be implemented in building thermal simulation programs for modelling absorption machines. Some anarchy has been detected related to the order of these models and the variables they consist of. In this paper, specific statistical tools were employed to establish regression models for the COP and the capacity of a water-lithium bromide single-effect absorption chiller. Experimental designs were used to obtain the data (values of COP and capacity) utilized to estimate the model parameters. The hypotheses initially adopted in the formulation of the models were modified at the sight of the results of subjecting the values obtained for the response variables to a variance analysis. (authors)

  6. Interstellar absorption lines in high-resolution IUE spectra of cataclysmic variables

    International Nuclear Information System (INIS)

    Mauche, C.W.; Raymond, J.C.; Cordova, F.A.

    1988-01-01

    High-resolution ultraviolet spectra of five cataclysmic variables obtained with the IUE are used to investigate the character of the interstellar medium in the vicinity of the sun. These spectra reveal narrow absorption features of neutral and singly ionized interstellar species, and, in SS Cyg, narrow velocity-shifted absorption features of C IV, Si IV, and Si III. Using the column densities implied by the absorption features of the neutral and singly ionized species, values for the depletion of Si, Mg, Mn, and Fe from the gas phase of the interstellar medium in the vicinity of the sun are obtained. These hydrogen column densities are of particular importance in constraining the soft X-ray luminosity of cataclysmic variables because of the severe attenuation of the soft X-ray flux of cataclysmic variables by photoelectric absorption in the interstellar medium. In addition, using the column densities implied by the absorption features of C IV, Si IV, and Si III in the spectrum of SS Cyg, the existence of an expanding H II region of interstellar gas photoionized by he EUV and soft X-ray flux of this cataclysmic variable are inferred. 78 references

  7. A Parallel Iterative Method for Computing Molecular Absorption Spectra.

    Science.gov (United States)

    Koval, Peter; Foerster, Dietrich; Coulaud, Olivier

    2010-09-14

    We describe a fast parallel iterative method for computing molecular absorption spectra within TDDFT linear response and using the LCAO method. We use a local basis of "dominant products" to parametrize the space of orbital products that occur in the LCAO approach. In this basis, the dynamic polarizability is computed iteratively within an appropriate Krylov subspace. The iterative procedure uses a matrix-free GMRES method to determine the (interacting) density response. The resulting code is about 1 order of magnitude faster than our previous full-matrix method. This acceleration makes the speed of our TDDFT code comparable with codes based on Casida's equation. The implementation of our method uses hybrid MPI and OpenMP parallelization in which load balancing and memory access are optimized. To validate our approach and to establish benchmarks, we compute spectra of large molecules on various types of parallel machines. The methods developed here are fairly general, and we believe they will find useful applications in molecular physics/chemistry, even for problems that are beyond TDDFT, such as organic semiconductors, particularly in photovoltaics.

  8. Substitution effects on the absorption spectra of nitrophenolate isomers.

    Science.gov (United States)

    Wanko, Marius; Houmøller, Jørgen; Støchkel, Kristian; Suhr Kirketerp, Maj-Britt; Petersen, Michael Åxman; Nielsen, Mogens Brøndsted; Nielsen, Steen Brøndsted; Rubio, Angel

    2012-10-05

    Charge-transfer excitations highly depend on the electronic coupling between the donor and acceptor groups. Nitrophenolates are simple examples of charge-transfer systems where the degree of coupling differs between ortho, meta and para isomers. Here we report the absorption spectra of the isolated anions in vacuo to avoid the complications of solvent effects. Gas-phase action spectroscopy was done with two different setups, an electrostatic ion storage ring and an accelerator mass spectrometer. The results are interpreted on the basis of CC2 quantum chemical calculations. We identified absorption maxima at 393, 532, and 399 nm for the para, meta, and ortho isomer, respectively, with the charge-transfer transition into the lowest excited singlet state. In the meta isomer, this π-π* transition is strongly redshifted and its oscillator strength reduced, which is related to the pronounced charge-transfer character, as a consequence of the topology of the conjugated π-system. Each isomer's different charge distribution in the ground state leads to a very different solvent shift, which in acetonitrile is bathochromic for the para and ortho, but hypsochromic for the meta isomer.

  9. Terahertz absorption spectra of commonly used antimalarial drugs

    Science.gov (United States)

    Bawuah, Prince; Zeitler, J. Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2018-03-01

    Terahertz (THz) spectra from the pure forms [i.e. the active pharmaceutical ingredients (APIs)] of four commonly used antimalarial drugs are reported. The well-defined spectral fingerprints obtained for these APIs in the spectral range of 0.1 THz-3 THz show the sensitivity of the THz time-domain spectroscopic (THz-TDS) method for screening antimalarial drugs. For identification purpose, two commercially available antimalarial tablets were detected. Clear spectral fingerprints of the APIs in the antimalarial tablets were obtained even amidst the several types of excipients present in the tablets. This observation further proves the high sensitivity of the THz techniques in tracking the presence or absence of API in a pharmaceutical tablet. We envisage that the spectral data obtained for these drugs can contribute to a spectroscopic database in the far infrared spectral region and hence support the modelling of THz sensing to differentiate between genuine and counterfeit antimalarial tablets.

  10. Determining CDOM Absorption Spectra in Diverse Aquatic Environments Using a Multiple Pathlength, Liquid Core Waveguide System

    Science.gov (United States)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2001-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, aCDOM, and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values and showed a linear response across all four pathlengths. Values of aCDOM measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of aCDOM for MPLCW measurements was 0.002 - 231.5 m-1. At low CDOM concentrations spectrophotometric aCDOM were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples.

  11. TDDFT prediction of UV-vis absorption and emission spectra of tocopherols in different media.

    Science.gov (United States)

    Bakhouche, Kahina; Dhaouadi, Zoubeida; Lahmar, Souad; Hammoutène, Dalila

    2015-06-01

    We use the TDDFT/PBE0/6-31+G* method to determine the electronic absorption and emission energies, in different media, of the four forms of tocopherol, which differ by the number and the position of methyl groups on the chromanol. Geometries of the ground state S0 and the first singlet excited state S1 were optimized in the gas phase, and various solvents. The solvent effect is evaluated using an implicit solvation model (IEF-PCM). Our results are compared to the experimental ones obtained for the vitamin E content in several vegetable oils. For all forms of tocopherols, the HOMO-LUMO first vertical excitation is a π-π* transition. Gas phase and non-polar solvents (benzene and toluene) give higher absorption wavelengths than polar solvents (acetone, ethanol, methanol, DMSO, and water); this can be interpreted by a coplanarity between the O-H group and the chroman, allowing a better electronic resonance of the oxygen lone pairs and the aromatic ring, and therefore giving an important absorption wavelength, whereas the polar solvents give high emission wavelengths comparatively to gas phase and non-polar solvents. Fluorescence spectra permit the determination, the separation, and the identification of the four forms of tocopherols by a large difference in emission wavelength values. Graphical Abstract Scheme from process methodological to obtain the absorption and emission spectra for tocopherols.

  12. Absorption Spectra of Ni and Co Nanoparticles using Density Functional Theory

    International Nuclear Information System (INIS)

    Elham Gharibshahi; Elias Saion

    2011-01-01

    Metal nanoparticles (NPs) demonstrate excellent electronic properties due to quantum confinement effects and have tremendous applications in catalysts, optics, single-electron devices, bio-chemical sensors, etc. We propose quantum mechanics method for the calculation of absorption spectra of conduction electrons of some transition metal NPs using time-independent Schrodinger equation and approximate the solution by density functional theory. The total energy functional is obtained from the ground-state energy functional of Thomas-Fermi-Dirac- Weizsaecker atomic system. The absorption function was derived and replaced the density function in the final Euler-Lagrange equation. The total energy functional can then be computed numerically for isolated Ni and Co NPs having fcc lattice structure and different nano sizes. The results show a red-shift absorption peak increase with increasing diameter of nanosphere correspond to the number of atoms required to form nanoparticles of respective sizes. (author)

  13. Absorption spectra of superconducting qubits driven by bichromatic microwave fields

    Science.gov (United States)

    Pan, Jiazheng; Jooya, Hossein Z.; Sun, Guozhu; Fan, Yunyi; Wu, Peiheng; Telnov, Dmitry A.; Chu, Shih-I.; Han, Siyuan

    2017-11-01

    We report experimental observation of two distinct quantum interference patterns in the absorption spectra when a transmon superconducting qubit is subjected to a bichromatic microwave field with the same Rabi frequencies. Within the two-mode Floquet formalism with no dissipation processes, we propose a graph-theoretical representation to model the interaction Hamiltonian for each of these observations. This theoretical framework provides a clear visual representation of various underlying physical processes in a systematic way beyond rotating-wave approximation. The presented approach is valuable to gain insights into the behavior of multichromatic field driven quantum two-level systems, such as two-level atoms and superconducting qubits. Each of the observed interference patterns is represented by appropriate graph products on the proposed color-weighted graphs. The underlying mechanisms and the characteristic features of the observed fine structures are identified by the transitions between the graph vertices, which represent the doubly dressed states of the system. The good agreement between the numerical simulation and experimental data confirms the validity of the theoretical method. Such multiphoton interference may be used in manipulating the quantum states and/or generate nonclassical microwave photons.

  14. The electronic absorption spectra of pyridine azides, solvent-solute interaction

    Science.gov (United States)

    Abu-Eittah, Rafie H.; Khedr, Mahmoud K.

    2009-01-01

    The electronic absorption spectra of: 2-, 3-, and 4-azidopyridines have been investigated in a wide variety of polar and non-polar solvents. According to Onsager model, the studied spectra indicate that the orientation polarization of solvent dipoles affects the electronic spectrum much stronger than the induction polarization of solvent dipoles. The effect of solvent dipole moment predominates that of solvent refractive index in determining the values of band maxima of an electronic spectrum. The spectra of azidopyridines differ basically from these of pyridine or mono-substituted pyridine. Results at hand indicate that the azide group perturbs the pyridine ring in the case of 3-azidopyridine much more than it does in the case of 2-azidopyridine. This result agrees with the predictions of the resonance theory. Although the equilibrium ⇌ azide tetrazole is well known, yet the observed spectra prove that such an equilibrium does not exist at the studied conditions. The spectra of the studied azidopyridines are characterized by the existence of overlapping transitions. Gaussian analysis is used to obtain nice, resolved spectra. All the observed bands correspond to π → π* transitions, n → π* may be overlapped with the stronger π → π* ones.

  15. QM/MM-Based Calculations of Absorption and Emission Spectra of LSSmOrange Variants.

    Science.gov (United States)

    Bergeler, Maike; Mizuno, Hideaki; Fron, Eduard; Harvey, Jeremy N

    2016-12-15

    The goal of this computational work is to gain new insight into the photochemistry of the fluorescent protein (FP) LSSmOrange. This FP is of interest because besides exhibiting the eponymous large spectral shift (LSS) between the absorption and emission energies, it has been experimentally observed that it can also undergo a photoconversion process, which leads to a change in the absorption wavelength of the chromophore (from 437 to 553 nm). There is strong experimental evidence that this photoconversion is caused by decarboxylation of a glutamate located in the close vicinity of the chromophore. Still, the exact chemical mechanism of the decarboxylation process as well as the precise understanding of structure-property relations in the measured absorption and emission spectra is not yet fully understood. Therefore, hybrid quantum mechanics/molecular mechanics (QM/MM) calculations are performed to model the absorption and emission spectra of the original and photoconverted forms of LSSmOrange. The necessary force-field parameters of the chromophore are optimized with CGenFF and the FFToolkit. A thorough analysis of QM methods to study the excitation energies of this specific FP chromophore has been carried out. Furthermore, the influence of the size of the QM region has been investigated. We found that QM/MM calculations performed with time-dependent density functional theory (CAM-B3LYP/D3/6-31G*) and QM calculations performed with the semiempirical ZIndo/S method including a polarizable continuum model can describe the excitation energies reasonably well. Moreover, already a small QM region size seems to be sufficient for the study of the photochemistry in LSSmOrange. Especially, the calculated ZIndo spectra are in very good agreement with the experimental ones. On the basis of the spectra obtained, we could verify the experimentally assigned structures.

  16. Recommendations for the presentation of infrared absorption spectra in data collections condensed phases

    CERN Document Server

    Becker, E D

    2013-01-01

    Recommendations for the Presentation of Infrared Absorption Spectra in Data Collections-A. Condensed Phases presents the recommendations related to the infrared spectra of condensed phase materials that are proposed for permanent retention in data collections. These recommendations are based on two reports published by the Coblentz Society. This book emphasizes the three levels of quality evaluation for infrared spectra as designated by the Coblentz Society, including critically defined physical data, research quality analytical spectra, and approved analytical spectra. This text discusses the

  17. Computer simulation of molecular absorption spectra for asymmetric top molecules

    International Nuclear Information System (INIS)

    Bende, A.; Tosa, V.; Cosma, V.

    2001-01-01

    The effective Hamiltonian formalism has been used to develop a model for infrared multiple-photon absorption (IRMPA) process in asymmetric top molecules. Assuming a collisionless regime, the interaction between the molecule and laser field can be described by the time-dependent Schroedinger equation. By using the rotating wave approximation and Laplace transformation, the time-dependent problem reduces to a time-independent eigen problem for an effective Hamiltonian which can be solved only numerically for a real vibrational-rotational structure of polyatomic molecule. The vibrational-rotational structure is assumed to be an anharmonic oscillator coupled to an asymmetric rigid rotor. The main assumptions taken into account for this model are the following: (1) the excitation is coherent, i.e. the collision (if present during the laser pulse) does not influence the excitation; (2) the excitation starts from the ground state and is near resonant to a normal mode, thus, the rotating wave approximation can be applied; (3) after absorbing N photons the vibrational energy of the excited mode leak into a quasicontinuum; (4) the thermal population of the ground state is given by the Maxwell-Boltzmann distribution law. The energy levels of the asymmetric top molecules cannot be represented by an explicit formula analogous to that for the symmetric top, according to quantum mechanics, but we can consider it a deviation from the prolate or oblate case of the symmetric top, and we can find in the same manner the selection rules of the asymmetric case using the selection rules for the symmetric case. The infrared bands of asymmetric top molecules are not resolved, but if the dispersion used is not too small, so that the envelopes of the bands can be distinguished from simple maxima, it is possible to draw conclusions as to the type of the bands. In this case, the simulation of the absorption spectra can give us some important information about the types of these bands. In

  18. A study of luminescence and absorption spectra of GaP

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Abdel Wahab, S.M.

    1994-08-01

    Experimental luminescence and absorption spectra of GaP at room temperature are presented. A theoretical analysis has been performed on the luminescence and absorption spectra in GaP. The experimental data are in good agreement with the theoretical results. (author). 18 refs, 8 figs

  19. Identification of Metal Absorption Lines on Quasar Spectra of SDSS ...

    Indian Academy of Sciences (India)

    Key words. Line: identification—quasars: absorption lines—quasars: general. 1. Motivation. Absorption lines are often observed on the quasar spectrum. The intrinsic absorption lines of quasars are often thought to originate in the ionized gas that are physically related with the corresponding quasars, while the intervening ...

  20. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    International Nuclear Information System (INIS)

    Albrecht, Stefan

    1999-01-01

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li 2 O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na 4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author) [fr

  1. [Study on UV-Vis absorption spectra and fluorescence emission spectra of sixteen tetra-substituted metallophthalocyanine complexes].

    Science.gov (United States)

    Huang, Zi-yang; Huang, Jian-dong; Chen, Nai-sheng; Huang, Jin-ling

    2009-05-01

    The UV-Visible absorption spectra and the fluorescence emission spectra of sixteen tetra-substituted metallo-phthalocyanine complexes {R4 PcM, where R = 2-[4-(2-sulfonic ethyl) piperazin-1-] ethoxyl (SPEO--), 2-(piperidin-1-yl) ethoxyl (PEO--); substitution position at alpha-position and beta-position of phthalocyanine ring; M = Zn(II), Ni(II), Co(II) and Cu(II)} were measured. The influence of different central ion, substituted group and its position, as well as different solvent on the Q-band of phthalocyanine complex in its UV-Vis absorption spectra was investigated. The influence of different central ion, substituted group and its position on the fluorescence emission spectra was discussed. Some properties of the UV-Vis absorption spectra such as the maximum absorption wavelength (lamdamax ) of Q-band and its molar extinction coefficient (epsilon), and those of the fluorescence emission spectra such as fluorescence quantum yield (phiF), fluorescence lifetime (r) and excited state energy (Es) were studied. The results showed that the lamdamax of Qband of all complexes were located at 681-718 nm, which had a distinct red shift in contrast with unsubstituted metallophthalocyanines (669-671 nm). All complexes of R4 PcM possessed a very high molar extinction coefficient up to 10(5) L x mol(-1) x cm(-1). And the UV-Vis absorption spectra and the fluorescence emission spectra of all complexes exhibited mirror shape concurrently. Two beta-substituted zinc phthalocyanine complexes with formula beta-(SPEO)4PcZn and beta-(PEO)4PcZn possessed very high molar extinction coefficient, fluorescence quantum yield and fluorescence lifetime specially. Therefore, it is hoped that these two would be developing to be new photosensitizers for photodynamic therapy (PDT)and photodynamic diagnosis (PDD).

  2. Water vapor absorption spectra of the upper atmosphere /45-185 per cm/

    Science.gov (United States)

    Augason, G. C.; Mord, A. J.; Witteborn, F. C.; Erickson, E. F.; Swift, C. D.; Caroff, L. J.; Kunz, L. W.

    1975-01-01

    The far IR nighttime absorption spectrum of the earth's atmosphere above 14 km is determined from observations of the bright moon. The spectra were obtained using a Michelson interferometer attached to a 30-cm telescope aboard a high-altitude jet aircraft. Comparison with a single-layer model atmosphere implies a vertical column of 3.4 plus or minus 0.4 microns of precipitable water on 30 August 1971 and 2.4 plus or minus 0.3 microns of precipitable water on 6 January 1972.-

  3. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    DEFF Research Database (Denmark)

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several...... stable steps appear in the absorption spectrum when conditions for dynamical localization are met. [S0163-1829(95)03412-2]....

  4. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  5. UV-Vis absorption spectra and electronic structure of merocyanines in the gas phase

    Science.gov (United States)

    Ishchenko, Alexander A.; Kulinich, Andrii V.; Bondarev, Stanislav L.; Raichenok, Tamara F.

    2018-02-01

    Gas-phase absorption spectra of a merocyanine vinylogous series have been studied for the first time. In vapour, their long-wavelength absorption bands were found to be considerably shifted hypsochromically, broader, more symmetrical, less intense, and their vinylene shift much smaller than even in low-polarity n-hexane. This indicates that in the gas phase their electronic structure closely approaches the nonpolar polyene limiting structure. The TDDFT calculations of the long-wavelength electronic transitions in the studied merocyanines in vacuo demonstrated good-to-excellent correlation - depending on the functional used - with the obtained experimental data. For comparison, the solvent effects was accounted for using the polarizable continuum model (PCM) with n-hexane and ethanol as low-polarity and high-polarity media, and compared with the UV-Vis spectral data in these solvents. In this case, the discrepancy between theory and experiment was much greater, increasing at that with the polymethine chain length.

  6. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory.

    Science.gov (United States)

    Rocca, Dario; Lu, Deyu; Galli, Giulia

    2010-10-28

    We describe an ab initio approach to compute the optical absorption spectra of molecules and solids, which is suitable for the study of large systems and gives access to spectra within a wide energy range. In this approach, the quantum Liouville equation is solved iteratively within first order perturbation theory, with a Hamiltonian containing a static self-energy operator. This procedure is equivalent to solving the statically screened Bethe-Salpeter equation. Explicit calculations of single particle excited states and inversion of dielectric matrices are avoided using techniques based on density functional perturbation theory. In this way, full absorption spectra may be obtained with a computational workload comparable to ground state Hartree-Fock calculations. We present results for small molecules, for the spectra of a 1 nm Si cluster in a wide energy range (20 eV), and for a dipeptide exhibiting charge transfer excitations.

  7. The manifestation of optical centers in UV-Vis absorption and luminescence spectra of white blood human cells

    Science.gov (United States)

    Terent'yeva, Yu G.; Yashchuk, V. M.; Zaika, L. A.; Snitserova, O. M.; Losytsky, M. Yu

    2016-12-01

    A white blood human cells spectral investigation is presented. The aim of this series of experiments was to obtain and analyze the absorption and luminescence (fluorescence and phosphorescence) spectra at room temperature and at 78 K of newly isolated white blood human cells and their organelles. As a result the optical centers and possible biochemical components that form the studied spectra where identified. Also the differences between the spectra of abnormal cells (B-cell chronic lymphocytic leukemia BCLL) and normal ones were studied for the whole cells and individual organelles.

  8. VizieR Online Data Catalog: Sgr B2 los molecular absorption line spectra (Corby+, 2018)

    Science.gov (United States)

    Corby, J. F.; McGuire, B. A.; Herbst, E.; Remijan, A. J.

    2017-11-01

    Spectra covering transitions of c-C3H2, c-H1 SO, CCS, H2CS, HCS+, OH, SiO, 29SiO, H2CO, H2(13C)O, l-C3H, and l-C3H+ with line-of-sight absorption observed in the 1-50 GHz data from the PRebiotic Interstellar MOlecular Survey (PRIMOS) taken with the Robert C. Byrd Green Bank Telescope (GBT). Data were observed between 2001 and 2014, with the majority of the data obtained in 2007 in GBT Key Science project ID GBT07A-051. Spectra have been baseline-subtracted using best fit polynomials as described in the paper, and normalized by the continuum, so that the y-axis represents (T/TC-1). Data are provided in the FITS format; each FITS file contains all lines of a single molecule that are observed to have foreground absorption. Please refer to Table 1 of the paper to obtain molecular transition rest frequencies, energies, GBT beam sizes, and transition quantum numbers. (2 data files).

  9. Identification of Metal Absorption Lines on Quasar Spectra of SDSS ...

    Indian Academy of Sciences (India)

    . Baise 533000, China. 2Guangdong University of Technology, Guangzhou 510006, China. 3Centre for Astrophysics, Guangzhou University, Guangzhou 510006, China. ∗ e-mail: cysu@gdut.edu.cn. Abstract. Absorption lines are an important ...

  10. Effects of excited state mixing on transient absorption spectra in dimers Application to photosynthetic light-harvesting complex II

    CERN Document Server

    Valkunas, L; Trinkunas, G; Müller, M G; Holzwarth, A R

    1999-01-01

    The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler-London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls...

  11. Protonation effects on the UV/Vis absorption spectra of imatinib: A theoretical and experimental study

    Science.gov (United States)

    Grante, Ilze; Actins, Andris; Orola, Liana

    2014-08-01

    An experimental and theoretical investigation of protonation effects on the UV/Vis absorption spectra of imatinib showed systematic changes of absorption depending on the pH, and a new absorption band appeared below pH 2. These changes in the UV/Vis absorption spectra were interpreted using quantum chemical calculations. The geometry of various imatinib cations in the gas phase and in ethanol solution was optimized with the DFT/B3LYP method. The resultant geometries were compared to the experimentally determined crystal structures of imatinib salts. The semi-empirical ZINDO-CI method was employed to calculate the absorption lines and electronic transitions. Our study suggests that the formation of the extra near-UV absorption band resulted from an increase of imatinib trication concentration in the solution, while the rapid increase of the first absorption maximum could be attributed to both the formation of imatinib trication and tetracation.

  12. Inelastic electron scattering spectroscopy: a comparison of absorption and emission spectra

    International Nuclear Information System (INIS)

    Schnatterly, S.E.

    1984-01-01

    The operation of a high energy inelastic scattering spectrometer is briefly described. Measured absorption and emission spectra are fit to parameters in recently described models for insulators. Implications for model validity are discussed

  13. Structure and spectra of photochemically obtained nanosized silver particles in presence of modified porous silica

    OpenAIRE

    Galina Krylova; Anna Eremenko; Natalia Smirnova; Susie Eustis

    2005-01-01

    Mesoporous silica powders and films modified with organic sensitizer benzophenone were used as photocatalysts in the reaction of silver ion reduction by isopropyl alcohol under UV-irradiation with λ= 253.7 nm and 365 nm in presence of colloidal silica as stabilizer. Morphological changes of silver colloids during irradiation were studied using transmission electron microscopy, and correlated to the absorption spectra.

  14. Plasma Emission Spectra of Opuntia Nopalea Obtained with Microsecond Laser Pulses

    Science.gov (United States)

    Ponce, L.; Flores, T.; Arronte, A.; Flores, A.

    2008-04-01

    Laser-induced Plasma Spectroscopy was performed during the spines ablation of Opuntia by using Nd:YAG microsecond laser pulses. The results show strong absorption in Glochids that causes the intense electronic noise on the spectra. This process is consider suitable for practical elimination of spines in alimentary products like opuntia.

  15. Effect of absorption discontinuity on neutron spectra of water assemblies poisoned with non-1/V absorbers

    International Nuclear Information System (INIS)

    Gupta, I.J.; Trikha, S.K.

    1977-01-01

    Calculations are presented of the diffusion of thermal neutrons (2.5 x 10 -4 to 7 x 10 -1 eV) across an absorption discontinuity in a water assembly, consisting of pure water on one side and aqueous solutions of three different non-1/V absorbers on the other, which were obtained by solving the Boltzmann transport equation in the diffusion approximation using the multigroup formalism. The gradual appearance and disappearance of the depletion region in the neutron spectra (caused by the resonance absorption peaks at energies 0.096 and 0.179 eV for samarium and cadmium respectively), as one moves from the pure water assembly to the poisoned water assembly and vice versa, have also been studied. The minimum concentrations of Sm and Cd atoms in water for which the depletion region in the spectra just starts building up are found to be 60 x 10 18 Sm atom cm -3 and 125 x 10 18 Cd atom cm -3 respectively. However no such depletion region is observed in gadolinium-poisoned water assembly. At the boundary, the equilibrium neutron distribution gets disturbed and is re-established to the equilibrium distribution of the second medium at some distance from the interface. The diffusion lengths so calculated from the total neutron density curves are in good agreement with the experimental results of Goddard and Johnson (Nucl. Sci. Eng.; 37:127 (1969)) at various concentrations of Gd and Cd atoms in water. (author)

  16. Absorption spectra of ammonia near 1 mu m

    Czech Academy of Sciences Publication Activity Database

    Barton, E. J.; Polyansky, O. L.; Yurchenko, S. N.; Tennyson, J.; Civiš, Svatopluk; Ferus, Martin; Hargreaves, R.; Ovsyannikov, R. I.; Kyuberis, A. A.; Zobov, N. F.; Béguier, S.; Campargue, A.

    2017-01-01

    Roč. 203, DEC 2017 (2017), s. 392-397 ISSN 0022-4073 EU Projects: European Commission(XE) 267219 - EXOMOL Grant - others:RFBR(RU) 16-32-00244 Institutional support: RVO:61388955 Keywords : room temperature * ammonia * absorption intensities * FTIR spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.419, year: 2016

  17. Optical absorption spectra of linear and cyclic thiophenes--selection rules manifestation

    International Nuclear Information System (INIS)

    Bednarz, Mariusz; Reineker, Peter; Mena-Osteritz, Elena; Baeuerle, Peter

    2004-01-01

    We theoretically study the size-dependent relation between absorption spectra of thiophene-based oligomers and the corresponding cyclothiophenes. In our approach based on a Frenkel exciton Hamiltonian, we demonstrate that the geometry and selection rules determine the observed relations between the spectra

  18. Absorption Spectra Of Rbcl:Yb Rbbr:Yb And Rbi:Yb Crystals ...

    African Journals Online (AJOL)

    Single crystals of rubidium chloride, bromide and iodide were doped with substitutional divalent ytterbium, Yb ions, by heating them in ytterbium atmosphere. The absorption spectra of the Yb doped crystals were measured at room and liquid nitrogen temperatures. The spectra were found to consist of intense broad ...

  19. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  20. SPECTROPHOTOMETRY OF HEMOGLOBIN - ABSORPTION-SPECTRA OF RAT OXYHEMOGLOBIN, DEOXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; BUURSMA, A; FALKE, HE; CATSBURG, JF

    The absorptivity at 540 nm of methemoglobincyanide from rat blood was determined on the basis of iron and found to be equal to the established value for human methemoglobincyanide (11,01/mmol/cm). On this basis the absorption spectra of the common derivatives were determined for rat hemoglobin.

  1. Spectrophotometry of hemoglobin : Absorption spectra of bovine oxyhemoglobin, deoxyhemoglobin, carboxyhemoglobin, and methemoglobin

    NARCIS (Netherlands)

    Zijlstra, WG; Buursma, A

    1997-01-01

    The absorptivity at 540 nm of bovine hemiglobincyanide (cyanmethemoglobin) was determined on the basis of the iron content and found to be equal to the established value for human hemiglobincyanide (11.0 L . mmol(-1).cm(-1)). On this basis the absorption spectra of the common derivatives were

  2. The effects of solvents and structure on the electronic absorption spectra of the isomeric pyridine carboxylic acid N-oxides

    Directory of Open Access Journals (Sweden)

    Drmanić Saša Ž.

    2013-01-01

    Full Text Available The ultraviolet absorption spectra of the carboxyl group of three isomeric pyridine carboxylic acids N-oxides (picolinic acid N-oxide, nicotinic acid N-oxide and isonicotinic acid N-oxide were determined in fourteen solvents in the wavelength range from 200 to 400 nm. The position of the absorption maxima (λmax of the examined acids showed that the ultraviolet absorption maximum wavelengths of picolinic acid N-oxide are the shortest, and those of isonicotinic acid N-oxide acid are the longest. In order to analyze the solvent effect on the obtained absorption spectra, the ultraviolet absorption frequencies of the electronic transitions in the carboxylic group of the examined acids were correlated using a total solvatochromic equation of the form max = v0 + sπ + aα+ bβ, where υmax is the absorption frequency (1/λmax, p is a measure of the solvent polarity, β represents the scale of solvent hydrogen bond acceptor basicities and α represent the scale of solvent hydrogen bond donor acidities. The correlation of the spectroscopic data was carried out by means of multiple linear regression analysis. The solvent effects on the ultraviolet absorption maximums of the examined acids were discussed.

  3. Infrared absorption spectra of human malignant tumor tissues

    Science.gov (United States)

    Skornyakov, I. V.; Tolstorozhev, G. B.; Butra, V. A.

    2008-05-01

    We used infrared spectroscopy methods to study the molecular structure of tissues from human organs removed during surgery. The IR spectra of the surgical material from breast, thyroid, and lung are compared with data from histological examination. We show that in malignant neoplasms, a change occurs in the hydrogen bonds of protein macromolecules found in the tissue of the studied organs. We identify the spectral signs of malignant pathology.

  4. Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas.

    Science.gov (United States)

    Moroshkin, Peter; Weller, Lars; Sass, Anne; Klaers, Jan; Weitz, Martin

    2014-08-08

    The Kennard-Stepanov relation describes a thermodynamic, Boltzmann-type scaling between the absorption and emission spectral profiles of an absorber, which applies in many liquid state dye solutions as well as in semiconductor systems. Here we examine absorption and emission spectra of rubidium atoms in a dense argon buffer gas environment. We demonstrate that the Kennard-Stepanov relation between absorption and emission spectra is well fulfilled in the collisionally broadened atomic gas system. Our experimental findings are supported by a simple theoretical model.

  5. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  6. Faraday effect and λ-modulation absorption spectra of GaP

    International Nuclear Information System (INIS)

    Petkova, P N; Dimov, T N; Iliev, I A

    2007-01-01

    There are presented the absorption optical spectra of GaP measured by λ-modulation method at room temperature in the spectral region from 505 nm to 700 nm. It is not possible even by λ-modulation to be registered at room temperature the wave bands due to the exciton-phonon interaction. The absorption spectra of GaP carried out by a λ-modulation can be separated exactly in the spectral parts as follows: the transmittance region where the absorption is too slightly expressed; the region determined by the phonon-assisted indirect transitions; the region of the interband absorption. The purpose of Faraday rotation measurements is to establish the influence of the exciton-phonon interaction on the magneto-optical effect. The magneto-optical effect has been investigated by a φ-modulation. The spectral dependence of dn/dλ in the transmittance region is determined by the φ-modulated spectra

  7. Carbon dioxide laser absorption spectra of toxic industrial compounds

    International Nuclear Information System (INIS)

    Loper, G.L.; Sasaki, G.R.; Stamps, M.A.

    1982-01-01

    CO 2 laser absorption cross-section data are reported for acrolein, styrene, ethyl acrylate, trichloroethylene, vinyl bromide, and vinylidene chloride. These data indicate that sub parts per billion level, interference-free detection limits should be possible for these compounds by the CO 2 laser photoacoustic technique. Photoacoustic detectabilities below 40 ppb should be possible for these compounds in the presence of ambient air concentrations of water vapor and other anticipated interferences. These compounds are also found not to be important inerference in the detection of toxic hydrazine-based rocket fuels by CO 2 laser spectroscopic techniques

  8. Monitoring the variability of intrinsic absorption lines in quasar spectra , ,

    Energy Technology Data Exchange (ETDEWEB)

    Misawa, Toru [School of General Education, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Charlton, Jane C.; Eracleous, Michael, E-mail: misawatr@shinshu-u.ac.jp [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-09-01

    We have monitored 12 intrinsic narrow absorption lines (NALs) in five quasars and seven mini-broad absorption lines (mini-BALs) in six quasars for a period of 4-12 yr (1-3.5 yr in the quasar rest-frame). We present the observational data and the conclusions that follow immediately from them, as a prelude to a more detailed analysis. We found clear variability in the equivalent widths (EWs) of the mini-BAL systems but no easily discernible changes in their profiles. We did not detect any variability in the NAL systems or in narrow components that are often located at the center of mini-BAL profiles. Variations in mini-BAL EWs are larger at longer time intervals, reminiscent of the trend seen in variable BALs. If we assume that the observed variations result from changes in the ionization state of the mini-BAL gas, we infer lower limits to the gas density ∼10{sup 3}-10{sup 5} cm{sup –3} and upper limits on the distance of the absorbers from the central engine of the order of a few kiloparsecs. Motivated by the observed variability properties, we suggest that mini-BALs can vary because of fluctuations of the ionizing continuum or changes in partial coverage while NALs can vary primarily because of changes in partial coverage.

  9. Transition probabilities of Ce I obtained from Boltzmann analysis of visible and near-infrared emission spectra

    Science.gov (United States)

    Nitz, D. E.; Curry, J. J.; Buuck, M.; DeMann, A.; Mitchell, N.; Shull, W.

    2018-02-01

    We report radiative transition probabilities for 5029 emission lines of neutral cerium within the wavelength range 417-1110 nm. Transition probabilities for only 4% of these lines have been previously measured. These results are obtained from a Boltzmann analysis of two high resolution Fourier transform emission spectra used in previous studies of cerium, obtained from the digital archives of the National Solar Observatory at Kitt Peak. The set of transition probabilities used for the Boltzmann analysis are those published by Lawler et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 085701). Comparisons of branching ratios and transition probabilities for lines common to the two spectra provide important self-consistency checks and test for the presence of self-absorption effects. Estimated 1σ uncertainties for our transition probability results range from 10% to 18%.

  10. Linewidths in excitonic absorption spectra of cuprous oxide

    Science.gov (United States)

    Schweiner, Frank; Main, Jörg; Wunner, Günter

    2016-02-01

    We present a theoretical calculation of the absorption spectrum of cuprous oxide (Cu2O ) based on the general theory developed by Y. Toyozawa. An inclusion not only of acoustic phonons but also of optical phonons and of specific properties of the excitons in Cu2O like the central-cell corrections for the 1 S exciton allows us to calculate the experimentally observed linewidths in experiments by T. Kazimierczuk et al. [T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M. Bayer, Nature (London) 514, 343 (2014), 10.1038/nature13832] within the same order of magnitude, which demonstrates a clear improvement in comparison to earlier work on this topic. We also discuss a variety of further effects, which explain the still observable discrepancy between theory and experiment but can hardly be included in theoretical calculations.

  11. Absorption spectra of ammonia near 1 μm

    Science.gov (United States)

    Barton, Emma J.; Polyansky, Oleg L.; Yurchenko, Sergei. N.; Tennyson, Jonathan; Civiš, S.; Ferus, M.; Hargreaves, R.; Ovsyannikov, R. I.; Kyuberis, A. A.; Zobov, N. F.; Béguier, S.; Campargue, A.

    2017-12-01

    An ammonia absorption spectrum recorded at room temperature in the region 8800-10,400 cm-1 is analysed using a variational line list, BYTe, and ground state energies determined using the MARVEL procedure. BYTe is used as a starting point to initialise assignments by combination differences and the method of branches. Assignments are presented for the region 9400-9850 cm-1. 642 lines are assigned to 6 previously unobserved vibrational bands, (2v1 + 2 v42) ±, (2v1 + v31) ± and (v1 + v31 + 2 v42) ±, leading to 428 new energy levels with 208 confirmed by combination differences. A recently calculated purely ab initio NH3 PES is also used to calculate rovibrational energy levels. Comparison with assigned levels shows better agreement between observed and calculated levels than for BYTe for higher vibrational bands.

  12. The Associated Absorption Features in Quasar Spectra of the Sloan Digital Sky Survey. I. Mg II Absorption Doublets

    Science.gov (United States)

    Chen, Zhi-Fu; Huang, Wei-Rong; Pang, Ting-Ting; Huang, Hong-Yan; Pan, Da-Sheng; Yao, Min; Nong, Wei-Jing; Lu, Mei-Mei

    2018-03-01

    Using the SDSS spectra of quasars included in the DR7Q or DR12Q catalogs, we search for Mg II λλ2796, 2803 narrow absorption doublets in the spectra data around Mg II λ2798 emission lines. We obtain 17,316 Mg II doublets, within the redshift range of 0.3299 ≤ z abs ≤ 2.5663. We find that a velocity offset of υ r 6000 km s‑1. If associated Mg II absorbers are defined by υ r present at least one associated Mg II system with {W}{{r}}λ 2796≥slant 0.2 \\mathringA . The fraction of associated Mg II systems with high-velocity outflows correlates with the average luminosities of their central quasars, indicating a relationship between outflows and the quasar feedback power. The υ r distribution of the outflow Mg II absorbers is peaked at 1023 km s‑1, which is smaller than the corresponding value of the outflow C IV absorbers. The redshift number density evolution of absorbers (dn/dz) limited by υ r > ‑3000 km s‑1 differs from that of absorbers constrained by υ r > 2000 km s‑1. Absorbers limited by υ r > 2000 km s‑1 and higher values exhibit profiles similar to dn/dz. In addition, the dn/dz is smaller when absorbers are constrained with larger υ r . The distributions of equivalent widths, and the ratio of {W}rλ 2796/{W}rλ 2803, are the same for associated and intervening systems, and independent of quasar luminosity.

  13. Particulate absorption properties in the Red Sea from hyperspectral particulate absorption spectra

    KAUST Repository

    Tiwari, Surya Prakash

    2018-03-16

    This paper aims to describe the variability of particulate absorption properties using a unique hyperspectral dataset collected in the Red Sea as part of the TARA Oceans expedition. The absorption contributions by phytoplankton (aph) and non-algal particles (aNAP) to the total particulate absorption coefficients are determined using a numerical decomposition method (NDM). The NDM is validated by comparing the NDM derived values of aph and aNAP with simulated values of aph and aNAP are found to be in excellent agreement for the selected wavelengths (i.e., 443, 490, 555, and 676nm) with high correlation coefficient (R2), low root mean square error (RMSE), mean relative error (MRE), and with a slope close to unity. Further analyses showed that the total particulate absorption coefficients (i.e., ap(443)average = 0.01995m−1) were dominated by phytoplankton absorption (i.e., aph(443)average = 0.01743m−1) with a smaller contribution by non-algal particles absorption (i.e., aNAP(443)average = 0.002524m−1). The chlorophyll a is computed using the absorption based Line Height Method (LHM). The derived chlorophyll-specific absorption ((a⁎ph = aph(λ)/ChlLH)) showed more variability in the blue part of spectrum as compared to the red part of spectrum representative of the package effect and changes in pigment composition. A new parametrization proposed also enabled the reconstruction of a⁎ph(λ) for the Red Sea. Comparison of derived spectral constants with the spectral constants of existing models showed that our study A(λ) values are consistent with the existing values, despite there is a divergence with the B(λ) values. This study provides valuable information derived from the particulate absorption properties and its spectral variability and this would help us to determine the relationship between the phytoplankton absorption coefficients and chlorophyll a and its host of variables for the Red Sea.

  14. Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra

    NARCIS (Netherlands)

    van Stokkum, Ivo; Jumper, Chanelle C.; Snellenburg, J.; Scholes, Gregory D.; van Grondelle, R.; Malý, P.

    2016-01-01

    When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a

  15. Diversity in C-Xanes Spectra Obtained from Carbonaceous Solid Inclusions from Monahans Halite

    Science.gov (United States)

    Kebukawa, Y.; Zolensky, M. E.; Fries, M.; Kilcoyne, A. L. D.; Rahman, Z.; Cody, G. D.

    2014-01-01

    Monahans meteorite (H5) contains fluid inclusion- bearing halite (NaCl) crystals [1]. Microthermometry and Raman spectroscopy showed that the fluid in the inclusions is an aqueous brine and they were trapped near 25degC [1]. Their continued presence in the halite grains requires that their incorporation into the H chondrite asteroid was post metamorphism [2]. Abundant solid inclusions are also present in the halites. The solid inclusions include abundant and widely variable organics [2]. Analyses by Raman microprobe, SEM/EDX, synchrotron X-ray diffraction and TEM reveal that these grains include macromolecular carbon similar in structure to CV3 chondrite matrix carbon, aliphatic carbon compounds, olivine (Fo99-59), high- and low-Ca pyroxene, feldspars, magnetite, sulfides, lepidocrocite, carbonates, diamond, apatite and possibly the zeolite phillipsite [3]. Here we report organic analyses of these carbonaceous residues in Monahans halite using C-, N-, and O- X-ray absorption near edge structure (XANES). Samples and Methods: Approximately 100 nm-thick sections were extracted with a focused ion beam (FIB) at JSC from solid inclusions from Monahans halite. The sections were analyzed using the scanning transmission X-ray microscope (STXM) on beamline 5.3.2.2 at the Advanced Light Source, Lawrence Berkeley National Laboratory for XANES spectroscopy. Results and Discussion: C-XANES spectra of the solid inclusions show micrometer-scale heterogeneity, indicating that the macromolecular carbon in the inclusions have complex chemical variations. C-XANES features include 284.7 eV assigned to aromatic C=C, 288.4-288.8 eV assigned to carboxyl, and 290.6 eV assigned to carbonate. The carbonyl features obtained by CXANES might have been caused by the FIB used in sample preparation. No specific N-XANES features are observed. The CXANES spectra obtained from several areas in the FIB sections include type 1&2 chondritic IOM like, type 3 chondritic IOM like, and none of the above

  16. Study of electron transition energies between anions and cations in spinel ferrites using differential UV–vis absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Xue, L.C.; Wu, L.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Li, S.Q. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); School of Sciences, Hebei University of Science and Technology, Shijiazhuang City 050018 (China); Li, Z.Z. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Tang, G.D., E-mail: tanggd@mail.hebtu.edu.cn [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China); Qi, W.H.; Ge, X.S.; Ding, L.L. [Hebei Advanced Thin Film Laboratory, Department of Physics, Hebei Normal University, Shijiazhuang City 050024 (China)

    2016-07-01

    It is very important to determine electron transition energies (E{sub tr}) between anions and different cations in order to understand the electrical transport and magnetic properties of a material. Many authors have analyzed UV–vis absorption spectra using the curve (αhν){sup 2} vs E, where α is the absorption coefficient and E(=hν) is the photon energy. Such an approach can give only two band gap energies for spinel ferrites. In this paper, using differential UV–vis absorption spectra, dα/dE vs E, we have obtained electron transition energies (E{sub tr}) between the anions and cations, Fe{sup 2+} and Fe{sup 3+} at the (A) and [B] sites and Ni{sup 2+} at the [B] sites for the (A)[B]{sub 2}O{sub 4} spinel ferrite samples Co{sub x}Ni{sub 0.7−x}Fe{sub 2.3}O{sub 4} (0.0≤x≤0.3), Cr{sub x}Ni{sub 0.7}Fe{sub 2.3−x}O{sub 4} (0.0≤x≤0.3) and Fe{sub 3}O{sub 4}. We suggest that the differential UV–vis absorption spectra should be accepted as a general analysis method for determining electron transition energies between anions and cations.

  17. Visible and infrared absorption spectra of covering materials for solar collectors

    International Nuclear Information System (INIS)

    Pelece, I.

    2008-01-01

    Use of solar energy increases every year. In Latvia, solar energy is used mainly by solar collectors. The main part of the solar collector is the absorber, but not less important is the covering material which protects the absorber from the cooling impact of the wind. This cover must be transparent for solar radiation, but opaque for thermal radiation of the absorber, which is at greater wavelengths. Therefore it is important to measure absorption spectra of possible covering materials at visible and infrared wavelength ranges. Absorption spectra have been measured for several materials: glass, polythene, Plexiglas, and cells Plexiglas. Absorption spectra for all these materials are measured in three ranges: ultraviolet-visible (UV-VIS): 250-1000 nm; near infrared (NIR): 700-110 nm; infrared (IR): 1200-8000 nm. UV-VIS spectra with the 'Ocean Optics' device HR-4000 have been measured, but NIR and IR - with 'Bruker' Furje spectrometer EQUINOX 55. Evaluation of absorption spectra showed that the most suitable material (from the considered) for covering of solar collectors is Plexiglas

  18. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    Directory of Open Access Journals (Sweden)

    Ole Green

    2010-11-01

    Full Text Available A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA, was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  19. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    Science.gov (United States)

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials.

  20. Temperature dependence of absorption spectra of P-type GaP

    International Nuclear Information System (INIS)

    Mounir, M.; Balloomal, L.S.

    1985-10-01

    The theoretical analysis of the optical absorption due to band-impurity (impurity-band) electron transitions involving deep impurity levels in semi-conductors is considered. Also the data of the experimental absorption spectra of GaP were performed at room temperature and the results were found to be in agreement with the theoretical results if the electron-phonon interaction is taken into consideration. (author)

  1. Automated generation and ensemble-learned matching of X-ray absorption spectra

    Science.gov (United States)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-03-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  2. Polarized absorption spectra of aromatic radicals in stretched polymer film, 4. Radical ions of 9-substituted anthracenes. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Hiroshi; Nakamura, Hitoshi; Tanizaki, Yoshie; Nakajima, Keihachiro (Tokyo Inst. of Tech. (Japan). Faculty of Science)

    1982-11-01

    Radical ions of some 9-substituted anthracene derivatives have been prepared in polymer film by gamma -irradiation at 77 K. By use of the polarized absorption spectra of these radical ions, the absorption spectra have been resolved into two components (resolved spectra), the transition moments of which are polarized parallel to the molecular long and short axes, respectively. Correlation of the characteristic absorption bands is discussed briefly.

  3. Influence of ultrafast carrier dynamics on semiconductor absorption spectra

    CERN Document Server

    Ouerdane, H

    2001-01-01

    set of coupled rate equations. We obtained a good qualitative agreement with experiments and further insight into the interplay between the various dynamical processes by varying the phenomenological parameters entering the rate equations. In particular we found that the carrier spin-flip occurs on a relatively long time scale (several tens of picoseconds) compared to the carrier distributions relaxation and thermalization (a picosecond or less). We also could monitor the time evolution of the plasma density, energy, temperature and screening. In this thesis, we also studied the photoluminescence in II-VI quantum wells at room temperature. We built a mathematical model to account for Coulomb correlations that are expected to strongly influence the spontaneous emission rate in these materials. We assumed the 1s exciton-free electron scattering to be the main process leading an exciton to the photon line before recombination. The excitonic wavefunctions in a 2D screened Coulomb potential were calculated using t...

  4. Multi-Photon Absorption Spectra: A Comparison Between Transmittance Change and Fluorescence Methods

    Science.gov (United States)

    2015-05-21

    AFRL-OSR-VA-TR-2015-0134 multi-photon absorption spectra Cleber Mendonca INSTITUTO DE FISICA DE SAO CARLOS Final Report 05/21/2015 DISTRIBUTION A...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Instituto de Fisica de Sao Carlos - Universidade de Sao Paulo Av

  5. Optical absorption and magnetic circular dichroism spectra of thiouracils: a quantum mechanical study in solution

    DEFF Research Database (Denmark)

    Martínez-Fernández, L.; Fahleson, Tobias; Norman, Patrick

    2017-01-01

    The excited electronic states of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil, the analogues of uracil where the carbonyl oxygens are substituted by sulphur atoms, have been investigated by computing the magnetic circular dichroism (MCD) and one-photon absorption (OPA) spectra at the time...

  6. Continuum and discrete pulsed cavity ring down laser absorption spectra of Br2 vapor.

    Science.gov (United States)

    Sharma, Ramesh C; Huang, Hong-Yi; Chuang, Wang-Ting; Lin, King-Chuen

    2005-07-01

    The absorption cross-sections at room temperature are reported for the first time, of Br2 vapor in overlapping bound-free and bound-bound transition of A(3)pi1u Br2. We obtained discrete absorption cross-section in the rotational structure, the continuum absorption cross-sections, and were also able to measure the absorption cross-section in separate contribution of A(3)pi1u Br2. The absorption cross-sections are increasing with increasing excitation energy in the wavelength region 510-535 nm.

  7. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    Science.gov (United States)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  8. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...Introduction……………………………………………………………………….………………..1 Calculation of Absorption Spectra using DFT ……………………………………………..…..….1 DFT Calculation of Equilibrium

  9. Detection of O4 absorption around 328 and 419 nm in measured atmospheric absorption spectra

    Directory of Open Access Journals (Sweden)

    J. Lampel

    2018-02-01

    Full Text Available Retrieving the column of an absorbing trace gas from spectral data requires that all absorbers in the corresponding wavelength range are sufficiently well known. This is especially important for the retrieval of weak absorbers, whose absorptions are often in the 10−4 range. Previous publications on the absorptions of the oxygen dimer O2–O2 (or short: O4 list absorption peaks at 328 and 419 nm, for which no spectrally resolved literature cross sections are available. As these absorptions potentially influence the spectral retrieval of various trace gases, such as HCHO, BrO, OClO and IO, their shape and magnitude need to be quantified. We assume that the shape of the absorption peaks at 328 and 419 nm can be approximated by their respective neighbouring absorption peaks. Using this approach we obtain estimates for the wavelength of the absorption and its magnitude. Using long-path differential optical absorption spectroscopy (LP-DOAS observations and multi-axis DOAS (MAX-DOAS observations, we estimate the peak absorption cross sections of O4 to be (1.96  ±  0.20 × 10−47 cm5 molec−2 and determine the wavelength of its maximum at 328.59  ±  0.15 nm. For the absorption at 419.13  ±  0.42 nm a peak O4 cross-section value is determined to be (5.0  ±  3.5 × 10−48 cm5 molec−2.

  10. Ultraviolet absorption spectra of cis and trans potassium peroxynitrite (KOONO) in solid argon

    Science.gov (United States)

    Lo, Wen-Jui; Lee, Yuan-Pern; Tsai, Jyh-Hsin M.; Beckman, Joseph S.

    1995-08-01

    Two conformers (cis and trans) of potassium peroxynitrite (KOONO) were produced in an argon matrix containing potassium nitrate (KNO 3) at 13 K by means of in situ photolysis with an ArF excimer laser at 193 nm. Photoconversion among cis- and trans-KOONO, and KNO 3, was achieved on irradiation of the matrix with a laser at varied wavelengths. With the aid of the relative intensities of IR absorption lines observed for each species at each stage of photolysis, the UV absorption spectra of cis- and trans-KOONO were determined. The absorption maxima, near 325 and 375 nm for cis- and trans-KOONO, respectively, agree with theoretical calculations by Krauss. The photolytic behavior of both conformers at varied wavelengths can be understood in relation to the observed UV absorptions.

  11. Quantitative comparisons of absorption cross-section spectra and integrated intensities of HFC-143a

    International Nuclear Information System (INIS)

    Le Bris, Karine; Graham, Laura

    2015-01-01

    The integrated absorption cross-sections of HFC-143a (CH 3 CF 3 ) differ substantially in the literature. This leads to an important uncertainty on the value of the radiative efficiency of this molecule. The ambiguity on the absorption cross-sections of HFC-143a is highlighted by the existence of two significantly different datasets in the HITRAN database. To solve the issue, we performed high-resolution Fourier transform infrared laboratory measurements of HFC-13a and compared the spectra with the two HITRAN datasets and with the data from the Pacific Northwest National Laboratory (PNNL). The experimental methods and data analysis techniques are examined and typical sources of errors are discussed. The integrated intensities of the main bands are compared to other literature values. It was found that the integrated absorption cross-section values in the highest range – around 13.8×10 −17 cm.molecule −1 in the 570–1500 cm −1 spectral band – show the most consistency between authors. - Highlights: • Large discrepancies exist between authors on the absorption spectra of HFC-143a. • We present new cross-section spectra of a pure vapour at 263, 273 and 283 K. • The data were compared to literature values. • Total integrated intensities in the highest range are the most consistent. • The radiative efficiency of HFC-143a should be revised upward

  12. Temperature dependent absorption spectra of Br(-), Br2(•-), and Br3(-) in aqueous solutions.

    Science.gov (United States)

    Lin, Mingzhang; Archirel, Pierre; Van-Oanh, Nguyen Thi; Muroya, Yusa; Fu, Haiying; Yan, Yu; Nagaishi, Ryuji; Kumagai, Yuta; Katsumura, Yosuke; Mostafavi, Mehran

    2011-05-05

    The absorption spectra of Br(2)(•-) and Br(3)(-) in aqueous solutions are investigated by pulse radiolysis techniques from room temperature to 380 and 350 °C, respectively. Br(2)(•-) can be observed even in supercritical conditions, showing that this species could be used as a probe in pulse radiolysis at high temperature and even under supercritical conditions. The weak temperature effect on the absorption spectra of Br(2)(•-) and Br(3)(-) is because, in these two systems, the transition occurs between two valence states; for example, for Br(2)(-) we have (2)Σ(u) → (2)Σ(g) transition. These valence transitions involve no diffuse final state. However, the absorption band of Br(-) undergoes an important red shift to longer wavelengths. We performed classical dynamics of hydrated Br(-) system at 20 and 300 °C under pressure of 25 MPa. The radial distribution functions (rdf's) show that the strong temperature increase (from 20 to 300 °C) does not change the radius of the solvent first shell. On the other hand, it shifts dramatically (by 1 Å) the second maximum of the Br-O rdf and introduces much disorder. This shows that the first water shell is strongly bound to the anion whatever the temperature. The first two water shells form a cavity of a roughly spherical shape around the anion. By TDDFT method, we calculated the absorption spectra of hydrated Br(-) at two temperatures and we compared the results with the experimental data.

  13. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K.

    2015-12-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic Csbnd H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the spectral influences

  14. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. I. Full cumulant expansions and system-bath entanglement.

    Science.gov (United States)

    Ma, Jian; Cao, Jianshu

    2015-03-07

    We study the Förster resonant energy transfer rate, absorption and emission spectra in multichromophoric systems. The multichromophoric Förster theory (MCFT) is determined from an overlap integral of generalized matrices related to the donor's emission and acceptor's absorption spectra, which are obtained via a full 2nd-order cumulant expansion technique developed in this work. We calculate the spectra and MCFT rate for both localized and delocalized systems, and calibrate the analytical 2nd-order cumulant expansion with the exact stochastic path integral method. We present three essential findings: (i) The role of the initial entanglement between the donor and its bath is found to be crucial in both the emission spectrum and the MCFT rate. (ii) The absorption spectra obtained by the cumulant expansion method are nearly identical to the exact spectra for both localized and delocalized systems, even when the system-bath coupling is far from the perturbative regime. (iii) For the emission spectra, the cumulant expansion can give reliable results for localized systems, but fail to provide reliable spectra of the high-lying excited states of a delocalized system, when the system-bath coupling is large and the thermal energy is small. This paper also provides a simple golden-rule derivation of the MCFT, reviews existing methods, and motivates further developments in the subsequent papers.

  15. Maximizing information obtained from secondary ion mass spectra of organic thin films using multivariate analysis

    Science.gov (United States)

    Wagner, M. S.; Graham, D. J.; Ratner, B. D.; Castner, David G.

    2004-10-01

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can give a detailed description of the surface chemistry and structure of organic materials. The high mass resolution and high mass range mass spectra obtainable from modern ToF-SIMS instruments offer the ability to rapidly obtain large amounts of data. Distillation of that data into usable information presents a significant problem in the analysis of ToF-SIMS data from organic materials. Multivariate data analysis techniques have become increasingly common for assisting with the interpretation of complex ToF-SIMS data sets. This study presents an overview of principal component analysis (PCA) and partial least squares regression (PLSR) for analyzing the ToF-SIMS spectra of alkanethiol self-assembled monolayers (SAMs) adsorbed onto gold substrates and polymer molecular depth profiles obtained using an SF5+ primary ion beam. The effect of data pretreatment on the information obtained from multivariate analysis of these data sets has been explored. Multivariate analysis is an important tool for maximizing the information obtained from the ToF-SIMS spectra of organic thin films.

  16. The UV absorption of nucleobases: semi-classical ab initio spectra simulations

    Czech Academy of Sciences Publication Activity Database

    Barbatti, M.; Aquino, A. J. A.; Lischka, Hans

    2010-01-01

    Roč. 12, č. 19 (2010), s. 4959-4967 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:Special Research Program(AT) P18411-N19 Institutional research plan: CEZ:AV0Z40550506 Keywords : semi-classical simulations * UV absorption spectra * nucleobases Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  17. Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.; Kelley, Matthew S.; Chen, Lin X.; Schatz, George C.; Ratner, Mark A.

    2017-01-01

    The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to the excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.

  18. Urbach tail in the absorption spectra of 2H-WSe{sub 2} layered crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S.Y. [Department of Electrical Engineering, Tung Fang Institute of Technology, Hunei Township, Kaohsiung County 82941 (China); Lee, Y.C. [Department of Electronic Engineering, Research Center for Micro/Nano Technology, Tung Nan Institute of Technology, Shen-Keng, Taipei 22202 (China); Shen, J.L.; Chen, K.W. [Department of Physics, Chung Yuan Christian University, Chung-Li, Tao-Yuan 32023 (China); Huang, Y.S. [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607 (China)

    2007-07-15

    Urbach's rule and steepness parameter of 2H-WSe{sub 2} layered crystals have been studied via the absorption spectra from the photoconductivity (PC) measurements in the temperature range of 15-300 K. From the analysis of the temperature-dependent band gap with Varshni semi-empirical equation, the Debye temperature was estimated as 160 K while the Einstein temperature was around 125 K from the Einstein oscillator model. The effective phonon energy was estimated successfully from the temperature dependence of the Urbach energy extracted from the PC spectra and the value was found out to be well correlated to the active E{sub 1g} mode observed in the Raman spectra of 2H-WSe{sub 2}. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Donor-related optical absorption spectra in GaAs-(Ga,Al)As quantum wells: hydrostatic pressure effects

    International Nuclear Information System (INIS)

    Lopez, S.Y.; Duque, C.A.; Porras-Montenegro, N.

    2004-01-01

    Full text: Donor-related optical-absorption spectra for GaAs-(Ga,Al)As quantum wells under hydrostatic pressure are investigated. A variational procedure in the e effective-mass approximation is used in order to obtain binding energies and wave functions. As a general feature, we observe that the binding energy increases with the pressure and with the decreasing of the width of the well. The pressure-related Γ-X crossover has been taken into account in the whole calculation. For the low-pressure regime we observe a linear binding energy behavior, whereas for high pressure the main effect associated with the height of the barrier is the bending of the binding energy curves towards smaller values. Two special structures in the density of impurity states and in the donor-related optical-absorption spectra are observed: an edge associated with transitions involving impurities at the center of the well and a peak associated with transitions related to impurities at the edges of the quantum well. Also, we observe shifts to higher energies of the density of impurity states as a function of the binding energy, as well as changes in the intensity with a red shift of the absorption effect with the hydrostatic pressure. (author)

  20. In vivo determination of the absorption and scattering spectra of the human prostate during photodynamic therapy

    Science.gov (United States)

    Finlay, Jarod C.; Zhu, Timothy C.; Dimofte, Andreea; Stripp, Diana C. H.; Malkowicz, S. B.; Whittington, Richard; Miles, Jeremy; Glatstein, Eli; Hahn, Stephen M.

    2004-06-01

    A continuing challenge in photodynamic therapy is the accurate in vivo determination of the optical properties of the tissue being treated. We have developed a method for characterizing the absorption and scattering spectra of prostate tissue undergoing PDT treatment. Our current prostate treatment protocol involves interstitial illumination of the organ via cylindrical diffusing optical fibers (CDFs) inserted into the prostate through clear catheters. We employ one of these catheters to insert an isotropic white light point source into the prostate. An isotropic detection fiber connected to a spectrograph is inserted into a second catheter a known distance away. The detector is moved along the catheter by a computer-controlled step motor, acquiring diffuse light spectra at 2 mm intervals along its path. We model the fluence rate as a function of wavelength and distance along the detector"s path using an infinite medium diffusion theory model whose free parameters are the absorption coefficient μa at each wavelength and two variables A and b which characterize the reduced scattering spectrum of the form μ"s = Aλ-b. We analyze our spectroscopic data using a nonlinear fitting algorithm to determine A, b, and μa at each wavelength independently; no prior knowledge of the absorption spectrum or of the sample"s constituent absorbers is required. We have tested this method in tissue simulating phantoms composed of intralipid and the photosensitizer motexafin lutetium (MLu). The MLu absorption spectrum recovered from the phantoms agrees with that measured in clear solution, and μa at the MLu absorption peak varies linearly with concentration. The ´"s spectrum reported by the fit is in agreement with the known scattering coefficient of intralipid. We have applied this algorithm to spectroscopic data from human patients sensitized with MLu (2 mg kg-1) acquired before and after PDT. Before PDT, the absorption spectra we measure include the characteristic MLu absorption

  1. Decoupling multimode vibrational relaxations in multi-component gas mixtures: Analysis of sound relaxational absorption spectra

    International Nuclear Information System (INIS)

    Zhang Ke-Sheng; Wang Shu; Zhu Ming; Ding Yi; Hu Yi

    2013-01-01

    Decoupling the complicated vibrational—vibrational (V—V) coupling of a multimode vibrational relaxation remains a challenge for analyzing the sound relaxational absorption in multi-component gas mixtures. In our previous work [Acta Phys. Sin. 61 174301 (2012)], an analytical model to predict the sound absorption from vibrational relaxation in a gas medium is proposed. In this paper, we develop the model to decouple the V—V coupled energy to each vibrational—translational deexcitation path, and analyze how the multimode relaxations form the peaks of sound absorption spectra in gas mixtures. We prove that a multimode relaxation is the sum of its decoupled single-relaxation processes, and only the decoupled process with a significant isochoric-molar-heat can be observed as an absorption peak. The decoupling model clarifies the essential processes behind the peaks in spectra arising from the multimode relaxations in multi-component gas mixtures. The simulation validates the proposed decoupling model. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Ultraviolet absorption spectra and kinetics of CH3S and CH2SH radicals

    DEFF Research Database (Denmark)

    Anastasi, C.; Broomfield, M.; Nielsen, O.J.

    1991-01-01

    The ultraviolet absorption spectra of CH3S and CH2SH radicals have been measured between 215 and 380 nm using the pulse-radiolysis/kinetic-absorption method. One absorption band between 250 and 300 nm and one around 215 nm have been tentatively assigned to the CH2SH and CH3S radicals, respectively....... This spectrum has been used to measure the self-reaction rates of these radicals. Rate constants of 4 x 10(-11) and 7 x 10(-11) cm3 molecule-1 s-1 have been measured at 298 K for CH3S and CH2SH recombination, respectively. The possible reaction pathways are discussed....

  3. Upper limits for stratospheric H2O2 and HOCl from high resolution balloon-borne infrared solar absorption spectra

    Science.gov (United States)

    Larsen, J. C.; Rinsland, C. P.; Goldman, A.; Murcray, D. G.; Murcray, F. J.

    1985-01-01

    Solar absorption spectra from two stratospheric balloon flights have been analyzed for the presence of H2O2 and HOCl absorption in the 1230.0 to 1255.0 per cm region. The data were recorded at 0.02 per cm resolution during sunset with the University of Denver interferometer system on October 27, 1978 and March 23, 1981. Selected spectral regions were analyzed with the technique of nonlinear least squares spectral curve fitting. Upper limits of 0.33 ppbv for H2O2 and 0.36 ppbv for HOCl near 28 km are derived from the 1978 flight data while upper limits of 0.44 ppbv for H2O2 and 0.43 ppbv for HOCl at 29.5 km are obtained from the 1981 flight data.

  4. Plant phenolics and absorption features in vegetation reflectance spectra near 1.66 μm

    Science.gov (United States)

    Kokaly, Raymond F.; Skidmore, Andrew K

    2015-01-01

    Past laboratory and field studies have quantified phenolic substances in vegetative matter from reflectance measurements for understanding plant response to herbivores and insect predation. Past remote sensing studies on phenolics have evaluated crop quality and vegetation patterns caused by bedrock geology and associated variations in soil geochemistry. We examined spectra of pure phenolic compounds, common plant biochemical constituents, dry leaves, fresh leaves, and plant canopies for direct evidence of absorption features attributable to plant phenolics. Using spectral feature analysis with continuum removal, we observed that a narrow feature at 1.66 μm is persistent in spectra of manzanita, sumac, red maple, sugar maple, tea, and other species. This feature was consistent with absorption caused by aromatic C-H bonds in the chemical structure of phenolic compounds and non-hydroxylated aromatics. Because of overlapping absorption by water, the feature was weaker in fresh leaf and canopy spectra compared to dry leaf measurements. Simple linear regressions of feature depth and feature area with polyphenol concentration in tea resulted in high correlations and low errors (% phenol by dry weight) at the dry leaf (r2 = 0.95, RMSE = 1.0%, n = 56), fresh leaf (r2 = 0.79, RMSE = 2.1%, n = 56), and canopy (r2 = 0.78, RMSE = 1.0%, n = 13) levels of measurement. Spectra of leaves, needles, and canopies of big sagebrush and evergreens exhibited a weak absorption feature centered near 1.63 μm, short ward of the phenolic compounds, possibly consistent with terpenes. This study demonstrates that subtle variation in vegetation spectra in the shortwave infrared can directly indicate biochemical constituents and be used to quantify them. Phenolics are of lesser abundance compared to the major plant constituents but, nonetheless, have important plant functions and ecological significance. Additional research is needed to advance our understanding of the

  5. Calculation of emission and absorption spectra of LTE plasma by the STA [Super Transition Array] method

    International Nuclear Information System (INIS)

    Bar-Shalon, A.; Oreg, J.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations. The contribution of the transition array between two superconfigurations to a specific one-electron transition is then represented by a Gaussian whose moments are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the super configuration we use zeroeth order energies in the Boltzmann factor corrected by a super configuration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed 'UTA' structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. 4 refs., 9 figs

  6. Calculation of emission and absorption spectra of LTE plasma by the STA method

    International Nuclear Information System (INIS)

    Oreg, A.B.J.; Goldstein, W.H.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for LTE plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations to a specific one-electron transition is then represented by a Gaussian whose moments (total intensity, average energy and variance) are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the superconfiguration the authors use zeroeth order energies in the Boltzmann factor corrected by a superconfiguration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed UTA structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions. The authors also take into account orbital relaxation by calculating orbitals and energies for each superconfiguration in its own, optimized potential

  7. Calculation of emission and absorption spectra of LTE plasma by the STA (Super Transition Array) method

    Science.gov (United States)

    Bar-Shalon, A.; Oreg, J.; Goldstein, W. H.

    1991-01-01

    Recent improvements in the Super Transition Array (STA) method for calculating Bound-Bound (BB) and Bound-Free (BF) emission and absorption spectra for Laser Thermal Equilibrium (LTE) plasma are described and illustrated. The method accounts for all possible BB and BF radiative transitions in the plasma. Full detailed first order quantum relativistic treatment is used for calculating transition energies and probabilities. The enormous number of configurations are divided into sets of superconfigurations comprised of a collection of energetically grouped configurations. The contribution of the transition array between two superconfigurations to a specific one-electron transition is then represented by a Gaussian whose moments are calculated accurately using a technique that bypasses the necessity of direct summation over all the levels involved. The calculation of these moments involves the populations of the configurations given by their statistical weights and the Boltzmann factor. For each configuration within the super configuration zeroeth order energies are used in the Boltzmann factor corrected by a super configuration averaged first order term. The structure of the spectrum is increasingly revealed by splitting each STA into a number of smaller STAs. When the spectrum converges it describes the detailed UTA structure, where each configuration-to-configuration array is represented by a separate Gaussian with first order energy in the Boltzmann factor. Convergence is reached with only a few thousand STAs, at most, which makes the calculations practical. It should be pointed out that in this treatment the STA moments are obtained by summing over all level-to-level transitions, rather than configuration-to-configuration average transitions.

  8. Improved quantitative analysis of spectra using a new method of obtaining derivative spectra based on a singular perturbation technique.

    Science.gov (United States)

    Li, Zhigang; Wang, Qiaoyun; Lv, Jiangtao; Ma, Zhenhe; Yang, Linjuan

    2015-06-01

    Spectroscopy is often applied when a rapid quantitative analysis is required, but one challenge is the translation of raw spectra into a final analysis. Derivative spectra are often used as a preliminary preprocessing step to resolve overlapping signals, enhance signal properties, and suppress unwanted spectral features that arise due to non-ideal instrument and sample properties. In this study, to improve quantitative analysis of near-infrared spectra, derivatives of noisy raw spectral data need to be estimated with high accuracy. A new spectral estimator based on singular perturbation technique, called the singular perturbation spectra estimator (SPSE), is presented, and the stability analysis of the estimator is given. Theoretical analysis and simulation experimental results confirm that the derivatives can be estimated with high accuracy using this estimator. Furthermore, the effectiveness of the estimator for processing noisy infrared spectra is evaluated using the analysis of beer spectra. The derivative spectra of the beer and the marzipan are used to build the calibration model using partial least squares (PLS) modeling. The results show that the PLS based on the new estimator can achieve better performance compared with the Savitzky-Golay algorithm and can serve as an alternative choice for quantitative analytical applications.

  9. Retrieval of phytoplankton cell size from chlorophyll a specific absorption and scattering spectra of phytoplankton.

    Science.gov (United States)

    Zhou, Wen; Wang, Guifen; Li, Cai; Xu, Zhantang; Cao, Wenxi; Shen, Fang

    2017-10-20

    Phytoplankton cell size is an important property that affects diverse ecological and biogeochemical processes, and analysis of the absorption and scattering spectra of phytoplankton can provide important information about phytoplankton size. In this study, an inversion method for extracting quantitative phytoplankton cell size data from these spectra was developed. This inversion method requires two inputs: chlorophyll a specific absorption and scattering spectra of phytoplankton. The average equivalent-volume spherical diameter (ESD v ) was calculated as the single size approximation for the log-normal particle size distribution (PSD) of the algal suspension. The performance of this method for retrieving cell size was assessed using the datasets from cultures of 12 phytoplankton species. The estimations of a(λ) and b(λ) for the phytoplankton population using ESD v had mean error values of 5.8%-6.9% and 7.0%-10.6%, respectively, compared to the a(λ) and b(λ) for the phytoplankton populations using the log-normal PSD. The estimated values of C i ESD v were in good agreement with the measurements, with r 2 =0.88 and relative root mean square error (NRMSE)=25.3%, and relatively good performances were also found for the retrieval of ESD v with r 2 =0.78 and NRMSE=23.9%.

  10. Measurement of Gas and Aerosol Phase Absorption Spectra across the Visible and Near-IR Using Supercontinuum Photoacoustic Spectroscopy.

    Science.gov (United States)

    Radney, James G; Zangmeister, Christopher D

    2015-07-21

    We demonstrate a method to measure the absorption spectra of gas and aerosol species across the visible and near-IR (500 to 840 nm) using a photoacoustic (PA) spectrometer and a pulsed supercontinuum laser source. Measurements of gas phase absorption spectra were demonstrated using H2O(g) as a function of relative humidity (RH). The measured absorption intensities and peak shapes were able to be quantified and compared to spectra calculated using the 2012 High Resolution Transmission (HITRAN2012) database. Size and mass selected nigrosin aerosol was used to measure absorption spectra across the visible and near-IR. Spectra were measured as a function of aerosol size/mass and show good agreement to Mie theory calculations. Lastly, we measured the broadband absorption spectrum of flame generated soot aerosol at 5% and 70% RH. For the high RH case, we are able to quantifiably separate the soot and water absorption contributions. For soot, we observe an enhancement in the mass specific absorption cross section ranging from 1.5 at 500 nm (p < 0.01) to 1.2 at 840 nm (p < 0.2) and a concomitant increase in the absorption Ångström exponent from 1.2 ± 0.4 (5% RH) to 1.6 ± 0.3 (70% RH).

  11. Unfolding neutron spectra obtained from BS–TLD system using genetic algorithm

    International Nuclear Information System (INIS)

    Santos, J.A.L.; Silva, E.R.; Ferreira, T.A.E; Vilela, E.C.

    2012-01-01

    Due to the variability of neutron spectrum within the same environment, it is essential that the spectral distribution as a function of energy should be characterized. The precise information allows radiological quantities establishment related to that spectrum, but it is necessary that a spectrometric system covers a large interval of energy and an unfolding process is appropriate. This paper proposes use of a technique of Artificial Intelligence (AI) called genetic algorithm (GA), which uses bio-inspired mathematical models with the implementation of a specific matrix to unfolding data obtained from a combination of TLDs embedded in a BS system to characterize the neutron spectrum as a function of energy. The results obtained with this method were in accordance with reference spectra, thus enabling this technique to unfold neutron spectra with the BS–TLD system. - Highlights: ► The unfolding code used the artificial intelligence technique called genetic algorithms. ► A response matrix specific to the unfolding data obtained with the BS–TLD system is used by the AGLN. ► The observed results demonstrate the potential use of genetic algorithms in solving complex nuclear problems.

  12. Similarity analysis of spectra obtained via reflectance spectrometry in legal medicine.

    Science.gov (United States)

    Belenki, Liudmila; Sterzik, Vera; Bohnert, Michael

    2014-02-01

    In the present study, a series of reflectance spectra of postmortem lividity, pallor, and putrefaction-affected skin for 195 investigated cases in the course of cooling down the corpse has been collected. The reflectance spectrometric measurements were stored together with their respective metadata in a MySQL database. The latter has been managed via a scientific information repository. We propose similarity measures and a criterion of similarity that capture similar spectra recorded at corpse skin. We systematically clustered reflectance spectra from the database as well as their metadata, such as case number, age, sex, skin temperature, duration of cooling, and postmortem time, with respect to the given criterion of similarity. Altogether, more than 500 reflectance spectra have been pairwisely compared. The measures that have been used to compare a pair of reflectance curve samples include the Euclidean distance between curves and the Euclidean distance between derivatives of the functions represented by the reflectance curves at the same wavelengths in the spectral range of visible light between 380 and 750 nm. For each case, using the recorded reflectance curves and the similarity criterion, the postmortem time interval during which a characteristic change in the shape of reflectance spectrum takes place is estimated. The latter is carried out via a software package composed of Java, Python, and MatLab scripts that query the MySQL database. We show that in legal medicine, matching and clustering of reflectance curves obtained by means of reflectance spectrometry with respect to a given criterion of similarity can be used to estimate the postmortem interval.

  13. Exciton-Dominated Core-Level Absorption Spectra of Hybrid Organic–Inorganic Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Vorwerk, Christian [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Hartmann, Claudia [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Cocchi, Caterina [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy; Sadoughi, Golnaz [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Habisreutinger, Severin N. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Chemistry and Nanoscience Center, National Renewable Energy Laboratory (NREL), Golden, Colorado, United States; Félix, Roberto [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Wilks, Regan G. [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Snaith, Henry J. [Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom; Bär, Marcus [Renewable Energy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109 Berlin, Germany; Energy Materials In-Situ Laboratory Berlin (EMIL), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany; Draxl, Claudia [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, European Theoretical Spectroscopy

    2018-03-23

    In a combined theoretical and experimental work, we investigate X-ray absorption near-edge structure spectroscopy of the I L3 and the Pb M5 edges of the methylammonium lead iodide (MAPbI3) hybrid inorganic-organic perovskite and its binary phase PbI2. The absorption onsets are dominated by bound excitons with sizable binding energies of a few hundred millielectronvolts and pronounced anisotropy. The spectra of both materials exhibit remarkable similarities, suggesting that the fingerprints of core excitations in MAPbI3 are essentially given by its inorganic component, with negligible influence from the organic groups. The theoretical analysis complementing experimental observations provides the conceptual insights required for a full characterization of this complex material.

  14. Effect of Molar Concentration on Optical Absorption Spectra of ZnS:Mn Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ravi Sharma

    2010-01-01

    Full Text Available The present paper reports the synthesis and characterization of luminescent nanocrystals of manganese doped zinc sulphide. Nanocrystals of zinc sulphide were prepared by chemical precipitation method using the solution of zinc chloride, sodium sulphide, manganese chloride and mercaptoethanol was used as the capping agent. It was found that change in the molar concentration changes the particle size. The particle size of such nanocrystals was measured using XRD pattern and it is found to be in between 3 nm – 5 nm. The blue-shift in absorption spectra was found with reducing size of the nanoparticles

  15. Absorption spectra of thin films of triple compounds in the system RbIPbI2

    International Nuclear Information System (INIS)

    Yunakova, O.N.; Miloslavskij, V.K.; Ksenofontova, E.V.; Kovalenko, E.N.

    2012-01-01

    A formation of compounds RbPbI 3 and Rb 4 PbI 6 in the system RbI-PbI 2 is revealed and their absorption spectra are investigated in an energy interval 2-6 eV and a temperatures range 90-500 K. It is established that the low-frequency exciton excitations are localized in PbI 6 4- structural elements of the crystal lattice, they are classified as excitons of intermediate coupling and are of a three-dimensional character in RbPbI 3 and a quasi-two-dimensional one in Rb 4 PbI 6 .

  16. Absorption Spectra of CuGaSe2 and CuInSe2 Semiconducting Nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2015-10-01

    The structural and optical properties of the chalcopyrite CunGanSe2n and CunInnSe2n nanoclusters (n = 2, 4, 6, and 8) are investigated as a function of the size using a combination of basin-hopping global optimization and time-dependent density functional theory. Although the lowest energy structures are found to show almost random geometries, the band gaps and absorption spectra still are subject to systematic blue shifts for decreasing cluster size in the case of CunGanSe2n, indicating strong electron confinement. The applicability of the nanoclusters in photovoltaics is discussed. © 2015 American Chemical Society.

  17. The effect of dimethylsulfoxide on absorption and fluorescence spectra of aqueous solutions of acridine orange base.

    Science.gov (United States)

    Markarian, Shiraz A; Shahinyan, Gohar A

    2015-12-05

    The photophysical properties of aqueous solutions of acridine orange base (AOB) in wide concentration range of dimethylsulfoxide (DMSO) were studied by using absorption and steady-state fluorescence spectroscopy techniques at room temperature. The absorption spectrum of acridine orange in water shows two bands at 468 and 490 nm which were attributed to the dimer ((AOBH)2(2+)) and monomer (AOBH(+)) species respectively. In DMSO solution for the same AOB concentration only the basic form was detected with the band at 428 nm. The addition of DMSO to AOB aqueous solution leads to the decrease of absorption band at 490 nm and the new absorption band increases at 428 nm due to deprotonated (basic) form of AO and the first isosbestic point occurs at 450 nm. The evolution of isosbestic point reveals that an other equilibrium, due to the self-association of DMSO molecules takes place. From the steady-state fluorescence spectra Stokes shifts were calculated for AOB in aqueous and DMSO solutions. The addition of DMSO into the aqueous solution induced the enhancement in the fluorescence intensity of the dye compared to those in water. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    International Nuclear Information System (INIS)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-01-01

    Quantitative mid-IR absorption spectra (2500-3400 cm -1 ) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 deg. C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm -1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm -1 resolution. High-resolution (0.1 cm -1 ), room-temperature measurements of neat hydrocarbons were made at low pressure (∼1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N 2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 o C for atmospheric-pressure measurements of hydrocarbon/N 2 mixtures (X hydrocarbon ∼0.06-1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement

  19. Temperature-dependent mid-IR absorption spectra of gaseous hydrocarbons

    Science.gov (United States)

    Klingbeil, Adam E.; Jeffries, Jay B.; Hanson, Ronald K.

    2007-10-01

    Quantitative mid-IR absorption spectra (2500 3400 cm-1) for 12 pure hydrocarbon compounds are measured at temperatures ranging from 25 to 500 °C using an FTIR spectrometer. The hydrocarbons studied are n-pentane, n-heptane, n-dodecane, 2,2,4-trimethyl-pentane (iso-octane), 2-methyl-butane, 2-methyl-pentane, 2,4,4-trimethyl-1-pentene, 2-methyl-2-butene, propene, toluene, m-xylene, and ethylbenzene. Room-temperature measurements of neat hydrocarbon vapor were made with an instrument resolution of both 0.1 and 1 cm-1 (FWHM) to confirm that the high-resolution setting was required only to resolve the propene absorption spectrum while the spectra of the other hydrocarbons could be resolved with 1 cm-1 resolution. High-resolution (0.1 cm-1), room-temperature measurements of neat hydrocarbons were made at low pressure (˜1 Torr, 133 Pa) and compared to measurements of hydrocarbon/N2 mixtures at atmospheric pressure to verify that no pressure broadening could be observed over this pressure range. The temperature was varied between 25 and 500 °C for atmospheric-pressure measurements of hydrocarbon/N2 mixtures (Xhydrocarbon˜0.06 1.5%) and it was found that the absorption cross section shows simple temperature-dependent behavior for a fixed wavelength over this temperature range. Comparisons with previous FTIR data over a limited temperature range and with high-resolution laser absorption data over a wide temperature range show good agreement.

  20. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z., E-mail: namezhangzhen@126.com [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Huang, J.; Geng, F.; Zhou, X.Y. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Feng, S.Q. [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Cheng, X.L., E-mail: chengxl@scu.edu.cn [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Jiang, X.D. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Wu, W.D. [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610000 (China); Zheng, W.G.; Tang, Y.J. [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-01-01

    Highlights: • Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. • As the energy density increases to 2.54 J/cm{sup 2}, the absorption intensity reaches to about 0.2. • The mechanism of two-photon ionization mainly plays a critical role at sub-damage site. • Intensity of Raman spectra is very high at low energy density and decreased with respect to high energy density. -- Abstract: Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm{sup 2}, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  1. The absorption spectra of Pu(VI), -(V) and -(IV) produced electrochemically in carbonate-bicarbonate media

    International Nuclear Information System (INIS)

    Wester, D.W.; Sullivan, J.C.

    1983-01-01

    Absorption spectra in carbonate and bicarbonate media have been measured for various oxidation states of plutonium. The oxidation state of plutonium was adjusted electrochemically (Pu(VI)-V), Esub(f)=+0.11 V vs. SCE) to avoid contamination by redox reagents. In carbonate medium the spectra of Pu(VI) and Pu(V) showed marked differences from the spectra of the same oxidation state in acidic solutions. In bicarbonate the spectra of Pu(VI) and Pu(IV) also differed from the corresponding spectra in acidic media. Reduction to Pu(III) resulted in a precipitate in both carbonate and bicarbonate media. (author)

  2. Role of non-Condon vibronic coupling and conformation change on two-photon absorption spectra of green fluorescent protein

    Science.gov (United States)

    Ai, Yuejie; Tian, Guangjun; Luo, Yi

    2013-07-01

    Two-photon absorption spectra of green fluorescent proteins (GFPs) often show a blue-shift band compared to their conventional one-photon absorption spectra, which is an intriguing feature that has not been well understood. We present here a systematic study on one- and two-photon spectra of GFP chromophore by means of the density functional response theory and complete active space self-consistent field (CASSCF) methods. It shows that the popular density functional fails to provide correct vibrational progression for the spectra. The non-Condon vibronic coupling, through the localised intrinsic vibrational modes of the chromophore, is responsible for the blue-shift in the TPA spectra. The cis to trans isomerisation can be identified in high-resolution TPA spectra. Our calculations demonstrate that the high level ab initio multiconfigurational CASSCF method, rather than the conventional density functional theory is required for investigating the essential excited-state properties of the GFP chromophore.

  3. Identifying Student and Teacher Difficulties in Interpreting Atomic Spectra Using a Quantum Model of Emission and Absorption of Radiation

    Science.gov (United States)

    Savall-Alemany, Francisco; Domènech-Blanco, Josep Lluís; Guisasola, Jenaro; Martínez-Torregrosa, Joaquín

    2016-01-01

    Our study sets out to identify the difficulties that high school students, teachers, and university students encounter when trying to explain atomic spectra. To do so, we identify the key concepts that any quantum model for the emission and absorption of electromagnetic radiation must include to account for the gas spectra and we then design two…

  4. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increas...

  5. Aprotic solvents effect on the UV-visible absorption spectra of bixin.

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-15

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0→S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Aprotic solvents effect on the UV-visible absorption spectra of bixin

    Science.gov (United States)

    Rahmalia, Winda; Fabre, Jean-François; Usman, Thamrin; Mouloungui, Zéphirin

    2014-10-01

    We describe here the effects of aprotic solvents on the spectroscopic characteristics of bixin. Bixin was dissolved in dimethyl sulfoxide, acetone, dichloromethane, ethyl acetate, chloroform, dimethyl carbonate, cyclohexane and hexane, separately, and its spectra in the resulting solutions were determined by UV-visible spectrophotometry at normal pressure and room temperature. We analyzed the effect of aprotic solvents on λmax according to Onsager cavity model and Hansen theory, and determined the approximate absorption coefficient with the Beer-Lambert law. We found that the UV-visible absorption spectra of bixin were found to be solvent dependent. The S0 → S2 transition energy of bixin in solution was dependent principally on the refractive index of the solvents and the bixin-solvent dispersion interaction. There was a small influence of the solvents dielectric constant, permanent dipole interaction and hydrogen bonding occurred between bixin and solvents. The absorbance of bixin in various solvents, with the exception of hexane, increased linearly with concentration.

  7. Fullerene-Based Photoactive Layers for Heterojunction Solar Cells: Structure, Absorption Spectra and Charge Transfer Process

    Directory of Open Access Journals (Sweden)

    Yuanzuo Li

    2014-12-01

    Full Text Available The electronic structure and optical absorption spectra of polymer APFO3, [70]PCBM/APFO3 and [60]PCBM/APFO3, were studied with density functional theory (DFT, and the vertical excitation energies were calculated within the framework of the time-dependent DFT (TD-DFT. Visualized charge difference density analysis can be used to label the charge density redistribution for individual fullerene and fullerene/polymer complexes. The results of current work indicate that there is a difference between [60]PCBM and [70]PCBM, and a new charge transfer process is observed. Meanwhile, for the fullerene/polymer complex, all calculations of the twenty excited states were analyzed to reveal all possible charge transfer processes in depth. We also estimated the electronic coupling matrix, reorganization and Gibbs free energy to further calculate the rates of the charge transfer and the recombination. Our results give a clear picture of the structure, absorption spectra, charge transfer (CT process and its influencing factors, and provide a theoretical guideline for designing further photoactive layers of solar cells.

  8. The electronic absorption spectra of some acyl azides. Molecular orbital treatment

    Science.gov (United States)

    Abu-Eittah, Rafie H.; Mohamed, Adel A.; Farag, A. M.; Al Omar, Ahmed M.

    2008-06-01

    The electronic absorption spectra of benzoyl azide and its derivatives: p-methyl, p-methoxy, p-chloro and p-nitrobenzoyl azide were investigated in different solvents. The observed spectra differ basically from the electronic spectra of aryl azides or alkyl azides. Four intense π-π * transitions were observed in the accessible UV region of the spectrum of each of the studied compounds. The contribution of charge transfer configurations to the observed transitions is rather weak. Shift of band maximum with solvent polarity is minute. On the other hand, band intensity is highly dependent on the solvent used. The observed transitions are delocalized rather than localized ones as in the case with aryl and alkyl azides. The attachment of the C dbnd O group to the azide group in acyl azides has a significant effect on the electronic structure of the molecule. The arrangements as well as energies of the molecular orbitals are different in acyl azides from those in aryl azides. The first electronic transition in phenyl azide is at 276 nm, whereas that of bezoyle azide is at 251 nm. Ab initio molecular orbital calculations using both RHF/6-311G* and B3LYP/6-31+G * levels were carried out on the ground states of the studied compounds. The wave functions of the excited states were calculated using the CIS and the AM1-CI procedures.

  9. Plastocyanin conformation: an analysis of its near ultraviolet absorption and circular dichroic spectra

    International Nuclear Information System (INIS)

    Draheim, J.E.; Anderson, G.P.; Duane, J.W.; Gross, E.L.

    1986-01-01

    The near-ultraviolet absorption and circular dichroic spectra of plastocyanin are dependent upon the redox state, solution pH, and ammonium sulfate concentration. This dependency was observed in plastocyanin isolated from spinach, poplar, and lettuce. Removal of the copper atom also perturbed the near-ultraviolet spectra. Upon reduction there are increases in both extinction and ellipticity at 252 nm. Further increases at 252 nm were observed upon formation of apo plastocyanin eliminating charge transfer transitions as the cause. The spectral changes in the near-ultraviolet imply a flexible tertiary conformation for plastocyanin. There are at least two charge transfer transitions at ∼295-340 nm. One of these transitions is sensitive to low pH's and is attributed to the His 87 copper ligand. The redox state dependent changes observed in the near-ultraviolet spectra of plastocyanin are attenuated either by decreasing the pH to 5 or by increasing the ammonium sulfate concentration to 2.7 M. This attenuation cannot be easily explained by simple charge screening. Hydrophobic interactions probably play an important role in this phenomenon. The pH and redox state dependent conformational changes may play an important role in regulating electron transport

  10. Absorption, phosphorescence and Raman spectra of IrQ(ppy){sub 2} organometallic compound

    Energy Technology Data Exchange (ETDEWEB)

    Polosan, Silviu, E-mail: silv@infim.ro [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Ciobotaru, Iulia Corina [National Institute of Materials Physics, R-77125 Bucharest-Magurele (Romania); Tsuboi, Taiju [Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 603-8555 (Japan)

    2015-07-15

    The absorption and photoluminescence (PL) spectra, PL decays, Raman spectrum, cyclic voltammetry (CV) and nuclear magnetic resonance of heteroleptic Ir-compound IrQ(ppy){sub 2} compound with two phenylpyridine (ppy) ligands and one quinoline (Q) ligand have been investigated experimentally and theoretically. Two very weak absorption bands due to the transitions to the triplet states are found at about 560 and 595 nm in IrQ(ppy){sub 2} doped in CH{sub 2}Cl{sub 2} solution. IrQ(ppy){sub 2} exhibits a dual emission of red and green phosphorescence bands. The red emission intensity is much higher than the green one in IrQ(ppy){sub 2} powder, but much lower than the green one in lightly IrQ(ppy){sub 2}-doped CH{sub 2}Cl{sub 2} solution and PMMA film. The intensity ratio of the red emission to the green emission, however, is observed to increase with increasing the IrQ(ppy){sub 2} concentration in CH{sub 2}Cl{sub 2} solution and PMMA film. The enhancement of the red emission is suggested to be caused by the Forester energy transfer from Ir-ppy component to Ir–Q components between two neighboring IrQ(ppy){sub 2} molecules. The HOMO energy is estimated to be −4.865 eV from the CV measurement, which is close to the HOMO energy of −4.844 eV calculated using the time dependent density function theory (TD-DFT). The LUMO energy is estimated as −2.856 eV from the HOMO energy and the long-wavelength absorption edge found at 617 nm in the absorption spectrum. The absorption spectrum of IrQ(ppy){sub 2} is calculated by the TD-DFT. Discussion is given on a deviation of the calculated spectrum from the measured spectrum. - Graphical abstract: Display Omitted - Highlights: • IrQ(ppy){sub 2} has red and green emissions of different ratio between film and solution. • Intensity ratio of red to green emissions increases with IrQ(ppy){sub 2} concentration. • Enhancement of red emission is due to energy transfer in two neighboring IrQ(ppy){sub 2}. • Lowest-energy absorption

  11. The absorption- and luminescence spectra of Mn3+ in beryl and vesuvianite

    Science.gov (United States)

    Czaja, Maria; Lisiecki, Radosław; Chrobak, Artur; Sitko, Rafał; Mazurak, Zbigniew

    2017-12-01

    The electron absorption-, photoluminescence- and electron paramagnetic-resonance spectra of Mn3+ in red beryl from Wah Wah Mountains (Utah USA) and of pink- and purple vesuvianite from Jeffrey Mine (Asbestos, Canada) were measured at room- and low temperatures. The crystal field stabilization energies are equal to 130.9 kJ/mol for the red beryl, and 151.5-158.0 and 168.0 kJ/mol for for the pink- and the purple vesuvianite, respectively. The red photoluminescence of Mn3+ was not intensive either at room- or at low temperatures. The high Mn content in the crystals caused the emergence of an additional emission band and short photoluminescence-decay lifetimes. The latter are only 183 μs for beryl and 17 μs for vesuvianite.

  12. Error reduction in retrievals of atmospheric species from symmetrically measured lidar sounding absorption spectra.

    Science.gov (United States)

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2014-10-20

    We report new methods for retrieving atmospheric constituents from symmetrically-measured lidar-sounding absorption spectra. The forward model accounts for laser line-center frequency noise and broadened line-shape, and is essentially linearized by linking estimated optical-depths to the mixing ratios. Errors from the spectral distortion and laser frequency drift are substantially reduced by averaging optical-depths at each pair of symmetric wavelength channels. Retrieval errors from measurement noise and model bias are analyzed parametrically and numerically for multiple atmospheric layers, to provide deeper insight. Errors from surface height and reflectance variations are reduced to tolerable levels by "averaging before log" with pulse-by-pulse ranging knowledge incorporated.

  13. Specific absorption spectra of hemoglobin at different PO2 levels: potential noninvasive method to detect PO2 in tissues.

    Science.gov (United States)

    Liu, Peipei; Zhu, Zhirong; Zeng, Changchun; Nie, Guang

    2012-12-01

    Hemoglobin (Hb), as one of main components of blood, has a unique quaternary structure. Its release of oxygen is controlled by oxygen partial pressure (PO2). We investigate the specific spectroscopic changes in Hb under different PO2 levels to optimize clinical methods of measuring tissue PO2. The transmissivity of Hb under different PO2 levels is measured with a UV/Vis fiber optic spectrometer. Its plotted absorption spectral curve shows two high absorption peaks at 540 and 576 nm and an absorption valley at 560 nm when PO2 is higher than 100 mm Hg. The two high absorption peaks decrease gradually with a decrease in PO2, whereas the absorption valley at 560 nm increases. When PO2 decreases to approximately 0 mm Hg, the two high absorption peaks disappear completely, while the absorption valley has a hypochromic shift (8 to 10 nm) and forms a specific high absorption peak at approximately 550 nm. The same phenomena can be observed in visible reflectance spectra of finger-tip microcirculation. Specific changes in extinction coefficient and absorption spectra of Hb occur along with variations in PO2, which could be used to explain pathological changes caused by tissue hypoxia and for early detection of oxygen deficiency diseases in clinical monitoring.

  14. Source brightness fluctuation correction of solar absorption fourier transform mid infrared spectra

    Directory of Open Access Journals (Sweden)

    T. Ridder

    2011-06-01

    Full Text Available The precision and accuracy of trace gas observations using solar absorption Fourier Transform infrared spectrometry depend on the stability of the light source. Fluctuations in the source brightness, however, cannot always be avoided. Current correction schemes, which calculate a corrected interferogram as the ratio of the raw DC interferogram and a smoothed DC interferogram, are applicable only to near infrared measurements. Spectra in the mid infrared spectral region below 2000 cm−1 are generally considered uncorrectable, if they are measured with a MCT detector. Such measurements introduce an unknown offset to MCT interferograms, which prevents the established source brightness fluctuation correction. This problem can be overcome by a determination of the offset using the modulation efficiency of the instrument. With known modulation efficiency the offset can be calculated, and the source brightness correction can be performed on the basis of offset-corrected interferograms. We present a source brightness fluctuation correction method which performs the smoothing of the raw DC interferogram in the interferogram domain by an application of a running mean instead of high-pass filtering the corresponding spectrum after Fourier transformation of the raw DC interferogram. This smoothing can be performed with the onboard software of commercial instruments. The improvement of MCT spectra and subsequent ozone profile and total column retrievals is demonstrated. Application to InSb interferograms in the near infrared spectral region proves the equivalence with the established correction scheme.

  15. Investigation of absorption spectra of Gafchromic EBT2 film's components and their impact on UVR dosimetry

    Science.gov (United States)

    Aydarous, Abdulkadir

    2016-05-01

    The absorption spectra of the EBT2 film's components were investigated in conjunction with its use for UVA dosimetry. The polyester (topside) and adhesive layers of the EBT2 film have been gently removed. Gafchromic™ EBT2 films with and without the protected layers (polyester and adhesive) were exposed to UVR of 365 nm for different durations. Thereafter, the UV-visible spectra were measured using a UV-visible spectrophotometer (Model Spectro Dual Split Beam, UVS-2700). Films were digitized using a Nikon CanoScan 9000F Mark II flatbed scanner. The dosimetric characteristics including film's uniformity, reproducibility and post-irradiation development were investigated. The color development of EBT2 and new modified EBT2 (EBT2-M) films irradiated with UVA was relatively stable (less than 1%) immediately after exposure. Based on this study, the sensitivity of EBT2 to UVR with wavelength between ~350 nm and ~390 nm can significantly be enhanced if the adhesive layer (~25 μm) is removed. The polyester layer plays almost no part on absorbing UVR with wavelength between ~320 nm and ~390 nm. Furthermore, various sensitivities for the EBT2-M film has been established depending on the wavelength of analysis.

  16. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

    Directory of Open Access Journals (Sweden)

    Porta A.

    2016-01-01

    Full Text Available Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland using Total Absorption Spectroscopy (TAS. TAS is complementary to techniques based on Germanium detectors. It implies the use of a calorimeter to measure the total gamma intensity de-exciting each level in the daughter nucleus providing a direct measurement of the beta feeding. In these proceedings we present preliminary results for 93Rb, our measured beta feedings for 92Rb and we show the impact of these results on reactor antineutrino spectra and decay heat calculations.

  17. Time-Dependent Density Functional Calculations of Ligand K-Edge X-Ray Absorption Spectra

    Energy Technology Data Exchange (ETDEWEB)

    DeBeer George, S.; /SLAC, SSRL; Petrenko, T.; Neese, F.

    2007-07-10

    X-ray absorption spectra (XAS) at the Cl and S K edge and Mo L edge have been calculated at the TDDFT level for a series of dioxomolybdenum complexes LMoO{sub 2}X (L = hydrotris(3,5-dimethyl-1-pyrazolyl)borate, X = Cl, SCH{sub 2}Ph, OPh), which play an important role in modeling the catalytic cycle of the sulfite oxidase enzyme. Also, the XAS spectra of model molecules of the Mo complexes have been simulated and interpreted in terms of the Mo 4d orbital splitting, in order to find possible correlations with the spectral pattern of the complexes. Comparison with the available experimental data allows us to assess the performances of the present computational scheme to describe the core excitations in large bioinorganic systems. The theoretical interpretation of the spectral features of both the metal and ligand core excitations in terms of the oscillator strength distribution provides important insight into the covalency of the metal-ligand bond.

  18. DFT study of the effect of substituents on the absorption and emission spectra of Indigo

    Directory of Open Access Journals (Sweden)

    Cervantes-Navarro Francisco

    2012-07-01

    Full Text Available Abstract Background Theoretical analyses of the indigo dye molecule and its derivatives with Chlorine (Cl, Sulfur (S, Selenium (Se and Bromine (Br substituents, as well as an analysis of the Hemi-Indigo molecule, were performed using the Gaussian 03 software package. Results Calculations were performed based on the framework of density functional theory (DFT with the Becke 3- parameter-Lee-Yang-Parr (B3LYP functional, where the 6-31 G(d,p basis set was employed. The configuration interaction singles (CIS method with the same basis set was employed for the analysis of excited states and for the acquisition of the emission spectra. Conclusions The presented absorption and emission spectra were affected by the substitution position. When a hydrogen atom of the molecule was substituted by Cl or Br, practically no change in the absorbed and emitted energies relative to those of the indigo molecule were observed; however, when N was substituted by S or Se, the absorbed and emitted energies increased.

  19. Insights into the physics and chemistry of chalcogenides obtained from x-ray absorption spectroscopy

    Science.gov (United States)

    Kolobov, Alexander V.; Fons, Paul

    2017-12-01

    In this review, after a brief description of the underlying principles of x-ray absorption spectroscopy, we describe the results that enable one to obtain fundamental new insights into the rich physics and chemistry of chalcogenides. We start with chalcogenide glasses taking the readers from the structure of amorphous selenium and confined single Se chains and carry on to photo-induced structural changes. We subsequently describe application of EXAFS to monolayers of transition-metal dichalcogenides. The review is concluded by the results that were seminal to understand the phase-transition mechanism in so-called phase-change alloys that are widely used in optical and non-volatile memory devices. We place special accent on the conclusions that were only possible to draw based on the local nature of x-ray absorption spectroscopy.

  20. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium:. [The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Angstrom broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Angstroms) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the xstar code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N(sub H) = 1.38 +/- 0.01 × 10(exp 21) cm(exp -2); an ionization parameter of log xi = -2.70 +/- 0.023; an oxygen abundance of A(sub O) = 0.689 (+0.015/-0.010); and ionization fractions of O(sub I)/O = 0.911, O(sub II)/O = 0.077, and O(sub III)/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse & Sauval, a rescaling with the revision by Asplund et al. yields A(sub O) = 0.952(+0.020/-0.013), a value close to solar that reinforces the new standard.We identify several atomic absorption lines-K(alpha), K(beta), and K(gamma) in O(sub I) and O(sub II) and K(alpha) in O(sub III), O(sub VI), and O(sub VII)-the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated with ISM cold absorption.

  1. Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium: The Chandra Grating Spectra of XTE J1817-330

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Menodza, C.; Kallman, T. R.; Witthoeft, M.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra towards the X-ray low-mass binary XTE J1817-330. The 11-25 A broadband is described with a simple absorption model that takes into account the pileup effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 A) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain: a column density of N(sub H) = 1.38 +/- 0.01 x 10(exp 21) cm(exp -2); ionization parameter of log xi = .2.70 +/- 0.023; oxygen abundance of A(sub O) = 0.689(exp +0.015./-0.010); and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval (1998), a rescaling with the revision by Asplund et al. (2009) yields A(sub O) = 0.952(exp +0.020/-0.013, a value close to solar that reinforces the new standard. We identify several atomic absorption lines.K-alpha , K-beta, and K-gamma in O I and O II; and K-alpha in O III, O VI, and O VII--last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n greater than 2 associated to ISM cold absorption.

  2. PHOTOIONIZATION MODELING OF OXYGEN K ABSORPTION IN THE INTERSTELLAR MEDIUM: THE CHANDRA GRATING SPECTRA OF XTE J1817-330

    International Nuclear Information System (INIS)

    Gatuzz, E.; Mendoza, C.; García, J.; Lohfink, A.; Kallman, T. R.; Witthoeft, M.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    We present detailed analyses of oxygen K absorption in the interstellar medium (ISM) using four high-resolution Chandra spectra toward the X-ray low-mass binary XTE J1817-330. The 11-25 Å broadband is described with a simple absorption model that takes into account the pile-up effect and results in an estimate of the hydrogen column density. The oxygen K-edge region (21-25 Å) is fitted with the physical warmabs model, which is based on a photoionization model grid generated with the XSTAR code with the most up-to-date atomic database. This approach allows a benchmark of the atomic data which involves wavelength shifts of both the K lines and photoionization cross sections in order to fit the observed spectra accurately. As a result we obtain a column density of N H = 1.38 ± 0.01 × 10 21 cm –2 ; an ionization parameter of log ξ = –2.70 ± 0.023; an oxygen abundance of A O = 0.689 +0.015 -0.010 ; and ionization fractions of O I/O = 0.911, O II/O = 0.077, and O III/O = 0.012 that are in good agreement with results from previous studies. Since the oxygen abundance in warmabs is given relative to the solar standard of Grevesse and Sauval, a rescaling with the revision by Asplund et al. yields A O =0.952 +0.020 -0.013 , a value close to solar that reinforces the new standard. We identify several atomic absorption lines—Kα, Kβ, and Kγ in O I and O II and Kα in O III, O VI, and O VII—the last two probably residing in the neighborhood of the source rather than in the ISM. This is the first firm detection of oxygen K resonances with principal quantum numbers n > 2 associated with ISM cold absorption.

  3. Computing the Absorption and Emission Spectra of 5-Methylcytidine in Different Solvents: A Test-Case for Different Solvation Models.

    Science.gov (United States)

    Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R

    2016-09-13

    The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.

  4. Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods

    Science.gov (United States)

    Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.

    2018-02-01

    In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.

  5. Excited S 1 state dipole moments of nitrobenzene and p-nitroaniline from thermochromic effect on electronic absorption spectra

    Science.gov (United States)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-11-01

    The effect of temperature on the absorption spectra of nitrobenzene (NB) and p-nitroaniline (NA) in 1,2-dichloroethane was studied for temperature ranging from 295 K to 378 K and from 296 K to 408 K, respectively. With temperature increase the absorption bands of both compounds are blue shifted, which is caused by the decrease of permittivity ɛ and refractive index n. From the band shifts and by using the Bilot and Kawski theory [ L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621] the dipole moments in the excited singlet state μe = 6.59 D of NB and μe = 13.35 D of NA were determined. The influence of polarizability α, the Onsager cavity radius a and dipole moment in the ground state μg on the determined values of μe are discussed. A comparison of the obtained μe values with those of other authors is given. In the case of p-NA a strong intramolecular charge transfer (ICT) was confirmed.

  6. Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-04

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9723 Equilibrium Structures and Absorption Spectra for SixOy-nH2O Molecular...19b. TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and...1 Calculation of Absorption Spectra using DFT ……………………………………………..…..….2 DFT Calculation of Equilibrium

  7. Nanometer-scale local probing of X-ray absorption spectra of Co/Pt multilayer film

    Science.gov (United States)

    Quach, Duy-Truong; Pham, Duc-Thang; Handoko, Djati; Shim, Je-Ho; Eon Kim, Dong; Lee, Kyung-Min; Jeong, Jong-Ryul; Kim, Namdong; Shin, Hyun-Joon; Kim, Dong-Hyun

    2018-03-01

    We report our local X-ray absorption spectra (XAS) measurement mapping for a Co/Pt multilayer using scanning transmission microscopy with 25-nm spatial resolution and 0.1-eV spectral resolution. We have systematically analyzed the two-dimensional XAS intensity variation over the corresponding magnetic domain patterns, revealing a XAS profile across the magnetic domain wall as well as the simultaneous high-throughput measurement of local XAS spectra.

  8. Site-selective excitation and polarized absorption and emission spectra of trivalent thulium and erbium in strontium fluorapatite

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, J.B. [Department of Physics, San Jose State University, San Jose, California 95192-0106 (United States); Wright, A.O.; Seltzer, M.D. [Research and Technology Division, Naval Air Warfare Center, Code 474230D, China Lake, California 93555-6001 (United States); Zandi, B.; Merkle, L.D. [IR Optics Technology OFC, Army Research Laboratory, Ft. Belvoir, Virginia 22060-5838 (United States); Hutchinson, J.A. [Night Vision and Electronics Sensors Directorate, The United States Army, Ft. Belvoir, Virginia 22060-5806 (United States); Morrison, C.A. [Army Research Laboratory, Adelphi, Maryland 20783-1145 (United States); Allik, T.H. [Science Applications International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102 (United States); Chai, B.H. [Center for Research on Electro-optics and Lasers, University of Central Florida, Orlando, Florida 32836 (United States)

    1997-05-01

    Polarized fluorescence spectra produced by site-selective excitation and conventional polarized absorption spectra were obtained for Tm{sup 3+} and Er{sup 3+} ions individually incorporated into single crystals of strontium fluorapatite, Sr{sub 5}(PO{sub 4}){sub 3}F. Substitution of the trivalent rare earth ion for divalent strontium was achieved by passive charge compensation during Czochralski growth of the fluorapatite crystals. Spectra were obtained between 1780 and 345 nm at temperatures from 4 K to room temperature on crystals having the hexagonal structure [P6{sub 3}/m(C{sub 6h}{sup 2})]. The polarized fluorescence spectra due to transitions from multiplet manifolds of Tm{sup 3+}(4f{sup 12}), including {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} to manifolds {sup 3}H{sub 6} (the ground-state manifold), {sup 3}F{sub 4}, {sup 3}H{sub 5}, {sup 3}H{sub 4}, and {sup 3}F{sub 3} were analyzed for the details of the crystal-field splitting of the manifolds. Fluorescence lifetimes were measured for Tm{sup 3+} transitions from {sup 1}D{sub 2}, {sup 1}G{sub 4}, and {sup 3}H{sub 4} at room temperature and from {sup 1}G{sub 4} at 16 K. Results of the analysis indicate that the majority of Tm{sup 3+} ions occupy sites having C{sub s} symmetry. A point-charge lattice-sum calculation was made in which the crystal-field components, A{sub nm}, were determined assuming that trivalent thulium replaces divalent strontium in the metal site having C{sub s} symmetry. Results support the conclusion that the nearest-neighbor fluoride (F{sup {minus}}) is replaced by divalent oxygen (O{sup 2{minus}}), thus preserving overall charge neutrality and local symmetry. Crystal-field splitting calculations predict energy levels in agreement with experimental data. By varying the crystal-field parameters, B{sub nm}, we obtained a rms difference of 7cm{sup {minus}1} between 43 calculated and experimental Stark levels for Tm{sup 3+}(4f{sup 12}) in Tm:SFAP. (Abstract Truncated)

  9. UV absorption spectra and kinetics for alkyl and alkyl peroxy radicals originating from di-tert-butyl ether

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Sehested, J.; Langer, S.

    1995-01-01

    Alkyl, (CH3)(3)COC(CH3)(2)CH2, and alkyl peroxy, (CH3)(3)COC(CH3)(2)CH2O2, radicals from di-tert-butyl ether (DTBE), have been studied in the gas phase at 296 K. A pulse radiolysis UV absorption technique was used to measure the spectra and kinetics. Absorption cross sections were quantified over...

  10. Solvent effect on UV/Vis absorption and emission spectra in aqueous solution based on a modified form of solvent reorganization energy

    Science.gov (United States)

    Ren, HaiSheng; Ming, MeiJun; Zhu, Jun; Ma, JianYi; Li, XiangYuan

    2013-09-01

    In this Letter, novel form of solvatochromic shifts for absorption and emission spectra are proposed. As a typical test, the lowest transitions of s-trans-acrolein in aqueous solution are investigated. The obtained absorption solvent shift of 0.22 eV is in good agreement with the experimental value of 0.20 eV. In addition, we predict emission solvent shift of -0.16 eV. This value seems more reasonable comparing with the value of -0.12 eV by the traditional theory. The contributions to the shift are discussed and electrostatic polarization components are found to be crucial for electronic spectra of acrolein in water.

  11. Synthesis and investigation of solvent effects on the ultraviolet absorption spectra of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones

    Directory of Open Access Journals (Sweden)

    NATASA V. VALENTIC

    2001-08-01

    Full Text Available A number of 5-substituted-4-methyl-3-cyano-6-hydroxy-2-pyridones from cyanoacetamide and the corresponding alkyl ethyl acetoacetates were synthesized according to modified literature procedures. The alkyl ethyl acetoacetates were obtained by the reaction of C-alkylation of ethyl acetoacetate. An investigation of the reaction conditions for the synthesis of 4-methyl-3-cyano-6-hydroxy-2-pyridone from cyanoacetamide and ethyl acetoacetate in eight different solvents was also performed. The ultraviolet absorption spectra of synthesized pyridones were measured in nine different solvents in the range 200–400 nm. The effects of solvent polarity and hydrogen bonding on the absorption spectra are interpreted by means of linear solvation energy relationships using a general equation of the form n = n0 + sp* + aa + bb, where p* is a measure of the solvent polarity, a is the scale of the solvent hydrogen bond donor acidities and b is the scale of the solvent hydrogen bond acceptor basicities.

  12. Simultaneous measurement of quantum yield ratio and absorption ratio between acceptor and donor by linearly unmixing excitation-emission spectra.

    Science.gov (United States)

    Zhang, C; Lin, F; DU, M; Qu, W; Mai, Z; Qu, J; Chen, T

    2018-02-13

    Quantum yield ratio (Q A /Q D ) and absorption ratio (K A /K D ) in all excitation wavelengths used between acceptor and donor are indispensable to quantitative fluorescence resonance energy transfer (FRET) measurement based on linearly unmixing excitation-emission spectra (ExEm-spFRET). We here describe an approach to simultaneously measure Q A /Q D and K A /K D values by linearly unmixing the excitation-emission spectra of at least two different donor-acceptor tandem constructs with unknown FRET efficiency. To measure the Q A /Q D and K A /K D values of Venus (V) to Cerulean (C), we used a wide-field fluorescence microscope to image living HepG2 cells separately expressing each of four different C-V tandem constructs at different emission wavelengths with 435 nm and 470 nm excitation respectively to obtain the corresponding excitation-emission spectrum (S DA ). Every S DA was linearly unmixed into the contributions (weights) of three excitation-emission spectra of donor (W D ) and acceptor (W A ) as well as donor-acceptor sensitisation (W S ). Plot of W S /W D versus W A /W D for the four C-V plasmids from at least 40 cells indicated a linear relationship with 1.865 of absolute intercept (Q A /Q D ) and 0.273 of the reciprocal of slope (K A /K D ), which was validated by quantitative FRET measurements adopting 1.865 of Q A /Q D and 0.273 of K A /K D for C32V, C5V, CVC and VCV constructs respectively in living HepG2 cells. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  13. Molecular-orbital studies via satellite-free x-ray fluorescence: Cl K absorption and K--valence-level emission spectra of chlorofluoromethanes

    International Nuclear Information System (INIS)

    Perera, R.C.C.; Cowan, P.L.; Lindle, D.W.; LaVilla, R.E.; Jach, T.; Deslattes, R.D.

    1991-01-01

    X-ray absorption and emission measurements in the vicinity of the chlorine K edge of the three chlorofluoromethanes have been made using monochromatic synchrotron radiation as the source of excitation. By selectively tuning the incident radiation to just above the Cl 1s single-electron ionization threshold for each molecule, less complex x-ray-emission spectra are obtained. This reduction in complexity is attributed to the elimination of multielectron transitions in the Cl K shell, which commonly produce satellite features in x-ray emission. The resulting ''satellite-free'' x-ray-emission spectra exhibit peaks due only to electrons in valence molecular orbitals filling a single Cl 1s vacancy. These simplified emission spectra and the associated x-ray absorption spectra are modeled using straightforward procedures and compared with semiempirical ground-state molecular-orbital calculations. Good agreement is observed between the present experimental and theoretical results for valence-orbital energies and those obtained from ultraviolet photoemission, and between relative radiative yields determined both experimentally and theoretically in this work

  14. C IV Broad Absorption Line Variability in QSO Spectra from SDSS Surveys

    Directory of Open Access Journals (Sweden)

    Demetra De Cicco

    2017-12-01

    Full Text Available Broad absorption lines (BALs in the spectra of quasi-stellar objects (QSOs are thought to arise from outflowing winds along our line of sight; winds, in turn, are thought to originate from the accretion disk, in the very surroundings of the central supermassive black hole (SMBH, and they likely affect the accretion process onto the SMBH, as well as galaxy evolution. BALs can exhibit variability on timescales typically ranging from months to years. We analyze such variability and, in particular, BAL disappearance, with the aim of investigating QSO physics and structure. We search for disappearing C IV BALs in the spectra of 1,319 QSOs from different programs from the Sloan Digital Sky Survey (SDSS; the analyzed time span covers 0.28–4.9 year (rest frame, and the source redshifts are in the range 1.68–4.27. This is to date the largest sample ever used for such a study. We find 67 sources (5.1-0.6+0.7% of the sample with 73 disappearing BALs in total (3.9-0.5+0.5% of the total number of C iv BALs detected; some sources have more than one BAL that disappears. We compare the sample of disappearing BALs to the whole sample of BALs, and investigate the correlation in the variability of multiple troughs in the same spectrum. We also derive estimates of the average lifetime of a BAL trough and of the BAL phase along our line of sight.

  15. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    Science.gov (United States)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) < 0.1/m) spectrophotometric a(sub CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  16. Biogeochemical origins of particles obtained from the inversion of the volume scattering function and spectral absorption in coastal waters

    Directory of Open Access Journals (Sweden)

    X. Zhang

    2013-09-01

    Full Text Available In the aquatic environment, particles can be broadly separated into phytoplankton (PHY, non-algal particle (NAP and dissolved (or very small particle, VSP fractions. Typically, absorption spectra are inverted to quantify these fractions, but volume scattering functions (VSFs can also be used. Both absorption spectra and VSFs were used to estimate particle fractions for an experiment in the Chesapeake Bay. A complete set of water inherent optical properties was measured using a suite of commercial instruments and a prototype Multispectral Volume Scattering Meter (MVSM; the chlorophyll concentration, [Chl] was determined using the HPLC method. The total scattering coefficient measured by an ac-s and the VSF at a few backward angles measured by a HydroScat-6 and an ECO-VSF agreed with the LISST and MVSM data within 5%, thus indicating inter-instrument consistency. The size distribution and scattering parameters for PHY, NAP and VSP were inverted from measured VSFs. For the absorption inversion, the "dissolved" absorption spectra were measured for filtrate passing through a 0.2 μm filter, whereas [Chl] and NAP absorption spectra were inverted from the particulate fraction. Even though the total scattering coefficient showed no correlation with [Chl], estimates of [Chl] from the VSF-inversion agreed well with the HPLC measurements (r = 0.68, mean relative errors = −20%. The scattering associated with NAP and VSP both correlated well with the NAP and "dissolved" absorption coefficients, respectively. While NAP dominated forward, and hence total, scattering, our results also suggest that the scattering by VSP was far from negligible and dominated backscattering. Since the sizes of VSP range from 0.02 to 0.2 μm, covering (a portion of the operationally defined "dissolved" matter, the typical assumption that colored dissolved organic matter (i.e., CDOM does not scatter may not hold, particularly in a coastal or estuarine environment.

  17. Transient absorption and luminescence spectra of K9 glass at sub-damage site by ultraviolet laser irradiation

    Science.gov (United States)

    Zhang, Z.; Huang, J.; Geng, F.; Zhou, X. Y.; Feng, S. Q.; Cheng, X. L.; Jiang, X. D.; Wu, W. D.; Zheng, W. G.; Tang, Y. J.

    2014-01-01

    Transient absorption and luminescence spectra at sub-damage site of K9 glass by laser irradiation at 355 nm are presented. The dependence of transient absorption on laser energy and number of pulses was investigated. As the energy density increases to 2.54 and 3.18 J/cm2, the transient absorption intensity reaches to about 0.20 range from 400 to 480 nm. With the increase of number of pulses the process of residual absorption appears, which can be used to explain the fatigue effect of K9 glass. The defects in K9 glass were investigated by fluorescence and Raman spectra. The fluorescence band centered at about 410 nm is attributed to oxygen deficiency centers. The mechanism of two-photon ionization plays a critical role at sub-damage site. Compared to the Raman spectra of pristine site, intensity of Raman spectra is very high at a lower energy density, while it decreased at a higher energy density.

  18. CALCULATION OF MAGNETIC-X-RAY DICHROISM IN 4D AND 5D ABSORPTION-SPECTRA OF ACTINIDES

    NARCIS (Netherlands)

    OGASAWARA, H; KOTANI, A; THOLE, BT

    1991-01-01

    We present atomic calculations of the magnetic dichroism in 4d and 5d x-ray-absorption (XAS) spectra of trivalent actinide ions. The calculations are carried out for both linearly and circularly polarized light at zero temperature. Large magnetic dichroism is predicted for 5d XAS with

  19. Hierarchy of stochastic Schrödinger equation towards the calculation of absorption and circular dichroism spectra

    Science.gov (United States)

    Ke, Yaling; Zhao, Yi

    2017-05-01

    A theoretically solid and numerically exact method is presented for the calculation of absorption and circular dichroism (CD) spectra of molecular aggregates immersed in a harmonic bath constituted as the combination of some prominent quantized vibrational modes and continuous overdamped Brownian oscillators. The feasibility and the validity of newly proposed method are affirmed in the analytical monomer spectra. To go beyond the independent local bath approximation, all the correlations of site energy fluctuations and excitonic coupling fluctuations are included in our strategy, and their influence on the absorption and CD spectra is investigated based on the Frenkel exciton model of homodimer. In the end, a good fit of the absorption and part of CD spectra for the entire B800-B850 ring in the light-harvesting complexes 2 of purple bacteria to the experimental data is given, and the simulation results suggest that the asymmetry in the 800 nm region of CD spectra is actually an indication of B800-B850 inter-ring coupling.

  20. Artificial intelligence applied to the automatic analysis of absorption spectra. Objective measurement of the fine structure constant

    Science.gov (United States)

    Bainbridge, Matthew B.; Webb, John K.

    2017-06-01

    A new and automated method is presented for the analysis of high-resolution absorption spectra. Three established numerical methods are unified into one `artificial intelligence' process: a genetic algorithm (Genetic Voigt Profile FIT, gvpfit); non-linear least-squares with parameter constraints (vpfit); and Bayesian model averaging (BMA). The method has broad application but here we apply it specifically to the problem of measuring the fine structure constant at high redshift. For this we need objectivity and reproducibility. gvpfit is also motivated by the importance of obtaining a large statistical sample of measurements of Δα/α. Interactive analyses are both time consuming and complex and automation makes obtaining a large sample feasible. In contrast to previous methodologies, we use BMA to derive results using a large set of models and show that this procedure is more robust than a human picking a single preferred model since BMA avoids the systematic uncertainties associated with model choice. Numerical simulations provide stringent tests of the whole process and we show using both real and simulated spectra that the unified automated fitting procedure out-performs a human interactive analysis. The method should be invaluable in the context of future instrumentation like ESPRESSO on the VLT and indeed future ELTs. We apply the method to the zabs = 1.8389 absorber towards the zem = 2.145 quasar J110325-264515. The derived constraint of Δα/α = 3.3 ± 2.9 × 10-6 is consistent with no variation and also consistent with the tentative spatial variation reported in Webb et al. and King et al.

  1. Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N

    Science.gov (United States)

    Muramatsu, Yasuji

    Theoretical B K, C K and N K x-ray emission/absorption spectra of three possible graphitic-structured BC2N clusters are predicted based on the B2p-, C2p-, and N2p- density-of-states (DOS) calculated by discrete variational (DV)-X[alpha] molecular orbital calculations. Several prominent differences in DOS spectral features among BC2Ns, h-BN, and graphite are confirmed from comparison of calculated B2p-, C2p-, and N2p-DOS spectra. These variations in the spectra allow BC2N structures to be positively identified by high-resolution x-ray emission/absorption spectroscopy in the B K, C K, and N K regions.

  2. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    Science.gov (United States)

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  3. Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions

    Energy Technology Data Exchange (ETDEWEB)

    Peng Yajing; Wang Yinghui; Yang Yanqiang, E-mail: yqyang@hit.edu.c [Harbin Institute of Technology, Center for Condensed Matter Science and Technology, Department of Physics (China); Dlott, Dana D., E-mail: dlott@illinois.ed [University of Illinois at Urbana-Champaign, School of Chemical Sciences (United States)

    2010-03-15

    Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed 'structural energetic materials' that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al{sub 2}O{sub 3}, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550-1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.

  4. Simulation of the absorption spectra of nanometallic Al particles with core-shell structure: size-dependent interband transitions

    Science.gov (United States)

    Peng, Yajing; Wang, Yinghui; Yang, Yanqiang; Dlott, Dana D.

    2010-03-01

    Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed "structural energetic materials" that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al2O3, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550-1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.

  5. Optical-absorption spectra associated with shallow donor impurities in GaAs-(Ga,Al)As quantum-dots

    International Nuclear Information System (INIS)

    Silva Valencia, J.

    1995-08-01

    The binding energy of a hydrogenic donor impurity and the optical-absorption spectra associated with transitions between the n=1 valence level and the donor-impurity band were calculated for infinite barrier-well spherical GaAs-(Ga,Al)As quantum-dots of different radii, using the effective mass approximation within a variational scheme. An absorption peak associated with transitions involving impurities at the center of the well and a peak related with impurities at the edge of the dot were the main features observed for the different radii of the dots considered in the calculations. Also as a result of the higher electronic confinement in a quantum- dot, we found a much wider energy range of the absorption spectra when compared to infinite GaAs-(Ga,Al)As quantum-wells and quantum-well wires of width and diameter comparable to the diameter of the quantum dot. (author). 13 refs, 3 figs

  6. Influence of TiO2 Nanocrystals Fabricating Dye-Sensitized Solar Cell on the Absorption Spectra of N719 Sensitizer

    Directory of Open Access Journals (Sweden)

    Puhong Wen

    2012-01-01

    Full Text Available The absorption spectra of N719 sensitizer anchored on the films prepared by TiO2 nanocrystals with different morphology and size were investigated for improving the performance of dye-sensitized solar cell (DSC. We find that the morphology and size of TiO2 nanocrystals can affect the UV-vis and FT-IR spectra of the sensitizer anchored on their surfaces. In particular, the low-energy metal-to-ligand charge-transfer transitions (MLCT band in the visible absorption spectra of N719 is strongly affected, and locations of these MLCT bands revealed larger differences. The results indicate that there is a red shift of MLCT band in the spectra obtained by using TiO2 nanocrystals with long morphology and large size compared to that in solution. And it produced a larger red-shift on the MLCT band after TiO2 nanocrystals with small size mixed with some long nanocrystals. Accordingly, the utilization rate to visible light is increased. This is a reason why the DSC prepared by using such film as a photoelectrode has better performance than before mixing.

  7. Infrared absorption spectra of gaseous HD. II. Collision-induced fundamental band of HD in HD--Ne and HD--Ar mixtures at room temperature

    International Nuclear Information System (INIS)

    Prasad, R.D.G.; Reddy, S.P.

    1976-01-01

    The collision-induced infrared absorption spectra of the fundamental band of HD in binary mixtures of HD with Ne and Ar at room temperature have been studied with an absorption path length of 105.2 cm for different base densities of HD in the range 8--20 amagat and a number of total gas densities up to 175 amagat. The observed features of the profiles of the enhancement of absorption in these mixtures resemble closely those of the corresponding profiles of the fundamental band of H 2 in binary mixtures with Ne and Ar. The binary absorption coefficients of the band obtained from the measured integrated intensities are (1.84 +- 0.06) x 10 -35 and (4.41 +- 0.06) x 10 -35 cm 6 s -1 for HD--Ne and HD--Ar, respectively. The characteristic half-width parameters, delta/subd/ and delta/subc/ of the overlap transitions and delta/subq/ (and delta/subq//sub prime/) of the quadrupolar transitions, are obtained from an analysis of the profiles of the enhancement of absorption in both these mixtures. The quantity delta/subc/ which is the half-width of the intercollisional interference dip of the Q branch increases with the density of the perturbing gas Ne or Ar, and for HD--Ne it varies in a manner similar to that for HD--He as described in Paper I of this series

  8. Comparison of x-ray absorption spectra between water and ice: New ice data with low pre-edge absorption cross-section

    Energy Technology Data Exchange (ETDEWEB)

    Sellberg, Jonas A.; Nilsson, Anders [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden); SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Kaya, Sarp [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Segtnan, Vegard H. [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Nofima AS, N-1430 Ås (Norway); Chen, Chen [SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Tyliszczak, Tolek [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ogasawara, Hirohito; Nordlund, Dennis [Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, P.O. Box 20450, Stanford, California 94309 (United States); Pettersson, Lars G. M. [Department of Physics, AlbaNova University Center, Stockholm University, S-106 91 Stockholm (Sweden)

    2014-07-21

    The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF{sub 2}(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed.

  9. Testing Accretion Disk Wind Models of Broad Absorption Line Quasars with SDSS Spectra

    Science.gov (United States)

    Lindgren, Sean; Gabel, Jack

    2017-06-01

    We present an investigation of a large sample of broad absorption line (BAL) quasars (QSO) from the Sloan Digital Sky Survey (SDSS) Data Release 5 (DR5). Properties of the BALs, such as absorption equivalent width, outflow velocities, and depth of BAL, are obtained from analysis by Gibson et al. We perform correlation analysis on these data to test the predictions made by the radiation driven, accretion disk streamline model of Murray and Chiang. We find the CIV BAL maximum velocity and the continuum luminosity are correlated, consistent with radiation driven models. The mean minimum velocity of CIV is lower in low ionization BALs (LoBALs), than highly ionized BALs (HiBALS), suggesting an orientation effect consistent with the Murray and Chiang model. Finally, we find that HiBALs greatly outnumber LoBALs in the general BAL population, supporting prediction of the Murray and Chiang model that HiBALs have a greater global covering factor than LoBALs.

  10. How to remove the influence of trace water from the absorption spectra of SWNTs dispersed in ionic liquids

    Science.gov (United States)

    Zhang, Daqi

    2011-01-01

    Summary Single-walled carbon nanotubes (SWNTs) can be efficiently dispersed in the imidazolium-based ionic liquids (ILs), at relatively high concentration, with their intrinsic structure and properties retained. Due to the hygroscopicity of the ILs, water bands may be introduced in the absorption spectra of IL-dispersed SWNTs and cause problems in spectral deconvolution and further analysis. In order to remove this influence, a quantitative characterization of the trace water in [BMIM]+[PF6]− and [BMIM]+[BF4]− was carried out by means of UV–vis-NIR absorption spectroscopy. A simple yet effective method involving spectral subtraction of the water bands was utilized, and almost no difference was found between the spectra of the dry IL-dispersed SWNT samples treated under vacuum for 10 hours and the spectra of the untreated samples with subtraction of the pure water spectrum. This result makes it more convenient to characterize SWNTs with absorption spectra in the IL-dispersion system, even in the presence of trace amount of water. PMID:22003471

  11. Electronic Absorption Spectra of Tetrapyrrole-Based Pigments via TD-DFT: A Reduced Orbital Space Study.

    Science.gov (United States)

    Shrestha, Kushal; Virgil, Kyle A; Jakubikova, Elena

    2016-07-28

    Tetrapyrrole-based pigments play a crucial role in photosynthesis as principal light absorbers in light-harvesting chemical systems. As such, accurate theoretical descriptions of the electronic absorption spectra of these pigments will aid in the proper description and understanding of the overall photophysics of photosynthesis. In this work, time-dependent density functional theory (TD-DFT) at the CAM-B3LYP/6-31G* level of theory is employed to produce the theoretical absorption spectra of several tetrapyrrole-based pigments. However, the application of TD-DFT to large systems with several hundreds of atoms can become computationally prohibitive. Therefore, in this study, TD-DFT calculations with reduced orbital spaces (ROSs) that exclude portions of occupied and virtual orbitals are pursued as a viable, computationally cost-effective alternative to conventional TD-DFT calculations. The effects of reducing orbital space size on theoretical spectra are qualitatively and quantitatively described, and both conventional and ROS results are benchmarked against experimental absorption spectra of various tetrapyrrole-based pigments. The orbital reduction approach is also applied to a large natural pigment assembly that comprises the principal light-absorbing component of the reaction center in purple bacteria. Overall, we find that TD-DFT calculations with proper and judicious orbital space reductions can adequately reproduce conventional, full orbital space, TD-DFT results of all pigments studied in this work.

  12. Electronic absorption spectra of rare earth (III) species in NaCl-2CsCl eutectic based melts

    Science.gov (United States)

    Volkovich, V. A.; Ivanov, A. B.; Yakimov, S. M.; Tsarevskii, D. V.; Golovanova, O. A.; Sukhikh, V. V.; Griffiths, T. R.

    2016-09-01

    Electronic absorption spectra of ions of trivalent rare earth elements were measured in the melts based on NaCl-2CsCl eutectic in the wavelength ranges of 190-1350 and 1450-1700 nm. The measurements were performed at 550-850 °C. The EAS of Y, La, Ce and Lu containing melts have no absorption bands in the studied regions. For the remaining REEs (Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) the absorption bands in the EAS were assigned to the corresponding f-f electron transitions. The Stark effect was observed for Yb(III) F5/2 excited state. Increasing temperature leads to decreasing intensity of the absorption bands, except for the bands resulting from hypersensitive transitions. Beer's law was confirmed up to 0.4 M solutions of REE.

  13. Vibrational, X-ray absorption, and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California

    Science.gov (United States)

    Majzlan, Juraj; Alpers, Charles N.; Bender Koch, Christian; McCleskey, R. Blaine; Myneni, Satish B.C.; Neil, John M.

    2014-01-01

    The Iron Mountain Mine Superfund site in California is a prime example of an acid mine drainage (AMD) system with well developed assemblages of sulfate minerals typical for such settings. Here we present and discuss the vibrational (infrared), X-ray absorption, and Mössbauer spectra of a number of these phases, augmented by spectra of a few synthetic sulfates related to the AMD phases. The minerals and related phases studied in this work are (in order of increasing Fe2O3/FeO): szomolnokite, rozenite, siderotil, halotrichite, römerite, voltaite, copiapite, monoclinic Fe2(SO4)3, Fe2(SO4)3·5H2O, kornelite, coquimbite, Fe(SO4)(OH), jarosite and rhomboclase. Fourier transform infrared spectra in the region 750–4000 cm−1 are presented for all studied phases. Position of the FTIR bands is discussed in terms of the vibrations of sulfate ions, hydroxyl groups, and water molecules. Sulfur K-edge X-ray absorption near-edge structure (XANES) spectra were collected for selected samples. The feature of greatest interest is a series of weak pre-edge peaks whose position is determined by the number of bridging oxygen atoms between Fe3+ octahedra and sulfate tetrahedra. Mössbauer spectra of selected samples were obtained at room temperature and 80 K for ferric minerals jarosite and rhomboclase and mixed ferric–ferrous minerals römerite, voltaite, and copiapite. Values of Fe2+/[Fe2+ + Fe3+] determined by Mössbauer spectroscopy agree well with those determined by wet chemical analysis. The data presented here can be used as standards in spectroscopic work where spectra of well-characterized compounds are required to identify complex mixtures of minerals and related phases.

  14. Ultrafast Time-Resolved Emission and Absorption Spectra of meso-Pyridyl Porphyrins upon Soret Band Excitation Studied by Fluorescence Up-Conversion and Transient Absorption Spectroscopy.

    Science.gov (United States)

    Venkatesh, Yeduru; Venkatesan, M; Ramakrishna, B; Bangal, Prakriti Ranjan

    2016-09-08

    thermally equilibrated Qx state by vibrational cooling/relaxations of excess energy within solvent. This relaxed Qx state decays to ground as well as triplet state by 7-8 ns time scale. The femtosecond transient absorption studies of TpyPs in three different excitations at S2 (400 nm), Qy (515 nm), and Qx (590 nm) along with extensive global and target model analysis of TA data exclusively generate the true spectra of each excited species/state with their respective lifetimes along with microscopic rate constants associated with each state. The following five exponential components with lifetime values of 65-70 fs, ∼0.3-0.5 ps, ∼20 ± 2 ps, ∼7 ± 1 ns, and 1-2 μs are observed which are associated with S2, Qy, hot Qx, thermally relaxed Qx, and lowest triplet (T1) states, respectively, when excited at S2, and four (Qy, hot Qx, thermally relaxed Qx, and lowest triplet (T1) states) and three (hot Qx, thermally relaxed Qx, and lowest triplet (T1) states) states are obtained when excited at 515 nm (Qy) and 590 nm (Qx), respectively, as expected. The TA results parallel the fluorescence up-conversion studies, and both the results not only compliment each other but also unveil the ultrafast internal conversion from S2 to Qy, S2 to Qx, and Qy to Qx for all three isomers in a similar fashion with nearly equal characteristic decay times.

  15. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  16. XMM-Newton Survey of Local O VII Absorption Lines in the Spectra of Galactic X-Ray Sources

    Science.gov (United States)

    Luo, Yang; Fang, Taotao; Ma, Renyi

    2018-04-01

    The detection of highly ionized metal absorption lines in the X-ray spectra of the Galactic X-ray binaries (XRBs) implies the distribution of hot gas along the sightline toward the background sources. However, the origin of this hot gas is still unclear: it can arise in the hot interstellar medium (ISM), or is intrinsic to the XRBs. In this paper, we present an XMM-Newton survey of the O VII absorption lines in the spectra of Galactic XRBs. A total of 33 XRBs were selected, with 29 low-mass XRBs and 4 high-mass XRBs. At a more than 3σ threshold, O VII absorption line was detected in 16 targets, among which 4 were newly discovered in this work. The average line equivalent width is centered around ∼20 mÅ. Additionally, we do not find strong correlations between the O VII EWs and the Galactic neutral absorption N H, the Galactic coordinates, or the distance of background targets. Such non-correlation may suggest contamination of the circumstellar material, or a lack of constraints on the line Doppler-b parameter. We also find that regardless of the direction of the XRBs, the O VII absorption lines are always detected when the flux of the background XRBs reaches a certain level, suggesting a uniform distribution of this hot gas. We estimate a ratio of 0.004–0.4 between the hot and neutral phases of the ISM. This is the second paper in the series following Fang et al. (2015), in which we focused on the local O VII absorption lines detected in the background AGN spectra. Detailed modeling of the hot ISM distribution will be investigated in a future paper.

  17. Compact characterization of liquid absorption and emission spectra using linear variable filters integrated with a CMOS imaging camera.

    Science.gov (United States)

    Wan, Yuhang; Carlson, John A; Kesler, Benjamin A; Peng, Wang; Su, Patrick; Al-Mulla, Saoud A; Lim, Sung Jun; Smith, Andrew M; Dallesasse, John M; Cunningham, Brian T

    2016-07-08

    A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated. Quantitative detection of fluorescence emission down to 0.28 nM for quantum dot dispersions and 32 ng/mL for near-infrared dyes has been demonstrated on a single platform over a wide spectral range, as well as an absorption-based water quality test, showing the versatility of the system across liquid solutions for different emission and absorption bands. Comparison with a commercially available portable spectrometer and an optical spectrum analyzer shows our system has an improved signal-to-noise ratio and acceptable spectral resolution for discrimination of emission spectra, and characterization of colored liquid's absorption characteristics generated by common biomolecular assays. This simple, compact, and versatile analysis platform demonstrates a path towards an integrated optical device that can be utilized for a wide variety of applications in point-of-use testing and point-of-care diagnostics.

  18. Absorption spectra of trapped holes in anatase TiO2

    DEFF Research Database (Denmark)

    Zawadzki, Pawel

    2013-01-01

    absorption spectroscopy (TAS), but the understanding of the optical absorption due to trapped carriers in TiO2 is incomplete. On the basis of the generalized Δ self-consistent field density functional theory (Δ-SCF DFT) calculations, we attribute the experimentally observed absorption band at 430-550 nm...

  19. CIRCUMSTELLAR MOLECULAR LINE ABSORPTION AND EMISSION IN THE OPTICAL-SPECTRA OF POST-AGB STARS

    NARCIS (Netherlands)

    BAKKER, EJ; LAMERS, HJGLM; WATERS, LBFM; SCHOENMAKER, T

    We present a list of post-AGB stars showing molecular line absorption and emission in the optical spectrum. Two objects show CH+, one in emission and one in absorption, and 10 stars show C-2 and CN in absorption. The Doppler velocities of the C-2 lines and the rotational temperatures indicate that

  20. Remote Raman spectra of benzene obtained from 217 meters using a single 532 nm laser pulse.

    Science.gov (United States)

    Chen, Teng; Madey, John M J; Price, Frank M; Sharma, Shiv K; Lienert, Barry

    2007-06-01

    This report describes a mobile Raman lidar system that has been developed for spectral measurements of samples located remotely at ranges of hundreds of meters. The performance of this system has been quantitatively verified in a lidar calibration experiment using a hard target of standardized reflectance. A new record in detection range was achieved for remote Raman systems using 532 nm laser excitation. Specifically, Raman spectra of liquid benzene were measured with an integration time corresponding to a single 532 nm laser pulse at a distance of 217 meters. The single-shot Raman spectra at 217 meters demonstrated high signal-to-noise ratio and good resolution sufficient for the unambiguous identification of the samples of interest. The transmitter consists of a 20 Hz Nd:YAG laser emitting at 532 nm and 1064 nm and a 178 mm telescope through the use of which allows the system to produce a focused beam at the target location. The receiver consists of a large custom telescope (609 mm aperture) and a Czerny-Turner monochromator equipped with two fast photomultiplier tubes.

  1. Vibrational absorption spectra from vibrational coupled cluster damped linear response functions calculated using an asymmetric Lanczos algorithm

    DEFF Research Database (Denmark)

    Thomsen, Bo; Hansen, Mikkel Bo; Seidler, Peter

    2012-01-01

    . The absorption spectrum can in this formulation be seen as a matrix function of the characteristic VCC Jacobian response matrix. The asymmetric matrix version of the Lanczos method is used to generate a tridiagonal representation of the VCC response Jacobian. Solving the complex response equations...... in the relevant Lanczos space provides a method for calculating the VCC damped response functions and thereby subsequently the absorption spectra. The convergence behaviour of the algorithm is discussed theoretically and tested for different levels of completeness of the VCC expansion. Comparison is made...... with results from the recently reported [P. Seidler, M. B. Hansen, W. Györffy, D. Toffoli, and O. Christiansen, J. Chem. Phys. 132, 164105 (2010)] vibrational configuration interaction damped response function calculated using a symmetric Lanczos algorithm. Calculations of IR spectra of oxazole, cyclopropene...

  2. L23 soft-x-ray emission and absorption spectra of Na

    International Nuclear Information System (INIS)

    Callcott, T.A.; Arakawa, E.T.; Ederer, D.L.

    1978-01-01

    The L 23 soft-x-ray emission (SXE) and soft-x-ray absorption (SXA) edges have been measured. The SXE edges were measured at temperatures between 85 and 380 K, and analyzed to obtain edge positions and widths. The widths increased from GAMMA/sub SXE/ = 100 meV at 85 K to 150 meV at 320 K and to 180 meV above the melting point at 380 K. Both SXE and SXA edges were measured at 100 K with the same spectrometer, and the data were analyzed to obtain values of the edge widths (GAMMA/sub SXE/ = 100 meV and GAMMA/sub SXA/ = 64 meV), of the many-body peaking parameter (α/sub SXE/ = 0.15 and α/sub SXA/ = 0.24), of the gap between the edges (E/sub g/ = 74 meV), and of the excess width of the emission edge [(ΔGAMMA) 2 = GAMMA 2 /sub SXE/ - GAMMA 2 /sub SXA/ = 5900 (meV) 2 ]. The values of E/sub g/ and (ΔGAMMA) 2 were used in the partial-lattice-relaxation theory of Almbladh to obtain a value of the core-hole lifetime broadening (GAMMA/sub 2p/ = 10 meV). We conclude that structure in the transition density of states, many-body effects, and lattice relaxation all have important effects on the edge structure, and suggest that rounding of the SXE edge by partial relaxation accounts for the smaller peaking parameter obtained from the SXE data as compared to the SXA data

  3. Polarized absorption spectra of aromatic radicals in stretched polymer film. 3. Radical ions of acridine and phenazine

    Energy Technology Data Exchange (ETDEWEB)

    Sekigucki, K.; Hiratsuka, H.; Tanizaki, Y.; Hatano, Y.

    1980-02-21

    Radical anions and cations of acridine and phenazine have been prepared in polymer film by ..gamma..-ray irradiation at 77 K. For the preparation of radical anions the sample was incorporated into polyethylene film by sec-butylamine, while for radical cations poly(vinyl chloride) film and sec-butyl chloride were used. Polarized absorption spectra of these radical ions have been measured in stretched polymer film and analyzed qualitatively in terms of molecular orbital calculations.

  4. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    Science.gov (United States)

    2016-06-03

    of Arsenic-Water Complexes Using Density Functional Theory June 3, 2016 Approved for public release; distribution is unlimited. L. Huang S.g... Density Functional Theory L. Huang, S.G. Lambrakos, A. Shabaev,1 and L. Massa2 Naval Research Laboratory, Code 6394 4555 Overlook Avenue, SW...absorption spectra for As-H2O complexes using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). DFT and TD-DFT can

  5. Time-resolved spectra of excited-state absorption in Er3+ doped YAlO3

    NARCIS (Netherlands)

    Pollnau, Markus; Heumann, E.; Huber, G.

    1992-01-01

    A pump- and probe-beam technique is used for measuring time-resolved excited-state absorption (ESA) and stimulated-emission (SE) spectra of Er3+ doped YAlO3. The Er3+ 4I15/2 -> 4F7/2 transition of the sample is excited at 488 nm by an excimer laser pumped dye laser. The ESA and SE of broadband xenon

  6. Communications: On artificial frequency shifts in infrared spectra obtained from centroid molecular dynamics: Quantum liquid water

    Science.gov (United States)

    Ivanov, Sergei D.; Witt, Alexander; Shiga, Motoyuki; Marx, Dominik

    2010-01-01

    Centroid molecular dynamics (CMD) is a popular method to extract approximate quantum dynamics from path integral simulations. Very recently we have shown that CMD gas phase infrared spectra exhibit significant artificial redshifts of stretching peaks, due to the so-called "curvature problem" imprinted by the effective centroid potential. Here we provide evidence that for condensed phases, and in particular for liquid water, CMD produces pronounced artificial redshifts for high-frequency vibrations such as the OH stretching band. This peculiar behavior intrinsic to the CMD method explains part of the unexpectedly large quantum redshifts of the stretching band of liquid water compared to classical frequencies, which is improved after applying a simple and rough "harmonic curvature correction."

  7. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. III. Exact stochastic path integral evaluation.

    Science.gov (United States)

    Moix, Jeremy M; Ma, Jian; Cao, Jianshu

    2015-03-07

    A numerically exact path integral treatment of the absorption and emission spectra of open quantum systems is presented that requires only the straightforward solution of a stochastic differential equation. The approach converges rapidly enabling the calculation of spectra of large excitonic systems across the complete range of system parameters and for arbitrary bath spectral densities. With the numerically exact absorption and emission operators, one can also immediately compute energy transfer rates using the multi-chromophoric Förster resonant energy transfer formalism. Benchmark calculations on the emission spectra of two level systems are presented demonstrating the efficacy of the stochastic approach. This is followed by calculations of the energy transfer rates between two weakly coupled dimer systems as a function of temperature and system-bath coupling strength. It is shown that the recently developed hybrid cumulant expansion (see Paper II) is the only perturbative method capable of generating uniformly reliable energy transfer rates and emission spectra across a broad range of system parameters.

  8. Research program in nuclear and solid state physics. [including pion absorption spectra and muon spin precession

    Science.gov (United States)

    1974-01-01

    The survey of negative pion absorption reactions on light and medium nuclei was continued. Muon spin precession was studied using an iron target. An impulse approximation model of the pion absorption process implied that the ion will absorb almost exclusively on nucleon pairs, single nucleon absorption being suppressed by energy and momentum conservation requirements. For measurements on both paramagnetic and ferromagnetic iron, the external magnetic field was supplied by a large C-type electromagnet carrying a current of about 100 amperes.

  9. Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein chromophore: Franck-Condon simulation

    Science.gov (United States)

    Huang, Tsung-wei; Yang, Ling; Zhu, Chaoyuan; Lin, Sheng Hsien

    2012-07-01

    Absorption and fluorescence spectra of the neutral and anionic green fluorescent protein (GFP) chromophore, namely p-hydroxybenzylideneimidazolidinone (p-HBDI), have been simulated using the Franck-Condon factors including inhomogeneous broadening of solvent effect. Ground and the first excited states were calculated by time dependent density functional theory with and without the polarizable continuum model environment. Simulated peak of the neutral/anionic p-HBDI at 380 nm (423 nm)/421 nm agrees with experiment value 370 nm (434 nm)/419 nm for absorption (fluorescence) spectrum. Simulated width of the neutral/anionic p-HBDI at 0.51 eV (0.54 eV)/0.57 eV agrees with experiment value 0.54 eV (0.66 eV)/0.56 eV for absorption (fluorescence) spectrum.

  10. Optical Absorption of Impurities and Defects in Semiconducting Crystals Electronic Absorption of Deep Centres and Vibrational Spectra

    CERN Document Server

    Pajot, Bernard

    2013-01-01

    This book outlines, with the help of several specific examples, the important role played by absorption spectroscopy in the investigation of deep-level centers introduced in semiconductors and insulators like diamond, silicon, germanium and gallium arsenide by high-energy irradiation, residual impurities, and defects produced during crystal growth. It also describes the crucial role played by vibrational spectroscopy to determine the atomic structure and symmetry of complexes associated with light impurities like hydrogen, carbon, nitrogen and oxygen, and as a tool for quantitative analysis of these elements in the materials.

  11. Quantitative determination of the intensities of known components in spectra obtained from surface analytical techniques

    International Nuclear Information System (INIS)

    Nelson, G.C.

    1984-01-01

    Linear least-squares methods have been used to quantitatively decompose experimental data obtained from surface analytical techniques into its separate components. The mathematical procedure for accomplishing this is described and examples are given of the use of this method with data obtained from Auger electron spectroscopy [both N(E) and derivative], x-ray photoelectron spectroscopy, and low energy ion scattering spectroscopy. The requirements on the quality of the data are discussed

  12. Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures

    International Nuclear Information System (INIS)

    Hiller, Sebastian; Wider, Gerhard; Etezady-Esfarjani, Touraj; Horst, Reto; Wuethrich, Kurt

    2005-01-01

    In large molecular structures, the magnetization of all hydrogen atoms in the solute is strongly coupled to the water magnetization through chemical exchange between solvent water and labile protons of macromolecular components, and through dipole-dipole interactions and the associated 'spin diffusion' due to slow molecular tumbling. In NMR experiments with such systems, the extent of the water polarization is thus of utmost importance. This paper presents a formalism that describes the propagation of the water polarization during the course of different NMR experiments, and then compares the results of model calculations for optimized water polarization with experimental data. It thus demonstrates that NMR spectra of large molecular structures can be improved with the use of paramagnetic spin relaxation agents which selectively enhance the relaxation of water protons, so that a substantial gain in signal-to-noise can be achieved. The presently proposed use of a relaxation agent can also replace the water flip-back pulses when working with structures larger than about 30 kDa. This may be a valid alternative in situations where flip-back pulses are difficult to introduce into the overall experimental scheme, or where they would interfere with other requirements of the NMR experiment

  13. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    CERN Document Server

    Gajek, Z; Antic-Fidancev, E

    1997-01-01

    Visible and infrared absorption measurements on the U sup 4 sup + ion in tetragonal zircon-type matrix beta-ThGeO sub 4 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm sup - sup 1. The free-ion parameters obtained for the model Hamiltonian, zeta 5f = 1809 cm sup - sup 1 , F sup 2 =43 065 cm sup - sup 1 , F sup 4 =38 977 cm sup - sup 1 and F sup 6 =24 391 cm sup - sup 1 , as well as the corresponding crystal-field parameters, B sub 0 sup 2 =-1790 cm sup - sup 1 , B sub 0 sup 4 =1200 cm sup - sup 1 , B sub 4 sup 4 =3260 cm sup - sup 1 , B sub 0 sup 6 =-3170 cm sup - sup 1 and B sub 4 sup 6 =990 cm sup - sup 1 , agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO sub 4. (author)

  14. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    Energy Technology Data Exchange (ETDEWEB)

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-02-16

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical.

  15. The IR Spectra, Molar Absorptivity, and Integrated Molar Absorptivity of the C76-D2 and C84-D2:22 Isomers

    Directory of Open Access Journals (Sweden)

    T. Jovanovic

    2017-01-01

    Full Text Available The FT-IR spectra of the stable C76 and C84 isomers of D2 symmetry, isolated by the new, advanced extraction and chromatographic methods and processes, were recorded by the KBr technique, over the relevant region from 400 to 2000 cm−1, at room temperature. All the observed infrared bands are in excellent agreement with the semiempirical QCFF/PI, DFT, and TB potential calculations for these fullerenes, which is presented in this article, as the evidence of their validity. The molar absorptivity ε and the integrated molar absorptivity ψ of their IR absorption bands were determined and reported together with the relative intensities. Excellent agreement is found between the relative intensities of the main and characteristic absorption maxima calculated from ελ and from the ψλ values in adequate integration ranges. These results are significant for the identification and quantitative determination of the C76-D2 and C84-D2:22 fullerenes, either in natural resources on Earth and in space or in artificially synthesized biomaterials, electronic, optical, and biomedical devices, sensors, polymers, optical limiters, solar cells, organic field effect transistors, special lenses, diagnostic and therapeutic agents, pharmaceutical substances in biomedical engineering, and so forth.

  16. ABSORPTION-SPECTRA OF HUMAN FETAL AND ADULT OXYHEMOGLOBIN, DE-OXYHEMOGLOBIN, CARBOXYHEMOGLOBIN, AND METHEMOGLOBIN

    NARCIS (Netherlands)

    ZIJLSTRA, WG; MEEUWSENVANDERROEST, WP

    We determined the millimolar absorptivities of the four clinically relevant derivatives of fetal and adult human hemoglobin in the visible and near-infrared spectral range (450-1000 nm). As expected, spectral absorption curves of similar shape were found, but the small differences between fetal and

  17. Direct In Situ Mass Specific Absorption Spectra of Biomass Burning Particles Generated from Smoldering Hard and Softwoods.

    Science.gov (United States)

    Radney, James G; You, Rian; Zachariah, Michael R; Zangmeister, Christopher D

    2017-05-16

    Particles from smoldering biomass burning (BB) represent a major source of carbonaceous aerosol in the terrestrial atmosphere. In this study, mass specific absorption spectra of laboratory-generated smoldering wood particles (SWP) from 3 hardwood and 3 softwood species were measured in situ. Absorption data spanning from λ = 500 to 840 nm were collected using a photoacoustic spectrometer coupled to a supercontinuum laser with a tunable wavelength and bandwidth filter. SWP were size- (electrical mobility) and mass-selected prior to optical characterization allowing data to be reported as mass-specific absorption cross sections (MAC). The median measured MAC at λ = 660 nm for smoldering oak particles was 1.1 (0.57/1.8) × 10 -2 m 2 g -1 spanning from 83 femtograms (fg) to 517 fg (500 nm ≤ mobility diameter ≤950 nm), MAC values in parentheses are the 16 th and 84 th percentiles of the measured data (i.e., 1σ). The collection of all six wood species (Oak, Hickory, Mesquite, Western redcedar, Baldcypress, and Blue spruce) had median MAC values ranging from 1.4 × 10 -2 m 2 g -1 to 7.9 × 10 -2 m 2 g -1 at λ = 550 nm with absorption Ångström exponents (AAE) between 3.5 and 6.2. Oak, Western redcedar, and Blue spruce possessed statistically similar (p > 0.05) spectra while the spectra of Hickory, Mesquite, and Baldcypress were distinct (p < 0.01) as calculated from a point-by-point analysis using the Wilcox rank-sum test.

  18. Correlation between Soft X-ray Absorption and Emission Spectra of the Nitrogen Atoms within Imidazolium-Based Ionic Liquids.

    Science.gov (United States)

    Horikawa, Yuka; Tokushima, Takashi; Takahashi, Osamu; Hoke, Hiroshi; Takamuku, Toshiyuki

    2016-08-04

    Soft X-ray absorption spectroscopy (XAS) has been performed on the N K-edge of two imidazolium-based ionic liquids (ILs), 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([C2mim][TFSA]) and 1-ethyl-3-methylimidazolium bromide ([C2mim][Br]), to clarify the electronic structures of the ILs. Soft X-ray emission spectroscopy (XES) has also been applied to the ILs by excitation at various X-ray energies according to the XAS spectra. It was possible to fully associate the XAS peaks with the XES peaks. Additionally, both XAS and XES spectra of the ILs were well reproduced by the theoretical spectra for a single-molecule model on [C2mim](+) and [TFSA](-) using density functional theory. The assignments for the XAS and XES peaks of the ILs were accomplished from both experimental and theoretical approaches. The theoretical XAS and XES spectra of [C2mim](+) and [TFSA](-) did not significantly depend on the conformations of the ions. The reproducibility of the theoretical spectra for the single-molecule model suggested that the interactions between the cations and anions are very weak in the ILs, thus scarcely influencing the electronic structures of the nitrogen atoms.

  19. Modeling optical properties of polymer-solvent complexes: the chloroform influence on the P3HT and N2200 absorption spectra.

    Science.gov (United States)

    Dias Ledo, Rodrigo Maia; Leal, Luciano Almeida; de Brito Silva, Patrick Pascoal; da Cunha, Wiliam Ferreira; de Souza, Leonardo Evaristo; Almeida Fonseca, Antonio Luciano; Ceschin, Artemis Marti; da Silva Filho, Demétrio Antonio; Ribeiro Junior, Luiz Antonio

    2017-02-01

    The optical properties of polymer/solvent systems composed by the polymers P3HT and PolyeraActivInk N2200 under the present of chloroform as solvent are experimentally and theoretically investigated using UV-Vis spectroscopy, molecular dynamics (MD), and density functional theory (DFT) calculations. The study is focused on obtaining the theoretical methodologies that properly describes the experimentally obtained absorption spectra of polymer-solvent complexes. In order to investigate the solvent influence, two different approaches are taken into account: the solvation shell method (SSM) and the polarizable continuum model (PCM). Our findings shown that SSM simulations, which combine MD and DFT calculations, are in good agreement with the experimental data. Moreover, it is obtained that simulations in the framework of PCM do not provide a fair description of the real system. Importantly, these results may pave the way for better descriptions of some optoelectronic properties of interest in polymer/solvent systems. Graphical Abstract ᅟ.

  20. Theoretical UV absorption spectra of hydrodynamically escaping O{sub 2}/CO{sub 2}-rich exoplanetary atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Gronoff, G.; Mertens, C. J.; Norman, R. B. [NASA LaRC, Hampton, VA (United States); Maggiolo, R. [BIRA-IASB, Avenue Circulaire 3, 1180 Brussels (Belgium); Wedlund, C. Simon [Aalto University School of Electrical Engineering Department of Radio Science and Engineering, P.O. Box 13000, FI-00076 Aalto (Finland); Bell, J. [National Institute of Aerospace, Hampton, VA (United States); Bernard, D. [IPAG, Grenoble (France); Parkinson, C. J. [University of Michigan, MI (United States); Vidal-Madjar, A., E-mail: Guillaume.P.Gronoff@nasa.gov [Observatoire de Paris, Paris (France)

    2014-06-20

    Characterizing Earth- and Venus-like exoplanets' atmospheres to determine if they are habitable and how they are evolving (e.g., equilibrium or strong erosion) is a challenge. For that endeavor, a key element is the retrieval of the exospheric temperature, which is a marker of some of the processes occurring in the lower layers and controls a large part of the atmospheric escape. We describe a method to determine the exospheric temperature of an O{sub 2}- and/or CO{sub 2}-rich transiting exoplanet, and we simulate the respective spectra of such a planet in hydrostatic equilibrium and hydrodynamic escape. The observation of hydrodynamically escaping atmospheres in young planets may help constrain and improve our understanding of the evolution of the solar system's terrestrial planets' atmospheres. We use the dependency of the absorption spectra of the O{sub 2} and CO{sub 2} molecules on the temperature to estimate the temperature independently of the total absorption of the planet. Combining two observables (two parts of the UV spectra that have a different temperature dependency) with the model, we are able to determine the thermospheric density profile and temperature. If the slope of the density profile is inconsistent with the temperature, then we infer the hydrodynamic escape. We address the question of the possible biases in the application of the method to future observations, and we show that the flare activity should be cautiously monitored to avoid large biases.

  1. Absorption-desorption of drugs in porous polymers obtained by plasma

    International Nuclear Information System (INIS)

    Gonzalez T, M.

    2016-01-01

    A study about drug absorption and release in plasma polymers is presented in this work, these materials can be used as implants in the human body. In these applications the polymer should be biocompatible and/or biodegradable. Poly pyrroles and poly allylamine s synthesized by plasma have amine groups in their structure which makes them biocompatible with potential as drug carriers. In this function, the polymers were lyophilized to induce pores where the drug can be hosted. Drug-polymer mixtures with 1:10 ratio were prepared. The mixture morphology was studied by Scanning Electron Microscopy while their chemical structure was studied by Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. Two models were studied to assess drug release, dynamic and static, in two solutions: water and Krebs Ringer (Kr) using the UV characteristic absorbance of each drug. In the static model release, 5 mg of the mixture were placed in 10 ml of solution. In the dynamic model, the release was performed with 5 mg of the mixture in 10 ml of solution, 1.5 ml of release medium was removed for UV analysis and replaced with an equal volume of fresh medium. The results indicate that the morphology of the polymers was modified with the lyophilization, in Poly pyrrole pores were induced with diameter in the range of 0.7 to 19 μm, while in Polyallyl amine the surface changed from smooth to rough. Drugs were absorbed in Poly pyrrole by filling the pores first and then coating the polymer with a drug layer. In Poly allylamine the drugs adhered to the polymer surface. Analyzing the atomic orbitals of the mixtures, it was found that the drugs interacted with the polymer. The most affected orbital was S2p, whose separation between 1/2 and 3/2 sub orbitals increased from 0.9 eV in Dapsone and Heparin to 4 eV in the mixtures, where the oxidation state changed from valence 6 to 6 and 2 in the mixtures. This suggests physicochemical interaction between drug and polymer. The drugs were released

  2. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Directory of Open Access Journals (Sweden)

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  3. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    Science.gov (United States)

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-04-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  4. Absorption spectra and Faraday effect in Cs2NaNdCl6 and Cs2NaPrCl6 crystals

    International Nuclear Information System (INIS)

    Ehdel'man, I.S.; Galanov, E.K.; Kokov, I.T.; Malakhovskij, A.V.; Anistratov, A.T.

    1985-01-01

    The paper is devoted to studying absorption spectra and the Faraday effect in Cs 2 NaNdCl 6 and Cs 2 NaPrCl 6 crystals. The absorption spectra and Faraday effect were measured at room temperature in the range of 9000-30000 cmsup(-1) (0.33-1.2 μm) in 0-10 kOe magnetic fields. The absorption spectra produced contain several groups of intense absorption bands resulted from intraconfiguration electron transitions in rare-earth cations. The Faraday spectra in the whole range studied for both crystals have the form of smoothly dipping curves when increasing wavelength. The form of these curves testifies to prevailing contribution of strong electron transitions lying in a nearer UV region to the Faraday effect

  5. Using of laser spectroscopy and chemometrics methods for identification of patients with lung cancer, patients with COPD and healthy people from absorption spectra of exhaled air

    Science.gov (United States)

    Bukreeva, Ekaterina B.; Bulanova, Anna A.; Kistenev, Yury V.; Kuzmin, Dmitry A.; Nikiforova, Olga Yu.; Ponomarev, Yurii N.; Tuzikov, Sergei A.; Yumov, Evgeny L.

    2014-11-01

    The results of application of the joint use of laser photoacoustic spectroscopy and chemometrics methods in gas analysis of exhaled air of patients with chronic respiratory diseases (chronic obstructive pulmonary disease and lung cancer) are presented. The absorption spectra of exhaled breath of representatives of the target groups and healthy volunteers were measured; the selection by chemometrics methods of the most informative absorption coefficients in scan spectra in terms of the separation investigated nosology was implemented.

  6. High-resolution absorption coefficient and refractive index spectra of common pollutant gases at millimeter and THz wavelengths

    Science.gov (United States)

    Almoayed, Nawaf N.; Piyade, Baris C.; Afsar, Mohammed N.

    2007-09-01

    Dispersive Fourier Transform Spectroscopy (DFTS) provides us with a very precise method of measuring the absorption and refractive index spectra of common pollutant gases. This paper presents the rotational transition lines of Sulfur Dioxide and Carbon Monoxide gas as a function of varying pressure using DFTS for the very first time as a combined study. The relationship between the variation of the pressure and the change in the absorption spectrum is examined and discussed in detail. Sulfur Dioxide and Carbon Monoxide gases are highly toxic, pollutant gases that are major contributors to global pollution and can potentially be used as a chemical threat. The relationship between pressure and rotational transmission lines is discussed in detail in the frequency range of 0.3 THz - 0.9 THz. These findings are crucial in characterizing these gases as well as identifying them in a blind test.

  7. Impact of broadened laser line-shape on retrievals of atmospheric species from lidar sounding absorption spectra.

    Science.gov (United States)

    Chen, Jeffrey R; Numata, Kenji; Wu, Stewart T

    2015-02-09

    We examine the impact of broadened laser line-shape on retrievals of atmospheric species from lidar-sounding absorption spectra. The laser is assumed to be deterministically modulated into a stable, nearly top-hat frequency comb to suppress the stimulated Brillouin scattering, allowing over 10-fold pulse energy increase without adding measurement noise. Our model remains accurate by incorporating the laser line-shape factor into the effective optical depth. Retrieval errors arising from measurement noise and model bias are analyzed parametrically and numerically to provide deeper insight. The stable laser line-shape broadening minimally degrades the column-averaged retrieval, but can significantly degrade the multiple-layer retrievals.

  8. Ruthenium(II) chloro-bis(bipyridyl) complexes with substituted pyridine ligands: interpretation of their electronic absorption spectra

    International Nuclear Information System (INIS)

    Sizova, O.V.; Ershov, A.Yu.; Ivanova, N.V.; Shashko, A.D.; Kutejkina-Teplyakova, A.V.

    2003-01-01

    A number of complexes cis-[Ru(Bipy) 2 (L)(Cl)](BF 4 ), where Bipy-2,2'-bipyridine, L-pyridine, 4-aminopyridine, 4-picoline, nicotinamide, isonicotinamide, 3- and 4-cyanopyridine, 4,4'-bipyridine, trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azopyridine, pyrazine, imidazole and NH 3 , were prepared. Using the CINDO-CI semiempirical method the energies and intensities of transition in electronic absorption spectra (EAS) of the complexes were calculated. It is shown that major differences in EAS of the compounds stem from position of transitions with charge transfer d π (Ru)→π*(L) [ru

  9. Absorption spectra of Ag and Au nanoparticles using density functional theory

    International Nuclear Information System (INIS)

    Elham Gharibshahi; Elias Saion; Hishamuddin Zainuddin

    2009-01-01

    Full text: The absorption of photons in metal nanoparticles has been modelled electromagnetically by Mei theory. In this work, the problem was resolved quantum mechanically using the density function theory. This new development is based on the ground-state energy functional of Thomas-Fermi-Dirac-Weizsaecker atomic system and the absorption function replacing the density function in the Euler-Lagrange equation. The total energy functional was computed numerically for isolated spherical Ag and Au nanoparticles having face-centered-cubic lattice primitive cell structure. The absorption peaks appear at 412, 414, and 417 nm for Ag nanoparticles and at 515, 517, and 520 nm for Au nanoparticles when simulated for particle size of 8, 12, and 20 nm respectively. (author)

  10. Exploring the Time Evolution of Cool Metallic Absorption Features in UV Burst Spectra

    Science.gov (United States)

    Belmes, K.; Madsen, C. A.; DeLuca, E.

    2017-12-01

    UV bursts are compact brightenings in active regions that appear in UV images. They are identified through three spectroscopic features: (1) broadening and intensification of NUV/FUV emission lines, (2) the presence of optically thin Si IV emission, and (3) the presence of absorption features from cool metallic ions. Properties (2) and (3) imply that bursts exist at transition region temperatures (≥ 80,000 K) but are located in the cooler lower chromosphere ( 5,000 K). Their energetic and dynamical properties remain poorly constrained. Improving our understanding of this phenomena could help us further constrain the energetic and dynamical properties of the chromosphere, as well as give us insight into whether or not UV bursts contribute to chromospheric and/or coronal heating. We analyzed the time evolution of UV bursts using spectral data from the Interface Region Imaging Spectrograph (IRIS). We inspected Si IV 1393.8 Å line profiles for Ni II 1393.3 Å absorption features to look for signs of heating. Weakening of absorption features over time could indicate heating of the cool ions above the burst, implying that thermal energy from the burst could rapidly conduct upward through the chromosphere. To detect the spectral profiles corresponding to bursts, we applied a four-parameter Gaussian fit to every profile in each observation and took cuts in parameter space to isolate the bursts. We then manually reviewed the remaining profiles by looking for a statistically significant appearance of Ni II 1393.3 Å absorption. We quantified these absorption features by normalizing the Si IV 1393.8 Å emission profiles and measuring the maximum fractional extinction in each. Our preliminary results indicate that Ni II 1393.3 Å absorption may undergo a cycle of strengthening and weakening throughout a burst's lifetime. However, further investigation is needed for confirmation. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1560313.

  11. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    Science.gov (United States)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  12. Ab initio calculation of UV-absorption spectra of chlorophyll a: Comparison study between RHF/CIS, TDDFT, and semi-empirical methods

    Directory of Open Access Journals (Sweden)

    Veinardi Suendo

    2012-07-01

    Full Text Available Chlorophyll a is one the most abundant pigment on Earth that responsible for trapping the light energy to perform photosynthesis in green plants. This molecule has been studied for many years from different point of views in both experimental and theoretical interests. In this study, the restricted Hartree-Fock configuration interaction single (RHF/CIS, time-dependent density functional theory (TDDFT and several semi-empirical methods (CNDO/s and ZINDO calculations were carried out to reconstruct the UV-Vis absorption spectra of chlorophyll a. In some extend, the calculation results based on single molecule approach were succeeded to reconstruct the absorption spectra but required to be rescaled to fit the experimental one. In general, the semi-empirical methods provide better energy scaling factor that closer to unity. However, they lack of vertical transition fine features with respect to the spectrum obtained experimentally. Here, the ab initio calculations provide more complete features, especially the TDDFT at high level of basis sets that also has a good accuracy in the transition energies. The contribution of ground states and excited states orbitals in the main vertical transitions is discussed based on delocalization nature of the wavefunctions and the presence of solvent through polarizable continuum model (PCM.

  13. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    Science.gov (United States)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  14. Complexes of uranyl with N-oxides of heterocyclic amines. Electron-vibrational absorption spectra

    International Nuclear Information System (INIS)

    Jezowska-Trzebiatowska, B.; Wieczorek, M.

    1977-01-01

    A number of coordination compounds formed by uranyl chloride and nitrate with N-oxides of heterocyclic amines have been prepared and characterized by spectral measurements in the absorption region 20000-50000 cm -1 . The electrons and vibronic transitions have been determined and discussed. (author)

  15. Vibrational absorption spectra, DFT and SCC-DFTB conformational study and analysis of [Leu]enkephalin

    DEFF Research Database (Denmark)

    Abdali, Salim; Niehaus, T.A.; Jalkanen, Karl J.

    2003-01-01

    The endogenous morphine-like pentapeptide, [Leu]enkephalin, which binds to the opiate receptor in the brain, spinal core and gut, is the subject of this study. Vibrational absorption (VA) measurements were carried out on [Leu] enkephalin in non-polar solvent, DMSO-D6 to stabilize the environment...

  16. Evidence from spectra of bright fireballs. [self absorption effects in meteor radiation

    Science.gov (United States)

    Ceplecha, Z.

    1973-01-01

    Spectral data with dispersions from 11 to 94 A/mm on 4 fireballs of actual brightness of -4 to -12 magnitude and with velocities of about 30 km/s at 70 to 80 km heights are used for studies of meteor radiation problems. The radiation of fireballs is found to be strongly affected by self absorption. But if the emission curve of growth is used for correction of the self absorption of Fe I lines, a great discrepancy between spectral data and efficiency data for total Fe I light is found. If one assumes that the self absorption is superposed on another effect, a decrease of the dimensions of the radiating volume with increasing lower potential, the spectral data on Fe I lines will be in agreement with the luminous efficiency of total Fe I meteor radiation. Formulas for emission curve of growth and Boltzmann distribution including this effect are derived. This effect is important for fireballs brighter than about -1 or -2 magnitude, while self absorption seems to be important even for fainter meteors.

  17. Spectra of light absorption by phytoplankton pigments in the Baltic; conclusions to be drawn from a Gaussian analysis of empirical data

    Directory of Open Access Journals (Sweden)

    Dariusz Ficek

    2004-12-01

    Full Text Available Analysed by differential spectroscopy, 1208 empirical spectra of light absorption apl(λ by Baltic phytoplankton were spectrally decomposed into 26 elementary Gaussian component bands. At the same time the composition and concentrations of each of the 5 main groups of pigments (chlorophylls a, chlorophylls b, chlorophylls c, photosynthetic carotenoids and photoprotecting carotenoids were analysed in 782 samples by HPLC. Inspection of the correlations between the intensities of the 26 elementary absorption bands and the concentrations of the pigment groups resulted in given elementary bands being attributed to particular pigment groups and the spectra of the mass-specific absorption coefficients established for these pigment groups. Moreover, balancing the absorption effects due to these 5 pigment groups against the overall absorption spectra of phytoplankton suggested the presence of a sixth group of pigments, as yet unidentified (UP, undetected by HPLC. A preliminary mathematical description of the spectral absorption properties of these UP was established. Like some forms of phycobilins, these pigments are strong absorbers in the 450-650 nm spectral region. The packaging effect of pigments in Baltic phytoplankton was analysed statistically, then correlated with the concentration of chlorophyll a in Baltic water. As a result, a Baltic version of the algorithm of light absorption by phytoplankton could be developed. This algorithm can be applied to estimate overall phytoplankton absorption spectra and their components due to the various groups of pigments from a knowledge of their concentrations in Baltic water.

  18. Study of unfolding methods for X-ray spectra obtained with CDTE detectors in the mammography energy range

    Energy Technology Data Exchange (ETDEWEB)

    Querol, A.; Gallardo, S.; Rodenas, J.; Verdu, G.; Barrachina, T. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Cami de Vera, s/n 46022 Valencia (Spain)

    2010-07-01

    Quality control parameters for an X-ray tube strongly depend on the accurate knowledge of the primary spectrum, but it is difficult to obtain it experimentally by direct measurements. Indirect spectrometry techniques such as Compton scattering can be used in X-ray spectrum assessment avoiding the pile-up effect in detectors. However, an unfolding method is required for this kind of measurements. In previous works, a methodology to assess primary X-ray spectra in the diagnostic energy range by means of the Compton scattering technique has been analysed. This methodology included a Monte Carlo simulation model, using the MCNP5 code, of the actual experimental set-up providing a Pulse Height Distribution (PHD) for a given primary spectrum. It reproduced the interaction of photons and electrons with the Compton spectrometer and with a High Purity Germanium detector. In this work, a CdTe detector is proposed instead of the HP Germanium. CdTe detector does not require a liquid nitrogen cooling system, but its resolution is poor for the same energy range and its efficiency comes down for energies greater than 55 keV being 70% at 90 keV. In despite of these disadvantages, CdTe detector has been considered due to its low cost and easy handling and portability. The model can provide a PHD and a Response Matrix, for different X-ray spectra, taken from the IPEM 78 catalogue. The primary spectrum can be estimated applying the MTSVD (Modified Truncated Singular Value Decomposition) and the Tikhonov unfolding method. Both unfolding methods cause some loss of information on the reconstructed primary spectra. In this paper, a comparison of the ability to obtain primary spectra using both MTSVD and Tikhonov unfolding methods has been done. As well a sensitivity analysis in order to test the proposed unfolding methods when they are applied to PHDs obtained with the MCNP model has been developed. A variation on parameters such as target materials and voltages over the mammography

  19. Laser beam absorption study of a 238U(5L60) vapor obtained with a hollow cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Leblanc, B.; Mongeau, B.; Carleer, M.; Bertrand, L.

    1979-01-01

    The density of U atoms in the 5 L 0 6 ground state present in a vapor of this element from a hollow cathode lamp has been measured using laser absorption spectroscopy. The influence of the carrier gases (Ar, Kr, Xe) on the density, the absorption coefficient profiles, and on the ratio of U atoms to the dissipated electrical power has been investigated. It has been found that, in our range of operating conditions, the xenon gas is the most efficient. With xenon, a density of 2.2 x 10 12 cm -3 ground-state U atoms is obtained when the lamp dissipates 40 W of electrical power

  20. TD-DFT Study of Absorption and Emission Spectra of 2-(2'-Aminophenyl)benzothiazole Derivatives in Water.

    Science.gov (United States)

    Manojai, Natthaporn; Daengngern, Rathawat; Kerdpol, Khanittha; Kungwan, Nawee; Ngaojampa, Chanisorn

    2017-03-01

    Reduction of aromatic azides to amines is an important property of hydrogen sulphide (H 2 S) which is useful in fluorescence microscopy and H 2 S probing in cells. The aim of this work is to study the substituent effect on the absorption and emission spectra of 2-(2'-aminophenyl)benzothiazole (APBT) in order to design APBT derivatives for the use of H 2 S detection. Absorption and emission spectra of APBT derivatives in aqueous environment were calculated using density functional theory (DFT) and time-dependent DFT (TD-DFT) at B3LYP/6-311+G(d,p) level. The computed results favoured the substitution of strong electron-donating group on the phenyl ring opposite to the amino group for their large Stokes' shifts and emission wavelengths of over 600 nm. Also, three designed compounds were suggested as potential candidates for the fluorescent probes. Such generalised guideline learnt from this work can also be useful in further designs of other fluorescent probes of H 2 S in water.

  1. Fine hematite particles of Martian interest: absorption spectra and optical constants

    International Nuclear Information System (INIS)

    Marra, A C; Blanco, A; Fonti, S; Jurewicz, A; Orofino, V

    2005-01-01

    Hematite is an iron oxide very important for the study of climatic evolution of Mars. It can occur in two forms: red and grey, mainly depending on the granulometry of the samples. Spectra of bright regions of Mars suggest the presence of red hematite particles. Moreover the Thermal Emission Spectrometer (TES), on board the Mars Global Surveyor mission, has discovered a deposit of crystalline grey hematite in Sinus Meridiani. TES spectra of that Martian region exhibit features at about 18, 23 and 33 μm that are consistent with hematite. Coarse grey hematite is considered strong evidence for longstanding water, while it is unknown whether the formation of fine-grained red hematite requires abundant water. Studies are needed in order to further characterize the spectral properties of the two kinds of hematite. For this reason we have analyzed a sample of submicron hematite particles in the 6.25-50 μm range in order to study the influence of particles size and shape on the infrared spectra. The optical constants of a particulate sample have been derived and compared with published data concerning bulk samples of hematite. Our results seem to indicate that particle shape is an important factor to take into account for optical constants derivation

  2. Determination of the in vivo redox potential using roGFP and fluorescence spectra obtained from one-wavelength excitation

    Science.gov (United States)

    Wierer, S.; Elgass, K.; Bieker, S.; Zentgraf, U.; Meixner, A. J.; Schleifenbaum, F.

    2011-02-01

    The analysis of molecular processes in living (plant) cells such as signal transduction, DNA replication, carbon metabolism and senescence has been revolutionized by the use of green fluorescent protein (GFP) and its variants as specific cellular markers. Many cell biological processes are accompanied by changes in the intracellular redox potential. To monitor the redox potential, a redox-sensitive mutant of GFP (roGFP) was created, which shows changes in its optical properties in response to changes in the redox state of its surrounding medium. For a quantitative analysis in living systems, it is essential to know the optical properties of roGFP in vitro. Therefore, we applied spectrally resolved fluorescence spectroscopy on purified roGFP exposed to different redox potentials to determine shifts in both the absorption and the emission spectra of roGFP. Based on these in vitro findings, we introduce a new approach using one-wavelength excitation to use roGFP for the in vivo analysis of cell biological processes. We demonstrate the ability this technique by investigating chloroplast-located Grx1-roGFP2 expressing Arabidopsis thaliana cells as example for dynamically moving intracellular compartments. This is not possible with the two-wavelength excitation technique established so far, which hampers a quantitative analysis of highly mobile samples due to the time delay between the two measurements and the consequential displacement of the investigated area.

  3. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  4. Absorption spectra of localized surface plasmon resonance observed in an inline/picoliter spectrometer cell fabricated by a near ultraviolet femtosecond laser

    Science.gov (United States)

    Shiraishi, Masahiko; Nishiyama, Michiko; Watanabe, Kazuhiro; Kubodera, Shoichi

    2018-03-01

    Absorption spectra based on localized surface plasmon resonance (LSPR) were obtained with an inline/picoliter spectrometer cell. The spectrometer cell was fabricated into an optical glass fiber by focusing a near UV (NUV) femtosecond laser pulses at a wavelength of 400 nm with an energy of 30 μJ. The laser beam was focused from two directions opposite to each other to fabricate a through-hole spectrometer cell. A diameter of the cell was approximately 3 μm, and the length was approximately 62.5 μm, which was nearly equal to the core diameter of the optical fiber. Liquid solution of gold nanoparticles (GNPs) with a diameter of 5-10 nm was injected into the spectrometer cell with its volume of 0.4 pL. The absorption peak centered at 518 nm was observed. An increase of absorption associated with the increase of the number of nanoparticles was in agreement with the numerical calculation based on the Lambert-Beer law.

  5. The effect of zinc ion on the absorption and emission spectra of glutathione derivative: predication by ab initio and DFT methods.

    Science.gov (United States)

    Liu, Jianhua; Ma, Jie; Zhang, Hua; Wang, Haijun

    2012-06-01

    Relying on the reaction of o-phthalaldehyde (OPA) with glutathione (GSH) to form a highly fluorescence derivative GSH-OPA has been widely used to measure reduced glutathione. In order to better understand spectra property of the GSH-OPA and the effect of zinc ion on it, the ground and the lowest singlet excited state properties, the electronic absorption and emission spectra are predicted by ab initio and DFT methods. The absorption spectra are simulated using time dependent DFT method (TD-DFT) whereas the emission spectra are approximated by optimizing the lowest singlet excited state by HF/CI-Singles and then subsequently using this geometry for the TD-DFT calculations. The solvent effects on transition energies have been described within the conductor-like polarizable continuum model (CPCM). The calculated transition energies (absorption and emission) are in agreement with available experimental information. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Emission from water vapor and absorption from other gases at 5-7.5 μm in Spitzer-IRS Spectra Of Protoplanetary Disks

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, B. A. [Center for Imaging Science and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States); Forrest, W.; Watson, Dan M.; Kim, K. H.; Richter, I.; Tayrien, C. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); D' Alessio, P.; Calvet, N. [Department of Astronomy, The University of Michigan, 500 Church Street, 830 Dennison Building, Ann Arbor, MI 48109 (United States); Furlan, E. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Green, J. [Department of Astronomy, University of Texas, 1 University Station, Austin, TX 78712 (United States); Pontoppidan, K., E-mail: baspci@rit.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2014-09-10

    We present spectra of 13 T Tauri stars in the Taurus-Auriga star-forming region showing emission in Spitzer Space Telescope Infrared Spectrograph 5-7.5 μm spectra from water vapor and absorption from other gases in these stars' protoplanetary disks. Seven stars' spectra show an emission feature at 6.6 μm due to the ν{sub 2} = 1-0 bending mode of water vapor, with the shape of the spectrum suggesting water vapor temperatures >500 K, though some of these spectra also show indications of an absorption band, likely from another molecule. This water vapor emission contrasts with the absorption from warm water vapor seen in the spectrum of the FU Orionis star V1057 Cyg. The other 6 of the 13 stars have spectra showing a strong absorption band, peaking in strength at 5.6-5.7 μm, which for some is consistent with gaseous formaldehyde (H{sub 2}CO) and for others is consistent with gaseous formic acid (HCOOH). There are indications that some of these six stars may also have weak water vapor emission. Modeling of these stars' spectra suggests these gases are present in the inner few AU of their host disks, consistent with recent studies of infrared spectra showing gas in protoplanetary disks.

  7. Modelling High Resolution Absorption Spectra with ExoMolLine Lists: NH3and CH4

    DEFF Research Database (Denmark)

    Barton, E. J.; Yurchenko, S. N.; Tennyson, J.

    The conditions, chemical reactions and gas mixing in industrial progresses involving gasification or combustion can be monitored by in situ measurement of gas temperature and gas composition. This can be done spectroscopically, though the result is highly dependent on the quality of reference data...... [1]. For this reason, a smart collaboration has been established between Optical Diagnostics Group at DTU and ExoMol, to combine high resolution spectra measured at elevated temperatures and empirically tuned ab initio methods to produce suitable molecular line lists for modelling molecules...

  8. Interpretation of x-ray absorption spectra in compounds with configurational disorder

    International Nuclear Information System (INIS)

    Kuzmin, A.; Dalba, G.; Fornasini, P.; Rocca, F.; Sipr, O.

    2005-01-01

    Full text: X-ray absorption spectroscopy (EXAFS and XANES) provides with unique information on electronic, atomic and dynamic structure of materials. Standard EXAFS and XANES analysis is based on relatively simple structural models as Gaussian / normal distribution. However, there are many compounds as glasses and nanocrystalline materials in which atoms of the same type occupy structural sites with different local environments. Therefore, special approach is required to access properly the case of configurational disorder. In this work we present recent developments for such problem

  9. Carbon dioxide laser absorption spectra and low ppb photoacoustic detection of hydrazine fuels.

    Science.gov (United States)

    Loper, G L; Calloway, A R; Stamps, M A; Gelbwachs, J A

    1980-08-15

    Absorption cross-section data are reported for the toxic rocket fuels hydrazine, monomethylhydrazine, and unsymmetrical dimethylhydrazine (UDMH), as well as for their selected air oxidation products dimethylamine, trimethylamine, and methanol at up to seventy-eight CO(2) laser wavelengths each. These data are important for the assessment of the capability of CO(2) laser-based spectroscopic techniques for monitoring low levels of hydrazine-fuel vapors in the ambient air. Interference-free detection sensitivities of <30 ppb have been demonstrated for UDMH using a laboratory photoacoustic detection system.

  10. X-Ray Absorption Spectra of Water from First Principles Calculations

    International Nuclear Information System (INIS)

    Prendergast, David; Galli, Giulia

    2006-01-01

    We present a series of ab initio calculations of the x-ray absorption cross section (XAS) of ice and liquid water at ambient conditions. Our results show that all available experimental data and theoretical results are consistent with the standard model of the liquid as comprising molecules with approximately four hydrogen bonds. Our simulations of ice XAS including the lowest lying excitonic state are in excellent agreement with experiment and those of a quasitetrahedral model of water are in reasonable agreement with recent measurements. Hence we propose that the standard, quasitetrahedral model of water, although approximate, represents a reasonably accurate description of the local structure of the liquid

  11. Scaled-Absorption and Recurrence Spectra of Argon in an Electric Field Using Two Photon Excitation

    Science.gov (United States)

    Wright, J. D.; Huang, W.; Flores-Rueda, H.; Morgan, T. J.

    2001-05-01

    For multi-electron atoms in an electric field, low angular momentum Rydberg electrons strongly interact with the atomic core causing scattering which can be associated with the presence of chaos. The photoabsorption spectra exhibits extraordinary complex structure but is still in principle interpretable semiclassically using closed orbit theory and semiclassical S-matrix theory [1]. Previously we measured the scaled-photoabsorption and recurrence spectra of argon in an electric field, using single uv-photon excitation from a metastable state [2]. We have extended these measurements to two photon excitation from the same initial state, which allows access to different angular momentum states. The effect of multi-photon excitation on the structure of the recurrence spectrum and its subsequent semiclassical interpretation will be presented. Work supported by the National Science Foundation. [1] B. E. Granger and C. H. Greene, Phys.Rev.A 62, 12511 (2000) [2] H. Flores-Rueda, J. D. Wright, W. Huang, T. J. Morgan, Bull. Am. Phys. Soc. 45, 94 (2000)

  12. Ly(alpha) emission and absorption features in the spectra of galaxies

    Science.gov (United States)

    Chen, W. L.; Neufeld, David A.

    1994-01-01

    The combined effects of interstellar dust absorption and of scattering by hydrogen atoms may give rise to a Ly(alpha) spectral feature of negative equivalent width, as has been observed in several star-forming galaxies. By considering the transfer of Ly(alpha) line radiation and of neighboring stellar continuum radiation within a dusty galaxy, we find that dust absorption has three effects: (1) it reduces the apparent ultraviolet continuum luminosity at all wavelengths; (2) it preferentially decreases the apparent Ly(alpha) line luminosity from H II regions; and (3) it creates an 'attenuation feature' in the continuum spectrum -- centered at the Ly(alpha) rest frequency -- which occurs because the attenuation of the stellar continuum radiation increases as the Ly(alpha) rest frequency is approached, due to the effects of scattering by hydrogen atoms. For plausible values of the galactic dust content and of the disk thickness, these effects can lead to a negative net Ly(alpha) equivalent width, even for galaxies in which the unattenuated spectrum would show a strong Ly(alpha) emission line.

  13. Determination of mercury by cold vapor atomic absorption spectrophotometer in Tongkat Ali preparations obtained in Malaysia.

    Science.gov (United States)

    Ang, Hooi-Hoon; Lee, Ee-Lin; Cheang, Hui-Seong

    2004-01-01

    The DCA (Drug Control Authority), Malaysia, has implemented the phase 3 registration of traditional medicines on 1 January 1992, with special emphasis on the quality, efficacy, and safety (including the presence of heavy metals) in all pharmaceutical dosage forms of traditional medicine preparations. As such, a total of 100 products in various pharmaceutical dosage forms of a herbal preparation, containing Tongkat Ali, were analyzed for mercury content using cold vapor atomic absorption spectrophotometer. Results showed that 36% of the above products possessed 0.52 to 5.30 ppm of mercury and, therefore, do not comply with the quality requirement for traditional medicines in Malaysia. Out of these 36 products, 5 products that possessed 1.05 to 4.41 ppm of mercury were in fact have already registered with the DCA, Malaysia. However, the rest of the products that contain 0.52 to 5.30 ppm of mercury still have not registered with the DCA, Malaysia. Although this study showed that only 64% of the products complied with the quality requirement for traditional medicines in Malaysia pertaining to mercury, they cannot be assumed safe from mercury contamination because of batch-to-batch inconsistency.

  14. Electronic Absorption Spectra of Neutral Perylene (C20H12), Terrylene (C30H16), and Quaterrylene (C40H20) and their Positive and Negative Ions: Ne Matrix-Isolation Spectroscopy and Time Dependent Density Functional Theory Calculations

    Science.gov (United States)

    Halasinski, Thomas M.; Weisman, Jennifer L.; Lee, Timothy J.; Salama, Farid; Head-Gordon, Martin; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a full experimental and theoretical study of an interesting series of polycyclic aromatic hydrocarbons, the oligorylenes. The absorption spectra of perylene, terrylene and quaterrylene in neutral, cationic and anionic charge states are obtained by matrix-isolation spectroscopy in Ne. The experimental spectra are dominated by a bright state that red shifts with growing molecular size. Excitation energies and state symmetry assignments are supported by calculations using time dependent density functional theory methods. These calculations also provide new insight into the observed trends in oscillator strength and excitation energy for the bright states: the oscillator strength per unit mass of carbon increases along the series.

  15. UV absorption spectra, kinetics and mechanism for alkyl and alkyl peroxy radicals originating from t-butyl alcohol

    DEFF Research Database (Denmark)

    Langer, S.; Ljungström, E.; Sehested, J.

    1994-01-01

    Alkyl and alkyl peroxy radicals from 1-butyl alcohol (TBA), HOC (CH3)2CH2. and HOC(CH3)2CH2O2. have been studied in the ps phase at 298 K. Two techniques were used: pulse radiolysis UV absorption to measure the spectra and kinetics, and long path-length Fourier transform infrared spectroscopy (FTIR......) and k(HOC(CH3)2CH2O2. + NO2) were determined to be (4.9 +/- 0.9) X 10(-12) and (6.7 +/- 0.9) x 10(-12) cm3 molecule-1 s-1, respectively. In the FTIR experiments products were studied using chlorine-initiated oxidation in TBA/N2/Cl2 and TBA/N2/O2/Cl2 mixtures....

  16. Collisional Processing Of Comet And Asteroid Surfaces: Velocity Effects On Absorption Spectra

    Science.gov (United States)

    Jensen, Elizabeth; Lederer, S. M.; Wooden, D. H.; Lindsay, S. S.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-10-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectroscopic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting. Funding was provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012, and a Cottrell College Scholarship through the Research Corporation.

  17. Absorption Spectra of BaF2 Sm2O3, Sm, Gd, and Ho Plasmas

    Science.gov (United States)

    Martin, Michael; Bastiani-Ceccotti, Serena

    2009-11-01

    Knowledge of the opacities of high Z element plasmas is important in indirect drive ICF and the study of stellar evolution. There are few experimental measurements of this quantity, and its theoretical determination is difficult due to the number of possible bound electron configurations. This study aims to better the theoretical understanding of this parameter by looking at the 3d-4f transitions of BaF2, Sm2O3, Sm, Gd, and Ho plasmas at the LULI2000 facility. The plasmas are produced by radiative heating and are cold, 15 -- 40 eV, and relatively dense, ˜ .01gm/cm^3 A plasma is produced by a .5 ns laser pulse irradiating a gold hohlraum and then probed by an x-ray source created by a gold foil irradiated by a 10 ps laser pulse. The transmission is found with simultaneous source and absorption measurements by an x-ray spectrometer in the 8 - 20 å range We will compare the results with statistical atomic structure codes. From this experiment we will gain further insight into the spectral broadening of neighboring Z elements due to changing plasma temperature and into mixture thermodynamics. This is a first step towards an experimental study of astrophysical domains.

  18. Electronic absorption spectra and geometry of molecular ions generated from stilbene and related compounds, 3

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Ogawa, Keiichiro; Shida, Tadamasa; Kira, Akira.

    1983-01-01

    The radical ions of (Z)-stilbene and its α,β-dialkyl derivatives were produced by γ-ray irradiation of the parent compounds in frozen matrices at 77 K, and their geometries were investigated by electronic absorption spectroscopy. While the relaxed geometries of the radical ions of (Z)-stilbene are probably similar to that of the neutral molecule, those of the radical ions of the α,β-dialkyl derivatives are appreciably different from those of the neutral molecules: The torsion angle of the central ethylenic bond is distinctly larger and that of each C-Ph bond is probably smaller in the radical ions than in the neutral molecules. On illumination the radical ions of (Z)-stilbene isomerize to the E isomers, but those of the α,β-dialkyl derivatives do not. A mechanism of the photoisomerization is proposed, and an interpretation of the difference in the photochemical behavior between the unsubstituted stilbene radical ions and the α,β-dialkyl derivatives is given. (author)

  19. Use of X-Ray Absorption Spectra as a ``Fingerprint'' of the Local Environment in Complex Chalcogenides

    Science.gov (United States)

    Branci, C.; Womes, M.; Lippens, P. E.; Olivier-Fourcade, J.; Jumas, J. C.

    2000-03-01

    The local environment of tin, titanium, iron, and sulfur in spinel compounds Cu2FeSn3S8 and Cu2FeTi3S8 was studied by X-ray absorption spectroscopy (XAS) at the titanium, iron, sulfur K edges, and the tin LI-edge. As detailed calculations of the electronic structure of these compounds are difficult to carry out due to the large number of atoms contained in the unit cell, the XAS spectra of the spinels are compared to those of relatively simple binary sulfides like SnS2, TiS2, and FeS. Indeed, the metal environments in these binary compounds are very similar to those in the spinels, and they can be considered good model compounds allowing the interpretation of electronic transitions observed in the spectra of quaternary phases. In the latter, the bottom of the conduction band is mainly formed by Sn 5s-S 3p, Sn 5p-S 3p antibonding states for the tin-based compounds and by Ti 3dt2g-S 3p, Ti 3deg-S 3p antibonding states for the titanium-based compounds. It it shown that the local environment of iron atoms remains unchanged when substituting tin with titanium atoms, according to a topotactic substitution.

  20. Spectra of optical absorption and energy levels diagram of Er3+ ions in bulk crystals of aluminum nitride

    Science.gov (United States)

    Poletaev, N. K.; Skvortsov, A. P.

    2017-12-01

    The absorption spectra of the Er3+ ions embedded in the AlN matrix have been investigated. The admixture of erbium was introduced in bulk AlN crystals by diffusion. The absorption lines, which are associated with the intraconfigurational electronic f- f-transitions from the ground 4 I 15/2-state to the levels of ion Er3+ excited states have been observed in the spectral range of 370-700 nm. The transitions to the state levels 4 F 9/2, 2 H 11/2, 4 F 7/2, 4 F 5/2, 2 H 9/2, and 4 G 11/2 have been investigated in detail at the temperature T = 2 K. The number of the observed lines for these transitions coincides with the theoretically possible one for the electronic f- f-transitions in the ions Er3+, which are in the crystal field with the symmetry below cubic. The narrowness of the observed lines and their number convincingly testify the replacement of preferably one regular crystalline position by erbium ions. The implementation of Er3+ in the Al3+ position with the local symmetry C 3v appears the most probable. The energy positions of the levels of excited states for the investigated transitions have been determined. The diagram of the Er3+ ion energy levels in the AlN crystals has been built.

  1. Spectroscopic and DFT study of solvent effects on the electronic absorption spectra of sulfamethoxazole in neat and binary solvent mixtures.

    Science.gov (United States)

    Almandoz, M C; Sancho, M I; Blanco, S E

    2014-01-24

    The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π(*)). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Influence of temperature on water and aqueous glucose absorption spectra in the near- and mid-infrared regions at physiologically relevant temperatures

    DEFF Research Database (Denmark)

    Jensen, P.S.; Bak, J.; Andersson-Engels, S.

    2003-01-01

    Near- and mid-infrared absorption spectra of pure water and aqueous 1.0 g/dL glucose solutions in the wavenumber range 8000-950 cm(-1) were measured in the temperature range 30-42 C in steps of 2 degreesC. Measurements were carried out with an FT-IR spectrometer and a variable pathlength...... degreesC water spectrum from the spectra measured at other temperatures. The difference spectra reveal that the effect of temperature is highest in the vicinity of the strong absorption bands, with a number of isosbestic points with no temperature dependence and relatively flat plateaus in between....... The change in water absorption associated with the addition of glucose has also been studied. An estimate of these effects is given and is related to the expected level of infrared signals from glucose in humans....

  3. Potential chlorofluorocarbon replacements: OH reaction rate constants between 250 and 315 K and infrared absorption spectra

    Science.gov (United States)

    Garland, Nancy L.; Medhurst, Laura J.; Nelson, H. H.

    1993-12-01

    We measured the rate constant for reactions of the OH radical with several potential chlorofluorocarbon replacements over the temperature range 251-314 K using laser photolysis laser-induced fluorescence techniques. The compounds studied and Arrhenius parameters determined from fits to the measured rate constants are as follows: CHF2OCHF2 (E 134), k(T) = (5.4 ± 3.5) × 10-13 cm3 s-1 exp [(-3.1 ± 0.4 kcal mol-1)/RT]; CF3CH2CF3 (FC 236fa), k(T) = (2.0 ± 1.0) × 10-14 cm3 s-1 exp [(-1.8 ± 0.3 kcal mol-1)/RT]; CF3CHFCHF2 (FC 236ea), k(T) = (2.0 ± 0.9) × 10-13 cm3 s-1 exp [(-2.0 ± 0.3 kcal mol-1)/RT]; and CF3CF2CH2F (FC 236cb), k(T)= (2.6 ± 1.6) × 10-13 cm3 s-1 exp [(-2.2 ± 0.4 kcal mol-1)/RT]. The measured activation energies (2-3 kcal mol-1) are consistent with a mechanism of H atom abstraction. The tropospheric lifetimes, estimated from the measured OH reaction rates, and measured integrated infrared absorption cross sections over the range 770 to 1430 cm-1 suggest that E 134 and FC 236fa may have significant global warming potential, while FC 236ea and FC 236cb do not.

  4. Measurements of size and composition of particles in polar stratospheric clouds from infrared solar absorption spectra

    International Nuclear Information System (INIS)

    Kinne, S.; Toon, O.B.; Toon, G.C.; Farmer, C.B.; Browell, E.V.; McCormick, M.P.

    1989-01-01

    The attenuation of solar radiation between 1.8- and 15-μm wavelength was measured with the airborne Jet Propulsion Laboratory Mark IV interferometer during the Airborne Antarctic Ozone Expedition in 1987. The measurements not only provide information about the abundance of stratospheric gases, but also about the optical depths of polar stratospheric clouds (PSCs) at wavelengths of negligible gas absorption. The spectral dependence of the PSC optical depth contains information about PSC particle size and particle composition. Thirty-three PSC cases were analyzed and categorized into two types. Type I clouds contain particles with radii of about 0.5 μm and nitric acid concentrations greater than 40%. Type II clouds contain particles composed of water ice with radii of 6 μm and larger. Cloud altitudes were determined from 1.064-μm backscattering observations of the airborne Langley DIAL lidar system. Based on the PSC geometrical thickness, both mass and particle density were estimated. Type I clouds typically had visible wavelength optical depths of about 0.008, mass densities of about 20 ppb, and about 2 particles/cm 3 . The observed type II clouds had optical depths of about 0.03, mass densities of about 400 ppb mass, and about 0.03 particles/cm 3 . The detected PSC type I clouds extended to altitudes of 21 km and were nearly in the ozone-depleted region of the polar stratosphere. The observed type II cases during September were predominantly found at altitudes below 15 km

  5. Absorption spectra of chlorophyll a and b in Lhcb protein environment

    NARCIS (Netherlands)

    Cinque, Gianfelice; Croce, Roberta; Bassi, Roberto

    2000-01-01

    The spectral forms of the two chlorophyll species in higher plant Photosystem II antenna proteins have been experimentally determined within their protein environment. Recombinant CP29 and LHC II antenna proteins missing individual chromophores were obtained by over-expression in bacteria without

  6. Evidence for the presence of the 802.7/cm band Q branch of HO2NO2 in high resolution solar absorption spectra of the stratosphere

    Science.gov (United States)

    Rinsland, C. P.; Zander, R.; Farmer, C. B.; Norton, R. H.; Brown, L. R.; Russell, J. M., III; Park, J. H.

    1986-08-01

    Stratospheric solar absorption spectra recorded at ≡0.01 cm-1 resolution by the ATMOS (Atmospheric Trace Molecule Spectroscopy) Fourier transform spectrometer during the Spacelab 3 Shuttle mission show a weak absorption feature covering ≡802.5 - 803.3 cm-1. The authors identify this feature as the unresolved Q branch of the 802.7 cm-1 band of HO2NO2 and report profiles for 31°N and 47°S.

  7. Accounting for nanometer-thick adventitious carbon contamination in X-ray absorption spectra of carbon-based materials.

    Science.gov (United States)

    Mangolini, Filippo; McClimon, J Brandon; Rose, Franck; Carpick, Robert W

    2014-12-16

    Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a powerful technique for characterizing the composition and bonding state of nanoscale materials and the top few nanometers of bulk and thin film specimens. When coupled with imaging methods like photoemission electron microscopy, it enables chemical imaging of materials with nanometer-scale lateral spatial resolution. However, analysis of NEXAFS spectra is often performed under the assumption of structural and compositional homogeneity within the nanometer-scale depth probed by this technique. This assumption can introduce large errors when analyzing the vast majority of solid surfaces due to the presence of complex surface and near-surface structures such as oxides and contamination layers. An analytical methodology is presented for removing the contribution of these nanoscale overlayers from NEXAFS spectra of two-layered systems to provide a corrected photoabsorption spectrum of the substrate. This method relies on the subtraction of the NEXAFS spectrum of the overlayer adsorbed on a reference surface from the spectrum of the two-layer system under investigation, where the thickness of the overlayer is independently determined by X-ray photoelectron spectroscopy (XPS). This approach is applied to NEXAFS data acquired for one of the most challenging cases: air-exposed hard carbon-based materials with adventitious carbon contamination from ambient exposure. The contribution of the adventitious carbon was removed from the as-acquired spectra of ultrananocrystalline diamond (UNCD) and hydrogenated amorphous carbon (a-C:H) to determine the intrinsic photoabsorption NEXAFS spectra of these materials. The method alters the calculated fraction of sp(2)-hybridized carbon from 5 to 20% and reveals that the adventitious contamination can be described as a layer containing carbon and oxygen ([O]/[C] = 0.11 ± 0.02) with a thickness of 0.6 ± 0.2 nm and a fraction of sp(2)-bonded carbon of 0.19 ± 0.03. This

  8. Digital dewaxing of Raman signals: discrimination between nevi and melanoma spectra obtained from paraffin-embedded skin biopsies.

    Science.gov (United States)

    Tfayli, Ali; Gobinet, Cyril; Vrabie, Valeriu; Huez, Regis; Manfait, Michel; Piot, Olivier

    2009-05-01

    Malignant melanoma (MM) is the most severe tumor affecting the skin and accounts for three quarters of all skin cancer deaths. Raman spectroscopy is a promising nondestructive tool that has been increasingly used for characterization of the molecular features of cancerous tissues. Different multivariate statistical analysis techniques are used in order to extract relevant information that can be considered as functional spectroscopic descriptors of a particular pathology. Paraffin embedding (waxing) is a highly efficient process used to conserve biopsies in tumor banks for several years. However, the use of non-dewaxed formalin-fixed paraffin-embedded tissues for Raman spectroscopic investigations remains very restricted, limiting the development of the technique as a routine analytical tool for biomedical purposes. This is due to the highly intense signal of paraffin, which masks important vibrations of the biological tissues. In addition to being time consuming and chemical intensive, chemical dewaxing methods are not efficient and they leave traces of the paraffin in tissues, which affects the Raman signal. In the present study, we use independent component analysis (ICA) on Raman spectral images collected on melanoma and nevus samples. The sources obtained from these images are then used to eliminate, using non-negativity constrained least squares (NCLS), the paraffin contribution from each individual spectrum of the spectral images of nevi and melanomas. Corrected spectra of both types of lesion are then compared and classified into dendrograms using hierarchical cluster analysis (HCA).

  9. Classification and individualization of black ballpoint pen inks using principal component analysis of UV-vis absorption spectra.

    Science.gov (United States)

    Adam, Craig D; Sherratt, Sarah L; Zholobenko, Vladimir L

    2008-01-15

    The technique of principal component analysis has been applied to the UV-vis spectra of inks obtained from a wide range of black ballpoint pens available in the UK market. Both the pen ink and material extracted from the ink line on paper have been examined. Here, principal component analysis characterised each spectrum within a group through the numerical loadings attached to the first few principal components. Analysis of the spectra from multiple measurements on the same brand of pen showed excellent reproducibility and clear discrimination between inks that was supported by statistical analysis. Indeed it was possible to discriminate between the pen ink and the ink line from all brands examined in this way, suggesting that the solvent extraction process may have an influence on these results. For the complete set of 25 pens, interpretation of the loadings for the first few principal components showed that both the pen inks and the extracted ink lines may be classified in an objective manner and in agreement with the results of parallel thin layer chromatography studies. Within each class almost all inks could be individualised. Further work has shown that principal component analysis may be used to identify a particular ink from a database of reference UV-vis spectra and a strategy for developing this approach is suggested.

  10. Nitrogen K-edge X-ray absorption near edge structure (XANES) spectra of purine-containing nucleotides in aqueous solution

    International Nuclear Information System (INIS)

    Shimada, Hiroyuki; Fukao, Taishi; Minami, Hirotake; Ukai, Masatoshi; Fujii, Kentaro; Yokoya, Akinari; Fukuda, Yoshihiro; Saitoh, Yuji

    2014-01-01

    The N K-edge X-ray absorption near edge structure (XANES) spectra of the purine-containing nucleotide, guanosine 5 ′ -monophosphate (GMP), in aqueous solution are measured under various pH conditions. The spectra show characteristic peaks, which originate from resonant excitations of N 1s electrons to π* orbitals inside the guanine moiety of GMP. The relative intensities of these peaks depend on the pH values of the solution. The pH dependence is explained by the core-level shift of N atoms at specific sites caused by protonation and deprotonation. The experimental spectra are compared with theoretical spectra calculated by using density functional theory for GMP and the other purine-containing nucleotides, adenosine 5 ′ -monophosphate, and adenosine 5 ′ -triphosphate. The N K-edge XANES spectra for all of these nucleotides are classified by the numbers of N atoms with particular chemical bonding characteristics in the purine moiety

  11. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  12. Comparative analysis of the vibrational structure of the absorption spectra of acrolein in the excited ( S 1) electronic state

    Science.gov (United States)

    Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.

    2012-04-01

    The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.

  13. Pair Natural Orbital Restricted Open-Shell Configuration Interaction (PNO-ROCIS) Approach for Calculating X-ray Absorption Spectra of Large Chemical Systems.

    Science.gov (United States)

    Maganas, Dimitrios; DeBeer, Serena; Neese, Frank

    2018-02-08

    In this work, the efficiency of first-principles calculations of X-ray absorption spectra of large chemical systems is drastically improved. The approach is based on the previously developed restricted open-shell configuration interaction singles (ROCIS) method and its parametrized version, based on a density functional theory (DFT) ground-state determinant ROCIS/DFT. The combination of the ROCIS or DFT/ROCIS methods with the well-known machinery of the pair natural orbitals (PNOs) leads to the new PNO-ROCIS and PNO-ROCIS/DFT variants. The PNO-ROCIS method can deliver calculated metal K-, L-, and M-edge XAS spectra orders of magnitude faster than ROCIS while maintaining an accuracy with calculated spectral parameters better than 1% relative to the original ROCIS method (referred to as canonical ROCIS). The method is of a black box character, as it does not require any user adjustments, while it scales quadratically with the system size. It is shown that for large systems, the size of the virtual molecular orbital (MO) space is reduced by more than 90% with respect to the canonical ROCIS method. This allows one to compute the X-ray absorption spectra of a variety of large "real-life" chemical systems featuring hundreds of atoms using a first-principles wave-function-based approach. Examples chosen from the fields of bioinorganic and solid-state chemistry include the Co K-edge XAS spectrum of aquacobalamin [H 2 OCbl] + , the Fe L-edge XAS spectrum of deoxymyoglobin (DMb), the Ti L-edge XAS spectrum of rutile TiO 2 , and the Fe M-edge spectrum of α-Fe 2 O 3 hematite. In the largest calculations presented here, molecules with more than 700 atoms and cluster models with more than 50 metal centers were employed. In all the studied cases, very good to excellent agreement with experiment is obtained. It will be shown that the PNO-ROCIS method provides an unprecedented performance of wave-function-based methods in the field of computational X-ray spectroscopy.

  14. Accurate determination of low state rotational quantum numbers (J < 4) from planar-jet and liquid nitrogen cell absorption spectra of methane near 1.4 micron

    Czech Academy of Sciences Publication Activity Database

    Votava, Ondřej; Mašát, M.; Pracna, Petr; Kassi, S.

    2010-01-01

    Roč. 12, č. 13 (2010), s. 3145-3155 ISSN 1463-9076 R&D Projects: GA AV ČR IAA400400706 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroscopy * absorption spectra * physical chemistry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.454, year: 2010

  15. TD-M06-2X insights into the absorption and emission spectra of dichlorvos and its molecularly imprinted recognition by methacrylic acid.

    Science.gov (United States)

    Cheng, Xueli

    2016-11-01

    The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in methanol, water, and chloroform in the molecularly imprinted recognition were investigated systematically. The M06-2X results revealed that: 1) the hydroxyl groups in polar solvents such as methanol and water may markedly influence the weak interactions, and then alter the adsorption and emission spectra; 2) the electronic excitation in absorption spectra of dichlorvos is dominated by the configuration HOMO → LUMO, but in the most stable dichlorvos-MAA it becomes the ππ* excitation of HOMO → LUMO + 1; 3) Mulliken charges reveal that dichlorvos almost dissociates to Cl - and a cation in its S 1 excitation state; 4) the phosphorescence spectra of dichlorvos-MAA are relatively weak. Graphical Abstract The absorption and emission spectra of dichlorvos and the dichlorvos-MAA complex in the molecularly imprinted recognition of dichlorvos were investigated systematically in methanol, water, and chloroform as solvents.

  16. Absorption spectra and cyclic voltammograms of uranium species in molten lithium molybdate-sodium molybdate eutectic at 550 C

    International Nuclear Information System (INIS)

    Nagai, T.; Fukushima, M.; Myochin, M.; Uehara, A.; Fujii, T.; Yamana, H.; Sato, N.

    2011-01-01

    Absorption spectra of uranium species dissolved in molten lithium molybdate.sodium molybdate eutectic of 0.51Li 2 MoO 4 -0.49Na 2 MoO 4 mixture at 550 C were measured by UV/Vis/NIR spectrophotometry, and their redox reactions were investigated by cyclic voltammetry. We found that the major ions of uranium species dissolved in the melt were uranyl penta-valent. After purging dry oxygen gas into the melt, pentavalent species were oxidized to the uranyl hexa-valent. In the cyclic voltammetry of the melt without uranium species, it was confirmed that the lithium-sodium molybdenum oxide compounds were deposited on the working electrode at the negative potential and the lithium molybdenum oxide compounds were deposited on the counter electrode at positive potential. When UO 2 was dissolved into the melt, the reductive reaction of the uranium species was observed at the reductive potential of the pure melt. This suggests that the uranium species dissolved in the melts could be recovered as mixed uranium-molybdenum oxides by electrolysis. (orig.)

  17. Proposal for an experiment at the SIN: contribution on πE3-beam dosimetry. Measurement of particle spectra after pion absorption in biologically interesting nuclei

    International Nuclear Information System (INIS)

    Appel, H.; Boehmer, V.; Bueche, G.; Kluge, W.; Matthay, H.

    It is proposed to measure the energy spectra of light charged particles (protons, deuterons, tritons, 3 He- and 4 He-nuclei) and of neutrons, after the absorption of stopped pions in the biologically interesting hydrogen, oxygen, carbon, and nitrogen nuclei. In addition, the relative particle yield will be examined in tissue-like targets such as polyethylene, plexiglas, and water. Furthermore, it is proposed to measure the coincidence spectra of two particles emitted after absorption, as a function of the angle between their impulses. In the case of a pure three-body decay, these examinations may open the possibility of drawing conclusions about the heavy recoil nuclei arising during pion absorption. Particle energy and type will be determined by a combined time-of-flight/energy measurement with totally absorbent NaI or plastic detectors. The HF signal will serve as a start signal for time-of-flight measurements

  18. A comparative study of EL2 and other deep centers in undoped SI GaAs using optical absorption spectra and photoconductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kozlova, J.P. E-mail: jpkozlova@rbcmail.ru; Bowles, T.J.; Eremin, V.K.; Gavrin, V.N.; Koshelev, O.G.; Markov, A.V.; Morozova, V.A.; Polyakov, A.J.; Verbitskaya, E.M.; Veretenkin, E.P

    2003-10-11

    The performance of radiation detectors fabricated from semi-insulating (SI) GaAs is highly sensitive to EL2{sup +}-concentration in the material. Near-infrared optical absorption measurements are commonly used to determine the EL2-concentration and to roughly estimate the EL2{sup +}-concentration under the assumption that the optical absorption is mainly determined by the photoionization and the photoneutralization of EL2{sup 0} and EL2{sup +}, respectively. However, the presence of different native defects can contribute to optical absorption and reduce the precision of determination of EL2-concentration. In this work, we evaluate the contributions into optical absorption from EL2 and other deep center namely EL3 defect (0.55 eV) using near-infrared optical absorption and photoconductivity (PC) measurements in the photon energy interval 0.5-1.4 eV for SI GaAs crystals grown by the liquid encapsulated Czochralski method from melts with As content changing from 50% to about 46%. The photoelectrical spectra were measured on p-i-n structure detectors with heavily doped p{sup +} and n{sup +} layers grown by Liquid Phase Epitaxy and on Schottky diodes. The short circuit photocurrent spectra were registered for all detectors in the energy interval 0.65-1.4 eV. Unexpectedly, the current sensitivities in the regions of the extrinsic and intrinsic absorption were comparable. A comparative study of optical absorption, PC and short circuit photocurrent spectra resulted in determination of EL2{sup +}-concentration. It was concluded that contribution of additional deep centers, particularly the ionized EL3{sup +} defect could be comparable to the EL2-contribution. The EL3 centers were attributed to oxygen-related defects based on published results and on some indirect evidence in our experimental data.

  19. Dataset of the absorption, emission and excitation spectra and fluorescence intensity graphs of fluorescent cyanine dyes for the quantification of low amounts of dsDNA.

    Science.gov (United States)

    Bruijns, Brigitte; Tiggelaar, Roald; Gardeniers, Han

    2017-02-01

    This article describes data related to a research article entitled "Fluorescent cyanine dyes for the quantification of low amounts of dsDNA" (B. Bruijns, R. Tiggelaar, J. Gardeniers, 2016) [1]. Six cyanine dsDNA dyes - EvaGreen, SYBR Green, PicoGreen, AccuClear, AccuBlue NextGen and YOYO-1 - are investigated and in this article the absorption spectra, as well as excitation and emission spectra, for all six researched cyanine dyes are given, all recorded under exactly identical experimental conditions. The intensity graphs, with the relative fluorescence in the presence of low amounts of dsDNA, are also provided.

  20. Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study

    DEFF Research Database (Denmark)

    Frimand, Kenneth; Bohr, Henrik; Jalkanen, Karl J.

    2000-01-01

    A detailed comparative study of structures, vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra has been carried out for the zwitterionic structure of the amino acid L-alanine. Theoretically determined structures necessary for deriving VA and VCD spectra were calculated...... at the density functional theory level using the B3LYP functional with the 6-31G* basis set. The Hessians and atomic polar tensors and atomic axial tensors were all calculated at the B3LYP/6-31G* level of theory. An important result is the method of treating solvent effects by both adding explicit water...

  1. High resolution MALDI-TOF mass spectra of three proteins obtained using space--velocity correlation focusing

    Science.gov (United States)

    King, Timothy B.; Colby, Steven M.; Reilly, James P.

    1995-07-01

    Mass spectra of cytochrome-c, lysozyme and trypsinogen are recorded using a compact linear time-of-flight instrument with a matrix-assisted laser desorption/ionization source. Space--velocity correlation focusing is employed to reduce observed ion time-of-flight peak widths to nearly the limits established by each ion's isotope distribution. Mass resolution of up to 1700 is achieved. Evidence of metastable decay in the field-free flight region is also presented.

  2. UV-VIS Absorption Spectra of Molten AgCl and AgBr and of their Mixtures with Group I and II Halide Salts

    Science.gov (United States)

    Greening, Giorgio G. W.

    2015-10-01

    The UV-VIS absorption spectra of (Ag1-X[Li-Cs, Ba]X)Cl and of (Ag1-X[Na, K, Cs]X)Br at 823 K at the concentrations X=0.0, 0.1, 0.2 have been measured. The findings show that on adding the respective halides to molten silver chloride and silver bromide, shifts of the fundamental absorption edge to shorter wavelengths result. A correlation between the observed shifts and the expansion of the silver sub-lattice is found, which is valid for both silver halide systems studied in this work.

  3. Absorption spectra measurements of the x-ray radiation heated SiO2 aerogel plasma in 'dog-bone' targets irradiated by high power laser pulses

    Science.gov (United States)

    Zhang, Y.; Dong, Q.-L.; Wang, S.-J.; Li, Y.-T.; Zhang, J.; Wei, H.-G.; Shi, J.-R.; Zhao, G.; Zhang, J.-Y.; Wen, T.-S.; Zhang, W.-H.; Hu, X.; Liu, S.-Y.; Ding, Y.-K.; Zhang, L.; Tang, Y.-J.; Zhang, B.-H.; Zheng, Z.-J.; Nishimura, H.; Fujioka, S.; Takabe, H.

    2008-05-01

    We studied the opacity effect of the SiO2 aerogel plasma heated by x-ray radiation produced by high power laser pulses irradiating the inner surface of golden 'dog-bone' targets. The PET crystal spectrometer was used to measure the absorption spectra of the plasmas in the range from 6.4 Å to 7.4 Å, among which the line emissions involving the K shell of Si ions from He-like to neutral atom were located. The experimental results were analyzed with Detailed-Level-Accounting method. As the plasma temperature increased, the characteristic lines of highly ionized ions gradually dominated the absorption spectrum.

  4. Time-Resolved Absorption and Resonance Raman Spectra of the lowest Excited Triplet State of All-Trans-1,3,5-Heptatriene

    DEFF Research Database (Denmark)

    Langkilde, Frans; Wilbrandt, Robert Walter; Jensen, Niels-Henrik

    1984-01-01

    The lowest excited triplet state of all-trans-1,3,5-heptatriene has been studied by time-resolved absorption and resonance Raman spectroscopy. The difference absorption spectrum of the triplet state has a maximum around 315 nm, and the triplet state decays by first-order kinetics with k = (3.4 ± 0.......3) × 106 s−1. Time-resolved resonance Raman spectra of the heptatriene triplet excited at 317.5 nm showed bands at 1574, 1298, 1275, 1252, 1209, and 1132 cm−1....

  5. Analysis of X-ray absorption spectra of the K and L2,3 edges of GaN within the FP-LAPW method.

    Science.gov (United States)

    Grad, Gabriela B; Bonzi, Edgardo V

    2016-04-01

    Gallium nitride, GaN, is a semiconductor material with several technological applications. In this work we obtain ab initio XANES spectra using FP-LAPW method within the DFT formalism using different potentials (LDA, PBE and TB-mBJ) in order to study the electronic properties of the system. The spectra calculated using the effect of the fractional core hole were compared with experimental data obtaining a very good agreement. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. FIRST ULTRAVIOLET REFLECTANCE SPECTRA OF PLUTO AND CHARON BY THE HUBBLE SPACE TELESCOPE COSMIC ORIGINS SPECTROGRAPH: DETECTION OF ABSORPTION FEATURES AND EVIDENCE FOR TEMPORAL CHANGE

    Energy Technology Data Exchange (ETDEWEB)

    Stern, S. A.; Spencer, J. R.; Shinn, A. [Southwest Research Institute, 1050 Walnut Street, Boulder, CO 80302 (United States); Cunningham, N. J.; Hain, M. J., E-mail: astern@swri.edu [Nebraska Wesleyan University, 5000 Saint Paul Avenue, Lincoln, NE 68504 (United States)

    2012-01-15

    We have observed the mid-UV spectra of both Pluto and its large satellite, Charon, at two rotational epochs using the Hubble Space Telescope (HST) Cosmic Origins Spectrograph (COS) in 2010. These are the first HST/COS measurements of Pluto and Charon. Here we describe the observations and our reduction of them, and present the albedo spectra, average mid-UV albedos, and albedo slopes we derive from these data. These data reveal evidence for a strong absorption feature in the mid-UV spectrum of Pluto; evidence for temporal change in Pluto's spectrum since the 1990s is reported, and indirect evidence for a near-UV spectral absorption on Charon is also reported.

  7. Techniques for studying gravity waves and turbulence: Vertical wind speed power spectra from the troposphere and stratosphere obtained under light wind conditions

    Science.gov (United States)

    Ecklund, W. L.; Balsley, B. B.; Crochet, M.; Carter, D. A.; Riddle, A. C.; Garello, R.

    1983-01-01

    A joint France/U.S. experiment was conducted near the mouth of the Rhone river in southern France as part of the ALPEX program. This experiment used 3 vertically directed 50 MHz radars separated by 4 to 6 km. The main purpose of this experiment was to study the spatial characteristics of gravity waves. The good height resolution (750 meters) and time resolution (1 minute) and the continuous operation over many weeks have yielded high resolution vertical wind speed power spectra under a variety of synoptic conditions. Vertical spectra obtained during very quiet (low wind) conditions in the troposphere and lower stratosphere from a single site are presented.

  8. Artifact suppression in electron paramagnetic resonance imaging of 14N- and 15N-labeled nitroxyl radicals with asymmetric absorption spectra

    Science.gov (United States)

    Takahashi, Wataru; Miyake, Yusuke; Hirata, Hiroshi

    2014-10-01

    This article describes an improved method for suppressing image artifacts in the visualization of 14N- and 15N-labeled nitroxyl radicals in a single image scan using electron paramagnetic resonance (EPR). The purpose of this work was to solve the problem of asymmetric EPR absorption spectra in spectral processing. A hybrid function of Gaussian and Lorentzian lineshapes was used to perform spectral line-fitting to successfully separate the two kinds of nitroxyl radicals. This approach can process the asymmetric EPR absorption spectra of the nitroxyl radicals being measured, and can suppress image artifacts due to spectral asymmetry. With this improved visualization method and a 750-MHz continuous-wave EPR imager, a temporal change in the distributions of a two-phase paraffin oil and water/glycerin solution system was visualized using lipophilic and hydrophilic nitroxyl radicals, i.e., 2-(14-carboxytetradecyl)-2-ethyl-4,4-dimethyl-3-oxazolidinyloxy (16-DOXYL stearic acid) and 4-hydroxyl-2,2,6,6-tetramethylpiperidine-d17-1-15N-1-oxyl (TEMPOL-d17-15N). The results of the two-phase separation experiment verified that reasonable artifact suppression could be achieved by the present method that deals with asymmetric absorption spectra in the EPR imaging of 14N- and 15N-labeled nitroxyl radicals.

  9. Effect of ligand nature and geometry of its surrounding on electron absorption spectra of NpO22+ and PuO22+ compounds

    International Nuclear Information System (INIS)

    Sokolov, E.I.; Tebelev, L.G.; Melkaya, R.F.; Rykov, A.G.

    1981-01-01

    Electron absorption spectra of actinide compounds with the symmetry of the nearest surrounding of actinyl-ions as follows: Dsub(2h)-AnO 2 (NO 3 ) 2 xnH 2 O, AnO 2 (CH 3 COO) 2 x2H 2 O; Dsub(3h)-MAnO 2 (NO 3 ) 3 (M-K, Rb, Cs), NaAnO 2 (CH 3 COO) 3 , (NH 4 ) 4 AnO 2 (CO 3 ) 3 ; Dsub(4h)-Cs 2 AnO 2 Cl 4 , where An-U, Np, Pb, are measured at room temperature. It is established that position, intensity and form of absorption bands in neptunyl compound spectra are sensible equally to geometry of coordination sphere and to ligand nature. The character of the change of plutonyl compound spectra is the same as of neptunyl ones: it is determined both by surrounding geometry and chemical nature of ligands. It is shown that in the near infrared region ligand effect on plutonyl compound spectra with the symmetry of anion complex Dsub(3h) is weaker than in the visible region

  10. Ab initio potential energy surfaces for the ground (X1A') and excited (A1A'') electronic states of HGeBr and the Absorption and emission spectra of HGeBr/DGeBr.

    Science.gov (United States)

    Lin, Sen; Xie, Daiqian; Guo, Hua

    2009-07-02

    We report global potential energy surfaces for both the ground (X(1)A') and the excited (A(1)A'') electronic states of HGeBr as well as the transition dipole moment surface between them using an internally contracted multireference configuration interaction method with the Davidson correction and an augmented correlation-consistent polarized valence quadruple-zeta basis set. Vibrational energy levels of HGeBr and DGeBr are calculated on both the ground and the excited electronic states and found in good agreement with the available experimental band origins. In addition, the A(1)A''-X(1)A' absorption and emission spectra of the two isotopomers were obtained, and an excellent agreement with the available experimental spectra was found.

  11. Solvatochromic effect studies on the absorption spectra of 4-((2-ethylphenyl)diazenyl)benzene-1,3-diol and 2-((2-ethylphenyl)diazenyl)benzene-1,3,5-triol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guelseven, Yadigar; Tasal, Erol; Sidir, Isa [Department of Physics, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir 26480 (Turkey); Guengoer, Tayyar [Department of Physics, Faculty of Arts and Sciences, Akdeniz University, Antalya (Turkey); Berber, Halil [Department of Chemistry, Faculty of Sciences, Anadolu University, Eskisehir (Turkey); Oegretir, Cemil [Department of Chemistry, Faculty of Arts and Sciences, Eskisehir Osmangazi University, Eskisehir (Turkey)

    2009-06-15

    The electronic absorption spectra of 4-((2-ethylphenyl)diazenyl)benzene-1,3-diol and 2-((2-ethylphenyl)diazenyl)benzene-1,3,5-triol molecules in the nine different solvent variable electronic characters have been recorded. The solvent dependent maximum absorption band ({pi}-{pi}* transitions) shifts, {nu}{sub max}, were analyzed using a wide range of parameters such as refractive index, dielectric constant and Kamlet-Taft parameters [hydrogen bond donating ability ({alpha}) and hydrogen bond accepting ability ({beta})]. The electronic transitions are assigned and the solvent-induced spectral shifts have been analyzed in relation to the different solute-solvent interaction mechanism using computational chemistry. The intermolecular interaction types in the azobenzene derivatives solutions have been established on the basis of a multiple linear regression analysis. The fitting coefficients obtained from this analysis allowed us to estimate the contribution of each type of interactions to the total spectral shifts in the studied solutions. (author)

  12. Optical absorption of irradiated carbohydrates

    International Nuclear Information System (INIS)

    Supe, A.A.; Tiliks, Yu.E.

    1994-01-01

    The optical absorption spectra of γ-irradiated carbohydrates (glucose, lactose, sucrose, maltose, and starch) and their aqueous solutions were studied. The comparison of the data obtained with the determination of the concentrations of molecular and radical products of radiolysis allows the absorption bands with maxima at 250 and 310 nm to be assigned to the radicals trapped in the irradiated carbohydrates

  13. Ultraviolet and infrared absorption spectra of Cr2O3 doped-sodium metaphosphate, lead metaphosphate and zinc metaphosphate glasses and effects of gamma irradiation: a comparative study.

    Science.gov (United States)

    Marzouk, M A; ElBatal, F H; Abdelghany, A M

    2013-10-01

    The effects of gamma irradiation on spectral properties of Cr2O3-doped phosphate glasses of three varieties, namely sodium metaphosphate, lead metaphosphate and zinc metaphosphate have been investigated. Optical spectra of the undoped samples reveal strong UV absorption bands which are attributed to the presence of trace iron impurities in both the sodium and zinc phosphate glasses while the lead phosphate glass exhibits broad UV near visible bands due to combined absorption of both trace iron impurities and divalent lead ions. The effect of chromium oxide content has been investigated. The three different Cr2O3-doped phosphate glasses reveal spectral visible bands varying in their position and intensity and splitting due to the different field strengths of the Na(+), Pb(2+), Zn(2+) cations, together with the way they are housed in the network and their effects on the polarisability of neighboring oxygens ligands. The effects of gamma irradiation on the optical spectral properties of the various glasses have been compared. The different effects for lead and zinc phosphate are related to the ability of Pb(2+), and Zn(2+) to form additional structural units causing stability of the network towards gamma irradiation. Also, the introduction of the transition metal chromium ions reveals some shielding behavior towards irradiation. Infrared absorption spectra of the three different base phosphate glasses show characteristic vibrations due to various phosphate groups depending on the type of glass and Cr2O3 is observed to slightly affect the IR spectra. Gamma irradiation causes minor variations in some of the intensities of the IR spectra but the main characteristic bands due to phosphate groups remain in their number and position. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. DFT/TD-semiempirical study on the structural and electronic properties and absorption spectra of supramolecular fullerene-porphyrine-metalloporphyrine triads based dye-sensitized solar cells

    Science.gov (United States)

    Rezvani, M.; Darvish Ganji, M.; Jameh-Bozorghi, S.; Niazi, A.

    2018-04-01

    In the present work density functional theory (DFT) and time-dependent semiempirical ZNIDO/S (TD-ZNIDO/S) methods have been used to investigate the ground state geometries, electronic structures and excited state properties of triad systems. The influences of the type of metal in the porphyrin ring, change in bridge position and porphyrine-ZnP duplicate on the energies of frontier molecular orbital and UV-Vis spectra has been studied. Geometry optimization, the energy levels and electron density of the Highest Occupied Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), chemical hardness (η), electrophilicity index (ω), electron accepting power (ω+) were calculated using ZINDO/S method to predict which molecule is the most efficient with a great capability to be used as a triad molecule in solar industry. Moreover the light harvesting efficiency (LHE) was calculated by means of the oscillator strengths which are obtained by TD-ZINDO/S calculation. Theoretical studies of the electronic spectra by ZINDO/S method were helpful in interpreting the observed electronic transitions. This aspect was systematically explored in a series of C60-Porphyrine-Metalloporphyrine (C60-P-Mp) triad system with M being Fe, Co, Ni, Ti, and Zn. Generally, transition metal coordination compounds are used as effective sensitizers, due to their intense charge-transfer absorption over the whole visible range and highly efficient metal-to-ligand charge transfer. We aim to optimize the performance of the title solar cells by altering the frontier orbital energy gaps. The results reveal that cell efficiency can be enhanced by metal functionalization of the free base porphyrin. Ti-porphyrin was found to be the most efficient dye sensitizer for dye sensitized solar cells (DSSCs) based on C60-P-Mptriad system due to C60-Por-TiP complex has lower chemical hardness, gap energy and chemical potential as well as higher electron accepting power among other complexes. In

  15. The investigation of hydrogens bonds between sulphur-bearing heterocyclic and proton-donor compounds by IR absorption spectra

    International Nuclear Information System (INIS)

    Narziev, B.N.; Nurulloev, M.; Makhkambaev, D.

    1982-01-01

    In this article the results of intermolecular interaction study of sulfur-containing heterocyclic (thiophene, thiophane) and proton-donar (water, alcohol, carbonic acids, chlorophon) molecules for measuring of IR spectrum absorption of protondonar compounds in soluted shape are presented

  16. Domain of arbitrary extension and distortion by noise effects in relaxation spectra Τ2 in MRI obtained by stochastic inversion

    International Nuclear Information System (INIS)

    Galavis, P.; Martinez, V.; Farias, A.; Rodriguez, S.; Martin, M.; Martin, R.

    1998-01-01

    In this work it is examined about the capacity for managing domains with arbitrary extension, the response noise and the loss of information which has a new high sensibility stochastic inversion method to the Laplace transformation which allows to obtain multi echo in Τ 2 for to characterization of tissues by NMR imaging diagnostic. (Author)

  17. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state

    Science.gov (United States)

    Hanuza, J.; Godlewska, P.; Lisiecki, R.; Ryba-Romanowski, W.; Kadłubański, P.; Lorenc, J.; Łukowiak, A.; Macalik, L.; Gerasymchuk, Yu.; Legendziewicz, J.

    2018-05-01

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln = Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass.

  18. DFT study of electron absorption and emission spectra of pyramidal LnPc(OAc) complexes of some lanthanide ions in the solid state.

    Science.gov (United States)

    Hanuza, J; Godlewska, P; Lisiecki, R; Ryba-Romanowski, W; Kadłubański, P; Lorenc, J; Łukowiak, A; Macalik, L; Gerasymchuk, Yu; Legendziewicz, J

    2018-05-05

    The electron absorption and emission spectra were measured for the pyramidal LnPc(OAc) complexes in the solid state and co-doped in silica glass, where Ln=Er, Eu and Ho. The theoretical electron spectra were determined from the quantum chemical DFT calculation using four approximations CAM-B3LYP/LANL2DZ, CAM-B3LYP/CC-PVDZ, B3LYP/LANL2DZ and B3LYP/CC-PVDZ. It was shown that the best agreement between the calculated and experimental structural parameters and spectroscopic data was reached for the CAM-B3LYP/LANL2DZ model. The emission spectra were measured using the excitations both in the ligand and lanthanide absorption ranges. The possibility of energy transfer between the phthalocyanine ligand and excited states of lanthanide ions was discussed. It was shown that the back energy transfer from metal states to phthalocyanine state is responsible for the observed emission of the studied complexes both in the polycrystalline state and silica glass. Copyright © 2018. Published by Elsevier B.V.

  19. A time-dependent density-functional theory and complete active space self-consistent field method study of vibronic absorption and emission spectra of coumarin.

    Science.gov (United States)

    Li, Junfeng; Rinkevicius, Zilvinas; Cao, Zexing

    2014-07-07

    Time-dependent density-functional theory (TD-DFT) and complete active space multiconfiguration self-consistent field (CASSCF) calculations have been used to determine equilibrium structures and vibrational frequencies of the ground state and several singlet low-lying excited states of coumarin. Vertical and adiabatic transition energies of S1, S2, and S3 have been estimated by TD-B3LYP and CASSCF/PT2. Calculations predict that the dipole-allowed S1 and S3 states have a character of (1)(ππ*), while the dipole-forbidden (1)(nπ*) state is responsible for S2. The vibronic absorption and emission spectra of coumarin have been simulated by TD-B3LYP and CASSCF calculations within the Franck-Condon approximation, respectively. The simulated vibronic spectra show good agreement with the experimental observations available, which allow us to reasonably interpret vibronic features in the S0→S1 and S0→S3 absorption and the S0←S1 emission spectra. Based on the calculated results, activity, intensity, and density of the vibronic transitions and their contribution to the experimental spectrum profile have been discussed.

  20. Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd3+-doped soda lime phosphate glasses

    Science.gov (United States)

    Marzouk, M. A.; Elkashef, I. M.; Elbatal, H. A.

    2018-04-01

    The main aim of the present work is to study by two collective optical and FTIR spectral measurements some prepared Nd2O3-doped soda lime phosphate glasses before and after gamma irradiation with dose (9 Mrad). The spectral data reveal two strong UV absorption peaks which are correlated with unavoidable trace iron impurities beside extended additional characteristic bands due to Nd3+ ions. Gamma irradiation on the undoped glass produces slight decrease of the intensity of the UV absorption and the generation of an induced visible band and these effects are controlled with two photochemical reduction of some Fe3+ ions to Fe2+ ions together with the formation of nonbridging oxygen hole center (NBOHC) or phosphorous oxygen hole center (POHC). The impact effect of gamma irradiation on the spectra of Nd2O3-doped glasses is limited due to suggested shielding behavior of neodymium ions. FT-infrared spectra show vibrational modes due to main Q2-Q3 phosphate groups and the response of gamma irradiation of the IR spectra is low and the limited variations are related to suggested changes in some bond angles and bond lengths which cause the observed decrease to the intensities of some IR bands.

  1. Calculated Hanle transmission and absorption spectra of the 87Rb D1 line with residual magnetic field for arbitrarily polarized light

    International Nuclear Information System (INIS)

    Noh, Heung-Ryoul; Moon, Han Seb

    2010-01-01

    This paper reports a theoretical study on the transmission spectra of an arbitrarily polarized laser beam through a rubidium cell with or without a buffer gas in Hanle-type coherent population trapping (CPT). This study examined how laser polarization, transverse magnetic field, and collisions with buffer gas affects the spectrum. The transmission spectrum due to CPT and the absorption spectrum due to the level crossing absorption (LCA) were calculated according to the laser polarization. The results show that the LCA is strongly dependent on the transverse magnetic field and interaction time of the atoms with a laser light via collisions with the buffer gas. In addition, the spectral shape of the calculated Hanle spectrum is closely related to the direction between the (stray) transverse magnetic field and polarization of the laser.

  2. Absorption and fluorescence spectra of Am{sup 3+}-doped Cs{sub 2}NaLuCl{sub 6} elpasolite crystals

    Energy Technology Data Exchange (ETDEWEB)

    Barbanel`, Yu.A.; Chudnovskaya, G.P.; Dushin, R.B.; Kolin, V.V.; Kotlin, V.P.; Nekhoroshkov, S.N.; Pen`kin, M.V. [Radievyj Inst., St. Petersburg (Russian Federation)

    1998-07-24

    Low-temperature absorption and fluorescence (including self-fluorescence) spectra of Am{sup 3+} in the elpasolite lattice have been studied in the regions of the {sup 7}F{sub 6}<-{sup 7}F{sub 0} and {sup 5}L{sub 6}{yields}{sup 7}F{sub 0} transitions, correspondingly. Ten crystal field sublevels in the {sup 7}F{sub 6} and {sup 5}L{sub 6} levels have been localized and assigned. The crystal field parameters have been calculated for the AmCl{sub 6}{sup 3-} complex. (orig.) 17 refs.

  3. First-principles calculation of optical absorption spectra in conjugated polymers: Role of electron-hole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Michael; Tiago, M.L.; Louie, Steven G.

    2000-03-20

    Experimental and theoretical studies have shown that excitonic effects play an important role in the optical properties of conjugated polymers. The optical absorption spectrum of trans-polyacetylene, for example, can be understood as completely dominated by the formation of exciton bound states. We review a recently developed first-principles method for computing the excitonic effects and optical spectrum, with no adjustable parameters. This theory is used to study the absorption spectrum of two conjugated polymers: trans-polyacetylene and poly-phenylene-vinylene(PPV).

  4. Simultaneous structural enhancement of powder diffraction spectra obtained by X-ray, neutron and synchrotron diffraction studies

    International Nuclear Information System (INIS)

    Maichle, J.K.

    1988-01-01

    The novel method for the enhancement of structural data is explained, and is applied for the first time for a simultaneous analysis and evaluation of neutron and synchrotron diffraction data obtained for the superconductor BaPb 0.75 Bi 0.25 O 3 . This substance can be specified in the measured temperature range between 2 K and 310 K to belong to the monoclinic space group I 2/m, and thus is determined to be in a distorted perovskite cell ahead of (a≅b≅√2 a 0 ; c≅2a 0 ). The oxygen octaeders are for the most part tilted around the (x.1/4.1/4)-axis. The simultaneous evaluation of several X-ray diffraction data sets of the high-T c superconductor YBa 2 Cu 3 O 7±z confirms the orthorhombic symmetry with space group P mmm, YBa 2 Cu 3 O 7±z likewise is in a distorted perovskite cell ahead of (a≅b≅a 0 ; c≅3a 0 ). At low temperatures, however, a saddle-shaped distortion of the oxygen group, hitherto believed to be plane, is found in the plane (x.y.0.37). (orig.) [de

  5. Interpretation of polarized Cu K x-ray absorption near-edge-structure spectra of CuO

    Czech Academy of Sciences Publication Activity Database

    Šipr, Ondřej; Šimůnek, Antonín

    2001-01-01

    Roč. 13, - (2001), s. 8519-8525 ISSN 0953-8984 Institutional research plan: CEZ:AV0Z1010914 Keywords : polarized Cu K-edge spectra * CuO * band-structure calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.611, year: 2001

  6. Experimental and theoretical studies of the VUV emission and absorption spectra of H{sub 2}, HD and D{sub 2} molecules; Etude experimentale et theorique des spectres d'emission et d'absorption VUV des molecules H{sub 2}, D{sub 2} et HD

    Energy Technology Data Exchange (ETDEWEB)

    Roudjane, M

    2007-12-15

    The aim of this thesis is to carry out an experimental study of the absorption and emission spectra of the D{sub 2} and HD isotopes, with high resolution, in the VUV domain and to supplement it by a theoretical study of the excited electronic states involved in the observed transitions. The emission spectra of HD and D{sub 2} are produced by Penning discharge source operating under low pressure and are recorded in the spectral range 78 - 170 nm. The recorded spectra contains more than 20.000 lines. The analysis of the spectrum consists in identifying and assigning the lines to the electronic transitions between energy levels of the molecule. The present analysis is based on our theoretical calculations of the ro-vibrational energy levels of the excited electronic states and the transition probabilities from these states towards the energy levels of the fundamental state. The theoretical results are obtained by resolving the coupled equations between the excited electronic states B{sup 1}{sigma}{sub u}{sup 1}, B'{sup 1}{sigma}{sub u}{sup 1}, C{sup 1}{pi}{sub u}{sup 1} and D{sup 1}{pi}{sub u}{sup 1}, taking into account the nonadiabatic couplings between these states, and they are obtained in the adiabatic approximation for the excited electronic states B''B-bar{sup 1}{sigma}{sub u}{sup +}, D'{sup 1}{pi}{sub u}{sup 1} and D''{sup 1}{pi}{sub u}{sup 1}. The equations are resolved using a modern method based on the discretization variables representation method. In addition, we have carried out a study of the absorption spectra of the HD and D{sub 2} molecules.

  7. Second and third peaks in the non-resonant microwave absorption spectra of superconducting Bi2212 crystals

    CSIR Research Space (South Africa)

    Srinivasu, V V

    2010-04-01

    Full Text Available Non-resonant microwave absorption (NMA) measurements at liquid nitrogen temperature with systematic microwave power variation showed a two-peak structure in the Bi-2212 textured crystals, similar to that observed in the Bi-2212 single crystals...

  8. Forward modeling and retrieval of water vapor from the Global Ozone Monitoring Experiment: Treatment of narrowband absorption spectra

    NARCIS (Netherlands)

    Lang, R.; Maurellis, A.N.; van der Zande, W.J.; Aben, I.; Landgraf, J.; Ubachs, W.M.G.

    2002-01-01

    [1] We present the algorithm and results for a new fast forward modeling technique applied to the retrieval of atmospheric water vapor from satellite measurements using a weak ro-vibrational overtone band in the visible. The algorithm uses an Optical Absorption Coefficient Spectroscopy (OACS) method

  9. STRONG MAGNETIC-X-RAY DICHROISM IN 2P ABSORPTION-SPECTRA OF 3D TRANSITION-METAL IONS

    NARCIS (Netherlands)

    VANDERLAAN, G; THOLE, BT

    1991-01-01

    From atomic calculations in crystal-field symmetry we find a very strong circular and linear dichroism in the 2p x-ray absorption edges of magnetically ordered 3d transition-metal ions. The spectral shape changes drastically with the character of the ground state, which is determined by the presence

  10. Solvatochromic effect in absorption and emission spectra of star-shaped bipolar derivatives of 1,3,5-triazine and carbazole. A time-dependent density functional study.

    Science.gov (United States)

    Baryshnikov, Gleb V; Bondarchuk, Sergey V; Minaeva, Valentina A; Ågren, Hans; Minaev, Boris F

    2017-02-01

    A series of three star-shaped compounds containing both donor (carbazole) and acceptor (2,4,6-triphenyl-1,3,5-triazine) moieties linked through various linking bridges was studied theoretically at the linear response TD-DFT level of theory to describe their absorption and fluorescence spectra. The concept of a localized charge-transfer excited state has been applied successfully to explain the observed strong solvatochromic effect in the emission spectra of the studied molecules, which can be utilized for the fabrication of color tunable solution-processable OLEDs. The concept is in particularly applicable to donor-acceptor species with a C 3 symmetry point group where the static dipole moment changes dramatically upon electronic excitation. An important peculiarity of the studied molecules is that they are characterized by non-zero values of the HOMO and LUMO orbitals in the same common part of molecular space that provides a large electric dipole transition moment for both light absorption and emission. Graphical abstract Star-shaped C 3 symmetry point group derivatives for color tunable OLEDs.

  11. Absorption and Reflectance Spectra of Microwave Radiation by an Epoxy Resin Composite with Multi-Walled Carbon Nanotubes

    Science.gov (United States)

    Komarov, F. F.; Milchanin, O. V.; Parfimovich, I. D.; Grinchenko, M. V.; Parhomenko, I. N.; Tkachev, A. G.; Bychanok, D. S.

    2017-09-01

    A procedure for dispersing multi-walled carbon nanotubes in the two-component polymer SpeciFix-20 (epoxy resin + hardener) using combined hydromechanical and ultrasonic mixing was developed. New composites with carbon nanotubes were produced. Their structures and optical and electrophysical characteristics were studied. The propagation of microwave radiation (26-38 GHz) in experimental composite samples was investigated. It was shown that the strong absorption of the composites appeared only with significant additions of multi-walled carbon nanotubes and was caused by the resulting electrical conductivity of the composites. A size effect of the additive on the optical characteristics of the produced composites was established. Equal absorption coefficients for microwave radiation could be achieved by using a smaller amount of carbon nanotubes with smaller diameters and greater specific surface areas in the composite.

  12. Narrowband shortwave minima in spectra of backscattered light from the sea obtained from ocean color scanners as a remote indication of algal blooms

    Directory of Open Access Journals (Sweden)

    G.S. Karabashev

    2016-10-01

    Full Text Available We propose a new approach to indication of algal blooms. It stems from analysis of the multispectral satellite reflectance Rrs of areas where blooms were documented during recent decades. We found that spectra of algal blooms exhibit minima at wavelengths of channels of Moderate Resolution Imaging Spectroradiometer (MODIS λ = 443 and λ = 488 nm (Baltic, Black, and Caspian seas, λ = 443 nm (Southwest Tropical Pacific (SWTP, and λ = 443 nm and λ = 469 nm (Patagonian Continental Shelf (PCS, attributable to absorption bands of chlorophyll a and accessory pigments. We quantified the minima using indices D1 = Rrs(443 − Rrs(412 and D2 = Rrs(488 − Rrs(469 and proved their diagnostic potential by comparing their distributions to that of Rrs(555. Linear dependence of D1 upon chlorophyll a was found from MODIS data for the bloom of Nodularia spumigena. Time dependences of D1 and D2 point to the latter as a probable remote forerunner of cyanobacterial blooms. In the PCS, D1 and D2 proved to be too simplistic owing to diversity of spectral shapes at λ < 550 nm. Cluster analysis revealed close linkage of the latter and local oceanological conditions. Our findings bear witness to the diagnostic potential of the indices by virtue of their direct relation to pigment absorption and because the broadband background reflectance changes reduce when calculating the indices as a difference of spectrally close reflectances. Further studies are needed to convert the indices to band-difference algorithms for retrieving the bio-optical characteristics of algal blooms.

  13. Effect of a progressive sound wave on the profiles of spectral lines. 2: Asymmetry of faint Fraunhofer lines. [absorption spectra

    Science.gov (United States)

    Kostyk, R. I.

    1974-01-01

    The absorption coefficient profile was calculated for lines of different chemical elements in a medium with progressive sound waves. Calculations show that (1) the degree and direction of asymmetry depend on the atomic ionization potential and the potential of lower level excitation of the individual line; (2) the degree of asymmetry of a line decreases from the center toward the limb of the solar disc; and (3) turbulent motions 'suppress' the asymmetry.

  14. Tailored pump-probe transient spectroscopy with time-dependent density-functional theory: controlling absorption spectra

    Science.gov (United States)

    Walkenhorst, Jessica; De Giovannini, Umberto; Castro, Alberto; Rubio, Angel

    2016-05-01

    Recent advances in laser technology allow us to follow electronic motion at its natural time-scale with ultra-fast time resolution, leading the way towards attosecond physics experiments of extreme precision. In this work, we assess the use of tailored pumps in order to enhance (or reduce) some given features of the probe absorption (for example, absorption in the visible range of otherwise transparent samples). This type of manipulation of the system response could be helpful for its full characterization, since it would allow us to visualize transitions that are dark when using unshaped pulses. In order to investigate these possibilities, we perform first a theoretical analysis of the non-equilibrium response function in this context, aided by one simple numerical model of the hydrogen atom. Then, we proceed to investigate the feasibility of using time-dependent density-functional theory as a means to implement, theoretically, this absorption-optimization idea, for more complex atoms or molecules. We conclude that the proposed idea could in principle be brought to the laboratory: tailored pump pulses can excite systems into light-absorbing states. However, we also highlight the severe numerical and theoretical difficulties posed by the problem: large-scale non-equilibrium quantum dynamics are cumbersome, even with TDDFT, and the shortcomings of state-of-the-art TDDFT functionals may still be serious for these out-of-equilibrium situations.

  15. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    International Nuclear Information System (INIS)

    Li, Zi; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping

    2016-01-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N 2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  16. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-01

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pKa‧. The determination of pKa‧ is performed for various ionic strengths, which reveals the thermodynamic acid constant (pKa = 7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of - 1 and the blue form that of - 2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed.

  17. Determination of equilibrium structures of bromothymol blue revealed by using quantum chemistry with an aid of multivariate analysis of electronic absorption spectra.

    Science.gov (United States)

    Shimada, Toru; Hasegawa, Takeshi

    2017-10-05

    The pH dependent chemical structures of bromothymol blue (BTB), which have long been under controversy, are determined by employing a combined technique of multivariate analysis of electronic absorption spectra and quantum chemistry. Principle component analysis (PCA) of the pH dependent spectra apparently reveals that only two chemical species are adequate to fully account for the color changes, with which the spectral decomposition is readily performed by using augmented alternative least-squares (ALS) regression analysis. The quantity variation by the ALS analysis also reveals the practical acid dissociation constant, pK a '. The determination of pK a ' is performed for various ionic strengths, which reveals the thermodynamic acid constant (pK a =7.5) and the number of charge on each chemical species; the yellow form is negatively charged species of -1 and the blue form that of -2. On this chemical information, the quantum chemical calculation is carried out to find that BTB molecules take the pure quinoid form in an acid solution and the quinoid-phenolate form in an alkaline solution. The time-dependent density functional theory (TD-DFT) calculations for the theoretically determined chemical structures account for the peak shift of the electronic spectra. In this manner, the structures of all the chemical species appeared in equilibrium have finally been confirmed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Raman spectra of lithium compounds

    Science.gov (United States)

    Gorelik, V. S.; Bi, Dongxue; Voinov, Y. P.; Vodchits, A. I.; Gorshunov, B. P.; Yurasov, N. I.; Yurasova, I. I.

    2017-11-01

    The paper is devoted to the results of investigating the spontaneous Raman scattering spectra in the lithium compounds crystals in a wide spectral range by the fibre-optic spectroscopy method. We also present the stimulated Raman scattering spectra in the lithium hydroxide and lithium deuteride crystals obtained with the use of powerful laser source. The symmetry properties of the lithium hydroxide, lithium hydroxide monohydrate and lithium deuteride crystals optical modes were analyzed by means of the irreducible representations of the point symmetry groups. We have established the selection rules in the Raman and infrared absorption spectra of LiOH, LiOH·H2O and LiD crystals.

  19. Infrared absorption spectra of t-HNOH radicals generated on VUV irradiation of NO in solid hydrogen.

    Science.gov (United States)

    Wu, Yu-Jong; Lin, Meng-Yeh; Hsu, Sheng-Chuan; Cheng, Bing-Ming

    2009-04-14

    Photoproduct signature: Irradiation of solid hydrogen near 3 K containing NO with vacuum-UV light from synchrotron radiation yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1) (see figure). These new lines are assigned to vibrational modes of t-HNOH. This photoproduct is formed from electronically excited NO reacting with neighboring hydrogen in the solid sample.Irradiation of solid H(2) near 3 K containing NO with vacuum-ultraviolet light from a synchrotron yields new infrared absorption lines at 1241.7, 1063.6 and 726.2 cm(-1). The structures of four possible structural isomers: H(2)NO, t-HNOH, c-HNOH and NOH(2), their vibrational wavenumbers, IR intensities and D-isotopic shifts are calculated with density-functional theory according to B3LYP and PW91PW91/aug-cc-pVTZ methods. Based on the results of those calculations and of experiments with deuterium labeling, we assign the new lines to nu(4) (cis bending), nu(5) (N==O stretching) and nu(6) (out-of-plane deformation) modes, respectively, of t-HNOH. This photoproduct is formed through reaction of electronically excited NO with neighboring H(2) in the solid sample.

  20. Experimental and theoretical correlations between vanadium K-edge X-ray absorption and Kβ emission spectra.

    Science.gov (United States)

    Rees, Julian A; Wandzilak, Aleksandra; Maganas, Dimitrios; Wurster, Nicole I C; Hugenbruch, Stefan; Kowalska, Joanna K; Pollock, Christopher J; Lima, Frederico A; Finkelstein, Kenneth D; DeBeer, Serena

    2016-09-01

    A series of vanadium compounds was studied by K-edge X-ray absorption (XAS) and K[Formula: see text] X-ray emission spectroscopies (XES). Qualitative trends within the datasets, as well as comparisons between the XAS and XES data, illustrate the information content of both methods. The complementary nature of the chemical insight highlights the success of this dual-technique approach in characterizing both the structural and electronic properties of vanadium sites. In particular, and in contrast to XAS or extended X-ray absorption fine structure (EXAFS), we demonstrate that valence-to-core XES is capable of differentiating between ligating atoms with the same identity but different bonding character. Finally, density functional theory (DFT) and time-dependent DFT calculations enable a more detailed, quantitative interpretation of the data. We also establish correction factors for the computational protocols through calibration to experiment. These hard X-ray methods can probe vanadium ions in any oxidation or spin state, and can readily be applied to sample environments ranging from solid-phase catalysts to biological samples in frozen solution. Thus, the combined XAS and XES approach, coupled with DFT calculations, provides a robust tool for the study of vanadium atoms in bioinorganic chemistry.

  1. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    Science.gov (United States)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM–Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ∼ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  2. Ab Initio Potential Energy Surfaces for Both the Ground (X̃1A′ and Excited (A∼1A′′ Electronic States of HSiBr and the Absorption and Emission Spectra of HSiBr/DSiBr

    Directory of Open Access Journals (Sweden)

    Anyang Li

    2012-01-01

    Full Text Available Ab initio potential energy surfaces for the ground (X̃1A′ and excited (A˜A′′1 electronic states of HSiBr were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multireference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. The calculated vibrational energy levels of HSiBr and DSiBr of the ground and excited electronic states are in excellent agreement with the available experimental band origins. In addition, the absorption and emission spectra of HSiBr and DSiBr were calculated using an efficient single Lanczos propagation method and are in good agreement with the available experimental observations.

  3. The fluctuating population of Sm 4f configurations in topological Kondo insulator SmB6 explored with high-resolution X-ray absorption and emission spectra.

    Science.gov (United States)

    Lee, Jenn-Min; Haw, Shu-Chih; Chen, Shi-Wei; Chen, Shin-Ann; Ishii, Hirofumi; Tsuei, Ku-Ding; Hiraoka, Nozomu; Liao, Yen-Fa; Lu, Kueih-Tzu; Chen, Jin-Ming

    2017-09-12

    High-resolution partial-fluorescence-yield X-ray absorption and resonant X-ray emission spectra were used to characterize the temperature dependence of Sm 4f configurations and orbital/charge degree of freedom in SmB 6 . The variation of Sm 4f configurations responds well to the formed Kondo gap, below 140 K, and an in-gap state, below 40 K. The topological in-gap state is correlated with the fluctuating population of Sm 4f configurations that arises via carrier transfer between 3d 9 4f 6 and 3d 9 4f 5 states; both states are partially delocalized, and the mediating 5d orbital plays the role of a transfer path. Complementary results shown in this work thus manifest the importance of configuration fluctuations and orbital delocalization in the topological surface state of SmB 6 .

  4. Assignment of Pre-Edge Features in the Ru K-Edge X-Ray Absorption Spectra of Organometallic Ruthenium Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-05-18

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray absorption spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d {l_arrow} 1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates.

  5. Time dependent density functional study of the absorption spectra of 1,3-benzoxazole and three substituted benzoxazole in gas phase and liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Carrasquilla, Rafael J; Neira, Oscar L, E-mail: rjcarrasquilla@yahoo.com [Grupo de Espectroscopia Optica y Laser, Universidad Popular del Cesar, Valledupar (Colombia)

    2011-01-01

    Time dependent density functional (TD-DFT) calculations were performed on 1,3-benzoxazole and substituted benzoxazoles using the B3LYP functional and the 6-31+G(d) basis sets. The geometry of the S{sub 0} and S{sub 1} singlet ground and excited states were optimized in gas phase, toluene and methanol using B3LYP/6-31+G(d) y CIS/6-31+G(d) methods, respectively, and the vertical {pi} {yields} {pi}{sup *} absorption largest wavelength transitions were determined. Several global molecular descriptors were considered such as the hardness, chemical potential, electronegativity and the dipole moment for each molecule and was determined the influence that has, about the values of these descriptors, the alteration of the main molecular chain of an initial structure (1,3 not substituted Benzoxazole). Generally, the predicted spectra are in agreement with the experimental data.

  6. [The effect of electromagnetic waves of very high frequency of molecular spectra of radiation and absorption of nitric oxide on the functional activity of platelets].

    Science.gov (United States)

    Kirichuk, V F; Maĭborodin, A V; Volin, M V; Krenitskiĭ, A P; Tupikin, V D

    2001-01-01

    A study was made of the effect of electromagnetic EMI MMD-fluctuation on the frequencies of molecular spectra of radiation, and nitric oxide absorption under in vitro conditions on the functional activity of platelets in patients with unstable angina pectoris, with the help of a specially created generator. At amplitude-modulated and continuous modes of EMI MMD-irradiation of platelet-rich plasma for 5, 15 and 30 min the platelet functional activity decreases, which was shown up in reduction of their activation and fall of aggregative ability. The degree, to which platelet functional activity was inhibited, depended on the mode of irradiation and on duration of EMI MMD effect. The most obvious changes in platelet activation and in their readiness to aggregative response were observed at a continuous mode of irradiation within a 15 min interval.

  7. [Influence of electromagnetic emission at the frequencies of molecular absorption and emission spectra of oxygen and nitrogen oxide on the adhesion and formation of Pseudomonas aeruginosa biofilm].

    Science.gov (United States)

    Pronina, E A; Shvidenko, I G; Shub, G M; Shapoval, O G

    2011-01-01

    Evaluate the influence of electromagnetic emission (EME) at the frequencies of molecular absorption and emission spectra of atmospheric oxygen and nitrogen oxide (MAES 02 and MAES NO respectively) on the adhesion, population progress and biofilm formation of Pseudomonas aeruginosa. Adhesive activity was evaluated by mean adhesion index (MAI) of bacteria on human erythrocytes. Population growth dynamic was assessed by optical density index of broth cultures; biofilm formation--by values of optical density of the cells attached to the surface of polystyrol wells. P.aeruginosa bacteria had high adhesive properties that have increased under the influence of MAES 02 frequency emission and have not changed under the influence of MAES NO frequency. Exposure of bacteria to MAES NO frequency did not influence the population progress; exposure to MAES 02 frequency stimulated the biofilm formation ability of the bacteria, and MAES NO--decreased this ability. EME at MAES NO frequency can be used to suppress bacterial biofilm formation by pseudomonas.

  8. Application of the correction's system of bottom by deuterium's lamp of a spectrophotometer of atomic absorption to the obtaining of ultraviolet spectrums

    International Nuclear Information System (INIS)

    Villalobos Chaves, Alberto Enrique

    2002-01-01

    The correction system of bottom by lamp of deuterium's arch of a spectrophotometer of atomic absorption has been utilized with sweep's capacity of wavelength to get spectrums of ultraviolet absorption of samples in gaseous phase, whether in presence as in absence of flame, in the region between 200 nm and 365 nm. The spectral information was obtained after of a process of electronic subtraction of the source's signal, except for the source's signal plus the sample and its subsequent analysis by a programmed data's processor to give a report in terms of wavelength. The spectrums obtained in absence of flame were practiced in samples contained in a gas's sell for infrared spectroscopy with polyethylene's windows, it is located of the burner and directly in front to the radiation's beam, comparable spectrums with the reported in the literature were obtained and with a bigger resolution than the measure with an conventional ultraviolet absorption's spectrophotometer utilized like reference. The spectrums in presence of flame have been of flame have been obtained from dissolved samples and directly suctioned, it achieves to obtain spectral information that is normally not detected conveniently when it performs qualitative analysis by emission of flame in elements such like zinc, lead, cobalt, mercury and nickel among other. The information obtained on this way has been utilized like an alternative method to the elemental analysis by humid way with a view to increase the reliability of the results that have been utilized like basis in the determination of the tariff classification of imported or exported products. (Author) [es

  9. Determination of the Telluric Water Vapor Absorption Correction for Astronomical Data Obtained from the Kuiper Airborne Observatory

    Science.gov (United States)

    Erickson, E. F.; Simpson, J. P.; Kuhn, P. M.; Stearns, L. P.

    1979-01-01

    The amount of telluric water vapor along the line of sight of the Kuiper Airborne Observatory telescope as obtained concommitantly on 23 flights is compared with the NASA-Ames Michelson interferometer and with the NOAA-Boulder radiometer. A strong correlation between the two determinations exists, and a method for computing the atmospheric transmission for a given radiometer reading is established.

  10. Förster resonance energy transfer, absorption and emission spectra in multichromophoric systems. II. Hybrid cumulant expansion.

    Science.gov (United States)

    Ma, Jian; Moix, Jeremy; Cao, Jianshu

    2015-03-07

    We develop a hybrid cumulant expansion method to account for the system-bath entanglement in the emission spectrum in the multi-chromophoric Förster transfer rate. In traditional perturbative treatments, the emission spectrum is usually expanded with respect to the system-bath coupling term in both real and imaginary time. This perturbative treatment gives a reliable absorption spectrum, where the bath is Gaussian and only the real-time expansion is involved. For the emission spectrum, the initial state is an entangled state of the system plus bath. Traditional perturbative methods are problematic when the excitations are delocalized and the energy gap is larger than the thermal energy, since the second-order expansion cannot predict the displacement of the bath. In the present method, the real-time dynamics is carried out by using the 2nd-order cumulant expansion method, while the displacement of the bath is treated more accurately by utilizing the exact reduced density matrix of the system. In a sense, the hybrid cumulant expansion is based on a generalized version of linear response theory with entangled initial states.

  11. Diffuse Reflectance Spectroscopy of Hidden Objects, Part I: Interpretation of the Reflection-Absorption-Scattering Fractions in Near-Infrared (NIR) Spectra of Polyethylene Films.

    Science.gov (United States)

    Pomerantsev, Alexey L; Rodionova, Oxana Ye; Skvortsov, Alexej N

    2017-08-01

    Investigation of a sample covered by an interfering layer is required in many fields, e.g., for process control, biochemical analysis, and many other applications. This study is based on the analysis of spectra collected by near-infrared (NIR) diffuse reflectance spectroscopy. Each spectrum is a composition of a useful, target spectrum and a spectrum of an interfering layer. To recover the target spectrum, we suggest using a new phenomenological approach, which employs the multivariate curve resolution (MCR) method. In general terms, the problem is very complex. We start with a specific problem of analyzing a system, which consists of several layers of polyethylene (PE) film and underlayer samples with known spectral properties. To separate information originating from PE layers and the target, we modify the system versus both the number of the PE layers as well as the reflectance properties of the target sample. We consider that the interfering spectrum of the layer can be modeled using three components, which can be tentatively called transmission, absorption, and scattering contributions. The novelty of our approach is that we do not remove the reflectance and scattering effects from the spectra, but study them in detail aiming to use this information to recover the target spectrum.

  12. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    KAUST Repository

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  13. Confirmation of Enhanced Dwarf-sensitive Absorption Features in the Spectra of Massive Elliptical Galaxies: Further Evidence for a Non-universal Initial Mass Function

    Science.gov (United States)

    van Dokkum, Pieter G.; Conroy, Charlie

    2011-07-01

    We recently found that massive cluster elliptical galaxies have strong Na I λ8183, 8195 and FeH λ9916 Wing-Ford band absorption, indicating the presence of a very large population of stars with masses clusters associated with M31. These globular clusters have similar metallicities, abundance ratios, and ages as massive elliptical galaxies but their low dynamical mass-to-light ratios rule out steep stellar initial mass functions (IMFs). From high-quality Keck spectra we find that the dwarf-sensitive absorption lines in globular clusters are significantly weaker than in elliptical galaxies and consistent with normal IMFs. The differences in the Na I and Wing-Ford indices are 0.027 ± 0.007 mag and 0.017 ± 0.006 mag, respectively. We directly compare the two classes of objects by subtracting the averaged globular cluster spectrum from the averaged elliptical galaxy spectrum. The difference spectrum is well fit by the difference between a stellar population synthesis model with a bottom-heavy IMF and one with a bottom-light IMF. We speculate that the slope of the IMF may vary with velocity dispersion, although it is not yet clear what physical mechanism would be responsible for such a relation.

  14. New ab initio potential energy surfaces for both the ground (X̃1A') and excited (Ã1A″) electronic states of HSiCl and the absorption and emission spectra of HSiCl/DSiCl.

    Science.gov (United States)

    Lin, Sen; Xie, Daiqian

    2011-06-01

    New ab initio potential energy surfaces for the ground (X̃1A') and excited (Ã1A″) electronic states of HSiCl were obtained by using the single and double excitation coupled-cluster theory with a noniterative perturbation treatment of triple excitations and the multi-reference configuration interaction with Davidson correction, respectively, employing an augmented correlation-consistent polarized valence quadruple zeta basis set. For the excited state Ã1A″, an extended active space (18 electrons in 12 orbitals) was used. The calculated vibrational energy levels of HSiCl and DSiCl of the ground and excited electronic states are in better agreement with the available experimental values than the previous theoretical results. In addition, with the calculated transition dipole moment, the absorption and emission spectra of HSiCl and DSiCl were calculated using an efficient single Lanczos propagation method and are in reasonable agreement with the available observed spectra. Copyright © 2011 Wiley Periodicals, Inc.

  15. Near-Infrared Absorption and Scattering Separated by Extended Inverted Signal Correction (EISC): Analysis of Near-Infrared Transmittance Spectra of Single Wheat Seeds

    DEFF Research Database (Denmark)

    Pedersen, Dorthe Kjær; Martens, Harald; Pram Nielsen, Jesper

    2002-01-01

    A new extended method for separating, e.g., scattering from absorbance in spectroscopic measurements, extended inverted signal correction (EISC), is presented and compared to multiplicative signal correction (MSC) and existing modiŽ cations of this. EISC preprocessing is applied to near-infrared...... transmittance (NIT) spectra of single wheat kernels with the aim of improving the multivariate calibration for protein content by partial least-squares regression (PLSR). The primary justiŽ cation of the EISC method is to facilitate removal of spectral artifacts and interferences that are uncorrelated to target...... of the EISC was found to be comparable to a more complex dual-transformation model obtained by Ž rst calculating the second derivative NIT spectra followed by MSC. The calibration model based on EISC preprocessing performed better than models based on the raw data, second derivatives, MSC, and MSC followed...

  16. In-Situ X-ray Absorption Spectroscopy as an Unique Tool for Obtaining Information on Hydrogen Binding Site and Electronic Structure of Supported Pt Catalysts: Towards an Understanding of the Compensation Relation in Alkane Hydrogenolysis

    NARCIS (Netherlands)

    Koningsberger, D.C.; Oudenhuijzen, M.K.; Bokhoven, J.A. van; Ramaker, D.E.

    2003-01-01

    L2 and L3 X-ray absorption near edge spectra (XANES) on supported Pt particles, with and without chemisorbed hydrogen, are shown to reflect the type of hydrogen-binding site on the Pt surface. FEFF8 ab initio multiple scattering calculations are used to determine XANES spectral fingerprints for the

  17. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  18. Transverse energy and neutral pion spectra obtained from 16O- and 32S-induced reactions at 200 GeV/nucleon

    International Nuclear Information System (INIS)

    Plasil, F.; Albrecht, R.; Awes, T.C.

    1989-01-01

    The main goal of the CERN heavy-ion experiments is the search for an indication that the predicted state of deconfined quarks and gluons, the quark-gluon plasma (QGP), has been produced. The most promising indication that this may, in fact, be the case comes from the NA38 dimuon measurements, which are focused on the question of J//psi/ suppression. This effect was predicted to be one of the signatures of QGP formation before any measurements were made, and it is the subject of the two other talks at this conference that deal with nucleus-nucleus reactions at ultrarelativistic energies. In this presentation we consider the general (global) features of heavy-ion reactions at CERN energies, and we examine the degree to which they differ from mere superpositions of nucleon-nucleon collisions. We discuss the present status of our data analysis and our main conclusions from the first round of CERN experiments with emphasis on transverse energy measurements, on attained energy densities, and on the spectra of produced neutral pions. Because of time limitations we will not discuss our measurements of distributions of charged particles and the analysis of these distributions in terms of fluctuations nor the results that we have obtained with the Plastic Ball on the behavior of target spectator matter. 20 refs., 5 figs

  19. A global method for handling fluorescence spectra at high concentration derived from the competition between emission and absorption of colloidal CdTe quantum dots.

    Science.gov (United States)

    Noblet, Thomas; Dreesen, Laurent; Hottechamps, Julie; Humbert, Christophe

    2017-10-11

    We investigate the effects of the concentration of CdTe quantum dots (QDs) on their fluorescence in water. The emission spectra, acquired in right angle geometry, exhibit highly variable shapes. The measurements evidence a critical value of the concentration beyond which the intensity and the spectral bandwidth decrease and the fluorescence maximum is redshifted. To account for these observations, we develop a model based on the primary and secondary inner filter effects. The accuracy of the model ensures that the concentration dependent behaviour of QD fluorescence is completely due to inner filter effects. This result is all the more interesting because it precludes the assumption of dynamic quenching. As a matter of fact, the decrease of the emission intensity is not a consequence of collisional quenching but an effect of competition between fluorescence and absorption. We even show that this phenomenon is linked not only to the QD concentration but also to the geometric configuration of the setup. Hence, our analytical model can be easily adapted to every fluorescence spectroscopy configuration to quantitatively predict or correct inner filter effects in the case of QDs or any fluorophore, and thus improve the handling of fluorescence spectroscopy for highly concentrated solutions.

  20. Fermi resonance and strong anharmonic effects in the absorption spectra of the ν-OH ( ν-OD) vibration of solid H- and D-benzoic acid

    Science.gov (United States)

    Yaremko, A. M.; Ratajczak, H.; Barnes, A. J.; Baran, J.; Durlak, P.; Latajka, Z.

    2009-10-01

    The vibrational spectra of polycrystalline benzoic acid (BA) and its deuterated derivative were studied over the wide frequency region 4000-10 cm -1 by IR and Raman methods. A theoretical analysis of the hydrogen bond frequency region and calculations at the B3LYP/6-311++G(2d, 2p) level for the benzoic acid cyclic dimer in the gas phase were made. In order to study the dynamics of proton transfer two formalisms were applied: Car-Parrinello Molecular Dynamics (CPMD) and Path Integrals Molecular Dynamics (PIMD). It was shown that the experimentally observed very broad ν-OH band absorption is the result of complex anharmonic interaction: Fermi resonance between the OH-stretching and bending vibrations and strong interaction of the ν-OH stretching with the low frequency phonons. The theoretical analysis in the framework of such an approach gave a good correlation with experiment. From the CPMD calculations it was confirmed that the O-H⋯O bridge is not rigid, with the O⋯O distance being described by a large amplitude motion. For the benzoic acid dimer we observed stepwise (asynchronous) proton transfer.

  1. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a

    Directory of Open Access Journals (Sweden)

    Maryam Etminan

    2014-07-01

    Full Text Available CFC-113a (CF3CCl3, CFC-112 (CFCl2CFCl2 and HCFC-133a (CF3CH2Cl are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP. The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012 concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100, are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a.

  2. UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, CCl3CF3 (CFC-113a, and CCl2FCF3 (CFC-114a

    Directory of Open Access Journals (Sweden)

    M. E. Davis

    2016-07-01

    Full Text Available The potential impact of CCl2FCF3 (CFC-114a and the recently observed CCl2FCCl2F (CFC-112, CCl3CClF2 (CFC-112a, and CCl3CF3 (CFC-113a chlorofluorocarbons (CFCs on stratospheric ozone and climate is presently not well characterized. In this study, the UV absorption spectra of these CFCs were measured between 192.5 and 235 nm over the temperature range 207–323 K. Precise parameterizations of the UV absorption spectra are presented. A 2-D atmospheric model was used to evaluate the CFC atmospheric loss processes, lifetimes, ozone depletion potentials (ODPs, and the associated uncertainty ranges in these metrics due to the kinetic and photochemical uncertainty. The CFCs are primarily removed in the stratosphere by short-wavelength UV photolysis with calculated global annually averaged steady-state lifetimes (years of 63.6 (61.9–64.7, 51.5 (50.0–52.6, 55.4 (54.3–56.3, and 105.3 (102.9–107.4 for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. The range of lifetimes given in parentheses is due to the 2σ uncertainty in the UV absorption spectra and O(1D rate coefficients included in the model calculations. The 2-D model was also used to calculate the CFC ozone depletion potentials (ODPs with values of 0.98, 0.86, 0.73, and 0.72 obtained for CFC-112, CFC-112a, CFC-113a, and CFC-114a, respectively. Using the infrared absorption spectra and lifetimes determined in this work, the CFC global warming potentials (GWPs were estimated to be 4260 (CFC-112, 3330 (CFC-112a, 3650 (CFC-113a, and 6510 (CFC-114a for the 100-year time horizon.

  3. The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants

    NARCIS (Netherlands)

    Croce, Roberta; Cinque, Gianfelice; Holzwarth, Alfred R.; Bassi, Roberto

    2000-01-01

    The absorption spectra of two light harvesting complexes from higher plants, CP29 and LHC II, have been analysed in the Soret region in order to obtain a description in terms of the absorption spectra of the individual pigments. This information is of great practical use when applying spectroscopic

  4. Optical Analysis of the Oils Obtained from Acrocomia aculeata (Jacq. Lodd: Mapping Absorption-Emission Profiles in an Induced Oxidation Process

    Directory of Open Access Journals (Sweden)

    Ivan P. de Oliveira

    2017-01-01

    Full Text Available Acrocomia aculeata is a palm tree typical of the Brazilian savanna. Oils extracted from the pulp and kernel of Acrocomia aculeata fruits have gained considerable attention mainly due to their nutritional and medicinal features. Despite their potential applications, a detailed analysis of their oxidative stability is still needed. The present study shows a close analysis of the oxidative stability of the oils obtained from the kernel and pulp of Acrocomia aculeata fruits, evaluating the influence of the intrinsic antioxidants and the fatty acid composition on the oil’s thermal stability. A complete characterization of the physical-chemical and optical properties of the oils was performed. The results showed that 66% of the fatty acids present in the pulp oil are unsaturated, while 75% are saturated in the kernel oil. A higher content of intrinsic antioxidants was obtained in the pulp oil, and an induction period (at 110 °C of 65 and 43 h was determined for the pulp and kernel oil, respectively. Additionally, oil absorption increases due to the formation of degradation products, and a new fluorescent compound was formed during the oil oxidation process at 110 °C. Even though the pulp presented a high content of unsaturated fatty acids, the pulp oil was more stable than the kernel oil due to its higher content of intrinsic antioxidant, especially carotenoids. The results also demonstrated that oil oxidation can be optically determined by analyzing the absorption at 232 and 270 nm, as well as the emission at 424 nm.

  5. Impact of energy-related pollutants on chromosome structure. Progress report, January 1-December 31, 1980. IQUID COLUMN CHROMATOGRAPHY; ABSORPTION SPECTRA; COMPUTER CODES; DICHROISM; EQUIPMENT INTERFACES; MICROPROCESSORS; SPECTROPHOTOMETERS; ; CARBON 13; COMPLEXES; NUCLEAR MAGNETIC RESONANCE

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Methods for rapidly analyzing methylated and ethylated nucleosides and bases by high pressure liquid chromatography were investigated. Deoxyribonucleotides were alkylated with alkyl iodides and dialkyl sulfates. Several unreported products of the reactions of methyl and ethyl iodide in dimethylsulfoxide were found and are being characterized. The Cary 219 UV-Vis spectrophotometer was interfaced to a microcomputer and several utility programs were written. Preliminary absorption and circular dichroism studies of the binding of ethidium to DNA and nucleosome cores showed binding to cores to be quite different from binding to DNA. Free radical and additional reactions of bisulfite with DNA in chromatin were examined. Free radical attack was minimal. Some conversion of cytosine to uracil was noted, but protein crosslinking to DNA was not detected. The first valid natural abundance /sup 13/C nmr spectra of double-stranded DNA and double-stranded DNA complexed with ethidium were obtained. These spectra suggested that DNA undergoes considerable internal motion. The data show that 13-C nmr studies of the conformational and motional properties of native DNA and of complexes of native DNA with small molecules are practical and promising. Studies of subnucleosomes derived from nucleosomes were completed. Based on these studies, a model of the linear arrangement of histone C-terminal and N-terminal chain regions along nucleosome DNA was proposed. The use of staphylococcal protease to probe histone conformations in nucleosomes was explored. Preliminary data indicate that H3 is much more susceptible to protease than other core histones, and is cleaved in its hydrophobic domain. A procedure for fractionating chromatin was alos developed. (ERB)

  6. Spectra and depth-dose deposition in a polymethylmethacrylate breast phantom obtained by experimental and Monte Carlo method; Espectros e deposicao de dose em profundidade em phantom de mama de polimetilmetacrilato: obtencao experimental e por metodo de Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    David, Mariano G.; Pires, Evandro J.; Magalhaes, Luis A.; Almeida, Carlos E. de; Alves, Carlos F.E., E-mail: marianogd08@gmail.com [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Lab. Ciencias Radiologicas; Albuquerque, Marcos A. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (COPPE/UFRJ), RJ (Brazil). Instituto Alberto Luiz Coimbra; Bernal, Mario A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Fisica Gleb Wataghin; Peixoto, Jose G. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2012-08-15

    This paper focuses on the obtainment, using experimental and Monte Carlo-simulated (MMC) methods, of the photon spectra at various depths and depth-dose deposition curves for x-rays beams used in mammography, obtained on a polymethylmethacrylate (PMMA) breast phantom. Spectra were obtained for 28 and 30 kV quality-beams and the corresponding average energy values (Emed) were calculated. For the experimental acquisition was used a Si-PIN photodiode spectrometer and for the MMC simulations the PENELOPE code was employed. The simulated and the experimental spectra show a very good agreement, which was corroborated by the low differences found between the Emed values. An increase in the Emed values and a strong attenuation of the beam through the depth of the PMMA phantom was also observed. (author)

  7. Study on the interactions of antiemetic drugs and 12-tungstophosphoric acid by absorption and resonance Rayleigh scattering spectra and their analytical applications

    Science.gov (United States)

    Wang, Yaqiong; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2013-03-01

    In 0.1 mol L-1 HCl medium, antiemetic drugs (ATM), such as granisetron hydrochloride (GS) and tropisetron hydrochloride (TS), reacted with H3PW12O40·nH2O and formed 3:1 ion-association complex of [(ATM)3PW12O40], then self-aggregated into nanoparticles-[(ATM)3PW12O40]n with an average size of 100 nm. The reaction resulted in the enhancement of resonance Rayleigh scattering (RRS) and the absorption spectra. The increments of scattering intensity (ΔIRRS) and the change of absorbance (ΔA) were both directly proportional to the concentrations of ATM in certain ranges. Accordingly, two new RRS and spectrophotometric methods were proposed for ATM detection. The detection limits (3σ) of GS and TS were 3.2 ng mL-1 and 4.0 ng mL-1(RRS method), 112.5 ng mL-1 and 100.0 ng mL-1(spectrophotometric method). These two methods were applied to determine GS in orally disintegrating tablets and the results were in good agreement with the official method. The ground-state geometries and electronic structures of GS and TS were optimized by the hybrid density functional theory (DFT) method and the shape of [(ATM)3PW12O40]n was characterized by atomic force microscopy (AFM). Take the RRS method with higher sensitivity as an example, the reaction mechanism and the reasons for enhancement of scattering were discussed.

  8. Tropospheric water vapour isotopologue data (H216O, H218O, and HD16O) as obtained from NDACC/FTIR solar absorption spectra

    Science.gov (United States)

    Barthlott, Sabine; Schneider, Matthias; Hase, Frank; Blumenstock, Thomas; Kiel, Matthäus; Dubravica, Darko; García, Omaira E.; Sepúlveda, Eliezer; Mengistu Tsidu, Gizaw; Takele Kenea, Samuel; Grutter, Michel; Plaza-Medina, Eddy F.; Stremme, Wolfgang; Strong, Kim; Weaver, Dan; Palm, Mathias; Warneke, Thorsten; Notholt, Justus; Mahieu, Emmanuel; Servais, Christian; Jones, Nicholas; Griffith, David W. T.; Smale, Dan; Robinson, John

    2017-01-01

    We report on the ground-based FTIR (Fourier transform infrared) tropospheric water vapour isotopologue remote sensing data that have been recently made available via the database of NDACC (Network for the Detection of Atmospheric Composition Change; MUSICA/" target="_blank">ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/) and via doi:10.5281/zenodo.48902. Currently, data are available for 12 globally distributed stations. They have been centrally retrieved and quality-filtered in the framework of the MUSICA project (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water). We explain particularities of retrieving the water vapour isotopologue state (vertical distribution of H216O, H218O, and HD16O) and reveal the need for a new metadata template for archiving FTIR isotopologue data. We describe the format of different data components and give recommendations for correct data usage. Data are provided as two data types. The first type is best-suited for tropospheric water vapour distribution studies disregarding different isotopologues (comparison with radiosonde data, analyses of water vapour variability and trends, etc.). The second type is needed for analysing moisture pathways by means of H2O, δD-pair distributions.

  9. Oscillator strengths for absorption spectra of Pr/sup 3 +/, Nd/sup 3 +/, Eu/sup 3 +/, Er/sup 3 +/ and Yb/sup 3 +/ ions in GaCl/sub 3/-SOCl/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Batyaev, I.M.; Shilov, S.M.

    1984-07-01

    The solutions of Pr/sup 3 +/, ND/sup 3 +/, Eu/sup 3 +/, Er/sup 3 +/, and Yb/sup 3 +/ chlorides in the aprotic inorganic solvent GaCl/sub 3/-SOCl/sub 2/ are prepared. The absorption spectra in the range 5000-24000 cm/sup -1/ are measured. In general, the correlation between the calculated (on the basis of Judd-Ofelt theory) and observed intensities in the solution absorption spectra is very good. The variation of the intensity parameters tausub(lambda) (where tausub(lambda)-values describing radial wave functions state, refrective index of a medium and ligand field parameters which is characteristic to the vicinity of rare-earth metal ions) over the series is discussed.

  10. Lick optical spectra of quasar HS 1946+7658 at 10 kilometers per second resolution Lyman-alpha forest and metal absorption systems

    Science.gov (United States)

    Fan, Xiao-Ming; Tytler, David

    1994-01-01

    We present optical spectra of the most luminous known quasi stellar object (QSO) HS 1946+7658 (z(sub em) = 3.051). Our spectra have both full wavelength coverage, 3240-10570 A, and in selected regions, either high signal-to-noise ratio, SNR approximately equals 40-100, or unusually high approximately 10 km/sec resolution, and in parts of the Ly alpha forest and to the red of Ly alpha emission they are among the best published. We find 113 Ly alpha systems and six metal-line systems, three of which are new. The metal systems at z(sub abs) = 2.844 and 3.050 have complex velocity structure with four and three prominent components, respectively. We find that the system at z(sub abs) = 2.844 is a damped Ly alpha absorption (DLA) system, with a neutral hydrogen column density of log N(H I) = 20.2 +/- 0.4, and it is the cause of the Lyman limit break at lambda approximately equals 3520 A. We believe that most of the H I column density in this system is in z(sub abs) = 2.8443 component which shows the strongest low-ionization absorption lines. The metal abundance in the gas phase of the system is (M/H) approximately equals -2.6 +/- 0.3, with a best estimate of (M/H) = -2.8, with ionizaion parameter log gamma = -2.75, from a photoionization model. The ratios of the logarithmic abundances of C, O, Al, and Si are all within a factor of 2 of solar, which is important for two reasons. First, we believe that the gas abundances which we measure are close to the total abundances, because the ratio of aluminum to other elements is near cosmic, and Al is a refractory element which depletes very readily like chromium, in the interstellar medium. Second, we do not see the enhancement of O with respect to C of (O/C) approximately equals 0.5-0.9 reported in three partial Lyman limit systems by Reimers et al. (1992) and Vogel & Reimers (1993); we measure (O/C) = -0.06 for observed ions and (O/C) approximately equals 0.2 after ionization corrections, which is consistent with solar

  11. Cluster Analysis of the Organic Peaks in Bulk Mass Spectra Obtained During the 2002 New England Air Quality Study with an Aerodyne Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    C. Marcolli

    2006-01-01

    Full Text Available We applied hierarchical cluster analysis to an Aerodyne aerosol mass spectrometer (AMS bulk mass spectral dataset collected aboard the NOAA research vessel R. H. Brown during the 2002 New England Air Quality Study off the east coast of the United States. Emphasizing the organic peaks, the cluster analysis yielded a series of categories that are distinguishable with respect to their mass spectra and their occurrence as a function of time. The differences between the categories mainly arise from relative intensity changes rather than from the presence or absence of specific peaks. The most frequent category exhibits a strong signal at m/z 44 and represents oxidized organic matter probably originating from both anthropogenic as well as biogenic sources. On the basis of spectral and trace gas correlations, the second most common category with strong signals at m/z 29, 43, and 44 contains contributions from isoprene oxidation products. The third through the fifth most common categories have peak patterns characteristic of monoterpene oxidation products and were most frequently observed when air masses from monoterpene rich regions were sampled. Taken together, the second through the fifth most common categories represent on average 17% of the total organic mass that stems likely from biogenic sources during the ship's cruise. These numbers have to be viewed as lower limits since the most common category was attributed to anthropogenic sources for this calculation. The cluster analysis was also very effective in identifying a few contaminated mass spectra that were not removed during pre-processing. This study demonstrates that hierarchical clustering is a useful tool to analyze the complex patterns of the organic peaks in bulk aerosol mass spectra from a field study.

  12. Infrared absorption spectroscopy with color center lasers

    Science.gov (United States)

    Carrick, P. G.; Curl, R. F.; Tittel, F. K.; Koester, E.; Pfeiffer, J.; Kasper, J. V. V.

    Results are presented of the application of a computer controlled color center laser combined with Stark modulation and magnetic rotation effect modulation for obtaining high resolution spectra of molecular species. The lowest electronic transition of the C2H free radical, of interest in astrophysics, is observed near 3772/cm and the high resolution spectra of methanol and hydroxylamine in the OH stretching region are obtained. It is concluded that color center laser absorption spectroscopy combined with sensitivy enhancement through modulation techniques is a sensitive and versatile means of determining the spectra of free radicals and transient molecules in the infared region.

  13. MS-Xα calculation of the elastic electron scattering cross sections and x-ray absorption spectra of CX4 and SiX4 (X = H,F,Cl)

    International Nuclear Information System (INIS)

    Tossell, J.A.; Davenport, J.W.

    1984-01-01

    Multiple scattering Xα bound state and continuum calculations are used to study low energy elastic electron scattering cross sections and pre-edge features in the x-ray absorption spectra (XAS) of (C,Si)X 4 , X = H,F,Cl. Maxima in the electron scattering cross section are predicted to occur at energies below 4 eV in the t 2 channel for CF 4 , CCl 4 , SiH 4 , and SiCl 4 . These maxima can be assigned to final state orbitals which are bound in XAS and well localized in space and a quantitative correspondence of such scattering ''resonance'' energies and XAS energies may be obtained using the transition state approach. For CH 4 and SiF 4 even those bound state orbitals giving the greatest XAS intensity are very diffuse, being essentially of Rydberg character. Broad electron scattering maxima are found at energies above 4 eV in these molecules which cannot be directly associated with the bound state orbitals dominating the XAS. The results thus establish that low energy electron scattering resonances and pre-edge XAS are closely related only for orbitals bound and reasonably well localized in XAS. The MS-Xα results almost always reproduce experimental trends along the molecular series but quantitative discrepancies from experiment are sometimes substantial, particularly for the broad high energy scattering maxima in CH 4 . The narrow t 2 resonance calculated for CF 4 is found to vary greatly in position and intensity as the C--F distance is varied by small amounts but the stronger, broader t 2 resonance in SiH 4 is little affected by bond distance variation

  14. UV absorption spectra, kinetics and mechanisms of the self-reaction of CHF2O2 radicals in the gas phase at 298-K

    DEFF Research Database (Denmark)

    Nielsen, O.J.; Ellermann, T.; Bartkiewicz, E.

    1992-01-01

    The ultraviolet-absorption spectrum and the self-reaction of CHF2O2 radicals have been studied in the gas phase at 298 K using the pulse radiolysis technique and long-pathlength Fourier transform infrared spectroscopy. Absorption cross sections were quantified over the wavelength range 220-280 nm....... The measured cross section near the absorption maximum was sigma(CHF2O2)(240 nm) = (2.66 +/- 0.46) x 10(-18) cm2 molecule-1. The absorption cross section data were used to derive the observed self-reaction rate constant for the reaction CHF2O2 + CHF2O2 --> products, defined as d[R]/dt = 2k(1obs)[CHF2O2]2, k(1...

  15. Absorption-desorption of drugs in porous polymers obtained by plasma; Absorcion-desorcion de farmacos en polimeros porosos obtenidos por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez T, M.

    2016-07-01

    A study about drug absorption and release in plasma polymers is presented in this work, these materials can be used as implants in the human body. In these applications the polymer should be biocompatible and/or biodegradable. Poly pyrroles and poly allylamine s synthesized by plasma have amine groups in their structure which makes them biocompatible with potential as drug carriers. In this function, the polymers were lyophilized to induce pores where the drug can be hosted. Drug-polymer mixtures with 1:10 ratio were prepared. The mixture morphology was studied by Scanning Electron Microscopy while their chemical structure was studied by Infrared Spectroscopy and X-ray Photoelectron Spectroscopy. Two models were studied to assess drug release, dynamic and static, in two solutions: water and Krebs Ringer (Kr) using the UV characteristic absorbance of each drug. In the static model release, 5 mg of the mixture were placed in 10 ml of solution. In the dynamic model, the release was performed with 5 mg of the mixture in 10 ml of solution, 1.5 ml of release medium was removed for UV analysis and replaced with an equal volume of fresh medium. The results indicate that the morphology of the polymers was modified with the lyophilization, in Poly pyrrole pores were induced with diameter in the range of 0.7 to 19 μm, while in Polyallyl amine the surface changed from smooth to rough. Drugs were absorbed in Poly pyrrole by filling the pores first and then coating the polymer with a drug layer. In Poly allylamine the drugs adhered to the polymer surface. Analyzing the atomic orbitals of the mixtures, it was found that the drugs interacted with the polymer. The most affected orbital was S2p, whose separation between 1/2 and 3/2 sub orbitals increased from 0.9 eV in Dapsone and Heparin to 4 eV in the mixtures, where the oxidation state changed from valence 6 to 6 and 2 in the mixtures. This suggests physicochemical interaction between drug and polymer. The drugs were released

  16. Effects of tattoo ink's absorption spectra and particle size on cosmetic tattoo treatment efficacy using Q-switched Nd:YAG laser.

    Science.gov (United States)

    Leu, Fur-Jiang; Huang, Chuen-Lin; Sue, Yuh-Mou; Lee, Shao-Chen; Wang, Chia-Chen

    2015-01-01

    The mechanisms responsible for variable responses of cosmetic tattoos to Q-switched laser removal treatment remain unclear. We sought to investigate the properties of tattoo inks that may affect the efficacy of laser-assisted tattoo removal. The absorption of white, brown, and black inks before and after Q-switched neodymium-doped yttrium aluminum garnet laser irradiation were analyzed by a reflectance measurement system. Rats were tattooed using the three inks and treated with the same laser for two sessions. Skin biopsies were taken from the treated and untreated sites. Black ink showed strong absorption, reduced after laser irradiation, over the entire spectrum. White ink had low absorption over the visible light spectrum, and brown ink had strong absorption at 400-550 nm wavelengths. White and brown inks turned dark after laser exposure, and the absorption of laser-darkened inks were intermediate between their original color and black ink. White, brown, and black tattoos in rat skin achieved poor, fair to good, and excellent responses to laser treatment, respectively. Transmission electron microscopy showed that white tattoo particles were the largest, brown were intermediate, and black were the smallest before laser. After laser treatment, white and brown tattoo particles were mixtures of large and small particles, while black particles showed overall reduction in number and size. Black tattoo ink's excellent response to Q-switched lasers was associated with its strong absorption and small particle size. White tattoo ink's poor response was associated with its poor absorption, even after laser darkening, and large particle size.

  17. Absorption studies

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B 12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B 12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  18. A model for persistent hole burned spectra and hole growth kinetics that includes photoproduct absorption: Application to free base phthalocyanine in hyperquenched glassy ortho-dichlorobenzene at 5 K

    International Nuclear Information System (INIS)

    Reinot, T.; Dang, N.C.; Small, G.J.

    2003-01-01

    Persistent nonphotochemical and photochemical hole burning of the S 0 →S 1 origin absorption bands of chromophores in amorphous hosts such as glasses, polymers and proteins at low temperatures have been used to address a number of problems that range from structural disorder and configurational tunneling to excitation energy transfer and charge separation in photosynthetic complexes. Often the hole burned spectra are interfered by photoproduct (antihole) absorption. To date there has been no systematic approach to modeling hole burned spectra and the dispersive kinetics of zero-phonon hole growth that accounts for the antihole. A 'master' equation that does so is presented. A key ingredient of the equation is a time-dependent, two-dimensional site excitation frequency distribution function (SDF) of the zero-phonon lines. Prior to hole burning (t=0) the SDF is that of the educt sites. For t>0 the SDF describes both educt and photoproduct sites and allows for burning of the latter that revert to the educt sites from which they originate (light-induced hole filling). Our model includes linear electron-phonon coupling and the three distributions that lead to dispersive hole growth kinetics, the most important of which is the distribution for the parameter λ associated with tunneling between the bistable configurations of the chromophore-host system that are interconverted by hole burning. The master equation is successfully applied to free base phthalocyanine (Pc) in hyperquenched glassy ortho-dichlorobenzene (DCB) at 5 K. The mechanism of hole burning is photochemical and involves tautomerization of the two protons at the center of the macrocycle (Pc) that occurs in the S 1 (Q x ) and/or T 1 (Q x ) state of Pc. A single set of parameter values (some of which are determined directly from the hole burned spectra) provides a satisfactory description of the dependence of the hole burned spectra and hole growth kinetics on the location of the burn frequency within the

  19. An investigation on the effect of gamma-irradiation on the optical absorption spectra in Cu(II) doped ammonium Tetrachlorozincate (ATZC) single crystals

    International Nuclear Information System (INIS)

    Abu El-Fadl, A.; Mohamad, G.A.; Abd El-Sttar, M.

    2003-01-01

    Optical transmittance measurements were carried out on Ammonium tetrachlorozincate (ATZC) crystals doped with small concentrations of Cu 2+ ions and irradiated with different doses of gamma-radiation. The absorption coefficient (alpha) and the extinction coefficient (K) of unirradiated and irradiated ATZC crystals were calculated. Valued of the allowed indirect optical energy gap (E g ) of ATZC were calculated as a function of gamma-dose. The effect of gamma irradiation is to increase in the absorption coefficient value and to decrease in E g value. The results could be explained in the fact that gamma irradiation produces defects of ionizing type because of internal irradiation with photon or Compton electrons

  20. Infrared and Raman scattering spectra of layered structured Ga3InSe4 crystals

    Science.gov (United States)

    Isik, M.; Gasanly, N. M.; Korkmaz, F.

    2013-03-01

    The infrared reflectivity and transmittance and Raman scattering in Ga3InSe4 layered crystals were investigated in the frequency ranges of 100-400, 400-4000 and 25-500 cm-1. The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes.

  1. Perturbation of spectra properties of 3,4-diphenyl thiophene by polar ...

    African Journals Online (AJOL)

    SERVER

    2007-11-19

    Nov 19, 2007 ... The UV/visible spectra of 3,4-diphenyl thiophene were obtained in various solvents (both polar and non polar). The wave number of transition energies, corresponding molar ... of absorption of light, the quantum energy (E) of which is a function of frequency (v). However not all absorption of radiation by ...

  2. Mössbauer spectra obtained using β - γ coincidence method after 57Mn implantation into LiH and LiD

    Science.gov (United States)

    Sato, Y.; Kobayashi, Y.; Yamada, Y.; Kubo, M. K.; Mihara, M.; Nagatomo, T.; Sato, W.; Miyazaki, J.; Tanigawa, S.; Natori, D.; Sato, S.; Kitagawa, A.

    2016-12-01

    Highly energetic 57Mn ( T 1/2 = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β - γ coincidence detection was then carried out on the 57Fe obtained from β -decay of the 57Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional 57Fe atoms on the lattice sites is discussed.

  3. Mössbauer spectra obtained using β − γ coincidence method after {sup 57}Mn implantation into LiH and LiD

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y.; Kobayashi, Y., E-mail: kyoshio@pc.uec.ac.jp [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan); Kubo, M. K. [International Christian University, Division of Arts Science (Japan); Mihara, M. [Osaka University, Graduate School of Science (Japan); Nagatomo, T. [RIKEN, Nishina Center Accelerator Based Science (Japan); Sato, W. [Kanazawa University, Department of Chemistry (Japan); Miyazaki, J. [Tokyo University Agri. Technology, Department of Chemistry and Engineering (Japan); Tanigawa, S.; Natori, D. [University of Electro-Communication, Graduate School of Engineering and Science (Japan); Sato, S.; Kitagawa, A. [National Institute Radiological Sciences (NIRS) (Japan)

    2016-12-15

    Highly energetic {sup 57}Mn (T{sub 1/2} = 1.45 m) was generated by nuclear projectile fragmentation in a heavy-ion accelerator, and implanted into lithium hydride (LiH) and lithium deuteride (LiD) at 578 K. Mössbauer spectroscopy with β − γ coincidence detection was then carried out on the {sup 57}Fe obtained from β{sup −}decay of the {sup 57}Mn to study the time dependence of the site distributions and coordination environments of dilute Fe atoms implanted in the LiH and LiD. The results suggest that the Fe atoms can substitute for either the Li and H or D atoms within 100 ns. Additionally, the displacement behavior of the substitutional {sup 57}Fe atoms on the lattice sites is discussed.

  4. Treatment of the X and γ rays lung monitoring spectra obtained by using HP-Ge detectors in case of exposures to uranium

    International Nuclear Information System (INIS)

    Berard, P.; Pourret, O.; Aussel, J.P.; Rongier, E.

    1996-01-01

    A lung monitoring counting spectrum can be described as a random phenomenon. Channel-by-channel Poisson-type modelling was verified for cases of pure background. When carrying out spectral analysis for qualitative research, one must work with the sum of the detectors. The quantification must be calculated detector by detector. Statistical tests make it possible to certify that one or several peaks are really present in the organism. The calculations are currently made with automatic spectral analysis, peak search, specific area, statistics and probability of the real presence of analytic photo peak taking into account the morphological parameters of the worker. The results are analysed detector by detector, with and without the background of the room. Detection limits obtained in Pierrelatte in monitoring measurement conditions were assessed for variable tissues covering the range of subjects to be examined. For each subject, the calculations are made taking into account the equivalent tissue thicknesses derived from individual morphological parameters. This method makes it possible to quantify lung activities with a detection limit of 3.9 Bq ( 235 U; thirty minutes counting time; reference man parameters) and to monitor exposure to the different compounds of uranium. (author)

  5. Dipole and quadrupole contributions to polarized Cu K x-ray absorption near-edge structure spectra of CuO

    Czech Academy of Sciences Publication Activity Database

    Bocharov, S.; Kirchner, T.; Dräger, G.; Šipr, Ondřej; Šimůnek, Antonín

    2001-01-01

    Roč. 63, - (2001), s. 045104-1-045104-10 ISSN 0163-1829 R&D Projects: GA ČR GA202/99/0404; GA ČR GA203/99/0067 Institutional research plan: CEZ:AV0Z1010914 Keywords : high-Tc superconductots * polarized Cu K x-ray absorption * CuO Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.070, year: 2001

  6. Assignment and Analysis of the Absorption and Emission Spectra of the Lowest nπ* Triplet State in 9,10-Anthraquinone

    NARCIS (Netherlands)

    Drabe, Karel E.; Veenvliet, Hendrik; Wiersma, Douwe A.

    1975-01-01

    Polarized Zeeman absorption experiments on 9,10-anthraquinone crystals show the lowest triplet state in this molecule to be a g nπ state. The gap between this state and the higher u nπ* state is found to be 410 cm-1. The phosphorescence spectrum of an isotopically mixed crystal of AQ-h8 in AQ-d8 is

  7. Variations in the spectral values of specific absorption of phytoplankton

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Lazzara, L; Prieur, L

    Absorption spectra of laboratory cultures of eight species of phytoplankton were studied. These spectra, normalized per unit of chlorophyll a concentration (specific absorption) show variability in magnitude and spectral form. Specific absorption...

  8. On the nature of solvatochromic effect: The riboflavin absorption spectrum as a case study

    Science.gov (United States)

    Daidone, Isabella; Amadei, Andrea; Aschi, Massimiliano; Zanetti-Polzi, Laura

    2018-03-01

    We present here the calculation of the absorption spectrum of riboflavin in acetonitrile and dimethyl sulfoxide using a hybrid quantum/classical approach, namely the perturbed matrix method, based on quantum mechanical calculations and molecular dynamics simulations. The calculated spectra are compared to the absorption spectrum of riboflavin previously calculated in water and to the experimental spectra obtained in all three solvents. The experimentally observed variations in the absorption spectra upon change of the solvent environment are well reproduced by the calculated spectra. In addition, the nature of the excited states of riboflavin interacting with different solvents is investigated, showing that environment effects determine a recombination of the gas-phase electronic states and that such a recombination is strongly affected by the polarity of the solvent inducing significant changes in the absorption spectra.

  9. Improving interpretation of infrared spectra for OM characterization by subtraction of spectra from incinerated samples

    Science.gov (United States)

    Ellerbrock, Ruth H.; Gerke, Horst H.; Leue, Martin

    2017-04-01

    Non-destructive methods such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) have been applied to characterize organic matter (OM) at intact structural surfaces among others. However, it is often difficult to distinguish effects of organic components on DRIFT signal intensities from those of mineral components. The objective of this study was to re-evaluate DRIFT spectra from intact earthworm burrow walls and coated cracks to improve the interpretation of C-H and C=O bands. We compared DRIFT and transmission Fourier transform infrared (FTIR) spectra of entire samples that were from the same pedogenetic soil horizon, but different in mineral composition and texture (i.e., glacial till versus loess). Spectra of incinerated samples were subtracted from the original spectra. Transmission FTIR and DRIFT spectra were almost identical for entire soil samples. However, the DRIFT spectra were affected by the bulk mode bands (i.e., wavenumbers 2000 to 1700 cm-1) that affected spectral resolution and reproducibility. The ratios between C-H and C=O band intensities as indicator for OM quality obtained with DRIFT were smaller than those obtained from transmission FTIR. A spectral subtraction procedure was found to reduce effects of mineral absorption bands on DRIFT spectra allowing an improved interpretation. DRIFT spectroscopy as a non-destructive method for analyzing OM composition at intact surfaces in structured soils could be calibrated with information obtained with the more detailed transmission FTIR and complementary methods.

  10. Part 1: synthesis and visible absorption spectra of some new monoazo dyes derived from ethyl 2-amino-4-(4'-substitutedphenyl)thiophenes.

    Science.gov (United States)

    Babür, Banu; Ertan, Nermin

    2014-10-15

    Series of monoazo dyes from some ethyl 2-amino-4-(4'-substitutedphenyl) thiophenes were prepared and characterized. The structure of the substances was confirmed by FT-IR, (1)H NMR and mass spectroscopic techniques. The relationship among the structure of the dyes, their absorption characteristics and the solvatochromic and halochromic behaviors of the dyes were investigated. Introduction of electron-accepting substituent into the diazo moiety results in large bathochromic shifts in all solvents used. The dyes exhibited positive solvatochromism and their solvatochromic properties were discussed in relation to tautomerism. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Charge-transfer electronic absorption spectra of 1-ethylpyridinium cation and halogen anion pairs in dichloromethane and as neat ionic liquids.

    Science.gov (United States)

    Ogura, Takahiro; Akai, Nobuyuki; Shibuya, Kazuhiko; Kawai, Akio

    2013-07-18

    The charge-transfer (CT) absorption bands of ion pairs composed of 1-ethylpyridinium (Epy(+)) and halogen anions (X(-): Cl, Br, or I) were measured in dichloromethane solutions of EpyX. The CT band of the Epy(+)I(-) ion pair shows clear splitting because of spin-orbit interaction in the excited state. The CT transition energy of an Epy(+)X(-) ion pair in a dichloromethane solution is related to electron affinity of X, which is in accordance with the Mulliken theory for CT bands. Extinction coefficients for the CT bands of the Epy(+)X(-) ion pairs in dichloromethane were determined using the measured absorbance, and the ion-pair concentration was estimated on the basis of electroconductivity. Structures of Epy(+)X(-) ion pairs were also evaluated on the basis of both quantum-chemical calculations and NMR spectroscopy. In addition, in the absorption spectrum measured for neat EpyI liquid, a broad band appeared at a longer wavelength side of the S1(ππ*) band. This new band has been assigned to the CT band of the Epy(+)I(-) ion pair formed in neat EpyI liquid.

  12. Thermal annealing and UV irradiation effects on structure, morphology, photoluminescence and optical absorption spectra of EDTA-capped ZnS nanoparticles

    Science.gov (United States)

    Osman, M. A.; Othman, A. A.; El-Said, Waleed A.; Abd-Elrahim, A. G.; Abu-sehly, A. A.

    2016-02-01

    Monodispersed ZnS nanoparticles (NPs) were prepared by the chemical precipitation method. Thermally induced structural, morphological and optical changes have been investigated using x-ray diffraction, high-resolution transmission electron microscopy, optical absorption, photoluminescence (PL), and Fourier transform infrared and Raman spectroscopy. It was found that D increases with increasing annealing temperature (T a). The onset of the ZnS phase transition from cubic to hexagonal structure takes place at 400 °C, while cubic ZnS transforms into hexagonal ZnO via thermal oxidation in air at 600 °C. It is also noted that increasing T a results in the red shift of the optical band gap (E\\text{g}\\text{opt} ) and the thermal bleaching of exciton absorption. The PL spectrum of as-prepared ZnS nanopowder shows UV emission bands at 363 and 395 nm and blue and green emission at 438 and 515 nm, respectively. With increasing T a up to 500 °C, these bands were quenched and red-shifted. In addition, the UV irradiation effects on colloidal ZnS NPs were investigated. UV irradiation at a dose  ZnS NPs was discussed and an energy band diagram was proposed.

  13. Study on the extraction of Am(III) and Eu(III) with amido podands. Pt.2: extraction thermodynamics and absorption spectra

    International Nuclear Information System (INIS)

    Ye Guoan; He Jianyu; Luo Fangxiang

    2000-01-01

    By using n-octanol and kerosene as diluent, the extraction behavior of Am(III) and Eu(III) from nitric acid solution is studied with N,N,N',N'-tetrabutyl-3-oxa-pentanediamide (TBOPDA), N,N,N',N'-tetra-isobutyl-3-oxa-pentanediamide (TiBOPDA) and N,N,N',N'-tetrabutyl-3,6-dioxa-octane diamide (TBDOODA). The extraction equilibrium is an exothermic reaction and the extraction enthalpy of americium is -80.54, -81.99 and -75.88 kJ/mol for TBOPDA, TiBOPDA and TBDOODA, respectively. It is found that the remarkable variation of HNO 3 concentration is equilibrium only slightly changes the shape and position of the visible absorption peak of the loaded organic phase. It implies that the variation of HNO 3 concentration does not affect the extraction mechanism. In IR spectrum the carboxyl absorption peaks of both TBDOPDA and TBDOODA shift strongly to long wavelength after extracting HNO 3 or Eu(III), at the same time the peak of carbon-oxygen-carbon has 6 cm -1 and 3 cm -1 shift for TBOPDA and TBDOODA, respectively

  14. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    Directory of Open Access Journals (Sweden)

    A. Totterdill

    2016-09-01

    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  15. Continuum Fitting HST QSO Spectra

    Science.gov (United States)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  16. Ice absorption features in the 5-8 mu m region toward embedded protostars

    NARCIS (Netherlands)

    Keane, JV; Tielens, AGGM; Boogert, ACA; Schutte, WA; Whittet, DCB

    We have obtained 5-8 mum spectra towards 10 embedded protostars using the Short Wavelength Spectrometer on board the Infrared Space Observatory (ISO-SWS) with the aim of studying the composition of interstellar ices. The spectra are dominated by absorption bands at 6.0 mum and 6.85 mum. The observed

  17. X-ray absorption spectroscopy of PbMoO 4 single crystals

    Indian Academy of Sciences (India)

    X-ray absorption spectra of PbMoO4 (LMO) crystals have been investigated for the first time in literature. The measurements have been carried out at Mo absorption edge at the dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The optics of the beamline was set to obtain a band of 2000 eV ...

  18. Characterization and dating of blue ballpoint pen inks using principal component analysis of UV-Vis absorption spectra, IR spectroscopy, and HPTLC.

    Science.gov (United States)

    Senior, Samir; Hamed, Ezzat; Masoud, Mamdouh; Shehata, Eman

    2012-07-01

    The ink of pens and ink extracted from lines on white photocopier paper of 10 blue ballpoint pens were subjected to ultraviolet-visible (UV-Vis) spectroscopy, infrared (IR), and high-performance thin-layer liquid chromatography (HPTLC). The R(f) values and color tones of the bands separated by thin-layer chromatography (TLC) analysis used to classify the writing inks into three groups. The principal component analysis (PCA) investigates the pen responsible for a piece of writing, and how time affects spectroscopy of written ink. PCA can differentiate between pen ink and ink line indicates the influence of solvent extraction process on the results. The PCA loadings are useful in individualization of a questioned ink from a database. The PCA of ink lines extracted at different times can be used to estimate the time at which a questioned document was written. The results proved that the UV-Vis spectra are effective tool to separate blue ballpoint pen ink in most cases rather than IR and HPTLC. © 2012 American Academy of Forensic Sciences.

  19. Physical aspects of relaxation and shake-up effects in XPS and core →2π* absorption spectra of CO chemisorbed on Ni (111)

    International Nuclear Information System (INIS)

    Gumhalter, B.

    1985-07-01

    The physical origin of the peculiar relaxation shifts and spectral shapes appearing in x-ray induced core-to-valence excitation and core level photoemission spectra of CO chemisorbed on Ni(111) are discussed and interpreted within a unique framework. Within the model presented the electronic transitions in core-to-valence excitation spectroscopy and XPS are shown to give rise to drastic electronic rearrangements within the adsorption system and to the charge shake-up in the CO 2π* derived resonance partly filled via the backdonation mechanism. Such singular relaxation processes, common to both spectroscopies, are closely related and can be treated on the same footing. This makes possible to establish unique relaxation shifts and spectral characteristics for two seemingly different experimental situations. The use of this formalism in analysing the experimental data enables one to estimate and distinguish between the extra-adsorbate (image or nonbonding) and intra-adsorbate (chemically induced) screening of the core holes created either by x-ray induced core-to-valence electronic transitions or core level photoionization in CO/Ni(111). (author)

  20. High-accuracy measurements of OH reaction rate constants and IR absorption spectra: CH2=CF-CF3 and trans-CHF=CH-CF3.

    Science.gov (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Ilichev, Alexander N

    2010-05-20

    Rate constants for the gas phase reactions of OH radicals with two isomers of tetrafluoropropene, CH(2)=CF-CF(3) (k(1)) and trans-CHF=CH-CF(3) (k(2)); were measured using a flash photolysis resonance-fluorescence technique over the temperature range 220 to 370 K. The Arrhenius plots were found to exhibit a noticeable curvature. The temperature dependences of the rate constants are very weak and can be represented by the following expressions over the indicated temperature intervals: k(1)(220-298 K) = 1.145 x 10(-12) x exp{13/T} cm(3) molecule(-1) s(-1), k(1)(298-370 K) = 4.06 x 10(-13) x (T/298)(1.17) x exp{+296/T} cm(3) molecule(-1) s(-1), k(2)(220-370 K) = 1.115 x 10(-13) x (T/298)(2.03) x exp{+522/T} cm(3) molecule(-1) s(-1). The overall accuracy of the rate constant measurements is estimated to be ca. 2% to 2.5% at the 95% confidence level. The uncertainty of the measured reaction rate constants is discussed in detail. The atmospheric lifetimes due to reactions with tropospheric OH were estimated to be 12 and 19 days respectively under the assumption of a well mixed atmosphere. IR absorption cross-sections were measured for both compounds and their global warming potentials were estimated.

  1. Nonlinear system identification by Gustafson-Kessel fuzzy clustering and supervised local model network learning for the drug absorption spectra process.

    Science.gov (United States)

    Teslic, Luka; Hartmann, Benjamin; Nelles, Oliver; Skrjanc, Igor

    2011-12-01

    This paper deals with the problem of fuzzy nonlinear model identification in the framework of a local model network (LMN). A new iterative identification approach is proposed, where supervised and unsupervised learning are combined to optimize the structure of the LMN. For the purpose of fitting the cluster-centers to the process nonlinearity, the Gustafsson-Kessel (GK) fuzzy clustering, i.e., unsupervised learning, is applied. In combination with the LMN learning procedure, a new incremental method to define the number and the initial locations of the cluster centers for the GK clustering algorithm is proposed. Each data cluster corresponds to a local region of the process and is modeled with a local linear model. Since the validity functions are calculated from the fuzzy covariance matrices of the clusters, they are highly adaptable and thus the process can be described with a very sparse amount of local models, i.e., with a parsimonious LMN model. The proposed method for constructing the LMN is finally tested on a drug absorption spectral process and compared to two other methods, namely, Lolimot and Hilomot. The comparison between the experimental results when using each method shows the usefulness of the proposed identification algorithm.

  2. Erratum: "Photoionization Modeling of Oxygen K Absorption in the Interstellar Medium, the Chandra Grating Spectra of XTE J1817-330" (2013, Apj, 768, 60)

    Science.gov (United States)

    Gatuzz, E.; Garcia, J.; Mendoza, C.; Kallman, Timothy R.; Witthoeft, Michael C.; Lohfink, A.; Bautista, M. A.; Palmeri, P.; Quinet, P.

    2013-01-01

    In the published version of this paper, there are some minor inaccuracies in the absorption-line wavelengths listed in Table 4 as a result of a faulty reduction procedure of the Obs6615 spectrum. The shifts have been detected in a comparison with the wavelengths listed for this spectrum in the Chandra Transmission Grating Catalog and Archive (TGCat8). They are due to incorrect centroid positions of the zero-order image in both reductions as determined by the tgdetect utility which, when disentangled, yield the improved line positions of the amended Table 4 given below. It must also be pointed out that other quantitative findings of the original paper: 1. Table 5, p. 9: the column density (NH), ionization parameter, oxygen abundance of the warmabs model and the normalization and photon index of the power-law model; 2. Table 6, p. 9: the hydrogen column density of the warmabs fit; 3. Table 7, p. 9: the present oxygen equivalent widths of XTE J1817-330; and 4. Table 8, p. 10: the present oxygen column densities of XTE J1817-330 derived from both the curve of growth and warmabs model fit have been revised in the new light and are, within the estimated uncertainty ranges, in good accord with the new rendering.

  3. Homo- and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins: preparation, x-ray crystal structure, electronic absorption and emission spectra and density functional theory calculations.

    Science.gov (United States)

    Locos, Oliver; Bašić, Bruno; McMurtrie, John C; Jensen, Paul; Arnold, Dennis P

    2012-04-27

    Homo- and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M(2)10 (M(2) =H(2)/Ni, Ni(2), Ni/Zn, H(4), H(2)Zn, Zn(2)) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H(2), Ni, and ZnTriPP on the other (M(2)11), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, (1)H NMR spectra, and for the Ni(2) bis(TriPP) complex Ni(2)10, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni(II) porphyrins, and the (E)-C(2)H(2) bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H(4)10 and H(2)Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni(2)10 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spectrophotometer-Integrating-Sphere System for Computing Solar Absorptance

    Science.gov (United States)

    Witte, William G., Jr.; Slemp, Wayne S.; Perry, John E., Jr.

    1991-01-01

    A commercially available ultraviolet, visible, near-infrared spectrophotometer was modified to utilize an 8-inch-diameter modified Edwards-type integrated sphere. Software was written so that the reflectance spectra could be used to obtain solar absorptance values of 1-inch-diameter specimens. A descriptions of the system, spectral reflectance, and software for calculation of solar absorptance from reflectance data are presented.

  5. Experimental versus ab initio x-ray absorption of iron-doped zirconia: Trends in O K -edge spectra as a function of iron doping

    Science.gov (United States)

    Douma, D. H.; Ciprian, R.; Lamperti, A.; Lupo, P.; Cianci, E.; Sangalli, D.; Casoli, F.; Nasi, L.; Albertini, F.; Torelli, P.; Debernardi, A.

    2014-11-01

    We present an experimental study of x-ray absorption near edge structure (XANES) at L2 ,3,M2 ,3, and K edges of, respectively, Fe, Zr, and O in iron-doped zirconia (ZrO2:Fe ) for different Fe dopant concentrations x (from x ˜6 % to x ˜25 % at.) and make the comparison with ab initio simulations at the O K -edge. The x-ray magnetic circular dichroism (XMCD) measurements show no evidence of ferromagnetic (FM) order for all the analyzed samples in agreement with our ab initio simulations, which show an antiferromagnetic (AFM) order. We found that substituting Zr with Fe atoms leads to a radical change in the O K -edge XANES spectrum, especially in the pre-edge region where a pre-edge peak appears. This pre-edge peak is ascribed to dipole transitions from O 1 s to O 2 p states that are hybridized with the unoccupied Fe 3 d states. Both theoretical and experimental results reveal that the intensity of the pre-edge peak increases with Fe concentration, suggesting the increase of unoccupied Fe 3 d states. The increase of Fe concentration increases oxygen vacancies as required for charge neutrality and consequently improves AFM ordering. According to our first-principles calculations, the effect of one Fe atom is mostly localized in the first oxygen shell and vanishes as one moves far from it. Thus the increase of the O K -pre-edge peak with increasing Fe concentration is due to the increase of percentage of oxygen atoms that are near neighbors to Fe atoms.

  6. The electronic spectra and the structures of the individual copper(II) chloride and bromide complexes in acetonitrile according to steady-state absorption spectroscopy and DFT/TD-DFT calculations

    Science.gov (United States)

    Olshin, Pavel K.; Myasnikova, Olesya S.; Kashina, Maria V.; Gorbunov, Artem O.; Bogachev, Nikita A.; Kompanets, Viktor O.; Chekalin, Sergey V.; Pulkin, Sergey A.; Kochemirovsky, Vladimir A.; Skripkin, Mikhail Yu.; Mereshchenko, Andrey S.

    2018-03-01

    The results of spectrophotometric study and quantum chemical calculations for copper(II) chloro- and bromocomplexes in acetonitrile are reported. Electronic spectra of the individual copper(II) halide complexes were obtained in a wide spectral range 200-2200 nm. Stability constants of the individual copper(II) halide complexes in acetonitrile were calculated: log β1 = 8.5, log β2 = 15.6, log β3 = 22.5, log β4 = 25.7 for [CuCln]2-n and log β1 = 17.0, log β2 = 24.6, log β3 = 28.1, log β4 = 30.4 for [CuBrn]2-n. Structures of the studied complexes were optimized and electronic spectra were simulated using DFT and TD-DFT methodologies, respectively. According to the calculations, the more is the number of halide ligands the less is coordination number of copper ion.

  7. Theoretical study on absorption and emission spectra of size-expanded Janus-type AT nucleobases and effect of base pairing.

    Science.gov (United States)

    Liu, Hongxia; Song, Qixia; Liu, Jianhua; Li, Yan; Wang, Haijun

    2014-01-01

    Fluorescent nucleoside analogues have attracted much attention in studying the structure and dynamics of nucleic acids in recent years. In the present work, we design benzo- and naphtha-expanded Janus AT base analogues, using DFT, TDDFT, and CIS methods to investigate the structural and optical properties of the Janus AT base analogues (termed as J-AT, xJ-AT, yyJ-AT, BF, xBF and yyBF), and also consider the effect of base pairing. The results show that the Janus AT base analogues can pair with T and A simultaneously to form stable H-bonded WC base pairs. The ground state structure of J-AT is similar to BF, the size expansion is 2.42Å for the x-Janus AT bases and 4.86Å for the yy-Janus AT bases. The excited state geometries of J-AT and BF change dramatically, while the other bases are similar to the ground state geometries. The lowest excited singlet transitions of the Janus AT base analogues are predicted to be of ππ(*) character and mainly dominated by the configuration HOMO-LUMO. The maximum absorption wavelengths of size expansion Janus AT base analogues are greatly red shifted compared with J-AT (or BF). BF, xBF and yyJ-AT have larger oscillator strengths than J-AT, xJ-AT and yyBF. The emission wavelengths of the Janus AT base analogues also exhibit red shifts from x-Janus AT bases to yy-Janus AT bases. However, the emission wavelengths of J-AT and BF change greatly, which are coincident with the structures observed in the excited state geometries. With regard to the WC base pairs, the B3LYP functional reveals that the lowest energy transitions of some base pairs are charge transfer excitation, while the other base pairs are local excitation. The CAM-B3LYP functional predicts that all the lowest transitions are localized on the Janus AT bases, and show good agreement with the results of the M062X functional. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Study of the nature of the abovethreshold resonance radiation in lanthanum 4d-spectra and thorium 5d-spectra in compounds

    International Nuclear Information System (INIS)

    Zimkina, T.M.; Shulakov, A.S.; Brajko, A.P.; Lyakhovskaya, I.I.; Alaverdov, V.I.

    1982-01-01

    The results of experimental and theoretical investigation of the nature of above the threshold resonance radiation in lanthanum and thorium in compounds spectra are presented. The emission spectra of lanthanum and thorium oxides obtained at 500 V are shown. It is known that resonance absorption bands are narrower than the emission bands. This effect in addition has been confirmed in the course of investigation of absorption and emission spectra in several lanthanum compounds: LaF 3 , LaS, LaSe, LaSb. The bremsstrahlung spectrum calculation performed for high electron energies correctly defines the general structure of emission spectrum in the field of energies coinciding with a giant resonance in the absorption spectrum. The results obtained show the necessity of the subsequent more detailed experimental and theoretical study of radiation channel of the decay of excited autoionization states [ru

  9. Chemical composition of Lycium europaeum fruit oil obtained by supercritical CO2extraction and evaluation of its antioxidant activity, cytotoxicity and cell absorption.

    Science.gov (United States)

    Rosa, Antonella; Maxia, Andrea; Putzu, Danilo; Atzeri, Angela; Era, Benedetta; Fais, Antonella; Sanna, Cinzia; Piras, Alessandra

    2017-09-01

    We studied the total phenols and flavonoids, liposoluble antioxidants, fatty acid and triacylglycerol profiles, and oxidative status of oil obtained from Lycium europaeum fruits following supercritical CO 2 extraction (at 30MPa and 40°C). Linoleic (52%), palmitic (18%), oleic (13%), and α-linolenic (6%) were the main oil fatty acids, while trilinolein and palmitodilinolein/oleodilinolein represented the main triacylglycerols. The oil was characterized by high levels of all-trans-zeaxanthin and all-trans-β-carotene (755 and 332μg/g of oil, respectively), α-tocopherol (308μg/g of oil), total phenols (13.6mg gallic acid equivalents/g of oil), and total flavonoids (6.8mg quercetin equivalents/g of oil). The oil showed radical scavenging activities (ABTS and DPPH assays) and inhibited Caco-2 cell growth. Moreover, the incubation of differentiated Caco-2 cells with a non-toxic oil concentration (100μg/mL) induced a significant intracellular accumulation of essential fatty acids. The results qualify L. europaeum oil as a potential source for food/pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Application of magnetic circular dichroism spectroscopy to the optical spectra of natural and irradiated diamonds

    International Nuclear Information System (INIS)

    Douglas, I.N.; Ruciman, W.A.; Australian National Univ., Canberra. Research School of Physical Sciences)

    1977-01-01

    The MCD spectra of natural type Ia and electron-irradiated type Ia and type IIa diamonds have been measured. The information obtained from MCD spectroscopy complements that obtained from absorption spectroscopy and can be helpful in the assignment of electronic transitions. (orig.) [de

  11. UV laser long-path absorption spectroscopy

    Science.gov (United States)

    Dorn, Hans-Peter; Brauers, Theo; Neuroth, Rudolf

    1994-01-01

    Long path Differential Optical Absorption Spectroscopy (DOAS) using a picosecond UV laser as a light source was developed in our institute. Tropospheric OH radicals are measured by their rotational absorption lines around 308 nm. The spectra are obtained using a high resolution spectrograph. The detection system has been improved over the formerly used optomechanical scanning device by application of a photodiode array which increased the observed spectral range by a factor of 6 and which utilizes the light much more effectively leading to a considerable reduction of the measurement time. This technique provides direct measurements of OH because the signal is given by the product of the absorption coefficient and the OH concentration along the light path according to Lambert-Beers law. No calibration is needed. Since the integrated absorption coefficient is well known the accuracy of the measurement essentially depends on the extent to which the OH absorption pattern can be detected in the spectra. No interference by self generated OH radicals in the detection lightpath has been observed. The large bandwidth (greater than 0.15 nm) and the high spectral resolution (1.5 pm) allows absolute determination of interferences by other trace gas absorptions. The measurement error is directly accessible from the absorption-signal to baseline-noise ratio in the spectra. The applicability of the method strongly depends on visibility. Elevated concentrations of aerosols lead to considerable attenuation of the laser light which reduces the S/N-ratio. In the moderately polluted air of Julich, where we performed a number of OH measurement spectra. In addition absorption features of unidentified species were frequently detected. A quantitative deconvolution even of the known species is not easy to achieve and can leave residual structures in the spectra. Thus interferences usually increase the noise and deteriorate the OH detection sensitivity. Using diode arrays for sensitive

  12. and three-dimensional models for analysis of optical absorption

    Indian Academy of Sciences (India)

    Unknown

    Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.

  13. Optical Properties of β-RDX Thin Films Deposited on Gold and Stainless Steel Substrates Calculated from Reflection-Absorption Infrared Spectra.

    Science.gov (United States)

    Ruiz-Caballero, José L; Aparicio-Bolaño, Joaquín A; Figueroa-Navedo, Amanda M; Pacheco-Londoño, Leonardo C; Hernandez-Rivera, Samuel P

    2017-08-01

    The optical properties for crystalline films of the highly energetic material (HEM) hexahydro-1,3,5-trinitro-s-triazine, which is also known as RDX, deposited on gold (Au) and stainless steel (SS) substrates are presented. RDX has two important stable conformational polymorphs at room temperature: α-RDX and β-RDX. The optical properties obtained in the present work correspond to thin film samples of predominantly β-RDX polymorph. The infrared spectroscopic intensities measured showed significant differences in the β-RDX crystalline films deposited on the two substrates with respect to the calculated real part of refractive index. The β-RDX/Au crystalline films have a high dynamic response, which is characterized by the asymmetric stretching mode of the axial nitro groups, whereas for the β-RDX/SS crystalline films, the dynamic response was mediated by the -N-NO 2 symmetric stretch mode. This result provides an idea of how the electric field vector propagates through the β-RDX crystalline films deposited on the two substrates.

  14. Notable effects of metal salts on UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl radicals in acetonitrile solution. The complex formation between tocopheroxyls and metal cations.

    Science.gov (United States)

    Mukai, Kazuo; Kohno, Yutaro; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-08-02

    The measurements of the UV-vis absorption spectra of α-, β-, γ-, and δ-tocopheroxyl (α-, β-, γ-, and δ-Toc(•)) radicals were performed by reacting aroxyl (ArO(•)) radical with α-, β-, γ-, and δ-tocopherol (α-, β-, γ-, and δ-TocH), respectively, in acetonitrile solution including three kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), and Mg(ClO(4))(2)) (MX or MX(2)), using stopped-flow spectrophotometry. The maximum wavelengths (λ(max)) of the absorption spectra of the α-, β-, γ-, and δ-Toc(•) located at 425-428 nm without metal salts increased with increasing concentrations of metal salts (0-0.500 M) in acetonitrile and approached some constant values, suggesting (Toc(•)···M(+) (or M(2+))) complex formations. Similarly, the values of the apparent molar extinction coefficient (ε(max)) increased drastically with increasing concentrations of metal salts in acetonitrile and approached some constant values. The result suggests that the formations of Toc(•) dimers were suppressed by the metal ion complex formations of Toc(•) radicals. The stability constants (K) were determined for Li(+), Na(+), and Mg(2+) complexes of α-, β-, γ-, and δ-Toc(•). The K values increased in the order of NaClO(4) metal salt. The alkali and alkaline earth metal salts having a smaller ionic radius of the cation and a larger charge of the cation gave a larger shift of the λ(max) value, a larger ε(max) value, and a larger K value. The result of the DFT molecular orbital calculations indicated that the α-, β-, γ-, and δ-Toc(•) radicals were stabilized by the (1:1) complex formation with metal cations (Li(+), Na(+), and Mg(2+)). Stabilization energy (E(S)) due to the complex formation increased in the order of Na(+) complexes, being independent of the kinds of Toc(•) radicals. The calculated result also indicated that the metal cations coordinate to the O atom at the sixth position of α-, β-, γ-, and δ-Toc(•) radicals.

  15. Ab initio calculations on SnCl2 and Franck-Condon factor simulations of its ã-X and B-X absorption and single-vibronic-level emission spectra.

    Science.gov (United States)

    Lee, Edmond P F; Dyke, John M; Mok, Daniel K W; Chow, Wan-ki; Chau, Foo-tim

    2007-07-14

    Minimum-energy geometries, harmonic vibrational frequencies, and relative electronic energies of some low-lying singlet and triplet electronic states of stannous dichloride, SnCl(2), have been computed employing the complete-active-space self-consistent-field/multireference configuration interaction (CASSCF/MRCI) and/or restricted-spin coupled-cluster single-double plus perturbative triple excitations [RCCSD(T)] methods. The small core relativistic effective core potential, ECP28MDF, was used for Sn in these calculations, together with valence basis sets of up to augmented correlation-consistent polarized-valence quintuple-zeta (aug-cc-pV5Z) quality. Effects of outer core electron correlation on computed geometrical parameters have been investigated, and contributions of off-diagonal spin-orbit interaction to relative electronic energies have been calculated. In addition, RCCSD(T) or CASSCF/MRCI potential energy functions of the X(1)A(1), ã(3)B(1), and B(1)B(1) states of SnCl(2) have been computed and used to calculate anharmonic vibrational wave functions of these three electronic states. Franck-Condon factors between the X (1)A(1) state, and the ã (3)B(1) and B (1)B(1) states of SnCl(2), which include anharmonicity and Duschinsky rotation, were then computed, and used to simulate the ã-X and B-X absorption and corresponding single-vibronic-level emission spectra of SnCl(2) which are yet to be recorded. It is anticipated that these simulated spectra will assist spectroscopic identification of gaseous SnCl(2) in the laboratory and/or will be valuable in in situ monitoring of SnCl(2) in the chemical vapor deposition of SnO(2) thin films in the semiconductor gas sensor industry by laser induced fluorescence and/or ultraviolet absorption spectroscopy, when a chloride-containing tin compound, such as tin dichloride or dimethyldichlorotin, is used as the tin precursor.

  16. Infrared absorption spectra of partially deuterated methoxy radicals CH2DO and CHD2O isolated in solid para-hydrogen.

    Science.gov (United States)

    Haupa, Karolina A; Johnson, Britta A; Sibert, Edwin L; Lee, Yuan-Pern

    2017-10-21

    The investigation of partially deuterated methoxy radicals is important because the symmetry lowering from C 3v to C s provides new insights into the couplings between rovibronic states via Jahn-Teller and spin-orbit interactions. The vibrational spectrum of the partially deuterated methoxy radical CH 2 DO in a matrix of p-H 2 has been recorded. This species was prepared by irradiating a p-H 2 matrix containing deuterated d 1 -nitritomethane (CH 2 DONO) at 3.3 K with laser light at 355 nm. The identification of the radical is based on the photochemical behavior of the precursor and comparison of observed vibrational wavenumbers and infrared (IR) intensities with those predicted from a refined quartic, curvilinear, internal coordinate force field calculated with the coupled-cluster singles and doubles with perturbative triples/cc-pVTZ method. CH 2 DO reacts with H 2 with a rate coefficient (3.5 ± 1.0) × 10 -3 s -1 . Predominantly c-CHDOH and a negligibly small amount of t-CHDOH were produced. This stereoselectivity results from the reaction H + C s -CH 2 DOH, which was demonstrated by an additional experiment on irradiation of a CH 2 DOH/Cl 2 /p-H 2 matrix with ultraviolet and IR light to induce the H + CH 2 DOH reaction; only c-CHDOH was observed from this experiment. Even though the energies of transition states and products for the formation of c-CHDOH and t-CHDOH differ by only ∼10 cm -1 , the selective formation of c-CHDOH can be explained by tunneling of the hydrogen atom via an optimal tunneling path. Similarly, the vibronic spectrum for the partially deuterated specie d 2 -methoxy radical (CHD 2 O) was obtained upon irradiation of d 2 -nitritomethane (CHD 2 ONO) at 355 nm. Lines associated with the fundamental vibrational modes were observed and assigned; line positions agree with theoretically predicted vibrational wavenumbers. CHD 2 O reacts with H 2 with a rate coefficient (6.0 ± 1.4) × 10 -3 s -1 ; CD 2 OH was produced as a major product because

  17. The absorption spectrum of cis-azobenzene.

    Science.gov (United States)

    Vetráková, Ľubica; Ladányi, Vít; Al Anshori, Jamaludin; Dvořák, Pavel; Wirz, Jakob; Heger, Dominik

    2017-12-06

    Azobenzene is a prototypical photochromic molecule existing in two isomeric forms, which has numerous photochemical applications that rely on a precise knowledge of the molar absorption coefficients (ε). Careful analysis revealed that the previously reported absorption spectra of the "pure" isomers were in fact mutually contaminated by small amounts of the other isomer. Therefore, the absorption spectra of both trans- and cis-azobenzene in methanol were re-determined at temperatures of 5-45 °C. The thermodynamically more stable trans-azobenzene was prepared by warming the solution in the dark. To obtain the spectrum of cis-azobenzene three methods were used, which gave consistent results within the limits of error. The method based on the subtraction of derivative spectra coupled with a global analysis of the spectra recorded during thermal cis-trans isomerization is shown to give slightly more reliable results than the method using isomeric ratios determined by 1 H-NMR. The described methods are readily generalizable to other azobenzene derivatives and to other photochromic systems. The practical implication of the re-determined ε values is demonstrated by a very high precision of spectrophotometric species analysis in azobenzene isomeric mixtures. The new ε values imply that the previously reported quantum yields must be revised.

  18. SAWYER ASTEROID SPECTRA

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 94 optical asteroid spectra obtained by Scott Sawyer as part of his Ph.D. dissertation at the University of Texas at Austin. Observational...

  19. Modelling the light absorption properties of particulate matter forming organic particles suspended in seawater.Part 1. Model description, classification of organic particles, and example spectra of the light absorption coefficient and the imaginary part of the refractive index of particulate matter for phytoplankton cells and phytoplankton-like particles

    Directory of Open Access Journals (Sweden)

    Bogdan Woźniak

    2005-06-01

    Full Text Available Data on organic substances in the sea are applied to distinguish hypothetical chemical classes and physical types of suspended particulate organic matter (POM in seawater. Spectra of the light absorption coefficients of particulate matter apm(λ and the imaginary refractive index n'p(λ, are assessed for some of these classes and types of POM in seawater, that is, for live phytoplankton cells and phytoplankton-like particles. The spectral characteristics of these coefficients are established and the probable ranges of variability of their absolute magnitudes defined on the basis of the mass-specific coefficients of light absorption by the various organic substances forming the particles. Also presented are mathematical relationships linking the coefficients apm(λ and n'p(λ for the various chemical classes of POM with their physical parameters, such as the relative contents of organic matter, water, air or some other gas. This article is part of a bio-optical study undertaken by the authors, the objective of which is to implement remote sensing techniques in the investigation of Baltic ecosystems (Woźniak et al. 2004.

  20. Espectro de gotas e idade de trifólios na taxa de absorção e efeito residual de fungicidas em soja Drops spectra and leaflets age on the fungicides absorption rate and residual effect in soybean

    Directory of Open Access Journals (Sweden)

    Giuvan Lenz

    2011-10-01

    Full Text Available O objetivo do presente trabalho foi avaliar o efeito de espectros de gotas (grossas, médias e finas na velocidade de absorção de fungicidas, para trifólios de diferentes idades através de medida indireta expressa pelo residual de controle de ferrugem asiática da soja (Phakopsora pachyrhizi. O delineamento experimental utilizado foi inteiramente casualizado, com quatro repetições, em arranjo fatorial (3x3x5x4, cujos fatores foram compostos por: três categorias de gotas (grossas, médias e finas; três diferentes posições de avaliação na planta (1°, 3° e 5° trifólios; quatro períodos de tempo entre a aplicação de fungicidas e aplicação de chuva simulada (0, 30, 60 e 120min, mais uma testemunha sem chuva; testemunha sem aplicação, mais os fungicidas azoxistrobina + ciproconazol (60+24g i.a. ha-1 + óleo mineral 0,6L ha-1, azoxistrobina (50g i.a. ha-1 + óleo mineral 0,6L ha-1 e ciproconazol (30g i.a. ha-1. Avaliou-se a densidade de gotas por centímetro quadrado, diâmetro mediano volumétrico, diâmetro mediano numérico e amplitude relativa, além do número de dias para o aparecimento da primeira pústula. Verificou-se que gotas de menor DMV proporcionam maior velocidade de absorção de fungicidas. Trifólios mais novos absorvem os fungicidas mais rapidamente. A utilização de azoxistrobina + ciproconazol + óleo mineral proporcionou o maior número de dias até o aparecimento da primeira pústula.This research aimed to evaluate the effect of large, medium and fine droplets spectra and its interaction with the fungicide absorption rate and leaflets age through indirect measurement expressed by the residual control of Asian soybean rust (Phakopsora pachyrhizi. The experimental design was completely randomized with four replications in a factorial scheme (3x3x5x4, which factors were composed of: three drops spectra (large, medium and fine; three different positions in the plant evaluated (1st, 3rd and 5th leaflets, four

  1. Optimum x-ray spectra for mammography.

    Science.gov (United States)

    Beaman, S A; Lillicrap, S C

    1982-10-01

    A number of authors have calculated x-ray energies for mammography using, as a criterion, the maximum signal-to-noise ratio (SNR) obtainable per unit dose to the breast or conversely the minimum exposure for constant SNR. The predicted optimum energy increases with increasing breast thickness. Tungsten anode x-ray spectra have been measured with and without various added filter materials to determine how close the resultant spectra can be brought to the predicted optimum energies without reducing the x-ray output to unacceptable levels. The proportion of the total number of x-rays in a measured spectrum lying within a narrow energy band centred on the predicted optimum has been used as an optimum energy index. The effect of various filter materials on the measured x-ray spectra has been investigated both experimentally and theoretically. The resulting spectra have been compared with molybdenum anode, molybdenum filtered x-ray spectra normally used for mammography. It is shown that filters with K-absorption edges close to the predicted optimum energies are the most effective at producing the desired spectral shape. The choices of filter thickness and Vp are also explored in relationship to their effect on the resultant x-ray spectral shape and intensity.

  2. The high-frequency ESR spectra of the syntetic diamond and nanodiamonds type Ib at low temperature

    International Nuclear Information System (INIS)

    Khatsko, E.; Kobets, M.; Dergachev, K.; Kulbickas, A.; Rasteniene, L.; Vaisnoras, R.

    2013-01-01

    The ESR absorption spectra of nonirradiated and irradiated (by electrons with an energy of 2 MeV) bulk diamond and nanodiamond powder of type Ib have been studied at a wide range of frequencies (70-20 GHz) and temperature (4.2-0 K) by ESR method. It is shown, that in the ESR spectrum of bulk diamond absorption lines of ion nickel catalyst Ni +a nd a paramagnetic single center of the nitrogen N 0 is observed. Absorption lines of the paramagnetic centers with dangling bonds on the nanodiamond surface (surface defects) in the ESR spectra are obtained.

  3. Procedures to analyse γ-ray spectra obtained from the ORTEC or nuclear data ND-680 system by ORTEC's analysis software packages incorporated into a separate IBM-PC computer

    International Nuclear Information System (INIS)

    Zhang Xiu Zhen.

    1990-01-01

    A detailed description is presented for processing γ-spectra produced by means of Ortec or Nuclear Data spectrometry systems on an off-line IBM-PC. The ORTEC analysis software packages were transferred to and implemented on the PC A/T, and the different spectra were recorded on discs and subsequently brought into the format required by the program for the calculation of photo peak areas. (author)

  4. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.

    1978-01-01

    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  5. Effect of different precursors on generation of reference spectra for structural molecular background correction by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry: Determination of antimony in cosmetics.

    Science.gov (United States)

    Barros, Ariane Isis; Victor de Babos, Diego; Ferreira, Edilene Cristina; Gomes Neto, José Anchieta

    2016-12-01

    Different precursors were evaluated for the generation of reference spectra and correction of the background caused by SiO molecules in the determination of Sb in facial cosmetics by high-resolution continuum source graphite furnace atomic absorption spectrometry employing direct solid sample analysis. Zeolite and mica were the most effective precursors for background correction during Sb determination using the 217.581nm and 231.147nm lines. Full 2 3 factorial design and central composite design were used to optimize the atomizer temperature program. The optimum pyrolysis and atomization temperatures were 1500 and 2100°C, respectively. A Pd(NO 3 ) 2 /Mg(NO 3 ) 2 mixture was employed as the chemical modifier, and calibration was performed at 217.581nm with aqueous standards containing Sb in the range 0.5-2.25ng, resulting in a correlation coefficient of 0.9995 and a slope of 0.1548s ng -1 . The sample mass was in the range 0.15-0.25mg. The accuracy of the method was determined by analysis of Montana Soil (II) certified reference material, together with addition/recovery tests. The Sb concentration found was in agreement with the certified value, at a 95% confidence level (paired t-test). Recoveries of Sb added to the samples were in the range 82-108%. The limit of quantification was 0.9mgkg -1 and the relative standard deviation (n=3) ranged from 0.5% to 7.1%. From thirteen analyzed samples, Sb was not detected in ten samples (blush, eye shadow and compact powder); three samples (two blush and one eye shadow) presented Sb concentration in the 9.1-14.5mgkg -1 range. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Infrared and Raman scattering spectra of layered structured Ga3InSe4 crystals

    International Nuclear Information System (INIS)

    Isik, M.; Gasanly, N.M.; Korkmaz, F.

    2013-01-01

    The infrared reflectivity and transmittance and Raman scattering in Ga 3 InSe 4 layered crystals were investigated in the frequency ranges of 100–400, 400–4000 and 25–500 cm −1 . The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes

  7. Modeling of absorption data complicated by Fabry endash Perot interference in germanosilicate thin-film waveguides

    International Nuclear Information System (INIS)

    Simmons-Potter, K.; Simmons, J.H.

    1996-01-01

    Complex absorption spectra obtained from thin films at normal incidence can be difficult to interpret owing to the appearance of Fabry endash Perot interference fringes in the data. We describe a technique for modeling such spectra so that true absorption features can be identified and evaluated separately from the overlying fringes. The technique is used to interpret data obtained from photosensitive germanosilicate solgel films on fused-silica substrates but may be easily extended to analysis in other material systems. copyright 1996 Optical Society of America

  8. Application of Haar and Mexican hat wavelets to double divisor-ratio spectra for the multicomponent determination of ascorbic acid, acetylsalicylic acid and paracetamol in effervescent tablets

    OpenAIRE

    Dinç, Erdal; Baleanu, Dumitru

    2008-01-01

    Simultaneous determination of ascorbic acid (AA), acetylsalicylic acid (ASP) and paracetamol (PAR) in their synthetic mixtures and effervescent tablets were performed by Haar and Mexican continuous wavelet transforms (HAAR-CWT and MEXH-CWT, respectively) together with double divisor technique. The signal processing methods are based on the application of HAAR-CWT and MEXH-CWT to the double divisor-ratio spectra (DDRS). These spectra were obtained by dividing the absorption spectra of pure com...

  9. Local Bi-O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 via temperature-dependent Raman spectra and x-ray absorption fine structure analysis.

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Guo, Xingmei; Fan, Tongxiang; Zhang, Di

    2018-03-28

    A correlation function between the Raman intensities and the nearest-neighbor mean-square relative displacement (MSRD) [Formula: see text] of local Bi-O bonds is successfully established based on x-ray absorption fine structure (XAFS) and temperature-dependent Raman spectra in the temperature range 77-300 K in amorphous and crystalline Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 . The structural symmetries of Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 are described by using [Formula: see text] of local Bi-O bonds. More importantly, Gd 2.95 Yb 0.02 Bi 0.02 Er 0.01 Ga 5 O 12 is found to show excellent infrared (IR) emission properties due to changes in Bi-O bonds, and the IR emission intensities are found to depend on [Formula: see text], by using temperature-dependent photoluminescence spectroscopy. The maximum emission intensity at 1533 nm is obtained when [Formula: see text] [Formula: see text] at the lowest symmetry. This work shows that temperature-dependent Raman intensities can be used effectively to analyze the local covalent bonds around absorbing atoms as well as to study the emission properties of this visible-light-activated IR luminophor.

  10. Local Bi–O bonds correlated with infrared emission properties in triply doped Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 via temperature-dependent Raman spectra and x-ray absorption fine structure analysis

    Science.gov (United States)

    Tong, Liping; Saito, Katsuhiko; Guo, Qixin; Zhou, Han; Guo, Xingmei; Fan, Tongxiang; Zhang, Di

    2018-03-01

    A correlation function between the Raman intensities and the nearest-neighbor mean-square relative displacement (MSRD) σ2 of local Bi–O bonds is successfully established based on x-ray absorption fine structure (XAFS) and temperature-dependent Raman spectra in the temperature range 77–300 K in amorphous and crystalline Gd2.95Yb0.02Bi0.02Er0.01Ga5O12. The structural symmetries of Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 are described by using σ2 of local Bi–O bonds. More importantly, Gd2.95Yb0.02Bi0.02Er0.01Ga5O12 is found to show excellent infrared (IR) emission properties due to changes in Bi–O bonds, and the IR emission intensities are found to depend on σ2 , by using temperature-dependent photoluminescence spectroscopy. The maximum emission intensity at 1533 nm is obtained when σ^2∼0.003 {\\mathringA} at the lowest symmetry. This work shows that temperature-dependent Raman intensities can be used effectively to analyze the local covalent bonds around absorbing atoms as well as to study the emission properties of this visible-light-activated IR luminophor.

  11. Optical properties of Cd Se thin films obtained by pyrolytic dew

    International Nuclear Information System (INIS)

    Perez G, A.M.; Tepantlan, C.S.; Renero C, F.

    2006-01-01

    In this paper the optical properties of Cd Se thin films obtained by spray pyrolysis are presented. The films are prepared by Sodium Seleno sulphate (Na 2 SSeO 3 ) and Cadmium Chloride (CdC 12 ) mixing in aqueous environment. Optical parameters of the films (refractive index, absorption coefficient and optical ban gap) were calculated from transmittance spectra. The obtained values of the optical ban gap are compared with the result obtained by other deposition method. (Author)

  12. Modulation of intersubband light absorption and interband photoluminescence in double GaAs/AlGaAs quantum wells under strong lateral electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Balagula, R. M., E-mail: rmbal@spbstu.ru; Vinnichenko, M. Ya., E-mail: mvin@spbstu.ru; Makhov, I. S.; Firsov, D. A.; Vorobjev, L. E. [Peter the Great Saint-Petersburg Polytechnic University (Russian Federation)

    2016-11-15

    The effect of a lateral electric field on the mid-infrared absorption and interband photoluminescence spectra in double tunnel-coupled GaAs/AlGaAs quantum wells is studied. The results obtained are explained by the redistribution of hot electrons between quantum wells and changes in the space charge in the structure. The hot carrier temperature is determined by analyzing the intersubband light absorption and interband photoluminescence modulation spectra under strong lateral electric fields.

  13. X-ray absorption spectroscopy of soybean lipoxygenase-1 : Influence of lipid hydroperoxide activation and lyophilization on the structure of the non-heme iron active site

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Heijdt, L.M. van der; Feiters, M.C.; Navaratnam, S.; Nolting, H.-F.; Hermes, C.; Veldink, G.A.

    1992-01-01

    X-ray absorption spectra at the Fe K-edge of the non-heme iron site in Fe(II) as well as Fe(III) soybean lipoxygenase-1, in frozen solution or lyophilized, are presented; the latter spectra were obtained by incubation of the Fe(II) enzyme with its product hydroperoxide. An edge shift of about 23 eV

  14. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  15. Description of x-ray tube spectra by the depth distribution function of Pouchou and Pichoir

    International Nuclear Information System (INIS)

    Schobmann, B.; Wernisch, J.; Ebel, H.

    1995-01-01

    We have developed an algorithm for calculating the x-ray tube continuum based on the depth distribution function (DDF) proposed by Pochou and Pichoir, extended the description of white and characteristic radiation given by Wiederschwinger et al to the low energy range from 5 to 30 keV and compared the results from these algorithms to the signals obtained from algorithms using the absorption correction of Philibert and of Sewell et al. Preceding calculations the measured spectra were separated into characteristic peak spectra and into the corresponding white spectra, where the background below the peak areas was numerically interpolated. 13 refs., 5 figs

  16. The IR spectra, hydrogen bonding and conformations of aliphatic and aromatic epoxy carbamates

    Science.gov (United States)

    Furer, V. L.

    1999-12-01

    The IR spectra of hexamethylene-bis (methyl) glycidyl carbamate, toluene-2,4-bis (methyl) glycidyl carbamate in the crystalline state and in the melt were studied. The absorption curves for the most stable molecular conformations were compared with experimental IR spectra. The IR spectra of toluene-2,4-bis (methyl) glycidyl carbamate and methyl- N-methyl carbamate clusters were calculated. The spectral features of the different molecular structures were revealed. The results obtained can be used for the analysis of the chemical and physical transformations in polyurethanes.

  17. Different mathematical processing of absorption, ratio and derivative spectra for quantification of mixtures containing minor component: An application to the analysis of the recently co-formulated antidiabetic drugs; canagliflozin and metformin

    Science.gov (United States)

    Lotfy, Hayam M.; Mohamed, Dalia; Elshahed, Mona S.

    2018-01-01

    In the presented work several spectrophotometric methods were performed for the quantification of canagliflozin (CGZ) and metformin hydrochloride (MTF) simultaneously in their binary mixture. Two of these methods; response correlation (RC) and advanced balance point-spectrum subtraction (ABP-SS) were developed and introduced for the first time in this work, where the latter method (ABP-SS) was performed on both the zero order and the first derivative spectra of the drugs. Besides, two recently established methods; advanced amplitude modulation (AAM) and advanced absorbance subtraction (AAS) were also accomplished. All the proposed methods were validated in accordance to the ICH guidelines, where all methods were proved to be accurate and precise. Additionally, the linearity range, limit of detection and limit of quantification were determined and the selectivity was examined through the analysis of laboratory prepared mixtures and the combined dosage form of the drugs. The proposed methods were capable of determining the two drugs in the ratio present in the pharmaceutical formulation CGZ:MTF (1:17) without the requirement of any preliminary separation, further dilution or standard spiking. The results obtained by the proposed methods were in compliance with the reported chromatographic method when compared statistically, proving the absence of any significant difference in accuracy and precision between the proposed and reported methods.

  18. Data Processing Algorithm for Diagnostics of Combustion Using Diode Laser Absorption Spectrometry.

    Science.gov (United States)

    Mironenko, Vladimir R; Kuritsyn, Yuril A; Liger, Vladimir V; Bolshov, Mikhail A

    2018-02-01

    A new algorithm for the evaluation of the integral line intensity for inferring the correct value for the temperature of a hot zone in the diagnostic of combustion by absorption spectroscopy with diode lasers is proposed. The algorithm is based not on the fitting of the baseline (BL) but on the expansion of the experimental and simulated spectra in a series of orthogonal polynomials, subtracting of the first three components of the expansion from both the experimental and simulated spectra, and fitting the spectra thus modified. The algorithm is tested in the numerical experiment by the simulation of the absorption spectra using a spectroscopic database, the addition of white noise, and the parabolic BL. Such constructed absorption spectra are treated as experimental in further calculations. The theoretical absorption spectra were simulated with the parameters (temperature, total pressure, concentration of water vapor) close to the parameters used for simulation of the experimental data. Then, spectra were expanded in the series of orthogonal polynomials and first components were subtracted from both spectra. The value of the correct integral line intensities and hence the correct temperature evaluation were obtained by fitting of the thus modified experimental and simulated spectra. The dependence of the mean and standard deviation of the evaluation of the integral line intensity on the linewidth and the number of subtracted components (first two or three) were examined. The proposed algorithm provides a correct estimation of temperature with standard deviation better than 60 K (for T = 1000 K) for the line half-width up to 0.6 cm -1 . The proposed algorithm allows for obtaining the parameters of a hot zone without the fitting of usually unknown BL.

  19. Measurement of Absorption Coefficient of Paraformaldehyde and Metaldehyde with Terahertz Spectroscopy

    Science.gov (United States)

    Zhang, J.; Xia, T.; Chen, Q.; Sun, Q.; Deng, Y.; Wang, C.

    2018-03-01

    The characteristic absorption spectra of paraformaldehyde and metaldehyde in the terahertz frequency region are obtained by terahertz time-domain spectroscopy (THz-TDS). In order to reduce the absorption of terahertz (THz) wave by water vapor in the air and the background noise, the measurement system was filled with dry air and the measurements were conducted at the temperature of 24°C. Meanwhile, the humidity was controlled within 10% RH. The THz frequency domain spectra of samples and their references from 0 to 2.5 THz were analyzed via Fourier transform. The refractive index and absorption coefficients of the two aldehydes were calculated by the model formulas. From 0.1 to 2.5 THz, there appear two weak absorption peaks at 1.20 and 1.66 THz in the absorption spectra of paraformaldehyde. Only one distinct absorption peak emerges at 1.83 THz for metaldehyde. There are significant differences between the terahertz absorption coefficients of paraformaldehyde and metaldehyde, which can be used as "fingerprints" to identify these substances. Furthermore, the relationship between the average absorption coefficients and mass concentrations was investigated and the average absorption coefficient-mass concentration diagrams of paraformaldehyde and metaldehyde were shown. For paraformaldehyde, there is a linear relationship between the average absorption coefficient and the natural logarithm of mass concentration. For metaldehyde, there exists a simpler linear relationship between the average absorption coefficient and the mass concentration. Because of the characteristics of THz absorption of paraformaldehyde and metaldehyde, the THz-TDS can be applied to the qualitative and quantitative detection of the two aldehydes to reduce the unpredictable hazards due to these substances.

  20. Free radicals in irradiated unstabilized polypropylene, as seen by diffuse reflection absorption-spectrophotometry

    International Nuclear Information System (INIS)

    Zagorski, Z.P.; Rafalski, A.

    1998-01-01

    The introduction of UV-Vis absorption spectrophotometry to the study of radiation chemistry of polymers has opened the possibility to investigate even very opaque samples. The virgin powder polypropylene, as obtained from the industrial production line, shows after irradiation unstable products of radiolysis. Until now they were investigated mainly by EPR method. Optical absorption spectra (by diffuse reflection spectrophotometry) contribute to better identification and study of changes in time, temperature and diffusion of reactive gases. Studying the formation of stable compounds, which do not produce EPR signal, we are able to examine these species on the basis of their electronic spectra. The most important results concern the peroxides in irradiated polypropylene

  1. Emission and absorption cross section of thulium doped silica fibers

    DEFF Research Database (Denmark)

    Agger, Søren Dyøe; Povlsen, Jørn Hedegaard

    2006-01-01

    A thorough investigation of the emission and absorption spectra of the (F-3(4),H-3(6)) band in thulium doped silica fibers has been performed. All the basic parameters of thulium in silica have been extracted with the purpose of further analysis in laser and amplifier simulations. The experimental...... methods used to obtain the scaled cross sections have been carefully selected in order to avoid problems associated with calibrated measurements and knowledge of the radiative lifetime. The values of the absorption cross sections agree well with previously reported values, however the peak emission...

  2. Water absorption in neutralized Nafion membranes

    International Nuclear Information System (INIS)

    Rodmacq, B.; Roche, E.; Pineri, M.; Escoubez, M.; Duplessix, R.; Eisenberg, A.

    1979-01-01

    In this paper some results are reported about the interactions between water and Nafion neutralized with different cations. The energy of water absorption have been measured in the whole range of relative humidity pressures. Moessbauer spectra permit to get information about the change of environment of the iron atoms during the hydration. Small angle neutron and X ray scattering experiments have then been performed to define a possible phase segregation. From these results a model of clustering in the Nafion membranes is proposed. The neutralized Nafion samples have been obtained by soaking the acid samples in solutions containing the different salts

  3. Analysis of photoisomerizable dyes using laser absorption and fluorescence techniques

    International Nuclear Information System (INIS)

    Duchowicz, R.; Di Paolo, R.E.; Scaffardi, L.; Tocho, J.O.

    1992-01-01

    The attention of the present report has been directed mainly to the description of laser-based techniques developed in order to obtain kinetic and spectroscopic properties of polymethine cyanine dyes in solution. Special attention was dedicated to photoisomerizable molecules where the absorption spectra of both isomers are strongly overlapped. As an example, measurements of two different dyes of laser technological interest, DTCI and DODCI were performed. The developed methods provide a complete quantitative description of photophysical processes. (author). 14 refs, 6 figs

  4. and three-dimensional models for analysis of optical absorption in ...

    Indian Academy of Sciences (India)

    Unknown

    Goldberg et al 1975; Kam and Parkinson 1982; Baglio et al 1982, 1983; Oritz 1995; Li et al 1996) has been carried out on WS2, there is no detailed analysis of the absorption spectra obtained from the single crystals of WS2 on the basis of two- and three-dimensional models. We have therefore carried out this study and the.

  5. Ice absorption features in the 5-8 mu m range

    NARCIS (Netherlands)

    Keane, JV; Tielens, AGGM; Boogert, ACA; Whittet, DCB; Cox, P; Kessler, MF

    1999-01-01

    ISO-SWS spectra (2 - 45 mu m) have been obtained towards a large number of luminous young stellar objects. Here, we present a study of absorption features towards the two objects NGC: 7538:IRS9 and Mon R2:IRS3, for the spectral region 5 - 8 mu m. The shape of these features changes dramatically from

  6. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  7. Ultrasonic absorption

    International Nuclear Information System (INIS)

    Beyer, R.T.

    1985-01-01

    The paper reviews studies of ultrasonic absorption in liquid alkali metals. The experimental methods to measure the absorption coefficients are briefly described. Experimental results reported for the liquid metals: sodium, potassium, rubidium and caesium, at medium temperatures, are presented, as well as data for liquid alloys. Absorption losses due to the presence of an external magnetic field, and the effects of viscosity on the absorption in metals, are both discussed. (U.K.)

  8. Infrared and Raman scattering spectra of layered structured Ga{sub 3}InSe{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Isik, M., E-mail: misik@atilim.edu.tr [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Korkmaz, F. [Department of Electrical and Electronics Engineering, Atilim University, 06836 Ankara (Turkey)

    2013-03-01

    The infrared reflectivity and transmittance and Raman scattering in Ga{sub 3}InSe{sub 4} layered crystals were investigated in the frequency ranges of 100–400, 400–4000 and 25–500 cm{sup −1}. The refractive and absorption indices, the frequencies of transverse and longitudinal optical modes, high- and low-frequency dielectric constants were obtained from the analysis of the IR reflectivity spectra. The bands observed in IR transmittance spectra were interpreted in terms of two-phonon absorption processes.

  9. Linear and nonlinear absorption properties of diamond-like carbon doped with cu nanoparticles

    DEFF Research Database (Denmark)

    Tamulevičius, Sigitas; Peckus, Domantas; Tamulevičius, Tomas

    2017-01-01

    Ultrafast relaxation processes in diamond-like carbon (DLC) thin films with embedded Cu nanoparticles (DLC:Cu nanocomposites) were investigated by means of transient absorption spectroscopy focusing on localized surface plasmon resonance (LSPR) of photoexcited Cu nanoparticles. Absorption spectra...... of the composite films correspond to the sum of absorption spectra of DLC matrix and Cu nanoparticles; however, Cu nanoparticles strongly dominate in the transient differential absorption. Excitations of DLC matrix and of Cu nanoparticles relax independently revealing no strong interaction. High sensitivity...... measurements enabled to obtain the hot electron relaxation dynamics in Cu nanoparticles in the low excitation intensity conditions. The relaxation time was found to be independent of the excitation intensity up to tens of microjoule per square centimeter per pulse and to increase at higher intensities...

  10. Variability in Optical Spectra of epsilon Orionis

    Science.gov (United States)

    Thompson, Gregory B.; Morrison, Nancy D.

    2013-04-01

    We present the results of a time series analysis of 130 échelle spectra of epsilon Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Hα (net) and He I λ5876 were measured and radial velocities were obtained from the central absorption of He I λ5876. Temporal variance spectra (TVS) revealed significant wind variability in both Hα and He I λ5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Hα and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  11. Variability in Optical Spectra of ɛ Orionis

    Science.gov (United States)

    Thompson, Gregory B.; Morrison, N. D.

    2013-06-01

    We present the results of a time-series analysis of 130 échelle spectra of ɛ Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Hα (net) and He I λ5876 were measured and radial velocities were obtained from the central absorption of He I λ5876. Temporal variance spectra (TVS) revealed significant wind variability in both Hα and He I λ5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with time scales of 2-7 d. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Hα and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 98-99 season and in both lines during the 04-05 season. These periods may indicate rotational modulation due to structure in the wind.

  12. The Rovibronic Spectra of the Cyclopentadienyl Radical

    Science.gov (United States)

    Sharma, Ketan; Miller, Terry A.; Stanton, John F.; Nesbitt, David

    2017-06-01

    Cyclopentadienyl (Cp) radical has been subject to numerous studies for the greater part of half a century. Experimental work has involved photo-electron spectroscopy, laser induced fluorescence excitation and emission, infrared absorption spectroscopy, and recently rotationally resolved spectra in the CH stretch region taken at JILA. Even more theoretical works appear in the literature, but substantial advances in computation have occurred since their completion. Cp's highly symmetric (D_{5h}) structure and doubly degenerate electronic ground (˜{X}^2E_1^{''}), which is subject to linear Jahn-Teller distortion, have been a great motivation for work on it. We have commenced new computational work to obtain a broad understanding of the electronic, vibrational, and rotational, i.e. rovibronic, structure of the Cp radical as revealed by its spectra, with particular emphasis on the new infrared spectra. The goal is to guide experiments and their analyses and reconcile results from spectroscopy and quantum chemistry calculations. T. Ichino, et al. J. Chem. Phys. 129, 084310 (2008) L. Yu, S. C. Foster, J. M. Williamson, M. C. Heaven and T. A. Miller J. Phys. Chem. 92, 4263 (1988) B. E. Applegate, A. J. Bezant and T. A. Miller J. Chem. Phys 114, 4869 (2001) D. Leicht, M. Kaufmann, G. Schwaab, and M. Havenith J. Chem. Phys. 145, 7 (2016), 074304.

  13. VARIABILITY IN OPTICAL SPECTRA OF ε ORIONIS

    International Nuclear Information System (INIS)

    Thompson, Gregory B.; Morrison, Nancy D.

    2013-01-01

    We present the results of a time series analysis of 130 échelle spectra of ε Ori (B0 Ia), acquired over seven observing seasons between 1998 and 2006 at Ritter Observatory. The equivalent widths of Hα (net) and He I λ5876 were measured and radial velocities were obtained from the central absorption of He I λ5876. Temporal variance spectra (TVS) revealed significant wind variability in both Hα and He I λ5876. The He I TVS have a double-peaked profile consistent with radial velocity oscillations. A periodicity search was carried out on the equivalent width and radial velocity data, as well as on wavelength-binned spectra. This analysis has revealed several periods in the variability with timescales of two to seven days. Many of these periods exhibit sinusoidal modulation in the associated phase diagrams. Several of these periods were present in both Hα and He I, indicating a possible connection between the wind and the photosphere. Due to the harmonic nature of these periods, stellar pulsations may be the origin of some of the observed variability. Periods on the order of the rotational period were also detected in the He I line in the 1998-1999 season and in both lines during the 2004-2005 season. These periods may indicate rotational modulation due to structure in the wind.

  14. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    The need for generation of seismic acceleration histories to prescribed response spectra arises several ways in structural dynamics. For example, one way of obtaining floor spectra is to generate a history from a foundation spectra and then solve for the floor motion from which a floor spectrum can be obtained. Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE

  15. Interference effects in Moessbauer spectra of M1-transitions

    International Nuclear Information System (INIS)

    Peregudov, V.N.

    1980-01-01

    The purpose of the study is the calculation of interference effects in Moessbauer spectra of the (γ, e) reaction. Two channels of the inelastic (γ, e) reaction are considered: resonance gamma radiation absorption by nucleus accompanied by internal conversion and photo absorption by atomic electrons. The case of M1 nuclear transition multipolarity is considered. The expression for angular dependence coefficients of interference member is obtained. General expression for (γ, e) reaction cross section is obtained in a long-wave approximation for the case when the specimen is placed in longitudinal magnetic field involving superfine nuclear level splitting. The results of disperse amplitudes calculation for 93 Kr, 119 Sn, 129 I, 149 Sm, 151 Eu, 169 Tm, 183 W, 193 Ir, 197 Au nuclei are verified. The calculations show that maximum interference effect in the (γ, e) reaction should be expected for 169 Tm isotope [ru

  16. Infrared spectra of mineral species

    CERN Document Server

    Chukanov, Nikita V

    2014-01-01

    This book details more than 3,000 IR spectra of more than 2,000 mineral species collected during last 30 years. It features full descriptions and analytical data of each sample for which IR spectrum was obtained.

  17. Fluorescence Spectra of Highlighter Inks

    Science.gov (United States)

    Birriel, Jennifer J.; King, Damon

    2018-01-01

    Fluorescence spectra excited by laser pointers have been the subject of several papers in TPT. These papers all describe a fluorescence phenomenon in which the reflected laser light undergoes a change in color: this color change results from the combination of some partially reflected laser light and additional colors generated by fluorescent emission. Here we examine the fluorescence spectra of highlighter inks using green and violet laser pointers. We use an RSpec Explorer spectrometer to obtain spectra and compare the emission spectra of blue, green, yellow, orange, pink, and purple highlighters. The website Compound Interest details the chemical composition of highlighter inks; in addition, the site discusses how some base dye colors can be combined to produce the variety commercially available colors. Spectra obtained in this study were qualitatively consistent with the Compound Interest site. We discuss similarities and differences between various highlighter colors and conclude with the relevance of such studies to physics students.

  18. DFT Calculation of IR Absorption Spectra for PCE-nH2O, TCE-nH2O, DCE-nH2O, VC-nH2O for Small and Water-Dominated Molecular Clusters

    Science.gov (United States)

    2017-10-31

    these clusters is important for understanding the scattering and absorption of radiation transmitted through ambient environments, which is for...associated with different types of ambient molecules, e.g., H2O, in order to apply background subtraction or spectral-signature-correlation algorithms

  19. Optical absorption of sodium copper chlorophyllin thin films in UV-vis-NIR region.

    Science.gov (United States)

    Farag, A A M

    2006-11-01

    The optical absorption studies of sodium copper chlorophyllin thin films (SCC), prepared by spray pyrolysis, in the UV-vis-NIR region was reported for the first time. Several new discrete transitions are observed in the UV-vis region of the spectra in addition to a strong continuum component in the IR region. The spectra of the infrared absorption allow characterization of vibration modes for the powder and thin films of SCC. The absorption spectrum recorded in the UV-vis region showed different absorption bands, namely the Soret (B) in the region 340-450 nm and Q-band in the region 600-700 nm and other band labeled N in the 240-320 region. Some important spectral parameters namely optical absorption coefficient (alpha), molar extinction coefficient (epsilon(molar)), oscillator strength (f), electric dipole strength (q(2)) and absorption half bandwidth (Deltalambda) of the principle optical transitions were evaluated. The analysis of the absorption coefficient in the absorption region revealed direct transitions and the energy gap was estimated as 1.63 eV. Discussion of the obtained results and their comparison with the previous published data are also given.

  20. Spectral interferences in atomic absorption spectrometry, (5)

    International Nuclear Information System (INIS)

    Daidoji, Hidehiro

    1979-01-01

    Spectral interferences were observed in trace element analysis of concentrated solutions by atomic absorption spectrometry. Molecular absorption and emission spectra for strontium chloride and nitrate, barium chloride and nitrate containing 12 mg/ml of metal ion in airacetylene flame were measured in the wavelength range from 200 to 700 nm. The absorption and emission spectra of SrO were centered near 364.6 nm. The absorption spectra of SrOH around 606.0, 671.0 and 682.0 nm were very strong. And, emission spectrum of BaOH in the wavelength range from 480 to 550 nm was stronger. But, the absorption of this band spectrum was very weak. In the wavelength range from 200 to 400 nm, some unknown bands of absorption were observed for strontium and barium. Absorption spectra of SrCl and BaCl were observed in the argon-hydrogen flame. Also, in the carbon tube atomizer, the absorption spectra of SrCl and BaCl were detected clearly in the wavelength range from 185 to 400 nm. (author)

  1. Configuration interaction in LTE spectra of heavy elements

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.

    1992-11-01

    We present a method for including the effects of configuration interaction (CI) between relativistic subconfigurations of an electron configuration in the calculation of emission and absorption spectra of plasmas in local thermodynamic equilibrium (LTE). Analytical expressions for the correction to the intensities, owing to Cl, of an unresolved transition array (UTA) and of a supertransition array (STA) are obtained when the correction is small compared to the spin-orbit splitting, bypassing the need to diagonalize energy matrices. These expressions serve as working formulas in the STA model and, in addition, reveal a priori the conditions under which CI effects are significant. Examples of the effect are presented

  2. Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples.

    Science.gov (United States)

    Bassan, Paul; Kohler, Achim; Martens, Harald; Lee, Joe; Byrne, Hugh J; Dumas, Paul; Gazi, Ehsan; Brown, Michael; Clarke, Noel; Gardner, Peter

    2010-02-01

    Infrared spectra of single biological cells often exhibit the 'dispersion artefact' observed as a sharp decrease in intensity on the high wavenumber side of absorption bands, in particular the Amide I band at approximately 1655 cm(-1), causing a downward shift of the true peak position. The presence of this effect makes any biochemical interpretation of the spectra unreliable. Recent theory has shed light on the origins of the 'dispersion artefact' which has been attributed to resonant Mie scattering (RMieS). In this paper a preliminary algorithm for correcting RMieS is presented and evaluated using simulated data. Results show that the 'dispersion artefact' appears to be removed; however, the correction is not perfect. An iterative approach was subsequently implemented whereby the reference spectrum is improved after each iteration, resulting in a more accurate correction. Consequently the corrected spectra become increasingly more representative of the pure absorbance spectra. Using this correction method reliable peak positions can be obtained.

  3. Infrared Absorption Band Assignment in Benzanilide and Some of its p

    African Journals Online (AJOL)

    MBI

    2014-07-10

    nitrobenzanilide only. However, no absorption band(s) that can be readily attributed to Amide VI mode was observed for all the benzanilides. Keywords: Benzanilide, IR Absorption Band. INTRODUCTION. The infrared absorption spectra ...

  4. Subgap Absorption in Conjugated Polymers

    Science.gov (United States)

    Sinclair, M.; Seager, C. H.; McBranch, D.; Heeger, A. J; Baker, G. L.

    1991-01-01

    Along with X{sup (3)}, the magnitude of the optical absorption in the transparent window below the principal absorption edge is an important parameter which will ultimately determine the utility of conjugated polymers in active integrated optical devices. With an absorptance sensitivity of materials. We have used PDS to measure the optical absorption spectra of the conjugated polymers poly(1,4-phenylene-vinylene) (and derivitives) and polydiacetylene-4BCMU in the spectral region from 0.55 eV to 3 eV. Our spectra show that the shape of the absorption edge varies considerably from polymer to polymer, with polydiacetylene-4BCMU having the steepest absorption edge. The minimum absorption coefficients measured varied somewhat with sample age and quality, but were typically in the range 1 cm{sup {minus}1} to 10 cm{sup {minus}1}. In the region below 1 eV, overtones of C-H stretching modes were observed, indicating that further improvements in transparency in this spectral region might be achieved via deuteration of fluorination.

  5. Studies of photon spectra from a thallium-204 foil source as an aid to dosimetry and shielding

    CERN Document Server

    Francis, T M

    1976-01-01

    Beta ray foil sources incorporating nuclides such as thallium-204, promethium-147 and strontium-90 plus yttrium-90 ar increasingly used in industrial devices such as thickness gauges. These sources are so constructed that they give rise to complex photon spectra containing low energy Bremsstrahlung and X-rays characteristic of the constructional materials. The energy response of practical monitoring instruments is such that they are likely to underestimate the dose due to such spectra unless they are calibrated using appropriate spectra. This report describes a series of measurements carried out on a commercially available thallium-204 foil source and five commonly used shielding materials. The measurements made with a NaI(T1) spectrometer have been corrected for instrumental distortions to obtain the photon spectra in air. These spectra are presented and have been used to compute dose in air with the help of published data on mass energy-absorption coefficients. Also included in the report are data derived f...

  6. Folate absorption

    International Nuclear Information System (INIS)

    Baker, S.J.

    1976-01-01

    Folate is the generic term given to numerous compounds of pteroic acid with glutamic acid. Knowledge of absorption is limited because of the complexities introduced by the variety of compounds and because of the inadequacy of investigational methods. Two assay methods are in use, namely microbiological and radioactive. Techniques used to study absorption include measurement of urinary excretion, serum concentration, faecal excretion, intestinal perfusion, and haematological response. It is probably necessary to test absorption of both pteroylmonoglutamic acid and one or more polyglutamates, and such tests would be facilitated by availability of synthesized compounds labelled with radioactive tracers at specifically selected sites. (author)

  7. Spectrophotometry of Pluto-Charon mutual events - Individual spectra of Pluto and Charon

    Science.gov (United States)

    Sawyer, S. R.; Barker, E. S.; Cochran, A. L.; Cochran, W. D.

    1987-01-01

    Time-resolved spectra of the March 3 and April 4, 1987 mutual events of Pluto and Charon, obtained with spectral coverage from 5500 to 10,000 A with 25-A spectral resolution, are discussed. Charon has a featureless reflectance spectrum, with no evidence of methane absorption. Charon's reflectance appears neutral in color and corresponds to a geometric albedo of about 0.37 at 6000 A. The Pluto reflectance spectrum displays methane absorption bands at 7300, 7900, 8400, 8600, and 8900 A and is red in color, with a geometric albedo of about 0.56 at 6000 A.

  8. Comparison of optical properties of Eu3+ ions in the silica gel glasses obtained by different preparation techniques

    International Nuclear Information System (INIS)

    Legendziewicz, J.; Sokolnicki, J.; Keller, B.; Borzechowska, M.; Strek, W.

    1996-01-01

    Silica-gel glasses doped with Eu 3+ ions were obtained by different preparation techniques. The absorption, emission and excitation spectra of the obtained glasses were measured in the range of 77-300 K. The energy levels diagrams of Eu 3+ ions were derived. An intensity analysis of f-f transitions was performed. In particular, polymeric structure behaviour of europium compounds entrapped in silica gel glasses was temperature controlled during the preparation of glasses. Their optical properties were investigated. (author)

  9. Reconstruction of neutron spectra through neural networks

    International Nuclear Information System (INIS)

    Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.

    2003-01-01

    A neural network has been used to reconstruct the neutron spectra starting from the counting rates of the detectors of the Bonner sphere spectrophotometric system. A group of 56 neutron spectra was selected to calculate the counting rates that would produce in a Bonner sphere system, with these data and the spectra it was trained the neural network. To prove the performance of the net, 12 spectra were used, 6 were taken of the group used for the training, 3 were obtained of mathematical functions and those other 3 correspond to real spectra. When comparing the original spectra of those reconstructed by the net we find that our net has a poor performance when reconstructing monoenergetic spectra, this attributes it to those characteristic of the spectra used for the training of the neural network, however for the other groups of spectra the results of the net are appropriate with the prospective ones. (Author)

  10. Infrared spectra of carbon stars with silicate-like emission

    Science.gov (United States)

    Noguchi, Kunio; Murakami, Hiroshi; Matsuo, Hiroshi; Noda, Manabu; Hamada, Hiroyuki; Watabe, Toyoki

    1990-06-01

    Near-infrared photometry was carried out for 15 carbon stars, including three peculiar carbon stars (BM Gem, V778 Cyg, and EU And) which have a 10-micron emission feature similar to the silicate emission characteristic of oxygen-rich stars. It was found that these carbon stars with silicatelike emission have excesses at both the 12- and 25-micron bands regarding IRAS photometric data which are characteristic of M-type stars with strong silicate emission features. This fact supports the suggestion that the silicatelike emission in peculiar carbon stars is the same as the silicate emission in M-type stars. The near-infrared spectra of these three peculiar carbon stars between 1.9 micron and 4.2 microns were obtained with a grating spectrometer. The spectra of these stars show a 3-micron absorption feature characteristic of carbon stars.

  11. Narrative absorption

    DEFF Research Database (Denmark)

    Narrative Absorption brings together research from the social sciences and Humanities to solve a number of mysteries: Most of us will have had those moments, of being totally absorbed in a book, a movie, or computer game. Typically we do not have any idea about how we ended up in such a state. Nor...... do we fully realize how we might have changed as we return for the fictional worlds we have visited. The feeling of being absorbed is one of the most illusive and transient feelings, but also one that motivates audiences to spend considerable amounts of time in narrative worlds, and one...... that is central to our understanding of the effects of narratives on beliefs and behavior. Key specialists inform the reader of this book about the nature of the peculiar state of consciousness during episodes of absorption, the perception of absorption in history, the role of absorption in meaningful experiences...

  12. Millimeter-wave spectra of the Jovian planets

    Science.gov (United States)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.

  13. Spectral signatures of fluorescence and light absorption to identify crude oils found in the marine environment

    Science.gov (United States)

    Baszanowska, E.; Otremba, Z.

    2014-08-01

    To protect the natural marine ecosystem, it is necessary to continuously enhance knowledge of environmental contamination, including oil pollution. Therefore, to properly track the qualitative and quantitative changes in the natural components of seawater, a description of the essential spectral features describing petroleum products is necessary. This study characterises two optically-different types of crude oils (Petrobaltic and Romashkino) - substances belonging to multi-fluorophoric systems. To obtain the spectral features of crude oils, the excitation-emission spectroscopy technique was applied. The fluorescence and light absorption properties for various concentrations of oils at a stabilised temperature are described. Both excitation-emission spectra (EEMs) and absorption spectra of crude oils are discussed. Based on the EEM spectra, both excitation end emission peaks for the wavelengthindependent fluorescence maximum (Exmax/ Emmax) - characteristic points for each type of oil - were identified and compared with the literature data concerning typical marine chemical structures.

  14. Two-photon spectroscopy study of edge absorption peculiarities in oxygen-octahedric ferroelectrics

    International Nuclear Information System (INIS)

    Shablaev, S.I.; Danishevskij, A.M.; Subashiev, V.K.

    1984-01-01

    Two-photon absorption (TPA) spectra of ferroelectric crystals with BaTiO 3 , KTaO 3 and SrTiO 3 perovskite strUcture Were obtained. The detailed investigation of temperature dependence of edge spectrum regions was conducted and on the basis of their analysis the indirect character of edge absorption was concluded for all mentioned crystals. TPA spectra of BaTiO 3 and KTaO 3 are characterized by the regions corresponding to one indirect edge TPA spectra of SrTiO 3 - to two indirect edges. The corresponding inter-zone gaps were determined for all investigated crystals, the energy of phonons, participating in indirect two photon transitions, inter-zone gaps, corresponding to direct transitions were determined as well

  15. Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra

    Science.gov (United States)

    Stiller, G. P.; Gunson, M. R.; Lowes, L. L.; Abrams, M. C.; Raper, O. F.; Farmer, C. B.; Zander, R.; Rinsland, C. P.

    1995-01-01

    A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

  16. A transient absorption study of allophycocyanin

    Indian Academy of Sciences (India)

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited ...

  17. Terahertz absorption spectrum of triacetone triperoxide (TATP)

    Science.gov (United States)

    Wilkinson, John; Konek, Christopher T.; Moran, Jesse S.; Witko, Ewelina M.; Korter, Timothy M.

    2009-08-01

    We report here, for the first time, the terahertz absorption spectrum of triacetone triperoxide (TATP). The experimental spectra are coupled with solid-state density functional theory, and preliminary assignments are provided to gain physical insight into the experimental spectrum. The calculated absorption coefficients are in excellent agreement with experiment.

  18. Gastrointestinal absorption of plutonium

    International Nuclear Information System (INIS)

    Larsen, R.P.; Oldham, R.D.; Bhattacharyya, M.H.; Moretti, E.S.; Austin, D.J.

    1981-01-01

    An investigation has been made of the effect of the oxidation state of plutonium on its absorption from the gastrointestinal tract. For mice and rats that have been starved prior to gastrointestinal administration, there is no significant difference between the absorption factors for Pu(IV) and Pu(VI). The value obtained for Pu(VI) is an order of magnitude lower than that reported previously. The value obtained for Pu(IV) is two orders of magnitude higher than those reported previously for nitrate solutions and the same as those reported for citrate solutions

  19. Quantitative Infrared Absorption Spectra and Vibrational Assignments of Crotonaldehyde and Methyl Vinyl Ketone Using Gas-Phase Mid-Infrared, Far-Infrared, and Liquid Raman Spectra: s-cis vs s-trans Composition Confirmed via Temperature Studies and ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lindenmaier, Rodica; Williams, Stephen D.; Sams, Robert L.; Johnson, Timothy J.

    2016-12-16

    Methyl vinyl ketone (MVK) and crotonaldehyde are chemical isomers; both are also important species in tropospheric chemistry. We report quantitative vapor-phase infrared spectra of crotonaldehyde and MVK vapors over the 540-6500 cm-1 range. Vibrational assignments of all fundamental modes are made for both molecules based on far- and mid-infrared vapor-phase spectra, liquid Raman spectra, along with density functional theory and ab initio MP2 and high energy-accuracy compound theoretical models (W1BD). Theoretical results indicate that at room temperature the crotonaldehyde equilibrium mixture is approximately 97% s-trans and only 3% s-cis conformer. Nearly all observed bands are thus associated with the s-trans conformer, but a few appear to be uniquely associated the s-cis conformer, notably ν16c at 730.90 cm-1, which displays a substantial intensity increase with temperature (62% upon going from 5 to 50 oC). The intensity of the corresponding mode of the s-trans conformer decreases with temperature. Under the same conditions, the MVK equilibrium mixture is approximately 69% s-trans conformer and 31% s-cis. W1BD calculations indicate that for MVK this is one of those (rare) cases where there are comparable populations of both conformers, ~doubling the number of observed bands and exacerbating the vibrational assignments. We uniquely assign the bands associated with both the MVK s-cis conformer as well as those of the s-trans, thus completing the vibrational analyses of both conformers from the same set of experimental spectra. Integrated band intensities are reported for both molecules along with global warming potential values. Using the quantitative IR data, potential bands for atmospheric monitoring are also discussed.

  20. Crystal structure and optical absorption spectra of Ga0.5Fe0.5InS3 and Ga0.5Fe0.25In1.25S3 crystals

    International Nuclear Information System (INIS)

    Gusejnov, G.G.; Musaeva, N.N.; Kyazumov, M.G.; Asadova, I.B.; Aliev, O.M.

    2003-01-01

    Single crystals of Ga 0.5 Fe 0.5 InS 3 are grown by the method of chemical gas-transport reactions and those of Ga 0.5 Fe 0.25 In 1.25 S 3 - by Bridgman method. X-ray diffraction studies reveal that they crystallize in trigonal and rhombohedral systems with lattice parameters of a = 3.796 x 2 A, c = 12.210 A, P3m1; a = 3.786 x 2 A, c = 36.606 A, R3m, respectively. An optical absorption edge in a wide range of photon energy and an energy gap width are determined: E g = 1.885 eV for Ga 0.5 Fe 0.5 InS 3 and E g 1.843 eV for Ga 0.5 Fe 0.25 In 1.25 S 3 [ru

  1. Optical properties of Cd Se thin films obtained by pyrolytic dew; Propiedades opticas de peliculas delgadas de CdSe obtenidas por rocio pirolitico

    Energy Technology Data Exchange (ETDEWEB)

    Perez G, A.M. [UPAEP, 72160 Puebla (Mexico); Tepantlan, C.S. [UPT, 43626 Tulancingo, Hidalgo (Mexico); Renero C, F. [INAOE, 72840 Puebla (Mexico)

    2006-07-01

    In this paper the optical properties of Cd Se thin films obtained by spray pyrolysis are presented. The films are prepared by Sodium Seleno sulphate (Na{sub 2}SSeO{sub 3}) and Cadmium Chloride (CdC{sub 12}) mixing in aqueous environment. Optical parameters of the films (refractive index, absorption coefficient and optical ban gap) were calculated from transmittance spectra. The obtained values of the optical ban gap are compared with the result obtained by other deposition method. (Author)

  2. Response spectra in alluvial soils

    International Nuclear Information System (INIS)

    Chandrasekharan, A.R.; Paul, D.K.

    1975-01-01

    For aseismic design of structures, the ground motion data is assumed either in the form of ground acceleration as a function of time or indirectly in the form of response spectra. Though the response spectra approach has limitations like not being applicable for nonlinear problems, it is usually used for structures like nuclear power plants. Fifty accelerograms recorded at alluvial sites have been processed. Since different empirical formulas relating acceleration with magnitude and distance give a wide scatter of values, peak ground acceleration alone cannot be the parameter as is assumed by a number of authors. The spectra corresponding to 5% damping have been normalised with respect to three parameters, namely, peak ground acceleration, peak ground velocity and a nondimensional quantity ad/v 2 . Envelopee of maxima and minima as well as average response spectra has been obtained. A comparison with the USAEC spectra has been made. A relation between ground acceleration, ground velocity and ad/v 2 has been obtained which would nearly give the same magnification of the response. A design response spectra for alluvial soils has been recommended. (author)

  3. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    Science.gov (United States)

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  4. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    International Nuclear Information System (INIS)

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-01-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively

  5. Absorption fluids data survey

    Science.gov (United States)

    Macriss, R. A.; Zawacki, T. S.

    Development of improved data for the thermodynamic, transport and physical properties of absorption fluids were studied. A specific objective of this phase of the study is to compile, catalog and coarse screen the available US data of known absorption fluid systems and publish it as a first edition document to be distributed to manufacturers, researchers and others active in absorption heat pump activities. The methodology and findings of the compilation, cataloguing and coarse screening of the available US data on absorption fluid properties and presents current status and future work on this project are summarized. Both in house file and literature searches were undertaken to obtain available US publications with pertinent physical, thermodynamic and transport properties data for absorption fluids. Cross checks of literature searches were also made, using available published bibliographies and literature review articles, to eliminate secondary sources for the data and include only original sources and manuscripts. The properties of these fluids relate to the liquid and/or vapor state, as encountered in normal operation of absorption equipment employing such fluids, and to the crystallization boundary of the liquid phase, where applicable. The actual data were systematically classified according to the type of fluid and property, as well as temperature, pressure and concentration ranges over which data were available. Data were sought for 14 different properties: Vapor-Liquid Equilibria, Crystallization Temperature, Corrosion Characteristics, Heat of Mixing, Liquid-Phase-Densities, Vapor-Liquid-Phase Enthalpies, Specific Heat, Stability, Viscosity, Mass Transfer Rate, Heat Transfer Rate, Thermal Conductivity, Flammability, and Toxicity.

  6. Nonlinear effects in collective absorption

    International Nuclear Information System (INIS)

    Uenoyama, Takeshi; Mima, Kunioki; Watanabe, Tsuguhiro.

    1981-01-01

    The collective absorption of high intensity laser radiation is analyzed numerically. Density profile modification due to the ponderomotive force associating laser radiation and the excited electron plasma waves is self-consistently taken into account, and the intensity dependences of the absorption efficiency are obtained. In the high intensity regime, the absorption efficiency is found to be strongly enhanced in the plasma without flow, but reduced with supersonic flow. (author)

  7. Photochemical Properties of CH2═CH-CFCl-CF2Br (4-Bromo-3-chloro-3,4,4-trifluoro-1-butene) and CH3-O-CH(CF3)2(Methyl Hexafluoroisopropyl Ether): OH Reaction Rate Constants and UV and IR Absorption Spectra.

    Science.gov (United States)

    Orkin, Vladimir L; Martynova, Larissa E; Kurylo, Michael J

    2017-08-03

    Rate constants for the reactions of hydroxyl radicals (OH) with 1,1,1,3,3,3-hexafluoroisopropyl methyl ether (CH 3 -O-CH(CF 3 ) 2 ) and 4-bromo-3-chloro-3,4,4-trifluoro-1-butene (CH 2 ═CH-CFCl-CF 2 Br) have been measured over the temperature range 230-370 K to give the following Arrhenius expressions: k CH3OCH(CF3)2 (T) = 7.69 × 10 -14 × (T/298) 2.99 × exp(+342/T), cm 3 molecule -1 s -1 , and k CH2CHCFClCF2Br (T) = (6.45 ± 0.72) × 10 -13 × exp{+(424 ± 32)/T}, cm 3 molecule -1 s -1 . Atmospheric lifetimes of compounds were estimated to be 67 days and 4.5 days, respectively. UV absorption spectrum of CH 2 ═CH-CFCl-CF 2 Br between 164 and 260 nm and IR absorption spectra of both compounds between 450 and 1600 cm -1 were measured at room temperature.

  8. Absorption of cosmic radio noise at different frequencies at Sanae

    International Nuclear Information System (INIS)

    Steyn, T.F.J.

    1983-12-01

    Electron density profiles are simulated as a function of altitude for the D- and E-regions during disturbed ionospheric conditions using auroral absorption data from riometers recording cosmic radio noise at 20, 30 and 51 MHz at Sanae, Antarctica. An elliptical function was used to simulate, as a function of height, the electron density profiles. Using these profiles the measured absorption was calculated by utilizing the Appleton-Hartree treatment for radio waves crossing the ionosphere. The frequency dependence of the riometer absorption is represented by a power law of the frequency: A(f) = C.f -n , and values of n were determined from calculations of the absorptions from the simulated electron density profiles. This power law is a fairly accurate representation in the frequency range 20 to 51 MHz. It appears that the exponent of the power law and the height of maximum absorption are effective parameters to determine the hardness of the energy spectra of precipitating electrons. A method is discussed whereby interferences on the riometer recordings are filtered from the data. Quiet day curves are obtained by the superposition of successive riometer recordings with a period of one sidereal day. A Fourier series is fitted to the points of maximum density to represent the quiet day recordings. Absorption events on day 175 and day 178 (1982) are analized for each riometer frequency, and the hardness of the precipitating electrons is inferred from the n-values of power law presentation. It is shown that the absorption of cosmic radio noise increases by increasing the depth of ionization without increasing the ionization rate (number of electrons /m 3 ) in the upper D-region. This may mean that a hardening of a precipitation spectrum will increase the absorption of cosmic radio noise

  9. Mid-IR Spectra of Refractory Minerals Relevant to Comets

    Science.gov (United States)

    Jauhari, Shekeab

    2008-09-01

    On 4 July 2005 the Spitzer Space Telescope obtained mid-IR ( 5-40 µm) spectra of the ejecta from the hypervelocity impact of the Deep Impact projectile with comet 9P/Tempel 1. Spectral modeling demonstrates that there are abundant minerals present in the ejecta including Ca/Fe/Mg-rich silicates, carbonates, phyllosilicates, water ice, amorphous carbon, and sulfides [1]. However, precise mineralogical identifications are hampered by the lack of comprehensive 5 - 40 µm spectral measurements of the emissivity for a broad compositional range of these materials. Here, we present our initial results for 2 - 50 µm transmission spectra and absorption constants for materials relevant to comets, including pyrrhotite, pyrite, and several phyllosilicate (clay) minerals. Measuring the transmission of materials over the full spectral range sensitive by Spitzer requires grinding the minerals into submicron powders and then mixing them with KBr (for the 1-25 um region) and polyethylene (16-50 um region) to form pellets. Transmission measurements of sub-micron sulfides are particularly difficult to obtain because the minerals oxidize rapidly upon grinding and subsequent handling unless special care is taken. A detailed description of our sample preparation and measurement technique will be provided to assist other researchers in their attempts to acquire similar spectra. References: [1] Lisse, C.M. et al., Science 313, 635 - 640 (2006)

  10. Quantum Absorption Refrigerator

    Science.gov (United States)

    Levy, Amikam; Kosloff, Ronnie

    2012-02-01

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power Jc vanishes as Jc∝Tcα, when Tc→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath.

  11. Dynamical and Radiative Properties of X-Ray Pulsar Accretion Columns: Phase-averaged Spectra

    Energy Technology Data Exchange (ETDEWEB)

    West, Brent F. [Department of Electrical and Computer Engineering, United States Naval Academy, Annapolis, MD (United States); Wolfram, Kenneth D. [Naval Research Laboratory (retired), Washington, DC (United States); Becker, Peter A., E-mail: bwest@usna.edu, E-mail: kswolfram@gmail.com, E-mail: pbecker@gmu.edu [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States)

    2017-02-01

    The availability of the unprecedented spectral resolution provided by modern X-ray observatories is opening up new areas for study involving the coupled formation of the continuum emission and the cyclotron absorption features in accretion-powered X-ray pulsar spectra. Previous research focusing on the dynamics and the associated formation of the observed spectra has largely been confined to the single-fluid model, in which the super-Eddington luminosity inside the column decelerates the flow to rest at the stellar surface, while the dynamical effect of gas pressure is ignored. In a companion paper, we have presented a detailed analysis of the hydrodynamic and thermodynamic structure of the accretion column obtained using a new self-consistent model that includes the effects of both gas and radiation pressures. In this paper, we explore the formation of the associated X-ray spectra using a rigorous photon transport equation that is consistent with the hydrodynamic and thermodynamic structure of the column. We use the new model to obtain phase-averaged spectra and partially occulted spectra for Her X-1, Cen X-3, and LMC X-4. We also use the new model to constrain the emission geometry, and compare the resulting parameters with those obtained using previously published models. Our model sheds new light on the structure of the column, the relationship between the ionized gas and the photons, the competition between diffusive and advective transport, and the magnitude of the energy-averaged cyclotron scattering cross-section.

  12. Size-selective extended X-ray absorption fine structure spectroscopy of free selenium clusters

    International Nuclear Information System (INIS)

    Nagaya, K.; Yao, M.; Hayakawa, T.; Ohmasa, Y.; Kajihara, Y.; Ishii, M.; Katayama, Y.

    2002-01-01

    In a recent paper [M. Yao et al., J. Synchrotron Radiat. 8, 542 (2001)], we proposed a new method for the size-selective EXAFS (extended x-ray absorption fine structure) of neutral-free clusters, in which not only the x-ray absorption process but also the deexcitation processes are utilized as the structural information. In order to verify this method experimentally, we have developed the synchronous measurements of EXAFS and photoelectron photoion coincidence and carried them out for a Se cluster beam by utilizing the third-generation intense x-ray source. The EXAFS spectra for Se small clusters have been obtained and compared critically with theoretical predictions

  13. Theoretical x-ray absorption investigation of high pressure ice and compressed graphite

    International Nuclear Information System (INIS)

    Shaw, Dawn M; Tse, John S

    2007-01-01

    The x-ray absorption spectra (XAS) of high pressure ices II, VIII, and IX have been computed with the Car-Parrinello plane wave pseudopotential method. XAS for the intermediate structures obtained from uniaxial compression of hexagonal graphite along the c-axis are also studied. Whenever possible, comparisons to available experimental results are made. The reliability of the computational methods for the XAS for these structures is discussed

  14. Study of dynamic emission spectra from lubricant films in an elastohydrodynamic contact using Fourier transform spectroscopy

    Science.gov (United States)

    Lauer, J. L.

    1978-01-01

    Infrared emission spectra were obtained through a diamond window from lubricating fluids in an operating sliding elastohydrodynamic contact and analyzed by comparison with static absorption spectra under similar pressures. Different loads, shear rates and temperatures were used. Most of the spectra exhibited polarization characteristics, indicating directional alignment of the lubricant in the EHD contact. Among the fluids studied were a "traction" fluid, an advanced ester, and their mixtures, a synthetic paraffin, a naphthenic reference fluid (N-1), both neat and containing 1 percent of p-tricresyl phosphate as an anti-wear additive, and a C-ether. Traction properties were found to be nearly proportional to mixture composition for traction fluid and ester mixtures. The anti-wear additive reduced traction and fluid temperature under low loads but increased them under higher loads, giving rise to formation of a friction polymer.

  15. Compositional Analyses and Implications of Visible/Near-Infrared Spectra of Outer Irregular Jovian Satellites

    Science.gov (United States)

    Vilas, Faith; Hendrix, Amanda

    2017-10-01

    The existence of a visible-near infrared absorption feature attributed to aqueous alteration products has been suggested in both grey and reddened broadband photometry of some outer irregular jovian satellites. Moderate resolution VNIR narrowband spectroscopy was obtained of the jovian irregular satellites JVI Himalia, JVII Elara, JVIII Pasiphae, JIX Sinope, JX Lysithea, JXI Carme, JXII Ananke and JXVII Callirrhoe in 2006, 2008, 2009, and 2010 using the MMT Observatory facility Red Channel spectrograph to confirm the presence of this feature. The spectra are centered near 0.64 μm in order to cover the 0.7-μm feature entirely (generally ranging from 0.57 to 0.83 μm). The spectra generally have a dispersion/element of ~0.6 nm (6Å) some spectra are smoothed. These spectra sample three prograde (i = 28o), four retrograde (i = 149o, 165o) and one independent satellite.We observe these findings among the spectra:- An absorption feature centered near 0.7 µm exists in the spectra of the three prograde (i = 28o) satellites. This feature is spectrally broader than the 0.7-µm feature observed in C-complex asteroids. None appears spectrally reddened. This suggests that these prograde satellites have a common parent body.- A different absorption feature appears in the spectra of the three retrograde (i = 149o) satellites, also suggesting a common parent body. Varying reddening is observed. This feature is similar in spectral location and width to the 0.7-µm feature.- Reddening is observed in the individual observation of JXI Carme (i = 165o), and independent satellite JIX Sinope, similar to the D-class asteroid spectra dominating the Trojan population. A suggested absorption feature is being investigated.Mixing modeling of combinations of both expected and proposed compositions including carbonaceous materials, phyllosilicates, mafic silicates, and other opaque materials, is currently underway. Results will be reported and discussed at the meeting.Acknowledgments: The

  16. Modeling of fluorescence line-narrowed spectra in weakly coupled dimers in the presence of excitation energy transfer

    Science.gov (United States)

    Lin, Chen; Reppert, Mike; Feng, Ximao; Jankowiak, Ryszard

    2014-07-01

    This work describes simple analytical formulas to describe the fluorescence line-narrowed (FLN) spectra of weakly coupled chromophores in the presence of excitation energy transfer (EET). Modeling studies for dimer systems (assuming low fluence and weak coupling) show that the FLN spectra (including absorption and emission spectra) calculated for various dimers using our model are in good agreement with spectra calculated by: (i) the simple convolution method and (ii) the more rigorous treatment using the Redfield approach [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)]. The calculated FLN spectra in the presence of EET of all three approaches are very similar. We argue that our approach provides a simplified and computationally more efficient description of FLN spectra in the presence of EET. This method also has been applied to FLN spectra obtained for the CP47 antenna complex of Photosystem II reported by Neupane et al. [J. Am. Chem. Soc. 132, 4214 (2010)], which indicated the presence of uncorrelated EET between pigments contributing to the two lowest energy (overlapping) exciton states, each mostly localized on a single chromophore. Calculated and experimental FLN spectra for CP47 complex show very good qualitative agreement.

  17. Magneto absorption measurements of nano-size ɛ-AlxFe2-xO3 powder materials at millimeter wavelengths

    Science.gov (United States)

    Afsar, Mohammed N.; Li, Zijing; Korolev, Konstantin A.; Namai, Asuka; Ohkoshi, Shin-ichi

    2011-04-01

    Ferromagnetic absorption spectra of ɛ-AlxFe2-xO3 powders with various x parameters and densities were obtained using free space quasi-optical spectrometer. Two absorption peaks located at around 95 and 105 GHz have been found. The 95 GHz absorption corresponds to x parameter value of 0.66; while the 105 GHz absorption corresponds to x-parameter value of 0.49. The absorption peak shifts to the lower frequency with increasing value of x parameter. The change in densities resulted in change in absorption intensity. The absorption characteristics are repeatable for these specimens prepared even at eight months interval. These absorbers are composed of ɛ-AlxFe2-xO3 nanomagnets and prepared by sol-gel techniques. Free space quasi-optical spectrometer equipped with a set of tunable backward-wave oscillators as power sources is used in this work to study the transmittance and absorption property of this series of materials at millimeter wave frequencies. The transmittance and absorbance spectra of ɛ-AlxFe2-xO3 powders with different x values (x = 0.66 and 0.49) and densities are recorded using the free space spectrometer. Strong magnetic absorption centering at 95 GHz (corresponding to x = 0.66) and at 105 GHz (x = 0.49) are found for all densities.

  18. Absorption spectrum of the firefly luciferin anion isolated in vacuo.

    Science.gov (United States)

    Støchkel, Kristian; Milne, Bruce F; Brøndsted Nielsen, Steen

    2011-03-24

    The excited-state physics of the firefly luciferin anion depends on its chemical environment, and it is therefore important to establish the intrinsic behavior of the bare ion. Here we report electronic absorption spectra of the anion isolated in vacuo obtained at an electrostatic ion storage ring and an accelerator mass spectrometer where ionic dissociation is monitored on a long time scale (from 33 μs and up to 3 ms) and on a short time scale (0-3 μs), respectively. In the ring experiment the yield of all neutrals (mainly CO(2)) as a function of wavelength was measured whereas in the single pass experiment, the abundance of daughter ions formed after loss of CO(2) was recorded to provide action spectra. We find maxima at 535 and 265 nm, and that the band shape is largely determined by the sampling time interval, which is due to the kinetics of the dissociation process. Calculations at the TD-B3LYP/TZVPP++ level predict maximum absorption at 533 and 275 nm for the carboxylate isomer in excellent agreement with the experimental findings. The phenolate isomer lies higher in energy by 0.22 eV, and also its absorption maximum is calculated to be at 463 nm, which is far away from the experimental value. Our data serve to benchmark future theoretical models for bioluminescence from fireflies.

  19. Evaluation of bulk and surfaces absorption edge energy of sol-gel-dip-coating SnO2 thin films

    Directory of Open Access Journals (Sweden)

    Emerson Aparecido Floriano

    2010-12-01

    Full Text Available The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110 and (101 surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110 and (101 surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101 surface, which presents direct bandgap transition.

  20. Size Effect on the Infrared Spectra of Condensed Media under Conditions of 1D, 2D, and 3D Dielectric Confinement

    KAUST Repository

    Shaganov, Igor I.

    2010-10-07

    The effect of dielectric confinement on the peak position of intramolecular and a lattice vibration in the infrared spectra of various condensed media is investigated. Liquid benzene, carbon disulfide, and chloroform, as well as amorphous SiO2 and microcrystalline MgO particles, were characterized in this study. The absorption spectra of organic liquids and aqueous solutions of a silica submicrometer powder were measured under a variety of dielectric confinement configurations using Fourier transform Infrared spectroscopy. A significant shift of the resonant absorption band of liquid mesoparticles has been observed under dielectric confinement, which is in good agreement with model predictions. A corresponding expression for the dielectric loss spectrum of an absorbing composite medium was obtained using a Maxwell-Garnett generalized equation for the cases of one, two, and three-dimensional dielectric confinement in both ordered and disordered thin layers (disks), rods (wires or needles), and spheres of an absorbing medium. The experimental data on peak positions obtained from the infrared spectra of the organic liquids investigated in this work, as well as from the infrared spectra of amorphous quartz spherical particles and rods, are in good agreement with the calculated data. It is shown using simulations of the absorption spectrum of MgO powder that the approach suggested can be applied under certain conditions to the modeling of the spectra of microcrystalline particles of nonspheroidal shape. © 2010 American Chemical Society.

  1. Spectra and Charge Transport of Polar Molecular Photoactive Layers Used for Solar Cells

    Directory of Open Access Journals (Sweden)

    Yuanzuo Li

    2015-01-01

    Full Text Available The ground state structures, HOMO and LUMO energy levels, band gaps ΔH-L, ionization potentials (IP, and electron affinities (EA of three types of copolymer P1 and its derivatives P2, P3, and PBDT-BTA were investigated by using density functional theory (DFT with B3LYP and 6-31G (d basis set. On the base of optimized structures of ground states, their absorption spectra were obtained by using TD-DFT//Cam-B3LYP/6-31 G (d. Research shows that with the increasing conjugated units, HOMO energy levels increased, LUMO energy levels decreased, and band gaps decreased gradually. Moreover, their ionization potentials decreased and electron affinities increased along with the increase of conjugated chains, and absorption spectra red-shifted. In addition, the side chain has a significant effect on the properties of ground and excited states. In order to investigate the influence of conjugated units and side chain on the charge transport, their hole and electron reorganization energies were calculated, and the results indicated that Pb have a good hole transport capability. Considering the practical application, the HOMO and LUMO energy levels, band gaps, and absorption spectra under external electric field were studied, and the results proved that the external electric field has an effect on the optical and electronic properties.

  2. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  3. Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products

    International Nuclear Information System (INIS)

    Nanzyo, M.

    1986-01-01

    Infrared absorption spectra of phosphate sorbed on iron hydroxide gel were obtained by applying the differential diffuse reflectance method. Absorption bands due to P-O stretching vibration were observed at 1,110 and 1,010 cm -1 at pH 12.3. With decreasing pH, these absorption bands gradually shifted to 1,100 and 1,020 cm -1 at pH 4.9. At pH 2.3, they became a broad single absorption band at 1,060 cm -1 . At pH 11 or above, the difference in the Na + adsorption between phosphated iron hydroxide gel and iron hydroxide gel was almost equal to the amount of phosphate sorption. This finding shows that phosphate was retained on the iron hydroxide gel surface as a bidentate ligand at a high pH. It was concluded that at a high pH phosphate was sorbed on iron hydroxide gel as a binuclear surface complex similar to that on goethite; the change in spectra for P-O stretching vibration with decreasing pH value was mainly caused by an increase in the fraction of amorphous iron phosphate; at pH 2.3, the phosphate sorption product consisted of amorphous iron phosphate. (author)

  4. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    Science.gov (United States)

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  5. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    International Nuclear Information System (INIS)

    Tseplin, E.E.; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G.

    2009-01-01

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  6. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Serebryannikov, Andriy E., E-mail: andser@amu.edu.pl [Faculty of Physics, Adam Mickiewicz University, 61-614 Poznań (Poland); Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey); Nojima, S. [Yokohama City University, Department of Nanosystem Science, Graduate School of Nanobioscience, Kanazawa Ku, 22-2 Seto, Yokohama, Kanagawa 2360027 (Japan); Alici, K. B. [TUBITAK Marmara Research Center, Materials Institute, 41470 Gebze, Kocaeli (Turkey); Ozbay, Ekmel [Nanotechnology Research Center—NANOTAM, Bilkent University, 06800 Ankara (Turkey)

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  7. Study of the shape of β spectra

    International Nuclear Information System (INIS)

    Bisch, Charlene

    2014-01-01

    The goal of this PhD work is to build an experimental device dedicated to measuring beta spectra with a precision relevant to modern metrology requirements. The device, which is based on a silicon semi-conductor detector, must take into account certain physical phenomena and detector characteristics which could lead to deformation of the measured spectra. These must be understood and minimized. Monte-Carlo simulations have allowed the geometry and construction materials to be optimized. The quality of the radioactive sources is paramount in obtaining spectra of high-quality. Nonetheless, the measured spectra must be corrected for any remaining distortion. A response function must therefore be determined for each measurement geometry. This can be achieved via Monte-Carlo simulations. The first results show that deconvolution of the measured spectra with the response function makes possible the accurate determination of the true form of the beta spectra. (author) [fr

  8. Optical properties of the adaxial and abaxial faces of leaves. Chlorophyll fluorescence, absorption and scattering coefficients.

    Science.gov (United States)

    Cordón, Gabriela B; Lagorio, María G

    2007-08-01

    Emission fluorescence spectra were obtained for the adaxial and abaxial faces of dicotyledonous (Ficus benjamina L., Ficus elastica, Gardenia jasminoides and Hedera helix) and monocotyledonous leaves (Gladiolus spp. and Dracaena cincta bicolor). After correction by light-re-absorption processes, using a previously published physical model, the adaxial faces of dicotyledons showed a fluorescence ratio Fred/Ffar-red rather lower than the respective values for the abaxial faces. Monocotyledons and shade-adapted-plants showed similar values for the corrected fluorescence ratio for both faces. Even when differences in experimental fluorescence emission from adaxial and abaxial leaves in dicotyledons are mostly due to light re-absorption processes, the residual dissimilarity found after application of the correction model would point to the fact that fluorescence re-absorption is not the only responsible for the observed disparity. It was concluded that light re-absorption processes does not account entirely for the differences in the experimental emission spectra between adaxial and abaxial leaves. Differences that remains still present after correction might be interpreted in terms of a different photosystem ratio (PSII/PSI). Experiments at low temperature sustained this hypothesis. In dicotyledons, light reflectance for adaxial leaves was found to be lower than for the abaxial ones. It was mainly due to an increase in the scattering coefficient for the lower leaf-side. The absorption coefficient values were slightly higher for the upper leaf-side. During senescence of Ficus benjamina leaves, the scattering coefficient increased for both the upper and lower leaf-sides. With senescence time the absorption coefficient spectra broadened while the corrected fluorescence ratio (Fred/Ffar-red) decreased for both faces. The results pointed to a preferential destruction of photosystem II relative to photosystem I during senescence.

  9. In-line evanescent-wave microfluidic absorption sensor based on an embedded optical microfiber coil

    OpenAIRE

    Lorenzi, R.; Jung, Y.; Brambilla, G.

    2011-01-01

    We present the absorption spectra collected with an evanescent-field absorption sensor. The device comprises an active fluidic channel with an embedded microfiber coil resonator. Deviations from Beer-Lambert law will be discussed in terms of adsorption mechanism.

  10. LARSON FTS SPECTRA V1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains 107 asteroid spectra obtained between the years 1975 and 1982 inclusive, with the infrared fourier transform spectrometer (FTS) of H. P....

  11. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  12. Electronic absorption spectra and nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    To calculate the spectroscopic and NLO properties, we use correction vector method,. 24 which implicitly ... Lewis acid–Lewis base interactions within the CO2 molecules. The O–C–O angle in this case becomes ..... Ishii R, Okazaki S, Odawara O, Okada I, Misawa M and Fukunaga T 1995 Fluid Phase Equilibria 104 291. 16.

  13. Electronic absorption spectra and nonlinear optical properties of CO ...

    Indian Academy of Sciences (India)

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in ...

  14. Absorption Spectra of Water Clusters Calculated Using Density Functional Theory

    Science.gov (United States)

    2013-07-10

    Defense, Washington Headquarters Services , Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204...associated with response features that are intermediate between that of isolated molecules and that of a bulk lattice. The DFT sofware GAUSSIAN was used

  15. Photoluminescence and infrared absorption spectra of aminated nanocrystalline diamond surface

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Kozak, Halyna; Babchenko, Oleg; Ukraintsev, Egor; Kromka, Alexander

    2013-01-01

    Roč. 5, č. 6 (2013), s. 515-518 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP205/12/P331; GA MŠk LH12236; GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : nanocrystalline diamond * infrared spectroscopy * photoluminescence * fluorescamine Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Electronic absorption spectra and nonlinear optical properties of ...

    Indian Academy of Sciences (India)

    Administrator

    These materials find numerous device applications, from lasers to optical switches and electronics. 1. So far, the organic π-conjugated molecules have been considered mostly for this pur- pose because of their easy functionalization to fine tune the desired properties and the ease of fabrica- tion and integration into devices.

  17. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    Science.gov (United States)

    2016-03-31

    comparative to the quality of the lake water, with primarily soluble compounds and colloids, but with fewer pollutants and bacteria/ algae ...polluted. The East River, however, has relatively lower concentrations of various water quality parameters and carries much fewer toxic industrial...deactivate contaminant toxicity , such as ozonation. The water treatment process of ozonation results in the formation of sediments that fall out of

  18. Identification of Metal Absorption Lines on Quasar Spectra of SDSS ...

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Cai-Juan Pan1 Cheng-Yu Su2 Mu-Sheng Li3 Wei-Rong Huang3. Department of Physics and Telecommunication Engineering of Baise University, Baise 533000, China. Guangdong University of Technology, Guangzhou 510006, China. Centre for Astrophysics, Guangzhou University, Guangzhou 510006, ...

  19. Single-particle absorption spectroscopy by photothermal contrast.

    Science.gov (United States)

    Yorulmaz, Mustafa; Nizzero, Sara; Hoggard, Anneli; Wang, Lin-Yung; Cai, Yi-Yu; Su, Man-Nung; Chang, Wei-Shun; Link, Stephan

    2015-05-13

    Removing effects of sample heterogeneity through single-molecule and single-particle techniques has advanced many fields. While background free luminescence and scattering spectroscopy is widely used, recording the absorption spectrum only is rather difficult. Here we present an approach capable of recording pure absorption spectra of individual nanostructures. We demonstrate the implementation of single-particle absorption spectroscopy on strongly scattering plasmonic nanoparticles by combining photothermal microscopy with a supercontinuum laser and an innovative calibration procedure that accounts for chromatic aberrations and wavelength-dependent excitation powers. Comparison of the absorption spectra to the scattering spectra of the same individual gold nanoparticles reveals the blueshift of the absorption spectra, as predicted by Mie theory but previously not detectable in extinction measurements that measure the sum of absorption and scattering. By covering a wavelength range of 300 nm, we are furthermore able to record absorption spectra of single gold nanorods with different aspect ratios. We find that the spectral shift between absorption and scattering for the longitudinal plasmon resonance decreases as a function of nanorod aspect ratio, which is in agreement with simulations.

  20. Inclusive spectra in hard processes

    International Nuclear Information System (INIS)

    Kiselev, A.V.; Petrov, V.A.

    1985-01-01

    It is shown that the unified mechanism of hadronization in hard processes results in universality of inclusive spectra of soft hadrons. Inclusive spectrum of hadrons in energy share in deep-inelastic lepton-hadron scattering is calculated. The spectrum obtained is calculated with analogous distribution in e + e - annihilation. It is noted that inclusive spectrum of soft hadrons in hard processes is described by a universal function

  1. Modeling of optical wireless scattering communication channels over broad spectra.

    Science.gov (United States)

    Liu, Weihao; Zou, Difan; Xu, Zhengyuan

    2015-03-01

    The air molecules and suspended aerosols help to build non-line-of-sight (NLOS) optical scattering communication links using carriers from near infrared to visible light and ultraviolet bands. This paper proposes channel models over such broad spectra. Wavelength dependent Rayleigh and Mie scattering and absorption coefficients of particles are analytically obtained first. They are applied to the ray tracing based Monte Carlo method, which models the photon scattering angle from the scatterer and propagation distance between two consecutive scatterers. Communication link path loss is studied under different operation conditions, including visibility, particle density, wavelength, and communication range. It is observed that optimum communication performances exist across the wavelength under specific atmospheric conditions. Infrared, visible light and ultraviolet bands show their respective features as conditions vary.

  2. Components of Program for Analysis of Spectra and Their Testing

    Directory of Open Access Journals (Sweden)

    Ivan Taufer

    2013-11-01

    Full Text Available The spectral analysis of aqueous solutions of multi-component mixtures is used for identification and distinguishing of individual componentsin the mixture and subsequent determination of protonation constants and absorptivities of differently protonated particles in the solution in steadystate (Meloun and Havel 1985, (Leggett 1985. Apart from that also determined are the distribution diagrams, i.e. concentration proportions ofthe individual components at different pH values. The spectra are measured with various concentrations of the basic components (one or severalpolyvalent weak acids or bases and various pH values within the chosen range of wavelengths. The obtained absorbance response area has to beanalyzed by non-linear regression using specialized algorithms. These algorithms have to meet certain requirements concerning the possibility ofcalculations and the level of outputs. A typical example is the SQUAD(84 program, which was gradually modified and extended, see, e.g., (Melounet al. 1986, (Meloun et al. 2012.

  3. Generation of synthetic gamma spectra with MATLAB

    International Nuclear Information System (INIS)

    Palmerio, Julian J.; Coppo, Anibal D.

    2009-01-01

    Objectives: The aim of this work is the simulation of gamma spectra using the MATLAB program to generate the calibration curves in efficiency, which will be used to measure radioactive waste in drums. They are necessary for the proper characterization of these drums. A Monte Carlo simulation was basically developed with the random number generator Mersenne Twister and nuclear data obtained from NIST. This paper shows the results obtained and difficulties encountered until today. The physical correction of the simulated spectra has been the only aspect we have been working, up to this moment. Procedures: A simplified representation of the 'Laboratorio de Verificacion y Control de la Calidad' was chosen. Drums with cemented liquid waste are routinely measured in this laboratory. The commercial program MCNP was also used to get a valid reference in the field of simulation of spectra. We analyzed the spectra obtained by MATLAB in the light of classical literature photon detection and the spectrum obtained by MCNP. Conclusions: Currently the program developed seems adequate to simulate a measurement in the 'Laboratorio de Verificacion y Control de la Calidad'. The spectra obtained by MATLAB seem to physically represent what is observed in real spectra. However, it is a slow program. The current development efforts are directed to improve the speed of simulation. An alternative is to use the CUDA language for NVIDIA video cards to parallelized the simulation. An adequate simulation of the electronic measuring chain is also needed to obtain better representations of the shapes of the peaks. (author)

  4. Electron paramagnetic resonance and optical absorption of uranium ions diluted in CdF2 single crystals

    International Nuclear Information System (INIS)

    Pereira, J.J.C.R.

    1976-08-01

    The electron paramagnetic resonance (EPR) has been studied in conection with the optical absortion spectra of Uranium ions diluted in CdF 2 single crystals. Analyses of the EPR and optical absorption spectra obtained experimentally, and a comparison with known results in the isomorfic CaF 2 , SrF 2 and BaF 2 , allowed the identification of two paramagnetic centers associated with Uranium ions. These are the U(2+) ion in cubic symmetry having the triplet γ 5 as ground state, and the U(3+) ion in cubic symmetry having the dublet γ 6 as ground state. (Author) [pt

  5. Intrinsic deviations in fluorescence yield detected x-ray absorption spectroscopy : the case of the transition metal L-2,L-3 edges

    NARCIS (Netherlands)

    Kurian, Reshmi; Kunnus, Kristjan; Wernet, Philippe; Butorin, Sergei M.; Glatzel, Pieter; de Groot, Frank M. F.

    2012-01-01

    Fluorescence yield (FY) detected x-ray absorption spectra (XAS) of 3d transition metal ions are calculated from the integrated 2p3d resonant x-ray emission spectra. The resulting FY-XAS spectra are compared with the normal XAS spectra corresponding to the absorption cross section and significant

  6. Laser gain spectra of quantum wells and multiplasmon optical transitions

    International Nuclear Information System (INIS)

    Gurau, V.

    2005-01-01

    A novel multi-plasmon concept of a light absorption and laser gain of low-dimensional structures are comprehensively discussed. A Generalized Semiconductor Bloch Equations are derived with account of multi-plasmon optical transitions in direct gap quantum wells, using the cumulant expansion method and fluctuation-dissipation theorem. We present results of computer simulations concerning gain spectra of In 0.05 Ga 0.95 As quantum wells with account of multiplasmon optical transitions in two-dimensional systems. Multi-quantum LO-phonon-plasmon optical transitions are investigated with account of coherent memory effects in quantum wells. It is shown that a red shift of the absorption edge can be caused, not only by known mechanism of band gap shrinkage, but also by multi-plasmon transitions. The electron-hole plasma properties in the active region of the laser device and its interaction with the optical field are studied on a microscopic level using obtained Generalized Semiconductor Bloch Equations. The comparison with other theories and experimental data measured in In 0.05 Ga 0.95 As quantum wells is performed. The gain value g=50 cm -1 in 8 nm In 0.05 Ga 0.95 As quantum wells is obtained at a surface density of electrons nd 0 =1.64 10 -12 cm -2 . (authors)

  7. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...

  8. Two-Component Fitting of Coronal-Hole and Quiet-Sun He I 1083 Spectra

    Science.gov (United States)

    Jones, Harrison P.; Malanushenko, Elena V.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present reduction techniques and first results for detailed fitting of solar spectra obtained with the NASA/National Solar Observatory Spectromagnetograph (NASA/NSO SPM over a 2 nm bandpass centered on the He 1 1083 nm line. The observation for this analysis was a spectra-spectroheliogram obtained at the NSO/Kitt Peak Vacuum Telescope (KPVT) on 00 Apr 17 at 21:46 UT spanning an area of 512 x 900 arc-seconds; the field of view included a coronal hole near disk center as well as surrounding quiet sun. Since the He I line is very weak and blended with nearby solar and telluric lines, accurate determination of the continuum intensity as a function of wavelength is crucial. We have modified the technique of Malanushenko {\\it et al.) (1992; {\\it AA) (\\bf 259), 567) to tie regions of continuua and the wings of spectral lines which show little variation over the image to standard reference spectra such as the NSO Fourier Transform Spectrometer atlas (Wallace {\\it et al). 1993; NSO Tech Report \\#93-001). We performed detailed least-squares fits of spectra from selected areas, accounting for all the known telluric and solar absorbers in the spectral bandpass. The best physically consistent fits to the Helium lines were obtained with Gaussian profiles from two components (one ''cool'', characteristic of the upper chromosphere; one ''hot'', representing the cool transition region at 2-3 x 10$^{4)$ K). In the coronal hole, the transition-region component, shifted by 6-7 km/s to the blue, is mildly dominant, consistent with mass outflow as suggested by Dupree {\\it et all. (1996; {\\it Ap. J.}-{\\bf 467), 121). In quiet-sun spectra there is less evidence of outward flow, and the chromospheric component is more important. All our fitted spectra show a very weak unidentified absorption feature at 1082.880 nm in the red wing of the nearby Si I line.

  9. Optimization and energy spectra of x-ray to be used for imaging

    International Nuclear Information System (INIS)

    Nakamori, Nobuyuki; Kanamori, Hitoshi

    1979-01-01

    The relations of the spectra of X-ray used for diagnosis to the absorbed dose of patients and X-ray information are now being investigated by a number of investigators. Here the problems and the trends of the investigations at present are described. Advent of semiconductor detectors has improved the accuracy of measuring X-ray spectra very rapidly. However, since the semiconductor detectors themselves utilize X-ray photon absorption, calibration curves must be prepared for obtaining the true X-ray spectra. Though there are methods of theoretically determining X-ray spectra, no definite theoretical formula is found. Thus, the derivation of an empirical equation based on measured data would be the most fundamental problem. Interactions in an object and the change of X-ray spectra are described on the case of monochromatic and continuous X-ray irradiation. As mentioned above, beam hardening occurs when X-ray enters a matter deep, because the interactions between X-ray and the matter depend upon the photon energy. There are a few methods for correcting the variation of CT (computed tomography) number due to beam hardening. However, prior to this, there are two methods of representing continuous X-ray with single energy, and the unification of the methods or a new way of defining X-ray quality is needed. It has been and is always desirable that monochromatic X-ray source becomes to be useable, and various methods are proposed. (Wakatsuki, Y.)

  10. On the observability of rotational and vibrational spectra of isotopically asymmetrized homonuclear diatomic ions

    International Nuclear Information System (INIS)

    Bernstein, R.B.; Certain, P.R.

    1975-01-01

    Reference is made to the pseudo-homonuclear diatomic ions HD + , 3 He 4 He + , 12 C 13 C + , 14 N 15 N + and 16 O 18 O + , with special reference to their dipole moments. The values of these moments are stated to be within an order of magnitude of those of typical heteronuclear diatomic molecules, implying that the infrared and microwave spectra of the ions should be observable, both in absorption in the laboratory and emiission from interstellar cloud sources. Laboratory measurements of such spectra would be valuable, both because of the significance of the molecular structure data thereby obtained and because a knowledge of the transition frequencies would facilitate the search for such ions in the interstellar medium. Recent measurements of the microwave spectra of neutral molecules, such as CO, HCN, H 2 CO, etc., in certain interstellar clouds have revealed anomalous enrichments of the rarer isotopic species with respect to their terrestrial abundances, for examples 13 C, 15 N, 18 O, etc. This suggests the possibility of observing rotational spectra of a hitherto inaccessible class of molecular ions, referred to as isotopically substituted asymmetrized homonuclear diatomic ions, that possess significant dipole moments. With the increasing availability of space platforms and observatories it should soon be possible to carry out a search for the spectra of such ions. Laboratory experimental approached are also briefly discussed. (U.K.)

  11. Photoabsorption spectra of potassium and rubidium near the K-edge

    International Nuclear Information System (INIS)

    Azuma, Y.; Berry, H.G.; Cowan, P.L.

    1995-01-01

    We have used a high-temperature circulating heat-pipe absorption cell together with monochromatized X-ray beams at the X24A and X23A2 beam lines at the NSLS to obtain photoabsorption spectra of potassium and rubidium at their K- and KM-edges. The photon-energy ranges lay near 3600 eV and 15200 eV, respectively. We have also obtained first measurements of the LII and LIII edges in cesium. Although the K-edge photoabsorptions of the rare gases have been studied, there is little previous work on other atomic vapors. Most of the edges and resonance peaks that we observed have now been identified using Dirac Hartree-Fock calculations. As a check, we have compared these results with those obtained previously in closed-shell rare-gas absorption spectra. The absolute energies were obtained through a calibration of the X24A systems using measurements of several metal L-edges in the 3200-5000 eV energy range. We found that the 4p resonance in potassium is significantly enhanced compared with the corresponding situation in argon. Likewise, the 5p resonance in krypton is unresolved from the background ionization cross section, whereas it is well resolved in rubidium. As suggested by Amusia, these enhancements may be due to the enhanced potential seen in the excited state of the alkali systems as a result of the presence of an s-electron which reduces the nuclear shielding

  12. The absorption of gamma, gamma-families and hadrons in the atmosphere - EC data

    Energy Technology Data Exchange (ETDEWEB)

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev physical Institute, FIAN, Leninsky prospect 53, 119991 Moscow (Russian Federation); Cherdyntceva, K.V. [P.N.Lebedev physical Institute, FIAN, Leninsky prospect 53, 119991 Moscow (Russian Federation); Janceitova, J.K. [Tien-Shan Highmountain Station, Mitina 3, Almaty (Kazakhstan)

    2009-12-15

    The energy spectra SIGMAE{sub g}amma, E{sub g}amma for gamma-families and hadrons at the level of the Pamir (600 g/cm{sup 2}) and Tien-Shan (685 g/cm{sup 2}) mountains are compared. The ratio of event intensities permits to observe the absorption lengths for different types of events in X-ray emulsion chambers: single gamma-quanta, hadrons, gamma-families and super-families with halo. These values of lambda{sub att} are much more than those determined from zenith angle distributions. Data from other EC experiments are used to decrease the errors in lambda{sub att}. The absorption curves in the atmosphere were obtained for gamma-families and gamma-quanta by means of data compiled for different EC experiments at balloon, aeroplane and mountain heights. The absorption curves cannot be described as a simple exponential dependence in both cases.

  13. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  14. Design spectra development considering short time histories

    International Nuclear Information System (INIS)

    Weiner, E.O.

    1983-01-01

    Two separate programs, MODQKE and MDOF, were written to provide a capability of obtaining equipment spectra from design spectra. MODQKE generates or modifies acceleration histories to conform with design spectra pertaining to, say, a foundation. MDOF is a simple linear modal superposition program that solves for equipment support histories using the design spectra conforming histories as input. Equipment spectra, then, are obtained from the support histories using MODQKE. MODQKE was written to modify or provide new histories with special attention paid to short seismic records. A technique from the open literature was borrowed to generate an initial history that approximates a given response spectrum. Further refinement is done with smoothing cycles in which several correction signals are added to the history in a way that produces a least squares fit between actual and prescribed spectra. Provision is made for history shaping, a baseline correction, and final scaling. MODQKE performance has been demonstrated with seven examples having zero to ten percent damping ratios, and 2.5 seconds to 20 seconds durations and a variety of target spectra. The examples show the program is inexpensive to use. MDOF is a simple modal superposition program. It has no eigensolver, and the user supplies mode shapes, frequencies, and participation factors as input. Floor spectra can be generated from design spectra by using a history from MODQKE that conforms to the design spectrum as input to MDOF. Floor motions from MDOF can be fed back to MODQKE without modification to obtain the floor spectra. A simple example is given to show how equipment mass effects can be incorporated into the MDOF solution. Any transient solution capability can be used to replace MDOF. For example, a direct transient approach may be desirable if both the equipment and floor structures are to be included in the model with different damping fractions. (orig./HP)

  15. F K-edge soft X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugimura, Tetsuro; Kawai, Jun; Maeda, Kuniko; Fukushima, Akiko; Shin, S.; Motoyama, Muneyuki; Nakajima Tsuyoshi

    2001-01-01

    We measured F X-ray absorption spectra of various fluorine compounds using a synchrotron radiation at KEK-PF. The absorption spectra were measured using X-ray fluorescence yield (XFY) and total electron yield (TEY) methods. Change of the spectral shape has a relation to the metal-fluorine bond distance. By comparing with the experimental spectrum and calculated spectrum, F 2p state density is divined into up and down states. (author)

  16. THz induced nonlinear absorption in ZnTe

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Jepsen, Peter Uhd

    2015-01-01

    Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied.......Absorption spectra of ZnTe during strong-field THz interaction are investigated. Bleaching of the difference phonon modes below the fundamental TO mode is observed when field strengths higher than 4 MV/cm are applied....

  17. Theoretical Atomic Physics code development IV: LINES, A code for computing atomic line spectra

    International Nuclear Information System (INIS)

    Abdallah, J. Jr.; Clark, R.E.H.

    1988-12-01

    A new computer program, LINES, has been developed for simulating atomic line emission and absorption spectra using the accurate fine structure energy levels and transition strengths calculated by the (CATS) Cowan Atomic Structure code. Population distributions for the ion stages are obtained in LINES by using the Local Thermodynamic Equilibrium (LTE) model. LINES is also useful for displaying the pertinent atomic data generated by CATS. This report describes the use of LINES. Both CATS and LINES are part of the Theoretical Atomic PhysicS (TAPS) code development effort at Los Alamos. 11 refs., 9 figs., 1 tab

  18. Reflectance spectra of subarctic lichens

    International Nuclear Information System (INIS)

    Petzold, D.E.; Goward, S.N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the mid latitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 μm, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future. (author)

  19. Reflectance spectra of subarctic lichens

    Science.gov (United States)

    Petzold, Donald E.; Goward, Samuel N.

    1988-01-01

    Lichens constitute a major portion of the ground cover of high latitude environments, but little has been reported concerning their in situ solar spectral reflectance properties. Knowledge of these properties is important for the interpretation of remotely sensed observations from high latitude regions, as well as in studies of high latitude ecology and energy balance climatology. The spectral reflectance of common boreal vascular plants is similar to that of vascular plants of the midlatitudes. The dominant lichens, in contrast, display variable reflectance patterns in visible wavelengths. The relative reflectance peak at 0.55 microns, common to green vegetation, is absent or indistinct in spectra of pervasive boreal forest and tundra lichens, despite the presence of chlorophyll in the inner algal cells. Lichens of the dominant genus, Cladina, display strong absorption of ultraviolet energy and short-wavelength blue light relative to their absorption in other visible wavelengths. Since the Cladinae dominate both the surface vegetation in open woodlands of the boreal forest and the low arctic tundra, their unusual spectral reflectance patterns will enable accurate monitoring of the boreal forest-tundra ecotone and detection of its vigor and movement in the future.

  20. ORFEUS II echelle spectra : On the H-2/CO ratio in LMC gas towards LH 10

    NARCIS (Netherlands)

    Richter, P; de Boer, K; Bomans, DJ; Chin, YN; Heithausen, A; Koornneef, J

    1999-01-01

    ORFEUS far UV echelle spectra have been used to investigate HI, Hz and CO absorption lines along the line of sight towards LH 10:3120 in the LMC, extending the study presented by de Beer et al. (1998). While Hz absorption is clearly visible, no CO absorption at LMC velocities is detected, but an